

Java I/O

Elliotte Rusty Harold

Publisher: O'Reilly

First Edition March 1999

ISBN: 1-56592-485-1, 596 pages

All of Java's Input/Output (I/O) facilities are based on streams, which provide simple ways to
read and write data of different types. Java™ I/O tells you all you need to know about the
four main categories of streams and uncovers less-known features to help make your I/O
operations more efficient. Plus, it shows you how to control number formatting, use
characters aside from the standard ASCII character set, and get a head start on writing truly
multilingual software

Table of Contents
Preface ...
 Correcting Misconceptions
 Organization of the Book ..
 Who You Are ..
 Versions ...
 Security Issues ...
 Conventions Used in This Book
 Request for Comments ..
 Acknowledgments ...

1
1
3
8
8
9
9

11
12

I: Basic I/O ..

13

1. Introducing I/O ..
 1.1 What Is a Stream? ...
 1.2 Numeric Data ...
 1.3 Character Data ...
 1.4 Readers and Writers ...
 1.5 The Ubiquitous IOException
 1.6 The Console: System.out, System.in, and System.err
 1.7 Security Checks on I/O

14
14
17
20
24
25
26
32

2. Output Streams ...
 2.1 The OutputStream Class
 2.2 Writing Bytes to Output Streams
 2.3 Writing Arrays of Bytes
 2.4 Flushing and Closing Output Streams
 2.5 Subclassing OutputStream
 2.6 A Graphical User Interface for Output Streams

34
34
34
36
37
38
39

3. Input Streams ...
 3.1 The InputStream Class ..
 3.2 The read() Method ..
 3.3 Reading Chunks of Data from a Stream
 3.4 Counting the Available Bytes
 3.5 Skipping Bytes ...
 3.6 Closing Input Streams ..
 3.7 Marking and Resetting ..
 3.8 Subclassing InputStream
 3.9 An Efficient Stream Copier

42
42
42
44
45
46
46
47
47
48

II: Data Sources ...

50

4. File Streams ..
 4.1 Reading Files ..
 4.2 Writing Files ..
 4.3 File Viewer, Part 1 ..

51
51
53
56

5. Network Streams ..
 5.1 URLs ...
 5.2 URL Connections ...
 5.3 Sockets ..
 5.4 Server Sockets ...
 5.5 URLViewer ...

60
60
62
65
68
71

III: Filter Streams ...

6. Filter Streams ...

74

 6.1 The Filter Stream Classes
 6.2 The Filter Stream Subclasses
 6.3 Buffered Streams ...
 6.4 PushbackInputStream ..
 6.5 Print Streams ..
 6.6 Multitarget Output Streams
 6.7 File Viewer, Part 2 ..

75
75
80
81
83
84
85
89

7. Data Streams ...
 7.1 The Data Stream Classes
 7.2 Reading and Writing Integers
 7.3 Reading and Writing Floating-Point Numbers
 7.4 Reading and Writing Booleans
 7.5 Reading Byte Arrays ...
 7.6 Reading and Writing Text
 7.7 Miscellaneous Methods
 7.8 Reading and Writing Little-Endian Numbers
 7.9 Thread Safety ...
 7.10 File Viewer, Part 3 ...

96
96
98

103
106
106
107
111
111
123
124

8. Streams in Memory ...
 8.1 Sequence Input Streams
 8.2 Byte Array Streams ..
 8.3 Communicating Between Threads with Piped Streams

131
131
132
135

9. Compressing Streams ...
 9.1 Inflaters and Deflaters ..
 9.2 Compressing and Decompressing Streams
 9.3 Working with Zip Files
 9.4 Checksums ...
 9.5 JAR Files ..
 9.6 File Viewer, Part 4 ..

140
140
152
159
172
176
189

10. Cryptographic Streams
 10.1 Hash Function Basics
 10.2 The MessageDigest Class
 10.3 Digest Streams ..
 10.4 Encryption Basics ..
 10.5 The Cipher Class ..
 10.6 Cipher Streams ..
 10.7 File Viewer, Part 5 ...

193
193
195
203
209
212
225
231

IV: Advanced and Miscellaneous Topics

236

11. Object Serialization ..
 11.1 Reading and Writing Objects
 11.2 Object Streams ..
 11.3 How Object Serialization Works
 11.4 Performa
 11.5 The Serializable Interface

nce ...

 11.6 The ObjectInput and ObjectOutput Interfaces
 11.7 Versioning ...
 11.8 Customizing the Serialization Format
 11.9 Resolving Classes ..
 11.10 Resolving Objects ...

237
237
238
239
241
241
247
249
251
260
261

 11.11 Validation ..
 11.12 Sealed Objects ...

261
263

12. Working with Files ..
 12.1 Understanding Files ...
 12.2 Directories and Paths ..
 12.3 The File Class ..
 12.4 Filename Filters ...
 12.5 File Filters ...
 12.6 File Descriptors ...
 12.7 Random-Access Files
 12.8 General Techniques for Cross-Platform File Access Code

267
267
274
280
299
300
301
302
304

13. File Dialogs and Choosers
 13.1 File Dialogs ..
 13.2 JfileChooser ..
 13.3 File Viewer, Part 6 ...

306
306
313
331

14. Multilingual Character Sets and Unicode
 14.1 Unicode ..
 14.2 Displaying Unicode Text
 14.3 Unicode Escapes ...
 14.4 UTF-8 ...
 14.5 The char Data Type ...
 14.6 Other Encodings ...
 14.7 Converting Between Byte Arrays and Strings

337
337
338
345
346
348
356
357

15. Readers and Writers ...
 15.1 The java.io.Writer Class
 15.2 The OutputStreamWriter Class
 15.3 The java.io.Reader Class
 15.4 The InputStreamReader Class
 15.5 Character Array Readers and Writers
 15.6 String Readers and Writers
 15.7 Reading and Writing Files
 15.8 Buffered Readers and Writers
 15.9 Print Writers ...
 15.10 Piped Readers and Writers
 15.11 Filtered Readers and Writers
 15.12 File Viewer Finis ..

360
360
361
363
365
366
369
372
374
378
380
381
386

16. Formatted I/O with java.text
 16.1 The Old Way ...
 16.2 Choosing a Locale ..
 16.3 Number Formats ...
 16.4 Specifying Width with FieldPosition
 16.5 Parsing Input ...
 16.6 Decimal Formats ..
 16.7 An Exponential Number Format

395
395
397
400
408
412
414
423

17. The Java Communications API
 17.1 The Architecture of the Java Communications API
 17.2 Identifying Ports ...
 17.3 Communicating with a Device on a Port
 17.4 Serial Ports ..
 17.5 Parallel Ports ...

429
429
430
437
443
452

V: Appendixes ..

458

A. Additional Resources ...
 A.1 Digital Think ...
 A.2 Design Patterns ..
 A.3 The java.io Package ...
 A.4 Network Programming
 A.5 Data Compression ..
 A.6 Encryption and Related Technology
 A.7 Object Serialization ...
 A.8 International Character Sets and Unicode
 A.9 Java Communications API
 A.10 Updates and Breaking News

459
459
459
460
460
461
461
462
462
463
463

B. Character Sets ..

465

Colophon ..

472

Dedication
To Lynn, the best aunt a boy could ask for.

Java I/O

1

Preface
In many ways this book is a prequel to my previous book, Java Network Programming
(O'Reilly & Associates). When writing that book, I more or less assumed that readers were
familiar with basic input and output in Java™—that they knew how to use input streams and
output streams, convert bytes to characters, connect filter streams to each other, and so forth.

However, after that book was published, I began to notice that a lot of the questions I got from
readers of the book and students in my classes weren't so much about network programming
itself as they were about input and output (I/O in programmer vernacular). When Java 1.1 was
released with a vastly expanded java.io package and many new I/O classes spread out
across the rest of the class library, it became obvious that a book that specifically addressed
I/O was required. This is that book.

Java I/O endeavors to show you how to really use Java's I/O classes, allowing you to quickly
and easily write programs that accomplish many common tasks. Some of these include:

• Reading and writing files
• Communicating over network connections
• Filtering data
• Interpreting a wide variety of formats for integer and floating-point numbers
• Passing data between threads
• Encrypting and decrypting data
• Calculating digital signatures for streams
• Compressing and decompressing data
• Writing objects to streams
• Copying, moving, renaming, and getting information about files and directories
• Letting users choose files from a GUI interface
• Reading and writing non-English text in a variety of character sets
• Formatting integer and floating-point numbers as strings
• Talking directly to modems and other serial port devices
• Talking directly to printers and other parallel port devices

Java is the first language to provide a cross-platform I/O library that is powerful enough to
handle all these diverse tasks. Java I/O is the first book to fully expose the power and
sophistication of this library.

Correcting Misconceptions

Java is the first programming language with a modern, object-oriented approach to input and
output. Java's I/O model is more powerful and more suited to real-world tasks than any other
major language used today. Surprisingly, however, I/O in Java has a bad reputation. It is
widely believed (falsely) that Java I/O can't handle basic tasks that are easily accomplished in
other languages like C, C++, and Pascal. In particular, it is commonly said that:

• I/O is too complex for introductory students; or, more specifically, there's no good
way to read a number from the console.

• Java can't handle basic formatting tasks like printing with three decimal digits of
precision.

Java I/O

2

This book will show you that not only can Java handle these two tasks with relative ease and
grace; it can do anything C and C++ can do, and a whole lot more. Java's I/O capabilities not
only match those of classic languages like C and Pascal, they vastly surpass them.

The most common complaint about Java I/O among students, teachers, authors of textbooks,
and posters to comp.lang.java is that there's no simple way to read a number from the console
(System.in). Many otherwise excellent introductory Java books repeat this canard. Some
textbooks go to great lengths to reproduce the behavior they're accustomed to from C or
Pascal, apparently so teachers don't have to significantly rewrite the tired Pascal exercises
they've been using for the last 20 years. However, new books that aren't committed to the old
ways of doing things generally use command-line arguments for basic exercises, then rapidly
introduce the graphical user interfaces any real program is going to use anyway. Apple wisely
abandoned the command-line interface back in 1984, and the rest of the world is slowly
catching up.[1] Although System.in and System.out are certainly convenient for teaching and
debugging, in 1999 no completed, cross-platform program should even assume the existence
of a console for either input or output.

The second common complaint about Java I/O is that it can't handle formatted output; that is,
that there's no equivalent of printf() in Java. In a very narrow sense, this is true because
Java does not support the variable length argument lists a function like printf() requires.
Nonetheless, a number of misguided souls (your author not least among them) have at one
time or another embarked on futile efforts to reproduce printf() in Java. This may have
been necessary in Java 1.0, but as of Java 1.1, it's no longer needed. The java.text package,
discussed in Chapter 16, provides complete support for formatting numbers. Furthermore, the
java.text package goes way beyond the limited capabilities of printf(). It supports not
only different precisions and widths, but also internationalization, currency formats,
percentages, grouping symbols, and a lot more. It can easily be extended to handle Roman
numerals, scientific or exponential notation, or any other number format you may require.

The underlying flaw in most people's analysis of Java I/O is that they've confused input and
output with the formatting and interpreting of data. Java is the first major language to cleanly
separate the classes that read and write bytes (primarily, various kinds of input streams and
output streams) from the classes that interpret this data. You often need to format strings
without necessarily writing them on the console. You may also need to write large chunks of
data without worrying about what they represent. Traditional languages that connect
formatting and interpretation to I/O and hard-wire a few specific formats are extremely
difficult to extend to other formats. In essence, you have to give up and start from scratch
every time you want to process a new format.

Furthermore, C's printf(), fprintf(), and sprintf() family only really works well on
Unix (where, not coincidentally, C was invented). On other platforms, the underlying
assumption that every target may be treated as a file fails, and these standard library functions
must be replaced by other functions from the host API.

Java's clean separation between formatting and I/O allows you to create new formatting
classes without throwing away the I/O classes, and to write new I/O classes while still using
the old formatting classes. Formatting and interpreting strings are fundamentally different

1 MacOS X will reportedly add a real command-line shell to the Mac for the first time ever. Mainly, this is because MacOS X has Unix at its heart.
However, Apple at least has the good taste to hide the shell so it won't confuse end users and tempt developers away from the righteous path of
graphical user interfaces.

Java I/O

3

operations from moving bytes from one device to another. Java is the first major language to
recognize and take advantage of this.

Organization of the Book

This book has 17 chapters that are divided into four parts, plus two appendixes.

Part I: Basic I/O

Chapter 1

Chapter 1 introduces the basic architecture and design of the java.io package,
including the reader/stream dichotomy. Some basic preliminaries about the int, byte,
and char data types are discussed. The IOException thrown by many I/O methods is
introduced. The console is introduced, along with some stern warnings about its
proper use. Finally, I offer a cautionary message about how the security manager can
interfere with most kinds of I/O, sometimes in unexpected ways.

Chapter 2

Chapter 2 teaches you the basic methods of the java.io.OutputStream class you
need to write data onto any output stream. You'll learn about the three overloaded
versions of write(), as well as flush() and close(). You'll see several examples,
including a simple subclass of OutputStream that acts like /dev/null and a TextArea
component that gets its data from an output stream.

Chapter 3

The third chapter introduces the basic methods of the java.io.InputStream class
you need to read data from a variety of sources. You'll learn about the three
overloaded variants of the read() method and when to use each. You'll see how to
skip over data and check how much data is available, as well as how to place a
bookmark in an input stream, then reset back to that point. You'll learn how and why
to close input streams. This will all be drawn together with a StreamCopier program
that copies data read from an input stream onto an output stream. This program will be
used repeatedly over the next several chapters.

Part II: Data Sources

Chapter 4

The majority of I/O involves reading or writing files. Chapter 4 introduces the
FileInputStream and FileOutputStream classes, concrete subclasses of
InputStream and OutputStream that let you read and write files. These classes have
all the usual methods of their superclasses, such as read(), write(), available(),
flush(), and so on. Also in this chapter, development of a File Viewer program
commences. You'll see how to inspect the raw bytes in a file in both decimal and
hexadecimal format. This example will be progressively expanded throughout the rest
of the book.

Java I/O

4

Chapter 5

From its first days, Java has always had the network in mind, more so than any other
common programming language. Java is the first programming language to provide as
much support for network I/O as it does for file I/O, perhaps even more. Chapter 5
introduces Java's URL, URLConnection, Socket, and ServerSocket classes, all fertile
sources of streams. Typically the exact type of the stream used by a network
connection is hidden inside the undocumented sun classes. Thus network I/O relies
primarily on the basic InputStream and OutputStream methods. Examples in this
chapter include several simple web and email clients.

Part III: Filter Streams

Chapter 6

Chapter 6 introduces filter streams. Filter input streams read data from a preexisting
input stream like a FileInputStream, and have an opportunity to work with or
change the data before it is delivered to the client program. Filter output streams write
data to a preexisting output stream such as a FileOutputStream, and have an
opportunity to work with or change the data before it is written onto the underlying
stream. Multiple filters can be chained onto a single underlying stream to provide the
functionality offered by each filter. Filters streams are used for encryption,
compression, translation, buffering, and much more. At the end of this chapter, the
File Viewer program is redesigned around filter streams to make it more extensible.

Chapter 7

Chapter 7 introduces data streams, which are useful for writing strings, integers,
floating-point numbers, and other data that's commonly presented at a level higher
than mere bytes. The DataInputStream and DataOutputStream classes read and
write the primitive Java data types (boolean, int, double, etc.) and strings in a
particular, well-defined, platform-independent format. Since DataInputStream and
DataOutputStream use the same formats, they're complementary. What a data output
stream writes, a data input stream can read, and vice versa. These classes are
especially useful when you need to move data between platforms that may use
different native formats for integers or floating-point numbers. Along the way, you'll
develop classes to read and write little-endian numbers, and you'll extend the File
Viewer program to handle big- and little-endian integers and floating-point numbers of
varying widths.

Chapter 8

Chapter 8 shows you how streams can move data from one part of a running Java
program to another. There are three main ways to do this. Sequence input streams
chain several input streams together so that they appear as a single stream. Byte array
streams allow output to be stored in byte arrays and input to be read from byte arrays.
Finally, piped input and output streams allow output from one thread to become input
for another thread.

Java I/O

5

Chapter 9

Chapter 9 explores the java.util.zip and java.util.jar packages. These
packages contain assorted classes that read and write data in zip, gzip, and
inflate/deflate formats. Java uses these classes to read and write JAR archives and to
display PNG images. However, the java.util.zip classes are more general than
that, and can be used for general-purpose compression and decompression. Among
other things, they make it trivial to write a simple compressor or decompressor
program, and several will be demonstrated. In the final example, support for
compressed files is added to the File Viewer program.

Chapter 10

The Java core API contains two cryptography-related filter streams in the
java.security package, DigestInputStream and DigestOutputStream. There are
two more in the javax.crypto package, CipherInputStream and
CipherOutputStream, available in the Java Cryptography Extension™ (JCE for
short). Chapter 10 shows you how to use these classes to encrypt and decrypt data
using a variety of algorithms, including DES and Blowfish. You'll also learn how to
calculate message digests for streams that can be used for digital signatures. In the
final example, support for encrypted files is added to the File Viewer program.

Part IV: Advanced and Miscellaneous Topics

Chapter 11

The first 10 chapters showed you how to read and write various primitive data types to
many different kinds of streams. Chapter 11 shows you how to write everything else.
Object serialization, first used in the context of remote method invocation (RMI) and
later for JavaBeans™, lets you read and write almost arbitrary objects onto a stream.
The ObjectOutputStream class provides a writeObject() method you can use to
write a Java object onto a stream. The ObjectInputStream class has a readObject()
method you can use to read an object from a stream. In this chapter, you'll learn how
to use these two classes to read and write objects, as well as how to customize the
format used for serialization.

Chapter 12

Chapter 12 shows you how to perform operations on files other than simply reading or
writing them. Files can be moved, deleted, renamed, copied, and manipulated without
respect to their contents. Files are also often associated with meta-information that's
not strictly part of the contents of the file, such as the time the file was created, the
icon for the file, or the permissions that determine which users can read or write to the
file.

The java.io.File class attempts to provide a platform-independent abstraction for
common file operations and meta-information. Unfortunately, this class really shows
its Unix roots. It works fine on Unix, reasonably well on Windows—with a few
caveats—and fails miserably on the Macintosh. File manipulation is thus one of the
real bugbears of cross-platform Java programming. Therefore, this chapter shows you

Java I/O

6

not only how to use the File class, but also the precautions you need to take to make
your file code portable across all major platforms that support Java.

Chapter 13

Filenames are problematic, even if you don't have to worry about cross-platform
idiosyncrasies. Users forget filenames, mistype them, can't remember the exact path to
files they need, and more. The proper way to ask a user to choose a file is to show
them a list of the files and let them pick one. Most graphical user interfaces provide
standard graphical widgets for selecting a file. In Java, the platform's native file
selector widget is exposed through the java.awt.FileDialog class. Like many
native peer-based classes, however, FileDialog doesn't behave the same or provide
the same services on all platforms. Therefore, the Java Foundation Classes™ 1.1
(Swing) provide a pure Java implementation of a file dialog, the
javax.swing.JFileChooser class. Chapter 13 shows you how to use both these
classes to provide a GUI file selection interface. In the final example, you'll add a
Swing-based GUI to the File Viewer program.

Chapter 14

We live on a planet where many languages are spoken, yet most programming
languages still operate under the assumption that everything you need to say can be
expressed in English. Java is starting to change that by adopting the multinational
Unicode as its native character set. All Java chars and strings are given in Unicode.
However, since there's also a lot of non-Unicode legacy text in the world, in a
dizzying array of encodings, Java also provides the classes you need to read and write
this text in these encodings as well. Chapter 14 introduces you to the multitude of
character sets used around the world, and develops a simple applet to test which ones
your browser/VM combination supports.

Chapter 15

A language that supports international text must separate the reading and writing of
raw bytes from the reading and writing of characters, since in an international system
they are no longer the same thing. Classes that read characters must be able to parse a
variety of character encodings, not just ASCII, and translate them into the language's
native character set. Classes that write characters must be able to translate the
language's native character set into a variety of formats and write those. In Java, this
task is performed by the Reader and Writer classes. Chapter 15 shows you how to
use these classes, and adds support for multilingual text to the File Viewer program.

Chapter 16

Java 1.0 did not provide classes for specifying the width, precision, and alignment of
numeric strings. Java 1.1 and later make these available as subclasses of
java.text.NumberFormat. As well as handling the traditional formatting achieved by
languages like C and Fortran, NumberFormat also internationalizes numbers with
different character sets, thousands separators, decimal points, and digit characters.
Chapter 16 shows you how to use this class and its subclasses for traditional tasks, like

Java I/O

7

lining up the decimal points in a table of prices, and nontraditional tasks, like
formatting numbers in Egyptian Arabic.

Chapter 17

Chapter 17 introduces the Java Communications API, a standard extension available
for Java 1.1 and later that allows Java applications and trusted applets to send and
receive data to and from the serial and parallel ports of the host computer. The Java
Communications API allows your programs to communicate with essentially any
device connected to a serial or parallel port, like a printer, a scanner, a modem, a tape
backup unit, and so on.

Chapter 1 through Chapter 3 provide the basic background you'll need to do any sort of work
with I/O in Java. After that, you should feel free to jump around as your interests take you.
There are, however, some interdependencies between specific chapters. Figure P.1 should
allow you to map out possible paths through the book.

Figure P.1. Chapter prerequisites

A few examples in later chapters depend on material from earlier chapters—for instance,
many examples use the FileInputStream class discussed in Chapter 4—but they should not
be difficult to understand in the large.

Java I/O

8

Who You Are

This book assumes you have a basic familiarity with Java. You should be thoroughly familiar
with the syntax of the language. You should be comfortable with object-oriented
programming, including terminology like instances, objects, and classes, and you should
know the difference between these terms. You should know what a reference is and what that
means for passing arguments to and returning values from methods. You should have written
simple applications and applets.

For the most part, I try to keep the examples relatively straightforward so that they require a
minimum of understanding of other parts of the class library outside the I/O classes. This may
lead some to deride these as "toy examples." However, I find that such examples are far more
conducive to understanding and learning than full-blown sophisticated programs that fill page
after page with graphical user interface code just to demonstrate a two-line point about I/O.
Occasionally, however, a graphical example is simply too tempting to ignore, as in the
StreamedTextArea class shown in Chapter 2 or the File Viewer application developed
throughout most of the book. I will try to keep the AWT material to a minimum, but a
familiarity with 1.1 AWT basics will be assumed.

When you encounter a topic that requires a deeper understanding for I/O than is customary—
for instance, the exact nature of strings—I'll cover that topic as well, at least briefly. However,
this is not a language tutorial, and the emphasis will always be on the I/O-specific features.

Versions

In many ways, this book was inspired by the wealth of new I/O functionality included in Java
1.1. I/O in Java 1.0 is overall much simpler, though also much less powerful. For instance,
there are no Reader and Writer classes in Java 1.0. However, there's also no reliable way to
read pure Unicode text. Furthermore, Java 1.1 added many new classes to the library for
performing a variety of I/O-related tasks like compression, encryption, digital signatures,
object serialization, encoding conversion, and much more.

Therefore, this book assumes at least Java 1.1. For the most part, Java 1.0 has been relegated
to developing applets that run inside web browsers. Because the applet security manager
severely restricts the I/O an untrusted applet can undertake, most applets do not make heavy
use of I/O, and thus it should not be a major concern.

Java 2's I/O classes are mostly identical to those in Java 1.1, with one noticeable exception.
Java 2 does a much better (though still imperfect) job of abstracting out platform-dependent
filesystem idiosyncrasies than does Java 1.1. Some (though not all) of these improvements are
also available to Java 1.1 programmers working with Swing. I'll discuss both the Java 1.1 and
Java 2 approaches to the filesystem in Chapter 12.

In any case, when I discuss a method, class or interface that's only available in Java 2, its
signature will be suffixed with a comment indicating that. For example:

public interface Replaceable extends Serializable // Java 2

Java I/O

9

Security Issues

I don't know if there's one most frequently asked question about Java Network Programming,
but there's definitely a most frequent answer, and it applies to this book too. My mistake in
Java Network Programming was hiding that answer in the back of a chapter most people
didn't read. Since that very same answer should answer an equal number of questions from
readers of this book, I want to get it out of the way right up front:

Java's security manager prevents almost all the examples and methods discussed in this book
from working in an applet.

This book focuses very much on applications. There is very little that can be done with I/O
from an untrusted applet without running afoul of the security manager. The problem may not
always be obvious—not all web browsers properly report security exceptions—but it is there.

There are some exceptions. Byte array streams and piped streams work without limitation in
applets. Network connections can be made back to the host from whence the applet came (and
only to that host). System.in and System.out may be accessible from some, though not all,
web browsers. And in Java 2 and later, there are ways to relax the restrictions on applets so
they get limited access to the filesystem or unlimited access to the network. However, these
are exceptions, not the rule.

If you can make an applet work when run as a standalone application and you cannot get it to
work inside a web browser, the problem is almost certainly a conflict with the browser's
security manager.

Conventions Used in This Book

Italic is used for:

• Filenames (readme.txt)
• Host and domain names (http://www.oreilly.com/)
• URLs (http://metalab.unc.edu/javafaq/)

Constant width is used for:

• Code examples and fragments
• Class, variable, and method names, and Java keywords used within the text

Significant code fragments and complete programs are generally placed in a separate
paragraph like this:

InputStream in = new FileInputStream("/etc/mailcap");

When code is presented as fragments rather than complete programs, the existence of the
appropriate import statements should be inferred. For example, in the previous code fragment
you may assume that java.io.InputStream and java.io.FileInputStream were
imported.

Java I/O

10

Some examples intermix user input with program output. In these cases, the user input will be
displayed in bold, but otherwise in the same monospaced font, as in this example from
Chapter 17:

D:\JAVA\16>java PortTyper COM2
at&f
at&f

OK
atdt 321-1444

Most of the code examples in this book are optimized for legibility rather than speed. For
instance, consider this getIcon() method from Chapter 13:

public Icon getIcon(File f) {

 if (f.getName().endsWith(".zip")) return zipIcon;
 if (f.getName().endsWith(".gz")) return gzipIcon;
 if (f.getName().endsWith(".dfl")) return deflateIcon;
 return null;
}

I invoke the f.getName() method three times, when once would do:

public Icon getIcon(File f) {

 String name = f.getName();
 if (name.endsWith(".zip")) return zipIcon;
 if (name.endsWith(".gz")) return gzipIcon;
 if (name.endsWith(".dfl")) return deflateIcon;
 return null;
}

However, this seemed slightly less obvious than the first example. Therefore, I chose the
marginally slower form. Other, still less obvious optimizations are also possible, but would
only make the code even more obscure. For example:

public Icon getIcon(File f) {

 String name = f.getName();
 String lastDot = name.lastIndexOf('.');
 if (lastDot != -1) {
 String extension = name.substring(lastDot+1);
 if (extension.equals("zip")) return zipIcon;
 if (extension.equals("gz")) return gzipIcon;
 if (extension.equals("dfl")) return deflateIcon;
 }
 return null;
}

I might resort to this form if profiling proved that this method was a performance bottleneck
in my application, and this revised method was genuinely faster, but I certainly wouldn't use it
in my first pass at the problem. In general, I only optimize for speed when similar code seems
likely to be a performance bottleneck in situations where it's likely to be used, or when
optimizing can be done without negatively affecting the legibility of the code.

Java I/O

11

Finally, although many of the examples are toys unlikely to be reused, a few of the classes I
develop have real value. Please feel free to reuse them or any parts of them in your own code;
no special permission is required. Such classes are placed somewhere in the com.macfaq
package, generally mirroring the java package hierarchy. For instance, Chapter 2's
NullOutputStream class is in the com.macfaq.io package; its StreamedTextArea class is in
the com.macfaq.awt package. When working with these classes, don't forget that the
compiled .class files must reside in directories matching their package structure inside your
class path and that you'll have to import them in your own classes before you can use them.[2]
The web page includes a JAR file that can be installed in your class path.

Furthermore, classes not in the default package with main() methods are generally run by
passing in the full package-qualified name. For example:

D:\JAVA\ioexamples\04>java com.macfaq.io.FileCopier oldfile newfile

Request for Comments

I enjoy hearing from readers, whether with general comments about how this could be a better
book, specific corrections, or other topics you would like to see covered. You can reach me by
sending email to elharo@metalab.unc.edu. Please realize, however, that I receive several
hundred pieces of email a day and cannot personally respond to each one.

I'm especially interested in hearing about mistakes. If you find one, I'll post it on my web page
for this book at http://metalab.unc.edu/javafaq/books/javaio/ and on the O'Reilly web site at
http://www.oreilly.com/catalog/javaio/. Before reporting errors, please check one of those
pages to see if I already know about it and have posted a fix.

Let me also preempt a couple of non-errors that are often mistakenly reported. First, the
signatures given in this book don't necessarily match the signatures given in the javadoc
documentation. I often change method argument names to make them clearer. For instance,
Sun documents the write() method in java.io.OutputStream like this:

public void write(byte b[]) throws IOException
public void write(byte b[], int off, int len) throws IOException

I've rewritten that in this more intelligible form:

public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException

These are exactly equivalent, however. Method argument names are purely formal and have
no effect on client programmer's code that invokes these methods. I could have rewritten them
in Latin or Tuvan without really changing anything. The only difference is in their
intelligibility to the reader.

2 See "The Name Space: Packages, Classes, and Members" in the second edition of David Flanagan's Java in a Nutshell (O'Reilly & Associates,
1997).

Java I/O

12

Acknowledgments

Many people were involved in the production of this book. All these people deserve much
thanks and credit. My editor, Mike Loukides, got this book rolling and provided many helpful
comments that substantially improved it. Clairemarie Fisher O'Leary, Chris Maden, and
Robert Romano deserve a special commendation for putting in all the extra effort needed for a
book that makes free use of Arabic, Cyrillic, Chinese, and other non-Roman scripts. Tim
O'Reilly and the whole crew at O'Reilly deserve special thanks for building a publisher that's
willing to give a book the time and support it needs to be a good book rather than rushing it
out the door to meet an artificial deadline.

Many people looked over portions of the manuscript and provided helpful comments. These
included Scott Bortman, Bob Eckstein, and Avner Gelb. Bruce Schneier and Jan Luehe both
lent their expertise to the cryptography chapter. Ian Darwin was invaluable in handling the
details of the Java Communications API.

My agent, David Rogelberg, convinced me it was possible to make a living writing books like
this rather than working in an office. Finally, I'd like to save my largest thanks for my wife,
Beth, without whose support and assistance this book would never have happened.

Java I/O

13

Part I: Basic I/O

Java I/O

14

Chapter 1. Introducing I/O
Input and output, I/O for short, are fundamental to any computer operating system or
programming language. Only theorists find it interesting to write programs that don't require
input or produce output. At the same time, I/O hardly qualifies as one of the more "thrilling"
topics in computer science. It's something in the background, something you use every day—
but for most developers, it's not a topic with much sex appeal.

There are plenty of reasons for Java programmers to find I/O interesting. Java includes a
particularly rich set of I/O classes in the core API, mostly in the java.io package. For the
most part I/O in Java is divided into two types: byte- and number-oriented I/O, which is
handled by input and output streams; and character and text I/O, which is handled by readers
and writers. Both types provide an abstraction for external data sources and targets that allows
you to read from and write to them, regardless of the exact type of the source. You use the
same methods to read from a file that you do to read from the console or from a network
connection.

But that's just the tip of the iceberg. Once you've defined abstractions that let you read or
write without caring where your data is coming from or where it's going to, you can do a lot
of very powerful things. You can define I/O streams that automatically compress, encrypt,
and filter from one data format to another, and more. Once you have these tools, programs can
send encrypted data or write zip files with almost no knowledge of what they're doing;
cryptography or compression can be isolated in a few lines of code that say, "Oh yes, make
this an encrypted output stream."

In this book, I'll take a thorough look at all parts of Java's I/O facilities. This includes all the
different kinds of streams you can use. We're also going to investigate Java's support for
Unicode (the standard multilingual character set). We'll look at Java's powerful facilities for
formatting I/O—oddly enough, not part of the java.io package proper. (We'll see the reasons
for this design decision later.) Finally, we'll take a brief look at the Java Communications API
(javax.comm), which provides the ability to do low-level I/O through a computer's serial and
parallel ports.

I won't go so far as to say, "If you've always found I/O boring, this is the book for you!" I will
say that if you do find I/O uninteresting, you probably don't know as much about it as you
should. I/O is the means for communication between software and the outside world
(including both humans and other machines). Java provides a powerful and flexible set of
tools for doing this crucial part of the job.

Having said that, let's start with the basics.

1.1 What Is a Stream?

A stream is an ordered sequence of bytes of undetermined length. Input streams move bytes
of data into a Java program from some generally external source. Output streams move bytes
of data from Java to some generally external target. (In special cases streams can also move
bytes from one part of a Java program to another.)

Java I/O

15

The word stream is derived from an analogy with a stream of water. An input stream is like a
siphon that sucks up water; an output stream is like a hose that sprays out water. Siphons can
be connected to hoses to move water from one place to another. Sometimes a siphon may run
out of water if it's drawing from a finite source like a bucket. On the other hand, if the siphon
is drawing water from a river, it may well provide water indefinitely. So too an input stream
may read from a finite source of bytes like a file or an unlimited source of bytes like
System.in. Similarly an output stream may have a definite number of bytes to output or an
indefinite number of bytes.

Input to a Java program can come from many sources. Output can go to many different kinds
of destinations. The power of the stream metaphor and in turn the stream classes is that the
differences between these sources and destinations are abstracted away. All input and output
are simply treated as streams.

1.1.1 Where Do Streams Come From?

The first source of input most programmers encounter is System.in. This is the same thing as
stdin in C, generally some sort of console window, probably the one in which the Java
program was launched. If input is redirected so the program reads from a file, then System.in
is changed as well. For instance, on Unix, the following command redirects stdin so that
when the MessageServer program reads from System.in, the actual data comes from the file
data.txt instead of the console:

% java MessageServer < data.txt

The console is also available for output through the static field out in the java.lang.System
class, that is, System.out. This is equivalent to stdout in C parlance and may be redirected
in a similar fashion. Finally, stderr is available as System.err. This is most commonly used
for debugging and printing error messages from inside catch clauses. For example:

try {
 //... do something that might throw an exception
}
catch (Exception e) { System.err.println(e); }

Both System.out and System.err are print streams, that is, instances of
java.io.PrintStream.

Files are another common source of input and destination for output. File input streams
provide a stream of data that starts with the first byte in a file and finishes with the last byte in
the file. File output streams write data into a file, either by erasing the file's contents and
starting from the beginning or by appending data to the file. These will be introduced in
Chapter 4.

Network connections provide streams too. When you connect to a web server or FTP server
or something else, you read the data it sends from an input stream connected from that server
and write data onto an output stream connected to that server. These streams will be
introduced in Chapter 5.

Java I/O

16

Java programs themselves produce streams. Byte array input streams, byte array output
streams, piped input streams, and piped output streams all use the stream metaphor to move
data from one part of a Java program to another. Most of these are introduced in Chapter 8.

Perhaps a little surprisingly, AWT (and Swing) components like TextArea do not produce
streams. The issue here is ordering. Given a group of bytes provided as data, there must be a
fixed order to those bytes for them to be read or written as a stream. However, a user can
change the contents of a text area or a text field at any point, not just the end. Furthermore,
they can delete text from the middle of a stream while a different thread is reading that data.
Hence, streams aren't a good metaphor for reading data from graphical user interface (GUI)
components. You can, however, always use the strings they do produce to create a byte array
input stream or a string reader.

1.1.2 The Stream Classes

Most of the classes that work directly with streams are part of the java.io package. The two
main classes are java.io.InputStream and java.io.OutputStream . These are abstract
base classes for many different subclasses with more specialized abilities, including:

BufferedInputStream BufferedOutputStream
ByteArrayInputStream ByteArrayOutputStream
DataInputStream DataOutputStream
FileInputStream FileOutputStream
FilterInputStream FilterOutputStream
LineNumberInputStream ObjectInputStream
ObjectOutputStream PipedInputStream
PipedOutputStream PrintStream
PushbackInputStream SequenceInputStream
StringBufferInputStream

Though I've included them here for completeness, the LineNumberInputStream and
StringBufferInputStream classes are deprecated. They've been replaced by the
LineNumberReader and StringReader classes, respectively.

Sun would also like to deprecate PrintStream. In fact, the PrintStream() constructors were
deprecated in Java 1.1, though undeprecated in Java 2. Part of the problem is that System.out
is a PrintStream ; therefore, PrintStream is too deeply ingrained in existing Java code to
deprecate and is thus likely to remain with us for the foreseeable future.

The java.util.zip package contains four input stream classes that read data in a
compressed format and return it in uncompressed format and four output stream classes that
read data in uncompressed format and write in compressed format. These will be discussed in
Chapter 9.

CheckedInputStream CheckedOutputStream
DeflaterOutputStream GZIPInputStream
GZIPOutputStream InflaterInputStream
ZipInputStream ZipOutputStream

Java I/O

17

The java.util.jar package includes two stream classes for reading files from JAR archives.
These will also be discussed in Chapter 9.

JarInputStream JarOutputStream

The java.security package includes a couple of stream classes used for calculating
message digests:

DigestInputStream DigestOutputStream

The Java Cryptography Extension (JCE) adds two classes for encryption and decryption:

CipherInputStream CipherOutputStream

These four streams will be discussed in Chapter 10.

