
JBoss™ 3.2 Workbook
for

Enterprise JavaBeans™, 3rd Edition

About the Series

Each of the books in this series is a server-specific companion to the third edition of Richard
Monson-Haefel’s best-selling and award-winning Enterprise JavaBeans (O’Reilly 2001),
available at http://www.oreilly.com/ and at all major retail outlets. It guides the reader step by
step through the exercises called out in that work, explains how to build and deploy working
solutions in a particular application server, and provides useful hints, tips, and warnings.

These workbooks provide serious developers with the best possible foundation for success in EJB
development on their chosen platforms.

Series Titles Available

WebLogic™ Server 6.1 Workbook for Enterprise JavaBeans™ 3rd Edition

WebSphere™ 4.0 AEs Workbook for Enterprise JavaBeans™ 3rd Edition

JBoss™ 3.0 Workbook for Enterprise JavaBeans™ 3rd Edition

http://www.oreilly.com/
http://www.titan-books.com/

JBoss™ 3.2 Workbook
for

Enterprise JavaBeans™, 3rd Edition

Bill Burke and Sacha Labourey

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

JBoss 3.2 Workbook for Enterprise JavaBeans, 3rd Edition, by Bill Burke and Sacha Labourey

Copyright @ 2003 O’Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Companion volume to Enterprise JavaBeans, 3rd Edition, by Richard Monson-Haefel, published
by O’Reilly & Associates, Inc., 2001.

O’Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Series Editor: Brian Christeson

Printing History:

May 2003: First Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O’Reilly & Associates, 1nc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations appear in this
book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations have been
printed in caps or initial caps. Microsoft, Windows, Windows NT, and the Windows logo are
trademarks or registered trademarks of Microsoft Corporation in the United States and other
countries. Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc., in the United States and other countries. JBoss and JBoss Group are
trademarks of Marc Fleury under operation by JBoss Group, LLC, in the United States and other
countries. The association between the image of a wallaby and the topic of JBoss is a trademark of
O’Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Why didn’t I take the blue pill?

vii

Table of Contents

Table of Figures.. xiii

Preface..xv
Contents of This Book ... xv

On-Line Resources ... xvi

Conventions Used in This Book... xvi

Acknowledgements ... xvii

Server Installation and Configuration...1
About JBoss ...2

Installing JBoss Application Server..2

Discovering the JBoss Directory Structure ... 3

JBoss Configuration Files... 5

Deployment in JBoss .. 5

A Quick Look at JBoss Internals ...6

Micro-Kernel Architecture ... 6

Hot Deployment.. 7

Net Boot... 7

Detached Invokers .. 8

Exercise Code Setup and Configuration..9

Exercises Directory Structure .. 9

Environment Setup... 10

Exercises for Chapter 4... 13
Exercise 4.1: A Simple Entity Bean ... 14

Start Up JBoss ...14

Initialize the Database...14

Build and Deploy the Example Programs ..14

Deconstructing build.xml ..15

Examine the JBoss-Specific Files ..18

Examine and Run the Client Applications..18

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

viii

Managing Entity Beans...21

Exercise 4.2: A Simple Session Bean...24

Start Up JBoss .. 24

Initialize the Database.. 24

Build and Deploy the Example Programs ... 24

Examine the JBoss-Specific Files ... 25

Examine and Run the Client Application .. 26

Exercises for Chapter 5.. 29
Exercise 5.1: The Remote Component Interfaces ..30

Start Up JBoss .. 30

Initialize the Database..30

Build and Deploy the Example Programs ... 30

Examine the JBoss-Specific Files ..31

Examine and Run the Client Applications..31

Exercise 5.2: The EJBObject, Handle, and Primary Key....................................32

Start Up JBoss .. 32

Initialize the Database.. 32

Build and Deploy the Example Programs ... 32

Examine the JBoss-Specific Files ... 32

Examine and Run the Client Applications... 32

Exercise 5.3: The Local Component Interfaces ...33

Start Up JBoss .. 33

Initialize the Database.. 33

Build and Deploy the Example Programs ... 33

Examine the JBoss-Specific Files ... 33

Examine and Run the Client Applications... 35

Exercises for Chapter 6...37
Exercise 6.1: Basic Persistence in CMP 2.0 ...38

Start Up JBoss .. 38

Initialize the Database..38

Build and Deploy the Example Programs ... 38

Examine the JBoss-Specific Files ... 39

Examine and Run the Client Applications..41

Exercise 6.2: Dependent Value Classes in CMP 2.0 ...42

Start Up JBoss .. 42

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

ix

Initialize the Database.. 42

Build and Deploy the Example Programs ... 42

Examine the JBoss-Specific Files ... 43

Examine and Run the Client Applications... 43

Exercise 6.3: A Simple Relationship in CMP 2.0 ...44

Build and Deploy the Example Programs ... 44

Examine the JBoss-Specific Files ... 44

Examine and Run the Client Applications... 46

Exercises for Chapter 7 .. 49
Exercise 7.1: Entity Relationships in CMP 2.0: Part 1 ..50

Start Up JBoss .. 50

Initialize the Database..50

Build and Deploy the Example Programs ... 50

Examine the JBoss-Specific Files ..51

Examine and Run the Client Applications..51

Exercise 7.2: Entity Relationships in CMP 2.0: Part 260

Start Up JBoss ..60

Initialize the Database..60

Build and Deploy the Example Programs ...60

Examine the JBoss-Specific Files ..61

Examine and Run the Client Applications..61

Exercise 7.3: Cascade Deletes in CMP 2.0 ... 72

Build and Deploy the Example Programs ... 72

Examine the JBoss-Specific Files ... 72

Examine and Run the Client Applications... 72

Exercises for Chapter 8...75
Exercise 8.1: Simple EJB QL Statements... 76

Start Up JBoss .. 76

Build and Deploy the Example Programs ... 76

Examine the JBoss-Specific Files ... 76

Initialize the Database...77

Examine and Run the Client Applications..77

Exercise 8.2: Complex EJB QL Statements ...87

Start Up JBoss .. 87

Build and Deploy the Example Programs ... 87

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

x

Examine the JBoss-Specific Files ... 87

Initialize the Database.. 87

Examine and Run the Client Applications...88

JBoss Dynamic QL.. 98

Exercise for Chapter 10...103
Exercise 10.1: A BMP Entity Bean ... 104

Start Up JBoss .. 104

Initialize the Database.. 104

Examine the EJB Standard Files...105

Examine the JBoss-Specific Files ... 108

Build and Deploy the Example Programs ...111

Examine the Client Application..111

Run the Client Application .. 113

Exercises for Chapter 12 ... 121
Exercise 12.1: A Stateless Session Bean... 122

Examine the EJB..122

Examine the EJB Standard Deployment Descriptor ...125

Examine the JBoss Deployment Descriptors..126

Start Up JBoss ...127

Build and Deploy the Example Programs ..127

Initialize the Database.. 128

Examine the Client Applications .. 130

Exercise 12.2: A Stateful Session Bean .. 134

Examine the EJB..134

Examine the EJB Standard Deployment Descriptor ...139

Examine the JBoss Deployment Descriptor ...142

Start Up JBoss ...145

Build and Deploy the Example Programs ..145

Initialize the Database...145

Examine the Client Applications ...146

Exercises for Chapter 13 ... 153
Exercise 13.1: JMS as a Resource .. 154

Start Up JBoss ...154

Initialize the Database...154

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

xi

Create a New JMS Topic ...155

Examine the EJB Standard Files.. 160

Examine the JBoss-Specific Files .. 161

Build and Deploy the Example Programs .. 161

Examine the Client Applications ...162

Run the Client Applications...164

Exercise 13.2: The Message-Driven Bean .. 167

Start Up JBoss ...167

Initialize the Database...167

Create a New JMS Queue ... 168

Examine the EJB Standard Files...170

Examine the JBoss-Specific Files ..172

Build and Deploy the Example Programs ..173

Examine the Client Applications ...174

Run the Client Applications... 177

Appendix .. 181
Appendix A: Database Configuration.. 182

Set Up the Database ... 182

Examine the JBoss-Specific Files ..185

Start Up JBoss .. 186

Build and Deploy the Example Programs ..187

Examine and Run the Client Applications..187

xiii

Table of Figures

Figure 1: JBoss directory structure .. 3

Figure 2: JBoss server spine with some hot-deployed services... 7

Figure 3: A JBoss instance bootstrapping from three distinct netboot servers 8

Figure 4: Detached invokers .. 9

Figure 5: Exercises directory structure .. 10

Figure 6: The JMX management console .. 22

Figure 7: Managing entity beans from the console.. 23

Figure 8: Finding the DestinationManager .. 157

Figure 9: Naming a new JMS topic ...158

Figure 10: Finding the new topic...159

xv

Preface

This workbook is designed to be a companion for O’Reilly’s Enterprise JavaBeans, Third Edition,
by Richard Monson-Haefel, for users of JBoss™, an open-source J2EE™ application server. It is
one of a series of workbooks that is being published by O’Reilly & Associates as an informative
companion to that best-selling work.

The goal of this workbook is to provide the reader with step-by-step instructions for installing,
configuring, and using JBoss and for deploying and running the examples from Enterprise
JavaBeans.

This book is based on the production release of JBoss 3.2.0 and includes all the EJB 2.0
examples from the Enterprise JavaBeans book. All the examples in this workbook will work
properly with JBoss 3.0.3 and 3.2.0 and above, but not with earlier versions of JBoss.

Contents of This Book

This workbook is divided into three sections:

♦ Server Installation and Configuration – This section will walk you through
downloading, installing, and configuring JBoss. It will also provide a brief overview of the
structure of the JBoss installation.

♦ Exercises – This section contains step-by-step instructions for downloading, building, and
running the example programs in Enterprise JavaBeans, Third Edition (which, for brevity,
this workbook will refer to as “the EJB book”). The text will also walk through the various
deployment descriptors and source code to point out JBoss features and concerns.

♦ Appendix – This section provides useful information that did not fit neatly in the other
sections: a collection of XML snippets for configuring a few popular JDBC drivers from
various database vendors.

Because JBoss 3.2 is an EJB 2.0-compliant J2EE implementation, the EJB 1.1 exercises referred
to in the EJB book are not included in this workbook.

The workbook text for each exercise depends on the amount of configuration required for the
example program, but will generally also include the following information:

♦ Compiling and building the example code

♦ Deploying the EJB components to the application server

♦ Running the example programs and evaluating the results

The exercises were designed to be built and executed in order. Every effort was made to remove
any dependencies between exercises by including all components each one needs in the directory

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

xvi

for that exercise, but some dependencies still exist. The workbook text will guide you through
these where they arise.

Also note that this workbook is not intended to be a course on database configuration or design.
The exercises have been designed to work out-of-the-box with the open-source database
Hypersonic SQL, which is shipped with JBoss, and the application server creates all database
tables automatically, at run time.

On-Line Resources

This workbook is designed for use with the EJB book and with downloadable example code, both
available from our web site:

http://www.oreilly.com/catalog/entjbeans3/workbooks/index.html

We will post any errata here, and any updates required to support changes in specifications or
products. This site also contains links to many popular EJB-related sites on the Internet.

We hope you find this workbook useful in your study of Enterprise JavaBeans and the JBoss
open-source J2EE implementation. Comments, suggestions, and error reports on the text of this
workbook or the downloaded example files are welcome and appreciated. Please post on the
JBoss Forum:

http://www.jboss.org/forum.jsp?forum=152

To obtain more information about JBoss or the JBoss project please visit the project’s web site:

http://www.jboss.org/

There you will find links to detailed JBoss documentation, on-line forums, and events happening
in the JBoss community. You will also be able to obtain detailed information on JBoss training,
support, and consulting services.

The JBossGroup™ has also produced books on JBoss and other J2EE standards, among them
JBoss Administration and Development, by Marc Fleury and Scott Stark, and JMX: Managing
J2EE with Java Management Extensions, by Marc Fleury and Juha Lindfors.

Conventions Used in This Book

Italics are used for:

♦ Filenames and pathnames

♦ Names of hosts, domains, and applications

♦ URLs and email addresses

♦ New terms where they are defined

http://www.jboss.org/ forum.jsp?forum=152
http://www.jboss.org/

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

xvii

Boldface is used for:

♦ Emphasis

♦ Buttons, menu items, window and menu names, and other UI items you are asked to interact
with

Constant width is used for:

♦ Code examples and fragments

♦ Sample program output

♦ Class, variable, and method names, and Java keywords used within the text

♦ SQL commands, table names, and column names

♦ XML elements and tags

♦ Commands you are to type at a prompt

Constant width bold is used for emphasis in some code examples.

Constant width italic is used to indicate text that is replaceable. For example, in
BeanNamePK, you would replace BeanName with a specific bean name.

Side comments appear in a sans-serif font, with a bullet symbol suggesting the kind of comment:

 Hints and side observations

 Tips and tricks

 Cautions and warnings

An Enterprise JavaBean consists of many parts; it’s not a single object, but a collection of objects
and interfaces. To refer to an Enterprise JavaBean as a whole, we use the name of its business
name in Roman type followed by “bean” or the acronym “EJB.” For example, we will refer to the
Customer EJB when we want to talk about the enterprise bean in general. If we put the name in
constant width font, we are referring explicitly to the bean’s class name, and usually to its remote
interface. Thus CustomerRemote is the remote interface that defines the business methods of
the Customer bean.

Acknowledgements

We would like to thank Marc Fleury, the founder of JBoss, for recommending us for this book and
Richard Monson-Haefel for accepting the recommendation. We would also like to thank Greg
Nyberg, the author of the WebLogic edition in this series of workbooks. The example programs
he provided in his workbook were a great starting place for us and made our lives much easier.

Special thanks also go out to those who reviewed and critiqued this work: Dain Sundstrom and
the rest of JBoss Group, Daniel Ruflé, and Thomas Laresch. We would like to publicly recognize

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

xviii

the series editor, Brian Christeson, for his courage in digging so deeply in this book and
relentlessly hunting down our anglish misthakes (especially Sacha’s Franco-British dialect).

Finally, Bill would like to thank his wife for putting up with all his whining and complaining, and
Sacha promises Sophie that he will no longer use the writing of this workbook as an excuse for
being late for any of their rendezvous.

1

Server Installation and Configuration

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

2

This chapter will guide you through the steps required to install a fully working JBoss server.

Along the way you will learn about JBoss 3.2’s micro-kernel architecture, and the last section will
show you how to install the code for the forthcoming exercises.

If at any time you need more detailed information about JBoss configuration, visit the JBoss web
site, http://www.jboss.org/, where you will find comprehensive on-line documentation.

About JBoss
JBoss is a collaborative effort of a worldwide group of developers to create an open-source
application server based on the Java 2 Platform, Enterprise Edition (J2EE). With more than a
million copies downloaded in less than 12 months. JBoss is the leading J2EE application server.

JBoss implements the full J2EE stack of services:

♦ EJB (Enterprise JavaBeans)

♦ JMS (Java Message Service)

♦ JTS/JTA (Java Transaction Service/Java Transaction API)

♦ Servlets and JSP (JavaServer Pages)

♦ JNDI (Java Naming and Directory Interface)

It also provides advanced features such as clustering, JMX, web services, and IIOP (Internet
Inter-ORB Protocol) integration.

Because JBoss code is licensed under the LGPL (GNU Lesser General Public License, see
http://www.gnu.org/copyleft/lesser.txt), you can use it freely, at no cost, in any commercial
application, or redistribute it as is.

Installing JBoss Application Server
Before going any further, make sure you have the J2SE JDK 1.3 or higher installed and correctly
configured.

To download the JBoss binaries, go to the JBoss web site at http://www.jboss.org/ and follow
the Downloads link. There you will find all current binaries in both zip and tar.gz archive
formats. Download the package that best meets your needs.

Extract the downloaded archive in the directory of your choice. Under Windows, you can use the
WinZip utility to extract the archive content. Under Unix, you can use the following commands:

$ gunzip jboss-3.2.0.tar.gz
$ tar xf jboss-3.2.0.tar

Then change to the $JBOSS_HOME/bin directory and launch the run script that matches your
OS:

http://www.jboss.org/
http://www.gnu.org/copyleft/lesser.txt
http://www.jboss.org/

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

3

Unix:
$ run.sh

Windows:
C:\jboss-3.2.0\bin>run.bat

That’s it! You now have a fully working JBoss server!

Discovering the JBoss Directory Structure

Installing JBoss creates the following directory structure:

Figure 1: JBoss directory structure

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

4

Table 1 discusses the purposes of the various directories:

Table 1: JBoss directories

Directory Description

bin Scripts to start and shut down JBoss.

client Client-side Java libraries (JARs) required to communicate with
JBoss.

docs Sample configuration files (for database configuration, etc.)

docs/dtd DTDs (Document Type Definitions) for the various XML files used
in JBoss.

lib JARs loaded at startup by JBoss and shared by all JBoss
configurations. (You won’t put your own libraries here.)

server Various JBoss configurations. (Each configuration must be in a
different sub-directory. The name of the sub-directory represents
the name of the configuration. As distributed, JBoss contains
three configurations: minimal, default, and all.)

server/all JBoss’s complete configuration; starts all services, including
clustering and IIOP.

server/minimal JBoss’s minimal configuration; starts only very basic services;
cannot be used to deploy EJBs.

server/default JBoss’s default configuration; used when no configuration name is
specified on JBoss command line.

server/default/conf JBoss’s configuration files. (You will learn more about the content
of this directory in the next section.)

server/default/data JBoss’s database files (embedded database or JBossMQ, for
example).

server/default/deploy JBoss’s hot-deployment directory. (Any file or directory dropped
in this directory is automatically deployed in JBoss: EJBs, WARs,
EARs, and even services.)

server/default/lib JARs that JBoss loads at startup when starting this particular
configuration. (The all and minimal configurations also have
this directory and the next two.)

server/default/log JBoss’s log files.

server/default/tmp JBoss’s temporary files.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

5

If you want to define your own configuration, create a new sub-directory under the server
directory containing the appropriate files. To start JBoss with a given configuration, use the –c
parameter on the command line:

Windows:
C:\jboss-3.2.0\bin> run.bat –c config-name

Unix:
$./run.sh –c config-name

JBoss Configuration Files

As the previous section described, JBoss’s server directory can contain any number of directories,
each representing a different JBoss configuration.

The server/config-name/conf directory contains JBoss’s configuration files. The purpose of the
various files is discussed in Table 2.

Table 2: JBoss configuration files

File Description

jacorb.properties JBoss IIOP configuration

jbossmq-state.xml JBossMQ (JMS implementation) user configuration

jboss-service.xml Definition of JBoss’s services launched at startup (class
loaders, JNDI, deployers, etc.)

log4j.xml Log4J logging configuration

login-config.xml JBoss security configuration (JBossSX)

standardjaws.xml Default configuration for JBoss’s legacy CMP 1.1 engine;
contains JDBC-to-SQL mapping information for various
databases, default CMP settings, logging configuration, etc.

standardjboss.xml Default container configuration

standardjbosscmp-jdbc.xml Same as standardjaws.xml except that it is used for JBoss’s
CMP 2.0 engine.

Deployment in JBoss

The deployment process in JBoss is very straightforward. In each configuration, JBoss constantly
scans a specific directory for changes: $JBOSS_HOME/server/config-name/deploy

This directory is generally referred to informally as “the deploy directory.”

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

6

You can copy to this directory:

♦ Any JAR library (the classes it contains are automatically added to the JBoss classpath)

♦ An EJB JAR

♦ A WAR (Web Application aRrchive)

♦ An EAR (Enterprise Application aRchive)

♦ An XML file containing JBoss MBean definitions

♦ A directory ending in .jar, .war, or .ear and containing respectively the extracted content of
an EJB JAR, a WAR, or an EAR.

To redeploy any of the above files (JAR, WAR, EAR, XML, etc.), simply overwrite it with a more
recent version. JBoss will detect the change by comparing the files’ timestamps, undeploy the
previous files, and deploy their replacements. To redeploy a directory, update its modification
timestamp by using a command-line utility such as touch.

To undeploy a file, just remove it from the deploy directory.

A Quick Look at JBoss Internals
Since version 3.0, JBoss has been built around a few very powerful concepts that allow users to
customize and fine-tune their servers for very specific needs, not limited to J2EE. This flexibility
allows JBoss to be used in very different environments, ranging from embedded systems to very
large server clusters.

The next few sections will comment on some of these concepts briefly.

Micro-Kernel Architecture

JBoss is based on a micro-kernel design in which components can be plugged at run time to
extend its behavior.

This design fits particularly well with the J2EE platform, which is essentially a service-based
platform. The platform contains services for persistence, transactions, security, naming,
messaging, logging, and so on.

Other application servers are generally built as monolithic applications containing all services of
the J2EE platform at all times. JBoss takes a radically different approach: Each of these services
is hot-deployed as a component running on top of a very compact core, called the JBoss Server
Spine. Furthermore, users are encouraged to implement their own services to run on top of JBoss.

 Consequently, the JBoss application server is not limited to J2EE applications, and
indeed is frequently used to build any kind of application requiring a strong and
reliable base. For this reason, the JBoss core is also known as the WebOS.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

7

Figure 2: JBoss server spine with some hot-deployed services

JBoss Server Spine

JMS
(JBossMQ)

JNDI
(JBossNS)

User Service A

JNDI
(JBossNS)

EJB Container

Servlet/JSP

JBoss Server Spine itself is based on Sun’s JMX (Java Management eXtensions) specification,
making any deployed component automatically manageable in a standard fashion. In the JMX
terminology, a service deployed in JBoss is called an MBean (a managed bean).

 More information about the JMX specification can be found at the Sun web site
http://java.sun.com/products/JavaManagement/

Hot Deployment

Since Release 2.0, JBoss has been famous for being the first J2EE-based application server to
support hot deployment and redeployment of applications (EJB JAR, WAR, and EAR), while
many application servers required a restart to update an application.

Thanks to its micro-kernel architecture and revolutionary Java class loader, JBoss 3.0 and later
releases push this logic further. Not only can they hot-deploy and -redeploy applications, but they
can hot-(re)deploy any service, and keep track of dependencies between services.

These features make JBoss usable in very demanding environments such as telecommunications
systems.

Net Boot

JBoss is able to boot itself and your applications from any network location, just by pointing the
JBoss Server Spine to a simple URL. This allows you to manage the entire configuration of a
cluster of JBoss nodes from one central web server. This impressive flexibility makes deployment
of new servers very easy.

 JBoss’s bootstrap code is approximately 50K, which makes it suitable for many
embedded systems.

http://java.sun.com/products/JavaManagement/

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

8

Figure 3: A JBoss instance bootstrapping from three distinct netboot servers

HTTP server
JBoss services

HTTP server
JBoss configuration

HTTP server
User’s EJB and Services

JBoss instance

Detached Invokers

JBoss completely detaches the protocol handlers on which invocations are received from the
target service that eventually serves the requests. Consequently, when a new handler (called an
invoker in JBoss) for a given protocol is deployed in JBoss, all existing services and applications
can automatically be reached through this new invocation transport.

JBoss 3.2 currently supports the following kinds of invokers:

♦ RMI

♦ RMI over HTTP

♦ IIOP

♦ JMS

♦ SOAP

♦ HA-RMI (Clustering over RMI)

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

9

Figure 4: Detached invokers

JBoss Server Spine

JMS
(JBossMQ)

JNDI
(JBossNS)

JMS

SOAP

RMI

IIOP

Exercise Code Setup and Configuration
You can download the example code for the exercises from
http://www.oreilly.com/catalog/entjbeans3/workbooks/index.html. Exercises that require a
database will use JBoss’s default embedded database. Consequently, no additional database
setup is required. Appendix A will show you how to configure JBoss to use a different database if
you want to.

Exercises Directory Structure

The example code is organized as a set of directories, one for each exercise. You’ll find the code of
each exercise in the src/main sub-directory and the configuration files in src/resources.

http://www.oreilly.com/catalog/entjbeans3/workbooks/index.html

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

10

Figure 5: Exercises directory structure

To build and run the exercises, you’ll use the Ant tool. A build.xml is provided for each exercise.
It contains the Ant configuration needed to compile the classes, build the EJB JAR, deploy it to
JBoss, and run the client test applications. For this reason, the Ant tool is provided with the
exercises and can be found in the ant directory.

 You can find out more about Ant at the Apache Jakarta web site
http://jakarta.apache.org/ant/

Environment Setup

For the Ant scripts to work correctly, you first need to set some environment variables in the
shells you will use to run the exercises:

♦ The JAVA_HOME environment variable must point to where your JDK is installed.

♦ The JBOSS_HOME environment variable must point to where JBoss is installed.

♦ The directory containing the Ant scripts must be in your path.

http://jakarta.apache.org/ant/

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

11

Depending on your platform, you’ll have to execute commands like these:

Windows:
C:\workbook\ex04_1> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex04_1> set JBOSS_HOME=C:\jboss-3.2.0
C:\workbook\ex04_1> set PATH=..\ant\bin;%PATH%

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0
$ export PATH=../ant/bin:$PATH

In each chapter you’ll find detailed instructions on how to build, deploy, and run the exercises
using Ant.

13

Exercises for Chapter 4

14

Exercise 4.1:
A Simple Entity Bean
The Cabin EJB demonstrates basic CMP 2.0 capability for a simple entity bean mapped to a single
table. The following sections outline the steps necessary to build, deploy, and execute the Cabin
EJB example. Please note that because you’re using JBoss’s default embedded database you don’t
need to configure the database or create tables. The code you’ll see here mirrors the example code
provided in Chapter 4 of the EJB book.

Start Up JBoss

Start up JBoss as described in the Server Installation and Configuration chapter at the beginning
of this book.

Initialize the Database

The database table for this exercise will automatically be created in JBoss’s default database,
HypersonicSQL, when the EJB JAR is deployed.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex04_1 directory created by the
extraction process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex04_1> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex04_1> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path. Ant is the build utility

Windows:
C:\workbook\ex04_1> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant. Ant uses build.xml to figure out what to compile and how to
build your JARs.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

15

If you need to learn more about the Ant utility, visit the Ant project at the Jakarta web site at
http://jakarta.apache.org/ant/index.html.

Ant compiles the Java source code, builds the EJB JAR, and deploys the JAR simply by copying it
to JBoss’s deploy directory. If you are watching the JBoss console window, you will notice that
JBoss automatically discovers the EJB JAR once it has been copied into the deploy directory, and
automatically deploys the bean.

Another particularly interesting thing about building EJB JARs is that there is no special EJB
compilation step. Unlike other servers, JBoss does not generate code for client stubs. Instead, it
has a lightweight mechanism that creates client proxies when the EJB JAR is deployed,
accelerating the development and deployment cycle.

Deconstructing build.xml

The build.xml file provided for each workbook exercise gives the Ant utility information about
how to compile and deploy your Java programs and EJBs. The following build tasks can be
executed by typing ant taskname :

♦ The default task (just typing ant without a task name) compiles the code, builds the EJB
JAR, and deploys the JAR into JBoss. The deployment procedure is just a simple copy into
the JBoss deploy directory.

♦ ant compile compiles all the Java source files.

♦ ant clean removes all .class and .jar files from the working directory, and undeploys the
JAR from JBoss by deleting the file from JBoss’s deploy directory.

♦ ant clean.db provides you with a clean copy of the HypersonicSQL database used
throughout the exercises. This task works only with HypersonicSQL.

 clean.db can be used only when JBoss is not running.

♦ run.client_xxx runs a specific example program. Each exercise in this book will have a
run.client rule for each example program.

Here’s a breakdown of what is contained in build.xml.
<project name="JBoss" default="ejbjar" basedir=".">

The default attribute defines the default target that ant will run if you type only ant on the
command line. The basedir attribute tells Ant what directory to run the build in.

http://jakarta.apache.org/ant/index.html

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

16

 <property environment="env"/>
 <property name="src.dir" value="${basedir}/src/main"/>
 <property name="src.resources" value="${basedir}/src/resources"/>
 <property name="jboss.home" value="${env.JBOSS_HOME}"/>
 <property name="build.dir" value="${basedir}/build"/>
 <property name="build.classes.dir" value="${build.dir}/classes"/>

All the properties defined above are variables that Ant will use throughout the build process. You
can see that the JBOSS_HOME environment variable is pulled from the system environment and
other directory paths defined.

 <path id="classpath">
 <fileset dir="${jboss.home}/client">
 <include name="**/*.jar"/>
 </fileset>

<pathelement location="${build.classes.dir}"/>
<pathelement location="${basedir}/jndi"/>

 </path>

To compile and run the example applications in this workbook you need to add all the JARS in
$JBOSS_HOME/client to the Java classpath. Also notice that build.xml inserts the
${basedir}/jndi directory into the classpath. A jndi.properties file in this directory enables the
example programs to find and connect to JBoss’s JNDI server.

 <property name="build.classpath" refid="classpath"/>

 <target name="prepare" >
 <mkdir dir="${build.dir}"/>
 <mkdir dir="${build.classes.dir}"/>
 </target>

The prepare target creates the directories where the Java compiler will place compiled classes.