Finally, there are a few random stream classes hiding inside the sun packages—for example,
sun.net.TelnetInputStream and sun.net.TelnetOutputStream . However, these are
deliberately hidden from you and are generally presented as instances of
java.io.InputStream or java.io.OutputStream only.

1.2 Numeric Data

Input streams read bytes and output streams write bytes. Readers read characters and writers
write characters. Therefore, to understand input and output, you first need a solid
understanding of how Java deals with bytes, integers, characters, and other primitive data
types, and when and why one is converted into another. In many cases Java's behavior is not
obvious.

1.2.1 Integer Data

The fundamental integer data type in Java is the int, a four-byte, big-endian, two's
complement integer. An int can take on all values between -2,147,483,648 and
2,147,483,647. When you type a literal integer like 7, -8345, or 3000000000 in Java source
code, the compiler treats that literal as an int. In the case of 3000000000 or similar numbers
too large to fit in an int, the compiler emits an error message citing "Numeric overflow."

longs are eight-byte, big-endian, two's complement integers with ranges from -
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. long literals are indicated by
suffixing the number with a lower- or uppercase L. An uppercase L is preferred because the
lowercase l is too easily confused with the numeral 1 in most fonts. For example, 7L, -8345L,
and 3000000000L are all 64-bit long literals.

There are two more integer data types available in Java, the short and the byte. shorts are
two-byte, big-endian, two's complement integers with ranges from -32,768 to 32,767. They're
rarely used in Java and are included mainly for compatibility with C.

bytes, however, are very much used in Java. In particular they're used in I/O. A byte is an
eight-bit, two's complement integer that ranges from -128 to 127. Note that like all numeric

Java I/O

18

data types in Java, a byte is signed. The maximum byte value is 127. 128, 129, and so on
through 255 are not legal values for bytes.

There are no short or byte literals in Java. When you write the literal 42 or 24000, the
compiler always reads it as an int, never as a byte or a short, even when used in the right-
hand side of an assignment statement to a byte or short, like this:

byte b = 42;
short s = 24000;

However, in these lines a special assignment conversion is performed by the compiler,
effectively casting the int literals to the narrower types. Because the int literals are constants
known at compile time, this is permitted. However, assignments from int variables to shorts
and bytes are not, at least not without an explicit cast. For example, consider these lines:

int i = 42;
short s = i;
byte b = i;

Compiling these lines produces the following errors:

Error: Incompatible type for declaration.
Explicit cast needed to convert int to short.
ByteTest.java line 6
Error: Incompatible type for declaration.
Explicit cast needed to convert int to byte.
ByteTest.java line 7

Note that this occurs even though the compiler is theoretically capable of determining that the
assignment does not lose information. To correct this, you must use explicit casts, like this:

int i = 42;
short s = (short) i;
byte b = (byte) i;

Even simple arithmetic with small, byte-valued constants as follows produces "Explicit cast
needed to convert int to byte" errors:

byte b = 1 + 2;

In fact, even the addition of two byte variables produces an integer result and thus cannot be
assigned to a byte variable without a cast; the following code produces that same error:

byte b1 = 22;
byte b2 = 23;
byte b3 = b1 + b2;

For these reasons, working directly with byte variables is inconvenient at best. Many of the
methods in the stream classes are documented as reading or writing bytes. However, what
they really return or accept as arguments are ints in the range of an unsigned byte (0-255).
This does not match any Java primitive data type. These ints are then converted into bytes
internally.

Java I/O

19

For instance, according to the javadoc class library documentation, the read() method of
java.io.InputStream returns "the next byte of data, or -1 if the end of the stream is
reached." On a little thought, this sounds suspicious. How is a -1 that appears as part of the
stream data to be distinguished from a -1 indicating end of stream? In point of fact, the
read() method does not return a byte; its signature indicates that it returns an int:

public abstract int read() throws IOException

This int is not a Java byte with a value between -128 and 127 but a more general unsigned
byte with a value between and 255. Hence, -1 can easily be distinguished from valid data
values read from the stream.

The write() method in the java.io.OutputStream class is similarly problematic. It returns
void, but takes an int as an argument:

public abstract void write(int b) throws IOException

This int is intended to be an unsigned byte value between and 255. However, there's nothing
to stop a careless programmer from passing in an int value outside that range. In this case,
the eight low-order bits are written and the top 24 high-order bits are ignored. This is the
effect of taking the remainder modulo 256 of the int b and adding 256 if the value is
negative; that is,

b = b % 256 >= 0 ? b % 256 : 256 + b % 256;

More simply, using bitwise operators:

b = b & 0x000000FF;

Although this is the behavior specified by the Java Language
Specification, since the write() method is abstract, actual
implementation of this scheme is left to the subclasses, and a careless
programmer could do something different.

On the other hand, real Java bytes are used in those methods that read or write arrays of
bytes. For example, consider these two read() methods from java.io.InputStream :

public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException

While the difference between an 8-bit byte and a 32-bit int is insignificant for a single
number, it can be very significant when several thousand to several million numbers are read.
In fact, a single byte still takes up four bytes of space inside the Java virtual machine, but a
byte array only occupies the amount of space it actually needs. The virtual machine includes
special instructions for operating on byte arrays, but does not include any instructions for
operating on single bytes. They're just promoted to ints.

Although data is stored in the array as signed Java bytes with values between -128 to 127,
there's a simple one-to-one correspondence between these signed values and the unsigned
bytes normally used in I/O, given by the following formula:

Java I/O

20

int unsignedByte = signedByte >= 0 ? signedByte : 256 + signedByte;

1.2.2 Conversions and Casts

Since bytes have such a small range, they're often converted to ints in calculations and
method invocations. Often they need to be converted back, generally through a cast.
Therefore, it's useful to have a good grasp of exactly how the conversion occurs.

Casting from an int to a byte—for that matter, casting from any wider integer type to a
narrower type—takes place through truncation of the high-order bytes. This means that as
long as the value of the wider type can be expressed in the narrower type, the value is not
changed. The int 127 cast to a byte still retains the value 127.

On the other hand, if the int value is too large for a byte, strange things happen. The int 128
cast to a byte is not 127, the nearest byte value. Instead, it is -128. This occurs through the
wonders of two's complement arithmetic. Written in hexadecimal, 128 is 0x00000080. When
that int is cast to a byte, the leading zeros are truncated, leaving 0x80. In binary this can be
written as 10000000. If this were an unsigned number, 10000000 would be 128 and all would
be fine, but this isn't an unsigned number. Instead, the leading bit is a sign bit, and that 1 does
not indicate 27 but a minus sign. The absolute value of a negative number is found by taking
the complement (changing all the 1 bits to bits and vice versa) and adding 1. The complement
of 10000000 is 01111111. Adding 1, you have 01111111 + 1 = 10000000 = 128 (decimal).
Therefore, the byte 0x80 actually represents -128. Similar calculations show that the int 129
is cast to the byte -127, the int 130 is cast to the byte -126, the int 131 is cast to the byte -
125, and so on. This continues through the int 255, which is cast to the byte -1.

When 256 is reached, the low-order bytes of the int are now filled with zeros. In other words,
256 is 0x00000100. Thus casting it to a byte produces 0, and the cycle starts over. This
behavior can be reproduced algorithmically with this formula, though a cast is obviously
simpler:

int byteValue;
int temp = intValue % 256;
if (intValue < 0) {
 byteValue = temp < -128 ? 256 + temp : temp;
}
else {
 byteValue = temp > 127 ? temp - 256 : temp;
}

1.3 Character Data

Numbers are only part of the data a typical Java program needs to read and write. Most
programs also need to handle text, which is composed of characters. Since computers only
really understand numbers, characters are encoded by matching each character in a given
script to a particular number. For example, in the common ASCII encoding, the character A is
mapped to the number 65; the character B is mapped to the number 66; the character C is
mapped to the number 67; and so on. Different encodings may encode different scripts or may
encode the same or similar scripts in different ways.

Java I/O

21

Java understands several dozen different character sets for a variety of languages, ranging
from ASCII to the Shift Japanese Input System (SJIS) to Unicode. Internally, Java uses the
Unicode character set. Unicode is a two-byte extension of the one-byte ISO Latin-1 character
set, which in turn is an eight-bit superset of the seven-bit ASCII character set.

1.3.1 ASCII

ASCII, the American Standard Code for Information Interchange, is a seven-bit character set.
Thus it defines 27 or 128 different characters whose numeric values range from to 127. These
characters are sufficient for handling most of American English and can make reasonable
approximations to most European languages (with the notable exceptions of Russian and
Greek). It's an often used lowest common denominator format for different computers. If you
were to read a byte value between and 127 from a stream, then cast it to a char, the result
would be the corresponding ASCII character.

ASCII characters 0-31 and character 127 are nonprinting control characters. Characters 32-47
are various punctuation and space characters. Characters 48-57 are the digits 0-9. Characters
58-64 are another group of punctuation characters. Characters 65-90 are the capital letters A-
Z. Characters 91-96 are a few more punctuation marks. Characters 97-122 are the lowercase
letters a-z. Finally, characters 123 through 126 are a few remaining punctuation symbols. The
complete ASCII character set is shown in Table B.1 in Appendix B.

All Java programs can be expressed in pure ASCII. Non-ASCII Unicode characters are
encoded as Unicode escapes; that is, written as a backslash (\), followed by a u, followed by
four hexadecimal digits; for example, \u00A9. This is discussed further under the Section
1.3.3 section, later in this chapter.

1.3.2 ISO Latin-1

ISO Latin-1 is an eight-bit character set that's a strict superset of ASCII. It defines 28 or 256
different characters whose numeric values range from to 255. The first 128 characters—that
is, those numbers with the high-order bit equal to zero—correspond exactly to the ASCII
character set. Thus 65 is ASCII A and ISO Latin-1 A; 66 is ASCII B and ISO Latin-1 B; and
so on. Where ISO Latin-1 and ASCII diverge is in the characters between 128 and 255
(characters with high bit equal to one). ASCII does not define these characters. ISO Latin-1
uses them for various accented letters like ü needed for non-English languages written in a
Roman script, additional punctuation marks and symbols like ©, and additional control
characters. The upper, non-ASCII half of the ISO Latin-1 character set is shown in Table B.2.

Latin-1 provides enough characters to write most Western European languages (again with
the notable exception of Greek). It's a popular lowest common denominator format for
different computers. If you were to read an unsigned byte value from a stream, then cast it to
a char, the result would be the corresponding ISO Latin-1 character.

1.3.3 Unicode

ISO Latin-1 suffices for most Western European languages, but it doesn't have anywhere near
the number of characters required to represent Cyrillic, Greek, Arabic, Hebrew, Persian, or
Devanagari, not to mention pictographic languages like Chinese and Japanese. Chinese alone
has over 80,000 different characters. To handle these scripts and many others, the Unicode

Java I/O

22

character set was invented. Unicode is a 2-byte, 16-bit character set with 216 or 65,536
different possible characters. (Only about 40,000 are used in practice, the rest being reserved
for future expansion.) Unicode can handle most of the world's living languages and a number
of dead ones as well.

The first 256 characters of Unicode—that is, the characters whose high-order byte is zero—
are identical to the characters of the ISO Latin-1 character set. Thus 65 is ASCII A and
Unicode A; 66 is ASCII B and Unicode B and so on.

Java streams do not do a good job of reading Unicode text. (This is why readers and writers
were added in Java 1.1.) Streams generally read a byte at a time, but each Unicode character
occupies two bytes. Thus, to read a Unicode character, you multiply the first byte read by 256,
add it to the second byte read, and cast the result to a char. For example:

int b1 = in.read();
int b2 = in.read();
char c = (char) (b1*256 + b2);

You must be careful to ensure that you don't inadvertently read the last byte of one character
and the first byte of the next, instead. Thus, for the most part, when reading text encoded in
Unicode or any other format, you should use a reader rather than an input stream. Readers
handle the conversion of bytes in one character set to Java chars without any extra effort. For
similar reasons, you should use a writer rather than an output stream to write text.

1.3.4 UTF-8

Unicode is a relatively inefficient encoding when most of your text consists of ASCII
characters. Every character requires the same number of bytes—two—even though some
characters are used much more frequently than others. A more efficient encoding would use
fewer bits for the more common characters. This is what UTF-8 does.

In UTF-8 the ASCII alphabet is encoded using a single byte, just as in ASCII. The next 1,919
characters are encoded in two bytes. The remaining Unicode characters are encoded in three
bytes. However, since these three-byte characters are relatively uncommon,[1] especially in
English text, the savings achieved by encoding ASCII in a single byte more than makes up for
it.

Java's .class files use UTF-8 internally to store string literals. Data input streams and data
output streams also read and write strings in UTF-8. However, this is all hidden from direct
view of the programmer, unless perhaps you're trying to write a Java compiler or parse output
of a data stream without using the DataInputStream class.

1.3.4.1 Other encodings

ASCII, ISO Latin-1, and Unicode are hardly the only character sets in common use, though
they are the ones handled most directly by Java. There are many other character sets, both that
encode different scripts and that encode the same scripts in different ways. For example, IBM
mainframes have long used a non-ASCII eight-bit character set called EBCDIC. EBCDIC has
most of the same characters as ASCII but assigns them to different numbers. Macintoshes

1 The vast majority of the characters above 2047 are the pictograms used for Chinese, Japanese, and Korean.

Java I/O

23

commonly use an eight-bit encoding called MacRoman that matches ASCII in the lower 128
places and has most of the same characters as ISO Latin-1 in the upper 128 characters but in
different positions. Big-5 and SJIS are encodings of Chinese and Japanese, respectively, that
are designed to allow these large scripts to be input from a standard English keyboard.

Java's Reader, Writer, and String classes understand how to convert these character sets to
and from Unicode. This will be the subject of Chapter 14.

1.3.5 The char Data Type

Character-oriented data in Java is primarily composed of the char primitive data type, char
arrays, and Strings, which are stored as arrays of chars internally. Just as you need to
understand bytes to really grasp how input and output streams work, so too do you need to
understand chars to understand how readers and writers work.

In Java, a char is a two-byte, unsigned integer, the only unsigned type in Java. Thus, possible
char values range from to 65,535. Each char represents a particular character in the Unicode
character set. chars may be assigned to by using int literals in this range; for example:

char copyright = 169;

chars may also be assigned to by using char literals; that is, the character itself enclosed in
single quotes:

char copyright = '©';

Sun's javac compiler can translate many different encodings to Unicode by using the -
encoding command-line flag to specify the encoding in which the file is written. For
example, if you know a file is written in ISO Latin-1, you might compile it as follows:

% javac -encoding 8859_1 CharTest.java

The complete list of available encodings is given in Table B.4.

With the exception of Unicode itself, most character sets understood by Java do not have
equivalents for all the Unicode characters. To encode characters that do not exist in the
character set you're programming with, you can use Unicode escapes. A Unicode escape
sequence is an unescaped backslash, followed by any number of u characters, followed by
four hexadecimal digits specifying the character to be used. For example:

char copyright = '\u00A9';

The double backslash, \\, is an escaped backslash, which is replaced by
a single backslash that only means the backslash character. It is not
further interpreted. Thus a Java Compiler interprets the string \u00A9 as
© but \\u00A9 as the literal string \u00A9 and the string \\\u00A9 as
\©. Whenever an odd number of backslashes precede the four hex
digits, they will be interpreted as a single Unicode character. Whenever
an even number of backslashes precede the four hex digits, they will be
interpreted as four separate characters.

Java I/O

24

Unicode escapes may be used not just in char literals, but also in strings, identifiers,
comments, and even in keywords, separators, operators, and numeric literals. The compiler
translates Unicode escapes to actual Unicode characters before it does anything else with a
source code file. However, the actual use of Unicode escapes inside keywords, separators,
operators, and numeric literals is unnecessary and can only lead to obfuscation. With the
possible exception of identifiers, comments, and string and char literals, Java programs can
be expressed in pure ASCII without using Unicode escapes.

A char used in arithmetic is promoted to int. This presents the same problem as it does for
bytes. For instance, the following line causes the compiler to emit an error message:
"Incompatible type for declaration. Explicit cast needed to convert int to char."

char c = 'a' + 'b';

Admittedly, you rarely need to perform mathematical operations on chars.

1.4 Readers and Writers

In Java 1.1 and later, streams are primarily intended for data that can be read as pure bytes—
basically byte data and numeric data encoded as binary numbers of one sort or another.
Streams are specifically not intended for use when reading and writing text, including both
ASCII text, like "Hello World," and numbers formatted as text, like "3.1415929." For these
purposes, you should use readers and writers.

Input and output streams are fundamentally byte-based. Readers and writers are based on
characters, which can have varying widths depending on the character set. For example,
ASCII and ISO Latin-1 use one-byte characters. Unicode uses two-byte characters. UTF-8
uses characters of varying width (between one and three bytes). Since characters are
ultimately composed of bytes, readers take their input from streams. However, they convert
those bytes into chars according to a specified encoding format before passing them along.
Similarly, writers convert chars to bytes according to a specified encoding before writing
them onto some underlying stream.

The java.io.Reader and java.io.Writer classes are abstract superclasses for classes that
read and write character-based data. The subclasses are notable for handling the conversion
between different character sets. There are nine reader and eight writer classes in the core
Java API, all in the java.io package:

BufferedReader BufferedWriter
CharArrayReader CharArrayWriter
FileReader FileWriter
FilterReader FilterWriter
InputStreamReader LineNumberReader
OutputStreamWriter PipedReader
PipedWriter PrintWriter
PushbackReader StringReader
StringWriter

Java I/O

25

For the most part, these classes have methods that are extremely similar to the equivalent
stream classes. Often the only difference is that a byte in the signature of a stream method is
replaced by a char in the signature of the matching reader or writer method. For example, the
java.io.OutputStream class declares these three write() methods:

public abstract void write(int i) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException

The java.io.Writer class, therefore, declares these three write() methods:

public void write(int i) throws IOException
public void write(char[] data) throws IOException
public abstract void write(char[] data, int offset, int length) throws
IOException

As you can see, the six signatures are identical except that in the latter two methods the byte
array data has changed to a char array. There's also a less obvious difference not reflected in
the signature. While the int passed to the OutputStream write() method is reduced modulo
256 before being output, the int passed to the Writer write() method is reduced modulo
65,536. This reflects the different ranges of chars and bytes.

java.io.Writer also has two more write() methods that take their data from a string:

public void write(String s) throws IOException
public void write(String s, int offset, int length) throws IOException

Because streams don't know how to deal with character-based data, there are no
corresponding methods in the java.io.OutputStream class.

1.5 The Ubiquitous IOException

As computer operations go, input and output are unreliable. They are subject to problems
completely outside the programmer's control. Disks can develop bad sectors while a file is
being read; construction workers drop backhoes through the cables that connect your WAN;
users unexpectedly cancel their input; telephone repair crews shut off your modem line while
trying to repair someone else's. (This last one actually happened to me while writing this
chapter. My modem kept dropping the connection and then not getting a dial tone; I had to
hunt down the telephone "repairman" in my building's basement and explain to him that he
was working on the wrong line.)

Because of these potential problems and many more, almost every method that performs input
or output is declared to throw IOException. IOException is a checked exception, so you
must either declare that your methods throw it or enclose the call that can throw it in a
try/catch block. The only real exceptions to this rule are the PrintStream and PrintWriter
classes. Because it would be inconvenient to wrap a try/catch block around each call to
System.out.println(), Sun decided to have PrintStream (and later PrintWriter) catch
and eat any exceptions thrown inside a print() or println() method. If you do want to
check for exceptions inside a print() or println() method, you can call checkError():

public boolean checkError()

Java I/O

26

The checkError() method returns true if an exception has occurred on this print stream,
false if one hasn't. It only tells you that an error occurred. It does not tell you what sort of
error occurred. If you need to know more about the error, you'll have to use a different output
stream or writer class.

IOException has many subclasses—15 in java.io—and methods often throw a more
specific exception that subclasses IOException. (However, methods usually only declare that
they throw an IOException.) Here are the subclasses of IOException that you'll find in
java.io:

CharConversionException EOFException
FileNotFoundException InterruptedIOException
InvalidClassException InvalidObjectException
NotActiveException NotSerializableException
ObjectStreamException OptionalDataException
StreamCorruptedException SyncFailedException
UTFDataFormatException UnsupportedEncodingException
WriteAbortedException

There are a number of IOException subclasses scattered around the other packages,
particularly java.util.zip (DataFormatException and ZipException) and java.net
(BindException, ConnectException, MalformedURLException,
NoRouteToHostException, ProtocolException, SocketException,
UnknownHostException, and UnknownServiceException).

The java.io.IOException class declares no public methods or fields of significance—just
the usual two constructors you find in most exception classes:

public IOException()
public IOException(String message)

The first constructor creates an IOException with an empty message. The second provides
more details about what went wrong. Of course, IOException has the usual methods
inherited by all exception classes such as toString() and printStackTrace().

1.6 The Console: System.out, System.in, and System.err

The console is the default destination for output written to System.out or System.err and
the default source of input for System.in. On most platforms the console is the command-
line environment from which the Java program was initially launched, perhaps an xterm
(Figure 1.1) or a DOS shell window (Figure 1.2). The word console is something of a
misnomer, since on Unix systems the console refers to a very specific command-line shell,
rather than being a generic term for command-line shells overall.

Java I/O

27

Figure 1.1. An xterm console on Unix

Figure 1.2. A DOS shell console on Windows NT

Many common misconceptions about I/O occur because most programmers' first exposure to
I/O is through the console. The console is convenient for quick hacks and toy examples
commonly found in textbooks, and I will use it for that in this book, but it's really a very
unusual source of input and destination for output, and good Java programs avoid it. It
behaves almost, but not completely, unlike anything else you'd want to read from or write to.
While consoles make convenient examples in programming texts like this one, they're a
horrible user interface and really have little place in modern programs. Users are more
comfortable with a well-defined graphical user interface. Furthermore, the console is
unreliable across platforms. The Mac, for example, has no native console. Macintosh Runtime
for Java 2 and earlier has a console window that works only for output, but not for input; that
is, System.out works but System.in does not.[2] Figure 1.3 shows the Mac console window.

2 Console input is supported in MRJ 2.1ea2 and presumably later releases.

Java I/O

28

Figure 1.3. The Mac console, used exclusively by Java programs

Personal Digital Assistants (PDAs) and other handheld devices running PersonalJava are
equally unlikely to waste their small screen space and low resolution on a 1970s-era interface.

1.6.1 Consoles in Applets

As well as being unpredictable across platforms, consoles are also unpredictable across web
browsers. Netscape provides a "Java console," shown in Figure 1.4, that's used for applets that
want to write on System.out. By typing a question mark, you get a list of useful debugging
commands that can be executed from the console.

Figure 1.4. Netscape Navigator's Java console window

The console is turned off by default, and users must explicitly request that it be turned on.
Therefore, it's a bad idea to use it in production applets, though it's often useful for debugging.
Furthermore, mixing and matching a command line and a graphical user interface is generally
a bad idea.

Some versions of Microsoft Internet Explorer do not have a visible console. Instead, data
written on System.out appears in a log file. On Windows, this file can be found at
%Windir%\ java\ javalog.txt. (This probably expands to something like C:\Windows\java\
javalog.txt , depending on the exact value of the %Windir% environment variable). On the Mac
the log file is called Java Message Log.html and resides in the same folder as Internet
Explorer. To turn this option on, select the Options... menu item from the View menu, click
the Advanced tab, then check Enable Java Logging.

Java I/O

29

If you absolutely must use a console in your applet, the following list shows several third-
party consoles that work in Internet Explorer. Some provide additional features over the bare-
bones implementation of Netscape. Of course, URLs can get stale rather quickly. If for some
reason none of these work for you, you can always do what I did to collect them in the first
place: go to http://developer.java.sun.com/developer and search for "console."

Arial Bardin's Java Console http://www.cadviewer.com/JavaConsole.html
Jamie Cansdale's Java Console and Class
Flusher http://www.obsolete.com/people/cansdale/java/java_console/index.htm

Frederic Lavigne's Package fr.l2f http://www.l2fprod.com/

1.6.2 System.out

System.out is the first instance of the OutputStream class most programmers encounter. In
fact, it's often encountered before programmers know what a class or an output stream is.
Specifically, System.out is the static out field of the java.lang.System class. It's an
instance of java.io.PrintStream, a subclass of java.io.OutputStream.

System.out corresponds to stdout in Unix or C. Normally, output sent to System.out
appears on the console. As a general rule, the console converts the numeric byte data
System.out sends to it into ASCII or ISO Latin-1 text. Thus, the following lines write the
string "Hello World!" on the console:

byte[] hello = {72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100, 33, 10,
 13};
System.out.write(hello);

1.6.3 System.err

Unix and C programmers are familiar with stderr, which is commonly used for error
messages. stderr is a separate file pointer from stdout, but often means the same thing.
Generally, stderr and stdout both send data to the console, whatever that is. However,
stdout and stderr can be redirected to different places. For instance, output can be
redirected to a file while error messages still appear on the console.

System.err is Java's version of stderr. Like System.out, System.err is an instance of
java.io.PrintStream , a subclass of java.io.OutputStream . System.err is most
commonly used inside the catch clause of a try/catch block like this:

try {
 // Do something that may throw an exception.
}
catch (Exception e) {
 System.err.println(e);
}

Finished programs shouldn't have much need for System.err, but it is useful while you're
debugging.

Java I/O

30

1.6.4 System.in

System.in is the input stream connected to the console, much as System.out is the output
stream connected to the console. In Unix or C terms, System.in is stdin and can be
redirected from a shell in the same fashion. System.in is the static in field of the
java.lang.System class. It's an instance of java.io.InputStream, at least as far as is
documented.

Past what's documented, System.in is really a java.io.BufferedInputStream.
BufferedInputStream doesn't declare any new methods, just overrides the ones already
declared in java.io.InputStream. Buffered input streams read data in large chunks into a
buffer, then parcel it out in requested sizes. This can be more efficient than reading one
character at a time. Otherwise, it's completely transparent to the programmer.

The main significance of this is that each byte is not presented to be read as the user types it
on System.in. Instead, input enters the program one line at a time. This allows a user typing
into the console to backspace over and correct mistakes. Java does not allow you to put the
console into "raw mode," where each character becomes available as soon as it's typed,
including characters like backspace and delete.

In an application run from the command line, System.in is taken from the window where the
program was started; that is, the console. In applets, the same console window that's used for
System.out is also used for System.in ; however, Internet Explorer has no way to read from
System.in in an applet. In Netscape, the console is turned off by default, and users must
explicitly request that it be turned on.

The user types into the console using the platform's default character set, typically ASCII or
some superset thereof. The data is converted into numeric bytes when read. For example, if
the user types "Hello World!" and hits the return or enter key, the following bytes will be read
from System.in in this order:

72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100, 33, 10, 13

Many programs that run from the command line and read input from System.in require you
to enter the "end of stream" character, also known as the "end of file" or EOF character, to
terminate a program normally. How this is entered is platform-dependent. On Unix and the
Mac, Ctrl-D generally indicates end of stream. On Windows, Ctrl-Z does. In some cases it
may be necessary to type this character alone on a line. That is, you may need to hit
Return/Ctrl-Z or Return/Ctrl-D before Java will recognize the end of stream.

1.6.5 Redirecting System.out, System.in, and System.err

In a shell you often redirect stdout, stdin, or stderr. For example, to specify that output
from the Java program OptimumBattingOrder goes into the file yankees99.out and that input
for that program is read from the file yankees99.tab, you might type:

% java OptimumBattingOrder < yankees99.tab > yankees99.out

Redirection in a DOS shell is the same. It's a little more complicated in graphical
environments, but not particularly difficult. To give one example, the JBindery tool included

Java I/O

31

in Apple's Macintosh Runtime for Java, shown in Figure 1.5, provides a simple pop-up menu
interface for selecting a file, /dev/null, or a message window as the target of System.out or
source for System.in.

Figure 1.5. Redirecting stdout and stdin from JBindery

It's sometimes convenient to be able to redirect System.out, System.in, and System.err
from inside the running program. The following three static methods in the
java.lang.System class do exactly that:

public static void setIn(InputStream in)
public static void setOut(PrintStream out)
public static void setErr(PrintStream err)

For example, to specify that data written on System.out is sent to the file yankees99.out and
data read from System.in comes from yankees99.tab, you could write:

System.setIn(new FileInputStream("yankees99.tab"));
System.setOut(new PrintStream(new FileOutputStream("yankees99.out")));

These methods are especially useful when making a quick and dirty port of a program that
makes heavy use of System.out, System.in, or System.err from an application to an
applet. However, there is no absolute guarantee that console redirection will be allowed in all
web browsers. Internet Explorer 4.0b2 allowed it, but the released version does not. HotJava
1.1 allows it with the security settings turned down, but not with security at the default level.
Netscape Navigator 4.0 and 4.5 and HotJava 1.0 do not allow console redirection.

The SecurityManager class does not have a specific method to test whether or not
redirecting System.out or System.err is allowed. However, in Java 1.1 Sun's JDK checks
whether this is permitted by calling checkExec("setIO"). (The source code contains a
comment to the effect that there should be a separate method for this sort of check in future
versions of Java.) checkExec() determines whether the security manager allows a subprocess
called setio to be spawned. The AppletSecurity security manager used by appletviewer in
JDK 1.1 always disallows this call.

Java I/O

32

In Java 2 the security architecture has changed, but the effect is the same. A
RuntimePermission object with the name setIO and no actions is passed to
AccessController.checkPermission(). This method throws an
AccessControlException, a subclass of SecurityException, if redirection is not allowed.

1.7 Security Checks on I/O

One of the original fears about downloading executable content like applets from the Internet
was that a hostile applet could erase your hard disk or read your Quicken files. Nothing's
happened to change that since Java was introduced. This is why Java applets run under the
control of a security manager that checks each operation an applet performs to prevent
potentially hostile acts.

The security manager is particularly careful about I/O operations. For the most part, the
checks are related to these questions:

• Can an applet read a file?
• Can an applet write a file?
• Can an applet delete a file?
• Can an applet determine whether a file exists?
• Can an applet make a network connection to a particular host?
• Can applet accept an incoming connection from a particular host?

The short answer to all these questions is "No, it cannot." A slightly more elaborate answer
would specify a few exceptions. Applets can make network connections to the host they came
from; applets can read a few very specific files that contain information about the Java
environment; and trusted applets may sometimes run without these restrictions. But for almost
all practical purposes, the answer is almost always no.

For more exotic situations, such as trusted applets, see Java Security by
Scott Oaks, (O'Reilly & Associates, 1998). Trusted applets are useful on
corporate networks, but you shouldn't waste a lot of time laboring under
the illusion that anyone on the Internet at large will trust your applets.

Because of these security issues, you need to be careful when using code fragments and
examples from this book in an applet. Everything shown here works when run in an
application, but when run in an applet, it may fail with a SecurityException. It's not always
obvious whether a particular method or class will cause problems. The write() method of
BufferedOutputStream, for instance, is completely safe when the ultimate destination is a
byte array. However, that same write() method will throw an exception when the
destination is a file. An attempt to open a connection to a web server may succeed or fail
depending on whether or not the web server you're connecting to is the same one the applet
came from.

Consequently, this book focuses very much on applications. There is very little I/O that can be
done from an applet without running afoul of the security manager. The problem may not
always be obvious—not all web browsers properly report security exceptions—but it is there.
If you can make an applet work when it's run as a standalone application and you cannot get it

Java I/O

33

to work inside a web browser, the problem is almost certainly a conflict with the browser's
security manager.

Java I/O

34

Chapter 2. Output Streams
2.1 The OutputStream Class

The java.io.OutputStream class declares the three basic methods you need to write bytes
of data onto a stream. It also has methods for closing and flushing streams.

public abstract void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException
public void flush() throws IOException
public void close() throws IOException

OutputStream is an abstract class. Subclasses provide implementations of the abstract
write(int b) method. They may also override the four nonabstract methods. For example,
the FileOutputStream class overrides all five methods with native methods that know how
to write bytes into files on the host platform. Although OutputStream is abstract, often you
only need to know that the object you have is an OutputStream ; the more specific subclass
of OutputStream is hidden from you. For example, the getOutputStream() method of
java.net.URLConnection has the signature:

public OutputStream getOutputStream() throws IOException

Depending on the type of URL associated with this URLConnection object, the actual class of
the output stream that's returned may be a sun.net.TelnetOutputStream , a
sun.net.smtp.SmtpPrintStream , a sun.net.www.http.KeepAliveStream , or something
else completely. All you know as a programmer, and all you need to know, is that the object
returned is in fact some instance of OutputStream. That's why the detailed classes that handle
particular kinds of connections are hidden inside the sun packages.

Furthermore, even when working with subclasses whose types you know, you still need to be
able to use the methods inherited from OutputStream. And since methods that are inherited
are not included in the online documentation, it's important to remember that they're there. For
example, the java.io.DataOutputStream class does not declare a close() method, but you
can still call the one it inherits from its superclass.

2.2 Writing Bytes to Output Streams

The fundamental method of the OutputStream class is write():

public abstract void write(int b) throws IOException

This method writes a single unsigned byte of data whose value should be between and 255. If
you pass a number larger than 255 or smaller than zero, it's reduced modulo 256 before being
written.

Example 2.1, AsciiChart, is a simple program that writes the printable ASCII characters (32
to 126) on the console. The console interprets the numeric values as ASCII characters, not as
numbers. This is a feature of the console, not of the OutputStream class or the specific
subclass of which System.out is an instance. The write() method merely sends a particular

Java I/O

35

bit pattern to a particular output stream. How that bit pattern is interpreted depends on what's
connected to the other end of the stream.

Example 2.1. The AsciiChart Program

import java.io.*;

public class AsciiChart {

 public static void main(String[] args) {

 for (int i = 32; i < 127; i++) {
 System.out.write(i);
 // break line after every eight characters.
 if (i % 8 == 7) System.out.write('\n');
 else System.out.write('\t');
 }
 System.out.write('\n');
 }
}

Notice the use of the char literals '\t' and '\n'. The compiler converts these to the numbers
9 and 10, respectively. When these numbers are written on the console, the console interprets
those numbers as a tab and a linefeed, respectively. The same effect could have been achieved
by writing the if clause like this:

if (i % 8 == 7) System.out.write(10);
else System.out.write(9);

Here's the output:

% java AsciiChart
! " # $ % & '
() * + , - . /
0 1 2 3 4 5 6 7
8 9 : ; < = > ?
@ A B C D E F G
H I J K L M N O
P Q R S T U V W
X Y Z [\] ^ _
` a b c d e f g
h i j k l m n o
p q r s t u v w
x y z { | } ~
%

The write() method can throw an IOException, so you'll need to wrap most calls to this
method in a try/catch block, or declare that your own method throws IOException. For
example:

try {
 for (int i = 32; i <= 127; i++) out.write(i);
}
catch (IOException e) { System.err.println(e); }

Java I/O

36

Astute readers will have noticed that Example 2.1 did not actually catch any IOExceptions.
The PrintStream class, of which System.out is an instance, overrides write() with a
variant that does not throw IOException.

2.3 Writing Arrays of Bytes

It's often faster to write larger chunks of data than to write byte by byte. Two overloaded
variants of the write() method do this:

public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException

The first variant writes the entire byte array data. The second writes only the sub-array of
data starting at offset and continuing for length bytes. For example, the following code
fragment blasts the bytes in a string onto System.out:

String s = "How are streams treating you?";
byte[] data = s.getBytes();
System.out.write(data);

Conversely, you may run into performance problems if you attempt to write too much data at
a time. The exact turnaround point depends on the eventual destination of the data. Files are
often best written in small multiples of the block size of the disk, typically 512, 1024, or 2048
bytes. Network connections often require smaller buffer sizes, 128 or 256 bytes. The optimal
buffer size depends on too many system-specific details for anything to be guaranteed, but I
often use 128 bytes for network connections and 1024 bytes for files.

Example 2.2 is a simple program that constructs a byte array filled with an ASCII chart, then
blasts it onto the console in one call to write().

Example 2.2. The AsciiArray Program

import java.io.*;

public class AsciiArray {

 public static void main(String[] args) {

 byte[] b = new byte[(127-31)*2];
 int index = 0;
 for (int i = 32; i < 127; i++) {
 b[index++] = (byte) i;
 // Break line after every eight characters.
 if (i % 8 == 7) b[index++] = (byte) '\n';
 else b[index++] = (byte) '\t';
 }
 b[index++] = (byte) '\n';
 try {
 System.out.write(b);
 }
 catch (IOException e) { System.err.println(e); }
 }
}

Java I/O

37

The output is the same as in Example 2.1. Because of the nature of the console, this particular
program probably isn't a lot faster than Example 2.1, but it certainly could be if you were
writing data into a file rather than onto the console. The difference in performance between
writing a byte array in a single call to write() and writing the same array by invoking
write() once for each component of the array can easily be a factor of a hundred or more.

2.4 Flushing and Closing Output Streams

Many output streams buffer writes to improve performance. Rather than sending each byte to
its destination as it's written, the bytes are accumulated in a memory buffer ranging in size
from several bytes to several thousand bytes. When the buffer fills up, all the data is sent at
once. The flush() method forces the data to be written whether or not the buffer is full:

public void flush() throws IOException

This is not the same as any buffering performed by the operating system or the hardware.
These buffers will not be emptied by a call to flush(). (Then sync() method in the
FileDescriptor class, discussed in Chapter 12, can sometimes be used to empty these
buffers.) For example, assuming out is an OutputStream of some sort, you would call
out.flush() to empty the buffers.