 <target name="compile" depends="prepare">
 <javac srcdir="${src.dir}"
 destdir="${build.classes.dir}"
 debug="on"
 deprecation="on"
 optimize="off"
 includes="**">
 <classpath refid="classpath"/>
 </javac>
 </target>

The compile target will compile all the Java files under the src/main directory. Notice that it
depends on the prepare target; prepare will run before the compile target is executed.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

17

 <target name="ejbjar" depends="compile">
 <jar jarfile="build/titan.jar">
 <fileset dir="${build.classes.dir}">
 <include name="com/titan/cabin/*.class"/>
 </fileset>
 <fileset dir="${src.resources}/">
 <include name="**/*.xml"/>
 </fileset>
 </jar>
 <copy file="build/titan.jar"
 todir="${jboss.home}/server/default/deploy"/>
 </target>

The ejbjar target creates the EJB JAR file and deploys it to JBoss simply by copying it to
JBoss’s deploy directory.

 <target name="run.client_41a" depends="ejbjar">
 <java classname="com.titan.clients.Client_1" fork="yes" dir=".">
 <classpath refid="classpath"/>
 </java>
 </target>

 <target name="run.client_41b" depends="ejbjar">
 <java classname="com.titan.clients.Client_2" fork="yes" dir=".">
 <classpath refid="classpath"/>
 </java>
 </target>

The run.client_xxx targets are used to run the example programs in this chapter.

 <target name="clean.db">
 <delete dir="${jboss.home}/server/default/db/hypersonic"/>
 </target>

The clean.db target cleans the default database used by JBoss for the example programs in this
book. Remember you can use it only when JBoss is not running.

 <target name="clean">
 <delete dir="${build.dir}"/>
 <delete file="${jboss.home}/server/default/deploy/titan.jar"/>
 </target>
</project>

The clean target removes compiled classes and undeploys the EJB JAR from JBoss by deleting
the JAR file in the deploy directory.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

18

Examine the JBoss-Specific Files

You do not need any JBoss-specific files to write a simple EJB. For an entity bean as simple as the
Cabin EJB, JBoss creates the appropriate database tables within its embedded database
Hypersonic SQL by examining the ejb-jar.xml deployment descriptor.

 In later chapters you will learn how to map entity beans to different data sources
and pre-existing database tables using JBoss-specific CMP deployment descriptors.

By default, JBoss uses the <ejb-name> from the bean’s ejb-jar.xml deployment descriptor for
the JNDI binding of the bean’s home interface. If you do not like this default, you can override it
in a jboss.xml file. Clients use this name to look up an EJB’s home interface. For this example,
CabinEJB is bound to CabinHomeRemote.

jboss.xml
<jboss>
 <enterprise-beans>
 <entity>

 <ejb-name>CabinEJB</ejb-name>
 <jndi-name>CabinHomeRemote</jndi-name>

 </entity>
 </enterprise-beans>
</jboss>

Examine and Run the Client Applications

Two example programs implement the sample clients provided in the EJB book:

♦ Client_1.java creates a single Cabin bean, populates each of its attributes, then queries the
created bean with the primary key.

♦ Client _2.java creates 99 additional Cabins with a variety of different data that will be used in
subsequent exercises.

Client_1.java
package com.titan.clients;

import com.titan.cabin.CabinHomeRemote;
import com.titan.cabin.CabinRemote;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import java.rmi.RemoteException;

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

19

public class Client_1
{
 public static void main(String [] args)
 {
 try
 {
 Context jndiContext = getInitialContext();
 Object ref = jndiContext.lookup("CabinHomeRemote");
 CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);
 CabinRemote cabin_1 = home.create(new Integer(1));
 cabin_1.setName("Master Suite");
 cabin_1.setDeckLevel(1);
 cabin_1.setShipId(1);
 cabin_1.setBedCount(3);

 Integer pk = new Integer(1);

 CabinRemote cabin_2 = home.findByPrimaryKey(pk);
 System.out.println(cabin_2.getName());
 System.out.println(cabin_2.getDeckLevel());
 System.out.println(cabin_2.getShipId());
 System.out.println(cabin_2.getBedCount());

 }
 catch (java.rmi.RemoteException re){re.printStackTrace();}
 catch (javax.naming.NamingException ne){ne.printStackTrace();}
 catch (javax.ejb.CreateException ce){ce.printStackTrace();}
 catch (javax.ejb.FinderException fe){fe.printStackTrace();}
 }

 public static Context getInitialContext()
 throws javax.naming.NamingException
 {
 return new InitialContext();
 }
}

The getInitialContext() method creates an InitialContext with no properties. Because
no properties are set, the Java library that implements InitialContext searches the classpath
for the file jndi.properties. Each example program in this workbook will have a jndi directory
that contains a jndi.properties file. You will be executing all example programs through Ant, and
it will set the classpath appropriately to refer to this properties file.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

20

Run the Client_1 application by invoking ant run.client_41a at the command prompt.
Remember to set your JBOSS_HOME and PATH environment variables.

The output of Client_1 should look something like this:
C:\workbook\ex04_1>ant run.client_41a
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_41a:
 [java] Master Suite
 [java] 1
 [java] 1
 [java] 3

Client_1 adds a row to the database representing the Cabin bean and does not delete it at the
conclusion of the program. You cannot run this program more than once unless you stop JBoss,
clean the database by invoking the Ant task clean.db, and restarting JBoss. Otherwise, you will
get the following error (we've tidied up the line wrapping here):

run.client_41a:
 [java] javax.ejb.DuplicateKeyException: Entity with primary key
 1 already exists
 [java] at
 org.jboss.ejb.plugins.cmp.jdbc.JDBCCreateEntityCommand.
 execute(JDBCCreateEntityCommand.java:160)
 [java] at
 org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager.
 createEntity(JDBCStoreManager.java:633)
 [java] at
 org.jboss.ejb.plugins.CMPPersistenceManager.
 createEntity(CMPPersistenceManager.java:253)
 [java] at org.jboss.resource.connectionmanager.
 CachedConnectionInterceptor.createEntity(
 CachedConnectionInterce...
 [java] at org.jboss.invocation.InvokerInterceptor.
 invoke(InvokerInterceptor.java:92)
 [java] at org.jboss.proxy.TransactionInterceptor.
 invoke(TransactionInterceptor.java:77)
 [java] at
 org.jboss.proxy.SecurityInterceptor
 .invoke(SecurityInterceptor.java:80)

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

21

 [java] at
 org.jboss.proxy.ejb.HomeInterceptor.
 invoke(HomeInterceptor.java:175)
 [java] at org.jboss.proxy.ClientContainer.
 invoke(ClientContainer.java:82)
 [java] at $Proxy0.create(Unknown Source)
 [java] at com.titan.clients.Client_1.main(Client_1.java:22)

Run the Client_2 application by invoking ant run.client_41b at the command prompt.
Remember to set your JBOSS_HOME and PATH environment variables.

The output of Client_2 should look something like this:
run.client_41b:
 [java] PK=1, Ship=1, Deck=1, BedCount=3, Name=Master Suite
 [java] PK=2, Ship=1, Deck=1, BedCount=2, Name=Suite 100
 [java] PK=3, Ship=1, Deck=1, BedCount=3, Name=Suite 101
 [java] PK=4, Ship=1, Deck=1, BedCount=2, Name=Suite 102
 [java] PK=5, Ship=1, Deck=1, BedCount=3, Name=Suite 103
 [java] PK=6, Ship=1, Deck=1, BedCount=2, Name=Suite 104
 [java] PK=7, Ship=1, Deck=1, BedCount=3, Name=Suite 105
 [java] PK=8, Ship=1, Deck=1, BedCount=2, Name=Suite 106
 ...
 [java] PK=90, Ship=3, Deck=3, BedCount=3, Name=Suite 309
 [java] PK=91, Ship=3, Deck=4, BedCount=2, Name=Suite 400
 [java] PK=92, Ship=3, Deck=4, BedCount=3, Name=Suite 401
 [java] PK=93, Ship=3, Deck=4, BedCount=2, Name=Suite 402
 [java] PK=94, Ship=3, Deck=4, BedCount=3, Name=Suite 403
 [java] PK=95, Ship=3, Deck=4, BedCount=2, Name=Suite 404
 [java] PK=96, Ship=3, Deck=4, BedCount=3, Name=Suite 405
 [java] PK=97, Ship=3, Deck=4, BedCount=2, Name=Suite 406
 [java] PK=98, Ship=3, Deck=4, BedCount=3, Name=Suite 407
 [java] PK=99, Ship=3, Deck=4, BedCount=2, Name=Suite 408
 [java] PK=100, Ship=3, Deck=4, BedCount=3, Name=Suite 409

Like Client_1, this example creates rows in the database and does not delete them when it
finishes. Client_2 can be executed only once without causing DuplicateKey exceptions.

Managing Entity Beans

Every EJB in JBoss is deployed and managed as a JMX MBean. You can view and manage EJBs
deployed within JBoss through your web browser by accessing the JMX management console
available at http://localhost:8080/jmx-console/.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

22

Figure 6: The JMX management console

Click on the jndiName=CabinHomeRemote,service=EJB link shown above. Entity beans
have two management functions. You can flush the entity bean’s cache or view the number of
cached objects for it. To flush, click on the flushCache button. To view the number of cached
beans, click on the getCacheSize button.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

23

Figure 7: Managing entity beans from the console

24

Exercise 4.2:
A Simple Session Bean
In this exercise you will create and build the TravelAgent EJB. This simple bean illustrates the
use of a stateless session bean and mirrors the code shown in Chapter 4 of the EJB book.

Start Up JBoss

If you already have JBoss running there is no reason to restart it. Otherwise start it up as
instructed in the Server Installation and Configuration chapter.

Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs
from the previous exercise, Client_1 and Client_2.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex04_2 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex04_2> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex04_2> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path. Ant is the build utility.

Windows:
C:\workbook\ex04_2> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

25

Examine the JBoss-Specific Files

In this example, the jboss.xml deployment descriptor overrides the default JNDI binding for the
deployed EJBs. CabinEJB is bound to CabinHomeRemote and TravelAgentEJB is bound to
TravelAgentHomeRemote.

jboss.xml
<jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>CabinEJB</ejb-name>
 <jndi-name>CabinHomeRemote</jndi-name>
 </entity>
 <session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <jndi-name>TravelAgentHomeRemote</jndi-name>
 <ejb-ref>
 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>
 <jndi-name>CabinHomeRemote</jndi-name>
 </ejb-ref>
 </session>
 </enterprise-beans>
</jboss>

The EJB book describes how you must use <ejb-ref> declarations when one EJB references
another. The TravelAgent EJB references the Cabin entity bean, so the following XML is required
in ejb-jar.xml.

ejb-jar.xml
 <ejb-ref>
 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.titan.cabin.CabinHomeRemote</home>
 <remote>com.titan.cabin.CabinRemote</remote>
 </ejb-ref>

If you have a <ejb-ref-name> declared in your ejb-jar.xml file, you must have a corresponding
<ejb-ref> declaration in your jboss.xml file that maps the portable JNDI name used by the
TravelAgent EJB to the real JNDI name of the Cabin EJB.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

26

jboss.xml
<jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>CabinEJB</ejb-name>
 <jndi-name>CabinHomeRemote</jndi-name>
 </entity>
 <session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <jndi-name>TravelAgentHomeRemote</jndi-name>
 <ejb-ref>
 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>
 <jndi-name>CabinHomeRemote</jndi-name>
 </ejb-ref>
 </session>
 </enterprise-beans>
</jboss>

Examine and Run the Client Application

The example program in this section invokes the TravelAgent EJB to list cabins that meet certain
criteria.

Client_3.java
...
Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("TravelAgentHomeRemote");
TravelAgentHomeRemote home = (TravelAgentHomeRemote)
PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

TravelAgentRemote travelAgent = home.create();

// Get a list of all cabins on ship 1 with a bed count of 3.
String list [] = travelAgent.listCabins(SHIP_ID,BED_COUNT);

for(int i = 0; i < list.length; i++)
{
 System.out.println(list[i]);
}
...

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

27

The client code does a JNDI lookup for the TravelAgent home and does a simple create()
method invocation to obtain a reference to a TravelAgent EJB. The client then calls
listCabins() and receives a list of cabin names that meet the provided criteria.

Let’s examine a little of the code in TravelAgent EJB’s listCabins() method to see how it
works.

TravelAgentBean.java
public String [] listCabins(int shipID, int bedCount)
{
 try
 {
 javax.naming.Context jndiContext = new InitialContext();

 Object obj =
 jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

 CabinHomeRemote home =
 ...

When a deployed EJB in JBoss wants to access JNDI all that’s needed is a simple new
InitialContext(). JBoss will automatically create an optimized, in-process reference to the
JNDI server running inside the application server, to avoid the overhead of a distributed network
call when accessing it. The rest of listCabins() is pretty straightforward, so you can just go on
to running the client application.

Run the Client_3 application by invoking ant run.client_42 at the command prompt.
Remember to set your JBOSS_HOME and PATH environment variables.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

28

The output of Client_3 should look something like this:
C:\workbook\ex04_2>ant run.client_42
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_42:
 [java] 1,Master Suite,1
 [java] 3,Suite 101,1
 [java] 5,Suite 103,1
 [java] 7,Suite 105,1
 [java] 9,Suite 107,1
 [java] 12,Suite 201,2
 [java] 14,Suite 203,2
 [java] 16,Suite 205,2
 [java] 18,Suite 207,2
 [java] 20,Suite 209,2
 [java] 22,Suite 301,3
 [java] 24,Suite 303,3
 [java] 26,Suite 305,3
 [java] 28,Suite 307,3
 [java] 30,Suite 309,3

29

Exercises for Chapter 5

30

Exercise 5.1:
The Remote Component Interfaces
The example programs in Exercise 5.1 dive into some of the features of the home interface of an
EJB, including the use of the remove() method. They also show you how to obtain and use
various metadata available through an EJB’s API.

Start Up JBoss

If you already have JBoss running there is no reason to restart it. Otherwise, start it up as
instructed in the Server Installation and Configuration chapter at the beginning of this book.

Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs
from Exercise 4.1.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex05_1 directory created by the
extraction process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex05_1> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex05_1> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex05_1> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

31

Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

Examine and Run the Client Applications

Two example programs illustrate the concepts explained in the EJB book:

♦ Client_51a.java illustrates the use of the remove() method on the Cabin EJB home
interface.

♦ Client _51b.java illustrates the use of bean metadata methods.

The example code for Client_51a and Client_51b is pulled directly from the EJB book. There is no
need to go into this code here because the EJB book already does a very good job of that.

Run Client_51a by invoking ant run.client_51a at the command prompt. Remember to set
your JBOSS_HOME and PATH environment variables. Run Client_51b the same way: ant
run.client_51b.

The output of Client_51a should be exactly as described in the EJB book. The output of
Client_51b is as follows:

C:\workbook\ex05_1>ant run.client_51b
Buildfile: build.xml

prepare:

compile:

run.client_51b:
 [java] com.titan.cabin.CabinHomeRemote
 [java] com.titan.cabin.CabinRemote
 [java] java.lang.Integer
 [java] false
 [java] Master Suite

Note that if you try to run Client_51a more than once an exception will tell you that the entity
you’re attempting to remove does not exist.

[java] java.rmi.NoSuchObjectException: Entity not found:
primaryKey=30

32

Exercise 5.2:
The EJBObject, Handle, and Primary Key
The example programs in Exercise 5.2 explore the APIs available through the EJBObject and
EJBMetaData interfaces. They also reveal how to use Handle and HomeHandle as persistent
references to EJB objects and homes.

Start Up JBoss

If you already have JBoss running there is no reason to restart it. Otherwise start it up as
instructed in the Server Installation and Configuration chapter at the beginning of this book.

Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs
from Exercise 4.1, otherwise this example will not work properly.

Build and Deploy the Example Programs

In the ex05_2 directory, build and deploy the examples as you did for Exercise 5.1.

Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

Examine and Run the Client Applications

Three example programs illustrate the concepts explained in the EJB book:

♦ Client_52a.java shows the use of EJBObject to retrieve an EJB’s home interface.

♦ Client _52b.java shows you how to use isIdentical() to determine whether two EJB
references are to the same object.

♦ Client _52c.java shows you how to use EJB handles as persistent bean references.

The example code is pulled directly from the EJB book and embellished somewhat to expand on
introduced concepts. The EJB book does a pretty good job of explaining the concepts illustrated
in the example programs, so further explanation of the code is not needed in this workbook.

Run Client_52a, Client_52b, and Client_52c by invoking the appropriate Ant task as you have
done in previous examples: run.client_52a, run.client_52b, and run.client_52c.
Remember to set your JBOSS_HOME and PATH environment variables.

33

Exercise 5.3:
The Local Component Interfaces
The example program in Exercise 5.3 explores the use of local interfaces. The Cabin entity bean
you created in Exercise 4.1 will be expanded to provide a local interface for use in the TravelAgent
stateless session bean. This exercise will also describe how to modify your EJB deployment
descriptors to enable local interfaces.

Start Up JBoss

If you already have JBoss running there is no reason to restart it. Otherwise, start it up as
instructed in the Server Installation and Configuration chapter.

Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs
from Exercise 4.1.

Build and Deploy the Example Programs

In the ex05_3 directory, build and deploy the examples as you did for Exercise 5.1.

Examine the JBoss-Specific Files

JBoss has a minor restriction. It requires that you use <ejb-link> when you want your bean to
reference a local bean through an <ejb-local-ref> tag.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

34

ejb-jar.xml
<ejb-jar>
 <enterprise-beans>
 ...
 <session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <home>com.titan.travelagent.TravelAgentHomeRemote</home>
 <remote>com.titan.travelagent.TravelAgentRemote</remote>
 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

 <ejb-local-ref>
 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>com.titan.cabin.CabinHomeLocal</local-home>
 <local>com.titan.cabin.CabinLocal</local>
 <!-- ejb-link is required by jboss for local-refs. -->
 <ejb-link>CabinEJB</ejb-link>

 </ejb-local-ref>
 ...
</ejb-jar>

If you examine the jboss.xml file for Exercise 5.3, you’ll see that you must also declare the JNDI
binding for the remote home interface. The Cabin EJB’s local home interface doesn’t need a
binding in jboss.xml, though, because the binding information is contained in the <ejb-link>
tag instead. JBoss will register both CabinHomeRemote and CabinHomeLocal into the JNDI
tree.

jboss.xml
<jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>CabinEJB</ejb-name>
 <jndi-name>CabinHomeRemote</jndi-name>
 <local-jndi-name>CabinHomeLocal</local-jndi-name>
 </entity>

TravelAgentEJB only tells JBoss under which JNDI name it should be bound.

 <session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <jndi-name>TravelAgentHomeRemote</jndi-name>

 </entity>

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

35

 </enterprise-beans>
</jboss>

Examine and Run the Client Applications

The example code for Client_53 is exactly the same as Client_3 from Exercise 4.2.

Run Client_53 by invoking the appropriate Ant task as in previous examples: run.client_53.
Remember to set your JBOSS_HOME and PATH environment variables.

The output should look something like this:
C:\workbook\ex05_3>ant run.client_53
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_53:
 [java] 1,Master Suite,1
 [java] 3,Suite 101,1
 [java] 5,Suite 103,1
 [java] 7,Suite 105,1
 [java] 9,Suite 107,1
 [java] 12,Suite 201,2
 [java] 14,Suite 203,2
 [java] 16,Suite 205,2
 [java] 18,Suite 207,2
 [java] 20,Suite 209,2
 [java] 22,Suite 301,3
 [java] 24,Suite 303,3
 [java] 26,Suite 305,3
 [java] 28,Suite 307,3

37

Exercises for Chapter 6

38

Exercise 6.1:
Basic Persistence in CMP 2.0
This exercise begins walking you through the intricacies of CMP 2.0. In this chapter you will
learn more detailed JBoss CMP 2.0 configuration mechanisms by creating the Customer EJB
described in the EJB book.

Start Up JBoss

If you already have JBoss running there is no reason to restart it. Otherwise, start it up as
instructed in the Server Installation and Configuration chapter.

Initialize the Database

The database table for this exercise will automatically be created in JBoss’s default database,
HypersonicSQL, when the EJB JAR is deployed.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex06_1 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex06_1> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex06_1> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex06_1> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

39

Examine the JBoss-Specific Files

In this section we introduce a new JBoss CMP 2.0 deployment descriptor, jbosscmp-jdbc.xml.
This file provides more detailed control of your bean’s database mapping as well as more
advanced performance-tuning options.

jbosscmp-jdbc.xml
<jbosscmp-jdbc>

 <defaults>
 <datasource>java:/DefaultDS</datasource>
 <datasource-mapping>Hypersonic SQL</datasource-mapping>
 <create-table>true</create-table>
 <remove-table>true</remove-table>
 </defaults>

 <enterprise-beans>
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 <table-name>Customer</table-name>
 <cmp-field>
 <field-name>id</field-name>
 <column-name>ID</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>lastName</field-name>
 <column-name>LAST_NAME</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>firstName</field-name>
 <column-name>FIRST_NAME</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>hasGoodCredit</field-name>
 <column-name>HAS_GOOD_CREDIT</column-name>
 </cmp-field>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

The <defaults> section:
 <datasource>java:/DefaultDS</datasource>

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

40

The <datasource> configuration variable tells JBoss’s CMP engine what database connection
pool to use for the entity beans defined in this JAR. It is currently configured to use the default
data source defined in $JBOSS_HOME/server/default/deploy/hsqldb-service.xml, but you can
change it to your own defined data sources. Appendix A gets into more detail on how to configure
your own data sources.

 <datasource-mapping>Hypersonic SQL</datasource-mapping>

This variable describes the database mapping that CMP should use. Here are some other
mappings you could use (this list is not exhaustive):

 <datasource-mapping>Oracle8</datasource-mapping>
 <datasource-mapping>Oracle7</datasource-mapping>
 <datasource-mapping>MS SQLSERVER</datasource-mapping>
 <datasource-mapping>MS SQLSERVER2000</datasource-mapping>

For other available supported database mappings, please review JBoss’s advanced documentation
on its web site at http://www.jboss.org/

 <create-table>true</create-table>

When the <create-table> configuration variable is set to true, JBoss creates the database
tables for each entity bean defined in the deployment descriptor unless these tables already exist.
This create action is triggered when the EJB JAR is deployed.

 <remove-table>true</remove-table>

When the <remove-table> configuration variable is set to true, JBoss drops the database
tables for each entity bean defined in the deployment descriptor. This remove action is triggered
when the EJB JAR is redeployed or undeployed.

The <enterprise-beans> section:

There is an XML fragment <entity></entity> for each entity bean defined in this EJB JAR.

 <ejb-name>CustomerEJB</ejb-name>

The <ejb-name> variable defines the entity bean that is described in that section.

 <table-name>Customer</table-name>

The <table-name> variable defines what database table this entity bean should map to.

 <cmp-field>
 <field-name>id</field-name>
 <column-name>ID</column-name>
 </cmp-field>

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

41

Each <cmp-field> section describes the mapping between an entity bean’s fields and the
corresponding columns of the database table. The <field-name> tag is the entity bean field’s
name, while the <column-name> defines the table column’s name.

Examine and Run the Client Applications

There is only one client application for this exercise, Client_61. It is modeled after the example in
the EJB book. It will create Customer EJBs in the database based on the command-line
parameters.

To run the client, first set your JBOSS_HOME and PATH environment variables appropriately.
Then invoke the provided wrapper script to execute the program. For each customer, you must
supply on the command line a set of values for primary key, first name, and last name, as shown
here:

Client_61 777 Bill Burke 888 Sacha Labourey

The output of this execution should be:
C:\workbook\ex06_1>client_61 777 Bill Burke 888 Sacha Labourey
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_61:
 [java] 777 = Bill Burke
 [java] 888 = Sacha Labourey

When it finishes, the example program removes the created beans, so no data remains in the
database.

42

Exercise 6.2:
Dependent Value Classes in CMP 2.0
The example programs in Exercise 6.2 explore using a dependent value class to combine multiple
CMP fields into a single serializable object that can be passed in and out of entity-bean methods.

Start Up JBoss

If you already have JBoss running there is no reason to restart it.

Initialize the Database

No database initialization is needed.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex06_2 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex06_2> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex06_2> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex06_2> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

43

Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

Examine and Run the Client Applications

The example program, Client_62, shows how the Name dependent value class is used with the
Customer EJB. The example code is pulled directly from the EJB book and embellished
somewhat to expand on introduced concepts. The EJB book does a pretty good job of explaining
the concepts illustrated in Client_62, so further explanation of the code is not needed in this
workbook.

The client application uses the new getName() and setName() methods of the Customer EJB
to initialize, modify, and display a newly created Customer bean using the Name dependent value
class. This test bean is then removed from the database before the application finishes.

To run Client_62 invoke the Ant task run.client_62. Remember to set your JBOSS_HOME
and PATH environment variables.

The output should look something like this:
C:\workbook\ex06_2>ant run.client_62
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_62:
 [java] 1 = Richard Monson
 [java] 1 = Richard Monson-Haefel

44

Exercise 6.3:
A Simple Relationship in CMP 2.0
The example program in Exercise 6.3 shows how to implement a simple CMP relationship
between the Customer EJB and the Address EJB. The client again uses dependent value classes,
to pass address information along to the Customer EJB.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex06_3 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex06_3> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex06_3> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex06_3> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

Examine the JBoss-Specific Files

The Customer-Address relationship in this example can be mapped to a database table by
defining the mapping in jbosscmp-jdbc.xml.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

45

jbosscmp-jdbc.xml
<jbosscmp-jdbc>
...
</enterprise-beans>
<relationships>
 <ejb-relation>
 <ejb-relation-name>Customer-Address</ejb-relation-name>
 <foreign-key-mapping/>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Customer-has-a-Address</ejb-
relationship-role-name>
 <key-fields/>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Address-belongs-to-
Customer</ejb-relationship-role-name>
 <key-fields>
 <key-field>
 <field-name>id</field-name>
 <column-name>HOME_ADDRESS</column-name>
 </key-field>
 </key-fields>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>
</jbosscmp-jdbc>

To define the mapping of a relationship to a database table you must define <key-fields>. The
<field-name> tag must be the primary key field of the entity bean in the relationship. Thus
above, the id <field-name> corresponds to the Address EJB’s primary key field. You can
define the <column-name> field to be whatever the column name is in the database. Based on
the mappings defined in this file, the Customer table would look like this:

CREATE TABLE CUSTOMER
(ID INTEGER NOT NULL,
LAST_NAME VARCHAR(256),
FIRST_NAME VARCHAR(256),
HAS_GOOD_CREDIT BIT NOT NULL,
HOME_ADDRESS INTEGER,
CONSTRAINT PK_CUSTOMER PRIMARY KEY (ID))

For details on more complex optimizations and database-to-relationship mappings, please see the
JBoss CMP 2.0 documentation available at http://www.jboss.org.

http://www.jboss.org/

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

46

Examine and Run the Client Applications

The example program, Client_63, shows how to create a Customer EJB and set the Address
relation on that customer.

AddressBean.java
public abstract class AddressBean implements javax.ejb.EntityBean
{
 private static final int IDGEN_START =
 (int)System.currentTimeMillis();
 private static int idgen = IDGEN_START;

 public Integer ejbCreateAddress (String street, String city,
 String state, String zip)
 Throws CreateException
 {
 setId(new Integer(idgen++));
 setStreet(street);
 setCity(city);
 setState(state);
 setZip(zip);
 return null;
 }
 ...
}

Automatic primary-key generation is available in JBoss only since version 3.2. Consequently, in
order to be able to run these exercises in both JBoss 3.0 and 3.2, a very crude id generator has
been created for this and subsequent examples. The code just takes the current time in
milliseconds at the load of the bean and increments it by one at every ejbCreate(). Crude,
workable for these examples, not recommended for real applications.

To run Client_63 invoke the Ant task run.client_63. Remember to set your JBOSS_HOME and
PATH environment variables.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

47

The output should look something like this:
C:\workbook\ex06_3>ant run.client_63
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_63:
 [java] Creating Customer 1..
 [java] Creating AddressDO data object..
 [java] Setting Address in Customer 1...
 [java] Acquiring Address data object from Customer 1...
 [java] Customer 1 Address data:
 [java] 1010 Colorado
 [java] Austin,TX 78701
 [java] Creating new AddressDO data object..
 [java] Setting new Address in Customer 1...
 [java] Customer 1 Address data:
 [java] 1600 Pennsylvania Avenue NW
 [java] DC,WA 20500
 [java] Removing Customer 1...

49

Exercises for Chapter 7

50

Exercise 7.1:
Entity Relationships in CMP 2.0: Part 1
This exercise walks you through implementing a complex set of interrelated entity beans defined
in Chapter 7 of the EJB book.

Start Up JBoss

If JBoss is not running, start it up. If it’s already running there’s no reason to restart it.

Initialize the Database

The database table for this exercise will automatically be created in JBoss’s default database,
HypersonicSQL, when the EJB JAR is deployed.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex07_1 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex07_1> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex07_1> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex07_1> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

51

Examine the JBoss-Specific Files

This chapter introduces no new features in JBoss-specific files. Please review Exercise 6.1 to
understand the JBoss-specific files in this example. Also, this chapter implements non-
performance-tuned entity beans and relies on the CMP 2.0 engine to create all database tables.
To learn about JBoss’s extensive configuration options, please review the advanced CMP 2.0
documentation at http://www.jboss.org/.

Examine and Run the Client Applications

From this chapter on, so that the example code matches the code illustrated in the EJB book, we
will no longer use remote entity bean interfaces. Accordingly, the Customer EJB switches to
local-only interfaces:

♦ CustomerHomeRemote becomes CustomerHomeLocal.

♦ CustomerRemote becomes CustomerLocal.

♦ Bean interface methods no longer throw RemoteExceptions.

♦ The ejb-jar.xml descriptor changes to use local interfaces. Thus:
 <ejb-name>CustomerEJB</ejb-name>
 <home>com.titan.customer.CustomerHomeRemote</home>
 <remote>com.titan.customer.CustomerRemote</remote>
 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

...changes to…
 <ejb-name>CustomerEJB</ejb-name>
 <local-home>com.titan.customer.CustomerHomeLocal</local-home>
 <local>com.titan.customer.CustomerLocal</local>
 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

♦ The JNDI binding in jboss.xml changes as well:
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 <jndi-name>CustomerHomeRemote</jndi-name>
 </entity>

...changes to …
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 <local-jndi-name>CustomerHomeLocal</local-jndi-name>
 </entity>

http://www.jboss.org/

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

52

Because interfaces are now local, the example programs no longer need to use dependent value
classes to set up relationships like Customer-Address. This change simplifies the code a lot, and
allows you to pass local entity beans such as Address, Credit Card, and Phone to Customer EJB
methods directly.

Another consequence is that remote clients can no longer invoke business logic on the entity
beans implemented in this chapter. Instead, you’ll implement all example business logic in the
methods of a stateless session bean. Also, EJB containers don’t allow the manipulation of a
relationship collection (including iteration through the collection) outside the context of a
transaction. In JBoss, by default all bean methods are Required, so all example test code will
run within a transaction. Chapter 14 in the EJB book discusses transactions in more detail.

To execute these examples from the command line, you implement separate, distinct remote
clients that get a reference to the stateless test bean and invoke the appropriate test method.

Client_71a

The Client_71a example program reveals the unidirectional relationship between Customer and
Address. The business logic for this example is implemented in
com.titan.test.Test71Bean, in the test71a() method.

In test71a(), output is written to the PrintWriter created below. The method finishes by
extracting a String from the PrintWriter and passing it back to the remote client for display.

public String test71a() throws RemoteException
{
 String output = null;
 StringWriter writer = new StringWriter();
 PrintWriter out = new PrintWriter(writer);
 try
 {

The first part of test71a() simply fetches the home interfaces of Customer and Address from
JNDI. It then creates both a Customer and an Address:

 InitialContext jndiContext = getInitialContext();
 Object obj = jndiContext.lookup("CustomerHomeLocal");
 CustomerHomeLocal customerhome = (CustomerHomeLocal)obj;

 obj = jndiContext.lookup("AddressHomeLocal");
 AddressHomeLocal addresshome = (AddressHomeLocal)obj;

 out.println("Creating Customer 71");

 Integer primaryKey = new Integer(71);
 CustomerLocal customer = customerhome.create(primaryKey);
 customer.setName(new Name("Smith","John"));

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

53

 AddressLocal addr = customer.getHomeAddress();

 if (addr==null)
 {
 out.println("Address reference is NULL, Creating one and
 setting in Customer..");
 addr = addresshome.createAddress("333 North Washington"
 ,"Minneapolis"
 ,"MN","55401");

A call to customer.setHomeAddress() sets up the relationship:

 customer.setHomeAddress(addr);
 }

 ...

Next you modify the address directly with new information. Calling the Address object’s set
methods is the correct way to modify a unidirectional relationship that has already been set up.

 addr.setStreet("445 East Lake Street");
 addr.setCity("Wayzata");
 addr.setState("MN");
 addr.setZip("55432");
 ...

The next bit of code shows the wrong way to modify a unidirectional relationship that’s already
been created. Instead of modifying the existing Address entity, it creates a new one. Passing the
new one to customer.setHomeAddress() orphans the old one, which thereafter just sits there
in the database, unused and forgotten. The result is a database “leak.”

 addr = addresshome.createAddress("700 Main Street"
 ,"St. Paul","MN","55302");
 ...
 customer.setHomeAddress(addr);

Two different relationships can share the same entity. This code shares a single address between
the Home Address and Billing Address relationships:

 addr = customer.getHomeAddress();
 ...
 customer.setBillingAddress(addr);

 AddressLocal billAddr = customer.getBillingAddress();
 AddressLocal homeAddr = customer.getHomeAddress();

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

54

The Billing Address and Home Address now refer to the same bean:
 if (billAddr.isIdentical(homeAddr))
 {
 out.println("Billing and Home are the same!");
 }
 else
 {
 out.println("Billing and Home are NOT the same!
 BUG IN JBOSS!");
 }
 }
 catch (Exception ex)
 {
 ex.printStackTrace(out);
 }

Finally, test71a() closes the PrintWriter, extracts the output string, and returns it to the client
for display:

 out.close();
 output = writer.toString();

 return output;
}

To run Client_71a invoke the Ant task run.client_71a. Remember to set your JBOSS_HOME
and PATH environment variables.

The output should look something like this:
C:\workbook\ex07_1>ant run.client_71a
Buildfile: build.xml

prepare:

compile:

run.client_71a:
 [java] Creating Customer 71
 [java] Address reference is NULL, Creating one and setting in
Customer..
 [java] Address Info: 333 North Washington Minneapolis, MN 55401
 [java] Modifying Address through address reference
 [java] Address Info: 445 East Lake Street Wayzata, MN 55432
 [java] Creating New Address and calling setHomeAddress
 [java] Address Info: 700 Main Street St. Paul, MN 55302

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

55

 [java] Retrieving Address reference from Customer via
getHomeAddress
 [java] Address Info: 700 Main Street St. Paul, MN 55302
 [java] Setting Billing address to be the same as Home address.
 [java] Testing that Billing and Home Address are the same
Entity.
 [java] Billing and Home are the same!

Client_71b

The Client_71b example program illustrates a simple one-to-one bidirectional relationship
between a Customer bean and a Credit Card bean. The business logic for this example is
implemented in com.titan.test.Test71Bean, in the test71b() method. Examine the code
for this example.

You use the default JNDI context to obtain references to the local home interfaces of the
Customer and Credit Card EJBs. The code also creates an instance of a Customer EJB:

 // obtain CustomerHome
 InitialContext jndiContext = getInitialContext();
 Object obj = jndiContext.lookup("CustomerHomeLocal");
 CustomerHomeLocal customerhome = (CustomerHomeLocal)obj;

 obj = jndiContext.lookup("CreditCardHomeLocal");
 CreditCardHomeLocal cardhome = (CreditCardHomeLocal)obj;
 Integer primaryKey = new Integer(71);
 CustomerLocal customer = customerhome.create(primaryKey);
 customer.setName(new Name("Smith","John"));

Next, you create an instance of a Credit Card. Notice that you don’t need to pass in a primary key;
the crude algorithm introduced in Chapter 6.3 will generate one automatically:

 // set Credit Card info
 Calendar now = Calendar.getInstance();
 CreditCardLocal card = cardhome.create(now.getTime(),
 "370000000000001", "John Smith", "O'Reilly");

Then you establish the one-to-one bidirectional relationship between Customer and Credit Card
simply by calling the Customer EJB’s setCreditCard() method:

 customer.setCreditCard(card);

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

56

The following code illustrates the bidirectional nature of the relationship by navigating from a
Credit Card to a Customer and vice versa:

 String cardname = customer.getCreditCard().getNameOnCard();
 out.println("customer.getCreditCard().getNameOnCard()="
 + cardname);

 Name name = card.getCustomer().getName();
 String custfullname = name.getFirstName() + " " +
 name.getLastName();
 out.println("card.getCustomer().getName()="+custfullname);

Finally, the code illustrates how to destroy the relationship between the Customer and Credit
Card beans:

 card.setCustomer(null);

 CreditCardLocal newcardref = customer.getCreditCard();
 if (newcardref == null)
 {
 out.println
 ("Card is properly unlinked from customer bean");
 }
 else
 {
 out.println("Whoops, customer still thinks it has a
 card! BUG IN JBOSS!");
 }

To run Client_71b invoke the Ant task run.client_71b. Remember to set your JBOSS_HOME
and PATH environment variables.

The output should look something like this:
C:\workbook\ex07_1>ant run.client_71b
Buildfile: build.xml

prepare:

compile:

run.client_71b:
 [java] Finding Customer 71
 [java] Creating CreditCard
 [java] Linking CreditCard and Customer
 [java] Testing both directions on relationship
 [java] customer.getCreditCard().getNameOnCard()=John Smith

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

57

 [java] card.getCustomer().getName()=John Smith
 [java] Unlink the beans using CreditCard, test Customer side
 [java] Card is properly unlinked from customer bean
 [java]

Client_71c

The Client_71c example program illustrates the proper use of a one-to-many unidirectional
relationship between customers and their phone numbers. The business logic for this example is
implemented in com.titan.test.Test71Bean, in the test71c() method.

First, the test code locates the Customer home interface through JNDI, then finds the Customer
that needs new phone numbers:

 // obtain CustomerHome
 InitialContext jndiContext = getInitialContext();
 Object obj = jndiContext.lookup("CustomerHomeLocal");
 CustomerHomeLocal home = (CustomerHomeLocal)obj;

 // Find Customer 71
 Integer primaryKey = new Integer(71);
 CustomerLocal customer = home.findByPrimaryKey(primaryKey);

The next bit of code invokes the Customer helper method addPhoneNumber() to relate two
phone numbers to the customer, and outputs the contents of the customer-phone relationship
after each addition:

 // Display current phone numbers and types
 out.println("Starting contents of phone list:");
 ArrayList vv = customer.getPhoneList();
 for (int jj=0; jj<vv.size(); jj++)
 {
 String ss = (String)(vv.get(jj));
 out.println(ss);
 }

 // add a new phone number
 out.println("Adding a new type 1 phone number..");
 customer.addPhoneNumber("612-555-1212",(byte)1);

 out.println("New contents of phone list:");
 vv = customer.getPhoneList();
 for (int jj=0; jj<vv.size(); jj++)
 {
 String ss = (String)(vv.get(jj));
 out.println(ss);
 }

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

58

 // add a new phone number
 out.println("Adding a new type 2 phone number..");
 customer.addPhoneNumber("800-333-3333",(byte)2);

 out.println("New contents of phone list:");
 vv = customer.getPhoneList();
 for (int jj=0; jj<vv.size(); jj++)
 {
 String ss = (String)(vv.get(jj));
 out.println(ss);
 }

This code uses the updatePhoneNumber() helper method to modify an existing phone number:

 // update a phone number
 out.println("Updating type 1 phone numbers..");
 customer.updatePhoneNumber("763-555-1212",(byte)1);

 out.println("New contents of phone list:");
 vv = customer.getPhoneList();
 for (int jj=0; jj<vv.size(); jj++)
 {
 String ss = (String)(vv.get(jj));
 out.println(ss);
 }

Finally, this code illustrates how to remove a member of a one-to-many unidirectional
relationship:

 // delete a phone number
 out.println("Removing type 1 phone numbers from this
 Customer..");
 customer.removePhoneNumber((byte)1);

 out.println("Final contents of phone list:");
 vv = customer.getPhoneList();
 for (int jj=0; jj<vv.size(); jj++)
 {
 String ss = (String)(vv.get(jj));
 out.println(ss);
 }

Note that the phone entity hasn’t been destroyed. It’s still in the database, it’s just no longer
related to this customer bean.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

59

To run Client_71c invoke the Ant task run.client_71c. Remember to set your JBOSS_HOME
and PATH environment variables.

The output should look something like this:
C:\workbook\ex07_1>ant run.client_71c
Buildfile: build.xml

prepare:

compile:

run.client_71c:
 [java] Starting contents of phone list:
 [java] Adding a new type 1 phone number..
 [java] New contents of phone list:
 [java] Type=1 Number=612-555-1212
 [java] Adding a new type 2 phone number..
 [java] New contents of phone list:
 [java] Type=1 Number=612-555-1212
 [java] Type=2 Number=800-333-3333
 [java] Updating type 1 phone numbers..
 [java] New contents of phone list:
 [java] Type=1 Number=763-555-1212
 [java] Type=2 Number=800-333-3333
 [java] Removing type 1 phone numbers from this Customer..
 [java] Final contents of phone list:
 [java] Type=2 Number=800-333-3333

60

Exercise 7.2:
Entity Relationships in CMP 2.0: Part 2
The example programs in Exercise 7.2 illustrate the remaining four types of entity-bean
relationship

♦ Many-to-one unidirectional (Cruise-Ship)

♦ One-to-many bidirectional (Cruise-Reservation)

♦ Many-to-many bidirectional (Customer-Reservation)

♦ Many-to-many unidirectional (Cabin-Reservation)

Start Up JBoss

If you already have JBoss running there is no reason to restart it.

Initialize the Database

No database initialization is needed; JBoss will create the needed tables at bean deployment.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex07_2 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex07_2> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex07_2> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex07_2> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

61

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

Examine the JBoss-Specific Files

No new concepts are introduced in the JBoss-specific deployment descriptors.

Examine and Run the Client Applications

This exercise uses six example programs to demonstrate the various relationships described in the
corresponding chapter of the EJB book. Note that you can rerun any of these examples as many
times as you like because they clean up after themselves by removing all the entities they create.

♦ Client_72a demonstrates the many-to-one unidirectional Cruise-Ship relationship, as well as
the sharing of a reference between different beans.

♦ Client_72b demonstrates the one-to-many bidirectional Cruise-Reservation relationship, and
how to use set methods to modify reservations that are associated with a cruise.

♦ Client_72c expands on the Cruise-Reservation relationship, using the addAll() method to
modify the reservations associated with a cruise.

♦ Client_72d demonstrates the many-to-many bidirectional Customer-Reservation
relationship.

♦ Client_72e continues the demonstration of the Customer-Reservation relationship by
showing how to use setCustomers() to modify the Customers for a Reservation.

♦ Client_72f demonstrates the many-to-many unidirectional Cabin-Reservation relationship.

Client_72a

The business logic for this example is implemented in com.titan.test.Test72Bean, in the
test72a() method. Client_72a models the many-to-one unidirectional Cruise-Ship
relationships shown in Figure 7-12 of the EJB book.

First, this code creates the relationships described in the top half of the figure. Cruises 1 to 3
embark on Ship A; Cruises 4 to 6 set sail on Ship B.

 cruises[0] = cruisehome.create("Cruise 1", shipA);
 cruises[1] = cruisehome.create("Cruise 2", shipA);
 cruises[2] = cruisehome.create("Cruise 3", shipA);
 cruises[3] = cruisehome.create("Cruise 4", shipB);
 cruises[4] = cruisehome.create("Cruise 5", shipB);
 cruises[5] = cruisehome.create("Cruise 6", shipB);

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

62

Next, the code switches Cruise 4 so that it is now handled by Ship A instead of Ship B. This
relationship change is illustrated in the bottom half of Figure 7-12:

 ShipLocal newship = cruises[0].getShip();
 cruises[3].setShip(newship);

To run Client_72a invoke the Ant task run.client_72a. Remember to set your JBOSS_HOME
and PATH environment variables.

The output should look something like this:
C:\workbook\ex07_2>ant run.client_72a
Buildfile: build.xml

prepare:

compile:

run.client_72a:
 [java] Creating Ships
 [java] PK=1001 name=Ship A tonnage=30000.0
 [java] PK=1002 name=Ship B tonnage=40000.0
 [java] Creating Cruises
 [java] Cruise 1 is using Ship A
 [java] Cruise 2 is using Ship A
 [java] Cruise 3 is using Ship A
 [java] Cruise 4 is using Ship B
 [java] Cruise 5 is using Ship B
 [java] Cruise 6 is using Ship B
 [java] Changing Cruise 4 to use same ship as Cruise 1
 [java] Cruise 1 is using Ship A
 [java] Cruise 2 is using Ship A
 [java] Cruise 3 is using Ship A
 [java] Cruise 4 is using Ship A
 [java] Cruise 5 is using Ship B
 [java] Cruise 6 is using Ship B
 [java] Removing created beans

Client_72b

The business logic for this example is implemented in com.titan.test.Test72Bean, in the
test72b() method. Client_72b models the one-to-many bidirectional Cruise-Reservation
relationships shown in Figure 7-14 of the EJB book.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

63

First, this code creates the relationships described in the top half of the figure. Reservations 1 to 3
are for Cruise A; Reservations 4 to 6 are for Cruise B:

 for (int i = 0; i < 6; i++)
 {
 CruiseLocal cruise = (i < 3) ? cruiseA : cruiseB;
 reservations[i] = reservationhome.create
 (cruise,new ArrayList());
 reservations[i].setDate(date.getTime());
 reservations[i].setAmountPaid((i + 1) * 1000.0);
 date.add(Calendar.DAY_OF_MONTH, 7);
 }

Next, the code sets the reservations of Cruise B to be the reservations of Cruise A. Those
relationships actually move from A to B. Afterward, Cruise A and Reservations 1-3 no longer have
any Cruise-Reservation relationships, as you see in the bottom half of Figure 7-14:

 Collection a_reservations = cruiseA.getReservations();
 cruiseB.setReservations(a_reservations);

To run Client_72b invoke the Ant task run.client_72b. Remember to set your JBOSS_HOME
and PATH environment variables.

The output should look something like this:
C:\workbook\ex07_2>ant run.client_72b
Buildfile: build.xml

prepare:

compile:

run.client_72b:
 [java] Creating Cruises
 [java] name=Cruise A
 [java] name=Cruise B
 [java] Creating Reservations
 [java] Reservation date=11/01/2002 is for Cruise A
 [java] Reservation date=11/08/2002 is for Cruise A
 [java] Reservation date=11/15/2002 is for Cruise A
 [java] Reservation date=11/22/2002 is for Cruise B
 [java] Reservation date=11/29/2002 is for Cruise B
 [java] Reservation date=12/06/2002 is for Cruise B
 [java] Testing CruiseB.setReservations(

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

64

CruiseA.getReservations())
 [java] Reservation date=11/01/2002 is for Cruise B
 [java] Reservation date=11/08/2002 is for Cruise B
 [java] Reservation date=11/15/2002 is for Cruise B
 [java] Reservation date=11/22/2002 is for No Cruise!
 [java] Reservation date=11/29/2002 is for No Cruise!
 [java] Reservation date=12/06/2002 is for No Cruise!
 [java] Removing created beans.

Client_72c

The business logic for this example is implemented in com.titan.test.Test72Bean, in the
test72c() method. Client_72c explores the use of Collection.addAll() in the Cruise-
Reservation one-to-many bidirectional relationship shown in Figure 7-15 of the EJB book.

First, this code creates the relationships described in the top half of the figure. Reservations 1 to 3
are for Cruise A; Reservations 4 to 6 are for Cruise B:

 for (int i = 0; i < 6; i++)
 {
 CruiseLocal cruise = (i < 3) ? cruiseA : cruiseB;
 reservations[i] = reservationhome.create
 (cruise,new ArrayList());
 reservations[i].setDate(date.getTime());
 reservations[i].setAmountPaid((i + 1) * 1000.0);
 date.add(Calendar.DAY_OF_MONTH, 7);
 }

Then the code changes all reservations of Cruise A to be for Cruise B instead. The result of this
action can be seen in the bottom half of Figure 7-15:

 Collection a_reservations = cruiseA.getReservations();
 Collection b_reservations = cruiseB.getReservations();
 b_reservations.addAll(a_reservations);

To run Client_72c invoke the Ant task run.client_72c. Remember to set your JBOSS_HOME
and PATH environment variables.

The output should look something like this:
C:\workbook\ex07_2>ant run.client_72c
Buildfile: build.xml

prepare:

compile:

run.client_72c:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

65

 [java] Creating Cruises
 [java] name=Cruise A
 [java] name=Cruise B
 [java] Creating Reservations
 [java] Reservation date=11/01/2002 is for Cruise A
 [java] Reservation date=11/08/2002 is for Cruise A
 [java] Reservation date=11/15/2002 is for Cruise A
 [java] Reservation date=11/22/2002 is for Cruise B
 [java] Reservation date=11/29/2002 is for Cruise B
 [java] Reservation date=12/06/2002 is for Cruise B
 [java] Testing using b_res.addAll(a_res) to combine
reservations
 [java] Reservation date=11/01/2002 is for Cruise B
 [java] Reservation date=11/08/2002 is for Cruise B
 [java] Reservation date=11/15/2002 is for Cruise B
 [java] Reservation date=11/22/2002 is for Cruise B
 [java] Reservation date=11/29/2002 is for Cruise B
 [java] Reservation date=12/06/2002 is for Cruise B

Client_72d

The business logic for this example is implemented in com.titan.test.Test72Bean, in the
test72d() method. Client_72d explores the use of Collection.addAll() in the Customer-
Reservation many-to-many bidirectional relationship shown in Figure 7-17 of the EJB book.

First two sets of customers are created:
 Set lowcustomers = new HashSet();
 Set highcustomers = new HashSet();
 CustomerLocal[] allCustomers = new CustomerLocal[6];
 for (int kk=0; kk<6; kk++)
 {
 CustomerLocal cust = customerhome.create(new Integer(kk));
 allCustomers[kk] = cust;
 cust.setName(new Name("Customer "+kk,""));
 if (kk<=2)
 {
 lowcustomers.add(cust);
 }
 else
 {
 highcustomers.add(cust);
 }
 out.println(cust.getName().getLastName());
 }

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

66

Next, the code creates six reservations and relates them to one of the customer sets, as shown in
the top half of Figure 7-17. Customers 1 to 3 have Reservation A; Customers 4 to 6 have
Reservation B.

 reservations[0] = reservationhome.create(cruiseA, lowcustomers);
 reservations[0].setDate(date.getTime());
 reservations[0].setAmountPaid(4000.0);
 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[1] = reservationhome.create(cruiseA, highcustomers);
 reservations[1].setDate(date.getTime());
 reservations[1].setAmountPaid(5000.0);

Finally, the code uses addAll() to relate Customers 4 to 6 with Reservation A. They now have a
reservation for both Cruise A and Cruise B. The bottom half of Figure 7-17 illustrates this result:

 Set customers_a = reservations[0].getCustomers();
 Set customers_b = reservations[1].getCustomers();
 customers_a.addAll(customers_b);

To run Client_72d invoke the Ant task run.client_72d. Remember to set your JBOSS_HOME
and PATH environment variables.

The output should look something like this:
C:\workbook\ex07_2>ant run.client_72d
Buildfile: build.xml

prepare:

compile:

run.client_72d:
 [java] cruise.getName()=Cruise A
 [java] ship.getName()=Ship A
 [java] cruise.getShip().getName()=Ship A
 [java] Creating Customers 1-6
 [java] Customer 0
 [java] Customer 1
 [java] Customer 2
 [java] Customer 3
 [java] Customer 4
 [java] Customer 5
 [java] Creating Reservations 1 and 2, each with 3 customers
 [java] Reservation date=11/01/2002 is for Cruise A with
customers Customer 2 Customer 1 Customer 0

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

67

 [java] Reservation date=11/08/2002 is for Cruise A with
customers Customer 5 Customer 4 Customer 3
 [java] Performing customers_a.addAll(customers_b) test
 [java] Reservation date=11/01/2002 is for Cruise A with
customers Customer 2 Customer 1 Customer 0 Customer 5 Custo
mer 4 Customer 3
 [java] Reservation date=11/08/2002 is for Cruise A with
customers Customer 5 Customer 4 Customer 3
 [java] Removing created beans

Client_72e

The business logic for this example is implemented in com.titan.test.Test72Bean, in the
test72e() method. Client_72e explores the use of setCustomers() to share an entire
collection, in the Customer-Reservation many-to-many bidirectional relationship shown in Figure
7-18 of the EJB book.

First, four sets of customers are created:
 Set customers13 = new HashSet();
 Set customers24 = new HashSet();
 Set customers35 = new HashSet();
 Set customers46 = new HashSet();
 CustomerLocal[] allCustomers = new CustomerLocal[6];
 for (int kk=0; kk<6; kk++)
 {
 CustomerLocal cust = customerhome.create(new Integer(kk));
 allCustomers[kk] = cust;
 cust.setName(new Name("Customer "+kk,""));
 if (kk<=2) { customers13.add(cust); }
 if (kk>=1 && kk<=3) { customers24.add(cust); }
 if (kk>=2 && kk<=4) { customers35.add(cust); }
 if (kk>=3) { customers46.add(cust); }
 }

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

68

Next, the code sets up the relationships between Customers and Reservations shown in the top
half of Figure 7-18:

 reservations[0] = reservationhome.create(cruiseA, customers13);
 reservations[0].setDate(date.getTime());
 reservations[0].setAmountPaid(4000.0);
 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[1] = reservationhome.create(cruiseA, customers24);
 reservations[1].setDate(date.getTime());
 reservations[1].setAmountPaid(5000.0);
 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[2] = reservationhome.create(cruiseA, customers35);
 reservations[2].setDate(date.getTime());
 reservations[2].setAmountPaid(6000.0);
 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[3] = reservationhome.create(cruiseA, customers46);
 reservations[3].setDate(date.getTime());
 reservations[3].setAmountPaid(7000.0);

Finally, the code sets up the relationships shown in the bottom half of the figure:
 Set customers_a = reservations[0].getCustomers();
 reservations[3].setCustomers(customers_a);

To run Client_72e invoke the Ant task run.client_72e. Remember to set your JBOSS_HOME
and PATH environment variables.

The output should look something like this:
C:\workbook\ex07_2>ant run.client_72e
Buildfile: build.xml

prepare:

compile:

run.client_72e:
 [java] Creating a Ship and Cruise
 [java] cruise.getName()=Cruise A
 [java] ship.getName()=Ship A
 [java] cruise.getShip().getName()=Ship A
 [java] Creating Customers 1-6
 [java] Creating Reservations 1-4 using three customers each

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

69

 [java] Reservation date=11/01/2002 is for Cruise A with
customers Customer 2 Customer 1 Customer 0
 [java] Reservation date=11/08/2002 is for Cruise A with
customers Customer 3 Customer 2 Customer 1
 [java] Reservation date=11/15/2002 is for Cruise A with
customers Customer 4 Customer 3 Customer 2
 [java] Reservation date=11/22/2002 is for Cruise A with
customers Customer 5 Customer 4 Customer 3
 [java] Performing reservationD.setCustomers(customersA) test
 [java] Reservation date=11/01/2002 is for Cruise A with
customers Customer 2 Customer 1 Customer 0
 [java] Reservation date=11/08/2002 is for Cruise A with
customers Customer 3 Customer 2 Customer 1
 [java] Reservation date=11/15/2002 is for Cruise A with
customers Customer 4 Customer 3 Customer 2
 [java] Reservation date=11/22/2002 is for Cruise A with
customers Customer 2 Customer 1 Customer 0
 [java] Removing created beans.

Client_72f

The business logic for this example is implemented in com.titan.test.Test72Bean, in the
test72f() method. Client_72f demonstrates removing beans in the many-to-many
unidirectional Cabin-Reservation relationship, as shown in Figure 7-20 of the EJB book.