If you only use a stream for a short time, you don't need to flush it explicitly. It should be
flushed when the stream is closed. This should happen when the program exits or when you
explicitly invoke the close() method:

public void close() throws IOException

For example, again assuming out is an OutputStream of some sort, calling out.close()
closes the stream and implicitly flushes it. Once you have closed an output stream, you can no
longer write to it. Attempting to do so will throw an IOException.

Again, System.out is a partial exception because as a PrintStream ,
all exceptions it throws are eaten. Once you close System.out, you
can't write to it, but trying to do so won't throw any exceptions.
However, your output will not appear on the console.

You only need to flush an output stream explicitly if you want to make sure data is sent before
you're through with the stream. For example, a program that sends a burst of data across the
network periodically should flush after each burst of data is written to the stream.

Flushing is often important when you're trying to debug a crashing program. All streams flush
automatically when their buffers fill up, and all streams should be flushed when a program
terminates normally. If a program terminates abnormally, however, buffers may not get
flushed. In this case, unless there is an explicit call to flush() after each write, you can't be
sure the data that appears in the output indicates the point at which the program crashed. In
fact, the program may have continued to run for some time past that point before it crashed.

Java I/O

38

System.out, System.err, and some (but not all) other print streams automatically flush after
each call to println() and after each time a new line character ('\n') appears in the string
being written. Whether auto-flushing is enabled can be set in the PrintStream constructor.

2.5 Subclassing OutputStream

OutputStream is an abstract class that mainly describes the operations available with any
particular OutputStream object. Specific subclasses know how to write bytes to particular
destinations. For instance, a FileOutputStream uses native code to write data in files. A
ByteArrayOutputStream uses pure Java to write its output in a potentially expanding byte
array.

Recall that there are three overloaded variants of the write() method in OutputStream, one
abstract, two concrete:

public abstract void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException

Subclasses must implement the abstract write(int b) method. They often choose to override
the third variant, write(byte[], data int offset, int length), for reasons of
performance. The implementation of the three-argument version of the write() method in
OutputStream simply invokes write(int b) repeatedly; that is:

public void write(byte[] data, int offset, int length) throws IOException {
 for (int i = offset; i < offset+length; i++) write(data[i]);
}

Most subclasses can provide more efficient implementations of this method. The one-
argument variant of write() merely invokes write(data, 0, data.length); if the three-
argument variant has been overridden, this method will perform reasonably well. However, a
few subclasses may override it anyway.

Example 2.3 is a simple program called NullOutputStream that mimics the behavior of
/dev/null on Unix operating systems. Data written into a null output stream is lost.

Example 2.3. The NullOutputStream Class

package com.macfaq.io;

import java.io.*;

public class NullOutputStream extends OutputStream {

 public void write(int b) { }
 public void write(byte[] data) { }
 public void write(byte[] data, int offset, int length) { }

}

By redirecting System.out and System.err to a null output stream in the shipping version of
your program, you can disable any debugging messages that might have slipped through
quality assurance. For example:

Java I/O

39

OutputStream out = new NullOutputStream();
PrintStream ps = new PrintStream(out);
System.setOut(ps);
System.setErr(ps);

2.6 A Graphical User Interface for Output Streams

As a useful example, I'm going to show a subclass of java.awt.TextArea that can be
connected to an output stream. As data is written onto the stream, it is appended to the text
area in the default character set (generally ISO Latin-1). (This isn't ideal. Since text areas
contain text, a writer would be a better source for this data; in later chapters I'll expand on this
class to use a writer instead. For now this makes a neat example.) This subclass is shown in
Example 2.4.

The actual output stream is contained in an inner class inside the StreamedTextArea class.
Each StreamedTextArea component contains a TextAreaOutputStream object in its
theOutput field. Client programmers access this object via the getOutputStream() method
of the StreamedTextArea class. The StreamedTextArea class has five overloaded
constructors that imitate the five constructors in the java.awt.TextArea class, each taking a
different combination of text, rows, columns, and scrollbar information. The first four
constructors merely pass their arguments and suitable defaults to the most general fifth
constructor using this(). The fifth constructor calls the most general superclass constructor,
then calls setEditable(false) to ensure that the user doesn't change the text while output is
streaming into it.

I've chosen not to override any methods in the TextArea superclass. However, you might
want to do so if you feel a need to change the normal abilities of a text area. For example, you
could include a do-nothing append() method so that data can only be moved into the text
area via the provided output stream or a setEditable() method that doesn't allow the client
programmer to make this area editable.

Example 2.4. The StreamedTextArea Component

package com.macfaq.awt;

import java.awt.*;
import java.io.*;

public class StreamedTextArea extends TextArea {

 OutputStream theOutput = new TextAreaOutputStream();

 public StreamedTextArea() {
 this("", 0, 0, SCROLLBARS_BOTH);
 }

 public StreamedTextArea(String text) {
 this(text, 0, 0, SCROLLBARS_BOTH);
 }

 public StreamedTextArea(int rows, int columns) {
 this("", rows, columns, SCROLLBARS_BOTH);
 }

Java I/O

40

 public StreamedTextArea(String text, int rows, int columns) {
 this(text, rows, columns, SCROLLBARS_BOTH);
 }

 public StreamedTextArea(String text, int rows, int columns, int
scrollbars) {
 super(text, rows, columns, scrollbars);
 setEditable(false);
 }

 public OutputStream getOutputStream() {
 return theOutput;
 }

 class TextAreaOutputStream extends OutputStream {

 public synchronized void write(int b) {
 // recall that the int should really just be a byte
 b &= 0x000000FF;

 // must convert byte to a char in order to append it
 char c = (char) b;
 append(String.valueOf(c));
 }

 public synchronized void write(byte[] data, int offset, int length) {
 append(new String(data, offset, length));
 }
 }
}

The TextAreaOutputStream inner class is quite simple. It extends OutputStream and thus
must implement the abstract method write(). It also overrides the primary array write()
method to provide a more efficient implementation. To use this class, you simply add an
instance of it to a container like an applet or a window, much as you'd add a regular text area.
Next you invoke its getOutputStream() method to get a reference to the output stream for
the area, then use the usual write() methods to write into the text area. Often these steps will
take place at different times in different methods.

Figure 2.1 shows a program using a StreamedTextArea to display data downloaded from
http://www.oreilly.com/. The application in this picture will be developed in Chapter 5.

Java I/O

41

Figure 2.1. The StreamedTextArea component

I'll revisit and improve this class in future chapters using techniques you haven't learned yet.
In particular, I'll pay much more attention to the issue of character sets and encodings.

Java I/O

42

Chapter 3. Input Streams
3.1 The InputStream Class

The java.io.InputStream class is the abstract superclass for all input streams. It declares
the three basic methods needed to read bytes of data from a stream. It also has methods for
closing and flushing streams, checking how many bytes of data are available to be read,
skipping over input, marking a position in a stream and resetting back to that position, and
determining whether marking and resetting are supported.

public abstract int read() throws IOException
public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException
public long skip(long n) throws IOException
public int available() throws IOException
public void close() throws IOException
public synchronized void mark(int readlimit)
public synchronized void reset() throws IOException
public boolean markSupported()

3.2 The read() Method

The fundamental method of the InputStream class is read(), which reads a single unsigned
byte of data and returns the integer value of the unsigned byte. This is a number between and
255:

public abstract int read() throws IOException

The following code reads 10 bytes from the System.in input stream and stores them in the
int array data:

int[] data = new int[10];
for (int i = 0; i < data.length; i++) {
 data[i] = System.in.read();
}

Notice that although read() is reading a byte, it returns an int. If you want to store the raw
bytes instead, you can cast the int to a byte. For example:

byte[] b = new byte[10];
for (int i = 0; i < b.length; i++) {
 b[i] = (byte) System.in.read();
}

Of course, this produces a signed byte instead of the unsigned byte returned by the read()
method (that is, a byte in the range -128 to 127 instead of to 255). As long as you're clear in
your mind and your code about whether you're working with signed or unsigned data, you
won't have any trouble. Signed bytes can be converted back to ints in the range to 255 like
this:

int i = (b >= 0) ? b : 256 + b;

Java I/O

43

When you call read(), you also have to catch the IOException that it might throw. As I've
observed, input and output are often subject to problems outside of your control: disks fail,
network cables break, and so on. Therefore, virtually any I/O method can throw an
IOException, and read() is no exception. You don't get an IOException if read()
encounters the end of the input stream; in this case, it returns -1. You use this as a flag to
watch for the end of stream. The following code shows how to catch the IOException and
test for the end of the stream:

try {
 int[] data = new int[10];
 for (int i = 0; i < data.length; i++) {
 int datum = System.in.read();
 if (datum == -1) break;
 data[i] = datum;
 }
}
catch (IOException e) {System.err.println("Couldn't read from
System.in!");}

The read() method waits or blocks until a byte of data is available and ready to be read.
Input and output can be slow, so if your program is doing anything else of importance, you
should try to put I/O in its own thread.

read() is declared abstract; therefore, InputStream is abstract. Hence, you can never
instantiate an InputStream directly; you always work with one of its concrete subclasses.

Example 3.1 is a program that reads data from System.in and prints the numeric value of
each byte read on the console using System.out.println(). This program could have been
written more simply; in particular, I could have put all the logic in the main() method without
any trouble. However, this example is the basis for a file-dumping utility that I'll develop
throughout the book, and, therefore, I want a flexible design from the start.

Example 3.1. The StreamPrinter Class

package com.macfaq.io;
import java.io.*;

public class StreamPrinter {

 InputStream theInput;

 public static void main(String[] args) {
 StreamPrinter sr = new StreamPrinter(System.in);
 sr.print();
 }

 public StreamPrinter(InputStream in) {
 theInput = in;
 }

Java I/O

44

 public void print() {

 try {
 while (true) {
 int datum = theInput.read();
 if (datum == -1) break;
 System.out.println(datum);
 }
 }
 catch (IOException e) {System.err.println("Couldn't read from
System.in!");}
 }
}

3.3 Reading Chunks of Data from a Stream

Input and output are often the performance bottlenecks in a program. Reading from or writing
to disk can be hundreds of times slower than reading from or writing to memory; network
connections and user input are even slower. While disk capacities and speeds have increased
over time, they have never kept pace with CPU speeds. Therefore, it's important to minimize
the number of reads and writes a program actually performs.

All input streams have overloaded read() methods that read chunks of contiguous data into a
byte array. The first variant tries to read enough data to fill the array data. The second
variant tries to read length bytes of data starting at position offset into the array data.
Neither of these methods is guaranteed to read as many bytes as they want. Both methods
return the number of bytes actually read, or -1 on end of stream.

public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException

The default implementation of these methods in the java.io.InputStream class merely calls
the basic read() method enough times to fill the requested array or subarray. Thus, reading
10 bytes of data takes 10 times as long as reading one byte of data. However, most subclasses
of InputStream override these methods with more efficient methods, perhaps native, that
read the data from the underlying source as a block.

For example, to attempt to read 10 bytes from System.in, you could write the following
code:

try {
 byte[] b = new byte[10];
 System.in.read(b);
}
catch (IOException e) {System.err.println("Couldn't read from
System.in!");}

Reads don't always succeed in getting as many bytes as you want. Conversely, there's nothing
to stop you from trying to read more data into the array than will fit. If you read more data
than the array can hold, an ArrayIndexOutOfBoundsException will be thrown. For example,
the following code loops repeatedly until it either fills the array or sees the end of stream:

Java I/O

45

try {
 byte[] b = new byte[100];
 int offset = 0;
 while (offset < b.length) {
 int bytesRead = System.in.read(b, offset, b.length - offset);
 if (bytesRead == -1) break; // end of stream
 offset += bytesRead;
 }
}
catch (IOException e) {System.err.println("Couldn't read from
System.in!");}

3.4 Counting the Available Bytes

It's sometimes convenient to know how many bytes are available to be read before you
attempt to read them. The InputStream class's available() method tells you how many
bytes you can read without blocking. It returns if there's no data available to be read.

public int available() throws IOException

For example:

try {
 byte[] b = new byte[100];
 int offset = 0;
 while (offset < b.length) {
 int a = System.in.available();
 int bytesRead = System.in.read(b, offset, a);
 if (bytesRead == -1) break; // end of stream
 offset += bytesRead;
}
catch (IOException e) {System.err.println("Couldn't read from
System.in!");}

There's a potential bug in this code. There may be more bytes available than there's space in
the array to hold them. One common idiom is to size the array according to the number
available() returns, like this:

try {
 byte[] b = new byte[System.in.available()];
 System.in.read(b);
}
catch (IOException e) {System.err.println("Couldn't read from
System.in!");}

This works well if you're only going to perform a single read. For multiple reads, however,
the overhead of creating multiple arrays is excessive. You should probably reuse the array and
only create a new array if more bytes are available than will fit in the array.

The available() method in java.io.InputStream always returns 0. Subclasses are
supposed to override it, but I've seen a few that don't. You may be able to read more bytes
from the underlying stream without blocking than available() suggests; you just can't
guarantee that you can. If this is a concern, you can place input in a separate thread so that
blocked input doesn't block the rest of the program.

Java I/O

46

3.5 Skipping Bytes

Although you can just read from a stream and ignore the bytes read, Java provides a skip()
method that jumps over a certain number of bytes in the input:

public long skip(long bytesToSkip) throws IOException

The argument to skip() is the number of bytes to skip. The return value is the number of
bytes actually skipped, which may be less than bytesToSkip. -1 is returned if the end of
stream is encountered. Both the argument and return value are longs, allowing skip() to
handle extremely long input streams. Skipping is often faster than reading and discarding the
data you don't want. For example, when an input stream is attached to a file, skipping bytes
just requires that an integer called the file pointer be changed, whereas reading involves
copying bytes from the disk into memory. For example, to skip the next 80 bytes of the input
stream in:

try {
 long bytesSkipped = 0;
 long bytesToSkip = 80;
 while (bytesSkipped < bytesToSkip) {
 long n = in.skip(bytesToSkip - bytesSkipped);
 if (n == -1) break;
 bytesSkipped += n;
 }
}
catch (IOException e) {System.err.println(e);}

3.6 Closing Input Streams

When you're through with a stream, you should close it. This allows the operating system to
free any resources associated with the stream; exactly what these resources are depends on
your platform and varies with the type of the stream. However, systems only have finite
resources. For example, on most personal computer operating systems, no more than several
hundred files can be open at once. Multiuser operating systems have larger limits, but limits
nonetheless.

To close a stream, you invoke its close() method:

public void close() throws IOException

Not all streams need to be closed—System.in generally does not need to be closed, for
example. However, streams associated with files and network connections should always be
closed when you're done with them. For example:

try {
 URL u = new URL("http://www.javasoft.com/");
 InputStream in = u.openStream();
 // Read from the stream...
 in.close();
}
catch (IOException e) {System.err.println(e);}

Java I/O

47

Once you have closed an input stream, you can no longer read from it. Attempting to do so
will throw an IOException.

3.7 Marking and Resetting

It's often useful to be able to read a few bytes and then back up and reread them. For example,
in a Java compiler, you don't know for sure whether you're reading the token <, <<, or <<=
until you've read one too many characters. It would be useful to be able to back up and reread
the token once you know which token you've read. Compiler design and other parsing
problems provide many more examples, and this need occurs in other domains as well.

Some (but not all) input streams allow you to mark a particular position in the stream and then
return to it. Three methods in the java.io.InputStream class handle marking and resetting:

public synchronized void mark(int readLimit)
public synchronized void reset() throws IOException
public boolean markSupported()

The boolean markSupported() method returns true if this stream supports marking and
false if it doesn't. If marking is not supported, reset() throws an IOException and mark()
does nothing. Assuming the stream does support marking, the mark() method places a
bookmark at the current position in the stream. You can rewind the stream to this position
later with reset() as long as you haven't read more than readLimit bytes. There can be only
one mark in the stream at any given time. Marking a second location erases the first mark.

The only two input stream classes in java.io that always support marking are
BufferedInputStream (of which System.in is an instance) and ByteArrayInputStream.
However, other input streams, like DataInputStream , may support marking if they're
chained to a buffered input stream first.

3.8 Subclassing InputStream

Immediate subclasses of InputStream must provide an implementation of the abstract
read() method. They may also override some of the nonabstract methods. For example, the
default markSupported() method returns false, mark() does nothing, and reset() throws an
IOException. Any class that allows marking and resetting must override these three methods.
Furthermore, they may want to override methods that perform functions like skip() and the
other two read() methods to provide more efficient implementations.

Example 3.2 is a simple class called RandomInputStream that "reads" random bytes of data.
This provides a useful source of unlimited data you can use in testing. A java.util.Random
object provides the data.

Example 3.2. The RandomInputStream Class

package com.macfaq.io;

import java.util.*;
import java.io.*;

Java I/O

48

public class RandomInputStream extends InputStream {

 private transient Random generator = new Random();

 public int read() {

 int result = generator.nextInt() % 256;
 if (result < 0) result = -result;
 return result;

 }

 public int read(byte[] data, int offset, int length) throws IOException {

 byte[] temp = new byte[length];
 generator.nextBytes(temp);
 System.arraycopy(temp, 0, data, offset, length);
 return length;

 }

 public int read(byte[] data) throws IOException {

 generator.nextBytes(data);
 return data.length;

 }

 public long skip(long bytesToSkip) throws IOException {

 // It's all random so skipping has no effect.
 return bytesToSkip;

 }
}

The no-argument read() method returns a random int in the range of an unsigned byte (0 to
255). The other two read() methods fill a specified part of an array with random bytes. They
return the number of bytes read (in this case the number of bytes created).

3.9 An Efficient Stream Copier

As a useful example of both input and output streams, in Example 3.3 I'll present a
StreamCopier class that copies data between two streams as quickly as possible. (I'll reuse
this class in later chapters.) This method reads from the input stream and writes onto the
output stream until the input stream is exhausted. A 256-byte buffer is used to try to make the
reads efficient. A main() method provides a simple test for this class by reading from
System.in and copying to System.out.

Example 3.3. The StreamCopier Class

package com.macfaq.io;
import java.io.*;

Java I/O

49

public class StreamCopier {

 public static void main(String[] args) {
 try {

 }
 catch (IOException e) {System.err.println(e);}
 }

 public static void copy(InputStream in, OutputStream out)
 throws IOException {

 // Do not allow other threads to read from the input
 // or write to the output while copying is taking place
 synchronized (in) {
 synchronized (out) {
 byte[] buffer = new byte[256];
 while (true) {
 int bytesRead = in.read(buffer);
 if (bytesRead == -1) break;
 out.write(buffer, 0, bytesRead);
 }
 }
 }
 }
}

Here's a simple test run:

D:\JAVA\ioexamples\03>java com.macfaq.io.StreamCopier
this is a test
this is a test
0987654321
0987654321
^Z

Input was not fed from the console (DOS prompt) to the StreamCopier program until the end
of each line. Since I ran this in Windows, the end-of-stream character is Ctrl-Z. On Unix it
would have been Ctrl-D.

Java I/O

50

Part II: Data Sources

Java I/O

51

Chapter 4. File Streams
Until now, most of the examples in this book have used the streams System.in and
System.out. These are convenient for examples, but in real life, you'll more commonly attach
streams to data sources like files and network connections. You'll use the
java.io.FileInputStream and java.io.FileOutputStream classes, which are concrete
subclasses of java.io.InputStream and java.io.OutputStream, to read and write files.
FileInputStream and FileOutputStream provide input and output streams that let you read
and write files. We'll discuss these classes in detail in this chapter; they provide the standard
methods for reading and writing data. What they don't provide is a mechanism for file-
specific operations, like finding out whether a file is readable or writable. For that, you may
want to look forward to Chapter 12, which talks about the File class itself and the way Java
works with files.

4.1 Reading Files

java.io.FileInputStream is a concrete subclass of java.io.InputStream. It provides an
input stream connected to a particular file.

public class FileInputStream extends InputStream

FileInputStream has all the usual methods of input streams, such as read(), available(),
skip(), and close(), which are used exactly as they are for any other input stream.

public native int read() throws IOException
public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException
public native long skip(long n) throws IOException
public native int available() throws IOException
public native void close() throws IOException

These methods are all implemented in native code, except for the two multibyte read()
methods. These, however, just pass their arguments on to a private native method called
readBytes(), so effectively all these methods are implemented with native code. (In Java 2,
read(byte[] data, int offset, int length) is a native method that read(byte[] data)
invokes.)

There are three FileInputStream() constructors, which differ only in how the file to be read
is specified:

public FileInputStream(String fileName) throws IOException
public FileInputStream(File file) throws FileNotFoundException
public FileInputStream(FileDescriptor fdObj)

The first constructor uses a string containing the name of the file. The second constructor uses
a java.io.File object. The third constructor uses a java.io.FileDescriptor object.
Filenames are platform-dependent, so hardcoded file names should be avoided where
possible. Using the first constructor violates Sun's rules for "100% Pure Java" immediately.
Therefore, the second two constructors are much preferred. Nonetheless, the second two will
have to wait until File objects and file descriptors are discussed in Chapter 12. For now, I
will use only the first.

Java I/O

52

To read a file, just pass the name of the file into the FileInputStream() constructor. Then
use the read() method as normal. For example, the following code fragment reads the file
README.TXT, then prints it on System.out:

try {
 FileInputStream fis = new FileInputStream("README.TXT");
 int n;
 while ((n = fis.available()) > 0) {
 byte[] b = new byte[n];
 int result = fis.read(b);
 if (result == -1) break;
 String s = new String(b);
 System.out.print(s);
 } // End while
} // End try
catch (IOException e) {System.err.println(e);}
System.out.println();

Java looks for files in the current working directory. Generally, this is the directory you were
in when you typed java program_name to start running the program. You can open a file in a
different directory by passing a full or relative path to the file from the current working
directory. For example, to read the file /etc/hosts no matter which directory is current, you can
do this:

FileInputStream fis = new FileInputStream("/etc/hosts");

Notice that this code depends on Unix-style pathnames. It is not guaranteed to work on
Windows or the Mac, though it might; some runtime environments like Apple's Macintosh
Runtime for Java include extra code to translate from Unix-style filenames to the native style.

If the file you're trying to read does not exist when the FileInputStream object is
constructed, a FileNotFoundException (a subclass of java.io.IOException) is thrown. If
for some other reason a file cannot be read—for example, the current process does not have
read permission for the file—some other kind of IOException is thrown.

Example 4.1 reads filenames from the command line, then copies the named files onto
System.out. The StreamCopier.copy() method from Example 3.3 in the last chapter does
the actual reading and writing. Notice that that method does not care that the input is coming
from a file or going to the console. It works regardless of the type of the input and output
streams it's copying. It will work equally well for other streams still to be introduced,
including ones that did not even exist when StreamCopier was created.

Example 4.1. The FileTyper Program

import java.io.*;
import com.macfaq.io.*;

public class FileTyper {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println("Usage: java FileTyper file1 file2 ...");
 return;
 }

Java I/O

53

 for (int i = 0; i < args.length; i++) {
 try {
 typeFile(args[i]);
 if (i+1 < args.length) { // more files to type
 System.out.println();
 System.out.println("------------------------------------");
 }
 }
 catch (IOException e) {System.err.println(e);}
 }
 }

 public static void typeFile(String filename) throws IOException {

 FileInputStream fin = new FileInputStream(filename);
 StreamCopier.copy(fin, System.out);
 fin.close();

 }
}

Untrusted applets are not usually allowed to read or write files. If your applet tries to create a
FileInputStream , the constructor will throw a SecurityException.

The FileInputStream class has one method that's not declared in the InputStream
superclass, getFD().

public final FileDescriptor getFD() throws IOException

This method returns the java.io.FileDescriptor object associated with this stream. File
descriptor objects are discussed in Chapter 12. For now, all you can do with this object is use
it to create another file stream. FileInputStream also has a protected finalize() method
that's invoked when a FileInputStream object is garbage collected. This method ensures
that files are properly closed before the file input stream that opened them is garbage-
collected:

protected void finalize() throws IOException

You don't normally need to invoke this method explicitly, but if you subclass
FileInputStream (something I've never found a need for), you must invoke
super.finalize() from your subclass's finalize() method.

It is possible to open multiple input streams to the same file at the same time, though it's
rarely necessary to do so. Each stream maintains a separate pointer to the current position in
the file. Reading from the file does not change the file in any way. Writing to a file is a
different story, as you'll see in the next section.

4.2 Writing Files

The java.io.FileOutputStream class is a concrete subclass of java.io.OutputStream
that provides output streams connected to files.

public class FileOutputStream extends OutputStream

Java I/O

54

This class has all the usual methods of output streams, such as write(), flush(), and
close(), which are used exactly as they are for any other output stream.

public native void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException
public native void close() throws IOException

These are all implemented in native code except for the two multibyte write() methods.
These, however, just pass their arguments on to a private native method called
writeBytes(), so effectively all these methods are implemented with native code.

There are three main FileOutputStream() constructors, differing primarily in how the file is
specified:

public FileOutputStream(String filename) throws IOException
public FileOutputStream(File file) throws IOException
public FileOutputStream(FileDescriptor fd)

The first constructor uses a string containing the name of the file; the second constructor uses
a java.io.File object; the third constructor uses a java.io.FileDescriptor object. I will
avoid using the second and third constructors until I've discussed File objects and file
descriptors (Chapter 12). To write data to a file, just pass the name of the file to the
FileOutputStream() constructor, then use the write() methods as normal. If the file does
not exist, all three constructors will create it. If the file does exist, any data inside it will be
overwritten.

A fourth constructor also lets you specify whether the file's contents should be erased before
data is written into it (append == false) or whether data is to be tacked onto the end of the
file (append == true). The other three constructors simply overwrite the file; they do not
provide an option to append data to the file.

public FileOutputStream(String name, boolean append) throws IOException

Java looks for files in the current working directory. You can write to a file in a different
directory by passing a full or relative path to the file from the current working directory. For
example, to append data to the \Windows\java\javalog.txt file no matter which directory is
current, you would do this:

FileOutputStream fout =
new FileOutputStream("/Windows/java/javalog.txt", true);

Although Windows uses a backslash as the directory separator, Java still expects you to use a
forward slash as in Unix, at least in Java 1.1. Hardcoded pathnames are dangerously platform-
dependent. Using this constructor automatically classifies your program as impure Java. We
will take this up in more detail in Chapter 12.

Untrusted applets are normally not allowed to read or write files. If an applet tries to create a
FileOutputStream, the constructor throws a SecurityException.

Java I/O

55

The FileOutputStream class has one method that's not declared in java.io.OutputStream,
getFD():

public final FileDescriptor getFD() throws IOException

This method returns the java.io.FileDescriptor object associated with this stream.

The FileOutputStream class also has a protected finalize() method that's invoked before
a FileOutputStream object is garbage-collected. This method ensures that files are properly
flushed and closed before the file output stream that opened them is garbage-collected. You
normally don't need to invoke this method explicitly. If you subclass FileOutputStream and
override finalize(), the subclass's finalize() method should invoke this finalize()
method by calling super.finalize().

Example 4.2 reads two filenames from the command line, then copies the first file into the
second file. The StreamCopier class from Example 3.3 in the last chapter is used to do the
actual reading and writing.

Example 4.2. The FileCopier Program

import java.io.*;
import com.macfaq.io.*;

public class FileCopier {

 public static void main(String[] args) {

 if (args.length != 2) {
 System.err.println("Usage: java FileCopier infile outfile");
 }
 try {
 copy(args[0], args[1]);
 }
 catch (IOException e) {System.err.println(e);}
 }

 public static void copy(String inFile, String outFile)
 throws IOException {

 FileInputStream fin = null;
 FileOutputStream fout = null;

 try {
 fin = new FileInputStream(inFile);
 fout = new FileOutputStream(outFile);
 StreamCopier.copy(fin, fout);
 }
 finally {
 try {
 if (fin != null) fin.close();
 }
 catch (IOException e) {
 }
 try {
 if (fout != null) fout.close();
 }
 catch (IOException e) { }

Java I/O

56

 }
 }
}

Since we're no longer writing to System.out and reading from System.in, it's important to
make sure the streams are closed when we're done. This is a good use for a finally clause, as
we need to make sure the files are closed whether or not the reads and writes succeed.

Java is better about closing files than most languages. As long as the VM doesn't terminate
abnormally, the files will be closed when the program exits. Still, if this class is used inside a
long-running program like a web server, waiting until the program exits isn't a good idea;
other threads and processes may need access to the files.

There is one bug in this program: it does not behave well if the input and output files are the
same. While it would be straightforward to compare the two filenames before copying, this is
not safe enough. Once aliases, shortcuts, symbolic links, and other factors are taken into
account, a single file may have multiple names. The full solution to this problem will have to
wait until Chapter 12, when we discuss canonical paths and temporary files.

4.3 File Viewer, Part 1

I often find it useful to be able to open an arbitrary file and interpret it in an arbitrary fashion.
Most commonly I want to view a file as text, but occasionally it's useful to interpret it as
hexadecimal integers, IEEE 754 floating-point data, or something else. In this book, I'm going
to develop a program that lets you open any file and view its contents in a variety of different
ways. In each chapter, I'll add a piece to the program until it's fully functional. Since this is
only the beginning of the program, it's important to keep the code as general and adaptable as
possible.

Example 4.3 reads a series of filenames from the command line in the main() method. Each
filename is passed to a method that opens the file. The file's data is read and printed on
System.out. Exactly how the data is printed on System.out is determined by a command-
line switch. If the user selects ASCII format (-a), then the data will be assumed to be ASCII
(more properly, ISO Latin-1) text and printed as chars. If the user selects decimal dump (-d),
then each byte should be printed as unsigned decimal numbers between and 255, 16 to a line.
For example:

000 234 127 034 234 234 000 000 000 002 004 070 000 234 127 098

Leading zeros are used to maintain a constant width for the printed byte values and for each
line. A simple selection algorithm is used to determine how many leading zeros to attach to
each number. For hex dump format (-h), each byte should be printed as two hexadecimal
digits. For example:

CA FE BA BE 07 89 9A 65 45 65 43 6F F6 7F 8F EE E5 67 63 26 98 9E 9C

Hexadecimal encoding is easier, because each byte is always exactly two hex digits. The
static Integer.toHexString() method is used to convert each byte read into two
hexadecimal digits.

Java I/O

57

ASCII format is the default and is the simplest to implement. This conversion can be
accomplished merely by copying the input data to the console.

Example 4.3. The FileDumper Program

import java.io.*;
import com.macfaq.io.*;

public class FileDumper {

 public static final int ASC = 0;
 public static final int DEC = 1;
 public static final int HEX = 2;

 public static void main(String[] args) {

 if (args.length < 1) {
 System.err.println("Usage: java FileDumper [-ahd] file1 file2...");
 return;
 }

 int firstArg = 0;
 int mode = ASC;

 if (args[0].startsWith("-")) {
 firstArg = 1;
 if (args[0].equals("-h")) mode = HEX;
 else if (args[0].equals("-d")) mode = DEC;
 }

 for (int i = firstArg; i < args.length; i++) {
 if (mode == ASC) dumpAscii(args[i]);
 else if (mode == HEX) dumpHex(args[i]);
 else if (mode == DEC) dumpDecimal(args[i]);
 if (i < args.length-1) { // more files to dump
 System.out.println("\r\n--------------------------------------
\r\n");
 }
 }
 }

 public static void dumpAscii(String filename) {

 FileInputStream fin = null;
 try {
 fin = new FileInputStream(filename);
 StreamCopier.copy(fin, System.out);
 }
 catch (IOException e) {System.err.println(e);}
 finally {
 try {
 if (fin != null) fin.close();
 }
 catch (IOException e) { }
 }
 }

Java I/O

58

 public static void dumpDecimal(String filename) {

 FileInputStream fin = null;
 byte[] buffer = new byte[16];
 boolean end = false;
 int bytesRead;

 try {
 fin = new FileInputStream(filename);
 while (!end) {
 bytesRead = 0;
 while (bytesRead < buffer.length) {
 int r = fin.read(buffer, bytesRead, buffer.length - bytesRead);
 if (r == -1) {
 end = true;
 break;
 }
 bytesRead += r;
 }
 for (int i = 0; i < bytesRead; i++) {
 int dec = buffer[i];
 if (dec < 0) dec = 256 + dec;
 if (dec < 10) System.out.print("00" + dec + " ");
 else if (dec < 100) System.out.print("0" + dec + " ");
 else System.out.print(dec + " ");
 }
 System.out.println();
 }
 }
 catch (IOException e) {System.err.println(e);}
 finally {
 try {
 if (fin != null) fin.close();
 }
 catch (IOException e) { }
 }

 }

 public static void dumpHex(String filename) {

 FileInputStream fin = null;
 byte[] buffer = new byte[24];
 boolean end = false;
 int bytesRead;

 try {
 fin = new FileInputStream(filename);
 while (!end) {
 bytesRead = 0;
 while (bytesRead < buffer.length) {
 int r = fin.read(buffer, bytesRead, buffer.length - bytesRead);
 if (r == -1) {
 end = true;
 break;
 }
 bytesRead += r;
 }
 for (int i = 0; i < bytesRead; i++) {
 int hex = buffer[i];
 if (hex < 0) hex = 256 + hex;

Java I/O

59

 if (hex >= 16) System.out.print(Integer.toHexString(hex) + " ");
 else System.out.print("0" + Integer.toHexString(hex) + " ");
 }
 System.out.println();
 }
 }
 catch (IOException e) {System.err.println(e);}
 finally {
 try {
 if (fin != null) fin.close();
 }
 catch (IOException e) { }
 }
 }
}

When FileDumper is used to dump its own .class file in hexadecimal format, it produces the
following:

D:\JAVA\ioexamples\04>java FileDumper -h FileDumper.class
ca fe ba be 00 03 00 2d 00 7e 03 00 00 00 00 03 00 00 00 01 03 00 00 00
02 08 00 43 08 00 44 08 00 52 08 00 53 08 00 54 08 00 55 08 00 56 08 00
63 07 00 5c 07 00 66 07 00 6d 07 00 6e 07 00 6f 07 00 70 07 00 71 07 00

In later chapters, I'll add a graphical user interface and many more possible interpretations of
the data in the file, including floating-point, big- and little-endian integer, and various text
encodings.

Java I/O

60

Chapter 5. Network Streams
From its first days, Java has had the network in mind, more so than any other common
programming language. Java is the first programming language to provide as much support
for network I/O as it does for file I/O, perhaps even more—Java's URL, URLConnection,
Socket, and ServerSocket classes are all fertile sources of streams. The exact type of the
stream used by a network connection is typically hidden inside the undocumented sun classes.
Thus, network I/O relies primarily on the basic InputStream and OutputStream methods,
which you can wrap with any higher-level stream that suits your needs: buffering,
cryptography, compression, or whatever your application requires.

5.1 URLs

The java.net.URL class represents a Uniform Resource Locator like
http://metalab.unc.edu/javafaq/. Each URL unambiguously identifies the location of a
resource on the Internet. The URL class has four constructors. All are declared to throw
MalformedURLException, a subclass of IOException.

public URL(String u) throws MalformedURLException
public URL(String protocol, String host, String file)
 throws MalformedURLException
public URL(String protocol, String host, int port, String file)
 throws MalformedURLException
public URL(URL context, String u) throws MalformedURLException

A MalformedURLException is thrown if the constructor's arguments do not specify a valid
URL. Often this means a particular Java implementation does not have the right protocol
handler installed. Thus, given a complete absolute URL like
http://www.poly.edu/schedule/fall97/bgrad.html#cs, you construct a URL object like this:

URL u = null;
try {
 u = new URL("http://www.poly.edu/schedule/fall97/bgrad.html#cs");
}
catch (MalformedURLException e) { }

You can also construct the URL object by passing its pieces to the constructor:

URL u = null;
try {
 u = new URL("http", "www.poly.edu", "/schedule/fall97/bgrad.html#cs");
}
catch (MalformedURLException e) { }

You don't normally need to specify a port for a URL; most protocols have default ports. For
instance, the HTTP port is 80. Sometimes the port used does change, and in that case you can
use the third constructor:

URL u = null;
try {
 u = new URL("http", "www.poly.edu", 80,"/schedule/fall97/bgrad.html#cs");
}
catch (MalformedURLException e) { }

Java I/O

61

Finally, many HTML files contain relative URLs. The fourth constructor in the previous code
creates URLs relative to a given URL and is particularly useful when parsing HTML. For
example, the following code creates a URL pointing to the file 08.html, taking the rest of the
URL from u1:

URL u1, u2;
try {
 u1 = new URL("http://metalab.unc.edu/javafaq/course/week12/07.html");
 u2 = new URL(u1, "08.html");
}
catch (MalformedURLException e) { }

Once a URL object has been constructed, there are two ways to retrieve its data. The
openStream() method returns a raw stream of bytes from the source. The getContent()
method returns a Java object that represents the data. When you call getContent(), Java
looks for a content handler that matches the MIME type of the data. It is the openStream()
method that is of concern in this book.