First four sets of cabins are created:
 Set cabins13 = new HashSet();
 Set cabins24 = new HashSet();
 Set cabins35 = new HashSet();
 Set cabins46 = new HashSet();
 CabinLocal[] allCabins = new CabinLocal[6];
 for (int kk=0; kk<6; kk++)
 {
 CabinLocal cabin = cabinhome.create(new Integer(kk));
 allCabins[kk] = cabin;
 cabin.setName("Cabin "+kk);
 if (kk<=2) { cabins13.add(cabin); }
 if (kk>=1 && kk<=3) { cabins24.add(cabin); }
 if (kk>=2 && kk<=4) { cabins35.add(cabin); }
 if (kk>=3) { cabins46.add(cabin); }
 out.println(cabin.getName());
 }

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

70

Next, the code creates the initial relationships between Reservations and Cabins, shown in the top
half of Figure 7-20:

 reservations[0] = reservationhome.create(cruiseA, null);
 reservations[0].setCabins(cabins13);
 reservations[0].setDate(date.getTime());
 reservations[0].setAmountPaid(4000.0);
 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[1] = reservationhome.create(cruiseA, null);
 reservations[1].setCabins(cabins24);
 reservations[1].setDate(date.getTime());
 reservations[1].setAmountPaid(5000.0);
 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[2] = reservationhome.create(cruiseA, null);
 reservations[2].setCabins(cabins35);
 reservations[2].setDate(date.getTime());
 reservations[2].setAmountPaid(6000.0);
 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[3] = reservationhome.create(cruiseA, null);
 reservations[3].setCabins(cabins46);
 reservations[3].setDate(date.getTime());
 reservations[3].setAmountPaid(7000.0);

Finally, the code removes some of the relationships, as shown in the bottom half of the figure:
 Set cabins_a = reservations[0].getCabins();
 Iterator iterator = cabins_a.iterator();
 while (iterator.hasNext())
 {
 CabinLocal cc = (CabinLocal)iterator.next();
 out.println("Removing "+cc.getName()+" from cabins_a");
 iterator.remove();
 }

To run Client_72f invoke the Ant task run.client_72f. Remember to set your JBOSS_HOME
and PATH environment variables.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

71

The output should look something like this:
C:\workbook\ex07_2>ant run.client_72f
Buildfile: build.xml

prepare:

compile:

run.client_72f:
 [java] Creating a Ship and Cruise
 [java] cruise.getName()=Cruise A
 [java] ship.getName()=Ship A
 [java] cruise.getShip().getName()=Ship A
 [java] Creating Cabins 1-6
 [java] Cabin 0
 [java] Cabin 1
 [java] Cabin 2
 [java] Cabin 3
 [java] Cabin 4
 [java] Cabin 5
 [java] Creating Reservations 1-4 using three cabins each
 [java] Reservation date=11/01/2002 is for Cruise A with cabins
Cabin 2 Cabin 1 Cabin 0
 [java] Reservation date=11/08/2002 is for Cruise A with cabins
Cabin 3 Cabin 2 Cabin 1
 [java] Reservation date=11/15/2002 is for Cruise A with cabins
Cabin 4 Cabin 3 Cabin 2
 [java] Reservation date=11/22/2002 is for Cruise A with cabins
Cabin 5 Cabin 4 Cabin 3
 [java] Performing cabins_a collection iterator.remove() test
 [java] Removing Cabin 2 from cabins_a
 [java] Removing Cabin 1 from cabins_a
 [java] Removing Cabin 0 from cabins_a
 [java] Reservation date=11/01/2002 is for Cruise A with cabins
 [java] Reservation date=11/08/2002 is for Cruise A with cabins
Cabin 3 Cabin 2 Cabin 1
 [java] Reservation date=11/15/2002 is for Cruise A with cabins
Cabin 4 Cabin 3 Cabin 2
 [java] Reservation date=11/22/2002 is for Cruise A with cabins
Cabin 5 Cabin 4 Cabin 3
 [java] Removing created beans

72

Exercise 7.3:
Cascade Deletes in CMP 2.0
This very short exercise demonstrates the use of the automatic cascade-delete feature of CMP 2.0
containers. It does this with an example Customer bean and some other beans related to it.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex07_3 directory created by the
extraction process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex07_3> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex07_3> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex07_3> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

Examine and Run the Client Applications

Client_73 is a simple example to demonstrate cascade-delete. The example code is pretty
straightforward and needs no explanation.

To run Client_73 invoke the Ant task run.client_73. Remember to set your JBOSS_HOME and
PATH environment variables.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

73

The output should look something like this:
C:\workbook\ex07_3>ant run.client_73
Buildfile: build.xml

prepare:

compile:

run.client_73:
 [java] Creating Customer 10078, Addresses, Credit Card, Phones
 [java] Creating CreditCard
 [java] customer.getCreditCard().getName()=Ringo Star
 [java] Creating Address
 [java] Address Info: 780 Main Street Beverly Hills, CA 90210
 [java] Creating Phones
 [java] Adding a new type 1 phone number..
 [java] Adding a new type 2 phone number.
 [java] New contents of phone list:
 [java] Type=1 Number=612-555-1212
 [java] Type=2 Number=888-555-1212
 [java] Removing Customer EJB only

75

Exercises for Chapter 8

76

Exercise 8.1:
Simple EJB QL Statements
The exercises in this section reveal some of the basic aspects of EJB QL programming and
functionality. You’ll explore basic finder methods, ejbSelect methods, and the use of the IN
operation in EJB QL queries.

Start Up JBoss

If you already have JBoss running there is no reason to restart it.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex08_1 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex08_1> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex08_1> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex08_1> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

Examine the JBoss-Specific Files

This exercise introduces no new features in JBoss-specific files. If you think you need to, review
Exercise 6.1 of this workbook to understand the JBoss-specific files in this example.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

77

Initialize the Database

The database tables for this exercise will automatically be created in JBoss’s default database,
HypersonicSQL, when the EJB JAR is deployed. To initialize all the tables in this example,
though, you must perform the Ant task run.initialize:

C:\workbook\ex08_1>ant run.initialize
Buildfile: build.xml

prepare:

compile:

run.initialize:
 [java] added Bill Burke
 [java] added Sacha Labourey
 [java] added Marc Fleury
 [java] added Jane Swift
 [java] added Nomar Garciaparra

As in the preceding exercise, all business logic is implemented within a stateless session bean. If
you’d like to see the database initialization code, look at com.titan.test.Test81Bean’s
initialize() method, which creates all the entity beans for this exercise.

Examine and Run the Client Applications

Each example method of Test81Bean implements the example code fragments shown in the
EJB book. Each Test81Bean method is invoked by a small, simple client application.

Client_81a

The Client_81a example program demonstrates a few simple finder methods that are exposed
through the Customer home interface.

public interface CustomerHomeLocal extends javax.ejb.EJBLocalHome
{
 ...
 public CustomerLocal findByName(String lastName,

 String firstName)
 throws FinderException;

 public Collection findByGoodCredit()
 throws FinderException;
 ...
}

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

78

The Customer EJB’s deployment descriptor defines these finder methods as follows:
<query>
 <query-method>

 <method-name>findByName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
</query-method>
<ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.lastName = ?1 AND c.firstName = ?2
</ejb-ql>

</query>
<query>
 <query-method>

 <method-name>findByGoodCredit</method-name>
 <method-params/>
</query-method>
<ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.hasGoodCredit = TRUE
</ejb-ql>

</query>

The example also demonstrates a few ejbSelect methods, defined in the Address EJB’s
deployment descriptor as follows:

<query>
 <query-method>

 <method-name>ejbSelectZipCodes</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
</query-method>
<ejb-ql>
 SELECT a.zip FROM Address AS a
 WHERE a.state = ?1
</ejb-ql>

</query>

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

79

<query>
 <query-method>

 <method-name>ejbSelectAll</method-name>
 <method-params/>
</query-method>
<ejb-ql>
 SELECT OBJECT(a) FROM Address AS a
</ejb-ql>

</query>
<query>
 <query-method>

 <method-name>ejbSelectCustomer</method-name>
 <method-params>
 <method-param>com.titan.address.AddressLocal</method-param>
 </method-params>
</query-method>
<ejb-ql>
 SELECT OBJECT(C) FROM Customer AS c
 WHERE c.homeAddress = ?1
</ejb-ql>

</query>

Because ejbSelect methods are private to the entity bean class, the Address home interface
needs custom home methods to wrap and invoke the private ejbSelect methods.

public interface AddressHomeLocal extends javax.ejb.EJBLocalHome
{
 ...
 public Collection queryZipCodes(String state)
 throws FinderException;

 public Collection queryAll()
 throws FinderException;

 public CustomerLocal queryCustomer(AddressLocal addr)
 throws FinderException;
}

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

80

These custom home methods need corresponding ejbHome methods defined in the Address bean
class. All they do is delegate to the ejbSelect methods they wrap.

public abstract class AddressBean implements javax.ejb.EntityBean
{
 ...
 public abstract Collection ejbSelectZipCodes(String state)
 throws FinderException;

 public abstract Collection ejbSelectAll()
 throws FinderException;

 public abstract CustomerLocal ejbSelectCustomer
 (AddressLocal addr)
 throws FinderException;

 public Collection ejbHomeQueryZipCodes(String state)
 throws FinderException
 {
 return ejbSelectZipCodes(state);
 }

 public Collection ejbHomeQueryAll()
 throws FinderException
 {
 return ejbSelectAll();
 }

 public CustomerLocal ejbHomeQueryCustomer(AddressLocal addr)
 throws FinderException
 {
 return ejbSelectCustomer(addr);
 }
 ...
}

Custom home methods are described briefly in Chapter 5 of the EJB book and in more detail in
Chapter 11. As you can see, they are extremely useful in exposing private ejbSelect methods so
that they can be invoked by test programs or business logic. All the workbook example programs
for Chapter 8 use the custom home methods for this purpose.

Client_81a invokes these queries and displays their output. To run it invoke the Ant task
run.client_81a. Remember to set your JBOSS_HOME and PATH environment variables.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

81

The output should look something like this:
C:\workbook\ex08_1>ant run.client_81a
Buildfile: build.xml

prepare:

compile:

run.client_81a:
 [java] FIND METHODS
 [java] --------------------------------
 [java] SELECT OBJECT(c) FROM Customer c
 [java] WHERE c.lastName = ?1 AND c.firstName = ?2
 [java] Find Bill Burke using findByName
 [java] Found Bill Burke
 [java]
 [java] SELECT OBJECT(c) FROM Customer c
 [java] WHERE c.hasGoodCredit = TRUE
 [java] Find all with good credit. Sacha has bad credit!
 [java] Bill has good credit.
 [java] Marc has good credit.
 [java] Jane has good credit.
 [java] Nomar has good credit.
 [java]
 [java] SELECT METHODS
 [java] --------------------------------
 [java] SELECT a.zip FROM Address AS a
 [java] WHERE a.state = ?1
 [java] show ejbSelectZipCodes with queryZipCodes
 [java] 01821
 [java] 02115
 [java] 02116
 [java]
 [java] SELECT OBJECT(a) FROM Address AS a
 [java] show ejbSelectAll with queryAll
 [java] 123 Boston Road
 [java] Billerica, MA 01821
 [java]
 [java] Etwa Schweitzer Strasse
 [java] Neuchatel, Switzerland 07711
 [java]
 [java] Sharondale Dr.
 [java] Atlanta, GA 06660
 [java]
 [java] 1 Beacon Street

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

82

 [java] Boston, MA 02115
 [java]
 [java] 1 Yawkey Way
 [java] Boston, MA 02116
 [java]
 [java] West Broad Street
 [java] Richmond, VA 23233
 [java]
 [java] Somewhere
 [java] Atlanta, GA 06660
 [java]
 [java]
 [java] SELECT OBJECT(C) FROM Customer AS c
 [java] WHERE c.homeAddress = ?1
 [java] show ejbSelectCustomer using Bill's address.
 [java] The customer is:
 [java] Bill Burke
 [java] 123 Boston Road
 [java] Billerica, MA 01821

Client_81b

The Client_81b example program gives you a chance to investigate some of the queries illustrated
in the EJB book. For an explanation of the details of the tested queries below, please refer to the
Simple Queries with Paths section of Chapter 8 of that book. The business logic for this example
is implemented in com.titan.test.Test81Bean, in the test81b() method.

All the EJB QL queries in this example are ejbSelect methods. Again, these ejbSelect
methods are wrapped by custom home methods. This example tests the following Customer EJB
QL queries and home methods:

query: SELECT c.lastName FROM Customer AS c
ejbSelect method: ejbSelectLastNames()
custom home method: queryLastNames()
ejbHome method: ejbHomeQueryLastNames()

query: SELECT c.creditCard FROM Customer c
ejbSelect method: ejbSelectCreditCards()
custom home method: queryCreditCards()
ejbHome method: ejbHomeQueryCreditCards()

query: SELECT c.homeAddress.city FROM Customer c
ejbSelect method: ejbSelectCities()
custom home method: queryCities()
ejbHome method: ejbHomeQueryCities()

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

83

query: SELECT c.creditCard.creditCompany.address
FROM Customer AS c

ejbSelect method: ejbSelectCreditCompanyAddresses()
custom home method: queryCreditCompanyAddresses()
ejbHome method: ejbHomeQueryCreditCompanyAddresses()

query: SELECT c.creditCard.creditCompany.address.city
FROM Customer AS c

ejbSelect method: ejbSelectCreditCompanyCities()
custom home method: queryCreditCompanyCities()
ejbHome method: ejbHomeQueryCreditCompanyCities()

Client_81b invokes these queries and displays their output. To run it invoke the Ant task
run.client_81b. Remember to set your JBOSS_HOME and PATH environment variables.

The output should look something like this:
C:\workbook\ex08_1>ant run.client_81b
Buildfile: build.xml

prepare:

compile:

run.client_81b:
 [java] SIMPLE QUERIES with PATHS
 [java] --------------------------------
 [java] SELECT c.lastName FROM Customer AS c
 [java] Burke
 [java] Labourey
 [java] Fleury
 [java] Swift
 [java] Garciaparra
 [java]
 [java] SELECT c.creditCard FROM Customer c
 [java] 5324 9393 1010 2929
 [java] 5311 5000 1011 2333
 [java] 5310 5131 7711 2663
 [java] 5810 5881 7788 2688
 [java] 5450 5441 7448 2644
 [java]
 [java] SELECT c.homeAddress.city FROM Customer c
 [java] Billerica
 [java] Neuchatel
 [java] Atlanta
 [java] Boston
 [java] Boston

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

84

 [java]
 [java] SELECT c.creditCard.creditCompany.address
 [java] FROM Customer AS c
 [java] West Broad Street
 [java] Richmond, VA 23233
 [java]
 [java] West Broad Street
 [java] Richmond, VA 23233
 [java]
 [java] West Broad Street
 [java] Richmond, VA 23233
 [java]
 [java] Somewhere
 [java] Atlanta, GA 06660
 [java]
 [java] Somewhere
 [java] Atlanta, GA 06660
 [java]
 [java]
 [java] SELECT c.creditCard.creditCompany.address.city
 [java] FROM Customer AS c
 [java] Richmond
 [java] Richmond
 [java] Richmond
 [java] Atlanta
 [java] Atlanta

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

85

Client_81c

The Client_81c example program lets you investigate some more queries illustrated in the EJB
book. For an explanation of the details of the tested queries below, please refer to the IN
Operator section of Chapter 8 of that book. The business logic for this example is implemented
in com.titan.test.Test81Bean, in the test81c() method.

All the EJB QL queries in this example are ejbSelect methods. Again, these ejbSelect
methods are wrapped by custom home methods. This example tests the following Customer EJB
QL queries and home methods:

query: SELECT OBJECT(r)
FROM Customer AS c, IN(c.reservations) AS r

ejbSelect method: ejbSelectReservations()
custom home method: queryReservations()
ejbHome method: ejbHomeQueryReservations()

query: SELECT r.cruise
FROM Customer AS c, IN(c.reservations) AS r

ejbSelect method: ejbSelectCruises()
custom home method: queryCruises()
ejbHome method: ejbHomeQueryCruises()

query: SELECT cbn.ship
FROM Customer AS c, IN(c.reservations) AS r,
IN(r.cabins) AS cbn

ejbSelect method: ejbSelectShips()
custom home method: queryShips()
ejbHome method: ejbHomeQueryShips()

Client_81c invokes these queries and displays their output. To run it invoke the Ant task
run.client_81c. Remember to set your JBOSS_HOME and PATH environment variables.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

86

The output should look something like this:
C:\workbook\ex08_1>ant run.client_81c
Buildfile: build.xml

prepare:

compile:

run.client_81c:
 [java] THE IN OPERATOR
 [java] --------------------------------
 [java] SELECT OBJECT(r)
 [java] FROM Customer AS c, IN(c.reservations) AS r
 [java] Reservation for Alaskan Cruise
 [java] Reservation for Alaskan Cruise
 [java] Reservation for Atlantic Cruise
 [java] Reservation for Atlantic Cruise
 [java] Reservation for Alaskan Cruise
 [java]
 [java] SELECT r.cruise
 [java] FROM Customer AS c, IN(c.reservations) AS r
 [java] Cruise Alaskan Cruise
 [java] Cruise Alaskan Cruise
 [java] Cruise Atlantic Cruise
 [java] Cruise Atlantic Cruise
 [java] Cruise Alaskan Cruise
 [java]
 [java] SELECT cbn.ship
 [java] FROM Customer AS c, IN(c.reservations) AS r,
 [java] IN(r.cabins) AS cbn
 [java] Ship Queen Mary
 [java] Ship Queen Mary
 [java] Ship Queen Mary
 [java] Ship Queen Mary
 [java] Ship Titanic
 [java] Ship Titanic
 [java] Ship Titanic
 [java] Ship Titanic
 [java] Ship Titanic
 [java] Ship Titanic
 [java] Ship Queen Mary
 [java] Ship Queen Mary

87

Exercise 8.2:
Complex EJB QL Statements
The example programs in Exercise 8.2 delve deeper into the complexities of EJB QL. You will
learn about arithmetic and logic operators in WHERE clauses as well as other more complex
WHERE-clause constructs. The test programs of this section demonstrate most of the example
queries provided in Chapter 8 of the EJB book.

Start Up JBoss

If you already have JBoss running there is no reason to restart it.

Build and Deploy the Example Programs

Build the examples for this exercise in the ex08_2 directory, following the same procedure as for
earlier exercises.

Examine the JBoss-Specific Files

This exercise introduces no new features in JBoss-specific files. If you think you need to, review
Chapter 6.1 of this workbook to understand the JBoss-specific files in this example.

Initialize the Database

The database tables for this exercise will automatically be created in JBoss’s default database,
HypersonicSQL, when the EJB JAR is deployed, but to initialize all database tables in this
example you must perform the Ant task run.initialize:

C:\workbook\ex08_2>ant run.initialize
Buildfile: build.xml

prepare:

compile:

run.initialize:
 [java] added Bill Burke
 [java] added Sacha Labourey
 [java] added Marc Fleury
 [java] added Jane Swift
 [java] added Nomar Garciaparra
 [java] added Richard Monson-Haefel

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

88

As in the preceding exercise, all example business logic is implemented within a stateless session
bean, in this case com.titan.test.Test82Bean, and the database initialization code is in that
bean’s initialize() method, which creates all the entity beans for this exercise.

Examine and Run the Client Applications

Each example method of Test82Bean implements the example code fragments shown in the
EJB book. Each Test82Bean method is invoked by a small, simple client application.

Client_82a

The Client_82a example program implements the queries illustrated in the EJB book, in the
section of Chapter 8 entitled Using DISTINCT. The business logic for this example is
implemented in com.titan.test.Test82Bean, in the test82a() method.

The code demonstrates a Customer EJB finder query that returns duplicate responses, then
invokes a finder query that uses the DISTINCT keyword to filter out duplicates.

finder method: findAllCustomersWithReservations()
query: SELECT OBJECT(cust)

FROM Reservation res, IN (res.customers) cust

finder method: findDistinctCustomersWithReservations()
query: SELECT DISTINCT OBJECT(cust)

FROM Reservation res, IN (res.customers) cust

Client_82a invokes these queries and displays their output. To run it invoke the Ant task
run.client_82a. Remember to set your JBOSS_HOME and PATH environment variables.

The output should look something like this:
C:\workbook\ex08_2>ant run.client_82a
Buildfile: build.xml

prepare:

compile:

run.client_82a:
 [java] USING DISTINCT
 [java] --------------------------------
 [java] Non-distinct:
 [java] SELECT OBJECT(cust)
 [java] FROM Reservation res, IN (res.customers) cust
 [java] Bill has a reservation.
 [java] Sacha has a reservation.
 [java] Nomar has a reservation.
 [java] Bill has a reservation.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

89

 [java] Marc has a reservation.
 [java] Jane has a reservation.
 [java]
 [java] Distinct:
 [java] SELECT DISTINCT OBJECT(cust)
 [java] FROM Reservation res, IN (res.customers) cust
 [java] Bill has a reservation.
 [java] Sacha has a reservation.
 [java] Marc has a reservation.
 [java] Jane has a reservation.
 [java] Nomar has a reservation.

Client_82b

The Client_82b example program implements the queries illustrated in the EJB book, in the
section of Chapter 8 entitled The WHERE Clause and Literals. The business logic for this
example is implemented in com.titan.test.Test82Bean, in the test82b() method.

Various Customer and Ship EJB finder queries show how to use string, numeric, and Boolean
literals in EJB QL queries.

EJB: Customer
finder method: findByAmericanExpress()
query: SELECT OBJECT(c) FROM Customer AS c

WHERE c.creditCard.organization = 'American Express'

EJB: Ship
finder method: findByTonnage100000 ()
query: SELECT OBJECT(s) FROM Ship AS s

WHERE s.tonnage = 100000.0

EJB: Customer
finder method: findByGoodCredit()
query: SELECT OBJECT(c) FROM Customer AS c

WHERE c.hasGoodCredit = TRUE

Client_82b invokes these queries and displays their output. To run it invoke the Ant task
run.client_82b.

The output should look something like this:
C:\workbook\ex08_2>ant run.client_82b
Buildfile: build.xml

prepare:

compile:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

90

run.client_82b:
 [java] THE WHERE CLAUSE AND LITERALS
 [java] --------------------------------
 [java] SELECT OBJECT(c) FROM Customer AS c
 [java] WHERE c.creditCard.organization = 'American Express'
 [java] Jane has an American Express card.
 [java] Nomar has an American Express card.
 [java]
 [java] SELECT OBJECT(s) FROM Ship AS s
 [java] WHERE s.tonnage = 100000.0
 [java] Ship Queen Mary as tonnage 100000.0
 [java]
 [java] SELECT OBJECT(c) FROM Customer AS c
 [java] WHERE c.hasGoodCredit = TRUE
 [java] Bill has good credit.
 [java] Marc has good credit.
 [java] Jane has good credit.
 [java] Nomar has good credit.
 [java] Richard has good credit.

Client_82c

The Client_82c example program implements the queries illustrated in the EJB book, in the
section of Chapter 8 entitled The WHERE Clause and Input Parameters. The business logic for
this example is implemented in com.titan.test.Test82Bean, in the test82c() method.

The code demonstrates a Customer EJB ejbSelect query that uses strings as input parameters
to the query, and a Cruise EJB finder method that uses a Ship EJB as an input parameter. As in
previous sections, the ejbSelect query is wrapped in a custom home method.

EJB: Customer
ejbSelect method: ejbSelectLastNames()
custom home method: queryLastNames()
ejbHome method: ejbHomeQueryLastNames()
query: SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state = ?2
AND c.homeAddress.city = ?1

EJB: Cruise
finder method: findByShip()
query: SELECT OBJECT(crs) FROM Cruise AS crs

WHERE crs.ship = ?1

Client_82c invokes these queries and displays their output. To run it invoke the Ant task
run.client_82c. Remember to set your JBOSS_HOME and PATH environment variables.

The output should look something like this:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

91

C:\workbook\ex08_2>ant run.client_82c
Buildfile: build.xml

prepare:

compile:

run.client_82c:
 [java] THE WHERE CLAUSE AND INPUT PARAMETERS
 [java] --------------------------------
 [java] SELECT OBJECT(c) FROM Customer AS c
 [java] WHERE c.homeAddress.state = ?2
 [java] AND c.homeAddress.city = ?1
 [java] Get customers from Billerica, MA
 [java] Bill is from Billerica.
 [java]
 [java] SELECT OBJECT(crs) FROM Cruise AS crs
 [java] WHERE crs.ship = ?1
 [java] Get cruises on the Titanic
 [java] Atlantic Cruise is a Titanic cruise.

Client_82d

The Client_82d example program implements the queries illustrated in the EJB book, in the
section of Chapter 8 entitled The WHERE Clause and CDATA Sections. The business logic for
this example is implemented in com.titan.test.Test82Bean, in the test82d() method.
The code demonstrates a Reservation EJB finder method that must be enclosed in an XML
CDATA section because it uses the > symbol in the query.

EJB: Reservation
finder method: findWithPaymentGreaterThan()
query: <![CDATA[

OBJECT(r) FROM Rservation r
WHERE r.amountPaid > ?1
]]>

Client_82d invokes this query and displays its output. To run it invoke the Ant task
run.client_82d.

The output should look something like this:
C:\workbook\ex08_2>ant run.client_82d
Buildfile: build.xml

prepare:

compile:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

92

run.client_82d:
 [java] THE WHERE CLAUSE AND CDATA Sections
 [java] --------------------------------
 [java] ![CDATA[
 [java] SELECT OBJECT(r) FROM Rservation r
 [java] WHERE r.amountPaid > ?1
 [java]]]>
 [java] found reservation with amount paid > 20000.0: 40000.0

Client_82e

The Client_82e example program implements the queries illustrated in the EJB book, in the
section of Chapter 8 entitled The WHERE Clause and BETWEEN. The business logic for this
example is implemented in com.titan.test.Test82Bean, in the test82e() method. Two
Ship EJB finder methods demonstrate how to use the BETWEEN keyword in a WHERE clause.

EJB: Ship
finder method: findByTonnageBetween()
query: SELECT OBJECT(s) FROM Ship s

WHERE s.tonnage BETWEEN 80000.00 and 130000.00

EJB: Ship
finder method: findByTonnageNotBetween()
query: SELECT OBJECT(s) FROM Ship s

WHERE s.tonnage NOT BETWEEN 80000.00 and 130000.00

Client_82e invokes these queries and displays their output. To run it invoke the Ant task
run.client_82e.

The output should look something like this:
C:\workbook\ex08_2>ant run.client_82e
Buildfile: build.xml

prepare:

compile:

run.client_82e:
 [java] THE WHERE CLAUSE AND BETWEEN
 [java] --------------------------------
 [java] SELECT OBJECT(s) FROM Ship s
 [java] WHERE s.tonnage BETWEEN 80000.00 and 130000.00
 [java] Queen Mary has tonnage 100000.0
 [java]
 [java] SELECT OBJECT(s) FROM Ship s

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

93

 [java] WHERE s.tonnage NOT BETWEEN 80000.00 and 130000.00
 [java] Titanic has tonnage 200000.0

Client_82f

The Client_82f example program implements the queries illustrated in the EJB book, in the
section of Chapter 8 entitled The WHERE Clause and IN. The business logic for this example is
implemented in com.titan.test.Test82Bean, in the test82f() method.

The code uses two Customer EJB finder methods. One queries for all customers living in Georgia
or Massachusetts. The other queries for all customers that do not live in these two states.

EJB: Customer
finder method: findInStates()
query: SELECT OBJECT(c) FROM Customer c

WHERE c.homeAddress.state IN ('GA', 'MA')

EJB: Customer
finder method: findNotInStates()
query: SELECT OBJECT(c) FROM Customer c

WHERE c.homeAddress.state NOT IN ('GA', 'MA')

Client_82f invokes these queries and displays their output. To run it invoke the Ant task
run.client_82f.

The output should look something like this:
C:\workbook\ex08_2>ant run.client_82f
Buildfile: build.xml

prepare:

compile:

run.client_82f:
 [java] THE WHERE CLAUSE AND IN
 [java] --------------------------------
 [java] SELECT OBJECT(c) FROM Customer c
 [java] WHERE c.homeAddress.state IN ('GA', 'MA')
 [java] Bill
 [java] Marc
 [java] Jane
 [java] Nomar
 [java]
 [java] SELECT OBJECT(c) FROM Customer c
 [java] WHERE c.homeAddress.state NOT IN ('GA', 'MA')
 [java] Sacha

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

94

Client_82g

The Client_82g example program implements the queries illustrated in the EJB book, in the
section of Chapter 8 entitled The WHERE Clause and IS NULL. The business logic for this
example is implemented in com.titan.test.Test82Bean, in the test82g() method.

There are two Customer EJB finder methods. One selects all customers that have a null home
address. The other selects all customers that do not have a null address.

EJB: Customer
finder method: findHomeAddressIsNull()
query: SELECT OBJECT(c) FROM Customer c

WHERE c.homeAddress IS NULL

EJB: Customer
finder method: findHomeAddressIsNotNull()
query: SELECT OBJECT(c) FROM Customer c

WHERE c.homeAddress IS NOT NULL

Client_82g invokes these queries and displays their output. To run it invoke the Ant task
run.client_82g.

The output should look something like this:
C:\workbook\ex08_2>ant run.client_82g
Buildfile: build.xml

prepare:

compile:

run.client_82g:
 [java] THE WHERE CLAUSE AND IS NULL
 [java] --------------------------------
 [java] SELECT OBJECT(c) FROM Customer c
 [java] WHERE c.homeAddress IS NULL
 [java] Richard
 [java]
 [java] SELECT OBJECT(c) FROM Customer c
 [java] WHERE c.homeAddress IS NOT NULL
 [java] Bill
 [java] Sacha
 [java] Marc
 [java] Jane
 [java] Nomar

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

95

Client_82h

The Client_82h example program implements the queries illustrated in the EJB book, in the
section of Chapter 8 entitled The WHERE Clause and IS EMPTY. The business logic for this
example is implemented in com.titan.test.Test82Bean, in the test82h() method.

The code uses two Cruise EJB finder methods to illustrate the use of IS EMPTY. One returns all
the Cruises that do not have Reservations. The other method returns all Cruises that have
Reservations.