The openStream() method makes a socket connection to the server and port specified in the
URL. It returns an input stream from which you can read the data at that URL, allowing you
to download data from the server. Any headers that come before the actual data or file
requested are stripped off before the stream is opened. You get only raw data.

public final InputStream openStream() throws IOException

You read from the input stream using an input stream or reader class. For example:

try {
 URL u = new URL("http://www.amnesty.org/");
 InputStream in = u.openStream();
 int b;
 while ((b = in.read()) != -1) {
 System.out.write(b);
 }
}
catch (MalformedURLException e) {System.err.println(e);}
catch (IOException e) {System.err.println(e);}

Applets running under the control of a security manager—that is untrusted applets that run
inside a web browser—are normally only allowed to connect back to the host they were
downloaded from. This host can be determined from the URL returned by the
getCodeBase() method of the Applet class. Attempts to connect to other hosts throw
security exceptions. You can create URLs that point to other hosts, but you may not download
data from them using openStream() or any other method. (This security restriction for
applets applies to any network connection, regardless of how you get it.)

Example 5.1 reads a series of URLs from the command line. The program connects to the
specified URLs, downloads the data, and copies it to System.out.

Example 5.1. The URLTyper Program

import java.net.*;
import java.io.*;
import com.macfaq.io.*;

Java I/O

62

public class URLTyper {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println("Usage: java URLTyper url1 url2 ...");
 return;
 }

 for (int i = 0; i < args.length; i++) {
 if (args.length > 1) {
 System.out.println(args[i] + ":");
 }
 try {
 URL u = new URL(args[i]);
 InputStream in = u.openStream();
 StreamCopier.copy(in, System.out);
 in.close();
 }
 catch (MalformedURLException e) {System.err.println(e);}
 catch (IOException e) {System.err.println(e);}
 }
 }
}

For example, here are the first few lines you see when you connect to
http://www.oreilly.com/:

D:\JAVA\ioexamples\05>java URLTyper http://www.oreilly.com/
<HTML>
<HEAD>
<META name="keywords" content="computer books, technical books, UNIX, unix,
Perl, Java, Linux, Internet, Web, C, C++, Windows, Windows NT, Security,
Sys Admin, System Administration, Oracle, design, graphics, online books,
online courses, Perl Conference, Web-based training, Software, open source,
free software">
<META name="description" content="O'Reilly is a leader in technical and
computer book documentation for UNIX, Perl, Java, Linux, Internet,
Web, C, C++, Windows, Windows NT, Security, Sys Admin, System
Administration, Oracle, Design & Graphics, Online Books, Online Courses,
Perl Conference, Web-based training, and Software">
<TITLE>www.oreilly.com -- Welcome to O'Reilly & Associates!</TITLE>

Most network connections, even on LANs, are slower and less reliable sources of data than
files. Connections across the Internet are even slower and less reliable, and connections
through a modem are slower and less reliable still. One way to enhance performance under
these conditions is to buffer the data: to read as much data as you can into a temporary storage
array inside the class, then parcel it out as needed. In the next chapter, you'll learn about the
BufferedInputStream class that does exactly this.

5.2 URL Connections

URL connections are closely related to URLs, as their name implies. Indeed, you get a
reference to a URLConnection by using the openConnection() method of a URL object; in
many ways, the URL class is only a wrapper around the URLConnection class. However, URL
connections provide more control over the communication between the client and the server.

Java I/O

63

In particular, URL connections provide not just input streams by which the client can read
data from the server, but also output streams to send data from the client to the server. This is
essential for protocols like mailto.

The java.net.URLConnection class is an abstract class that handles communication with
different kinds of servers, like FTP servers and web servers. Protocol-specific subclasses of
URLConnection, hidden inside the sun classes, handle different kinds of servers.

5.2.1 Reading Data from URL Connections

URL connections take place in five steps:

1. The URL object is constructed.
2. The openConnection() method of the URL object creates the URLConnection object.
3. The parameters for the connection and the request properties that the client sends to

the server are set up.
4. The connect() method makes the connection to the server, perhaps using a socket for

a network connection or a file input stream for a local connection. The response
header information is read from the server.

5. Data is read from the connection by using the input stream returned by
getInputStream() or through a content handler with getContent(). Data can be
sent to the server using the output stream provided by getOutputStream().

This scheme is very much based on the HTTP/1.0 protocol. It does not fit other schemes that
have a more interactive "request, response, request, response, request, response" pattern
instead of HTTP/1.0's "single request, single response, close connection" pattern. In
particular, FTP and even HTTP/1.1 aren't well suited to this pattern. I wouldn't be surprised to
see this replaced with something more general in a future version of Java.

URLConnection objects are not constructed directly in your own programs. Instead, you
create a URL for the particular resource, and call that URL's openConnection() method. This
gives you a URLConnection. Then the getInputStream() method returns an input stream
that reads data from the URL. (The openStream() method of the URL class is just a thin
veneer over the getInputStream() method of the URLConnection class.) For example:

try {
 URL u = new URL("http://www.digitalthink.com/");
 URLConnection uc = u.openConnection();
 uc.connect();
 InputStream in = uc.getInputStream();
 //...
}
catch (IOException e) { //...

If the connection cannot be opened (possibly because the remote host is unreachable), an
IOException is thrown. Example 5.2 reads a URL from the command line, opens a
connection to that URL, then prints the data returned by the server at that URL. This is similar
to Example 5.1; WebCat differs primarily in that it uses a URLConnection instead of a URL.

Java I/O

64

Example 5.2. The WebCat Program

import java.net.*;
import java.io.*;
import com.macfaq.io.*;

public class WebCat {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println("Usage: java WebCat url1 url2 ...");
 return;
 }

 for (int i = 0; i < args.length; i++) {
 if (i > 0 && i < args.length) {
 System.out.println();
 System.out.println("----------------------");
 System.out.println();
 }
 System.out.println(args[i] + ":");
 try {
 URL u = new URL(args[i]);
 URLConnection uc = u.openConnection();
 uc.connect();
 InputStream in = uc.getInputStream();
 StreamCopier.copy(in, System.out);
 in.close();
 }
 catch (IOException e) {System.err.println(e);}
 } // end for
 }
}

5.2.2 Writing Data on URL Connections

Writing data to a URLConnection is similar to reading data. However, you must first inform
the URLConnection that you plan to use it for output, and then, instead of getting the
connection's input stream and reading from it, you get the connection's output stream and
write to it. This is commonly used to talk to CGIs that use the POST method or to store files
on web servers through the PUT method, or to communicate with a Java servlet running on a
server. Here are the steps for writing data on a URLConnection:

1. Construct the URL object.
2. Call the openConnection() method of the URL object to create the URLConnection

object.
3. Pass true to setDoOutput() to indicate that this URLConnection will be used for

output.
4. If you also want to read input from the stream, invoke setDoInput(true) to indicate

that this URLConnection will be used for input.
5. Create the data you want to send, preferably as a byte array.
6. Call getOutputStream() to get an output stream object. Write the byte array

calculated in step 5 onto the stream.
7. Close the output stream.
8. Call getInputStream() to get an input stream object. Read and write it as usual.

Java I/O

65

Example 5.3 uses these steps to implement a simple mail client. It forms a mailto URL from
an email address entered on the command line. Input for the message is copied from
System.in onto the output stream of the URLConnection using a StreamCopier. The end of
the message is indicated by the end-of-stream character.

Example 5.3. The MailClient Class

import java.net.*;
import java.io.*;
import com.macfaq.io.*;

public class MailClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println("Usage: java MailClient username@host.com");
 return;
 }

 try {
 URL u = new URL("mailto:" + args[0]);
 URLConnection uc = u.openConnection();
 uc.setDoOutput(true);
 uc.connect();
 OutputStream out = uc.getOutputStream();
 StreamCopier.copy(System.in, out);
 out.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
}

For example, to send email to the author of this book:

% java MailClient elharo@metalab.unc.edu
hi there!
^D

MailClient suffers from a few restrictions. The proper way to detect the end of the message
is to look for a period on a line by itself. Proper or not, that style of user interface is really
antiquated, so I didn't bother to implement it. To do so properly, you'll need to use a Reader
or a Writer; they're discussed in Chapter 15. Furthermore, it only works in Java environments
that support the mailto protocol; thus, it works under Sun's JDK, but may not work in other
environments. It also requires that the local host be running an SMTP server, or that the
system property mailhost must contain the name of an accessible SMTP server, or that a
machine in the local domain named mailhost be running an SMTP server. Finally, the security
manager must permit network connections to that server, although this is not normally a
problem in an application.

5.3 Sockets

Before data is sent across the Internet from one host to another, it is split into packets of
varying but finite size called datagrams. Datagrams range in size from a few dozen bytes to
about 60,000 bytes. Anything larger, and often things smaller, must be split into smaller

Java I/O

66

pieces before it can be transmitted. The advantage of this scheme is that if one packet is lost,
it can be retransmitted without requiring redelivery of all other packets. Furthermore, if
packets arrive out of order, they can be reordered at the receiving end of the connection.

Fortunately, packets are invisible to the Java programmer. The host's native networking
software splits data into packets on the sending end and reassembles packets on the receiving
end. Instead, the Java programmer is presented with a higher-level abstraction called a socket.
The socket represents a reliable connection for the transmission of data between two hosts. It
isolates you from the details of packet encodings, lost and retransmitted packets, and packets
that arrive out of order. A socket performs four fundamental operations:

1. Connect to a remote machine
2. Send data
3. Receive data
4. Close the connection

A socket may not be connected to more than one host at a time. However, a socket may both
send data to and receive data from the host to which it's connected.

The java.net.Socket class is Java's interface to a network socket and allows you to perform
all four fundamental socket operations. It provides raw, uninterpreted communication
between two hosts. You can connect to remote machines; you can send data; you can receive
data; you can close the connection. No part of the protocol is abstracted out, as it is with URL
and URLConnection. The programmer is completely responsible for the interaction between
the network client and the server. To create a connection, you call one of the Socket
constructors, specifying the host you want to connect to. Each Socket object is associated
with exactly one remote host. To connect to a different host, you must create a new Socket
object:

public Socket(String host, int port) throws UnknownHostException,
IOException
public Socket(InetAddress address, int port) throws IOException
public Socket(String host, int port, InetAddress localAddr, int localPort)
 throws IOException
public Socket(InetAddress address, int port, InetAddress localAddr, int
localPort) throws IOException

The host is a string like "www.oreilly.com" or "metalab.unc.edu", which specifies the
particular host to connect to. It may even be a numeric, dotted quad string like
"199.1.32.90". This argument may also be passed as a java.net.InetAddress object.

The port argument is the port on the remote host to connect to. A computer's network
interface is logically subdivided into 65,536 different ports. As data traverses the Internet in
packets, each packet carries not only the address of the host but also the port on that host at
which it's aimed. The host is responsible for reading the port number from each packet it
receives to decide which program should receive that chunk of data. Many services run on
well-known ports. This means that the protocol specifies that the service should or must use a
particular port—for example, HTTP servers generally listen on port 80.

The optional localAddress and localPort arguments specify which address and port on the
local host the socket is to connect from, assuming more than one is available. Most hosts have

Java I/O

67

many available ports but only one address. These two arguments are optional. If they're left
out, the constructor will choose reasonable values.

Sending and receiving data across a socket is accomplished with output and input streams.
These are the methods to get both streams for the socket:

public InputStream getInputStream() throws IOException
public OutputStream getOutputStream() throws IOException

There's also a method to close a socket:

public synchronized void close() throws IOException

This effectively closes the socket's input and output streams as well. Any attempt to read from
or write to them after the socket is closed will throw an IOException.

Example 5.4 is yet another program that connects to a web server and downloads a specified
URL. However, since this one uses raw sockets, it needs to both send the HTTP request and
read the headers in the response. These are not parsed away as they are by the URL and
URLConnection classes; you use an output stream to send the request explicitly and an input
stream to read the data back, including HTTP headers. Only HTTP URLs are supported.

Example 5.4. The SocketTyper Program

import java.net.*;
import java.io.*;
import com.macfaq.io.*;

public class SocketTyper {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println("Usage: java SocketTyper url1 url2 ...");
 return;
 }

 for (int i = 0; i < args.length; i++) {
 if (args.length > 1) {
 System.out.println(args[i] + ":");
 }
 try {
 URL u = new URL(args[i]);
 if (!u.getProtocol().equalsIgnoreCase("http")) {
 System.err.println("Sorry, " + u.getProtocol() +
 break;
 }

 String host = u.getHost();
 int port = u.getPort();
 String file = u.getFile();
 // default port
 if (port <= 0) port = 80;

 Socket s = new Socket(host, port);
 String request = "GET " + file + " HTTP/1.0\r\n"
 + "User-Agent: MechaMozilla\r\nAccept: text/*\r\n\r\n";

Java I/O

68

 // This next line is problematic on non-ASCII systems
 byte[] b = request.getBytes();

 OutputStream out = s.getOutputStream();
 InputStream in = s.getInputStream();
 out.write(b);
 out.flush();

 StreamCopier.copy(in, System.out);
 in.close();
 out.close();
 s.close();
 }
 catch (MalformedURLException e) {System.err.println(e);}
 catch (IOException e) {System.err.println(e);}
 }
 }
}

For example, when SocketTyper connects to http://www.oreilly.com/, here is what you see:

% java SocketTyper http://www.oreilly.com/
HTTP/1.0 200 OK
Server: WN/1.15.1
Date: Sun, 09 Aug 1998 20:05:03 GMT
Last-modified: Fri, 07 Aug 1998 23:44:36 GMT
Content-type: text/html
Title: www.oreilly.com -- Welcome to O'Reilly & Associates!
Link: <mailto:webmaster@ora.com>; rev="Made"

<HTML>
<HEAD>
<META name="keywords" content="computer books, technical books, UNIX, unix,
Perl, Java, Linux, Internet, Web, C, C++, Windows, Windows NT, Security,
Sys Admin, System Administration, Oracle, design, graphics, online books,
online courses, Perl Conference, Web-based training, Software, open source,
free software">

Notice the header lines you didn't see in Example 5.1. When you use the URL class to
download a web page, the associated protocol handler never shows you the HTTP header.

5.4 Server Sockets

There are two ends to each connection: the client, which initiates the connection, and the
server, which responds to the connection. So far, we've only discussed the client side and
assumed that a server existed out there for the client to talk to. To implement a server, you
need to write a program that waits for other hosts to connect to it. A server socket binds to a
particular port on the local machine (the server); once it has successfully bound to a port, it
listens for incoming connection attempts from remote machines (the clients). When the server
detects a connection attempt, it accepts the connection. This creates a socket between the two
machines over which the client and the server communicate.

Many clients can connect to a port on the server simultaneously. Incoming data is
distinguished by the port to which it is addressed and the client host and port from which it
came. The server can tell for which service (like HTTP or FTP) the data is intended by

Java I/O

69

inspecting the port. It knows where to send any response by looking at the client address and
port stored with the data.

No more than one server socket can listen to a particular port at one time. Therefore, since a
server may need to handle many connections at once, server programs tend to be heavily
multithreaded. Generally, the server socket listening on the port only accepts the connections.
It passes off the actual processing of each connection to a separate thread. Incoming
connections are stored in a queue until the server can accept them. On most systems, the
default queue length is between 5 and 50. Once the queue fills up, further incoming
connections are refused until space in the queue opens up.

The java.net.ServerSocket class represents a server socket. Three constructors let you
specify the port to bind to, the queue length for incoming connections, and the IP address:

public ServerSocket(int port) throws IOException
public ServerSocket(int port, int backlog) throws IOException
public ServerSocket(int port, int backlog, InetAddress bindAddr)
 throws IOException

Normally, you specify only the port you want to listen on:

try {
 ServerSocket ss = new ServerSocket(80);
}
catch (IOException e) {System.err.println(e);}

When you create a ServerSocket object, it attempts to bind to the port on the local host
given by the port argument. If another server socket is already listening to the port, then a
java.net.BindException, a subclass of IOException, is thrown. No more than one process
or thread can listen to a particular port at a time. This includes non-Java processes or threads.
For example, if there's already an HTTP server running on port 80, you won't be able to bind
to port 80. On Unix systems (but not Windows or the Mac) your program must be running as
root to bind to a port between 1 and 1023.

0 is a special port number. It tells Java to pick an available port. You can then find out what
port it's picked with the getLocalPort() method:

public int getLocalPort()

This is useful if the client and the server have already established a separate channel of
communication over which the chosen port number can be communicated. For example, the
FTP protocol uses two sockets. The initial connection is made by the client to the server to
send commands. One of the commands sent tells the server the port number on which the
client is listening. The server then connects to the client on this port to send data.

Once you have a ServerSocket, you need to wait for incoming connections. You do this by
calling the accept() method, which blocks until a connection attempt occurs and then returns
a Socket that you can use to communicate with the client. The close() method terminates
the ServerSocket.

public Socket accept() throws IOException
public void close() throws IOException

Java I/O

70

That's pretty much all there is, except for a few methods dealing with socket options and some
other details. In particular, there aren't methods for getting input and output streams. Instead,
accept()returns a Socket object: you call the Socket's getInputStream() or
getOutputStream() method. For example:

try {
 ServerSocket ss = new ServerSocket(2345);
 Socket s = ss.accept();
 OutputStream out = s.getOutputStream();
 // Send data to the client.
 s.close();
}
catch (IOException e) {System.err.println(e);}

Notice in this example, I closed the Socket s, not the ServerSocket ss. ss is still bound to
port 2345. You get a new socket for each connection and reuse the server socket. For
example, the next code fragment repeatedly accepts connections:

try {
 ServerSocket ss = new ServerSocket(2345);
 while (true) {
 Socket s = ss.accept();
 OutputStream out = s.getOutputStream();
 // send data to the client
 s.close();
 }
}
catch (IOException e) {System.err.println(e);}

The program in Example 5.5 reads a port number from the command line. It listens on that
port for incoming connections. When it detects one, it answers back with the client's address
and port and its own. Then it closes the connection.

Example 5.5. The HelloServer Program

import java.net.*;
import java.io.*;

public class HelloServer {

 public final static int defaultPort = 2345;

 public static void main(String[] args) {

 int port = defaultPort;

 try {
 port = Integer.parseInt(args[0]);
 }
 catch (Exception e) {}
 if (port <= 0 || port >= 65536) port = defaultPort;

 try {
 ServerSocket ss = new ServerSocket(port);
 while (true) {
 try {
 Socket s = ss.accept();

Java I/O

71

 String response = "Hello " + s.getInetAddress() + " on port "
 + s.getPort() + "\r\n";
 response += "This is " + s.getLocalAddress() + " on port "
 + s.getLocalPort() + "\r\n";
 OutputStream out = s.getOutputStream();
 out.write(response.getBytes());
 out.flush();
 s.close();
 }
 catch (IOException e) {}
 }
 }
 catch (IOException e) {System.err.println(e);}
 }
}

Here's some output from our server. The server is running on utopia.poly.edu. The client is
connecting from titan.oit.unc.edu. Note how the port from which the connection comes
changes each time; like most client programs, the telnet program picks a random local port for
outgoing connections:

% telnet utopia.poly.edu 2545
Trying 128.238.3.21...
Connected to utopia.poly.edu.
Escape character is '^]'.
Hello titan.oit.unc.edu/152.2.22.14 on port 50361
This is utopia.poly.edu/128.238.3.21 on port 2545
Connection closed by foreign host.
% telnet utopia.poly.edu 2545
Trying 128.238.3.21...
Connected to utopia.poly.edu.
Escape character is '^]'.
Hello titan.oit.unc.edu/152.2.22.14 on port 50362
This is utopia.poly.edu/128.238.3.21 on port 2545
Connection closed by foreign host.

5.5 URLViewer

Example 5.6 is an improved version of the URLViewer you first encountered in Chapter 2.
This is a simple application that provides a window in which you can view the contents of a
URL. It assumes that those contents are more or less ASCII text. (In future chapters, I'll
remove that restriction.) Figure 5.1 shows the result. Our application has a text area in which
the user can type a URL, a Load button that the user uses to load the specified URL, and a
StreamedTextArea component that displays the text from the URL. Each of these
corresponds to a field in the URLViewer class.

Java I/O

72

Figure 5.1. The URLViewer

Example 5.6. The URLViewer Program

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import com.macfaq.awt.*;
import com.macfaq.io.*;

public class URLViewer extends Frame
 implements WindowListener, ActionListener {

 TextField theURL = new TextField();
 Button loadButton = new Button("Load");
 StreamedTextArea theDisplay = new StreamedTextArea();

 public URLViewer() {
 super("URL Viewer");
 }

 public void init() {

 this.add("North", theURL);
 this.add("Center", theDisplay);
 Panel south = new Panel();
 south.add(loadButton);
 this.add("South", south);
 theURL.addActionListener(this);
 loadButton.addActionListener(this);
 this.addWindowListener(this);
 this.setLocation(50, 50);
 this.pack();
 this.show();
 }

Java I/O

73

 public void actionPerformed(ActionEvent evt) {

 try {
 URL u = new URL(theURL.getText());
 InputStream in = u.openStream();
 OutputStream out = theDisplay.getOutputStream();
 StreamCopier.copy(in, out);
 in.close();
 out.close();
 }
 catch (MalformedURLException ex) {theDisplay.setText("Invalid URL");}
 catch (IOException ex) {theDisplay.setText("Invalid URL");}
 }

 public void windowClosing(WindowEvent e) {

 this.setVisible(false);
 this.dispose();
 }

 public void windowOpened(WindowEvent e) {}
 public void windowClosed(WindowEvent e) {}
 public void windowIconified(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}
 public void windowActivated(WindowEvent e) {}
 public void windowDeactivated(WindowEvent e) {}

 public static void main(String args[]) {

 URLViewer me = new URLViewer();
 me.init();
 }
}

The URLViewer class itself extends Frame. An alternative would have been to extend Panel,
which would have allowed URLViewer objects to be embedded in other containers. However,
this application seemed big enough to justify exclusive use of a window. URLViewer
implements the WindowListener interface to enable the user to close the window by clicking
in the close box. Only the windowClosing() method is nontrivial. The other six window
methods are do-nothing methods required to satisfy the contract of the WindowListener
interface.

The init() method builds the interface and displays the window. This is invoked by the
main() method, which constructs a new URLViewer object. The constructor is quite simple,
merely passing the title of the frame to the superclass constructor.

The streamed text area is filled when the user clicks the Load button or hits Return inside the
URL text field. The URLViewer object listens to both of these components. The URLViewer's
actionPerformed() method constructs a URL from the text in the text field, then opens an
input stream from the URL in the text field. Next, StreamCopier from Chapter 3 pours the
data from the URL's input stream into the text area's output stream. When that's finished, both
streams are closed.

Java I/O

74

Part III: Filter Streams

Java I/O

75

Chapter 6. Filter Streams
Filter input streams read data from a preexisting input stream like a FileInputStream and
have an opportunity to work with or change the data before it is delivered to the client
program. Filter output streams write data to a preexisting output stream such as a
FileOutputStream and have an opportunity to work with or change the data before it is
written onto the underlying stream. Multiple filters can be chained onto a single underlying
stream. Filter streams are used for encryption, compression, translation, buffering, and much
more.

The word filter is derived by analogy from a water filter. A water filter sits between the pipe
and faucet, pulling out impurities. A stream filter sits between the source of the data and its
eventual destination and applies a specific algorithm to the data. As drops of water are passed
through the water filter and modified, so too are bytes of data passed through the stream filter.
Of course, there are some big differences—most notably, a stream filter can add data or some
other kind of annotation to the stream, in addition to removing things you don't want; it may
even produce a stream that is completely different from its original input (for example, by
compressing the original data).

6.1 The Filter Stream Classes

java.io.FilterInputStream and java.io.FilterOutputStream are concrete superclasses
for input and output stream subclasses that somehow modify or manipulate data of an
underlying stream:

public class FilterInputStream extends InputStream
public class FilterOutputStream extends OutputStream

Each of these classes has a single protected constructor that specifies the underlying stream
from which the filter stream reads or writes data:

protected FilterInputStream(InputStream in)
protected FilterOutputStream(OutputStream out)

These constructors set protected InputStream and OutputStream fields, called in and out,
inside the FilterInputStream and FilterOutputStream classes, respectively.

protected InputStream in
protected OutputStream out

Since the constructors are protected, filter streams may only be created by subclasses. Each
subclass implements a particular filtering operation. Normally, such a pattern suggests that
polymorphism is going to be used heavily, with subclasses standing in for the common
superclass; however, it is uncommon to use filter streams polymorphically as instances of
FilterInputStream or FilterOutputStream. Most of the time, references to a filter stream
are either references to a more specific subclass like BufferedInputStream or they're
polymorphic references to InputStream or OutputStream with no hint of the filter left.

Beyond the constructors, both FilterInputStream and FilterOutputStream declare
exactly the methods of their respective superclasses. For FilterInputStream, these are:

Java I/O

76

public int read() throws IOException
public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException
public long skip(long n) throws IOException
public int available() throws IOException
public void close() throws IOException
public synchronized void mark(int readlimit)
public synchronized void reset() throws IOException
public boolean markSupported()

For FilterOutputStream, these are:

public void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException
public void flush() throws IOException
public void close() throws IOException

Each of these methods merely passes its arguments to the corresponding method in the
underlying stream. For example, the skip() method in FilterInputStream behaves like
this:

public long skip(long n) throws IOException {
 in.skip(n);
 }

The close() method in FilterOutputStream behaves like this:

public void close() throws IOException {
 out.close();
 }

Thus, closing a filter stream closes the underlying stream. You cannot close one filter stream
and then open up another on the same underlying stream, nor can you close one filter stream
in a chain but still read from the underlying stream or other streams in the chain. Attempts to
do so will throw IOExceptions. Once a stream is closed—no matter by which filter stream
it's chained to—it's closed for good.

Since the constructors are protected, you don't use these classes directly. Instead, you create
subclasses and use those. Since FilterOutputStream does not have a no-argument
constructor, it's essential to give all subclasses explicit constructors and use super() to
invoke the FilterOutputStream constructor. Your subclass will probably also want to
override the write(int b) and write(byte[] data, int offset, int length) methods to
perform its filtering. The write(byte[] data) method merely invokes write(data, 0,
data.length), so if you've overridden the three-argument write() method, you probably
don't need to also override write(byte[] data). Depending on circumstances, you may or
may not need to override some of the other methods.

The PrintableOutputStream class shown in Example 6.1 is an example subclass of
FilterOutputStream that truncates all data to the range of printable ASCII characters: byte
values 32-126, plus 9, 10, and 13 (tab, linefeed, and carriage return). Every time a byte in that
range is passed to write(), it is written onto the underlying output stream, out. Every time a
byte outside that range is passed to write(), a question mark is written onto the underlying

Java I/O

77

output stream, out. Among other things, this class provides a quick and dirty way to read
ASCII string literals embedded in a .class or .exe file.

Example 6.1. The PrintableOutputStream Class

package com.macfaq.io;

import java.io.*;

public class PrintableOutputStream extends FilterOutputStream {

 public PrintableOutputStream(OutputStream out) {
 super(out);
 }

 public void write(int b) throws IOException {

 // carriage return, linefeed, and tab
 if (b == 10 || b == 13 || b == 9) out.write(b);
 // non-printing characters
 else if (b < 32 || b > 126) out.write('?');
 // printing, ASCII characters
 else out.write(b);
 }

 public void write(byte[] data, int offset, int length) throws IOException
{
 for (int i = offset; i < offset+length; i++) {
 this.write(data[i]);
 }
 }
}

To use this class, or any other filter output stream, you must chain it to another stream that
actually writes the bytes to their eventual target. For example, to chain a
PrintableOutputStream to System.out , you would write:

PrintableOutputStream pos = new PrintableOutputStream(System.out);

Often, the underlying stream is created directly inside the constructor:

PrintableOutputStream pos =
 new PrintableOutputStream(new FileOutputStream("data.txt"));

However, the sheer length of the stream class names tends to make this style of coding
inconvenient.

Multiple streams can be chained together in sequence to get the benefits of each. For example,
to create a buffered printable file output stream, you would chain a file output stream to a
buffered output stream, which would then be chained to a printable output stream. For
example:

FileOutputStream fout = new FileOutputStream("data.txt");
BufferedOutputStream bout = new BufferedOutputStream(fout);
PrintableOutputStream pout = new PrintableOutputStream(bout);

Java I/O

78

Example 6.2 uses the PrintableOutputStream class to extract ASCII strings from a file.
First it chains either System.out or a file output stream to a printable output stream, then it
opens a file input stream from a file named on the command line and copies it into the
printable output stream, thereby converting it to printable ASCII characters.

Example 6.2. The StringExtractor Class

import com.macfaq.io.*;
import java.io.*;

public class StringExtractor {

 public static void main(String[] args) {

 if (args.length < 1) {
 System.out.println("Usage: java StringExtractor inFile");
 return;
 }
 try {
 FileInputStream fin = new FileInputStream(args[0]);
 OutputStream out;
 if (args.length >= 2) {
 out = new FileOutputStream(args[1]);
 }
 else out = System.out;

 // Here's where the output stream is chained
 // to the ASCII output stream.
 PrintableOutputStream pout = new PrintableOutputStream(out);
 int b;
 while ((b = fin.read()) != -1) pout.write(b);
 // Alternately
 // StreamCopier.copy(fin, pout);
 }
 catch (FileNotFoundException e) {
 System.out.println("Usage: java StringExtractor inFile outFile");
 }
 catch (IOException e) {System.err.println(e);}
 }
}

Here's the output produced by running StringExtractor on itself in compiled form:

% java StringExtractor StringExtractor.class
???????-?=??-??.??+??/??1??2??3??4??5??6??7
?
??
????
????
???? ???? ????
? ??
? ??
????
??????&?
??&?"??&?$??0?)??9?)??:?#??:?$??;????<?!???()I???()V???(I)V???(Ljava/io
/OutputStream;)V???(Ljava/lang/Object;)V???(Ljava/lang/String;)V???([Ljava/
lang/
String;)V???<init>???Code???LineNumberTable???Ljava/io/PrintStream;??

Java I/O

79

SourceFile???StringExtractor???StringExtractor.java??"Usage: java
StringExtracto
r inFile??*Usage: java StringExtractor inFile
outFile??#com/macfaq/io/PrintableO
utputStream???err???java/io/FileInputStream???java/io/FileNotFoundException
???ja
va/io/FileOutputStream???java/io/IOException???java/io/PrintStream???java/l
ang/O
bject???java/lang/System???main???out???println???read???write?!???
?????????&? ???'????????????*?????????(???????????
?8?%???'???????????g*???
N?? -
?????+???Y6????????W???????????L???+?????????O?R?????O?^?????(???J????????

Although a lot of information is clearly lost in this translation, a surprising amount is
retained—you have every string literal in the file and the names of all the classes and methods
invoked by this class.

Filter input streams are created similarly. Since FilterInputStream does not have a no-
argument constructor, all subclasses require explicit constructors and must use super() to
invoke the FilterInputStream constructor. To do the actual filtering, a subclass overrides
the read() and read(byte[] data, int offset, int length) methods. The read(byte[]
data) method merely invokes read(data, 0, data.length), so if you've overridden the
three-argument read() method, you probably don't need to also override read(byte[]
data). Depending on circumstances, you may or may not need to override some of the other
methods. For example, the PrintableInputStream class shown in Example 6.3 truncates all
data read to the range of printable ASCII characters. As with PrintableOutputStream, any
character not in that range is replaced by a question mark.

Example 6.3. The PrintableInputStream Class

package com.macfaq.io;

import java.io.*;

public class PrintableInputStream extends FilterInputStream {

 public PrintableInputStream(InputStream in) {
 super(in);
 }

 public int read() throws IOException {

 int b = in.read();
 // printing, ASCII characters
 if (b >= 32 && b <= 126) return b;
 else if (b == 10 || b == 13 || b == 9 || b == -1) return b;
 // nonprinting characters
 else return '?';

 }

Java I/O

80

 public int read(byte[] data, int offset, int length) throws IOException {

 int result = in.read(data, offset, length);
 for (int i = offset; i < offset+result; i++) {
 // Do nothing with the printing characters.
 if (data[i] == 10 || data[i] == 13 || data[i] == 9 || data[i] == -1)
;
 // nonprinting characters
 else if (data[i] < 32 || data[i] > 126) data[i] = (byte) '?';
 }
 return result;
 }
}

6.2 The Filter Stream Subclasses

The java.io package contains many useful filter stream classes. The BufferedInputStream
and BufferedOutputStream classes buffer reads and writes by first putting data into a buffer
(an internal array of bytes). Thus, an application can read or write bytes to the stream without
necessarily calling the underlying native methods. The data is read from or written into the
buffer in blocks; subsequent accesses go straight to the buffer. This improves performance in
many situations. Buffered input streams also allow the reader to back up and reread data.

The java.io.PrintStream class, which System.out and System.err are instances of,
allows very simple printing of primitive values, objects, and string literals. It uses the
platform's default character encoding to convert characters into bytes. This class traps all
IOExceptions and is primarily intended for debugging. System.out and System.err are the
most popular examples of the PrintStream class, but you can connect a PrintStream filter
to other output streams as well. For example, you can chain a PrintStream to a
FileOutputStream to easily write text into a file.

The PushbackInputStream class has a one-byte pushback buffer so a program can "unread"
the last character read. The next time data is read from the stream, the unread character is
reread.

The DataInputStream and DataOutputStream classes read and write primitive Java data
types and strings in a machine-independent way. (Big-endian for integer types, IEEE-754 for
floats and doubles, UTF-8 for Unicode.) These are important enough to justify a chapter of
their own and will be discussed in the next chapter. The ObjectInputStream and
ObjectOutputStream classes extend DataInputStream and DataOutputStream with
methods to read and write arbitrary Java objects as well as primitive data types. These will be
taken up in Chapter 11.

The java.util.zip package also includes several filter stream classes. The filter input
streams in this package decompress compressed data; the filter output streams compress raw
data. These will be discussed in Chapter 9.

The java.util.security package contains the DigestInputStream and
DigestOutputStream filter streams; these calculate message digests of the data that passes
through them. Installing the Java Cryptography Extension (JCE) adds two more filter streams
to this package, CipherInputStream and CipherOutputStream , which can encrypt or
decrypt data using a variety of algorithms. These will be discussed in Chapter 10.

Java I/O

81

6.3 Buffered Streams

Buffered input streams read more data than they initially need into a buffer (an internal array
of bytes). When the stream's read() methods are invoked, the data is removed from the
buffer rather than the underlying stream. When the buffer runs out of data, the buffered stream
refills its buffer from the underlying stream. Likewise, buffered output streams store data in
an internal byte array until the buffer is full or the stream is flushed; then the data is written
out to the underlying output stream in one swoop. In situations where it's almost as fast to
read or write several hundred bytes from the underlying stream as it is to read or write a single
byte, a buffered stream can provide a significant performance gain.

There are two BufferedInputStream constructors and two BufferedOutputStream
constructors:

public BufferedInputStream(InputStream in)
public BufferedInputStream(InputStream in, int size)
public BufferedOutputStream(OutputStream out)
public BufferedOutputStream(OutputStream out, int size)

The first argument is the underlying stream from which data will be read or to which data will
be written. The size argument is the number of bytes in the buffer. If a size isn't specified, a
2048-byte buffer is used. The best size for the buffer depends on the platform and is generally
related to the block size of the disk (at least for file streams). Less than 512 bytes is probably
too small and more than 4096 bytes is probably too large. Ideally, you want an integral
multiple of the block size of the disk. However, you might want to use smaller buffer sizes for
unreliable network connections. For example:

URL u = new URL("http://java.developer.com");
BufferedInputStream bis = new BufferedInputStream(u.openStream(), 256);

Example 6.4 copies files named on the command line to System.out with buffered reads and
writes.

Example 6.4. A BufferedStreamCopier

package com.macfaq.io;
import java.io.*;

public class BufferedStreamCopier {

 public static void main(String[] args) {

 try {
 copy(System.in, System.out);
 }
 catch (IOException e) {System.err.println(e);}
 }

 public static void copy(InputStream in, OutputStream out)
 throws IOException {

 // Do not allow other threads to read from the input
 // or write to the output while copying is taking place.

Java I/O

82

 synchronized (in) {
 synchronized (out) {
 BufferedInputStream bin = new BufferedInputStream(in);
 BufferedOutputStream bout = new BufferedOutputStream(out);

 while (true) {
 int datum = bin.read();
 if (datum == -1) break;
 bout.write(datum);
 }
 bout.flush();
 }
 }
 }
}

This copy() method copies byte by byte, which is normally not very efficient. However,
almost all the copies take place in memory, because the input stream and the output stream are
buffered. Therefore, this is reasonably quick.

It wouldn't hurt to read and write byte arrays in the copy() method instead of individual
bytes, as long as the arrays you were reading and writing were significantly smaller than the
buffer size. However, one level of buffering is usually sufficient. Detailed performance
calculations depend on the virtual machine and the host OS, so it's hard to make any definite
conclusions.

Also note that the output stream is deliberately flushed. The data only reaches its eventual
destination in the underlying stream out when the stream is flushed or the buffer fills up.
Therefore, it's important to call flush() explicitly before the method returns.

6.3.1 BufferedInputStream Details

The buffer and the current state of the buffer are stored in protected fields. The buffer itself is
a byte array called buf; the number of bytes in the buffer is an int named count; the index of
the next byte that will be returned by read() is an int called pos; the mark, if any, is an int
called markpos; the read-ahead limit be- fore the mark is invalidated is an int called
marklimit. Subclasses of BufferedInputStream can directly access all these fields, which
can be important for performance.

protected byte[] buf
protected int count
protected int pos
protected int markpos
protected int marklimit

BufferedInputStream only overrides methods from InputStream. It does not declare any
new methods of its own. Marking and resetting are supported.

public synchronized int read() throws IOException
public synchronized int read(byte[] data, int offset, int length)
 throws IOException
public synchronized long skip(long n) throws IOException
public synchronized int available() throws IOException
public synchronized void mark(int readLimit)
public synchronized void reset() throws IOException

Java I/O

83

public boolean markSupported()

In Java 2 and later, the two multibyte read() methods try to fill the specified array or
subarray completely by reading repeatedly from the underlying input stream. They return only
when the requested number of bytes have been read, the end of stream is reached, or the
underlying stream would block. This is not the case for most input streams (including
buffered input streams in Java 1.1.x and earlier), which only attempt one read from the
underlying stream or data source before returning.