EJB: Cruise
finder method: findEmptyReservations()
query: SELECT OBJECT(crs) FROM Cruise crs

WHERE crs.reservations IS EMPTY

EJB: Cruise
finder method: findNotEmptyReservations()
query: SELECT OBJECT(crs) FROM Cruise crs

WHERE crs.reservations IS NOT EMPTY

Client_82h invokes these queries and displays their output. To run it invoke the Ant task
run.client_82h.

The output should look something like this:
C:\workbook\ex08_2>ant run.client_82h
Buildfile: build.xml

prepare:

compile:

run.client_82h:
 [java] THE WHERE CLAUSE AND IS EMPTY
 [java] --------------------------------
 [java] SELECT OBJECT(crs) FROM Cruise crs
 [java] WHERE crs.reservations IS EMPTY
 [java]
 [java] SELECT OBJECT(crs) FROM Cruise crs
 [java] WHERE crs.reservations IS NOT EMPTY
 [java] Alaskan Cruise is not empty.
 [java] Atlantic Cruise is not empty.

Client_82i

The Client_82i example program implements the queries illustrated in the EJB book, in the
section of Chapter 8 entitled The WHERE Clause and MEMBER OF. The business logic for this
example is implemented in com.titan.test.Test82Bean, in the test82i() method.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

96

Two Cruise EJB finder methods demonstrate how to use EJB QL to find whether or not an entity
is a member of a relationship.

EJB: Cruise
finder method: findMemberOf()
query: SELECT OBJECT(crs) FROM Cruise crs,

IN (crs.reservations) res, Customer cust
WHERE cust = ?1 ANT cust MEMBER OF res.customers

EJB: Cruise
finder method: findNotMemberOf()
query: SELECT OBJECT(crs) FROM Cruise crs,

IN (crs.reservations) res, Customer cust
WHERE cust = ?1 ANT cust NOT MEMBER OF res.customers

Client_82i invokes these queries and displays their output. To run it invoke the Ant task
run.client_82i.

The output should look something like this:
C:\workbook\ex08_2>ant run.client_82i
Buildfile: build.xml

prepare:

compile:

run.client_82i:
 [java] THE WHERE CLAUSE AND MEMBER OF
 [java] --------------------------------
 [java] SELECT OBJECT(crs) FROM Cruise crs,
 [java] IN (crs.reservations) res, Customer cust
 [java] WHERE cust = ?1 ANT cust MEMBER OF res.customers
 [java] Use Bill Burke
 [java] Bill is member of Alaskan Cruise
 [java] Bill is member of Atlantic Cruise
 [java]
 [java] SELECT OBJECT(crs) FROM Cruise crs,
 [java] IN (crs.reservations) res, Customer cust
 [java] WHERE cust = ?1 ANT cust NOT MEMBER OF res.customers
 [java] Use Nomar Garciaparra
 [java] Nomar is not member of Atlantic Cruise

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

97

Client_82j

The Client_82j example program implements the queries illustrated in the EJB book, in the
section of Chapter 8 entitled The WHERE Clause and LIKE. The business logic for this example
is implemented in com.titan.test.Test82Bean, in the test82j() method.

One Customer EJB finder method is used to query all Customers with a hyphenated name.

EJB: Customer
finder method: findHyphenatedLastNames()
query: SELECT OBJECT(c) FROM Customer c

WHERE c.lastName LIKE '%-%'

Client_82j invokes this query and displays its output. To run it invoke the Ant task
run.client_82j.

The output should look something like this:
C:\workbook\ex08_2>ant run.client_82j
Buildfile: build.xml

prepare:

compile:

run.client_82j:
 [java] THE WHERE CLAUSE AND LIKE
 [java] --------------------------------
 [java] SELECT OBJECT(c) FROM Customer c
 [java] WHERE c.lastName LIKE '%-%'
 [java] Monson-Haefel

Client_82k

The Client_82k example program implements the queries illustrated in the EJB book, in the
section of Chapter 8 entitled The WHERE Clause and Functional Expressions. The business logic
for this example is implemented in com.titan.test.Test82Bean, in the test82k() method.

One Customer EJB finder method demonstrates the use of a couple of functional expressions.

EJB: Customer
finder method: findByLastNameLength()
query: SELECT OBJECT(c) FROM Customer c

WHERE LENGTH(c.lastName) > 6 AND
LOCATE('Monson', c.lastName) > 0

Client_82k invokes this query and displays its output. To run it invoke the Ant task
run.client_82k.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

98

The output should look something like this:
C:\workbook\ex08_2>ant run.client_82k
Buildfile: build.xml

prepare:

compile:

run.client_82k:
 [java] THE WHERE CLAUSE AND FUNCTIONAL EXPRESSIONS
 [java] --------------------------------
 [java] SELECT OBJECT(c) FROM Customer c
 [java] WHERE LENGTH(c.lastName) > 6 AND
 [java] LOCATE('Monson', c.lastName) > 0
 [java] Labourey
 [java] Garciaparra
 [java] Monson-Haefel

JBoss Dynamic QL

One of the features seriously lacking in EJB QL is the ability to do dynamic queries at run time.
This example shows you how you can do dynamic queries on Customer EJBs with JBoss CMP 2.0.

First, you must declare an ejbSelectGeneric() method that will invoke your dynamic queries
and an ejbHome wrapper method so that the test program can invoke it.

public abstract class CustomerBean implements javax.ejb.EntityBean
{
 public abstract Set ejbSelectGeneric(String jbossQl, Object[]
arguments)
 throws FinderException;

 public Set ejbHomeDynamicQuery(String jbossQL, Object[]
arguments)
 throws FinderException
 {
 return ejbSelectGeneric(jbossQL, arguments);
 }

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

99

Next, you must declare your ejbHome wrapper method in CustomerHomeLocal.java:

public interface CustomerHomeLocal extends javax.ejb.EJBLocalHome
{
 ...
 public Set dynamicQuery(String jbossQl, Object[] arguments)
 throws FinderException;
}

The ejbSelectGeneric() method must be defined in the ejb-jar.xml deployment descriptor.
Notice that the <ejb-ql> value is empty.

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 ...
 <query>
 <query-method>
 <method-name>ejbSelectGeneric</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.Object[]</method-param>
 </method-params>

 </query-method>
 <ejb-ql></ejb-ql>

 </query>

Finally, in jbosscmp-jdbc.xml tell JBoss that the ejbSelectGeneric() method is dynamic:
<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 <query>
 <query-method>
 <method-name>ejbSelectGeneric</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.Object[]</method-param>
 </method-params>
 </query-method>
 <dynamic-ql/>
 </query>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

100

The business logic for this example is implemented in com.titan.test.Test82Bean, in the
test82Dynamic() method.

public String test82Dynamic() throws RemoteException
{
 ...
 // obtain Home interfaces
 InitialContext jndiContext = getInitialContext();
 Object obj = jndiContext.lookup("CustomerHomeLocal");
 CustomerHomeLocal customerHome = (CustomerHomeLocal)obj;
 ...
 Object[] params = {};
 Set customers =
 customerHome.dynamicQuery("SELECT OBJECT(c) FROM Customer c " +
 "WHERE c.lastName LIKE 'B%'", params);
 ...
}

The test82Dynamic() method generates a dynamic query string and invokes the
dynamicQuery() method defined in the CustomerHomeLocal interface.

Client_82Dynamic invokes test82Dynamic() and displays its output. To run it invoke the Ant
task run.client_82dynamic.

The output should look something like this:
C:\workbook\ex08_2>ant run.client_82dynamic
Buildfile: build.xml

prepare:

compile:

run.client_82dynamic:
 [java] JBoss Dynamic Queries
 [java] --------------------------------
 [java] SELECT OBJECT(c) FROM Customer c
 [java] WHERE c.lastName LIKE 'B%'
 [java] Burke

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

101

Advanced JBoss QL

In the Problems with EJB QL section of Chapter 8 of the EJB book, Richard Monson-Haefel talks
about some of the limitations of EJB QL. In the JBoss CMP 2.0 implementation, EJB QL is just a
subset of a larger JBoss query language. Dain Sundstrom, the architect of the JBoss CMP 2.0
engine, did a great job of filling in some of the gaps in the EJB QL spec. Features like ORDER BY
and the ability to use parameters within IN and LIKE clauses are just a few of the enhancements
Dain has implemented. Please review the advanced CMP 2.0 documentation available at the
JBoss web site, http://www.jboss.org/, for more information on these sexy features.

103

Exercise for Chapter 10

104

Exercise 10.1:
A BMP Entity Bean
In this exercise, you will build and examine a simple EJB that uses bean-managed persistence
(BMP) to synchronize the state of the bean with a database. You will also build a client application
to test this Ship BMP bean.

Start Up JBoss

If JBoss is already running there is no reason to restart it.

Initialize the Database

As in the CMP examples, the state of the entity beans will be stored in the database that is
embedded in JBoss. JBoss was able to create all tables for CMP beans, but it cannot do the same
for BMP beans because the deployment descriptors don’t contain any persistence information
(object-to-relational mapping, for example). The bean is in fact the only one that knows how to
load, store, remove, and find data. The persistence mapping is not described in a configuration
file, but embedded in the bean code instead.

One consequence is that the database environment for BMP must always be built explicitly. To
make this task easier for the BMP Ship example, Ship’s home interface defines two helpful home
methods.

 Entity beans can define home methods that perform operations related to the EJB
component’s semantics but that are not linked to any particular bean instance. As an
analogy, consider the static methods of a class: their semantics are generally closely
related to the class’s semantics, but they’re not associated with any particular class
instance. Don’t worry if this is not very clear for you yet: in chapter 11 of the EJB
book, you’ll learn all about home methods.

Here’s a partial view of the Ship EJB’s home interface:
public interface ShipHomeRemote extends javax.ejb.EJBHome
{
 ...
 public void makeDbTable () throws RemoteException;
 public void deleteDbTable () throws RemoteException;
}

It defines two home methods. The first will create the table needed by the Ship EJB in the JBoss-
embedded database and the second will drop it.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

105

The implementation of the makeDbTable() home method is essentially a CREATE TABLE SQL
statement:

public void ejbHomeMakeDbTable () throws SQLException
{
 PreparedStatement ps = null;
 Connection con = null;
 try
 {
 con = this.getConnection ();

 System.out.println("Creating table SHIP...");
 ps = con.prepareStatement ("CREATE TABLE SHIP (" +
 "ID INT PRIMARY KEY, " +
 "NAME CHAR (30), " +
 "TONNAGE DECIMAL (8,2), " +
 "CAPACITY INT" +
 ")");
 ps.execute ();
 System.out.println("...done!");
 }
 finally
 {
 try { ps.close (); } catch (Exception e) {}
 try { con.close (); } catch (Exception e) {}
 }
}

The deleteDbTable() home method differs only by the SQL statement it executes:

 ...
 System.out.println("Dropping table SHIP...");
 ps = con.prepareStatement ("DROP TABLE SHIP");
 ps.execute ();
 System.out.println("...done!");
 ...

You’ll see how to call these methods in a subsequent section.

Examine the EJB Standard Files

The Ship EJB source code requires no modification to run in JBoss, so the standard EJB
deployment descriptor is very simple:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

106

ejb-jar.xml (part I)
 ...
 <enterprise-beans>
 <entity>
 <description>
 This bean represents a cruise ship.
 </description>
 <ejb-name>ShipEJB</ejb-name>
 <home>com.titan.ship.ShipHomeRemote</home>
 <remote>com.titan.ship.ShipRemote</remote>
 <ejb-class>com.titan.ship.ShipBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <security-identity><use-caller-identity/></security-identity>
 <resource-ref>
 <description>DataSource for the Titan DB</description>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </entity>
 </enterprise-beans>
 ...

This first part of the deployment descriptor essentially tells the container that the Ship bean:

♦ is named ShipEJB

♦ has a persistence type set to Bean because it’s a BMP bean

♦ declares a reference to a data source named jdbc/titanDB

Because the bean directly manages the persistence logic, the deployment descriptor does not
contain any persistence information. In contrast, this information would have been mandatory
for a CMP EJB.

The second part of the deployment descriptor declares the transactional and security attributes of
the Ship bean:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

107

ejb-jar.xml (part II)
...
<assembly-descriptor>

 <security-role>
 <description>
 This role represents everyone who is allowed full
 access to the Ship EJB.
 </description>
 <role-name>everyone</role-name>
 </security-role>

 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>ShipEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <container-transaction>
 <method>
 <ejb-name>ShipEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

All methods of the Ship bean require a transaction. If no transaction is active when a method
invocation enters the container, a new one will be started.

 In entity beans, transactions are always managed by the container and never directly
by the bean. Thus, all work done on transactional resources, such as databases, will
implicitly be part of the transactional context of the container.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

108

Examine the JBoss-Specific Files

If you don’t include a jboss.xml-specific deployment descriptor with your bean, JBoss will make
the following decisions at deployment time:

♦ It will bind the Ship bean in the public JNDI tree under /ShipEJB (which is the name given
to the bean in its associated ejb-jar.xml deployment descriptor).

♦ It will link the jdbc/titanDB data source expected by the bean to java:/DefaultDS,
which is a default data source that represents the embedded database.

Unless you require different settings, you don’t need to provide a jboss.xml file. While this
shortcut is generally useful for quick prototyping, it will not satisfy more complex deployment
situations. Furthermore, using a JBoss-specific deployment descriptor enables you to fine-tune a
container for a particular situation.

If you take a look at the $JBOSS_HOME/server/default/conf/standardjboss.xml file, you will
find all the default container settings that are predefined in JBoss (standard BMP, standard CMP,
clustered BMP, etc.) In JBoss, there’s a one-to-one mapping between a bean and a container, and
each container can be configured independently.

 This mapping was a design decision made by the JBoss container developers and has
not been dictated by the EJB specification: other application servers may use another
mapping.

When you write a JBoss-specific deployment descriptor, you have three options:

♦ Not specify any container configuration. JBoss will use the default configuration found in
standardjboss.xml.

♦ Create a brand new container configuration. The default settings are not used at all. JBoss
will configure the container only as you specify in jboss.xml.

♦ Modify an existing configuration. JBoss loads the default settings from the existing
configuration found in standardjboss.xml and overrides them with the settings you specify in
the jboss.xml deployment descriptor. This solution allows you to make minor modifications
to the default container with minimal writing in your deployment descriptor.

The Ship bean uses the last option, to test its behavior with different commit options. As outlined
below, this new configuration defines only a single setting (<commit-option>). All others are
inherited from the Standard BMP EntityBean configuration declared in the
standardjboss.xml file. We’ll discuss commit options in a dedicated section at the end of this
chapter.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

109

jboss.xml
<?xml version="1.0"?>

<jboss>
 <container-configurations>
 <container-configuration>
 <container-name>Standard BMP EntityBean</container-name>
 <commit-option>A</commit-option>
 </container-configuration>
 </container-configurations>
 ...

Because a single deployment descriptor may define multiple EJBs, the role of the <ejb-name>
tag is to link the definitions from the ejb-jar.xml and jboss.xml files. You can consider this tag to
be the bean’s identifier. The <jndi-name> tag determines the name under which the client
applications will be able to look up the EJB’s home interface, in this case ShipHomeRemote.

You can also see how the bean refers to a specific configuration, thanks to the
<configuration-name> tag.

 ...
 <enterprise-beans>
 <entity>
 <ejb-name>ShipEJB</ejb-name>
 <jndi-name>ShipHomeRemote</jndi-name>
 <resource-ref>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <jndi-name>java:/DefaultDS</jndi-name>
 </resource-ref>
 <configuration-name>Standard BMP EntityBean
 </configuration-name>
 </entity>
 </enterprise-beans>
</jboss>

The Ship bean BMP implementation needs to establish a database connection explicitly. It’s the
getConnection() method that manages the acquisition of this resource:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

110

ShipBean.java
private Connection getConnection () throws SQLException
{
 try
 {
 Context jndiCntx = new InitialContext ();
 DataSource ds =
 (DataSource)jndiCntx.lookup ("java:comp/env/jdbc/titanDB");
 return ds.getConnection ();
 ...

The bean expects to find a data source bound to the java:comp/env/jdbc/titanDB JNDI
name. That’s why the ejb-jar.xml file contains the following declaration:

ejb-jar.xml
 ...
 <resource-ref>
 <description>DataSource for the Titan DB</description>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 ...

Then jboss.xml maps the jdbc/titanDB data source name to the actual name defined in JBoss:

jboss.xml
 ...
 <resource-ref>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <jndi-name>java:/DefaultDS</jndi-name>
 </resource-ref>
 ...

In any default JBoss installation, java:/DefaultDS represents the embedded database.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

111

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex10_1 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex10_1> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex10_1> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex10_1> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

Examine the Client Application

In the “Initialize the Database” section, you saw how the bean implements the home methods that
create and drop the table in the database. Now you’ll see how the client application calls these
home methods:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

112

Client_101.java
public class Client_101
{
 public static void main (String [] args)
 {
 try
 {
 Context jndiContext = getInitialContext ();

 Object ref = jndiContext.lookup ("ShipHomeRemote");
 ShipHomeRemote home = (ShipHomeRemote)
 PortableRemoteObject.narrow (ref,ShipHomeRemote.class);

 // We check if we have to build the database schema...
 //
 if ((args.length > 0) &&
 args[0].equalsIgnoreCase ("CreateDB"))
 {
 System.out.println ("Creating database table...");
 home.makeDbTable ();
 }
 // ... or if we have to drop it...
 //
 else if ((args.length > 0) &&
 args[0].equalsIgnoreCase ("DropDB"))
 {
 System.out.println ("Dropping database table...");
 home.deleteDbTable ();
 }
 else
 ...

You can see that, depending on the first argument found on the command line, either CreateDB
or DropDB, the client application will call the corresponding home method.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

113

If nothing is specified on the command line, the client will test our BMP bean:
 ...
 else
 {
 // ... standard behavior
 //
 System.out.println ("Creating Ship 101..");
 ShipRemote ship1 = home.create (new Integer
 (101),"Edmund Fitzgerald");

 ship1.setTonnage (50000.0);
 ship1.setCapacity (300);

 Integer pk = new Integer (101);

 System.out.println ("Finding Ship 101 again..");
 ShipRemote ship2 = home.findByPrimaryKey (pk);

 System.out.println (ship2.getName ());
 System.out.println (ship2.getTonnage ());
 System.out.println (ship2.getCapacity ());

 System.out.println ("ship1.equals (ship2) == " +
 ship1.equals (ship2));

 System.out.println ("Removing Ship 101..");
 ship2.remove ();
 }
 ...

The client application first creates a new Ship and calls some of its remote methods to set its
tonnage and capacity. Then it finds the bean again by calling findByPrimaryKey(), and
compares the bean references for equality. Because they represent the same bean instance, they
must be equal. We’ve omitted the exception handling because it deserves no specific comments.

Run the Client Application

Testing the BMP bean is a three-step process:

1. Creating the database table

2. Testing the bean (possibly many times)

3. Dropping the database table

For each of these steps, a different Ant target is available.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

114

Creating the Database Table

To create the table, use the createdb_101 Ant target:

C:\workbook\ex10_1>ant createdb_101
Buildfile: build.xml

prepare:

compile:

createdb_101:
 [java] Creating database table...

On the JBoss side, the BMP bean displays the following lines:
...
12:31:42,584 INFO [STDOUT] Creating table SHIP...
12:31:42,584 INFO [STDOUT] ...done!
...

Once this step has been performed, the actual testing of the BMP bean can take place.

 If you’re having trouble creating the database, shut down JBoss, then run the Ant
build target clean.db. Doing so will remove all database files and allow you to
start fresh.

Testing the BMP bean

To test the BMP bean, use the run.client_101 Ant target:

C:\workbook\ex10_1>ant run.client_101
Buildfile: build.xml

prepare:

compile:

run.client_101:
 [java] Creating Ship 101..
 [java] Finding Ship 101 again..
 [java] Edmund Fitzgerald
 [java] 50000.0
 [java] 300
 [java] ship1.equals (ship2) == true
 [java] Removing Ship 101..

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

115

Analyzing the Effects of Transactions and Commit Options

Even though it’s not particularly related to BMP beans, let’s focus on an interesting problem that
arises when the client first creates and initializes the bean:

 ShipRemote ship1 = home.create (new Integer
 (101),"Edmund Fitzgerald");

 ship1.setTonnage (50000.0);
 ship1.setCapacity (300);

Interestingly enough, this piece of code generates three different transactions on the server side.
The client does not implicitly start any transaction in its code. The transaction starts only when
the invocation enters the bean container and commits when the invocation leaves the container.
Thus, when the client performs three calls, each one is executed in its own transactional context.

Look at the implications for the BMP bean:
14:36:31,730 INFO [STDOUT] ejbCreate() pk=101 name=Edmund
Fitzgerald
14:36:31,780 INFO [STDOUT] ejbStore() pk=101
14:36:31,840 INFO [STDOUT] setTonnage()
14:36:31,840 INFO [STDOUT] ejbStore() pk=101
14:36:31,860 INFO [STDOUT] setCapacity()
14:36:31,860 INFO [STDOUT] ejbStore() pk=101

As you can see, ejbStore() is called at the end of each transaction! Consequently, these three
lines of code cause the bean to be stored three times. Worst of all, after any method invocation,
the container has no way of knowing whether the state of the bean has been modified, and thus, to
be on the safe side, it triggers storage of the bean.. Given that there is no read-only method
concept in EJBs, calls to get methods also trigger calls to ejbStore():

15:03:19,301 INFO [STDOUT] getName()
15:03:19,311 INFO [STDOUT] ejbStore() pk=101
15:03:19,331 INFO [STDOUT] getTonnage()
15:03:19,331 INFO [STDOUT] ejbStore() pk=101
15:03:19,371 INFO [STDOUT] getCapacity()
15:03:19,371 INFO [STDOUT] ejbStore() pk=101

In the execution of the test program, ejbStore() is called seven times.

You can see that transaction boundaries (i.e., where transactions are started and stopped) directly
influence the number of callbacks from the container to the Ship bean, and consequently have a
direct effect on performance. We’ll now focus on another setting that also affects the set of
callback methods the container will invoke on the bean: the commit option.

The commit option determines how an entity bean container can make use of its cache.
Remember from the container configuration section that the bean is currently using commit
option A. Let’s examine all the options and their effects:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

116

If you select commit option A, the entity bean container is allowed to cache any bean that it has
loaded. Next time an invocation targets a bean that is already in the application server cache1, the
container will not have to make a costly database access call to load it again.

If you select commit option B or C, the entity bean container is allowed to cache a bean only if it
loads that bean during the lifetime of the currently running transaction. Once the transaction
commits or rolls back, the container must remove the bean from the cache. The next time an
invocation targets the bean, the container will have to reload it from the database.

That extra reloading is costly – but you must use B or C2 whenever the data represented by the
container can also be modified by other means. Direct database access calls through a console,
for example, will cause the container cache to become unsychronized with the database, leading to
incorrect computations and other dire results. A container must not use commit option A unless
it “owns” the database (or, more accurately, the specific tables it accesses).

Most of the time, this “black or white” approach isn’t satisfactory: in real-world applications,
commit option A can be used only very rarely, and commit options B and C will preclude useful
cache optimizations. To circumvent these limitations, JBoss provides some proprietary
optimizations: an additional commit option, distributed cache invalidations, and even a
distributed cache in the forthcoming 4.0 release. See the JBoss web site for more information.

The JBoss-proprietary commit option D is a compromise between options A and C: The bean
instance can be cached across transactions, but a configurable timeout value indicates when this
cached data is stale and must be reloaded from the database. This option is very useful when you
want some of the efficiency of commit option A, but want cached entities to be updated
periodically to reflect modifications by an external system.

 Remember that each EJB deployed in JBoss has its own container. Consequently, you
can define for each EJB the commit option that best fits its specific environment. For
example, a ZIP code entity bean (whose data will most probably never change) could
use commit option A whereas the Order EJB would use commit option C.

1 Note that we are speaking about the application server cache, not the database cache. While
database caches are critical to performance, application server caches can improve it even further.

2 The difference between commit option B and C is very small: when a transaction commits, a
container using commit option C must effectively throw away the bean instance while a container
using commit option B may keep it and reuse it later. This distinction allows you to use commit
option B for very specific container optimizations (such as checking whether the data has really
been modified in the database and reusing the instance if no modification has occurred, instead of
reloading the whole state).

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

117

After this introduction to what commit options are, it becomes possible to guess that the
container is currently using commit option A without looking at its configuration. Two pieces of
evidence lead us to this conclusion:

♦ The findByPrimaryKey() call isn’t displayed in the log. The container first checks
whether the cache already contains an instance for the given primary key. Because it does,
there is no need to invoke the bean implementation’s ejbFindByPrimaryKey() method.

♦ ejbLoad() isn’t called for the bean. At the start of each new transaction it’s already in cache
and there is no need to reload it from the database.

 Note that only direct access to a given bean (using its remote reference) or
findByPrimaryKey() calls can be resolved in cache. All other queries
(findAll(), findByCapacity(), etc.) must be resolved by the database directly
(there is no way to perform queries in the container cache directly).

To see how different commit options lead to different behavior, in jboss.xml change the commit
option from A to C:

jboss.xml
 ...
 <container-configurations>
 <container-configuration>
 <container-name>Standard BMP EntityBean</container-name>
 <commit-option>C</commit-option>
 </container-configuration>
 </container-configurations>
 ...

Then run the tests again. You’ll see:
14:41:29,798 INFO [STDOUT] ejbCreate() pk=101 name=Edmund
Fitzgerald
14:41:30,449 INFO [STDOUT] ejbStore() pk=101
14:41:30,539 INFO [STDOUT] ejbLoad() pk=101
14:41:30,599 INFO [STDOUT] setTonnage()
14:41:30,609 INFO [STDOUT] ejbStore() pk=101
14:41:30,659 INFO [STDOUT] ejbLoad() pk=101
14:41:30,669 INFO [STDOUT] setCapacity()
14:41:30,679 INFO [STDOUT] ejbStore() pk=101
14:41:30,709 INFO [STDOUT] ejbFindByPrimaryKey() primaryKey=101
14:41:30,729 INFO [STDOUT] ejbLoad() pk=101
14:41:30,750 INFO [STDOUT] getName()
14:41:30,750 INFO [STDOUT] ejbStore() pk=101
14:41:30,780 INFO [STDOUT] ejbLoad() pk=101
14:41:30,790 INFO [STDOUT] getTonnage()

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

118

14:41:30,800 INFO [STDOUT] ejbStore() pk=101
14:41:30,840 INFO [STDOUT] ejbLoad() pk=101
14:41:30,850 INFO [STDOUT] getCapacity()
14:41:30,860 INFO [STDOUT] ejbStore() pk=101
14:41:30,880 INFO [STDOUT] ejbLoad() pk=101
14:41:30,900 INFO [STDOUT] ejbStore() pk=101
14:41:30,910 INFO [STDOUT] ejbRemove() pk=101

Now, in addition to the ejbStore() calls you’ve already seen, you see calls to ejbLoad() at the
start of each new transaction, and the call to ejbFindByPrimaryKey() as well, which reaches
the bean implementation because it cannot be resolved within the cache.

Possible Optimizations

As you have seen during the execution of the client application, the Ship bean performs many
ejbLoad() and ejbStore() operations. There are two reasons behind this behavior:

♦ Many transactions are started.

♦ The Ship bean BMP code is not optimized.

You can reduce the number of transactions in several ways:

♦ Define less fine-grained methods that return all attributes of the bean in a single data object.

♦ Add a new create method with many parameters, so a single call can create and initialize the
bean.

♦ Use the Façade pattern: create a stateless session bean that starts a single transaction, then
performs all the steps in that one transaction.

♦ Start a transaction in the client application, using a UserTransaction object.

BMP code optimization is a wide topic. Here are some tricks that are frequently used:

♦ Use an isModified flag in your bean. Set it to true each time the state of the bean changes
(in set methods, for example). In the implementation of ejbStore(), perform the actual
database call only if isModified is true. Think about the impact on the test application.
All the ejbStore() calls resulting from invocations to get methods will detect that no data
has been modified and will not try to synchronize with the database.

♦ Detect which fields are actually modified during a transaction and update only those
particular fields in the database. This tactic is especially useful for beans with lots of fields, or
with fields that contain large data. Contrast with the Ship BMP bean as it’s currently written,
where each setXXX() call updates all fields of the database even though only one actually
changes.

Note that any decent CMP engine performs many of these optimizations automatically, by default.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

119

Dropping the Database Table

Once you’ve run all the tests, you can clean the database environment associated with the BMP
bean by removing the unused table. Use the dropdb_101 target:

C:\workbook\ex10_1>ant dropdb_101
Buildfile: build.xml

prepare:

compile:

dropdb_101:
 [java] Dropping database table...

On the JBoss side, the BMP bean logs the following lines:
...
14:40:34,339 INFO [STDOUT] Dropping table SHIP...
14:40:34,349 INFO [STDOUT] ...done!
...

121

Exercises for Chapter 12

122

Exercise 12.1:
A Stateless Session Bean
In this exercise, you will build and examine a stateless session bean, ProcessPaymentEJB, that
writes payment information to the database. You will also build a client application to test this
ProcessPayment bean.

The bean will insert the payment information data directly into the database, without using an
intermediary entity bean.

Examine the EJB

This example is based on the Customer and Address EJBs and their related data objects that you
used in Exercise 6.3. The present exercise leaves these EJBs unchanged, and focuses on the
ProcessPayment stateless session bean.

The ProcessPayment bean has a very simple remote interface. It offers options to process a
payment by check, cash, or credit card. Each possibility is handled by a different method:

ProcessPaymentRemote.java
public interface ProcessPaymentRemote extends javax.ejb.EJBObject
{
 public boolean byCheck (CustomerRemote customer,
 CheckDO check,
 double amount)
 throws RemoteException, PaymentException;

 public boolean byCash (CustomerRemote customer,
 double amount)
 throws RemoteException, PaymentException;

 public boolean byCredit (CustomerRemote customer,
 CreditCardDO card,
 double amount)
 throws RemoteException, PaymentException;
 ...
}

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

123

Each method’s third parameter is a simple transaction amount. The other two are more
interesting.

The first is a CustomerRemote interface, which enables the ProcessPayment EJB to get any
information it needs about the customer.

 It’s possible to use EJB remote interfaces as parameters of other EJB methods
because they extend EJBObject, which in turn extends java.rmi.Remote.
Objects implementing either Remote or Serializable are perfectly valid RMI
types. To the EJB container, this choice of parameter type makes no difference at
all.

The second parameter conveys the details of the transaction in a data object whose type reflects
the form of payment. A data object is a Serializable object that a client and a remote server
can pass by value back and forth. Most of the time it is a simple data container, with minimal
behavior. For example, the CheckDO class contains the check’s number and bar code:

CheckDO.java
public class CheckDO implements java.io.Serializable
{
 public String checkBarCode;
 public int checkNumber;

 public CheckDO (String barCode, int number)
 {
 this.checkBarCode = barCode;
 this.checkNumber = number;
 }

Focus on the ProcessPayment EJB implementation for a little while. Each remote method first
performs validity tests appropriate to the type of payment. Eventually all of them call the same
private method: process(), which inserts the payment information into the database. For
example, byCredit() implements this logic thus:

ProcessPaymentBean.java
public boolean byCredit (CustomerRemote customer,
 CreditCardDO card,
 double amount)
throws PaymentException
{
 if (card.expiration.before (new java.util.Date ()))
 {
 throw new PaymentException ("Expiration date has passed");
 }

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

124

 else
 {
 return
 process (getCustomerID (customer),
 amount,
 CREDIT,
 null,
 -1,
 card.number,
 new java.sql.Date (card.expiration.getTime ()));
 }
}

If the credit card has expired, the method throws an application exception. If not, it simply
delegates to process() the chore of inserting the payment information into the database. Note
that some parameters passed to process() are meaningless. For example, the fourth parameter
represents the check bar code, which means nothing in a credit card payment, so byCredit()
passes a dummy value.

The process() method is very similar to the ejbCreate() method of the BMP example in
Chapter 10. It simply gets a data-source connection, creates a PreparedStatement, and inserts
the payment information into the PAYMENT table:

 ...
 con = getConnection ();

 ps = con.prepareStatement
 ("INSERT INTO payment (customer_id, amount, " +
 "type, check_bar_code, " +
 "check_number, credit_number, " +
 "credit_exp_date) "+
 "VALUES (?,?,?,?,?,?,?)");
 ps.setInt (1,customerID.intValue ());
 ps.setDouble (2,amount);
 ps.setString (3,type);
 ps.setString (4,checkBarCode);
 ps.setInt (5,checkNumber);
 ps.setString (6,creditNumber);
 ps.setDate (7,creditExpDate);

 int retVal = ps.executeUpdate ();
 if (retVal!=1)
 {
 throw new EJBException ("Payment insert failed");
 }

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

125

 return true;
 ...

Note that the returned value is not significant. The method either returns true or throws an
application exception, so its return type could as easily be void.

Examine the EJB Standard Deployment Descriptor

The ProcessPayment standard deployment descriptor is very similar to one you’ve already seen:

ejb-jar.xml
...
<session>
 <description>
 A service that handles monetary payments
 </description>
 <ejb-name>ProcessPaymentEJB</ejb-name>
 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>
 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>
 <ejb-class>com.titan.processpayment.ProcessPaymentBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <env-entry-name>minCheckNumber</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>2000</env-entry-value>
 </env-entry>
 <resource-ref>
 <description>DataSource for the Titan database</description>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</session>
...

Note that the ProcessPaymentEJB’s <session-type> tag is set to Stateless and its
<transaction-type> tag is set to Container. These settings ensure that the container will
automatically manage the transactions and enlist any transactional resources the bean uses. You
will learn in chapter 14 of the EJB book how these tasks can be handled by the EJB itself (if it’s a
session bean or a message-driven bean).

The descriptor contains a reference to a data source it will use to store the payments. You use this
data source the same way you did in the BMP example in chapter 10.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

126

ProcessPaymentBean.java
private Connection getConnection () throws SQLException
{
 try
 {
 InitialContext jndiCntx = new InitialContext ();

 DataSource ds = (DataSource)
 jndiCntx.lookup ("java:comp/env/jdbc/titanDB");

 return ds.getConnection ();
 }
 catch(NamingException ne)
 {
 throw new EJBException (ne);
 }
}

The ejb-jar.xml file also specifies an environment property, minCheckNumber. Environment
properties provide a very flexible way to parameterize a bean’s behavior at deployment time. The
<env-entry> tag for minCheckNumber specifies the property’s type (java.lang.Integer)
and a default value (2000). The ProcessPayment EJB will access the value of this property
through its JNDI ENC:

ProcessPaymentBean.java
...
InitialContext jndiCntx = new InitialContext ();

Integer value = (Integer) jndiCntx.lookup
 ("java:comp/env/minCheckNumber");
...

One very interesting point to note is that although the ProcessPayment bean works with Customer
beans (recall that each remote method’s first parameter is a Customer interface), the deployment
descriptor doesn’t declare any reference to the Customer EJB. No <ejb-ref> or <ejb-local-
ref> tag is needed because the ProcessPayment bean won’t find or create Customer beans
through the CustomerRemoteHome interface, but instead will receive Customer beans directly
from the client application. Thus, from the ProcessPayment EJB’s point of view, the Customer is
a standard remote Java object.

Examine the JBoss Deployment Descriptors

The JBoss-specific deployment descriptor for the ProcessPayment bean is very simple. It only
maps the data source to the embedded database in JBoss:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

127

jboss.xml
<session>
 <ejb-name>ProcessPaymentEJB</ejb-name>
 <jndi-name>ProcessPaymentHomeRemote</jndi-name>
 <resource-ref>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <jndi-name>java:/DefaultDS</jndi-name>
 </resource-ref>
</session>

The <res-ref-name> in jboss.xml maps to the same <res-ref-name> in ejb-jar.xml.

Start Up JBoss

If JBoss is already running there is no reason to restart it.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex12_1 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex12_1> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex12_1> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex12_1> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

128

Initialize the Database

As in previous examples, you’ll use the relational database that’s embedded in JBoss to store
payment information. Because the deployment descriptor of a stateless session bean does not
contain any information about the database schema that the bean needs, JBoss can’t
automatically create the database table, as it does for CMP beans. Instead, you will have to create
the database schema for the PAYMENT table manually through JDBC. Use the createdb Ant
target:

C:\workbook\ex12_1>ant createdb
Buildfile: build.xml

prepare:

compile:

ejbjar:

createdb:
 [java] Looking up home interfaces..
 [java] Creating database table...

On the JBoss console you’ll see:
INFO [STDOUT] Creating table PAYMENT...
INFO [STDOUT] ...done!

 If you’re having trouble creating the database, shut down JBoss. Then run the Ant
build target clean.db. This will remove all database files and allow you to start
fresh.

A dropdb Ant target has been added as well, if you want to destroy the PAYMENT table:

C:\workbook\ex12_1>ant dropdb
Buildfile: build.xml

prepare:

compile:

dropdb:
 [java] Looking up home interfaces..
 [java] Dropping database table...

BUILD SUCCESSFUL

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

129

To implement the createdb and dropdb Ant targets, the JBoss version of the ProcessPayment
bean introduced in the EJB book defines two new methods: makeDbTable() and
dropDbTable().

Here’s a partial view of the ProcessPayment EJB’s remote interface:
public interface ProcessPaymentRemote extends javax.ejb.EJBObject
{

 public void makeDbTable () throws RemoteException;
 public void deleteDbTable () throws RemoteException;
}

It defines two home methods: the first one will create the table needed by the ProcessPayment
EJB in the JBoss embedded database, and the second will drop it.

The implementation of makeDbTable() is essentially a CREATE TABLE SQL statement:

public void makeDbTable ()
{
 PreparedStatement ps = null;
 Connection con = null;

 try
 {
 con = this.getConnection ();
 System.out.println("Creating table PAYMENT...");
 ps = con.prepareStatement
 ("CREATE TABLE PAYMENT (" + "CUSTOMER_ID INT, " +
 "AMOUNT DECIMAL (8,2), " + "TYPE CHAR (10), " +
 "CHECK_BAR_CODE CHAR (50), " + "CHECK_NUMBER INTEGER, " +
 "CREDIT_NUMBER CHAR (20), " + "CREDIT_EXP_DATE DATE" +
 ")");
 ps.execute ();
 System.out.println("...done!");
 }
 catch (SQLException sql)
 {
 throw new EJBException (sql);
 }
 finally
 {
 try { ps.close (); } catch (Exception e) {}
 try { con.close (); } catch (Exception e) {}
 }
}

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

130

The deleteDbTable() home method differs only in the SQL statement it executes:

public void dropDbTable ()
{
 ...
 System.out.println("Dropping table PAYMENT...");
 ps = con.prepareStatement ("DROP TABLE PAYMENT");
 ps.execute ();
 System.out.println("...done!");
 ...
}

Examine the Client Applications

This exercise includes two example clients. The first simply prepares and creates a single
Customer bean, which the second uses to insert data into the PAYMENT table.

Client_121a

Run the first test application by invoking the run.client_121a Ant target:

C:\workbook\ex12_1>ant run.client_121a
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_121a:
 [java] Creating Customer 1..
 [java] Creating AddressDO data object..
 [java] Setting Address in Customer 1...
 [java] Acquiring Address data object from Customer 1...
 [java] Customer 1 Address data:
 [java] 1010 Colorado
 [java] Austin,TX 78701

Client_121b

The code of the client application that actually tests the PaymentProcess EJB is much more
interesting.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

131

First it acquires a reference to the remote home of the ProcessPayment EJB from a newly created
JNDI context:

Context jndiContext = getInitialContext ();

System.out.println ("Looking up home interfaces..");
Object ref = jndiContext.lookup ("ProcessPaymentHomeRemote");

ProcessPaymentHomeRemote procpayhome = (ProcessPaymentHomeRemote)
PortableRemoteObject.narrow (ref,ProcessPaymentHomeRemote.class);

This home makes it possible to create a remote reference to the stateless session bean:
ProcessPaymentRemote procpay = procpayhome.create ();

Then the client acquires a remote home reference for the Customer EJB and uses it to find the
Customer bean created in the preceding example:

ref = jndiContext.lookup ("CustomerHomeRemote");
CustomerHomeRemote custhome = (CustomerHomeRemote)
PortableRemoteObject.narrow (ref,CustomerHomeRemote.class);

CustomerRemote cust = custhome.findByPrimaryKey (new Integer (1));

The ProcessPayment EJB can now be tested by executing payments of all three kinds, cash, check,
and credit card:

System.out.println ("Making a payment using byCash()..");
procpay.byCash (cust,1000.0);

System.out.println ("Making a payment using byCheck()..");
CheckDO check = new CheckDO ("010010101101010100011", 3001);
procpay.byCheck (cust,check,2000.0);

System.out.println ("Making a payment using byCredit()..");
Calendar expdate = Calendar.getInstance ();
expdate.set (2005,1,28); // month=1 is February
CreditCardDO credit = new CreditCardDO ("370000000000002",
 expdate.getTime (),
 "AMERICAN_EXPRESS");

procpay.byCredit (cust,credit,3000.0);

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

132

Finally, to check the validation logic, the client tries to execute a payment with a check whose
number is too low. The ProcessPayment EJB should refuse the payment and raise an application
exception.

System.out.println ("Making a payment using byCheck() with a low
 check number..");
CheckDO check2 = new CheckDO ("111000100111010110101", 1001);
try
{
 procpay.byCheck (cust,check2,9000.0);
 System.out.println("Problem! The PaymentException has
 not been raised!"); }
catch (PaymentException pe)
{
 System.out.println ("Caught PaymentException: "+
 pe.getMessage ());
}

procpay.remove ();

You can launch this test by invoking the run.client_121b Ant target:

C:\workbook\ex12_1>ant run.client_121b
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_121b:
 [java] Looking up home interfaces..
 [java] Making a payment using byCash()..
 [java] Making a payment using byCheck()..
 [java] Making a payment using byCredit()..
 [java] Making a payment using byCheck() with a low check
number..
 [java] Caught PaymentException: Check number is too low. Must
be at least 2000

At the same time, the JBoss console will display:
INFO [STDOUT] process() with customerID=1 amount=1000.0
INFO [STDOUT] process() with customerID=1 amount=2000.0
INFO [STDOUT] process() with customerID=1 amount=3000.0

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

133

Once you’ve performed the tests, you can drop the table by invoking the dropdb Ant target.

C:\workbook\ex12_1>ant dropdb
Buildfile: build.xml

prepare:

compile:

ejbjar:

dropdb:
 [java] Looking up home interfaces..
 [java] Dropping database table...

The JBoss console displays:
INFO [STDOUT] Dropping table PAYMENT...
INFO [STDOUT] ...done!

134

Exercise 12.2:
A Stateful Session Bean
In this exercise, you will build and examine a stateful session bean, TravelAgent, that
coordinates the work of booking a trip on a ship. You will also build a client application to test
this EJB.

Our version of this exercise will not follow the one in the EJB book strictly. Instead of simplifying
the beans and their relationships as the EJB book does, we will use the beans implemented in
chapters 6 and 7 and thus take advantage of the CMP 2.0 features of JBoss.

Examine the EJB

This exercise is based on the EJBs from Exercise 7.3 and doesn’t contain much material that
previous sections haven’t covered. Nevertheless, a few modifications have been made:

♦ The Customer EJB again has a remote home and bean interfaces (as in chapter 6) and
exposes its relationship with the Address EJB in the remote interface through a new data
object, AddressDO.

♦ The Cabin EJB has a new create method that takes several parameters.

♦ The Reservation EJB has a new create method that takes several parameters, and has a local
reference to the Customer EJB.

The TravelAgent bean’s role is to perform all activities needed to book a successful trip. Thus, as
in the preceding example, this session bean acts as a coordinator between different EJBs and
groups several actions on different beans in the same transaction. Here, though, the bean
maintains a conversational state with the client; i.e., each client has a dedicated bean on the
server.

In the previous example that featured stateless session beans, the home create method was not
allowed to have parameters: providing initialization parameters would be useless, as the bean
wouldn’t be able to remember them for forthcoming invocations. A stateful session bean, by
contrast, maintains a conversational state, so its create methods can have parameters to initialize
the bean state. Indeed, the home interface can have several create methods. In this example,
however, the TravelAgent home interface declares only one:

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome
{
 public TravelAgentRemote create (CustomerRemote cust)
 throws RemoteException, CreateException;
}

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

135

Furthermore, if you take a look at the remote interface, you can see that methods are correlated
around an identical state:

public interface TravelAgentRemote extends javax.ejb.EJBObject
{
 public void setCruiseID (Integer cruise)
 throws RemoteException, FinderException;

 public void setCabinID (Integer cabin)
 throws RemoteException, FinderException;

 public TicketDO bookPassage (CreditCardDO card, double price)
 throws RemoteException, IncompleteConversationalState;

 public String [] listAvailableCabins (int bedCount)
 throws RemoteException, IncompleteConversationalState;
}

If no conversational state between the client and the server existed, calling setCruiseId()
would make no sense. The role of this method is simply to populate this conversational state so
that future calls can use this data in their processing.

Because this exercise is based on the beans implemented in Chapters 6 and 7, it needs a database
schema that includes all the relationships among them, and thus differs from the one in the EJB
book. Because the listAvailableCabins() method performs direct SQL calls, it must be
rewritten to take this new database schema into account:

...
Integer cruiseID = (Integer)cruise.getPrimaryKey ();
Integer shipID = (Integer)cruise.getShip ().getPrimaryKey ();
con = getConnection ();

ps = con.prepareStatement (
 "select ID, NAME, DECK_LEVEL from CABIN "+
 "where SHIP_ID = ? and BED_COUNT = ? and ID NOT IN "+
 "(SELECT RCL.CABIN_ID FROM RESERVATION_CABIN_LINK AS RCL,"+
 "RESERVATION AS R "+
 "WHERE RCL.RESERVATION_ID = R.ID " +
 "AND R.CRUISE_ID = ?)");

ps.setInt (1,shipID.intValue ());
ps.setInt (2,bedCount);
ps.setInt (3,cruiseID.intValue ());

result = ps.executeQuery ();
...

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

136

You may remember that in previous examples we added a method (either home or remote) to the
EJB to be able to initialize the test environment. As you can guess, this example uses the same
trick. The TravelAgent EJB remote interface has been extended with one method:

public interface TravelAgentRemote extends javax.ejb.EJBObject
{
 ...
 // Mechanism for building local beans for example programs.
 //
 public void buildSampleData () throws RemoteException;
}

This method removes any Customer, Cabin, Ship, Cruise, and Reservation EJBs from the
database and recreates a basic environment. You can follow this initialization step by step.

First the method acquires references to the remote home of the Customer EJB, and to the local
homes of the Cabin, Ship, Cruise, and Reservation EJBs:

public Collection buildSampleData ()
{
 Collection results = new ArrayList ();

 try
 {
 System.out.println ("TravelAgentBean::buildSampleData()");

 Object obj = jndiContext.lookup
 ("java:comp/env/ejb/CustomerHomeRemote");
 CustomerHomeRemote custhome = (CustomerHomeRemote)
 javax.rmi.PortableRemoteObject.narrow (obj,
 CustomerHomeRemote.class);

 CabinHomeLocal cabinhome =
 (CabinHomeLocal)jndiContext.lookup
 ("java:comp/env/ejb/CabinHomeLocal");
 ShipHomeLocal shiphome =
 (ShipHomeLocal)jndiContext.lookup
 ("java:comp/env/ejb/ShipHomeLocal");
 CruiseHomeLocal cruisehome =
 (CruiseHomeLocal)jndiContext.lookup
 ("java:comp/env/ejb/CruiseHomeLocal");
 ReservationHomeLocal reshome =
 (ReservationHomeLocal)jndiContext.lookup
 ("java:comp/env/ejb/ReservationHomeLocal");

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

137

Then any existing bean is deleted from the database:
 // we first clean the db by removing any customer, cabin,
 // ship, cruise and reservation beans.
 //
 removeBeansInCollection (custhome.findAll());
 results.add ("All customers have been removed");
 removeBeansInCollection (cabinhome.findAll());
 results.add ("All cabins have been removed");
 removeBeansInCollection (shiphome.findAll());
 results.add ("All ships have been removed");
 removeBeansInCollection (cruisehome.findAll());
 results.add ("All cruises have been removed");
 removeBeansInCollection (reshome.findAll());
 results.add ("All reservations have been removed");

The removeBeansInCollection() method is a simple one. It iterates through the specified
collection and removes each EJBObject or EJBLocalObject.

Two customers and two ships are created:
 // We now set our new basic environment
 //
 System.out.println ("Creating Customers 1 and 2...");
 CustomerRemote customer1 =
 custhome.create (new Integer (1));
 customer1.setName (new Name ("Burke","Bill"));
 results.add ("Customer with ID 1 created (Burke Bill)");

 CustomerRemote customer2 =
 custhome.create (new Integer (2));
 customer2.setName (new Name ("Labourey","Sacha"));
 results.add("Customer with ID 2 created (Labourey Sacha)");

 System.out.println ("Creating Ships A and B...");
 ShipLocal shipA = shiphome.create (new Integer (101),
 "Nordic Prince", 50000.0);
 results.add("Created ship with ID 101...");
 ShipLocal shipB = shiphome.create (new Integer (102),
 "Bohemian Rhapsody", 70000.0);
 results.add("Created ship with ID 102...");

The buildSampleData() method adds a message to the results collection after each
significant step, and ultimately returns results so the caller knows what’s happened on the
server.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

138

It then creates 10 cabins on each ship:
 System.out.println ("Creating Cabins on the Ships...");
 ArrayList cabinsA = new ArrayList ();
 ArrayList cabinsB = new ArrayList ();
 for (int jj=0; jj<10; jj++)
 {
 CabinLocal cabinA = cabinhome.create (new Integer
 (100+jj),shipA,"Suite 10"+jj,1,1);
 cabinsA.add(cabinA);
 CabinLocal cabinB = cabinhome.create (new Integer
 (200+jj),shipB,"Suite 20"+jj,2,1);
 cabinsB.add(cabinB);
 }
 results.add("Created cabins on Ship A with IDs 100-109");
 results.add("Created cabins on Ship B with IDs 200-209");

The method quickly organizes some cruises for each ship:
 CruiseLocal cruiseA1 = cruisehome.create ("Alaska Cruise",
 shipA);
 CruiseLocal cruiseA2 = cruisehome.create ("Norwegian
 Fjords", shipA);
 CruiseLocal cruiseA3 = cruisehome.create (
 "Bermuda or Bust", shipA);
 results.add("Created cruises on ShipA with IDs "+
 cruiseA1.getId()+", "+cruiseA2.getId()+
 ", "+cruiseA3.getId());

 CruiseLocal cruiseB1 = cruisehome.create ("Indian Sea
 Cruise", shipB);
 CruiseLocal cruiseB2 = cruisehome.create (
 "Australian Highlights", shipB);
 CruiseLocal cruiseB3 = cruisehome.create (
 "Three-Hour Cruise", shipB);
 results.add ("Created cruises on ShipB with IDs "+
 cruiseB1.getId ()+", "+cruiseB2.getId ()+
 ", "+cruiseB3.getId ());

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

139

Finally, some reservations are made for these cruises:
 ReservationLocal res =
 reshome.create (customer1, cruiseA1,
 (CabinLocal)(cabinsA.get (3)),
 1000.0, new Date ());
 res = reshome.create (customer1, cruiseB3,
 (CabinLocal)(cabinsB.get (8)),
 2000.0, new Date ());
 res = reshome.create (customer2, cruiseA2,
 (CabinLocal)(cabinsA.get (5)),
 2000.0, new Date ());
 res = reshome.create (customer2, cruiseB3,
 (CabinLocal)(cabinsB.get (2)),
 2000.0, new Date ());

 results.add ("Made reservation for Customer 1 on Cruise "+
 cruiseA1.getId ()+" for Cabin 103");
 results.add ("Made reservation for Customer 1 on Cruise "+
 cruiseB3.getId ()+" for Cabin 208");
 results.add ("Made reservation for Customer 2 on Cruise "+
 cruiseA2.getId ()+" for Cabin 105");
 results.add ("Made reservation for Customer 2 on Cruise "+
 cruiseB3.getId ()+" for Cabin 202");
 }
 ...
 return results;
}

Later you’ll see how to call this method to set up the environment.

Examine the EJB Standard Deployment Descriptor

Most of the ejb-jar.xml file comprises definitions you’ve seen in previous examples (entity beans,
relationships, the ProcessPayment stateless session bean, etc.) Only two things have been added.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

140

ejb-jar.xml

First, the Customer EJB now has both local and remote interfaces:
<entity>
 <ejb-name>CustomerEJB</ejb-name>
 <home>com.titan.customer.CustomerHomeRemote</home>
 <remote>com.titan.customer.CustomerRemote</remote>
 <local-home>com.titan.customer.CustomerHomeLocal</local-home>
 <local>com.titan.customer.CustomerLocal</local>
 <ejb-class>com.titan.customer.CustomerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Customer</abstract-schema-name>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>lastName</field-name></cmp-field>
 <cmp-field><field-name>firstName</field-name></cmp-field>
 <cmp-field><field-name>hasGoodCredit</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 <security-identity><use-caller-identity/></security-identity>
</entity>

Providing the second interface enables the Customer EJB to serve local clients as well as remote
ones. Note that the remote and local interfaces do not declare the same methods. For example,
it’s illegal for a remote interface to expose entity relationships, so they’re accessible only via the
local interface.

The second addition is the new TravelAgent stateful session bean that is the heart of this exercise:
<session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <home>com.titan.travelagent.TravelAgentHomeRemote</home>
 <remote>com.titan.travelagent.TravelAgentRemote</remote>
 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 ...

As you can see, only the value of the <session-type> tag distinguishes the declaration of a
stateful session bean from that of a stateless bean.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

141

The deployment descriptor then declares all the beans referenced by the TravelAgent EJB:
 ...
 <ejb-ref>
 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>
 com.titan.processpayment.ProcessPaymentHomeRemote
 </home>
 <remote>
 com.titan.processpayment.ProcessPaymentRemote
 </remote>
 <ejb-link>ProcessPaymentEJB</ejb-link>
 </ejb-ref>
 <ejb-ref>
 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>
 com.titan.customer.CustomerHomeRemote
 </home>
 <remote>com.titan.customer.CustomerRemote</remote>
 <ejb-link>CustomerEJB</ejb-link>
 </ejb-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.cabin.CabinHomeLocal
 </local-home>
 <local>com.titan.cabin.CabinLocal</local>
 <ejb-link>CabinEJB</ejb-link>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ShipHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.cabin.ShipHomeLocal
 </local-home>
 <local>com.titan.cabin.ShipLocal</local>
 <ejb-link>ShipEJB</ejb-link>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.cruise.CruiseHomeLocal

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

142

 </local-home>
 <local>com.titan.cruise.CruiseLocal</local>
 <ejb-link>CruiseEJB</ejb-link>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.reservation.ReservationHomeLocal
 </local-home>
 <local>com.titan.reservation.ReservationLocal</local>
 <ejb-link>ReservationEJB</ejb-link>
 </ejb-local-ref>
 <resource-ref>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</session>

Examine the JBoss Deployment Descriptor

The jboss.xml deployment descriptor contains the JNDI name mapping found in the previous
examples. The only new entry is the TravelAgent EJB definition:

jboss.xml
<session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <jndi-name>TravelAgentHomeRemote</jndi-name>
 <resource-ref>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <jndi-name>java:/DefaultDS</jndi-name>
 </resource-ref>
</session>

This file defines the JNDI name for the TravelAgent, then maps the data source’s JNDI ENC
name to the embedded database.

The listAvailableCabins() method uses this mapping to execute SQL statements directly
against the database, so it must know precisely the names of the tables and fields to use in each
query. While jbosscmp-jdbc.xml already defines the field-to-column mapping of all CMP beans, it
doesn’t define the fields and tables used by relationships between these beans. If it doesn’t have
those definitions, JBoss will use arbitrary names for these tables – not good in this case. To avoid
this problem, you extend jbosscmp-jdbc.xml, adding definitions that map the relationships into

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

143

the desired tables and columns exactly. For this exercise, we mapped only the relationships used
in the SQL query: Cabin-Ship, Cabin-Reservation, and Cruise-Reservation.

jbosscmp-jdbc.xml

Cabin-Reservation is a many-to-many relationship:
<ejb-relation>
 <ejb-relation-name>Cabin-Reservation</ejb-relation-name>
 <relation-table-mapping>
 <table-name>RESERVATION_CABIN_LINK</table-name>
 <create-table>true</create-table>
 <remove-table>true</remove-table>
 </relation-table-mapping>
 <ejb-relationship-role>
 <ejb-relationship-role-name
 >Cabin-has-many-Reservations<
 /ejb-relationship-role-name>
 <key-fields>
 <key-field>
 <field-name>id</field-name>
 <column-name>CABIN_ID</column-name>
 </key-field>
 </key-fields>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name
 >Reservation-has-many-Cabins<
 /ejb-relationship-role-name>
 <key-fields>
 <key-field>
 <field-name>id</field-name>
 <column-name>RESERVATION_ID</column-name>
 </key-field>
 </key-fields>
 </ejb-relationship-role>
</ejb-relation>
...

Many-to-many relationships always need an intermediate table. The name of this table is defined
in the <table-name> tag. Then, for each role of the relationship, the <field-name> and
<column-name> tags do the mapping between the CMR field of the bean and the column in the
table.