6.3.2 BufferedOutputStream Details

BufferedOutputStream also stores the buffer in a protected byte array named buf and the
index of the next place in the array where a byte will be stored in an int field named pos.
BufferedOutputStream does not expose the number of bytes in the buffer.

protected byte buf[]
protected int pos

BufferedOutputStream only overrides three methods from OutputStream. It does not
declare any new methods.

public synchronized void write(int b) throws IOException
public synchronized void write(byte data[], int offset, int length)
 throws IOException
public synchronized void flush() throws IOException

These methods are invoked exactly as they would be for any output stream. The only
difference is that writes place data in the buffer rather than directly on the underlying output
stream.

6.4 PushbackInputStream

The java.io.PushbackInputStream class provides a pushback buffer so a program can
"unread" the last several bytes read. The next time data is read from the stream, the unread
bytes are reread.

public void unread(int b) throws IOException
public void unread(byte[] data, int offset, int length) throws IOException
public void unread(byte[] data) throws IOException

By default the buffer is only one byte long, and trying to unread more than one byte throws an
IOException. However, you can change the default buffer size with the second constructor:

public PushbackInputStream(InputStream in)
public PushbackInputStream(InputStream in, int size)

Although both PushbackInputStream and BufferedInputStream use buffers, only a
PushbackInputStream allows unreading, and only a BufferedInputStream allows marking
and resetting. In a PushbackInputStream , markSupported() returns false.

public boolean markSupported()

Java I/O

84

The read() and available() methods work exactly as with normal input streams. However,
they first attempt to read from the pushback buffer.

public int read() throws IOException
public int read(byte[] data, int offset, int length) throws IOException
public int available() throws IOException

6.5 Print Streams

System.out and System.err are instances of the java.io.PrintStream class. This is a
subclass of FilterOutputStream that converts numbers and objects to text. System.out is
primarily used for simple, character-mode applications and for debugging. Its raison d'être is
convenience, not robustness; print streams ignore many issues involved in internationalization
and error checking. This makes System.out easy to use in quick and dirty hacks and simple
examples, while simultaneously making it unsuitable for production code, which should use
the java.io.PrintWriter class (discussed in Chapter 15) instead.

The PrintStream class has print() and println() methods that handle every Java data
type. The print() and println() methods differ only in that println() prints a platform-
specific line terminator after printing its arguments and print() does not. These methods are:

public void print(boolean b)
public void print(char c)
public void print(int i)
public void print(long l)
public void print(float f)
public void print(double d)
public void print(char[] s)
public void print(String s)
public void print(Object o)
public void println()
public void println(boolean b)
public void println(char c)
public void println(int i)
public void println(long l)
public void println(float f)
public void println(double d)
public void println(char[] s)
public void println(String s)
public void println(Object o)

Anything at all can be passed to a print() method; whatever argument you give is
guaranteed to match at least one of these methods. Object types are converted to strings by
invoking their toString() method. Primitive types are converted with the appropriate
String.valueOf() method.

One aspect of making System.out simple for quick jobs is not in the PrintStream class at
all but in the compiler. Because Java overloads the + operator to signify concatenation of
strings, primitive data types, and objects, you can pass multiple variables to the print() and
println() methods, which are then converted to strings and concatenated . For example,
consider the line:

System.out.println("As of " + (new Date()) + " there have been over "
 + hits + " hits on the web site.");

Java I/O

85

The compiler rewrites this complicated expression as:

StringBuffer sb = new StringBuffer();
sb.append("As of ");
Date d = new Date();
sb.append(d);
sb.append(" there have been over ");
sb.append(hits);
sb.append(" hits on the web site.")
String s = sb.toString();
System.out.println(s);

The StringBuffer append() method is overloaded in much the same way that the print()
and println() methods are so it can handle any Java data type.

PrintStream methods never throw IOExceptions. Each method in the class catches
IOExceptions. When an exception occurs, an internal flag is set to true. You test this flag
with the checkError() method:

public boolean checkError()

This method returns true if this print stream has ever encountered an error during its lifetime.
Most of the time, you just ignore this, since print streams are only used in situations where
exhaustive error checking is unnecessary.

Besides System.out and System.err, you can create new print streams with these
constructors:

public PrintStream(OutputStream out)
public PrintStream(OutputStream out, boolean autoFlush)

The out argument is just the underlying output stream. The autoFlush argument is a
boolean (true or false). If it's true, then the stream is flushed every time a linefeed (\n)
character or byte is written, a println()method is invoked, or a byte array is written.

The biggest problem with the PrintStream class is that it does not properly handle
international character sets. In Chapter 15 you'll learn about the PrintWriter class that has
much of the same functionality but can handle international character sets.

6.6 Multitarget Output Streams

As a final example, I present two slightly unusual filter output streams that direct their data to
multiple underlying streams. The TeeOutputStream class, given in Example 6.5, has not one
but two underlying streams. The TeeOutputStream does not modify the data that's written in
any way; it merely writes it on both of its underlying streams.

Example 6.5. The TeeOutputStream Class

package com.macfaq.io;

import java.io.*;

Java I/O

86

public class TeeOutputStream extends FilterOutputStream {

 OutputStream out1;
 OutputStream out2;

 public TeeOutputStream(OutputStream stream1, OutputStream stream2) {
 super(stream1);
 out1 = stream1;
 out2 = stream2;
 }

 public synchronized void write(int b) throws IOException {
 out1.write(b);
 out2.write(b);
 }

 public synchronized void write(byte[] data, int offset, int length)
 throws IOException {
 out1.write(data, offset, length);
 out2.write(data, offset, length);
 }

 public void flush() throws IOException {
 out1.flush();
 out2.flush();
 }

 public void close() throws IOException {
 out1.close();
 out2.close();
 }
}

It would be possible to store one of the output streams in FilterOutputStream's protected
out field and the other in a field in this class. However, it's simpler and cleaner to maintain
the parallelism between the two streams by storing them both in the TeeOutputStream class.

I've synchronized the write() methods to make sure that two different threads don't try to
write to the same TeeOutputStream at the same time. Depending on unpredictable thread-
scheduling issues, this could lead to data being written out of order or in different orders on
different streams. It's important to make sure that one write is completely finished on all
streams before the next write begins.

Example 6.6 demonstrates how one might use this class to write a TeeCopier program that
copies one file into two separate, new files.

Example 6.6. The TeeCopier Program

import java.io.*;
import com.macfaq.io.*;

Java I/O

87

public class TeeCopier {

 public static void main(String[] args) {

 if (args.length != 3) {
 System.out.println("Usage: java TeeCopier infile outfile1 outfile2");
 return;
 }

 try {
 FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout1 = new FileOutputStream(args[1]);
 FileOutputStream fout2 = new FileOutputStream(args[2]);
 TeeOutputStream tout = new TeeOutputStream(fout1, fout2);
 BufferedStreamCopier.copy(fin, tout);
 fin.close();
 tout.close();
 }
 catch (IOException e) {System.err.println(e);}

 }
}

It's not hard to extend this to a MultiOutputStream class that handles an arbitrary number of
output streams. You simply need to store the list of output streams in a vector and provide an
addStream() method that adds them to the vector as needed. The methods of the class then
simply enumerate the vector, invoking the method on each element of the vector in turn.
Example 6.7 demonstrates.

Example 6.7. The MultiOutputStream Class

package com.macfaq.io;
import java.io.*;
import java.util.*;

public class MultiOutputStream extends FilterOutputStream {

 Vector streams = new Vector();

 public MultiOutputStream(OutputStream out) {
 super(out);
 streams.addElement(out);
 }

 public synchronized void addOutputStream(OutputStream out) {
 streams.addElement(out);
 }

 public synchronized void write(int b) throws IOException {

 for (Enumeration e = streams.elements(); e.hasMoreElements();) {
 OutputStream out = (OutputStream) e.nextElement();
 out.write(b);
 }
 }

Java I/O

88

 public synchronized void write(byte[] data, int offset, int length)
 throws IOException {

 for (Enumeration e = streams.elements(); e.hasMoreElements();) {
 OutputStream out = (OutputStream) e.nextElement();
 out.write(data, offset, length);
 }
 }

 public synchronized void flush() throws IOException {

 for (Enumeration e = streams.elements(); e.hasMoreElements();) {
 OutputStream out = (OutputStream) e.nextElement();
 out.flush();
 }
 }

 public synchronized void close() throws IOException {

 for (Enumeration e = streams.elements(); e.hasMoreElements();) {
 OutputStream out = (OutputStream) e.nextElement();
 out.close();
 }
 }
}

This example requires even more synchronization than the TeeOutputStream. The concern is
that one thread might attempt to add a new stream to the list while the list is being
enumerated. Vectors and enumerations are not particularly thread-safe against such actions, so
to be on the safe side I've synchronized all the non-constructor methods. This is overkill most
of the time, because a typical user will add all the streams they're ever going to add to the list
before writing or flushing or closing the stream. Thus, an alternative would be to pass an
immutable list of streams to the constructor and not allow the client to add streams to the list
from that point forward. You'd still need to synchronize the write() methods, however, for
the same reasons the write() methods in TeeOutputStream needed to be synchronized.

Example 6.8 is a short program that uses a MultiOutputStream to copy the contents of one
file into an unlimited number of files named on the command line.

Example 6.8. The MultiCopier Program

import java.io.*;
import com.macfaq.io.*;

public class MultiCopier {

 public static void main(String[] args) {

 if (args.length < 2) {
 System.out.println("Usage: java MultiCopier infile outfile1
outfile2...");
 return;
 }

Java I/O

89

 try {
 FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout1 = new FileOutputStream(args[1]);
 MultiOutputStream mout = new MultiOutputStream(fout1);
 for (int i = 2; i < args.length; i++) {
 mout.addOutputStream(new FileOutputStream(args[i]));
 }
 BufferedStreamCopier.copy(fin, mout);
 fin.close();
 mout.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
}

6.7 File Viewer, Part 2

There's a saying among object-oriented programmers that you should create one design just to
throw away. Now that we've got filter streams in hand, I'm ready to throw out the monolithic
design for the FileDumper program used in Chapter 4. I'm going to rewrite it using a more
flexible, extensible, object-oriented approach that relies on multiple chained filters. This
allows us to extend the system to handle new formats without rewriting all the old classes. (It
also makes some of the examples in subsequent chapters smaller, since I won't have to repeat
all the code each time.) The basic idea is to make each interpretation of the data a filter input
stream. Bytes from the underlying stream move into the filter; the filter converts the bytes into
strings. Since more bytes generally come out of the filter than go into it (for instance, the
single byte 32 is replaced by the four bytes "0", "3", "2", " " in decimal dump format), our
filter streams buffer the data as necessary.

The architecture revolves around the abstract DumpFilter class shown in Example 6.9. The
public interface of this class is identical to that of FilterInputStream . Internally, a buffer
holds the string interpretation of each byte as an array of bytes. The read() method returns
bytes from this array as long as possible. An index field tracks the next available byte. When
index reaches the length of the array, the abstract fill() method is invoked to read from the
underlying stream and place data in the buffer. By changing how the fill() method
translates the bytes it reads into the bytes in the buffer, you can change how the data is
interpreted.

Example 6.9. DumpFilter

package com.macfaq.io;
import java.io.*;

public abstract class DumpFilter extends FilterInputStream {

 // This is really an array of unsigned bytes.
 protected int[] buf = new int[0];
 protected int index = 0;

 public DumpFilter(InputStream in) {
 super(in);
 }

Java I/O

90

 public int read() throws IOException {

 int result;
 if (index < buf.length) {
 result = buf[index];
 index++;
 } // end if
 else {
 try {
 this.fill();
 // fill is required to put at least one byte
 // in the buffer or throw an EOF or IOException.
 result = buf[0];
 index = 1;
 }
 catch (EOFException e) {result = -1;}
 } // end else

 return result;
 }

 protected abstract void fill() throws IOException;

 public int read(byte[] data, int offset, int length) throws IOException {

 if (data == null) {
 throw new NullPointerException();
 }
 else if ((offset < 0) || (offset > data.length) || (length < 0)
 || ((offset + length) > data.length) || ((offset + length) < 0)) {
 throw new ArrayIndexOutOfBoundsException();
 }
 else if (length == 0) {
 return 0;
 }

 // Check for end of stream.
 int datum = this.read();
 if (datum == -1) {
 return -1;
 }

 data[offset] = (byte) datum;

 int bytesRead = 1;
 try {
 for (; bytesRead < length ; bytesRead++) {

 datum = this.read();

 // In case of end of stream, return as much as we've got,
 // then wait for the next call to read to return -1.
 if (datum == -1) break;
 data[offset + bytesRead] = (byte) datum;
 }
 }
 catch (IOException e) {
 // Return what's already in the data array.
 }
 return bytesRead;
 }

Java I/O

91

 public int available() throws IOException {
 return buf.length - index;
 }

 public long skip(long bytesToSkip) throws IOException {

 long bytesSkipped = 0;
 for (; bytesSkipped < bytesToSkip; bytesSkipped++) {
 int c = this.read();
 if (c == -1) break;
 }
 return bytesSkipped;
 }

 public synchronized void mark(int readlimit) {}

 public synchronized void reset() throws IOException {
 throw new IOException("marking not supported");
 }

 public boolean markSupported() {
 return false;
 }
}

The FilterInputStream class tacitly assumes that the number of bytes of input read from
the underlying stream is the same as the number of bytes read from the filter stream. That's
not always true, as is the case here. For instance, the HexFilter will provide three bytes of
data for every byte read from the underlying stream. The DecimalFilter will provide four.
Therefore, we also have to override skip() and available(). The skip() method simply
reads as many bytes as possible, then returns. The available() method simply returns the
number of bytes remaining in the buffer. For the uses we're putting these classes to, these
methods aren't all that important, so I haven't bothered to provide optimal implementations.
You can do better in subclasses, if you like.

The same problem applies to the mark() and reset() methods. These will mark and reset the
underlying stream, but what's really desired is to mark and reset this stream. The easiest
solution here is to deliberately not support marking and resetting. Subclasses can override this
if it seems important, or you can simply chain this stream to a buffered stream. However, the
buffered stream must follow the dump filter in the chain rather than precede it.

Concrete subclasses need only to implement a constructor or two and fill(). Example 6.10
shows the DecimalFilter class. Example 6.11 shows the HexFilter class. These two
classes are very similar. Each implements fill() and overrides available() (the latter
mainly because it's straightforward to do). The algorithms for converting bytes to decimal and
hexadecimal strings used by the fill() methods are essentially the same as used by the
dumpDecimal() and dumpHex() methods back in Chapter 4's FileDumper program.

Example 6.10. DecimalFilter

package com.macfaq.io;
import java.io.*;

Java I/O

92

public class DecimalFilter extends DumpFilter {

 protected int numRead = 0;
 protected int breakAfter = 15;
 protected int ratio = 4; // number of bytes of output per byte of input

 public DecimalFilter(InputStream in) {
 super(in);
 }

 protected void fill() throws IOException {

 buf = new int[ratio];
 int datum = in.read();
 this.numRead++;
 if (datum == -1) {
 // Let read() handle end of stream.
 throw new EOFException();
 }

 String dec = Integer.toString(datum);
 if (datum < 10) { // Add two leading zeros.
 dec = "00" + dec;
 }
 else if (datum < 100) { // Add leading zero.
 dec = '0' + dec;
 }
 for (int i = 0; i < dec.length(); i++) {
 buf[i] = dec.charAt(i);
 }
 if (numRead < breakAfter) {
 buf[buf.length - 1] = ' ';
 }
 else {
 buf[buf.length - 1] = '\n';
 numRead = 0;
 }
 }

 public int available() throws IOException {
 return (buf.length - index) + ratio * in.available();
 }

 // With some extra effort, you could provide more efficient
 // implementations of these methods. You could even support
 // marking and resetting.
 /*
 public int read(byte[] data, int offset, int length) throws IOException
{}
 public long skip(long bytesToSkip) throws IOException {}
 public synchronized void mark(int readlimit) {}
 public synchronized void reset() throws IOException {}
 public boolean markSupported() {}
 */
}

Example 6.11. HexFilter

package com.macfaq.io;
import java.io.*;

Java I/O

93

public class HexFilter extends DumpFilter {

 protected int numRead = 0;
 protected int breakAfter = 24;
 protected int ratio = 3; // Number of bytes of output per byte of input.

 public HexFilter(InputStream in) {
 super(in);
 }

 protected void fill() throws IOException {

 buf = new int[ratio];
 int datum = in.read();
 this.numRead++;
 if (datum == -1) {
 // Let read() handle end of stream.
 throw new EOFException();
 }

 String hex = Integer.toHexString(datum);
 if (datum < 16) { // Add a leading zero.
 hex = '0' + hex;
 }

 for (int i = 0; i < hex.length(); i++) {
 buf[i] = hex.charAt(i);
 }
 if (numRead < breakAfter) {
 buf[buf.length - 1] = ' ';
 }
 else {
 buf[buf.length - 1] = '\n';
 numRead = 0;
 }
 }

 public int available() throws IOException {
 return (buf.length - index) + ratio * in.available();
 }

 // With some extra effort, you could provide more efficient
 // implementations of these methods. You could even support
 // marking and resetting.
 /*
 public int read(byte[] data, int offset, int length) throws IOException
{}
 public long skip(long bytesToSkip) throws IOException {}
 public synchronized void mark(int readlimit) {}
 public synchronized void reset() throws IOException {}
 public boolean markSupported() {}
 */
}

Another object-oriented maxim is that the generic solution is often simpler than the specific
solutions. Looking at these two classes, can you think of a way to create a generic filter that
converts to ASCII in an arbitrary base? Would such a class be any simpler than those shown
here?

Java I/O

94

The main() method and class in Example 6.12 are similar to what we've had before.
However, rather than selecting a method to dump the file, we select a dump filter to use. This
allows multiple filters to be used in sequence—a feature that will be important when we want
to decompress, decrypt, or perform other transformations on the data, in addition to
interpreting it. The program is also easier to read and understand when split across the three
classes.

Example 6.12. FileDumper2

import java.io.*;
import com.macfaq.io.*;

public class FileDumper2 {

 public static final int ASC = 0;
 public static final int DEC = 1;
 public static final int HEX = 2;

 public static void main(String[] args) {

 if (args.length < 1) {
 System.err.println("Usage: java FileDumper2 [-ahd] file1 file2...");
 return;
 }

 int firstArg = 0;
 int mode = ASC;

 if (args[0].startsWith("-")) {
 firstArg = 1;
 if (args[0].equals("-h")) mode = HEX;
 else if (args[0].equals("-d")) mode = DEC;
 }

 for (int i = firstArg; i < args.length; i++) {
 try {
 InputStream in = new FileInputStream(args[i]);
 dump(in, System.out, mode);

 if (i < args.length-1) { // more files to dump
 System.out.println();
 System.out.println("--------------------------------------");
 System.out.println();
 }
 }
 catch (IOException e) {System.err.println(e);}
 }
 }

 public static void dump(InputStream in, OutputStream out, int mode)
 throws IOException {

 // The reference variable in may point to several different objects
 // within the space of the next few lines. We can attach
 // more filters here to do decompression, decryption, and more.

 if (mode == ASC) ; // no filter needed, just copy raw bytes
 else if (mode == HEX) in = new HexFilter(in);
 else if (mode == DEC) in = new DecimalFilter(in);

Java I/O

95

 StreamCopier.copy(in, out);
 in.close();
 }
}

The main() method is responsible for choosing the file and format to be dumped. The dump()
method translates an input stream onto an output stream using a particular filter. This allows
the dump() method to be used by other classes as a more general translation service for
streams. An alternative pattern would pass the filter as an argument to dump() rather than an
integer mode. This might make the program more flexible but would not allow you to easily
chain several filters together as we'll do in upcoming chapters.

Java I/O

96

Chapter 7. Data Streams
Data streams read and write strings, integers, floating-point numbers, and other data that's
commonly presented at a higher level than mere bytes. The java.io.DataInputStream and
java.io.DataOutputStream classes read and write the primitive Java data types (boolean,
int, double, etc.) and strings in a particular, well-defined, platform-independent format.
Since DataInputStream and DataOutputStream use the same formats, they're
complementary. What a data output stream writes, a data input stream can read. These classes
are especially useful when you need to move data between platforms that may use different
native formats for integers or floating-point numbers.

7.1 The Data Stream Classes

The java.io.DataInputStream and java.io.DataOutputStream classes are subclasses of
FilterInputStream and FilterOutputStream , respectively.

public class DataInputStream extends FilterInputStream implements DataInput
public class DataOutputStream extends FilterOutputStream
 implements DataOutput

They have all the usual methods you've come to associate with input and output stream
classes, such as read(), write(), flush(), available(), skip(), close(),
markSupported(), and reset(). (Data input streams support marking if, and only if, their
underlying input stream supports marking.) However, the real purpose of DataInputStream
and DataOutputStream is not to read and write raw bytes using the standard input and output
stream methods. It's to read and interpret multibyte data like ints, floats, doubles, and
chars.

7.1.1 The DataInput and DataOutput Interfaces

The java.io.DataInput interface declares 15 methods that read various kinds of data:

public abstract boolean readBoolean() throws IOException
public abstract byte readByte() throws IOException
public abstract int readUnsignedByte() throws IOException
public abstract short readShort() throws IOException
public abstract int readUnsignedShort() throws IOException
public abstract char readChar() throws IOException
public abstract int readInt() throws IOException
public abstract long readLong() throws IOException
public abstract float readFloat() throws IOException
public abstract double readDouble() throws IOException
public abstract String readLine() throws IOException
public abstract String readUTF() throws IOException
public void readFully(byte[] data) throws IOException
public void readFully(byte[] data, int offset, int length) throws
IOException
public int skipBytes(int n) throws IOException

These methods are all available from the DataInputStream class and any other class that
implements DataInput. (In the core Java API, this is only DataInputStream and its subclass,
ObjectInputStream, which will be discussed in Chapter 11.) Likewise,

Java I/O

97

the java.io.DataOutput interface declares 14 methods, mostly complementary to those in
DataInput:

public abstract void write(int b) throws IOException
public abstract void write(byte[] data) throws IOException
public abstract void write(byte[] data, int offset, int length)
 throws IOException
public abstract void writeBoolean(boolean v) throws IOException
public abstract void writeByte(int b) throws IOException
public abstract void writeShort(int s) throws IOException
public abstract void writeChar(int c) throws IOException
public abstract void writeInt(int i) throws IOException
public abstract void writeLong(long l) throws IOException
public abstract void writeFloat(float f) throws IOException
public abstract void writeDouble(double d) throws IOException
public abstract void writeBytes(String s) throws IOException
public abstract void writeChars(String s) throws IOException
public abstract void writeUTF(String s) throws IOException

The writeBytes() and writeChars() methods are not matched by readBytes() and
readChars() methods in DataInput. The format used only writes the actual bytes and chars.
It does not write information about the length of the string passed as an argument to
writeBytes() and writeChars(), so the bytes and chars themselves cannot be easily
reassembled into a string. It is also unclear why DataOutput declares the three common
write() methods, but DataInput does not declare the three common read() methods.
However, the two readFully() methods are actually better matches for write(), since,
unlike read(), they will either fill the array or throw an exception.

Although DataInput and DataOutput say nothing about the formats in which data is read
and written, any class that implements this interface must adhere to an implicit contract,
summarized in Table 7.1.

Table 7.1. Formats Used by DataInput and DataOutput
Type Written by Read by Format

boolean writeBoolean(boolean b) readBoolean() One byte, 0 if false, 1 if
true

byte writeByte(int b) readByte() One byte, two's complement

byte
array

write(byte[]
data)write(byte[]
data, int offset, int
length)

readFully(byte[]
data)readFully(byte[]
data, int offset, int
length)

The bytes in the order they
appear in the array or subarray

short writeShort(int s) readShort() Two bytes, two's complement,
big- endian

char writeChar(int c) readChar() Two bytes, unsigned, big-
endian

int writeInt(int i) readInt() Four bytes, two's complement,
big-endian

long writeLong(long l) readLong() Eight bytes, two's
complement, big-endian

float writeFloat(float f) readFloat() Four bytes, IEEE 754, big-
endian

double writeDouble(double d) readDouble() Eight bytes, IEEE 754, big-
endian

Java I/O

98

unsigned
byte N/A readUnsignedByte() One unsigned byte

unsigned
short N/A readUnsignedShort() Two bytes, big-endian,

unsigned

String writeBytes(String s) N/A
The low-order byte of each
character in the string from
first to last

String writeChars(String s) N/A Both bytes of each character in
the string from first to last

String writeUTF(String s) readUTF()

A signed short giving the
number of bytes in the UTF-8
encoded string, followed by
the UTF-8 encoding of the
string

7.1.2 Constructors

The DataInputStream and DataOutputStream classes have exactly the constructors you
would expect:

public DataInputStream(InputStream in)
 public DataOutputStream(OutputStream out)

These chain the data streams to the underlying streams passed as arguments. For example, to
read formatted data from a file called data.txt and write formatted data to output.dat, you
would create the two streams dis and dos:

DataInputStream dis = new DataInputStream(new FileInputStream("data.txt"));
DataOutputStream dos = new DataOutputStream(
 new FileOutputStream("output.dat"));

We will now take up the data formats used by data streams and the methods used to write data
in those formats.

7.2 Reading and Writing Integers

The DataOutputStream class has methods for writing all of Java's primitive integer data
types: byte, short, int, and long. The DataInputStream class has methods to read these
types. It also has methods for reading two integer data types not directly supported by Java or
the DataOutputStream class: the unsigned byte and the unsigned int.

7.2.1 Integer Formats

While Java's platform independence guarantees that you don't have to worry about precise
data formats when working exclusively in Java, you frequently need to read data created by a
program written in another language. Similarly, it's not unusual to have to write data that will
be read by a program written in a different language. For example, most Java network clients
(like HotJava) talk primarily to servers written in other languages, and most Java network
servers (like the Java Web Server) talk primarily to clients written in other languages. You
cannot naively assume that the data format Java uses is the data format other programs will
understand; you must take care to understand and recognize the data formats being used.

Java I/O

99

Although other schemes are possible, almost all modern computers have standardized on
binary arithmetic performed on integers composed of an integral number of bytes.
Furthermore, they've standardized on two's complement arithmetic for signed numbers. In
two's complement arithmetic, the most significant bit is 1 for a negative number and for a
positive number; the absolute value of a negative number is calculated by taking the
complement of the number and adding 1. In Java terms, this means (-n == ~n + 1) is true
where n is a negative int.

Regrettably, this is about all that's been standardized. One big difference between computer
architectures is the size of an int. Probably the majority of modern computers use four-byte
integers that can hold a number between -2,147,483,648 and 2,147,483,647. However, some
systems are moving to 64-bit architectures where the native integer ranges from -
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 and takes eight bytes. And many
older systems use 16-bit integers that only range from -32,768 to 32,767. Exactly how many
bytes a C compiler uses for each int is platform-dependent, which is one of many reasons C
code isn't as portable as one might wish. The sizes of C's short and long are even less
predictable and may or may not be the same as the size of a C int. Java always uses a two-
byte short, a four-byte int, and an eight-byte long, and this is one of the reasons Java code
is more portable than C code. However, you must be aware of varying integer widths when
your Java code needs to communicate binary numbers with programs written in other
languages.

C compilers also allow various unsigned types. For example, an unsigned byte is a binary
number between and 255; an unsigned two-byte integer is a number between and 65,535; an
unsigned four-byte integer is a number between and 4,294,967,295. Java doesn't have any
unsigned numeric data types (unless you count char), but the DataInputStream class does
provide two methods to read unsigned bytes and unsigned shorts.

Perhaps worst of all, modern computers are split almost down the middle between those that
use a big-endian and a little-endian ordering of the bytes in an integer. In a little-endian
architecture, used on Intel (x86, Pentium)-based computers, the most significant byte is at the
highest address in memory. On the other hand, on a big-endian system, the most significant
byte is at the lowest address in memory.

For example, consider the number 1,108,836,360. In hexadecimal this is written as
0x42178008. On a big-endian system the bytes are ordered much as they are in a hex literal;
that is, 42, 17, 80, 08. On the other hand, on a little endian system this is reversed; that is, 08,
80, 17, 42. If 1,108,836,360 is written into a file on a little-endian system, then read on a big-
endian system without any special treatment, it comes out as 0x08801742; that is,
142,612,29—not the same thing at all.

Java uses big-endian integers exclusively. Data input streams read and data output streams
write big-endian integers. Most Internet protocols that rely on binary numbers such as the
time protocol implicitly assume "network byte order," which is a fancy way of saying "big-
endian." And finally, almost all computers manufactured today, except those based on the
Intel architecture, use big-endian byte orders, so the Intel is really the odd one out. However,
the Intel is the 1000-pound gorilla of computer architectures, so it's impossible to ignore it or
the data formats it supports. Later in this chapter, I'll develop a class for reading little-endian
data.

Java I/O

100

7.2.2 The Char Format

Unicode characters are two bytes long and are interpreted as an unsigned number between and
65,535. This means they have an "endianness" problem too. The Unicode standard
specifically does not require a particular endianness of text written in Unicode; both big- and
little-endian encodings are allowed. In my opinion, this is a failing of the specification. The
Unicode standard does suggest that character 65,279 (0xFEFF in hex) be placed at the
beginning of each file of Unicode text. Thus, by reading the first character, you can determine
the endianness of the file and take appropriate action. For example, if you're reading a
Unicode file containing little-endian data using big-endian methods, the first character will
appear as 0xFFFE (65,534), signaling that something is wrong. Java's data stream classes
always write and read Unicode text in a big-endian fashion.

7.2.3 Writing Integers

The DataOutputStream class has the usual three write() methods you'll find in any output
stream class:

public synchronized void write(int b) throws IOException
public synchronized void write(byte[] data) throws IOException
public synchronized void write(byte[] data, int offset, int length)
 throws IOException

These behave exactly as they do in the superclass, so I won't discuss them further here.

The DataOutputStream class also declares the following void methods that write signed
integer types onto its underlying output stream:

public final void writeByte(int b) throws IOException
public final void writeShort(int s) throws IOException
public final void writeInt(int i) throws IOException
public final void writeLong(long l) throws IOException

Because Java doesn't fully support the byte or short types, the writeByte() and
writeShort() methods each take an int as an argument. The excess bytes in the int are
ignored before the byte or short is written. Thus writeByte() only writes the low-order
byte of its argument. The writeShort() method only writes the low-order two bytes of its
argument, higher-order byte first; that is, big-endian order. The writeInt() and
writeLong() methods write all the bytes of their arguments in big-endian order. These
methods can throw IOExceptions if the underlying stream throws an IOException.

Example 7.1 fills a file called 1000.dat with the integers between 1 and 1000. This filename is
used to construct a FileOutputStream. This stream is then chained to a DataOutputStream
whose writeInt() method writes the data into the file.

Example 7.1. One Thousand ints

import java.io.*;

public class File1000 {

Java I/O

101

 public static void main(String args[]) {

 DataOutputStream dos = null;

 try {
 dos = new DataOutputStream(new FileOutputStream("1000.dat"));
 for (int i = 1; i <= 1000; i++) {
 dos.writeInt(i);
 }
 }
 catch (IOException e) {System.err.println(e);}
 finally {
 try { if (dos != null) dos.close(); }
 catch (IOException e) {}
 }
 }
}

Let me emphasize that the numbers written by this program or by any other data output
stream are binary numbers. They are not human-readable text strings like 1, 2, 3, 4, 5, . . .
999, 1000. If you try to open 1000.dat with a standard text editor, you'll see a lot of gibberish
or an error message. The data this program writes is meant to be read by other programs, not
by humans.

7.2.4 Reading Integers

DataInputStream has the usual three read() methods it inherits from its superclass; these
methods read a byte and return an int. These behave exactly as they do in the superclass, so
I won't discuss them further:

public abstract int read() throws IOException
public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException

The DataInputStream class declares the following methods that return signed integer types:

public final byte readByte() throws IOException
public final short readShort() throws IOException
public final char readChar() throws IOException
public final int readInt() throws IOException
public final long readLong() throws IOException

Each of the integer read() methods reads the necessary number of bytes and converts them
into the appropriate integer type. readByte() reads a single byte and returns a signed byte
between -128 and 127. readShort() reads two bytes and returns a short between -32,768
and 32,767. readInt() reads four bytes and returns an int between -2,147,483,648 and
2,147,483,647. readLong() reads eight bytes and returns a long between -
9,223,372,036,854,775,808 and 9,223,372,036,854,775,807. All numbers are read in a big-
endian format.

-1 is a valid return value for these methods. Therefore, if the end of stream is encountered
while reading, a java.io.EOFException is thrown. This is a subclass of
java.io.IOException and is not separately declared in these methods' throws clauses. You
should also be aware that an EOFException can be thrown while more bytes of data remain in

Java I/O

102

the stream. For example, readInt() reads four bytes. If only two bytes are left in the stream,
those two bytes will be read and the EOFException thrown. However, at this point those two
bytes are lost. You can't go back and reread those two bytes as a short. If the underlying
stream supports marking and resetting, you can mark before each read and reset on an
EOFException, but that becomes complicated and error-prone.

Example 7.2 interprets a file as four-byte signed integers, reads them, and prints them out.
You might use this to read the output of Example 7.1. However, it is not necessary that the
program or person who created the file actually intended it to contain 32-bit, two's
complement integers. The file contains bytes, and these bytes may be interpreted as ints, with
the possible exception of one to three bytes at the end of the file (if the file's length is not an
even multiple of four bytes). Therefore, it's important to be very careful about what you read.

Example 7.2. The IntReader Program

import java.io.*;

public class IntReader {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 try {
 FileInputStream fin = new FileInputStream(args[i]);
 // Now that we know the file exists, print its name.
 System.out.println("-----------" + args[i] + "-----------");
 DataInputStream din = new DataInputStream(fin);
 while (true) {
 int theNumber = din.readInt();
 System.out.println(theNumber);
 } // end while
 } // end try
 catch (EOFException e) {
 // normal termination
 }
 catch (IOException e) {
 // abnormal termination
 System.err.println(e);
 }
 } // end for
 } // end main
} // end IntReader

This program opens the files named on the command line with a file input stream. The file
input stream is chained to a data input stream, which reads successive integers until an
IOException occurs. Notice that I do not print an error message in the event of an
EOFException, since that now indicates normal termination.

The DataInputStream class also has two methods that read unsigned bytes and shorts:

public final int readUnsignedByte() throws IOException
public final int readUnsignedShort() throws IOException

Java I/O

103

Since Java has no unsigned byte or unsigned short data type, both of these methods return
an int. readUnsignedByte() returns an int between and 255, and readUnsignedShort()
returns an int between and 65,535. However, both still indicate end of stream with an
EOFException rather than by returning -1. Example 7.3 prints files named on the command
line as unsigned shorts.

Example 7.3. The UnsignedShortReader Program

import java.io.*;

public class UnsignedShortReader {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 try {
 FileInputStream fin = new FileInputStream(args[i]);
 // Now that we know the file exists, print its name.
 System.out.println("-----------" + args[i] + "-----------");
 DataInputStream din = new DataInputStream(fin);
 while (true) {
 int theNumber = din.readUnsignedShort();
 System.out.println(theNumber);
 } // end while
 } // end try
 catch (EOFException e) {
 // normal termination
 }
 catch (IOException e) {
 // abnormal termination
 System.err.println(e);
 }
 } // end for
 } // end main
} // end UnsignedShortReader

7.3 Reading and Writing Floating-Point Numbers

Java understands two floating-point number formats, both specified by the IEEE 754
standard. Floats are stored in four bytes with a 1-bit sign, a 24-bit mantissa, and an 8-bit
exponent. Float values range from 1.40129846432481707×10 -45 to
3.40282346638528860×10 38, either positive or negative. Doubles take up eight bytes with a
one-bit sign, 53-bit mantissa, and 11-bit exponent. This gives them a range of
4.94065645841246544×10 -324 to 1.79769313486231570×10 308, either positive or negative.
Both floats and doubles also have representations of positive and negative zero, positive
and negative infinity, and not a number (or NaN).

Astute readers will notice that the number of bits given for floats and
doubles adds up to 33 and 65 bits, respectively, one too many for the
width of the number. A trick is used whereby the first bit of the
mantissa of a nonzero number is assumed to be 1. With this trick, it is
unnecessary to include the first bit of the mantissa. Thus, an extra bit of
precision is gained for free.

Java I/O

104

The details of this format are too complicated to discuss here. You can order the actual
specification[1] from the IEEE for about $29.00. That's approximately $1.50 a page, more than
a little steep in my opinion. The specification isn't available online, but it was published in the
February 1985 issue of ACM SIGPLAN Notices (Volume 22, #2, pp. 9-18), which should be
available in any good technical library. The main thing you need to know is that these formats
are supported by most modern RISC architectures and by all Pentium and Motorola 680x0
chips with either external or internal floating-point units (FPUs). Nowadays the only chips
that don't natively support this format are a few embedded processors and some old 486SX,
68LC040, and other earlier FPU-less chips in legacy hardware. And even these systems are
able to emulate IEEE 754 floating-point arithmetic in software.

The DataInputStream class reads and the DataOutputStream class writes floating-point
numb1ers of either four or eight bytes in length, as specified in the IEEE 754 standard. They
do not support the 10-byte and longer long double, extended double, and double double
formats supported by some architectures and compilers. If you have to read floating-point
data written in some format other than basic IEEE 754 float and double, you'll need to write
your own class to convert the format to four- or eight-byte IEEE 754.

7.3.1 Writing Floating-Point Numbers

There are two methods in the DataOutputStream class that write floating-point numbers,
writeFloat() and writeDouble():

public final void writeFloat(float f) throws IOException
public final void writeDouble(double d) throws IOException

Both of these methods throw an IOException if something goes wrong with the underlying
stream. Otherwise, they're fairly innocuous and can convert any float or double to bytes and
write it on the underlying stream.

Example 7.4 fills a file called roots.dat with the square roots of the numbers to 1000. First a
FileOutputStream is opened to roots.dat. This stream is chained to a DataOutputStream,
whose writeDouble() method writes the data into the file.

Example 7.4. Writing Doubles with a DataOutputStream

import java.io.*;

public class RootsFile {

 public static void main(String[] args) {

 try {
 FileOutputStream fout = new FileOutputStream("roots.dat");
 DataOutputStream dout = new DataOutputStream(fout);
 for (int i = 0; i <= 1000; i++) {
 dout.writeDouble(Math.sqrt(i));
 }
 dout.flush();

1 IEEE/ANSI Standard for Binary Floating Point Arithmetic, (Institute of Electrical and Electronics Engineers, 1985), IEEE Std 754-1985. To order,
call 1-800-678-IEEE (in the U.S. and Canada) or 1-732-981-0060 (outside the U.S. and Canada), or email customer.service@ieee.org. Most of what
you need to understand the format can also be found in The Java Language Specification, James Gosling, Bill Joy, and Guy Steele, (Addison Wesley,
1996). For a more readable explanation, see Chapter 2 of my book, Java Secrets (IDG Books, 1997).

Java I/O

105

 dout.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
}

7.3.2 Reading Floating-Point Numbers

The DataInputStream class has two methods that read floating-point numbers, readFloat()
and readDouble():

public final float readFloat() throws IOException
public final double readDouble() throws IOException

The readFloat() method reads four bytes, converts the data into an IEEE 754 float, and
returns it. The readDouble() method reads eight bytes, converts the data into an IEEE 754
double, and returns that. Both methods will throw an EOFException, a subclass of
IOException, if they can't read enough bytes. In this case data may be lost without careful
(and generally unnecessary) marking and resetting.

Example 7.5 reads a file specified on the command line, then prints its contents interpreted as
doubles.

Example 7.5. The DoubleReader Program

import java.io.*;

public class DoubleReader {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 try {
 FileInputStream fin = new FileInputStream(args[i]);
 // Now that we know the file exists, print its name.
 System.out.println("-----------" + args[i] + "-----------");
 DataInputStream din = new DataInputStream(fin);
 while (true) {
 double theNumber = din.readDouble();
 System.out.println(theNumber);
 } // end while
 } // end try
 catch (EOFException e) {
 // normal termination
 }
 catch (IOException e) {
 // abnormal termination
 System.err.println(e);
 }
 } // end for
 } // end main
} // end DoubleReader

Java I/O

106

Here are the first few lines produced when this program is used to read the output of Example
7.4, RootsFile. You may recognize this output as the square roots of the integers between 0
and 9.

% java DoubleReader roots.dat
-----------roots.dat-----------
0.0
1.0
1.4142135623730951
1.7320508075688772
2.0
2.23606797749979
2.449489742783178
2.6457513110645907
2.8284271247461903
3.0

7.4 Reading and Writing Booleans

The DataOutputStream class has a writeBoolean() method and the DataInputStream
class has a corresponding readBoolean() method:

public final void writeBoolean(boolean b) throws IOException
public final boolean readBoolean() throws IOException

Although theoretically a single bit could be used to indicate the value of a boolean, in
practice a whole byte is used. This makes alignment much simpler and doesn't waste enough
space to be an issue on modern machines. The writeBoolean() method writes a zero byte
(0x00) to indicate false, a one byte (0x01) to indicate true. The readBoolean() method
interprets as false and any positive number as true. Negative numbers indicate end of
stream and lead to an EOFException being thrown.

7.5 Reading Byte Arrays

As already mentioned, the DataInputStream class has the usual two methods for reading
bytes into a byte array:

public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException

Neither of these methods guarantees that all the bytes requested will be read. Instead, you're
expected to check the number of bytes actually read, then call read() again for a different
part of the array as necessary. For example, to read 1024 bytes from the InputStream in into
the byte array data:

int offset = 0;
while (true){
 int bytesRead = in.read(data, offset, data.length - offset);
 offset += bytesRead;
 if (bytesRead == -1 || offset >= data.length) break;
}

Java I/O

107

The DataInputStream class has two readFully() methods that provide this logic. Each
reads repeatedly from the underlying input stream until the array data or specified portion
thereof is filled.

public final void readFully(byte[] data) throws IOException
public final void readFully(byte[] data, int offset, int length)
 throws IOException

If the data runs out before the array is filled and no more data is forthcoming, then an
IOException is thrown.

7.6 Reading and Writing Text

Because of the difficulties caused by different character sets, reading and writing text is one
of the trickiest things you can do with streams. Most of the time, text should be handled with
readers and writers, a subject we'll take up in Chapter 15. However, the DataInputStream
and DataOutputStream classes do provide methods a Java program can use to read and write
text that another Java program will understand. The text format used is a compressed form of
Unicode called UTF-8. It's unlikely that other, non-Java programs will understand this format
unless they've been specially coded to interoperate with text data written by Java, especially
since Java's UTF-8 differs slightly from the standard UTF-8 used in XML and elsewhere.

7.6.1 The UTF-8 Format

Java strings and chars are Unicode. However, Unicode isn't particularly efficient. Most files
of English text contain almost nothing but ASCII characters. Thus, using two bytes for these
characters is really overkill. UTF-8 solves this problem by encoding the ASCII characters in a
single byte at the expense of having to use three bytes for many more of the less common
characters. For the purposes of this chapter, UTF-8 provides a more efficient way to read and
write strings; it is used by the readUTF() and writeUTF() methods implemented by the
DataInputStream and DataOutputStream classes. For a full description of UTF-8, see
Chapter 14.

The variant form of UTF-8 that these classes use is intended for string literals embedded in
compiled byte code and serialized Java objects and for communication between two Java
programs. It is not intended for reading and writing arbitrary UTF-8 text. To read standard
UTF-8, you should use an InputStreamReader; to write it, you should use an
OutputStreamWriter. These classes do not improperly encode the null character and will be
discussed in Chapter 15.

7.6.2 Writing Text

The DataOutputStream class has four methods that convert text into bytes and write them
onto the underlying stream. These are:

public final void writeChar(int c) throwsIOException
public final void writeChars(String s) throws IOException
public final void writeBytes(String s) throws IOException
public final void writeUTF(String s) throws IOException

Java I/O

108

The writeChar() method writes a single, two-byte Unicode character. This method does not
use UTF-8 encoding. It simply writes the two bytes of the character in big-endian order.
writeChars() writes each character in the String argument to the underlying output stream
as a two-byte, Unicode character; it also does not use UTF-8 encoding. And the
writeBytes() method writes the low-order byte of each character in the String argument to
the underlying output stream. Any information in the high-order byte is lost. In other words, it
assumes the string is given in ISO-Latin-1 and contains only characters whose value is
between and 255.

The writeUTF() method, however, retains the information in the high-order byte as well as
the length of the string. First it writes the number of characters in the string onto the
underlying output stream as a two-byte unsigned int between and 65,535. Next it encodes the
string in UTF-8 and writes the bytes of the encoded string to the underlying output stream.
This allows a data input stream reading those bytes to completely reconstruct the string.
However, strings longer than 65,535 characters are a problem. If you pass a string longer than
65,535 characters to writeUTF(), writeUTF() throws a java.io.UTFDataFormat-
Exception , a subclass of IOException , and doesn't write any of the data. Although 65,535
characters seems like a large limit, I can imagine reaching it if you're writing a word
processor, text editor, or web browser and trying to save your data by writing it out as a single
string. If you are writing a program that needs to deal with large blocks of text, you should
write your own file format and save routine rather than relying on writeUTF().

7.6.3 Reading Text

The DataInputStream class has three methods to read text data. These are:

public final char readChar() throws IOException
public final String readUTF() throws IOException
public static final String readUTF(DataInput in) throws IOException

The readChar() method reads two bytes from the underlying input stream, interprets them as
a big-endian Unicode character, and returns that character as a Java char. An IOException is
thrown if the underlying input stream's read() method throws an IOException. An
EOFException may be thrown if you're within one byte of the end of the stream and therefore
a complete char can't be read.

The noargs readUTF() method reads and returns a string that was written in Java's pseudo-
UTF-8 encoding with a two-byte, unsigned length prefix (in other words, a string written by
writeUTF() in DataOutputStream). An EOFException is thrown if the end of the stream is
encountered or the stream runs out of data before providing the promised number of
characters. A UTFDataFormatException is thrown if the bytes read do not match the UTF
encoding specification; for example, if four bytes in a row begin with the bit sequence 10. An
IOException is also thrown if the underlying stream throws an IOException.

7.6.4 The Deprecated readLine() Method

The DataInputStream class also has a widely used but deprecated readLine() method:

public final String readLine() throws IOException

Java I/O

109

The readLine() method reads a single line of text from the underlying input stream and
returns it as a string. A line of text is considered to be any number of characters, followed by a
carriage return, a linefeed, or a carriage return/linefeed pair. The line terminator (possibly
including both a carriage return and a linefeed) is read. However, it is not included in the
string returned by readLine(). The problem with readLine() is that it does not properly
handle non-ISO-Latin-1 character sets. In Java 1.1 and later, the java.io.BufferedReader's
readLine() method is supposed to be used instead. However, much existing code uses
DataInputStream's readLine() method, and thus it's important to recognize it even if you
don't use it yourself.

The Bug in readLine()
There's a nasty bug in the implementation of readLine() in most Java VMs,
including JDK 1.1 and 1.2. This bug can cause your program to pause or even hang
indefinitely. This bug generally doesn't manifest itself when reading from a file,
only when you're reading from the network or the console.

The problem is that if readLine() sees a carriage return, it waits to see if the next
character is a linefeed before returning. If a network client or server on the other end
of the connection is only sending carriage returns to end lines, there's a possibility
that the remote client or server may wait for a response to the line it's just sent
before sending any more data. Most of the time this is a benign bug, because
network protocols like HTTP specify a carriage return/linefeed pair as the end-of-
line terminator. However, there are more than a few buggy programs out there that
don't adhere to this. What readLine() should do (but doesn't) is return as soon as it
sees a carriage return or a linefeed. Then, if it does see a linefeed and if the previous
character was a carriage return, it can ignore the linefeed. Otherwise, it treats the
linefeed as a line break.

The undeprecated readLine() method in BufferedReader has the same problem.
Neither should be used for reading from network connections.

Example 7.6 uses DataInputStream and readLine() to echo what the user types on
System.in to System.out. The program exits on end of stream (Ctrl-D on Unix or Ctrl-Z on
Windows) or when the user types a period on a line by itself. This is a common idiom for
character-mode programs that read from System.in.

Example 7.6. The Echo Program

import java.io.*;

public class Echo {

 public static void main(String[] args) {

 try {
 DataInputStream din = new DataInputStream(System.in);
 while (true) {
 String theLine = din.readLine();
 if (theLine == null) break; // end of stream
 if (theLine.equals(".")) break; // . on line by itself

Java I/O

110

 System.out.println(theLine);
 }
 }
 catch (IOException e) {System.err.println(e);}
 }
}

A sample run follows. Notice the deprecation warning when this code is compiled.
DataInputStream's readLine() method is one of the most common sources of deprecation
warnings in Java 1.1.

% javac Echo.java
Note: Echo.java uses a deprecated API. Recompile with "-deprecation" for
details.
1 warning
% java Echo
This is a test
This is a test
This is another test
This is another test
Hello
Hello
Goodbye Now
Goodbye Now
.
%

Although we won't officially take up readers until Chapter 15, it's not very hard to rewrite this
program so that it doesn't generate deprecation warnings. All you need to do is replace
DataInputStream with BufferedReader chained to an InputStreamReader. Example 7.7
demonstrates.

Example 7.7. The ReaderEcho Program

import java.io.*;

public class ReaderEcho {

 public static void main(String[] args) {

 try {
 BufferedReader din = new BufferedReader
 (new InputStreamReader(System.in), 1);
 while (true) {
 String theLine = din.readLine();
 if (theLine == null) break; // end of stream
 if (theLine.equals(".")) break; // . on line by itself
 System.out.println(theLine);
 }
 }
 catch (IOException e) {System.err.println(e);}
 }
}

This only works (and is only needed) for readLine(). BufferedReader does not have
equivalents for the rest of the DataInputStream methods like readFully(), but more details
will wait until Chapter 15.

Java I/O

111

7.7 Miscellaneous Methods

The DataInputStream and DataOutputStream classes each have one method left to discuss,
skipBytes() and size(), respectively.

7.7.1 Determining the Number of Bytes Written

The DataOutputStream class has a protected field called written that stores the number of
bytes written to the output stream since it was constructed. The value of this field is returned
by the public size() method:

protected int written
public final int size()

Every time you invoke writeInt(), writeBytes(), writeUTF(), or some other write
method, the written field is incremented by the number of bytes written. This might be
useful if for some reason you're trying to limit the number of bytes you write. For instance,
you may prefer to open a new file when you reach some preset size rather than continuing to
write into a very large file.

7.7.2 Skipping Bytes in an Input Stream

The DataInputStream class's skipBytes() method skips over a specified number of bytes
without reading them. Unlike the skip() method of java.io.InputStream that
DataInputStream inherits, skipBytes() either skips over all the bytes it's asked to skip or it
throws an exception:

public final int skipBytes(int n) throws IOException
public long skip(long n) throws IOException

skipBytes() blocks and waits for more data until n bytes have been skipped (successful
execution) or an exception is thrown. The method returns the number of bytes skipped, which
is always n (because if it's not n , an exception is thrown and nothing is returned). On end of
stream, an EOFException is thrown. An IOException is thrown if the underlying stream
throws an IOException.

7.8 Reading and Writing Little-Endian Numbers

It's likely that at some point in time you'll need to read a file full of little-endian data,
especially if you're working on Intel hardware or with data written by native code on such a
platform. Java has essentially no support for little-endian numbers. The
LittleEndianOutputStream class in Example 7.8 and the LittleEndianInputStream class
in Example 7.9 provide the support you need to do this. These classes are closely modeled on
the java.io.DataInputStream and java.io.DataOutputStream classes. Some of the
methods in these classes do exactly the same thing as the same methods in the
DataInputStream and DataOutputStream classes. After all, a big-endian byte is no different
from a little-endian byte. In fact, these two classes come very close to implementing the
java.io.DataInput and java.io.DataOutput interfaces. Actually doing so would have
been a bad idea, however, because client programmers will expect objects implementing

Java I/O

112

DataInput and DataOutput to use big-endian numbers, and it's best not to go against such
common assumptions.

I also considered making the little-endian classes subclasses of DataInputStream and
DataOutputStream. While this would have eliminated some duplicated methods like
readBoolean() and writeBoolean(), it would also have required the new, little-endian
methods to have unwieldy names like readLittleEndianInt() and
writeLittleEndianInt(). Furthermore, it's unlikely you'll need to read or write both little-
endian and big-endian numbers from the same stream. Most streams will contain one or the
other but not both.

Example 7.8. A LittleEndianOutputStream Class

/*
 * @(#)LittleEndianOutputStream.java 1.0 98/08/29
 */

package com.macfaq.io;
import java.io.*;

/**
 * A little-endian output stream writes primitive Java numbers
 * and characters to an output stream in a little-endian format.
 * The standard java.io.DataOutputStream class which this class
 * imitates uses big-endian integers.
 *
 * @author Elliotte Rusty Harold
 * @version 1.0, 29 Aug 1998
 * @see com.macfaq.io.LittleEndianInputStream
 * @see java.io.DataOutputStream
 */
public class LittleEndianOutputStream extends FilterOutputStream {

 /**
 * The number of bytes written so far to the little-endian output stream.
 */
 protected int written;

 /**
 * Creates a new little-endian output stream and chains it to the
 * output stream specified by the out argument.
 *
 * @param out the underlying output stream.
 * @see java.io.FilterOutputStream#out
 */
 public LittleEndianOutputStream(OutputStream out) {
 super(out);
 }

 /**
 * Writes the specified byte value to the underlying output stream.
 *
 * @param b the <code>byte</code> value to be written.
 * @exception IOException if the underlying stream throws an
IOException.
 */

Java I/O

113

 public synchronized void write(int b) throws IOException {
 out.write(b);
 written++;
 }

 /**
 * Writes <code>length</code> bytes from the specified byte array
 * starting at <code>offset</code> to the underlying output stream.
 *
 * @param data the data.
 * @param offset the start offset in the data.
 * @param length the number of bytes to write.
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public synchronized void write(byte[] data, int offset, int length)
 throws IOException {
 out.write(data, offset, length);
 written += length;
 }

 /**
 * Writes a <code>boolean</code> to the underlying output stream as
 * a single byte. If the argument is true, the byte value 1 is written.
 * If the argument is false, the byte value <code>0</code> is written.
 *
 * @param b the <code>boolean</code> value to be written.
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public void writeBoolean(boolean b) throws IOException {

 if (b) this.write(1);
 else this.write(0);
 }

 /**
 * Writes out a <code>byte</code> to the underlying output stream
 *
 * @param b the <code>byte</code> value to be written.
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public void writeByte(int b) throws IOException {
 out.write(b);
 written++;
 }

 /**
 * Writes a two byte <code>short</code> to the underlying output stream
in
 * little-endian order, low byte first.
 *
 * @param s the <code>short</code> to be written.
 * @exception IOException if the underlying stream throws an
IOException.
 */

Java I/O

114

 public void writeShort(int s) throws IOException {

 out.write(s & 0xFF);
 out.write((s >>> 8) & 0xFF);
 written += 2;
 }

 /**
 * Writes a two byte <code>char</code> to the underlying output stream
 * in little-endian order, low byte first.
 *
 * @param c the <code>char</code> value to be written.
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public void writeChar(int c) throws IOException {

 out.write(c & 0xFF);
 out.write((c >>> 8) & 0xFF);
 written += 2;
 }

 /**
 * Writes a four-byte <code>int</code> to the underlying output stream
 * in little-endian order, low byte first, high byte last
 *
 * @param i the <code>int</code> to be written.
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public void writeInt(int i) throws IOException {

 out.write(i & 0xFF);
 out.write((i >>> 8) & 0xFF);
 out.write((i >>> 16) & 0xFF);
 out.write((i >>> 24) & 0xFF);
 written += 4;
 }

 /**
 * Writes an eight-byte <code>long</code> to the underlying output stream
 * in little-endian order, low byte first, high byte last
 *
 * @param l the <code>long</code> to be written.
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public void writeLong(long l) throws IOException {

 out.write((int) l & 0xFF);
 out.write((int) (l >>> 8) & 0xFF);
 out.write((int) (l >>> 16) & 0xFF);
 out.write((int) (l >>> 24) & 0xFF);
 out.write((int) (l >>> 32) & 0xFF);
 out.write((int) (l >>> 40) & 0xFF);
 out.write((int) (l >>> 48) & 0xFF);
 out.write((int) (l >>> 56) & 0xFF);
 written += 8;
 }

Java I/O

115

 /**
 * Writes a 4 byte Java float to the underlying output stream in
 * little-endian order.
 *
 * @param f the <code>float</code> value to be written.
 * @exception IOException if an I/O error occurs.
 */
 public final void writeFloat(float f) throws IOException {

 this.writeInt(Float.floatToIntBits(f));
 }

 /**
 * Writes an 8 byte Java double to the underlying output stream in
 * little-endian order.
 *
 * @param d the <code>double</code> value to be written.
 * @exception IOException if an I/O error occurs.
 */
 public final void writeDouble(double d) throws IOException {

 this.writeLong(Double.doubleToLongBits(d));
 }

 /**
 * Writes a string to the underlying output stream as a sequence of
 * bytes. Each character is written to the data output stream as
 * if by the <code>writeByte()</code> method.
 *
 * @param s the <code>String</code> value to be written.
 * @exception IOException if the underlying stream throws an
IOException.
 * @see java.io.LittleEndianOutputStream#writeByte(int)
 * @see java.io.LittleEndianOutputStream#out
 */
 public void writeBytes(String s) throws IOException {

 int length = s.length();
 for (int i = 0; i < length; i++) {
 out.write((byte) s.charAt(i));
 }
 written += length;
 }

 /**
 * Writes a string to the underlying output stream as a sequence of
 * characters. Each character is written to the data output stream as
 * if by the <code>writeChar</code> method.
 *
 * @param s a <code>String</code> value to be written.
 * @exception IOException if the underlying stream throws an
IOException.
 * @see java.io.LittleEndianOutputStream#writeChar(int)
 * @see java.io.LittleEndianOutputStream#out
 */
 public void writeChars(String s) throws IOException {

 int length = s.length();
 for (int i = 0; i < length; i++) {
 int c = s.charAt(i);
 out.write(c & 0xFF);

Java I/O

116

 out.write((c >>> 8) & 0xFF);
 }
 written += length * 2;
 }

 /**
 * Writes a string of no more than 65,535 characters
 * to the underlying output stream using UTF-8
 * encoding. This method first writes a two byte short
 * in big endian order as required by the
 * UTF-8 specification. This gives the number of bytes in the
 * UTF-8 encoded version of the string, not the number of characters
 * in the string. Next each character of the string is written
 * using the UTF-8 encoding for the character.
 *
 * @param s the string to be written.
 * @exception UTFDataFormatException if the string is longer than
 * 65,535 characters.
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public void writeUTF(String s) throws IOException {

 int numchars = s.length();
 int numbytes = 0;

 for (int i = 0 ; i < numchars ; i++) {
 int c = s.charAt(i);
 if ((c >= 0x0001) && (c <= 0x007F)) numbytes++;
 else if (c > 0x07FF) numbytes += 3;
 else numbytes += 2;
 }

 if (numbytes > 65535) throw new UTFDataFormatException();

 out.write((numbytes >>> 8) & 0xFF);
 out.write(numbytes & 0xFF);
 for (int i = 0 ; i < numchars ; i++) {
 int c = s.charAt(i);
 if ((c >= 0x0001) && (c <= 0x007F)) {
 out.write(c);
 }
 else if (c > 0x07FF) {
 out.write(0xE0 | ((c >> 12) & 0x0F));
 out.write(0x80 | ((c >> 6) & 0x3F));
 out.write(0x80 | (c & 0x3F));
 written += 2;
 }
 else {
 out.write(0xC0 | ((c >> 6) & 0x1F));
 out.write(0x80 | (c & 0x3F));
 written += 1;
 }
 }
 written += numchars + 2;
 }

 /**
 * Returns the number of bytes written to this little-endian output
stream.
 * (This class is not thread-safe with respect to this method. It is

Java I/O

117

 * possible that this number is temporarily less than the actual
 * number of bytes written.)
 * @return the value of the <code>written</code> field.
 * @see java.io.LittleEndianOutputStream#written
 */
 public int size() {
 return this.written;
 }
}

Notice how all writing is done by passing byte values to the underlying output stream out (set
in the constructor and inherited from the superclass, FilterOutputStream). The primary
purpose of these methods is to convert the Java data type to bytes and then write them in a
little-endian order. In general, the conversions are accomplished by shifting the bits of interest
into the low-order eight bits, then masking off the bits of interest. For example, consider the
writeInt() method:

public void writeInt(int i) throws IOException {

 out.write(i & 0xFF);
 out.write((i >>> 8) & 0xFF);
 out.write((i >>> 16) & 0xFF);
 out.write((i >>> 24) & 0xFF);
 written += 4;
 }

A Java int is composed of four bytes in big-endian order. Thus, the low-order byte is in the
last eight bits. This byte needs to be written first in a little-endian scheme. The mask 0xFF has
one bit in the low-order eight bits and zero bits everywhere else. By bitwise ANDing 0xFF
with i, we select the low-order eight bits of i. The second-lowest-order byte—that is, bits 16
to 23—is selected by first shifting the bits right without sign extension into the low-order bits.
That's the purpose of (i >>> 8). Then this byte can be retrieved with the same 0xFF mask used
before. The same is done for the second-to-lowest-order byte and the highest-order byte.
Here, however, it's necessary to shift by 16 and 24 bits, respectively.

floats and doubles are converted to ints and longs using Float.floatToIntBits() and
Double.doubleTolongBits(), then invoking writeInt() or writeLong() to write those
bits in little-endian order.

Each method increments the protected field written by the number of bytes actually written.
This tracks the total number of bytes written onto the output stream at any one time. This
incurs a surprising amount of overhead. If this class did not track the number of bytes written,
it could be several methods shorter. Furthermore, there is a potential synchronization problem,
which happens to be shared by DataOutputStream. It is possible for one thread to interrupt a
method like writeInt() after it has written some data but before the written field has been
updated. It would be simple to fix this problem by declaring all methods that update written
as synchronized. However, that would be a huge performance hit, so I've elected to follow
the example of DataOutputStream and not synchronize these methods.

Example 7.9 is the corresponding LittleEndianInputStream class, based on the
DataInputStream class.

Java I/O

118

Example 7.9. The LittleEndianInputStream Class

/*
 * @(#)LittleEndianInputStream.java 1.0 98/08/29
 */

package com.macfaq.io;
import java.io.*;

/**
 * A little-endian input stream reads two's complement,
 * little-endian integers, floating-point numbers, and characters
 * and returns them as Java primitive types.
 * The standard java.io.DataInputStream class
 * which this class imitates reads big-endian quantities.
 *
 * @author Elliotte Rusty Harold
 * @version 1.0, 28 Aug 1998
 * @see com.macfaq.io.LittleEndianOutputStream
 * @see java.io.DataInputStream
 */
public class LittleEndianInputStream extends FilterInputStream {

 /**
 * Creates a new little-endian input stream and chains it to the
 * input stream specified by the in argument.
 *
 * @param in the underlying input stream.
 * @see java.io.FilterInputStream#out
 */
 public LittleEndianInputStream(InputStream in) {
 super(in);
 }

 /**
 * Reads a <code>boolean</code> from the underlying input stream by
 * reading a single byte. If the byte is zero, false is returned.
 * If the byte is positive, true is returned.
 *
 * @return b the <code>boolean</code> value read.
 * @exception EOFException if the end of the underlying input stream
 * has been reached
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public boolean readBoolean() throws IOException {

 int bool = in.read();
 if (bool == -1) throw new EOFException();
 return (bool != 0);
 }

 /**
 * Reads a signed <code>byte</code> from the underlying input stream
 * with value between -128 and 127.
 *
 * @return the <code>byte</code> value read.
 * @exception EOFException if the end of the underlying input stream
 * has been reached
 * @exception IOException if the underlying stream throws an
IOException.

Java I/O

119

 */
 public byte readByte(int b) throws IOException {

 int temp = in.read();
 if (temp == -1) throw new EOFException();
 return (byte) temp;
 }

 /**
 * Reads an unsigned <code>byte</code> from the underlying
 * input stream with value between 0 and 255.
 *
 * @return the <code>byte</code> value read.
 * @exception EOFException if the end of the underlying input
 * stream has been reached
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public int readUnsignedByte() throws IOException {

 int temp = in.read();
 if (temp == -1) throw new EOFException();
 return temp;
 }

 /**
 * Reads a two byte signed <code>short</code> from the underlying
 * input stream in little-endian order, low byte first.
 *
 * @return the <code>short</code> read.
 * @exception EOFException if the end of the underlying input stream
 * has been reached
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public short readShort() throws IOException {

 int byte1 = in.read();
 int byte2 = in.read();
 // only need to test last byte read
 // if byte1 is -1 so is byte2
 if (byte2 == -1) throw new EOFException();
 return (short) ((byte2 << 8) + byte1);
 }

 /**
 * Reads a two byte unsigned <code>short</code> from the underlying
 * input stream in little-endian order, low byte first.
 *
 * @return the int value of the unsigned short read.
 * @exception EOFException if the end of the underlying input stream
 * has been reached
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public int readUnsignedShort() throws IOException {

 int byte1 = in.read();
 int byte2 = in.read();
 if (byte2 == -1) throw new EOFException();
 return (byte2 << 8) + byte1;

Java I/O

120

 }

 /**
 * Reads a two byte Unicode <code>char</code> from the underlying
 * input stream in little-endian order, low byte first.
 *
 * @return the int value of the unsigned short read.
 * @exception EOFException if the end of the underlying input stream
 * has been reached
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public char readChar() throws IOException {

 int byte1 = in.read();
 int byte2 = in.read();
 if (byte1 == -1 || byte2 == -1) throw new EOFException();
 return (char) ((byte2 << 8) + byte1);
 }

 /**
 * Reads a four byte signed <code>int</code> from the underlying
 * input stream in little-endian order, low byte first.
 *
 * @return the <code>int</code> read.
 * @exception EOFException if the end of the underlying input stream
 * has been reached
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public int readInt() throws IOException {

 int byte1, byte2, byte3, byte4;

 synchronized (this) {
 byte1 = in.read();
 byte2 = in.read();
 byte3 = in.read();
 byte4 = in.read();
 }
 if (byte4 == -1 || byte3 == -1 || byte2 == -1 || byte1 == -1) {
 throw new EOFException();
 }
 return (byte4 << 24) + (byte3 << 16) + (byte2 << 8) + byte1;
 }

 /**
 * Reads an eight byte signed <code>int</code> from the underlying
 * input stream in little-endian order, low byte first.
 *
 * @return the <code>int</code> read.
 * @exception EOFException if the end of the underlying input stream
 * has been reached
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public long readLong() throws IOException {

 long byte1 = in.read();
 long byte2 = in.read();
 long byte3 = in.read();

Java I/O

121

 long byte4 = in.read();
 long byte5 = in.read();
 long byte6 = in.read();
 long byte7 = in.read();
 long byte8 = in.read();
 if (byte4 == -1 || byte3 == -1 || byte2 == -1 || byte1 == -1 ||
 byte8 == -1 || byte7 == -1 || byte6 == -1 || byte5 == -1) {
 throw new EOFException();
 }
 return (byte8 << 56) + (byte7 << 48) + (byte6 << 40) + (byte5 << 32) +
 (byte4 << 24) + (byte3 << 16) + (byte2 << 8) + byte1;
 }

 /**
 * Reads a string of no more than 65,535 characters
 * from the underlying input stream using UTF-8
 * encoding. This method first reads a two byte short
 * in big endian order as required by the
 * UTF-8 specification. This gives the number of bytes in
 * the UTF-8 encoded version of the string.
 * Next this many bytes are read and decoded as UTF-8
 * encoded characters.
 *
 * @return the decoded string
 * @exception UTFDataFormatException if the string cannot be decoded
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public String readUTF() throws IOException {

 int byte1 = in.read();
 int byte2 = in.read();
 if (byte2 == -1) throw new EOFException();;
 int numbytes = (byte1 << 8) + byte2;

 char result [] = new char[numbytes];
 int numread = 0;
 int numchars = 0;

 while (numread < numbytes) {

 int c1 = readUnsignedByte();
 int c2, c3;

 // Look at the first four bits of c1 to determine how many
 // bytes in this char.
 int test = c1 >> 4;
 if (test < 8) { // one byte
 numread++;
 result[numchars++] = (char) c1;
 }
 else if (test == 12 || test == 13) { // two bytes
 numread += 2;
 if (numread > numbytes) throw new UTFDataFormatException();
 c2 = readUnsignedByte();
 if ((c2 & 0xC0) != 0x80) throw new UTFDataFormatException();
 result[numchars++] = (char) (((c1 & 0x1F) << 6) | (c2 & 0x3F));
 }
 else if (test == 14) { // three bytes
 numread += 3;
 if (numread > numbytes) throw new UTFDataFormatException();

Java I/O

122

 c2 = readUnsignedByte();
 c3 = readUnsignedByte();
 if (((c2 & 0xC0) != 0x80) || ((c3 & 0xC0) != 0x80)) {
 throw new UTFDataFormatException();
 }
 result[numchars++] = (char)
 (((c1 & 0x0F) << 12) | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
 }
 else { // malformed
 throw new UTFDataFormatException();
 }
 } // end while
 return new String(result, 0, numchars);
 }
 /**
 *
 * @return the next eight bytes of this input stream, interpreted as
 * a little-endian <code>double</code>.
 * @exception EOFException if end of stream occurs before eight bytes
 * have been read.
 * @exception IOException if an I/O error occurs.
 */
 public final double readDouble() throws IOException {

 return Double.longBitsToDouble(this.readLong());
 }

 /**
 *
 * @return the next four bytes of this input stream, interpreted as a
 * little-endian <code>int</code>.
 * @exception EOFException if end of stream occurs before four bytes
 * have been read.
 * @exception IOException if an I/O error occurs.
 */
 public final float readFloat() throws IOException {

 return Float.intBitsToFloat(this.readInt());
 }

 /**
 * Skip exactly <code>n</code> bytes of input in the underlying
 * input stream. This method blocks until all the bytes are skipped,
 * the end of the stream is detected, or an exception is thrown.
 *
 * @param n the number of bytes to skip.
 * @return the number of bytes skipped, generally n
 * @exception EOFException if this input stream reaches the end before
 * skipping all the bytes.
 * @exception IOException if the underlying stream throws an
IOException.
 */
 public final int skipBytes(int n) throws IOException {

 for (int i = 0; i < n; i += (int) skip(n - i));
 return n;
 }
}

This class will be used in the last section to view files containing little-endian numbers.

Java I/O

123

7.9 Thread Safety

The LittleEndianInputStream class is not perfectly thread-safe. Consider the readInt()
method:

public int readInt() throws IOException {

 int byte1 = in.read();
 int byte2 = in.read();
 int byte3 = in.read();
 int byte4 = in.read();
 if (byte4 == -1 || byte3 == -1 || byte2 == -1 || byte1 == -1) {
 throw new EOFException();
 }
 return (byte4 << 24) + (byte3 << 16) + (byte2 << 8) + byte1;
 }

If two threads are trying to read from this input stream at the same time, there is no guarantee
that bytes 1 through 4 will be read in order. The first thread might read bytes 1 and 2, then the
second thread could preempt it and read any number of bytes. When the first thread regained
control, it would no longer be able to read bytes 3 and 4, but would read whichever bytes
happened to be next in line. It would then return an erroneous result.

A synchronized block would solve this problem neatly:

public int readInt() throws IOException {

 int byte1, byte2, byte3, byte4;

 synchronized (this) {
 byte1 = in.read();
 byte2 = in.read();
 byte3 = in.read();
 byte4 = in.read();
 }
 if (byte4 == -1 || byte3 == -1 || byte2 == -1 || byte1 == -1) {
 throw new EOFException();
 }
 return (byte4 << 24) + (byte3 << 16) + (byte2 << 8) + byte1;
}

It isn't necessary to synchronize the entire method, only the four lines that read from the
underlying stream. However, this solution is still imperfect. It is remotely possible that
another thread has a reference to the underlying stream rather than the little-endian input
stream and will try to read directly from that. Therefore, you might be better off
synchronizing on the underlying input stream in.

However, this would only prevent another thread from reading from the underlying input
stream if the second thread also synchronized on the underlying input stream. In general you
can't count on this, so it's not really a solution. In fact, Java really doesn't provide a good
means to guarantee thread safety when you have to modify objects you don't control passed as
arguments to your methods.

LittleEndianOutputStream has equally severe problems. I've already noted the problem
with keeping the written field up to date. Now consider this in the writeInt() method:

Java I/O

124

public void writeInt(int i) throws IOException {

 out.write(i & 0xFF);
 out.write((i >>> 8) & 0xFF);
 out.write((i >>> 16) & 0xFF);
 // What happens if another thread preempts here?
 out.write((i >>> 24) & 0xFF);
 written += 4;
 }

Suppose a second thread preempts the running thread where indicated in the previous code
and writes unrelated data onto the output stream. The entire stream can be corrupted, because
the bytes of the int are separated. The same synchronization tricks work here as well.
However, all the problems I've noted here are shared by DataInputStream and
DataOutputStream. Similar problems crop up in other filter stream classes. This leads to the
following general principle for thread-safe programming:

Never allow two threads to share a stream.

The principle is most obvious for filter streams, but it applies to regular streams as well.
Although writing or reading a single byte can be treated as an atomic operation, many
programs will not be happy to read and write individual bytes. They'll want to read or write a
particular group of bytes and will not react well to being interrupted.

7.10 File Viewer, Part 3

In Chapter 4, I introduced a FileDumper program that could print the raw bytes of a file in
ASCII, hexadecimal, or decimal. In this chapter, I'm going to expand that program so that it
can interpret the file as containing binary numbers of varying widths. In particular I'm going
to make it possible to dump a file as shorts, unsigned shorts, ints, longs, floats, and
doubles. Integer types may be either big-endian or little-endian. The main class,
FileDumper3, is shown in Example 7.10. As in Chapter 4, this program reads a series of
filenames and arguments from the command line in the main() method. Each filename is
passed to a method that opens a file input stream from the file. Depending on the command-
line arguments, a particular subclass of DumpFilter from Chapter 6 is selected and chained to
the input stream. Finally, the StreamCopier.copy() method pours data from the input stream
onto System.out.