The last two mappings needed are for one-to-many relationships, Cabin-Ship and Cruise-
Reservation:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

144

...
<ejb-relation>
 <ejb-relation-name>Cabin-Ship</ejb-relation-name>
 <foreign-key-mapping/>
 <ejb-relationship-role>
 <ejb-relationship-role-name
 >Ship-has-many-Cabins<
 /ejb-relationship-role-name>
 <key-fields>
 <key-field>
 <field-name>id</field-name>
 <column-name>SHIP_ID</column-name>
 </key-field>
 </key-fields>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name
 >Cabin-has-a-Ship<
 /ejb-relationship-role-name>
 <key-fields/>
 </ejb-relationship-role>
</ejb-relation>

<ejb-relation>
 <ejb-relation-name>Cruise-Reservation</ejb-relation-name>
 <foreign-key-mapping/>
 <ejb-relationship-role>
 <ejb-relationship-role-name
 >Cruise-has-many-Reservations<
 /ejb-relationship-role-name>
 <key-fields>
 <key-field>
 <field-name>id</field-name>
 <column-name>CRUISE_ID</column-name>
 </key-field>
 </key-fields>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name
 >Reservation-has-a-Cruise<
 /ejb-relationship-role-name>
 <key-fields/>
 </ejb-relationship-role>
</ejb-relation>

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

145

For each relationship identified by an <ejb-relation-name> tag (the name must be the same
as the one declared in ejb-jar.xml), the mapping of the CMR field to a table column is defined by
the <field-name> and <column-name> tags.

Start Up JBoss

If JBoss is already running there is no reason to restart it.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex12_2 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex12_2> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex12_2> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex12_2> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

Initialize the Database

Because the exercise uses the ProcessPayment EJB from the previous example, the database must
contain the PAYMENT table. The createdb and dropdb Ant targets, Java code, and clients here
have been borrowed from Exercise 12.1.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

146

If you have dropped the PAYMENT table after running the examples in Exercise 12.1, re-create it
now by running the createdb Ant target.

C:\workbook\ex12_2>ant createdb
Buildfile: build.xml

prepare:

compile:

ejbjar:

createdb:
 [java] Looking up home interfaces..
 [java] Creating database table...

On the JBoss console, you’ll see:
INFO [STDOUT] Creating table PAYMENT...
INFO [STDOUT] ...done!

 If you’re having trouble creating the database, shut down JBoss. Then run the Ant
build target clean.db. This will remove all database files and allow you to start
fresh.

The container manages the persistence of all other entity beans used in this exercise, so it will
create the needed tables for them automatically.

Examine the Client Applications

This exercise includes three example client applications.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

147

Client_122a

The first client simply calls the TravelAgent bean’s buildSampleData() method. To run this
application, invoke the Ant target run.client_122a:

C:\workbook\ex12_2>ant run.client_122a
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_122a:
 [java] Calling TravelAgentBean to create sample data..
 [java] All customers have been removed
 [java] All cabins have been removed
 [java] All ships have been removed
 [java] All cruises have been removed
 [java] All reservations have been removed
 [java] Customer with ID 1 created (Burke Bill)
 [java] Customer with ID 2 created (Labourey Sacha)
 [java] Created ship with ID 101...
 [java] Created ship with ID 102...
 [java] Created cabins on Ship A with IDs 100-109
 [java] Created cabins on Ship B with IDs 200-209
 [java] Created Alaska Cruise with ID 0 on ShipA
 [java] Created Norwegian Fjords Cruise with ID 1 on ShipA
 [java] Created Bermuda or Bust Cruise with ID 2 on ShipA
 [java] Created Indian Sea Cruise with ID 3 on ShipB
 [java] Created Australian Highlights Cruise with ID 4 on ShipB
 [java] Created Three-Hour Cruise with ID 5 on ShipB
 [java] Made reservation for Customer 1 on Cruise 0 for Cabin 103
 [java] Made reservation for Customer 1 on Cruise 5 for Cabin 208
 [java] Made reservation for Customer 2 on Cruise 1 for Cabin 105
 [java] Made reservation for Customer 2 on Cruise 5 for Cabin 202

Now that you’ve prepared the environment, you can use the other two client applications.
Client_122b allows you to book a passage, while Client_122c gives you a list of the Cabins for a
specific Cruise that have a specified number of beds.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

148

Client_122b

The second client starts by getting remote home interfaces to the TravelAgent and Customer
EJBs:

public static void main(String [] args) throws Exception
{

 if (args.length != 4)
 {
 System.out.println
 ("Usage: java " +
 "com.titan.clients.Client_122b" +
 "<customerID> <cruiseID> <cabinID> <price>");
 System.exit(-1);
 }

 Integer customerID = new Integer(args[0]);
 Integer cruiseID = new Integer(args[1]);
 Integer cabinID = new Integer(args[2]);
 double price = new Double(args[3]).doubleValue();

 Context jndiContext = getInitialContext();
 Object obj = jndiContext.lookup("TravelAgentHomeRemote");
 TravelAgentHomeRemote tahome = (TravelAgentHomeRemote)
 javax.rmi.PortableRemoteObject.narrow(obj,
 TravelAgentHomeRemote.class);

 obj = jndiContext.lookup("CustomerHomeRemote");
 CustomerHomeRemote custhome = (CustomerHomeRemote)
 javax.rmi.PortableRemoteObject.narrow(obj,
 CustomerHomeRemote.class);

With the home references in hand, it can now get a reference to the customer whose ID was given
on the command line. If no customer with this ID exists, an exception is thrown.

 // Find a reference to the Customer for which to book a cruise
 System.out.println("Finding reference to Customer "+customerID);
 CustomerRemote cust = custhome.findByPrimaryKey(customerID);

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

149

The application then creates a TravelAgent stateful session bean, and gives it, as part of the
transactional state, the reference to the customer, the cruise ID, and the Cabin ID.

 // Start the Stateful session bean
 System.out.println("Starting TravelAgent Session...");
 TravelAgentRemote tagent = tahome.create(cust);

 // Set the other bean parameters in agent bean
 System.out.println("Setting Cruise and Cabin information in
TravelAgent..");
 tagent.setCruiseID(cruiseID);
 tagent.setCabinID(cabinID);

It can then book the passage, thanks to a dummy credit card:
 // Create a dummy CreditCard for this
 //
 Calendar expdate = Calendar.getInstance();
 expdate.set(2005,1,5);
 CreditCardDO card = new CreditCardDO("370000000000002",
 expdate.getTime(),
 "AMERICAN EXPRESS");

 // Book the passage
 //
 System.out.println("Booking the passage on the Cruise!");
 TicketDO ticket = tagent.bookPassage(card,price);

 System.out.println("Ending TravelAgent Session...");
 tagent.remove();

 System.out.println("Result of bookPassage:");
 System.out.println(ticket.description);

 }

Test this client application by booking Suite 201 for Mr. Bill Burke on the Three-Hour Cruise
aboard the “Bohemian Rhapsody.”

Ant doesn’t make it particularly easy to pass command-line parameters through to the client. To
make this task easier, use one of the scripts that accept command-line parameters in a more
customary fashion, available in the ex12_2 directory.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

150

To book a passage, use the BookPassage.bat (Windows) or the BookPassage script (Unix):
BookPassage.bat <customerID> <cruiseID> <cabinID> <price>
Or
./BookPassage <customerID> <cruiseID> <cabinID> <price>

C:\workbook\ex12_2>BookPassage 1 5 201 2000.0
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_122b:
 [java] Finding reference to Customer 1
 [java] Starting TravelAgent Session...
 [java] Setting Cruise and Cabin information in TravelAgent..
 [java] Booking the passage on the Cruise!
 [java] Ending TravelAgent Session...
 [java] Result of bookPassage:
 [java] Bill Burke has been booked for the Three-Hour Cruise
cruise on ship Bohemian Rhapsody.
 [java] Your accommodations include Suite 201 a 2 bed cabin on
deck level 1.
 [java] Total charge = 2000.0

BUILD SUCCESSFUL

Client_122c

The last application gives you a list of available cabins for a specific cruise that have a desired
number of beds. First the application verifies that it’s been given the correct number of
command-line arguments and gets a remote home reference to the TravelAgent EJB:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

151

public static void main(String [] args) throws Exception
{
 if (args.length != 2)
 {
 System.out.println("Usage: java " +
 "com.titan.clients.Client_122c" +
 " <cruiseID> <bedCount>");
 System.exit(-1);
 }

 Integer cruiseID = new Integer(args[0]);
 int bedCount = new Integer(args[1]).intValue();
 Context jndiContext = getInitialContext();
 Object obj = jndiContext.lookup("TravelAgentHomeRemote");
 TravelAgentHomeRemote tahome = (TravelAgentHomeRemote)
 javax.rmi.PortableRemoteObject.narrow(obj,
 TravelAgentHomeRemote.class);

Because the session bean is not really dedicated to a specific instance of Customer, but is instead
making an SQL query in the database, the client creates a TravelAgent bean with a dummy
Customer reference, which will never be used. Then it supplies the Cruise ID:

 // Start the Stateful session bean
 System.out.println("Starting TravelAgent Session...");
 TravelAgentRemote tagent = tahome.create(null);

 // Set the other bean parameters in agent bean
 System.out.println
 ("Setting Cruise information in TravelAgent..");
 tagent.setCruiseID(cruiseID);

Finally, the application asks for a list of all available cabins with a desired number of beds on a
particular cruise and displays the result, if any:

 String[] results = tagent.listAvailableCabins(bedCount);

 System.out.println("Ending TravelAgent Session...");
 tagent.remove();

 System.out.println("Result of listAvailableCabins:");
 for (int kk=0; kk<results.length; kk++)
 {
 System.out.println(results[kk]);
 }

 }

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

152

To launch this application, you can use the ListCabins.bat (Windows) or ListCabins (Unix) script:
ListCabins.bat <cruiseID> <bedCount>
Or
./ListCabins <cruiseID> <bedCount>

Ask the system for a list of the two-bed cabins that are available on the Three-Hour Cruise, the
one Mr. Bill Burke chose:

C:\workbook\ex12_2>ListCabins 5 2
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_122c:
 [java] Starting TravelAgent Session...
 [java] Setting Cruise information in TravelAgent..
 [java] Ending TravelAgent Session...
 [java] Result of listAvailableCabins:
 [java] 200,Suite 200,1
 [java] 203,Suite 203,1
 [java] 204,Suite 204,1
 [java] 205,Suite 205,1
 [java] 206,Suite 206,1
 [java] 207,Suite 207,1
 [java] 209,Suite 209,1

BUILD SUCCESSFUL

Suite 201 has two beds but is not shown as available. This omission is correct, because Mr. Bill
Burke has booked that suite.

153

Exercises for Chapter 13

154

Exercise 13.1:
JMS as a Resource
This exercise is entirely based on the beans implemented in Exercise 12.2. You’ll modify the
TravelAgent EJB so it publishes a text message to a JMS topic when it completes a reservation.

You’ll learn how to create a new JMS topic in JBoss, and configure your bean to use JMS as a
resource. You’ll also build a client application that will subscribe to this topic and display any
published message. To complete new reservations, you’ll use one of the client applications
created for the preceding example.

Start Up JBoss

If JBoss is already running there is no reason to restart it.

Initialize the Database

Because the exercise uses the ProcessPayment EJB used in recent exercises, the database must
contain the PAYMENT table. The createdb and dropdb Ant targets, Java code, and clients here
have been borrowed from Exercise 12.1.

If you haven’t already dropped the PAYMENT table after running the examples in Exercise 12.2, do
so now by running the dropdb Ant target.

C:\workbook\ex13_1>ant dropdb
Buildfile: build.xml

prepare:

compile:

dropdb:
 [java] Looking up home interfaces..
 [java] Dropping database table...

BUILD SUCCESSFUL

Then re-create the PAYMENT database table by running the createdb Ant target

C:\workbook\ex13_1>ant createdb
Buildfile: build.xml

prepare:

compile:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

155

ejbjar:

createdb:
 [java] Looking up home interfaces..
 [java] Creating database table...

On the JBoss console, the following lines are displayed:
INFO [STDOUT] Creating table PAYMENT...
INFO [STDOUT] ...done!

 If you’re having trouble creating the database, shut down JBoss. Then run the Ant
build target clean.db. This will remove all database files and allow you to start
fresh.

The persistence of all other entity beans used in this exercise is managed by the container (CMP),
so JBoss will create the needed tables for them automatically.

Create a New JMS Topic

Because the TravelAgent EJB will publish messages in a JMS topic, you’ll have to create this new
topic in JBoss. This exercise will walk you through two different ways to create a new JMS topic:
through an XML configuration file, and through the JBoss JMX HTTP connector.

Adding a JMS Topic Through a Configuration File

The most common way to set up a JMS topic is to use an XML configuration file. As you learned
in the installation chapter, every component in JBoss is a JMX MBean that can be hot-deployed.
This part of the exercise shows you how to write a JMX MBean definition for a new JMS topic.

You can find the JMX configuration file in the ex13_1/src/resources/services directory:

jbossmq-titantopic-service.xml
<server>
 <mbean code="org.jboss.mq.server.jmx.Topic"
 name="jboss.mq.destination:service=Topic,
 name=titan-TicketTopic">
 <depends optional-attribute-name="DestinationManager"
 >jboss.mq:service=DestinationManager</depends>
 </mbean>
</server>

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

156

Each set of MBeans in a JMX configuration file must be defined within a <server> tag. An
MBean itself is declared in an <mbean> tag. The only MBean declaration in this file defines the
actual JMS topic you’ll use for the example code in this chapter. Each MBean is uniquely
identified by its name, called an ObjectName. JMX ObjectNames can include any number of key-
value parameters to describe the MBean further. In our case, the MBean class representing the
JMS topic is declared first (org.jboss.mq.server.jmx.Topic), along with its JMX
ObjectName (jboss.mq.destination:service=Topic, name=titan-TicketTopic).
For JMS topic MBeans, a single parameter is useful: name. This is where the name of the JMS
topic is defined (titan-TicketTopic).

One thing to note is that the application server must deploy the DestinationManager MBean
before any queue or topic is deployed. This dependency is declared in jbossmq-titantopic-
service.xml’s depends tag. JBoss will take care of satisfying this dependency and make sure the
titan-TicketTopic isn’t started until the DestinationManager MBean has finished
initializing and is ready to provide services to new queues and topics. Copying this file into the
JBoss deploy directory will hot-deploy the JMS topic and make it ready for use.

We’ve defined a make-topic Ant target for deploying the topic bean. Run this target to copy
jbossmq-titantopic-service.xml into JBoss’s deploy directory:

C:\workbook\ex13_1>ant make-topic
Buildfile: build.xml

make-topic:
 [copy] Copying 1 file to C:\jboss-3.2.0\server\default\deploy

On the server side, the following lines are displayed:
[MainDeployer] Starting deployment of package: file:/C:/jboss-
3.2.0/server/default/deploy/jbossmq-titantopic-service.xml
[SARDeployer] Looking for nested deployments in : file:/C:/jboss-
3.2.0/server/default/deploy/jbossmq-titantopic-service.xml
[titan-TicketTopic] Creating
[titan-TicketTopic] Created
[titan-TicketTopic] Starting
[titan-TicketTopic] Bound to JNDI name: topic/titan-TicketTopic
[titan-TicketTopic] Started
[MainDeployer] Deployed package: file:/C:/jboss-
3.2.0/server/default/deploy/jbossmq-titantopic-service.xml

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

157

Adding a JMS Topic Through the JMX HTTP Connector

An XML configuration file is the preferred means to deploy a JMS topic permanently, but for
quick tests and such an alternative approach that uses JBoss’s JMX HTTP connector and the
DestinationManager is sometimes better, because the topic lives in JBoss only until the
application server is shut down. First open your browser and go to http://localhost:8080/jmx-
console/, where you can browse through all deployed JBoss JMX MBeans. Scroll down to the
jboss.mq section and find in it the MBean service DestinationManager:

Figure 8: Finding the DestinationManager

Click on the service=DestinationManager link and you get a list of the MBean’s attributes
and operations. One of the operations, createTopic(), allows you to create a new JMS topic:

http://localhost:8080/jmx-console/
http://localhost:8080/jmx-console/

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

158

Figure 9: Naming a new JMS topic

Type the name of the new JMS topic in the text area, and click on the Invoke button associated
with the createTopic() operation. The Destination Manager will create the JMS topic and
display a status message.

To see your new JMS topic MBean, go back to the home page of the JMX HTTP connector and
search for the jboss.mq.destination domain. You should be able to see your new topic
MBean:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

159

Figure 10: Finding the new topic

Note that you can use the JMX HTTP connector to see the status of your topics and queues even if
you create then in an XML configuration file.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

160

Examine the EJB Standard Files

The ejb-jar.xml deployment descriptor is equivalent to the one for Exercise 12.2 except for the
TravelAgent EJB. The definition for this bean has been extended to reference the JMS topics you
just created.

ejb-jar.xml
<session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <home>com.titan.travelagent.TravelAgentHomeRemote</home>
 <remote>com.titan.travelagent.TravelAgentRemote</remote>
 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 ...
 <resource-ref>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-ref>
 <res-ref-name>jms/TopicFactory</res-ref-name>
 <res-type>javax.jms.TopicConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/TicketTopic</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>
 </resource-env-ref>
</session>

A reference to a TopicConnectionFactory is declared in the same way as a reference to a
DataSource. The definition contains the name of the resource (jms/TopicFactory), the class
of the resource (javax.jms.TopicConnectionFactory), and whether the container or the
bean performs the authentication.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

161

Examine the JBoss-Specific Files

The TravelAgentEJB definition in jboss.xml must be modified as well, to describe the JMS topic
references declared in ejb-jar.xml.

jboss.xml
...
<session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <jndi-name>TravelAgentHomeRemote</jndi-name>
 <resource-ref>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <jndi-name>java:/DefaultDS</jndi-name>
 </resource-ref>
 <resource-ref>
 <res-ref-name>jms/TopicFactory</res-ref-name>
 <jndi-name>java:/JmsXA</jndi-name>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/TicketTopic</resource-env-ref-name>
 <jndi-name>topic/titan-TicketTopic</jndi-name>
 </resource-env-ref>
</session>
...

The <resource-ref> entry from ejb-jar.xml is mapped in the jboss.xml file to the JNDI name
java:/JmsXA. If you take a look at the JBossMQ default configuration file in
$JBOSS_HOME/server/default/deploy/jms-service.xml, you’ll see that the XA connection
manager is bound to this name by default.

The last part of the TravelAgent EJB descriptor in jboss.xml maps the jms/TicketTopic name
from the JNDI ENC of the bean to the topic/titan-TicketTopic JNDI name. This name
corresponds to the JMS topic you just created.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex13_1 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

162

Windows:
C:\workbook\ex13_1> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex13_1> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\ex13_1> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

You will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

Examine the Client Applications

This exercise includes two client applications. You can find the code for them in the
ex13_1/src/main/com/titan/clients directory.

The first application is the one used in Exercise 12.2 to make a reservation. The Ant target
run.client_122b hasn’t changed, and needs no review.

The second application is new. JmsClient_1 subscribes to the titan-TicketTopic JMS topic
and displays all messages published on it.

The application first gets an InitialContext, and looks up its TopicConnectionFactory
and Topic:

JmsClient_1.java
 ...
 Context jndiContext = getInitialContext();

 TopicConnectionFactory factory = (TopicConnectionFactory)
 jndiContext.lookup("ConnectionFactory");

 Topic topic = (Topic)
 jndiContext.lookup("topic/titan-TicketTopic");

The name of the JMS topic is the same as the one you created in Exercise 12.1, but the name of the
TopicConnectionFactory is not the same as the one used by the TravelAgent EJB.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

163

Remember that the java:/JmsXA connection factory used by the EJB was in the private JNDI
space of the JBoss JVM (indicated by the java: prefix). Thus, the client application cannot look
up this name from its JVM. For external applications, JBoss binds a set of connection factories
within the public JNDI tree, each dedicated to a particular message transport protocol.

JBossMQ supports several different kinds of message invocation layers. Each layer has its own
ConnectionFactory that is bound in JNDI:

Table 3: JBossMQ message invocation layers

Invocation Layer JNDI name

JVM

Hyper-efficient invocation layer using
standard Java method invocation, used for
in-JVM JMS clients. External clients
cannot use this invocation layer.

java:/ConnectionFactory and

java:/XAConnectionFactory (with XA support)

RMI

RMI-based invocation layer.

RMIConnectionFactory and

RMIXAConnectionFactory (with XA support)

OIL (Optimized Invocation Layer)

Uses custom TCP/IP sockets to obtain
good network performance with a small
memory footprint.

ConnectionFactory and

XAConnectionFactory (with XA support)

UIL

Used by client applications that cannot
accept network connections originating
from the server.

UILConnectionFactory and

UILXAConnectionFactory (with XA support)

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session =
 connect.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

 TopicSubscriber subscriber = session.createSubscriber(topic);

 subscriber.setMessageListener(this);

 System.out.println
 ("Listening for messages on topic/titan-TicketTopic...");
 connect.start();

The end of the client application code is the same as in the EJB book.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

164

Run the Client Applications

When you redeployed titan.jar, JBoss dropped and recreated the database tables, destroying any
existing content. For this reason, you must have Ant execute the run.client_122a target to
repopulate the database.

 The run.client_122a target originated in Exercise 12.2, but we’ve duplicated it in
the ex13_1 directory to facilitate your work.

Output:
C:\workbook\ex13_1>ant run.client_122a
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_122a:
 [java] Calling TravelAgentBean to create sample data..
 [java] All customers have been removed
 [java] All cabins have been removed
 [java] All ships have been removed
 [java] All cruises have been removed
 [java] All reservations have been removed
 [java] Customer with ID 1 created (Burke Bill)
 [java] Customer with ID 2 created (Labourey Sacha)
 [java] Created ship with ID 101...
 [java] Created ship with ID 102...
 [java] Created cabins on Ship A with IDs 100-109
 [java] Created cabins on Ship B with IDs 200-209
 [java] Created Alaska Cruise with ID 0 on ShipA
 [java] Created Norwegian Fjords Cruise with ID 1 on ShipA
 [java] Created Bermuda or Bust Cruise with ID 2 on ShipA
 [java] Created Indian Sea Cruise with ID 3 on ShipB
 [java] Created Australian Highlights Cruise with ID 4 on ShipB
 [java] Created Three-Hour Cruise with ID 5 on ShipB
 [java] Made reservation for Customer 1 on Cruise 0 for Cabin 103
 [java] Made reservation for Customer 1 on Cruise 5 for Cabin 208
 [java] Made reservation for Customer 2 on Cruise 1 for Cabin 105
 [java] Made reservation for Customer 2 on Cruise 5 for Cabin 202

BUILD SUCCESSFUL

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

165

For your new application to receive the message published on the JMS topic, you have to start it
first:

C:\workbook\ex13_1>ant run.client_131
Buildfile: build.xml

prepare:

compile:

ejbjar:

client_131:
 [java] Listening for messages on topic/titan-TicketTopic...

The last line of the output confirms that the client application has successfully subscribed to the
topic and is waiting for messages.

Now you need to make some reservations exactly as you did in Exercise 12.2. Open a new shell
and use the BookPassage script to make a reservation for Bill Burke on the Three-Hour Cruise for
cabin 101 at $3000.00:

C:\workbook\ex13_1>BookPassage 1 5 101 3000.0
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_122b:
 [java] Finding reference to Customer 1
 [java] Starting TravelAgent Session...
 [java] Setting Cruise and Cabin information in TravelAgent..
 [java] Booking the passage on the Cruise!
 [java] Ending TravelAgent Session...
 [java] Result of bookPassage:
 [java] Bill Burke has been booked for the Three-Hour Cruise
cruise on ship Bohemian Rhapsody.
 [java] Your accommodations include Suite 101 a 1 bed cabin on
deck level 1.
 [java] Total charge = 3000.0

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

166

In the JMS subscriber window you started, the following lines should appear:
[java] Listening for messages on topic/titan-TicketTopic...
[java]
[java] RESERVATION RECEIVED:
[java] Bill Burke has been booked for the Three-Hour Cruise cruise
on ship Bohemian Rhapsody.
[java] Your accommodations include Suite 101 a 1 bed cabin on deck
level 1.
[java] Total charge = 3000.0

Remember from the EJB Book that our client application uses a non-durable subscription to the
topic. Consequently, all the messages sent while the subscriber client application is not running
are lost. That would not be the case if we had used a durable subscription to the topic.

To see the “many-to-many” nature of JMS topics, you can launch several JMS listener
applications at the same time. They will all receive the messages sent to the topic.

167

Exercise 13.2:
The Message-Driven Bean
This exercise is an extension of the preceding one. You’ll add a message-driven bean (MDB),
ReservationProcessor, that will play the same role as the TravelAgent EJB but will receive its
booking orders through a JMS queue instead of synchronous RMI invocations.

To test the MDB, you’ll build a new client application that will make multiple reservations in
batch, using a JMS queue that’s bound to the MDB. You’ll also build a second client application
that will listen on another queue to receive booking confirmations.

Along the way, you’ll learn how to create a new JMS queue in JBoss and configure a message-
driven bean (MDB).

Start Up JBoss

If JBoss is already running there is no reason to restart it.

Initialize the Database

Because the exercise uses the ProcessPayment EJB used in recent exercises, the database must
contain the PAYMENT table. The createdb and dropdb Ant targets, Java code, and clients here
have been borrowed from exercise 13_1.

If you haven’t already dropped the PAYMENT table after running the examples in Exercise 13.1, do
so now by running the dropdb Ant target.

C:\workbook\ex13_2>ant dropdb
Buildfile: build.xml

prepare:

compile:

dropdb:
 [java] Looking up home interfaces..
 [java] Dropping database table...

BUILD SUCCESSFUL

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

168

Then re-create the PAYMENT database table by running the createdb Ant target

C:\workbook\ex13_2>ant createdb
Buildfile: build.xml

prepare:

compile:

ejbjar:

createdb:
 [java] Looking up home interfaces..
 [java] Creating database table...

On the JBoss console, the following lines are displayed:
INFO [STDOUT] Creating table PAYMENT...
INFO [STDOUT] ...done!

 If you’re having trouble creating the database, shut down JBoss. Then run the Ant
build target clean.db. This will remove all database files and allow you to start
fresh.

The persistence of all other entity beans used in this exercise is managed by the container, so it
will create the needed tables for them automatically.

Create a New JMS Queue

This exercise requires two different JMS queues, one for the ReservationProcessor MDB and one
to receive booking confirmations.

Adding new JMS queues to JBoss is much like adding new JMS topics. As in the preceding
exercise, you have two options, one involving a configuration file, the other the JMX HTTP
connector.

Adding a JMS Queue Through a Configuration File

The most common way to set up a JMS queue is to use an XML configuration file. This part of the
exercise shows you how to write a JMX MBean definition for a new JMS queue. You can find the
JMX configuration file in ex13_2/src/resources/services:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

169

jbossmq-titanqueues-service.xml
<server>
 <mbean code="org.jboss.mq.server.jmx.Queue"
 name="jboss.mq.destination:service=Queue,
 name=titan-ReservationQueue">
 <depends optional-attribute-name="DestinationManager"
 >jboss.mq:service=DestinationManager</depends>
 </mbean>

 <mbean code="org.jboss.mq.server.jmx.Queue"
 name="jboss.mq.destination:service=Queue,
 name=titan-TicketQueue">
 <depends optional-attribute-name="DestinationManager"
 >jboss.mq:service=DestinationManager</depends>
 </mbean>
</server>

Recall that each set of MBeans must be defined within a <server> tag and each MBean declared
in an <mbean> tag. Because this exercise requires two different queues, we’ve defined two
MBeans. The MBean class that represents a JMS queue is
org.jboss.mq.server.jmx.Queue. Its name property specifies the name of the JMS queue
to be created, such as titan-ReservationQueue and titan-TicketQueue.

Remember also that the application server must deploy the DestinationManager MBean
before any queue or topic is deployed. This dependency is declared within the <depends> tag in
jbossmq-titanqueues-service.xml. JBoss will take care of satisfying this dependency and make
sure the titan-ReservationQueue and titan-TicketQueue will not be started until the
DestinationManager MBean has finished initializing and is ready to provide services to new
queues and topics. Copying this file into the JBoss deploy directory will hot-deploy these JMS
queues and make them ready for use.

To deploy jbossmq-titanqueues-service.xml, run the make-queues Ant target:

C:\workbook\ex13_2>ant make-queues
Buildfile: build.xml

make-queues:
 [copy] Copying 1 file to C:\jboss-3.2.0\server\default\deploy

On the server side, the following lines are displayed:
[MainDeployer] Starting deployment of package: file:/C:/jboss-
3.2.0/server/default/deploy/jbossmq-titanqueues-service.xml
[titan-ReservationQueue] Creating
[titan-ReservationQueue] Created
[titan-TicketQueue] Creating

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

170

[titan-TicketQueue] Created
[titan-ReservationQueue] Starting
[titan-ReservationQueue] Bound to JNDI name:
 queue/titan-ReservationQueue
[titan-ReservationQueue] Started
[titan-TicketQueue] Starting
[titan-TicketQueue] Bound to JNDI name: queue/titan-TicketQueue
[titan-TicketQueue] Started
[MainDeployer] Successfully completed deployment of package:
file:/C:/jboss-3.2.0/server/default/deploy/jbossmq-titanqueues-
service.xml

 You must deploy the XML file containing the queues before you deploy the JAR
containing your beans (see below). If you deploy your EJB JAR first, JBoss will
detect that the MDB’s expected queue does not exist and will create it dynamically.
Then, when you try to deploy the XML file that contains the queues, an exception will
arise, and you’ll be told you’re trying to create a queue that already exists.

Adding a JMS Queue Through the JMX HTTP Connector

Add each of the new JMS queues through the JMX HTTP connector the same way you added the
JMS topic in the preceding exercise, with one obvious difference: instead of using the
createTopic() operation of the JBossMQ server, use the createQueue() operation.

Remember that queues and topics created in the JMX HTTP Connector live only until the
application server is shut down.

Examine the EJB Standard Files

The ejb-jar.xml file for this exercise is based on the one for Exercise 13.1. The only notable
difference is the addition of the new ReservationProcessor MDB:

ejb-jar.xml
<message-driven>
 <ejb-name>ReservationProcessorEJB</ejb-name>
 <ejb-class
 >com.titan.reservationprocessor.ReservationProcessorBean<
 /ejb-class>
 <transaction-type>Container</transaction-type>
 <message-selector>MessageFormat = 'Version 3.4'</message-selector>
 <acknowledge-mode>auto-acknowledge</acknowledge-mode>
 <message-driven-destination>
 <destination-type>javax.jms.Queue</destination-type>
 </message-driven-destination>

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

171

The MDB descriptor specifies container-managed transactions and automatic acknowledgement
of messages, and that messages will be received from a queue rather than a topic. The descriptor
also contains a <message-selector> tag that allows the MDB to receive only those messages
that conform to a specified format.

Then a set of <ejb-ref> entries identifies all the beans that ReservationProcessor beans will use
during their execution:

 <ejb-ref>
 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>
 com.titan.processpayment.ProcessPaymentHomeRemote
 </home>
 <remote>
 com.titan.processpayment.ProcessPaymentRemote
 </remote>
 <ejb-link>ProcessPaymentEJB</ejb-link>
 </ejb-ref>
 <ejb-ref>
 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>
 com.titan.customer.CustomerHomeRemote
 </home>
 <remote>com.titan.customer.CustomerRemote</remote>
 <ejb-link>CustomerEJB</ejb-link>
 </ejb-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.cruise.CruiseHomeLocal
 </local-home>
 <local>com.titan.cruise.CruiseLocal</local>
 <ejb-link>CruiseEJB</ejb-link>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.cabin.CabinHomeLocal
 </local-home>
 <local>com.titan.cabin.CabinLocal</local>
 <ejb-link>CabinEJB</ejb-link>
 </ejb-local-ref>
 <ejb-local-ref>

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

172

 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.reservation.ReservationHomeLocal
 </local-home>
 <local>com.titan.reservation.ReservationLocal</local>
 <ejb-link>ReservationEJB</ejb-link>
 </ejb-local-ref>
 <security-identity>
 <run-as><role-name>everyone</role-name></run-as>
 </security-identity>

Because the MDB will send a confirmation message to a queue once the booking has been
successful, it needs a reference to a javax.jms.QueueConnectionFactory, specified in the
<resource-ref> at the end of the MDB descriptor:

 <resource-ref>
 <res-ref-name>jms/QueueFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</message-driven>

Note this difference from the preceding exercise: While this bean does send messages to a queue,
its descriptor does not contain a <resource-env-ref> entry that refers to the destination
queue. Why not? In Exercise 13.1 the destination was fixed at deployment time, but in this
exercise the destination is not fixed and not even known by the MDB. It is the client application
that knows the destination, and transmits it to the MDB by serializing the JMS queue object as
part of the JMS message.

Examine the JBoss-Specific Files

No modifications have been made to the CMP entity beans, so the jbosscmp-jdbc.xml file is
unchanged.

The jboss.xml file does need modification, to take into account the new ReservationProcessor
EJB:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

173

jboss.xml
<message-driven>
 <ejb-name>ReservationProcessorEJB</ejb-name>
 <destination-jndi-name
 >queue/titan-ReservationQueue<
 /destination-jndi-name>
 <resource-ref>
 <res-ref-name>jms/QueueFactory</res-ref-name>
 <jndi-name>java:/JmsXA</jndi-name>
 </resource-ref>
</message-driven>

The <destination-jndi-name> tag maps the MDB to an existing JMS destination in the
deployment environment. You should recognize the name of one of the two JMS queues you just
created: titan-ReservationQueue.

 By default, each MDB EJB deployed in JBoss can serve up to 15 concurrent
messages.

The <resource-ref> tag maps the ConnectionFactory name used by the ReservationProcessor
EJB to an actual factory in the deployment environment. This mapping is identical to the one in
the exercise for the TravelAgent EJB.

Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex13_2 directory created by the
extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\ex13_2> set JAVA_HOME=C:\jdk1.3
C:\workbook\ex13_2> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

174

3. Add ant to your execution path.

Windows:
C:\workbook\ex13_2> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and
redeployed by the application server.

Examine the Client Applications

In this exercise, you’ll use two client applications at the same time. The producer will generate
large numbers of JMS messages reporting passage bookings, destined for the
ReservationProcessor MDB EJB. The consumer will listen to a JMS queue for messages
confirming the bookings, and display them as they come in.

The producer first gets from the command line the cruise ID and the number of bookings:

JmsClient_ReservationProducer.java
public static void main (String [] args) throws Exception
{
 if (args.length != 2)
 throw new Exception
 ("Usage: java JmsClient_ReservationProducer <CruiseID> <count>");

 Integer cruiseID = new Integer (args[0]);
 int count = new Integer (args[1]).intValue ();

It then looks up a QueueConnectionFactory and two JMS queues from the JBoss naming
service. The first queue is the one bound to the ReservationProcessor MDB, to which passage
booking messages will be sent. The second is not used directly, as you’ll see later.

 QueueConnectionFactory factory = (QueueConnectionFactory)
 jndiContext.lookup ("ConnectionFactory");
 Queue reservationQueue = (Queue)
 jndiContext.lookup ("queue/titan-ReservationQueue");
 Queue ticketQueue = (Queue)
 jndiContext.lookup ("queue/titan-TicketQueue");
 QueueConnection connect = factory.createQueueConnection ();
 QueueSession session = connect.createQueueSession
 (false,Session.AUTO_ACKNOWLEDGE);
 QueueSender sender = session.createSender (reservationQueue);

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

175

The client application is now ready to send count booking messages in batch. Among other
chores, it has looked up the ticket queue, the JMS queue that the ReservationProcessor MDB will
use to send confirmation messages.

For each booking, it then creates a JMS MapMessage, assigns the ticket queue into the message’s
JMSReplyTo property, and sets the booking data:Cruise ID, Customer ID, Cabin ID, price, credit
card number and expiration date, etc. Note that only basic data types such as String and int
can be stored in a MapMessage:

 for (int i = 0; i < count; i++)
 {
 MapMessage message = session.createMapMessage ();

 // Used in ReservationProcessor to send Tickets back out
 message.setJMSReplyTo (ticketQueue);

 message.setStringProperty ("MessageFormat", "Version 3.4");

 message.setInt ("CruiseID", cruiseID.intValue ());
 // either Customer 1 or 2, all we've got in database
 message.setInt ("CustomerID", i%2 + 1);
 // cabins 100-109 only
 message.setInt ("CabinID", i%10 + 100);
 message.setDouble ("Price", (double)1000 + i);

 // the card expires in about 30 days
 Date expDate = new Date (System.currentTimeMillis () +
 30*24*60*60*1000L);

 message.setString ("CreditCardNum", "5549861006051975");
 message.setLong ("CreditCardExpDate", expDate.getTime ());
 message.setString ("CreditCardType",
 CreditCardDO.MASTER_CARD);

 System.out.println ("Sending reservation message #" + i);
 sender.send (message);
 }

 connect.close ();
}

One interesting property that’s set in the JMS message header is MessageFormat. Recall that
the <message-selector> tag in the MDB deployment descriptor used this property to specify a
constraint on the messages the MDB is to receive.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

176

Once all messages are sent, the application closes the connection and terminates. Because
messages are sent asynchronously, the application may terminate before the
ReservationProcessor EJB has processed all of the messages in the batch.

The consumer application is very similar to the client application you implemented in Exercise
13.1. This time, though, it will subscribe not to a topic but to a queue.

JmsClient_TicketConsumer.java

To receive JMS messages, the client application class implements the
javax.jms.MessageListener interface, which defines the onMessage() method. The main
method simply creates an instance of the class and uses a trick to make the main thread wait
indefinitely:

public class JmsClient_TicketConsumer
 implements javax.jms.MessageListener
{

 public static void main (String [] args) throws Exception
 {
 new JmsClient_TicketConsumer ();

 while(true) { Thread.sleep (10000); }
 }

The constructor is very simple JMS code that subscribes the client application to the JMS queue
and waits for incoming messages:

 public JmsClient_TicketConsumer () throws Exception
 {
 Context jndiContext = getInitialContext ();

 QueueConnectionFactory factory = (QueueConnectionFactory)
 jndiContext.lookup ("ConnectionFactory");
 Queue ticketQueue = (Queue)
 jndiContext.lookup ("queue/titan-TicketQueue");
 QueueConnection connect = factory.createQueueConnection ();
 QueueSession session =
 connect.createQueueSession (false,Session.AUTO_ACKNOWLEDGE);
 QueueReceiver receiver = session.createReceiver (ticketQueue);
 receiver.setMessageListener (this);

 System.out.println ("Listening for messages on titan-
 TicketQueue...");
 connect.start ();
 }

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

177

When a message arrives in the queue, the consumer’s onMessage() method is called. The
method simply displays the content of the ticket:

 public void onMessage (Message message)
 {
 try
 {
 ObjectMessage objMsg = (ObjectMessage)message;
 TicketDO ticket = (TicketDO)objMsg.getObject ();
 System.out.println ("********************************");
 System.out.println (ticket);
 System.out.println ("********************************");

 }
 catch (JMSException displayed)
 {
 displayed.printStackTrace ();
 }
 }

Run the Client Applications

When you redeployed titan.jar, JBoss dropped and recreated the database tables, destroying any
existing content, so you must repopulate the database. Have Ant execute the run.client_122a
target.

The run.client_122a target originated in Exercise 12.2, but we’ve duplicated it in the ex13_2
directory for your convenience.

C:\workbook\ex13_1>ant run.client_122a
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_122a:
 [java] Calling TravelAgentBean to create sample data..
 [java] All customers have been removed
 [java] All cabins have been removed
 [java] All ships have been removed
 [java] All cruises have been removed
 [java] All reservations have been removed
 [java] Customer with ID 1 created (Burke Bill)

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

178

 [java] Customer with ID 2 created (Labourey Sacha)
 [java] Created ship with ID 101...
 [java] Created ship with ID 102...
 [java] Created cabins on Ship A with IDs 100-109
 [java] Created cabins on Ship B with IDs 200-209
 [java] Created Alaska Cruise with ID 0 on ShipA
 [java] Created Norwegian Fjords Cruise with ID 1 on ShipA
 [java] Created Bermuda or Bust Cruise with ID 2 on ShipA
 [java] Created Indian Sea Cruise with ID 3 on ShipB
 [java] Created Australian Highlights Cruise with ID 4 on ShipB
 [java] Created Three-Hour Cruise with ID 5 on ShipB
 [java] Made reservation for Customer 1 on Cruise 0 for Cabin 103
 [java] Made reservation for Customer 1 on Cruise 5 for Cabin 208
 [java] Made reservation for Customer 2 on Cruise 1 for Cabin 105
 [java] Made reservation for Customer 2 on Cruise 5 for Cabin 202

BUILD SUCCESSFUL

At this point you’re going to launch both the client that sends booking messages and the client
that receives the tickets as passage confirmations. Launch the consumer first, by invoking the
Ant target run.client_132:

C:\workbook\ex13_2>ant run.client_132
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_132:
 [java] Listening for messages on titan-TicketQueue...

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

179

Now start the producer, adhering to the following usage:
BookInBatch <cruiseID> <count>

...where cruiseID is the ID of a Cruise in the database (created when you invoked the
run.client_122a Ant target) and count is the number of passages to book.

Book 100 passages on the Alaskan Cruise:
C:\workbook\ex13_2>BookInBatch 0 100
Buildfile: build.xml

prepare:

compile:

ejbjar:

run.bookinbatch:
 [java] Sending reservation message #0
 [java] Sending reservation message #1
 [java] Sending reservation message #2
 [java] Sending reservation message #3
 ...
 [java] Sending reservation message #98
 [java] Sending reservation message #99

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

180

Shortly after the producer starts, the consumer, which has been patiently listening to its JMS
queue for booking confirmations, will display:

run.client_132:
 [java] Listening for messages on titan-TicketQueue...
 [java] ********************************
 [java] Bob Smith has been booked for the Alaska Cruise cruise
 on ship Nordic Prince.
 [java] Your accommodations include Suite 100 a 1 bed cabin on
 deck level 1.
 [java] Total charge = 1000.0
 [java] ********************************
 [java] ********************************
 [java] Joseph Stalin has been booked for the Alaska Cruise
 cruise on ship Nordic Prince.
 [java] Your accommodations include Suite 101 a 1 bed cabin on
 deck level 1.
 [java] Total charge = 1001.0
 [java] ********************************
 [java] ********************************
 [java] Bob Smith has been booked for the Alaska Cruise cruise
 on ship Nordic Prince.
 [java] Your accommodations include Suite 102 a 1 bed cabin on
 deck level 1.
 [java] Total charge = 1002.0
 [java] ********************************
 ...
 [java] ********************************
 [java] Joseph Stalin has been booked for the Alaska Cruise
 cruise on ship Nordic Prince.
 [java] Your accommodations include Suite 109 a 1 bed cabin on
 deck level 1.
 [java] Total charge = 1099.0
 [java] ********************************

Note that, because the booking confirmation messages are queued, you could start the consumer
much later than the producer, rather than before. The confirmation messages sent by the
ReservationProcessor MDB would then be stored on the server until the client application starts,
and begins to listen to the queue.

Here we are, back at the dock, our “EJB on JBoss” cruise complete! We really hope you’ve
enjoyed the voyage and that we’ll soon meet you on JBoss’s forums for some more exciting
adventures...

181

Appendix

182

Appendix A:
Database Configuration
This appendix describes how to set up database pools for data sources other than the default
database embedded in JBoss, Hypersonic SQL. It also shows you how to set up your EJBs to use
these database pools. For illustration we’ve modified Exercise 6.1 to configure and use an Oracle
connection pool with JBoss.

Set Up the Database

To deploy a database connection pool, JBoss requires a configuration file. In JBoss 3.0, your only
option is to create a quite complex file that allows for very fine-grained settings. The result is
called “the complete setup.” Users of JBoss 3.2 have a second option, “the simple setup.” The
configuration file is very simple, yet can be used for almost all standard datapool setups.

Here you’ll see both methods: the complete setup, for JBoss 3.0 and 3.2, and the simple setup, for
JBoss 3.2 only. Pick the one that works for you, and skip over the setup section of the one you
don’t use.

Complete Setup

First of all you must download the JDBC driver classes for your database. Copy your database’s
JDBC JAR file to $JBOSS_HOME/server/default/lib. For example, the Oracle JDBC class files
are contained in classes12.zip.

The JBoss distribution includes example database connection-pool files, in the directory
$JBOSS_HOME/docs/examples/jca. The name of each “complete setup” file ends in
-service.xml. For this exercise, we’ve copied the oracle-service.xml configuration file to
exAppendixA/titandb-service.xml and modified it accordingly.

To deploy this connection pool, you must copy titandb-service.xml to the
$JBOSS_HOME/service/default/deploy directory. Note that the name of this config file must
end with -service.xml, or JBoss will not deploy it.

 Database connection pools are among the many things that can be hot-deployed in
JBoss, simply by plopping the pool’s XML configuration file into the deploy directory.

Examine some of the configuration parameters this file defines:

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

183

titandb-service.xml
<mbean
code="org.jboss.resource.connectionmanager.LocalTxConnectionManager"
name="jboss.jca:service=LocalTxCM,name=OracleDS">

...

<depends optional-attribute-name="ManagedConnectionFactoryName">
 <!--embedded mbean-->
 <mbean code="org.jboss.resource.connectionmanager.RARDeployment"
 name="jboss.jca:service=LocalTxDS,name=OracleDS">

 <attribute name="JndiName">OracleDS</attribute>

The JndiName attribute identifies the connection pool within JNDI. You can look up this pool in
JNDI with the java:/OracleDS string. The class of this bound object is
javax.sql.DataSource.

 <attribute name="ManagedConnectionFactoryProperties">
 <properties>
 <config-property
 name="ConnectionURL"type="java.lang.String">
 jdbc:oracle:thin:@localhost:1521:JBOSSDB
 </config-property>

The ConnectionURL attribute tells the Oracle JDBC driver how to connect to the database. It
varies depending on the database you use, so consult your database JDBC manuals to find out
how to obtain the appropriate URL.

 <config-property name="DriverClass" type="java.lang.String">
 oracle.jdbc.driver.OracleDriver
 </config-property>

The DriverClass attribute tells JBoss and the base JDBC classes the name of Oracle’s JDBC
driver class they need to instantiate and use.

 <config-property name="UserName" type="java.lang.String">
 scott
 </config-property>
 <config-property name="Password" type="java.lang.String">
 tiger
 </config-property>
 </properties>
 </attribute>

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

184

Finally, the UserName and Password attributes are used when connecting to the Oracle
database.

Okay, you’ve seen that the first part of this file describes the JDBC driver and how to connect to it.
The second part of titandb-service.xml describes the attributes of the connection pool.

...
<depends optional-attribute-name="ManagedConnectionPool">
 <!--embedded mbean-->
 <mbean code=
 "org.jboss.resource.connectionmanager.JBossManagedConnectionPool"
 name="jboss.jca:service=LocalTxPool,name=OracleDS">
 <attribute name="MinSize">0</attribute>
 <attribute name="MaxSize">50</attribute>

The MinSize attribute tells JBoss how many JDBC connections to have in the connection pool
initially, and the MaxSize attribute specifies the maximum number of connections allowed.

 <attribute name="BlockingTimeoutMillis">5000</attribute>

Whenever all available connections are in use, a thread requesting a connection will block until a
connection is released back into the pool. BlockingTimeoutMillis specifies the maximum
time a thread will wait for a connection before it aborts and throws an exception.

 <attribute name="IdleTimeoutMinutes">15</attribute>

When a connection has been idle in the connection pool for IdleTimeoutMinutes it will be
closed and released from the connection pool.

Simple Setup

The configuration file for the simple setup is much less complex than for the complete setup, but
the procedures are much the same. For example, the first step is to download the JDBC driver
classes for your database. Copy your database’s JDBC JAR file to
$JBOSS_HOME/server/default/lib. For example, the Oracle JDBC class files are contained in
classes12.zip.

The JBoss distribution includes example database connection-pool files, in the directory
$JBOSS_HOME/docs/examples/jca. The name of each “simple setup” file ends in -ds.xml. For
this exercise, we’ve copied the oracle-ds.xml configuration file to exAppendixA/titandb-ds.xml
and modified it accordingly.

To deploy this connection pool, you must copy titandb-ds.xml to the
$JBOSS_HOME/service/default/deploy directory. Note that the name of this config file must
end with -ds.xml, or JBoss will not deploy it.

 Database connection pools are among the many things that can be hot-deployed in
JBoss, simply by plopping the pool’s XML configuration file into the deploy directory.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

185

Examine some of the configuration parameters this file defines.

titandb-ds.xml
<datasources>
 <local-tx-datasource>
 <jndi-name>OracleDS</jndi-name>

The <jndi-name> tag identifies the connection pool within JNDI. You can look up this pool in
JNDI with the java:/OracleDS string. The class of this bound object is
javax.sql.DataSource.

 <connection-url
 >jdbc:oracle:thin:@localhost:1521:JBOSSDB</connection-url>

The <connection-url> tag tells the Oracle JDBC driver how to connect to the database. The
URL varies depending on the database you use, so consult your database JDBC manuals to find
out how to obtain the appropriate address.

 <driver-class>oracle.jdbc.driver.OracleDriver</driver-class>

The <driver-class> tag tells JBoss and the base JDBC classes the name of Oracle’s JDBC
driver class they need to instantiate and use.

 <user-name>scott</user-name>
 <password>tiger</password>
 </local-tx-datasource>
</datasources>

Finally, the <user-name> and <password> tags are used when connecting to the Oracle
database.

If you compare titandb-ds.xml to titandb-service.xml, you’ll see that the file for the simple setup
is much smaller, and contains only the information required to deploy a new database pool.

Examine the JBoss-Specific Files

The example code for this appendix has been borrowed from Exercise 6.1 of this workbook. It is
fairly easy to configure the EJBs from this exercise to use the Oracle connection pool you created
above. Simply point the data source to java:/OracleDS and use the Oracle8 database
mapping.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

186

jbosscmp-jdbc.xml
<jbosscmp-jdbc>

 <defaults>
 <datasource>java:/OracleDS</datasource>
 <datasource-mapping>Oracle8</datasource-mapping>
 <create-table>true</create-table>
 <remove-table>true</remove-table>
 </defaults>

 <enterprise-beans>
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 <table-name>Customer</table-name>
 <cmp-field>
 <field-name>id</field-name>
 <column-name>ID</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>lastName</field-name>
 <column-name>LAST_NAME</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>firstName</field-name>
 <column-name>FIRST_NAME</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>hasGoodCredit</field-name>
 <column-name>HAS_GOOD_CREDIT</column-name>
 </cmp-field>
 </entity>
 </enterprise-beans>

</jbosscmp-jdbc>

Start Up JBoss

In this variation of Exercise 6.1, you must restart JBoss, so it will recognize the JDBC JAR file you
copied into the lib directory. Please review the Server Installation and Configuration chapter at
the beginning of this workbook if you don’t remember how to start JBoss.

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

187

Build and Deploy the Example Programs

To build and deploy the example for this chapter, you must configure one of the files described
above, titandb-service.xml or titandb-ds.xml, to conform to the database you’re using.

Perform the following steps:

1. Open a command prompt or shell terminal and change to the exAppendixA directory created
by the extraction process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and
JBoss 3.2 are installed. Examples:

Windows:
C:\workbook\exAppendixA> set JAVA_HOME=C:\jdk1.3
C:\workbook\exAppendixA> set JBOSS_HOME=C:\jboss-3.2.0

Unix:
$ export JAVA_HOME=/usr/local/jdk1.3
$ export JBOSS_HOME=/usr/local/jboss-3.2.0

3. Add ant to your execution path.

Windows:
C:\workbook\exAppendixA> set PATH=..\ant\bin;%PATH%

Unix:
$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant for the complete setup, or ant simple for the simple setup.

You will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server. The build script copies titandb-service.xml or titandb-ds.xml, as appropriate,
to the deploy directoy as well, which triggers deployment of the customer database pool.

Examine and Run the Client Applications

There is only one client application for this exercise, Client_61. It’s modeled after the example in
Chapter 6 of the EJB book. It will use information you supply in the command-line parameters to
create Customer EJBs in the database.

To run the client, first set your JBOSS_HOME and PATH environment variables appropriately.
Then invoke the provided wrapper script. You must supply data on the command line, specifiying
a primary key, first name, and last name for each Customer; for example:

Client_61 777 Bill Burke 888 Sacha Labourey

JBoss Workbook for Enterprise JavaBeans, 3rd Edition

188

For the sample command, the output should be:
777 = Bill Burke
888 = Sacha Labourey

The example program removes the created beans at the conclusion of operation, so there will be
no data left in the database.

About the Authors

Bill Burke is the Chief Architect of JBossGroup, LLC. Bill has more than 10 years experience
implementing and using middleware in the industry. He was one of the primary developers of
Iona Technology’s Orbix 2000 CORBA product and has also designed and implemented J2EE
applications at Mercantec, Dow Jones, and Eigner Corporation. Besides hanging with his
wonderful wife, you can find Bill cheering for the New England Patriots at Gillette Stadium with
his dad.

Sacha Labourey is one of the core developers of JBoss Clustering and the General Manager of
JBoss Group Europe. He holds a master’s degree in computer science from the Swiss Federal
Institute of Technology and is the founder of Cogito Informatique. To prove to himself he is not a
computer addict, he regularly goes on trips to the Alps to extend his Rumantsch vocabulary.

Colophon

This book is set in the legible and attractive Georgia font. Manuscripts were composed and edited
in Microsoft Word, and converted to PDF format for download and printing with Adobe Acrobat.

	Table of Contents
	Table of Figures
	Preface
	
	Contents of This Book
	On-Line Resources
	Conventions Used in This Book
	Acknowledgements

	Server Installation and Configuration
	About JBoss
	Installing JBoss Application Server
	Discovering the JBoss Directory Structure
	JBoss Configuration Files
	Deployment in JBoss

	A Quick Look at JBoss Internals
	Micro-Kernel Architecture
	Hot Deployment
	Net Boot
	Detached Invokers

	Exercise Code Setup and Configuration
	Exercises Directory Structure
	Environment Setup

	Exercises for Chapter 4
	Exercise 4.1:�A Simple Entity Bean
	Start Up JBoss
	Initialize the Database
	Build and Deploy the Example Programs
	Deconstructing build.xml
	Examine the JBoss-Specific Files
	Examine and Run the Client Applications
	Managing Entity Beans

	Exercise 4.2:�A Simple Session Bean
	Start Up JBoss
	Initialize the Database
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Examine and Run the Client Application

	Exercises for Chapter 5
	Exercise 5.1:�The Remote Component Interfaces
	Start Up JBoss
	Initialize the Database
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Examine and Run the Client Applications

	Exercise 5.2:�The EJBObject, Handle, and Primary Key
	Start Up JBoss
	Initialize the Database
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Examine and Run the Client Applications

	Exercise 5.3:�The Local Component Interfaces
	Start Up JBoss
	Initialize the Database
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Examine and Run the Client Applications

	Exercises for Chapter 6
	Exercise 6.1:�Basic Persistence in CMP 2.0
	Start Up JBoss
	Initialize the Database
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Examine and Run the Client Applications

	Exercise 6.2:�Dependent Value Classes in CMP 2.0
	Start Up JBoss
	Initialize the Database
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Examine and Run the Client Applications

	Exercise 6.3:�A Simple Relationship in CMP 2.0
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Examine and Run the Client Applications

	Exercises for Chapter 7
	Exercise 7.1:�Entity Relationships in CMP 2.0: Part 1
	Start Up JBoss
	Initialize the Database
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Examine and Run the Client Applications

	Exercise 7.2:�Entity Relationships in CMP 2.0: Part 2
	Start Up JBoss
	Initialize the Database
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Examine and Run the Client Applications

	Exercise 7.3:�Cascade Deletes in CMP 2.0
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Examine and Run the Client Applications

	Exercises for Chapter 8
	Exercise 8.1:�Simple EJB QL Statements
	Start Up JBoss
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Initialize the Database
	Examine and Run the Client Applications

	Exercise 8.2:�Complex EJB QL Statements
	Start Up JBoss
	Build and Deploy the Example Programs
	Examine the JBoss-Specific Files
	Initialize the Database
	Examine and Run the Client Applications
	JBoss Dynamic QL

	Exercise for Chapter 10
	Exercise 10.1:�A BMP Entity Bean
	Start Up JBoss
	Initialize the Database
	Examine the EJB Standard Files
	Examine the JBoss-Specific Files
	Build and Deploy the Example Programs
	Examine the Client Application
	Run the Client Application

	Exercises for Chapter 12
	Exercise 12.1:�A Stateless Session Bean
	Examine the EJB
	Examine the EJB Standard Deployment Descriptor
	Examine the JBoss Deployment Descriptors
	Start Up JBoss
	Build and Deploy the Example Programs
	Initialize the Database
	Examine the Client Applications

	Exercise 12.2:�A Stateful Session Bean
	Examine the EJB
	Examine the EJB Standard Deployment Descriptor
	Examine the JBoss Deployment Descriptor
	Start Up JBoss
	Build and Deploy the Example Programs
	Initialize the Database
	Examine the Client Applications

	Exercises for Chapter 13
	Exercise 13.1:�JMS as a Resource
	Start Up JBoss
	Initialize the Database
	Create a New JMS Topic
	Examine the EJB Standard Files
	Examine the JBoss-Specific Files
	Build and Deploy the Example Programs
	Examine the Client Applications
	Run the Client Applications

	Exercise 13.2:�The Message-Driven Bean
	Start Up JBoss
	Initialize the Database
	Create a New JMS Queue
	Examine the EJB Standard Files
	Examine the JBoss-Specific Files
	Build and Deploy the Example Programs
	Examine the Client Applications
	Run the Client Applications

	Appendix
	Appendix A:�Database Configuration
	Set Up the Database
	Examine the JBoss-Specific Files
	Start Up JBoss
	Build and Deploy the Example Programs
	Examine and Run the Client Applications