Example 7.10. The FileDumper3 Class

import java.io.*;
import com.macfaq.io.*;

public class FileDumper3 {

 public static final int ASC = 0;
 public static final int DEC = 1;
 public static final int HEX = 2;
 public static final int SHORT = 3;
 public static final int INT = 4;
 public static final int LONG = 5;
 public static final int FLOAT = 6;
 public static final int DOUBLE = 7;

Java I/O

125

 public static void main(String[] args) {

 if (args.length < 1) {
 System.err.println(
 "Usage: java FileDumper3 [-ahdsilfx] [-little] file1 file2...");
 }

 boolean bigEndian = true;
 int firstFile = 0;
 int mode = ASC;

 // Process command-line switches.
 for (firstFile = 0; firstFile < args.length; firstFile++) {
 if (!args[firstFile].startsWith("-")) break;
 if (args[firstFile].equals("-h")) mode = HEX;
 else if (args[firstFile].equals("-d")) mode = DEC;
 else if (args[firstFile].equals("-s")) mode = SHORT;
 else if (args[firstFile].equals("-i")) mode = INT;
 else if (args[firstFile].equals("-l")) mode = LONG;
 else if (args[firstFile].equals("-f")) mode = FLOAT;
 else if (args[firstFile].equals("-x")) mode = DOUBLE;
 else if (args[firstFile].equals("-little")) bigEndian = false;
 }

 for (int i = firstFile; i < args.length; i++) {
 try {
 InputStream in = new FileInputStream(args[i]);
 dump(in, System.out, mode, bigEndian);

 if (i < args.length-1) { // more files to dump
 System.out.println();
 System.out.println("--------------------------------------");
 System.out.println();
 }
 }
 catch (Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
 }

 public static void dump(InputStream in, OutputStream out, int mode,
 throws IOException {

 // The reference variable in may point to several different objects
 // within the space of the next few lines. We can attach
 // more filters here to do decompression, decryption, and more.

 if (bigEndian) {
 DataInputStream din = new DataInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new IntFilter(din);
 break;

Java I/O

126

 case SHORT:
 in = new ShortFilter(din);
 break;
 case LONG:
 in = new LongFilter(din);
 break;
 case DOUBLE:
 in = new DoubleFilter(din);
 break;
 case FLOAT:
 in = new FloatFilter(din);
 break;
 default:
 }
 }
 else {
 LittleEndianInputStream lin = new LittleEndianInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new LEIntFilter(lin);
 break;
 case SHORT:
 in = new LEShortFilter(lin);
 break;
 case LONG:
 in = new LELongFilter(lin);
 break;
 case DOUBLE:
 in = new LEDoubleFilter(lin);
 break;
 case FLOAT:
 in = new LEFloatFilter(lin);
 break;
 default:
 }
 }

 StreamCopier.copy(in, out);
 in.close();
 }
}

The main() method of this class reads the command-line arguments and uses the switches to
determine the format of the input data. The dump() method reads the mode and the
endianness, selects the appropriate filter, then copies the input onto the output. Table 7.2
shows the command-line switches. Eight of these switches select a particular format. One, -
little, is used to determine the endianness of the data. Since there's no difference between
big-endian and little-endian ASCII, decimal, and hexadecimal dumps, there are a total of 12
different filters used here. Two, the HexFilter and the DecimalFilter, were introduced in
the last chapter. They haven't changed.

Java I/O

127

Table 7.2. Command-Line Switches for FileDumper3
Switch Format
-a ASCII
-d decimal dump
-h hexadecimal
-s short
-i int
-l long
-f float
-x double
-little little-endian

I've introduced ten new filters for big- and little-endian shorts, ints, longs, floats, and
doubles. The big-endian filters read data from a data input stream. The little-endian filters
read data from a little-endian input stream. To take advantage of code reuse, the big-endian
filters are all subclasses of a new abstract subclass of DumpFilter called DataFilter, shown
in Example 7.11. The little-endian filters are all subclasses of a new abstract subclass of
DumpFilter called LEFilter, shown in Example 7.12. The hierarchy of these filters is shown
in Figure 7.1.

Figure 7.1. Class hierarchy for filters

Example 7.11. DataFilter

package com.macfaq.io;

import java.io.*;

public abstract class DataFilter extends DumpFilter {

 // The use of DataInputStream here is a little forced.
 // It would be more natural (though more complicated)
 // to read the bytes and manually convert them to an int.
 DataInputStream din;

Java I/O

128

 public DataFilter(DataInputStream din) {
 super(din);
 this.din = din;
 }

 public int available() throws IOException {
 return (buf.length - index) + in.available();
 }
}

DataFilter makes sure that a data input stream is available to subclasses to read from. It also
has enough information to provide a reasonable available() method. The actual
implementation of the fill() method is left to specific subclasses like IntFilter.
LEFilter, given in Example 7.12, is identical except for its use of a
LittleEndianInputStream in place of a DataInputStream.

Example 7.12. LEFilter

package com.macfaq.io;

import java.io.*;

public abstract class LEFilter extends DumpFilter {

 // The use of LittleEndianInputStream here is a little forced.
 // It would be more natural (though more complicated)
 // to read the bytes and manually convert them to an int.
 LittleEndianInputStream lin;

 public LEFilter(LittleEndianInputStream lin) {
 super(lin);
 this.lin = lin;
 }

 public int available() throws IOException {
 return (buf.length - index) + lin.available();
 }
}

The concrete subclasses of these two classes are all very similar. Example 7.13 shows the
simplest, IntFilter.

Example 7.13. IntFilter

package com.macfaq.io;

import java.io.*;

public class IntFilter extends DataFilter {

 public IntFilter(DataInputStream din) {
 super(din);
 }

Java I/O

129

 protected void fill() throws IOException {

 int number = din.readInt();
 String s = Integer.toString(number)
 + System.getProperty("line.separator", "\r\n");
 byte[] b = s.getBytes("8859_1");
 buf = new int[b.length];
 for (int i = 0; i < b.length; i++) {
 buf[i] = b[i];
 }
 }
}

The fill() method reads an integer from the underlying DataInputStream din. That integer
is converted to a string using the static Integer.toString() method. The string is then
converted to bytes using the ISO 8859-1 (Latin-1) encoding. Encodings will be discussed in
more detail in Chapter 14 and Chapter 15. For now, all you need to know is that for the
characters that appear in a number, Latin-1 is identical to ASCII.

The remaining DataFilter subclasses are very similar. For example, Example 7.14 shows
the ShortFilter. Aside from the trivial difference in the class and constructor name, the only
real difference is the use of readShort() instead of readInt() in the first line of the fill()
method.

Example 7.14. ShortFilter

package com.macfaq.io;

import java.io.*;

public class ShortFilter extends DataFilter {

 public ShortFilter(DataInputStream din) {
 super(din);
 }

 protected void fill() throws IOException {

 int number = din.readShort();
 String s = Integer.toString(number)
 + System.getProperty("line.separator", "\r\n");
 byte[] b = s.getBytes("8859_1");
 buf = new int[b.length];
 for (int i = 0; i < b.length; i++) {
 buf[i] = b[i];
 }
 }
}

The LongFilter, FloatFilter, and DoubleFilter are only slightly different, and I haven't
put the source code in the book; it's available with the rest of the examples online. Likewise,
I've omitted the similar set of filters for little-endian data. The little-endian filters all extend
LEFilter; they are LEIntFilter, LEShortFilter, LELongFilter, LEFloatFilter, and
LEDoubleFilter.

Java I/O

130

In later chapters, I'll add support for compressed and encrypted files, a graphical user
interface, and various text interpretations of the data in the file. However, none of that will
require any changes to any of the filters we've developed here.

Java I/O

131

Chapter 8. Streams in Memory
In the last several chapters, you've learned how to use streams to move data between
a running Java program and external programs and stores. Streams can also be used to move
data from one part of a Java program to another. This chapter explores three such methods.
Sequence input streams chain several input streams together so that they appear as a single
stream. Byte array streams allow output to be stored in byte arrays and input to be read from
byte arrays. Finally, piped input and output streams allow output from one thread to become
input for another thread.

8.1 Sequence Input Streams

The java.io.SequenceInputStream class connects multiple input streams together in a
particular order:

public class SequenceInputStream extends InputStream

Reads from a SequenceInputStream first read all the bytes from the first stream in the
sequence, then all the bytes from the second stream in the sequence, then all the bytes from
the third stream, and so on. When the end of one of the streams is reached, that stream is
closed; the next data comes from the next stream. Of course, this assumes that the streams in
the sequence are in fact finite. There are two constructors for this class:

public SequenceInputStream(Enumeration e)
public SequenceInputStream(InputStream in1, InputStream in2)

The first constructor creates a sequence out of all the elements of the Enumeration e. This
assumes all objects in the enumeration are input streams. If this isn't the case,
a ClassCastException will be thrown the first time a read is attempted from an object that is
not an InputStream. The second constructor creates a sequence input stream that reads first
from in1, then from in2. Note that in1 or in2 may themselves be sequence input streams, so
repeated application of this constructor allows a sequence input stream with an indefinite
number of underlying streams to be created. For example, to read the home pages of both
JavaSoft and AltaVista, you might do this:

try {
 URL u1 = new URL("http://java.sun.com/");
 URL u2 = new URL("http://www.altavista.com");
 SequenceInputStream sin = new SequenceInputStream(u1.openStream(),
 u2.openStream());
}
catch (IOException e) { //...

Example 8.1 reads a series of filenames from the command line, creates a sequence input
stream from file input streams for each file named, then copies the contents of all the files
onto System.out. The SequenceInputStream class already provides the necessary layer of
abstraction for this problem. There's nothing to be gained by constructing a new object that
chains streams together and prints them. Therefore, this class only has a main() method that
builds a sequence input stream from files named on the command line. This stream is passed
into the StreamCopier from Chapter 4, which does the actual copying.

Java I/O

132

Example 8.1. The SequencePrinter Program

import java.io.*;
import java.util.*;
import com.macfaq.io.*;

public class SequencePrinter {

 public static void main(String[] args) {

 Vector theStreams = new Vector();

 for (int i = 0; i < args.length; i++) {
 try {
 FileInputStream fin = new FileInputStream(args[i]);
 theStreams.addElement(fin);
 }
 catch (IOException e) { System.err.println(e); }
 }

 SequenceInputStream sin = new
 SequenceInputStream(theStreams.elements());
 try {
 StreamCopier.copy(sin, System.out);
 }
 catch (IOException e) { System.err.println(e); }
 }
}

8.2 Byte Array Streams

It's sometimes convenient to use stream methods to manipulate data in byte arrays. For
example, you might receive an array of raw bytes that you want to interpret as double-
precision, floating-point numbers. (This is common when using UDP to transfer data across
the Internet, for one example.) The quickest way to do this is to use a DataInputStream.
However, before you can create a data input stream, you first need to create a raw, byte-
oriented stream. This is what the java.io.ByteArrayInputStream class gives you.
Similarly, you might want to send a group of double-precision, floating-point numbers across
the network with UDP. Before you can do this, you have to convert the numbers into bytes.
The simplest solution is to use a data output stream chained to a
java.io.ByteArrayOutputStream. By chaining the data output stream to a byte array output
stream, you can write the binary form of the floating-point numbers into a byte array, then
send the entire array in a single packet.

Java I/O

133

UDP
Byte array input and output streams are commonly used when sending and receiving
UDP data over the Internet. Unlike the more common TCP data, which acts like the
streams I discuss in this book, UDP data arrives in raw packets of bytes, which do
not necessarily have any relation to the previous packet or the next packet. Each
packet is just a group of bytes to be processed in isolation from other packets. Thus,
you may get nothing for several seconds, or even minutes, and then suddenly have a
few hundred numbers to deal with.

In Java, UDP data is sent and received via the java.net.DatagramSocket and
java.net.DatagramPacket classes. The receive() method of the
DatagramSocket class returns its data in a DatagramPacket, which is little more
than a wrapper around a byte array. This byte array can be easily used as the source
of a ByteArrayInputStream . UDP is discussed in more detail in Chapter 9 of my
book Java Network Programming (O'Reilly & Associates, 1997).

8.2.1 Byte Array Input Streams

The ByteArrayInputStream class reads data from a byte array using the methods of
java.io.InputStream :

public class ByteArrayInputStream extends InputStream

There are two ByteArrayInputStream() constructors. Both take a byte array as an
argument. This byte array is the buffer from which data will be read. The first constructor
uses the entire buffer array as an input stream. The second constructor only uses the subarray
of length bytes of buffer starting with the byte at offset.

public ByteArrayInputStream(byte[] buffer)
public ByteArrayInputStream(byte[] buffer, int offset, int length)

Other than these two constructors, the ByteArrayInputStream class just has the usual
read(), available(), close(), mark(), and reset() methods. Byte array input streams do
support marking and resetting up to the full length of the stream. This is relatively
straightforward to implement, because a byte array contains all the data in the stream in
memory at any time. There's no need to implement special buffering as with other kinds of
streams and no need to worry that you'll try to reset further back than the buffer allows.

8.2.2 Byte Array Output Streams

The ByteArrayOutputStream class writes data into the successive components of a byte
array using the methods of java.io.OutputStream :

public class ByteArrayOutputStream extends OutputStream

This class has the following two constructors, plus the usual write(), close(), and flush()
methods:

Java I/O

134

public ByteArrayOutputStream()
public ByteArrayOutputStream(int size)

The no-argument constructor uses a buffer of 32 bytes. The second constructor uses the user-
specified buffer size. However, regardless of the initial size, the byte array output stream will
expand its buffer as necessary to accommodate additional data.

To return the byte array that contains the written data, use the toByteArray() method:

public synchronized byte[] toByteArray()

There are also toString() methods that convert the bytes into a string. The no-argument
version uses the platform's default encoding (most commonly ISO Latin-1). The second
method allows you to specify the encoding to be used:

public String toString()
public String toString(String encoding) throws UnsupportedEncodingException

For example, one way to convert a number of doubles to bytes is to chain a
DataOutputStream to a ByteArrayOutputStream and write the doubles into the byte array
like this:

ByteArrayOutputStream bos = new ByteArrayOutputStream(1024);
DataOutputStream dos = new DataOutputStream(bos);
for (int r = 1; r < 1024; r++) {
 dos.writeDouble(r * 2.0 * Math.PI);
}

Example 8.2 uses a byte array output stream to implement a simple form of buffering. An
array is created to hold the first n Fibonacci numbers[1] in binary form, where n is specified on
the command line. The array is filled using the methods of java.io.DataOutputStream.
Once the array is created, a file is opened, and the data in the array is written into the file.
Then the file is closed. This way, the data can be written quickly without requiring the file to
be ope1n while the program is calculating.

Example 8.2. The FibonacciFile program

import java.io.*;

public class FibonacciFile {

 public static void main(String args[]) {

 String outputFile = "fibonacci.dat";
 if (args.length > 0) outputFile = args[0];
 int howMany;
 try {
 howMany = Integer.parseInt(args[1]);
 }
 catch (Exception e) {
 howMany = 20;
 }

1 The Fibonacci numbers are the sequence 1, 1, 2, 3, 5, 8, . . . where each number except the first two is calculated by adding the previous two
numbers in the sequence.

Java I/O

135

 try {
 // So that the buffer doesn't have to be resized,
 // we calculate in advance the size of the necessary byte array.
 ByteArrayOutputStream bout = new ByteArrayOutputStream(howMany*4);
 DataOutputStream dout = new DataOutputStream(bout);

 // First two Fibonacci numbers must be given
 // to start the process.
 int f1 = 1;
 int f2 = 1;
 dout.writeInt(f1);
 dout.writeInt(f2);

 // Now calculate the rest.
 for (int i = 2; i < howMany; i++) {
 int temp = f2;
 f2 = f2 + f1;
 f1 = temp;
 dout.writeInt(f2);
 }

 FileOutputStream fout = new FileOutputStream(outputFile);
 fout.write(bout.toByteArray());
 fout.flush();
 fout.close();
 }
 catch (IOException e) { System.err.println(e); }
 }
}

You can use the FileDumper3 program from the last chapter with the -i option to view the
output. For example:

% java FibonacciFile fibonacci.dat 10
% java FileDumper3 -i fibonacci.dat
1
1
2
3
5
8
13
21
34
55

8.3 Communicating Between Threads with Piped Streams

The java.io.PipedInputStream class and java.io.PipedOutputStream class provide a
convenient means to move streaming data from one thread to another. Output from one thread
becomes input for the other thread, as shown in Figure 8.1

Java I/O

136

Figure 8.1. Data moving between threads with piped streams

public class PipedInputStream extends InputStream
public class PipedOutputStream extends OutputStream

The PipedInputStream class has two constructors:

public PipedInputStream()
public PipedInputStream(PipedOutputStream source) throws IOException

The no-argument constructor creates a piped input stream that is not yet connected to a piped
output stream. The second constructor creates a piped input stream that's connected to the
piped output stream source.

The PipedOutputStream class also has two constructors:

public PipedOutputStream(PipedInputStream sink) throws IOException
public PipedOutputStream()

The no-argument constructor creates a piped output stream that is not yet connected to a piped
input stream. The second constructor creates a piped output stream that's connected to the
piped input stream sink.

Piped streams are normally created in pairs. The piped output stream becomes the underlying
source for the piped input stream. For example:

PipedOutputStream pout = new PipedOutputStream();
PipedInputStream pin = new PipedInputStream(pout);

This simple example is a little deceptive, because these lines of code will normally be in
different methods and perhaps even different classes. Some mechanism must be established to
pass a reference to the PipedOutputStream into the thread that handles the
PipedInputStream. Or you can create them in the same thread, then pass a reference to the
connected stream into a separate thread. Alternately, you can reverse the order:

PipedInputStream pin = new PipedInputStream();
PipedOutputStream pout = new PipedOutputStream(pin);

Or you can create them both unconnected, then use one or the other's connect() method to
link them:

PipedInputStream pin = new PipedInputStream();
PipedOutputStream pout = new PipedOutputStream();
pin.connect(pout);

Java I/O

137

Otherwise, these classes just have the usual read(), write(), flush(), close(), and
available() public methods like all stream classes.

The piped input stream also has four protected fields and one protected method that are used
to implement the piping:

protected static final int PIPE_SIZE
protected byte[] buffer
protected int in
protected int out
protected synchronized void receive(int b) throws IOException

PIPE_SIZE is a named constant for the size of the buffer. It's 1024 in Java 1.1 and 1.2. The
buffer is the byte array where the data is stored, and it's initialized to be an array of length
PIPE_SIZE. When a client class invokes a write() method in the piped output stream class,
the write() method invokes the receive() method in the connected piped input stream to
place the data in the byte array buffer. Data is always written at the position in the buffer
given by the field in and read from the position in the buffer given by the field out.

There are two possible blocking situations here. The first occurs if the writing thread tries to
write data while the reading thread's input buffer is full. When this occurs, the output stream
enters an infinite loop in which it repeatedly waits for one second until some thread reads
some data out of the buffer and frees up space. If this is likely to be a problem for your
application, you should subclass PipedInputStream and make the buffer larger. The second
possible block is when the reading thread tries to read and no data is present in the buffer. In
this case, the input stream enters an infinite loop in which it repeatedly waits for one second
until some thread writes some data into the buffer.

Although piped input streams contain an internal buffer, they do not support marking and
resetting. The circular nature of the buffer would make this excessively complicated. You can
always chain the piped input stream to a buffered input stream and read from that, if you need
marking and resetting.

The following program is a simple and somewhat artificial example that generates Fibonacci
numbers in one thread and writes them onto a piped output stream while another thread reads
the numbers from a corresponding piped input stream and prints them on System.out. There
are three classes in this program: FibonacciWriter and FibonacciReader, which are
subclasses of Thread, and FibonacciDriver, which manages the other two classes. Example
8.3 shows the FibonacciWriter class, a subclass of Thread. This class does not directly use
a piped output stream. It just writes data onto the output stream it's given in the constructor.

Example 8.3. The FibonacciWriter Class

import java.io.*;

public class FibonacciWriter extends Thread {

 DataOutputStream theOutput;
 int howMany;

Java I/O

138

 public FibonacciWriter(OutputStream out, int howMany)
 throws IOException {
 theOutput = new DataOutputStream(out);
 this.howMany = howMany;
 }

 public FibonacciWriter(OutputStream out) throws IOException {
 this(out, Integer.MAX_VALUE);
 }

 public void run() {

 try {
 int f1 = 1;
 int f2 = 1;
 theOutput.writeInt(f1);
 theOutput.writeInt(f2);

 // Now calculate the rest.
 for (int i = 2; i < howMany; i++) {
 int temp = f2;
 f2 = f2 + f1;
 f1 = temp;
 if (f2 < 0) { // overflow
 break;
 }
 theOutput.writeInt(f2);
 }
 }
 catch (IOException e) { System.err.println(e); }
 }
}

Example 8.4 is the FibonacciReader class. It could just as well have been called the
IntegerReader class, since it doesn't know anything about Fibonacci numbers. Its run()
method merely reads integers from its input stream until the stream is exhausted or an
IOException is thrown.

Example 8.4. The FibonacciReader Class

import java.io.*;

public class FibonacciReader extends Thread {

 DataInputStream theInput;

 public FibonacciReader(InputStream in)
 throws IOException {
 theInput = new DataInputStream(in);
 }

 public void run() {

 try {
 while (true) {
 System.out.println(theInput.readInt());
 }
 }

Java I/O

139

 catch (IOException e) {
 // probably just an end of stream exception
 }
 }
}

Example 8.5 is the FibonacciDriver class. It creates a piped output stream and a piped input
stream and uses those to construct FibonacciWriter and FibonacciReader objects. These
streams are a channel of communication between the two threads. As data is written by the
FibonacciWriter thread it becomes available for the FibonacciReader thread to read. Both
the FibonacciWriter and the FibonacciReader are run with normal priority so when the
FibonacciWriter blocks or is preempted, the FibonacciReader runs and vice versa.

Example 8.5. The FibonacciDriver Class

import java.io.*;

public class FibonacciDriver {

 public static void main (String[] args) {

 int howMany;
 try {
 howMany = Integer.parseInt(args[0]);
 }
 catch (Exception e) {
 howMany = 20;
 }

 try {
 PipedOutputStream pout = new PipedOutputStream();
 PipedInputStream pin = new PipedInputStream(pout);

 FibonacciWriter fw = new FibonacciWriter(pout, howMany);
 FibonacciReader fr = new FibonacciReader(pin);
 fw.start();
 fr.start();
 }
 catch (IOException e) { System.err.println(e);}
 }
}

You may be wondering how the piped streams differ from the stream copiers presented earlier
in the book. The first difference is that the piped stream moves data from an output stream to
an input stream. The stream copier always moves data in the opposite direction, from an input
stream to an output stream. The second difference is that the stream copier actively moves the
data by calling the read() and write() methods of the underlying streams. A piped output
stream merely makes the data available to the input stream. It is still necessary for some other
object to invoke the piped input stream's read() method to read the data. If no other object
reads from the piped input stream, then after about one kilobyte of data has been written onto
the piped output stream, the writing thread will block while it waits for the piped input
stream's buffer to empty out.

Java I/O

140

Chapter 9. Compressing Streams
The java.util.zip package, shown in Figure 9.1, contains six stream classes and another
half dozen assorted classes that read and write data in zip, gzip, and inflate/deflate formats.
Java uses these classes to read and write JAR archives and to display PNG images. You can
use the java.util.zip classes as general utilities for general-purpose compression and
decompression. Among other things, these classes make it trivial to write a simple file
compression or decompression program.

Figure 9.1. The java.util.zip package hierarchy

9.1 Inflaters and Deflaters

The java.util.zip.Deflater and java.util.zip.Inflater classes provide compression
and decompression services for all other classes. They are Java's compression and
decompression engines. These classes support several related compression formats, including
zlib, deflate, and gzip. These formats are documented in RFCs 1950, 1951, and 1952. (See
ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html) They all use the Lempel-Ziv
1977 (LZ77) compression algorithm (named after the inventors, Jakob Ziv and Abraham
Lempel), though each has a different way of storing metadata that describes an archive's
contents. Since compression and decompression are extremely CPU-intensive operations, for
the most part these classes are Java wrappers around native methods written in C. More
precisely, these are wrappers around the zlib compression library written by Jean-Loup Gailly
and Mark Adler. According to Greg Roelofs, writing on the zlib web page at
http://www.cdrom.com/pub/infozip/zlib/, "zlib is designed to be a free, general-purpose,

Java I/O

141

legally unencumbered—that is, not covered by any patents—lossless data-compression library
for use on virtually any computer hardware and operating system."

Without going into excessive detail, zip, gzip, and zlib all compress data in more or less the
same way. Repeated bit sequences in the input data are replaced with pointers back to the first
occurrence of that bit sequence. Other tricks are used, but this is basically how these
compression schemes work and has certain implications for compression and decompression
code. First, you can't randomly access data in a compressed file. To decompress the nth byte
of data, you must first decompress bytes 1 through n-1 of the data. Second, a single twiddled
bit doesn't just change the meaning of the byte it's part of. It also changes the meaning of
bytes that come after it in the data, since subsequent bytes may be stored as copies of the
previous bytes. Therefore, compressed files are much more susceptible to corruption than
uncompressed files. For more general information about compression and archiving
algorithms and formats, the comp.compression FAQ is a good place to start. See
http://www.faqs.org/faqs/compression-faq/part1/preamble.html.

9.1.1 Deflating Data

The Deflater class contains methods to compress blocks of data. You can choose the
compression format, the level of compression, and the compression strategy. There are nine
steps to deflating data with the Deflater class:

1. Construct a Deflater object.
2. Choose the strategy (optional).
3. Set the compression level (optional).
4. Preset the dictionary (optional).
5. Set the input.
6. Deflate the data repeatedly until needsInput() returns true.
7. If more input is available, go back to step 5 to provide additional input data.

Otherwise, go to step 8.
8. Finish the data.
9. If there are more streams to be deflated, reset the deflater.

More often than not, you don't use this class directly. Instead, you use a Deflater object
indirectly through one of the compressing stream classes like DeflaterInputStream or
DeflaterOutputStream. These classes provide more convenient programmer interfaces for
stream-oriented compression than the raw Deflater methods.

9.1.1.1 Constructing deflaters

There are three Deflater() constructors:

public Deflater(int level, boolean useGzip)
public Deflater(int level)
public Deflater()

The most general constructor allows you to set the level of compression and the format used.
Compression level is specified as an int between and 9. is no compression; 9 is maximum
compression. Generally, the higher the compression level, the smaller the output will be and
the longer the compression will take. Four mnemonic constants are available to select
particular levels of compression. These are:

Java I/O

142

public static final int NO_COMPRESSION = 0;
public static final int BEST_SPEED = 1;
public static final int BEST_COMPRESSION = 9;
public static final int DEFAULT_COMPRESSION = -1;

If useGzip is true, then gzip compression format is used. Otherwise, the zlib compression
format is used. (zlib format is the default.) These formats are essentially the same except that
zlib includes some extra header and checksum fields.

In Java 1.1 and 2 the Deflater class only supports a single compression method, deflation.
This one method is used by zip, gzip, and zlib. This is represented by the mnemonic constant
Deflater.DEFLATED:

public static final int DEFLATED = 8;

Other methods exist and may be added in the future, such as LZ78 dictionary-based
compression, arithmetic compression, wavelet compression, fractal compression, and many
more. The design of the java.util.zip package does not allow you to install third-party
compression engines easily. Therefore, classes to support these new methods must come from
Sun.[1] In the next chapter, you'll see the Java Cryptography Extension (JCE), which is
designed along similar lines. However, because outdated laws prevent Sun from including
strong cryptography in the core API, the JCE allows you to plug in third-party engines that
support a wide variety of encryption methods.

9.1.1.2 Choose a strategy

The first step is to choose the strategy. Java 1.1 supports three strategies: filtered, Huffman,
and default. These are represented by the mnemonic constants Deflater.FILTERED,
Deflater.HUFFMAN_ONLY, and Deflater.DEFAULT_STRATEGY, respectively. The
setStrategy() method chooses one of these strategies.

public static final int DEFAULT_STRATEGY = 0;
public static final int FILTERED = 1;
public static final int HUFFMAN_ONLY = 2;

public synchronized void setStrategy(int strategy)

This method throws an IllegalArgumentException if an unrecognized strategy is passed as
an argument. If no strategy is chosen explicitly, then the default strategy is used. The default
strategy works well for most data you're likely to encounter. It concentrates primarily on
emitting pointers to previously seen data, so it works well in data where runs of bytes tend to
repeat themselves. In certain kinds of files where long runs of bytes are uncommon, but where
the distribution of bytes is uneven, you may be better off with pure Huffman coding. Huffman
coding simply uses fewer bits for more common characters like "e" and more bits for less
common characters like "q." A third situation, common in some binary files, is where all
bytes are more or less equally likely. When dealing with these sorts of files, the filtered
strategy provides a good compromise with some Huffman coding and some matching of data
to previously seen values. Most of the time, the default strategy will do the best job, and even

1 There's no reason a third party can't write compression classes that exist outside the java.util.zip package, of course. However, such
classes would not be able to replace Deflater and Inflater in the rest of the core API.

Java I/O

143

if it doesn't, it will compress within a few percent of the optimal strategy, so it's rarely worth
agonizing over which is the best solution.

9.1.1.3 Set the compression level

The deflater compresses by trying to match the data it's looking at now to data it's already
seen earlier in the stream. The compression level determines how far back in the stream the
deflater looks for a match. The farther back it looks, the more likely it is to find a match and
the larger the run of bytes it can replace with a simple pointer. However, the farther back it
looks, the longer it takes as well. Thus, compression level is a trade-off between speed and
file size. The tighter you compress, the more time it takes. Generally, the compression level is
set in the constructor, but you can change it after the deflater is constructed by using the
setLevel() method:

public synchronized void setLevel(int Level)

As with the Deflater() constructors, the compression level should be an int between and 9
(no compression to maximum compression) or perhaps -1, signifying the default compression
level. Any other value will cause an IllegalArgumentException. It's good coding style to
use one of the mnemonic constants Deflater.NO_COMPRESSION (0), Deflater.BEST_SPEED
(1), Deflater.BEST_COMPRESSION (9), or Deflater.DEFAULT_COMPRESSION (-1) instead of
an explicit value.

In limited testing with small files, I haven't found the difference between best speed and best
compression to be noticeable, either in file size or the time it takes to compress or
decompress. You may occasionally want to set the level to no compression (0) if you're
deflating already compressed files like GIF, JPEG, or PNG images before storing them in an
archive. These file formats have built-in compression algorithms specifically designed for the
type of data they contain, and the general-purpose deflation algorithm provided here is
unlikely to compress them further.[2] It may even increase their size.

9.1.1.4 Set the dictionary

You can think of the deflater as building a dictionary of phrases as it reads the text. The first
time it sees a phrase, it puts the phrase in the dictionary. The second time it sees the phrase, it
replaces the phrase with its position in the dictionary. However, it can't do this until it's seen
the phrase at least once, so data early in the stream isn't compressed very well compared to
data that occurs later in the stream. On rare occasion, when you have a good idea that certain
byte sequences appear in the data very frequently, you can preset the dictionary used for
compression. You would fill the dictionary with the frequently repeated data in the text. For
instance, if your text is composed completely of ASCII digits and assorted whitespace (tabs,
carriage returns, and so forth) you could put those characters in your dictionary. This allows
the early part of the stream to compress as well as later parts.

There are two setDictionary() methods. The first uses the entire byte array passed as an
argument as the dictionary. The second uses the subarray of data starting at offset and
continuing for length bytes.

public void setDictionary(byte[] data)

2 In fact, the deflation algorithm described here is the exact algorithm used by PNG images; it was first invented specifically for the PNG file format.

Java I/O

144

public native synchronized void setDictionary(byte[] data,
 int offset, int length)

Presetting a dictionary is never necessary and requires detailed
understanding of both the compression format used and the data to be
compressed. Putting the wrong data in your dictionary can actually
increase the file size. Unless you're a compression expert and you really
need every last byte of space you can save, I recommend letting the
deflater build the dictionary adaptively as the data is compressed.

I started with a highly compressible 44,392-byte text file (the output of
running FileDumper2.java on itself in decimal mode). Without
presetting the dictionary, it deflated to 3,859 bytes. My first attempt to
preset the dictionary to the ASCII digits, space, and \r\n actually
increased that size to 3,863 bytes. After carefully examining the data
and custom-designing a dictionary to fit it, I was able to deflate the data
to 3,852 bytes, saving a whopping 7 extra bytes or 0.18%. Of course,
the dictionary itself occupied 112 bytes, so it's truly arguable whether I
really saved anything.

Exact details are likely to vary from file to file. The only real possible
gain is for very short, very predictable files where zlib may not have
enough data to build a good dictionary before the end of stream is
reached. However, zlib uses a pretty good algorithm for building an
adaptive dictionary, and you're unlikely to do significantly better by
hand. I recommend you not worry about setting a dictionary, and simply
let the deflater build one for you.

If Inflater.inflate() decompresses the data later, the Inflater.getAdler() method will
return the Adler-32 checksum of the dictionary needed for decompression. However, you'll
need some other means to pass the dictionary itself between the deflater and the inflater. It is
not stored with the deflated file.

9.1.1.5 Set the input

Next you must set the input data to be deflated with one of the setInput() methods:

public void setInput(byte[] input)
public synchronized void setInput(byte[] input, int offset, int length)

The first method prepares the entire array to be deflated. The second method prepares the
specified subarray of data starting at offset and continuing for length bytes.

9.1.1.6 Deflate the data repeatedly until needsInput() returns true

Finally, you're ready to deflate the data. Once setInput() has filled the input buffer with
data, it is deflated through one of two deflate() methods:

public int deflate(byte[] output)
public native synchronized int deflate(byte[] output, int offset, int
length)

Java I/O

145

The first method fills the specified output array with the bytes of compressed data. The
second fills the specified subarray of output beginning at offset and continuing for length
bytes with the compressed data. Both methods return the actual number of compressed bytes
written into the array. You do not know in advance how many compressed bytes will actually
be written into output, because you do not know how well the data will compress. You
always have to check the return value. If deflate() returns 0, you should check
needsInput() to see if you need to call setInput() again to provide more uncompressed
input data:

public boolean needsInput()

When more data is needed, the needsInput() method returns true. At this point you should
invoke setInput() again to feed in more uncompressed input data, call deflate(), and
repeat the process until deflate() returns and there is no more input data to be compressed.

9.1.1.7 Finish the deflation

Finally, when the input data is exhausted, invoke finish() to indicate that no more data is
forthcoming and the deflater should finish with the data it already has in its buffer:

public synchronized void finish()

The finished() method returns true when the end of the compressed output has been
reached; that is, when all data stored in the input buffer has been deflated:

public synchronized boolean finished()

After calling finish(), you invoke deflate() repeatedly until finished() returns true.
This flushes out any data that remains in the input buffer.

9.1.1.8 Reset the deflater and start over

This completes the sequence of method invocations required to compress data. If you'd like to
use the same strategy, compression level, and other settings to compress more data with the
same Deflater, call its reset() method:

public native synchronized void reset()

Otherwise, call end() to throw away any unprocessed input and free the resources used by the
native code:

public native synchronized void end()

The finalize() method calls end() before the deflater is garbage-collected, if you forget:

protected void finalize()

9.1.1.9 An example

Example 9.1 is a simple program that deflates files named on the command line. First
a Deflater object, def, is created with the default strategy, method, and compression level.

Java I/O

146

A file input stream named fin is opened to each file. At the same time, a file output stream
named fout is opened to an output file with the same name plus the three-letter extension .dfl.
The program then enters a loop in which it tries to read 1024 -byte chunks of data from fin,
though care is taken not to assume that 1024 bytes are actually read. Any data that is
successfully read is passed to the deflater's setInput() method. The data is repeatedly
deflated and written onto the output stream until the deflater indicates that it needs more
input. Then the process repeats itself until the end of the input stream is reached. When no
more input is available, the deflater's finish() method is called. Then the deflater's
deflate() method is repeatedly invoked until its finished() method returns true. At this
point, the program breaks out of the infinite read() loop and moves on to the next file.

Figure 9.2 is a flow chart demonstrating this sequence for a single file. One thing may seem
a little fishy about this chart. After the deflater is finished, a repeated check is made to see if
the deflater is in fact finished. The finish() method tells the deflater that no more data is
forthcoming and it should work with whatever data remains in its input buffer. However,
the finished() method does not actually return true until the input buffer has been emptied
by calls to deflate().

Figure 9.2. The deflation sequence

Example 9.1. The DirectDeflater

import java.io.*;
import java.util.zip.*;

Java I/O

147

public class DirectDeflater {

 public final static String DEFLATE_SUFFIX = ".dfl";

 public static void main(String[] args) {

 Deflater def = new Deflater();
 byte[] input = new byte[1024];
 byte[] output = new byte[1024];

 for (int i = 0; i < args.length; i++) {

 try {
 FileInputStream fin = new FileInputStream(args[i]);
 FileOutputStream fout = new FileOutputStream(args[i] +
 DEFLATE_SUFFIX);

 while (true) { // read and deflate the data

 // Fill the input array.
 int numRead = fin.read(input);
 if (numRead == -1) { // end of stream
 // Deflate any data that remains in the input buffer.
 def.finish();
 while (!def.finished()) {
 int numCompressedBytes = def.deflate(output, 0,
 output.length);
 if (numCompressedBytes > 0) {
 fout.write(output, 0, numCompressedBytes);
 } // end if
 } // end while
 break; // Exit while loop.
 } // end if
 else { // Deflate the input.
 def.setInput(input, 0, numRead);
 while (!def.needsInput()) {
 int numCompressedBytes = def.deflate(output, 0,
 output.length);
 if (numCompressedBytes > 0) {
 fout.write(output, 0, numCompressedBytes);
 } // end if
 } // end while
 } // end else
 } // end while
 fin.close();
 fout.flush();
 fout.close();
 def.reset();
 } // end try
 catch (IOException e) {System.err.println(e);}
 }
 }
}

This program is more complicated than it needs to be, because it has to read the file in small
chunks. In Example 9.3, later in this chapter, you'll see a simpler program that achieves the
same result using the DeflaterOutputStream class.

Java I/O

148

9.1.1.10 Checking the state of a deflater

The Deflater class also provides several methods that return information about the deflater's
state. The getAdler() method returns the Adler-32 checksum of the uncompressed data. This
is not a java.util.zip.Checksum object but the actual int value of the checksum:

public native synchronized int getAdler()

The getTotalIn() method returns the number of uncompressed bytes passed to the
setInput() method:

public native synchronized int getTotalIn()

The getTotalOut() method returns the total number of compressed bytes output so far via
deflate():

public native synchronized int getTotalOut()

For example, to print a running total of the compression achieved by the Deflater object
def, you might do something like this:

System.out.println((1.0 - def.getTotalOut()/def.getTotalIn())*100.0 +
?% saved?);

9.1.2 Inflating Data

The Inflater class contains methods to decompress blocks of data compressed in the zip,
gzip, or zlib formats. This data may have been produced by Java's Deflater class or by some
other program written in another language entirely, such as PKZip or gzip. Using an inflater is
a little simpler than using a deflater, since there aren't a lot of settings to pick. Those were
established when the data was compressed. There are seven steps to inflating data:

1. Construct an Inflater object.
2. Set the input with the compressed data to be inflated.
3. Call needsDictionary() to determine if a preset dictionary is required.
4. If needsDictionary() returns true, call getAdler() to get the Adler-32 checksum

of the dictionary. Then invoke setDictionary() to set the dictionary data.
5. Inflate the data repeatedly until inflate() returns zero.
6. If needsInput() returns true, go back to step 2 to provide additional input data.
7. The finished() method returns true.

If you want to decompress more data with this Inflater object, reset it.

You rarely use this class directly. Instead, you use an inflater indirectly through one of the
decompressing stream classes like InflaterInputStream or InflaterOutputStream. These
classes provide much more convenient programmer interfaces for stream-oriented
decompression.

Java I/O

149

9.1.2.1 Constructing inflaters

There are two Inflater() constructors:

public Inflater(boolean zipped)
public Inflater()

By passing true to the first constructor, you indicate that data to be inflated has been
compressed using the zip or gzip format. Otherwise, the constructor assumes the data is in the
zlib format.

9.1.2.2 Set the input

Once you have an Inflater to work with, you can start feeding it compressed data with
setInput():

public void setInput(byte[] input)
public synchronized void setInput(byte[] input, int offset, int length)

As usual, the first variant treats the entire input array as data to be inflated. The second uses
the subarray of input, starting at offset and continuing for length bytes.

9.1.2.3 Check whether a preset dictionary was used

Next, you can determine whether this block of data was compressed with a preset dictionary.
If it was, needsDictionary() returns true:

public synchronized boolean needsDictionary()

If needsDictionary() does return true, you can get the Adler-32 checksum of the requisite
dictionary with the getAdler() method:

public native synchronized int getAdler()

This doesn't actually tell you what the dictionary is (which would be a lot more useful); but if
you have a list of commonly used dictionaries, you can probably use the Adler-32 checksum
to determine which of those was used to compress the data.

9.1.2.4 Set the dictionary

If needsDictionary() returns true, you'll have to use one of the setDictionary()
methods to provide the data for the dictionary. The first uses the entire dictionary byte array
as the dictionary. The second uses the subarray of dictionary, starting at offset and
continuing for length bytes.

public void setDictionary(byte[] dictionary)
public native synchronized void setDictionary(byte[] dictionary,
 int offset, int length)

The dictionary is not generally available with the compressed data. Whoever writes files using
a preset dictionary is responsible for determining some higher-level protocol for passing the
dictionary used by the compression program to the decompression program. One possibility is

Java I/O

150

to store the dictionary file, along with the compressed data, in an archive. Another possibility
is that programs that read and write many very similar files may always use the same
dictionary built into both the compression and decompression programs.

9.1.2.5 Inflate the data

Once setInput() has filled the input buffer with data, it is inflated through one of two
inflate() methods:

public int inflate(byte[] output) throws DataFormatException
public native synchronized int inflate(byte[] output, int offset, int
length)
 throws DataFormatException

The first method fills the output array with the uncompressed data. The second fills the
specified subarray, beginning at offset and continuing for length bytes, with the
uncompressed data. The actual number of uncompressed bytes written into the array is
returned. If one of these methods returns 0, then you should check needsInput() to see if
you need to call setInput() again to insert more compressed input data:

public boolean needsInput()

When more data is needed, needsInput()returns true. At this point you call setInput()
again to feed in more compressed input data, then call inflate(), then repeat the process
until there is no more input data to be decompressed. If more data is not needed after
inflate() returns zero, this should mean that decompression is finished, and the
finished() method should return true:

public synchronized boolean finished()

The inflate() methods throw a java.util.zip.DataFormatException if they encounter
invalid data, generally indicating a corrupted input stream. This is a direct subclass of
java.lang.Exception, not an IOException.

9.1.2.6 Reset the inflater

This completes the sequence of method invocations required to decompress data. If you'd like
to use the same settings to decompress more data with the same Inflater object, you can
invoke its reset() method:

public native synchronized void reset()

Otherwise, you call end() to throw away any unprocessed input and free the resources used
by the native code:

public native synchronized void end()

The finalize() method calls end() before the inflater is garbage-collected, even if you
forget to invoke it explicitly:

protected void finalize()

Java I/O

151

9.1.2.7 An example

Example 9.2 is a simple program that inflates files named on the command line. First an
Inflater object, inf, is created. A file input stream named fin is opened to each file. At the
same time, a file output stream named fout is opened to an output file with the same name
minus the three-letter extension .df l. The program then enters a loop in which it tries to read
1024 -byte chunks of data from fin , though care is taken not to assume that 1024 bytes are
actually read. Any data that is successfully read is passed to the inflater's setInput()
method. This data is repeatedly inflated and written onto the output stream until the inflater
indicates that it needs more input. Then the process repeats itself until the end of the input
stream is reached and the inflater's finished() method returns true. At this point, the
program breaks out of the read() loop and moves on to the next file.

Example 9.2. The DirectInflater

import java.io.*;
import java.util.zip.*;

public class DirectInflater {

 public static void main(String[] args) {

 Inflater inf = new Inflater();
 byte[] input = new byte[1024];
 byte[] output = new byte[1024];

 for (int i = 0; i < args.length; i++) {

 try {
 if (!args[i].endsWith(DirectDeflater.DEFLATE_SUFFIX)) {
 System.err.println(args[i] + " does not look like a deflated
 file");
 continue;
 }
 FileInputStream fin = new FileInputStream(args[i]);
 FileOutputStream fout = new FileOutputStream(args[i].substring(0,
 args[i].length() - DirectDeflater.DEFLATE_SUFFIX.length()));

 while (true) { // Read and inflate the data.

 // Fill the input array.
 int numRead = fin.read(input);
 if (numRead != -1) { // End of stream, finish inflating.
 inf.setInput(input, 0, numRead);
 } // end if
 // Inflate the input.

 int numDecompressed = 0;
 while ((numDecompressed = inf.inflate(output, 0, output.length))
 != 0) {
 fout.write(output, 0, numDecompressed);
 }
 // At this point inflate() has returned 0.
 // Let's find out why.
 if (inf.finished()) { // all done
 break;
 }
 else if (inf.needsDictionary()) { //We don't handle dictionaries.

Java I/O

152

 System.err.println("Dictionary required! bailing...");
 break;
 }
 else if (inf.needsInput()) {
 continue;
 }
 } // end while

 // Close up and get ready for the next file.
 fin.close();
 fout.flush();
 fout.close();
 inf.reset();
 } // end try
 catch (IOException e) {System.err.println(e);}
 catch (DataFormatException e) {
 System.err.println(args[i] + " appears to be corrupt");
 System.err.println(e);
 } // end catch
 }
 }
}

Once again, this program is more complicated than it needs to be, because of the necessity of
reading the input in small chunks. In Example 9.4, you'll see a much simpler program that
achieves the same result via an InflaterOutputStream.

9.1.2.8 Checking the state of an inflater

The Inflater class also provides several methods that return information about the
Inflater object's state. The getAdler() method returns the Adler-32 checksum of the
uncompressed data. This is not a java.util.zip.Checksum object but the actual int value
of the checksum:

public native synchronized int getAdler()

The getTotalIn() method returns the number of compressed bytes passed to the
setInput() method:

public native synchronized int getTotalIn()

The getTotalOut() method returns the total number of decompressed bytes output via
inflate():

public native synchronized int getTotalOut()

The getRemaining() method returns the number of compressed bytes left in the input buffer:

public native synchronized int getRemaining()

9.2 Compressing and Decompressing Streams

The Inflater and Deflater classes are a little raw for easy digestion. It would be more
convenient to write uncompressed data onto an output stream and have it compressed by the

Java I/O

153

stream itself, without having to worry about the mechanics of deflation. Similarly, it would be
useful to have an input stream class that could read from a compressed file but return the
uncompressed data. Java, in fact, has several classes that do exactly this. The
java.util.zip.DeflaterOutputStream class is a filter stream that compresses the data it
receives in deflated format before writing it out to the underlying stream. The
java.util.zip.InflaterInputStream class inflates deflated data before passing it to the
reading program. java.util.zip.GZIPInputStream and
java.util.zip.GZIPOutputStream do the same thing except with the gzip format.

9.2.1 The DeflaterOutputStream Class

DeflaterOutputStream is a filter stream that deflates data before writing it onto the
underlying stream:

public class DeflaterOutputStream extends FilterOutputStream

Each stream uses a protected Deflater object called def to compress data stored in a
protected internal buffer called buf:

protected Deflater def;
protected byte[] buf;

The same deflater must not be used in multiple streams at the same time, though Java takes no
steps to guarantee this.

The underlying output stream that receives the deflated data, the deflater object def, and the
length of the byte array buf are all set by one of the three DeflaterOutputStream
constructors:

public DeflaterOutputStream(OutputStream out, Deflater def, int
bufferLength)
public DeflaterOutputStream(OutputStream out, Deflater def)
public DeflaterOutputStream(OutputStream out)

The underlying output stream must be specified. The buffer length defaults to 512 bytes, and
the Deflater defaults to the default compression level, strategy, and method. Of course, the
DeflaterOutputStream has all the usual output stream methods like write(), flush(), and
close(). It overrides three of these methods, but as a client programmer, you don't use them
any differently than you would in any other output stream:

public void write(int b) throws IOException
public void write(byte[] data, int offset, int length) throws IOException
public void close() throws IOException

There's also one new method, finish(), which finishes writing the compressed data onto the
underlying output stream but does not close the underlying stream. You should call finish()
instead of close() if there are multiple filters chained to the stream:

public void finish() throws IOException

The close() method finishes writing the compressed data onto the underlying stream and
then closes it:

Java I/O

154

public void close() throws IOException

The protected deflate() method sends the compressed data to the underlying stream. You
don't invoke it directly. Subclasses that implement different compression formats may
override it:

protected void deflate() throws IOException

Example 9.3 is a simple character-mode program that deflates files. Filenames are read from
the command line. A file input stream is opened to each file; a file output stream is opened to
that same filename plus .df l (for deflated). Finally, the file output stream is chained to a
deflater output stream, then a stream copier pours the data from the input file into the output
file.

Example 9.3. The FileDeflater Program

import java.io.*;
import java.util.zip.*;
import com.macfaq.io.*;

public class FileDeflater {

 public final static String DEFLATE_SUFFIX = ".dfl";

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 FileInputStream fin = new FileInputStream(args[i]);
 FileOutputStream fout = new FileOutputStream(args[i] +
 DEFLATE_SUFFIX);
 DeflaterOutputStream dos = new DeflaterOutputStream(fout);
 StreamCopier.copy(fin, dos);
 dos.close();
 fin.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
 }
}

This program is a lot simpler than Example 9.1, even though the two programs do the same
thing. In general, a DeflaterOutputStream is preferable to a raw Deflater object for
reasons of simplicity and legibility, especially if you want to use the default strategy,
algorithm, and compression level. However, using the Deflater class directly does give you
more control over the strategy, algorithm, and compression level. You can get the best of both
worlds by passing a custom-configured Deflater object as the second argument to the
DeflaterOutputStream() constructor.

9.2.2 The InflaterInputStream Class

The InflaterInputStream class is a filter stream that inflates data while reading it from the
underlying stream.

public class InflaterInputStream extends FilterInputStream

Java I/O

155

Each inflater input stream uses a protected Inflater object called inf to decompress data
that is stored in a protected internal byte array called buf. There's also a protected int field
called len that (unreliably) stores the number of bytes currently in the buffer, as opposed to
the length of the buffer itself.

protected Inflater inf;
protected byte[] buf;
protected int len;

The same Inflater object must not be used in multiple streams at the same time.

The underlying input stream from which deflated data is read, the Inflater object inf, and
the length of the byte array buf are all set by one of the three InflaterInputStream()
constructors:

public InflaterInputStream(InputStream in, Inflater inf, int bufferLength)
public InflaterInputStream(InputStream in, Inflater inf)
public InflaterInputStream(InputStream in)

The underlying input stream must be specified, while the buffer length defaults to 512 bytes,
and the Inflater defaults to an inflater for deflated streams (as opposed to zipped or gzipped
streams). Of course, the InflaterInputStream has all the usual input stream methods like
read(), available(), and close(). It overrides the following three methods:

public int read() throws IOException
public int read(byte[] data, int offset, int length) throws IOException
public long skip(long n) throws IOException

For the most part, you use these the same way you'd use any read() or skip() method.
However, it's occasionally useful to know that the read method throws a new subclass of
IOException, java.util.zip.ZipException, if the problem is that the data doesn't adhere
to the expected format. You should also know that read(), skip(), and all other input stream
methods count the uncompressed bytes, not the compressed raw bytes that were actually read.

There's also one new protected method, fill(), which reads compressed data from the
underlying input stream into buf, sets len to the number of bytes read, and then sets inf's
input to the appropriate subarray of buf:

protected void fill() throws IOException

Example 9.4 is a simple character-mode program that inflates files. When it is combined with
Example 9.3, you've now got a simple compression system. Filenames are read from the
command line. A file input stream is opened from each file that ends in .df l, and this stream is
chained to an inflater input stream. A file output stream is opened to that same file minus the
.dfl extension. Finally, a stream copier pours the data from the input file through the inflating
stream into the output file.

Example 9.4. The FileInflater Program

import java.io.*;
import java.util.zip.*;
import com.macfaq.io.*;

Java I/O

156

public class FileInflater {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 if (args[i].toLowerCase().endsWith(FileDeflater.DEFLATE_SUFFIX)) {
 try {
 FileInputStream fin = new FileInputStream(args[i]);
 InflaterInputStream iis = new InflaterInputStream(fin);
 FileOutputStream fout = new FileOutputStream(
 args[i].substring(0, args[i].length()-4));
 StreamCopier.copy(iis, fout);
 fout.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
 else {
 System.err.println(args[i] + " does not appear to be a deflated
 file.");
 }
 }
 }
}

9.2.3 The GZIPOutputStream Class

Although zip files deflate their entries, raw deflated files are uncommon. More common are
gzipped files. These are deflated files with some additional header information attached,
which specifies a checksum for the contents, the name of the compressed file, the time the file
was last modified, and so on. The java.util.zip.GZIPOutputStream class is a subclass of
DeflaterOutputStream that understands when and how to write this extra information to the
output stream.

public class GZIPOutputStream extends DeflaterOutputStream

There are two constructors for GZIPOutputStream. Since GZIPOutputStream is a filter
stream, both take an underlying output stream as an argument. The second constructor also
allows you to specify a buffer size. (The first uses a default buffer size of 512 bytes.)

public GZIPOutputStream(OutputStream out) throws IOException
public GZIPOutputStream(OutputStream out, int size) throws IOException

Data is written onto a gzip output stream as onto any other stream, typically with the write()
methods. GZIPOutputStream only overrides one of these methods:

public synchronized void write(byte[] data, int offset, int length)
 throws IOException

However, some of the data may be temporarily stored in the input buffer until more data is
available. At that point the data is compressed and written onto the underlying output stream.
Therefore, when you are finished writing the data that you want to be compressed onto the
stream, you should call finish():

public void finish() throws IOException

Java I/O

157

This writes all remaining data in the buffer onto the underlying output stream. Then it writes a
trailer containing a CRC value and the number of uncompressed bytes stored in the file onto
the stream. This trailer is part of the gzip format specification that's not part of a raw deflated
file. If you're through with the underlying stream as well as the gzip output stream, call
close() instead of finish(). If the stream hasn't yet been finished, close() finishes it, then
closes the underlying output stream. From this point on, data may not be written to that
stream.

public void close() throws IOException

Example 9.5 is a simple command-line program that reads a list of files from the command
line and gzips each one. A file input stream is used to read each file. A file output stream
chained to a gzip output stream is used to write each output file. The gzipped files have the
same name as the input files plus the suffix .gz.

Example 9.5. The GZipper

import java.io.*;
import java.util.zip.*;
import com.macfaq.io.*;

public class GZipper {

 public final static String GZIP_SUFFIX = ".gz";

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 FileInputStream fin = new FileInputStream(args[i]);
 FileOutputStream fout = new FileOutputStream(args[i] +
 GZIP_SUFFIX);
 GZIPOutputStream gzout = new GZIPOutputStream(fout);
 StreamCopier.copy(fin, gzout);
 gzout.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
 }
}

If this looks similar to Example 9.3, that's because it is. All that's changed is the compression
format (gzip instead of deflate) and the compressed file suffix. However, since gzip and
gunzip are available on virtually all operating systems— unlike raw deflate—you can test this
code by unzipping the files it produces with the Free Software Foundation's (FSF) gunzip or
some other program that handles gzipped files.

9.2.4 The GZIPInputStream Class

The java.util.zip.GZIPInputStream class is a subclass of InflaterInputStream that
provides a very simple interface for decompressing gzipped data:

public class GZIPInputStream extends InflaterInputStream

There are two constructors in this class:

Java I/O

158

public GZIPInputStream(InputStream in) throws IOException
public GZIPInputStream(InputStream in, int bufferLength) throws IOException

Since this is a filter stream, both constructors take an underlying input stream as an argument.
The second constructor also accepts a length for the buffer into which the compressed data
will be read. Otherwise, GZIPInputStream has the usual methods of an input stream: read(),
skip(), close(), mark(), reset(), and so on. Marking and resetting are not supported. Two
methods are overridden, read() and close():

public int read(byte[] data, int offset, int length) throws IOException
public void close() throws IOException

These methods work exactly like the superclass methods they override. The only thing you
need to be aware of is that the read() method blocks until sufficient data is available in the
buffer to allow decompression.

GZIPInputStream has two protected fields that may be accessed from subclasses. The crc
field provides a cyclic redundancy code for that portion of the data that has been decoded.
CRC32 objects are discussed later in this chapter. The eos field is a boolean indicating
whether the end of the stream has been reached. It's initially set to false. It becomes true
once the end of the compressed data has been reached:

protected CRC32 crc;
protected boolean eos;

Finally, there's one not very useful mnemonic constant, GZIPInputStream.GZIP_MAGIC. All
valid gzip files must begin with this number, which helps to identify the file's type:

public static final int GZIP_MAGIC = 0x8B1F;

Example 9.6 shows how easy it is to decompress gzipped data with GZIPInputStream. The
main() method reads a series of filenames from the command line. A FileInputStream
object is created for each file and a GZIPInputStream is chained to that. The data is read
from the file, and the decompressed data is written into a new file with the same name minus
the .gz suffix. (A more robust implementation would handle the case where the suffix is not
.gz .) You can test this program with files gzipped by Example 9.5 and with files gzipped by
the FSF's Gzip program.

Example 9.6. The GUnzipper

import java.io.*;
import java.util.zip.*;
import com.macfaq.io.*;

public class GUnzipper {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 if (args[i].toLowerCase().endsWith(GZipper.GZIP_SUFFIX)) {
 try {
 FileInputStream fin = new FileInputStream(args[i]);
 GZIPInputStream gzin = new GZIPInputStream(fin);

Java I/O

159

 FileOutputStream fout = new FileOutputStream(
 args[i].substring(0, args[i].length()-3));
 StreamCopier.copy(gzin, fout);
 fout.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
 else {
 System.err.println(args[i] + " does not appear to be a gzipped
 file.");
 }
 }
 }
}

9.2.5 Expanding Output Streams and Compressing Input Streams

You may have noticed that the compression stream classes are not fully symmetrical. You can
expand the data being read from an input stream, and you can compress data being written to
an output stream, but there are no classes that compress data being read from an input stream
or expand data being written to an output stream. Such classes aren't commonly needed. It's
possible that you might want to read compressed data from a file and write uncompressed data
onto the network, but as long as there are an input stream and an output stream, you can
always put the compressor on the output stream or the decompressor on the input stream. In
either case, the compressor and decompressor fall between the two underlying streams, so
how they're chained doesn't really matter. Alternatively, you may have some reason to work
with compressed data in memory; for example, your application might find it more efficient to
store large chunks of text in compressed form. In this case, a byte array output stream chained
to a deflater output stream will do the trick.

9.3 Working with Zip Files

Gzip and deflate are compression formats. Zip is both a compression and an archive format.
This means that a single zip file may contain more than one uncompressed file, along with
information about the names, permissions, creation and modification dates, and other
information about each file in the archive. This makes reading and writing zip archives
somewhat more complex and somewhat less amenable to a stream metaphor than reading and
writing deflated or gzipped files.

The java.util.zip.ZipFile class represents a file in the zip format. Such a file might be
created by zip, PKZip, ZipIt, WinZip, or any of the many other zip programs. The
java.util.zip.ZipEntry class represents a single file stored in such an archive.

public class ZipFile extends Object implements ZipConstants
public class ZipEntry extends Object implements ZipConstants

The java.util.zip.ZipConstants interface that both these classes
implement is a rare nonpublic interface that contains constants useful
for reading and writing zip files. Most of these constants define the
positions in a zip file where particular information, like the compression
method used, is found. You don't need to concern yourself with it.

Java I/O

160

The ZipFile class contains two constructors. The first takes a filename as an argument. The
second takes a java.io.File object as an argument. File objects will be discussed in
Chapter 12 ; for now, I'll just use the constructor that accepts a filename. Functionally, these
two constructors are similar.

public ZipFile(String filename) throws IOException
public ZipFile(File file) throws ZipException, IOException

ZipException is a subclass of IOException that generally indicates that data in the zip file
doesn't fit the zip format. In this case, the zip exception's message will contain more details,
like "invalid END header signature" or "cannot have more than one drive." While these may
be useful to a zip expert, in general they indicate that the file is corrupted, and there's not
much that can be done about it.

public class ZipException extends IOException

I can discern no reason why the first constructor is declared to throw IOException, while the
second is declared to throw both IOException and ZipException. The second constructor
merely invokes the first after converting the File object to a string pathname. Since
ZipException extends IOException, your code can catch either ZipException and
IOException or just IOException, as your needs dictate.

Both constructors attempt to open the specified file for random access. If the file is opened
successfully with no exceptions, the entries() method will return a list of all the files in the
archive:

public Enumeration entries()

The return value is a java.util.Enumeration object containing one
java.util.zip.ZipEntry object for each file in the archive. Example 9.7 lists the entries in
a zip file specified on the command line. The toString() method is used implicitly to
provide the name for each zip entry in the list.

Example 9.7. ZipLister

import java.util.*;
import java.util.zip.*;
import java.io.*;

public class ZipLister {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 ZipFile zf = new ZipFile(args[i]);
 Enumeration e = zf.entries();
 while (e.hasMoreElements()) {
 System.out.println(e.nextElement());
 }
 }

Java I/O

161

 catch (IOException e) {System.err.println(e);}
 }
 }
}

Here are the first few lines that result from running this program on the classes.zip file from
JDK 1.1.4:

% java ZipLister /usr/local/java/lib/classes.zip
sun/net/www/protocol/systemresource/ParseSystemURL.class
java/io/ObjectInputValidation.class
sun/awt/motif/MTextFieldPeer.class
sun/tools/javac/BatchParser.class
sun/rmi/transport/proxy/HttpOutputStream.class

To get a single entry in the zip file rather than a list of the entire contents, you pass the name
of the entry to the getEntry() method:

public ZipEntry getEntry(String name)

Of course, this requires you to know the name of the entry in advance. The name is simply the
path and filename, like java/io/ObjectInputValidation.class. For example, to retrieve the zip
entry for java/io/ObjectInputValidation.class from the ZipFile zf, you might write:

ZipEntry ze = zf.getEntry("java/io/ObjectInputValidation.class");

You can also get the name with the getName() method of the ZipEntry class, discussed later
in this chapter. This method, however, requires you to have a ZipEntry object already, so
there's a little chicken-and-egg problem here.

Most of the time, you'll want more than the names of the files in the archive. You can get the
actual contents of the zip entry using getInputStream():

public InputStream getInputStream(ZipEntry ze) throws IOException

This returns an input stream from which you can read the uncompressed contents of the zip
entry (file). Example 9.8 is a simple unzip program that uses this input stream to unpack zip
archives named on the command line.

Example 9.8. Unzipper

import java.util.*;
import java.util.zip.*;
import java.io.*;
import com.macfaq.io.*;

public class Unzipper {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 ZipFile zf = new ZipFile(args[i]);
 Enumeration e = zf.entries();

Java I/O

162

 while (e.hasMoreElements()) {
 ZipEntry ze = (ZipEntry) e.nextElement();
 System.out.println("Unzipping " + ze.getName());
 FileOutputStream fout = new FileOutputStream(ze.getName());
 InputStream in = zf.getInputStream(ze);
 StreamCopier.copy(in, fout);
 in.close();
 fout.close();
 }
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
 }
}

This is not an ideal unzip program. For one thing, it blindly overwrites any files that already
exist with the same name in the current directory. Before creating a new file, it should check
to see if it exists and, if it does, ask whether the user wants to overwrite it. Furthermore, it can
only unzip files into existing directories. If the archive contains a file in a directory that does
not exist, a FileNotFoundException will be thrown. Both problems are completely fixable,
but to fix them, you'll have to learn about the java.io.File class. You'll learn about this in
Chapter 12.

Finally, there are two utility methods in java.util.zip.ZipFile that relate to the "File" part
of ZipFile rather than the "Zip" part:

public String getName()
public void close() throws IOException

The getName() method returns the full path to the file; for example,
/usr/local/java/lib/classes.zip. The close() method closes the zip file (and its associated
RandomAccessFile object). Even after a file is closed, you can still get an entry or an input
stream, because the entries are read and stored in memory when the ZipFile object is first
constructed. However, you cannot get the actual data associated with the entry. Attempts to do
so will throw a NullPointerException.

9.3.1 Zip Entries

The java.util.zip.ZipEntry class represents a file stored in a zip archive.[3] A ZipEntry
object contains information about a file stored in the zip archive but not the actual data of the
file. Most ZipEntry objects are created by non-Java tools and retrieved from zip files using
the getEntry() or entries() methods of the ZipFile class. However, if you're writing your
own program to write zip files using the ZipOutputStream class, you'll need to create new
ZipEntry objects with this constructor:

public ZipEntry(String name)

3 There's no reason a zip entry has to be a file. It could be a database record, some calculated data that never appeared in the filesystem, or some other
sequence of bytes. But it's almost always a file, and it's easiest to visualize if we assume that it is.

Java I/O

163

Normally, the name argument is the name of the file that's being placed in the archive. It
should not be null, or a NullPointerException will be thrown. It is also required to be less
than 65,536 bytes long (which is plenty long for a filename). Java 2 adds one more public
constructor that copies the name, comment, modification time, CRC checksum, size,
compressed size, method, comment, and indeed everything except the actual data of the file
from an existing ZipEntry object. (It's unclear why you might need this.)

public ZipEntry(ZipEntry e) // Java 2

There are nine methods that return information about a specific entry in a zip file:

public String getName()
public long getTime()
public long getSize()
public long getCompressedSize()
public long getCrc()
public int getMethod()
public byte[] getExtra()
public String getComment()
public boolean isDirectory()

The name is simply the relative path and filename stored in the archive, like
sun/net/www/protocol/systemresource/ParseSystemURL.class or java/awt/Dialog.class. The
time is the last time this entry was modified. It is given as a long, counting the number of
milliseconds since midnight, January 1, 1970, Greenwich Mean Time. (This is not how the
time is stored in the zip file, but Java converts the time before returning it.) -1 indicates that
the modification time is not specified. The CRC is a 32-bit cyclic redundancy code for the
data that's used to determine whether or not the file is corrupt. If no CRC is included,
getCRC() returns -1.

The size is the original, uncompressed length of the data in bytes. The compressed size is the
length of the compressed data in bytes. The getSize() and getCompressedSize() methods
both return -1 to indicate that the size isn't known.

getMethod() tells you whether or not the data is compressed; it returns if the data is
uncompressed, 8 if it's compressed using the deflation format, and -1 if the compression
format is unknown. and 8 are given as the mnemonic constants ZipEntry.STORED and
ZipEntry.DEFLATED :

public static final int STORED = 0;
public static final int DEFLATED = 8;

Each entry may contain an arbitrary amount of extra data. If so, this data is returned in a byte
array by the getExtra() method. Similarly, each entry may contain an optional string
comment. If it does, the getComment() method returns it; if it doesn't, getComment() returns
null. Finally, the isDirectory() method returns true if the entry is a directory and false if
it isn't.

Example 9.9 is an improved ZipLister that prints information about the files in a zip archive.

Java I/O

164

Example 9.9. FancyZipLister

import java.util.*;
import java.util.zip.*;
import java.io.*;

public class FancyZipLister {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 ZipFile zf = new ZipFile(args[i]);
 Enumeration e = zf.entries();
 while (e.hasMoreElements()) {
 ZipEntry ze = (ZipEntry) e.nextElement();
 String name = ze.getName();
 Date lastModified = new Date(ze.getTime());
 long uncompressedSize = ze.getSize();
 long compressedSize = ze.getCompressedSize();
 long crc = ze.getCrc();
 int method = ze.getMethod();
 String comment = ze.getComment();

 if (method == ZipEntry.STORED) {
 System.out.println(name + " was stored at " + lastModified);
 System.out.println("with a size of " + uncompressedSize
 + " bytes");
 }
 else if (method == ZipEntry.DEFLATED) {
 System.out.println(name + " was deflated at " + lastModified);
 System.out.println("from " + uncompressedSize + " bytes to "
 + compressedSize + " bytes, a savings of "
 + (100.0 - 100.0*compressedSize/uncompressedSize) + "%");
 }
 else {
 System.out.println(name
 + " was compressed using an unrecognized method at "
 + lastModified);
 System.out.println("from " + uncompressedSize + " bytes to "
 + compressedSize + " bytes, a savings of "
 + (100.0 - 100.0*compressedSize/uncompressedSize) + "%");
 }
 System.out.println("Its CRC is " + crc);
 if (comment != null && !comment.equals("")) {
 System.out.println(comment);
 }
 if (ze.isDirectory()) {
 System.out.println(name + " is a directory");
 }
 System.out.println();
 }
 }
 catch (IOException e) {System.err.println(e);}
 }
 }
}

Typical output looks like this:

Java I/O

165

% java FancyZipLister temp.zip
test.txt was deflated at Wed Jun 11 15:57:32 EDT 1997
from 187 bytes to 98 bytes, a savings of 52.406417112299465%
Its CRC is 1981281836

ticktock.txt was deflated at Wed Jun 11 10:42:02 EDT 1997
from 1480 bytes to 405 bytes, a savings of 27.364864864864863%
Its CRC is 4103395328

There are also six corresponding set methods, which are used to attach information to each
entry you store in a zip archive. However, most of the time it's enough to let the ZipEntry
class calculate these for you:

public void setTime(long time)
public void setSize(long size)
public void setCrc(long crc)
public void setMethod(int method)
public void setExtra(byte[] extra)
public void setComment(String comment)

Finally, there's the toString() method, which was implicitly used in the ZipLister program
to print the name of each entry:

public String toString()

Java 2 adds hashCode() and clone() methods:

public int hashCode() // Java 2
public Object clone() // Java 2

In Java 1.1, ZipEntry simply inherits these methods from java.lang.Object. However,
ZipEntry only implements the Cloneable interface in Java 2, not in Java 1.1.

9.3.2 The ZipOutputStream Class

The java.util.zip.ZipOutputStream class subclasses DeflaterOutputStream and writes
compressed data in the zip format. ZipOutputStream implements the nonpublic
java.util.zip.ZipConstants interface.

public class ZipOutputStream extends DeflaterOutputStream
 implements ZipConstants

Java supports two zip formats, uncompressed and compressed. These are slightly less
obviously known as stored and deflated. They correspond to the mnemonic constants
ZipOutputStream.STORED and ZipOutputStream.DEFLATED:

public static final int STORED = ZipEntry.STORED;
public static final int DEFLATED = ZipEntry.DEFLATED;

Deflated files are compressed by a Deflater object using the deflation method. Stored files
are copied byte for byte into the archive without any compression. This is the right format for
files that are already compressed but still need to go into the archive, like a GIF image or an
MPEG movie.

Java I/O

166

Because zip is not just a compression format like deflation or gzip but an archival format, a
single zip file often contains multiple zip entries, each of which contains a deflated or stored
file. Furthermore, the zip file contains a header with meta-information about the archive itself,
such as the location of the entries in the archive. Therefore, it's not possible to write raw,
compressed data onto the output stream. Instead, zip entries must be created for each
successive file (or other sequence of data), and data must be written into the entries. The
sequence of steps you must follow to write data onto a zip output stream is:

1. Construct a ZipOutputStream object from an underlying stream, most often a file
output stream.

2. Set the comment for the zip file (optional).
3. Set the default compression level and method (optional).
4. Construct a ZipEntry object.
5. Set the meta-information for the zip entry.
6. Put the zip entry in the archive.
7. Write the entry's data onto the output stream.
8. Close the zip entry (optional).
9. Repeat steps 4 through 8 for each entry you want to store in the archive.
10. Finish the zip output stream.
11. Close the zip output stream.

Steps 4 and 8, the creation and closing of zip entries in the archive, are new. You won't find
anything like them in other stream classes. However, attempts to write data onto a zip output
stream using only the regular write(), flush(), and close() methods are doomed to
failure.

9.3.2.1 Constructing and initializing the ZipOutputStream

There is a single ZipOutputStream() constructor that takes as an argument the underlying
stream to which data will be written:

public ZipOutputStream(OutputStream out)

For example:

FileOutputStream fout = new FileOutputStream("data.zip");
ZipOutputStream zout = new ZipOutputStream(fout);

9.3.2.2 Set the comment for the zip file

After the zip output stream has been constructed (in fact, at any point before the zip output
stream is finished), you can add a single comment to the zip file with the setComment()
method:

public void setComment(String comment)

The comment is an arbitrary ASCII string comment of up to 65,535 bytes. For example:

zout.setComment("Archive created by Zipper 1.0");

Java I/O

167

All high-order Unicode bytes are discarded before the comment is written onto the zip output
stream. Attempts to attach a comment longer than 65,535 characters throw
IllegalArgumentExceptions. Each zip output stream can have only one comment (though
individual entries may have their own comments too). Resetting the comment erases the
previous comment.

9.3.2.3 Set the default compression level and method

Next, you may wish to set the default compression method with setMethod():

public void setMethod(int method)

You can change the default compression method from stored to deflated or deflated to stored.
This default method is used only when the zip entry itself does not specify a compression
method. The initial value is ZipOutputStream.DEFLATED (compressed); the alternative is
ZipOutputStream.STORED (uncompressed). An IllegalArgumentException is thrown if an
unrecognized compression method is specified. You can call this method again at any time
before the zip output stream is finished. This sets the default compression method for all
subsequent entries in the zip output stream. For example:

zout.setMethod(ZipOutputStream.STORED);

You can change the default compression level with setLevel() at any time before the zip
output stream is finished:

public void setLevel(int level)

For example:

zout.setLevel(9);

As with the default method, the zip output stream's default level is used only when the zip
entry itself does not specify a compression level. The initial value is
Deflater.DEFAULT_COMPRESSION. Valid levels range from (no compression) to 9 (high
compression); an IllegalArgumentException is thrown if a compression level outside that
range is specified. You can call setLevel() again at any time before the zip output stream is
finished, which sets the default compression level for all subsequent entries in the zip output
stream.

9.3.2.4 Construct a ZipEntry object and put it in the archive

Data is written into the zip output stream in separate groups called zip entries. These are
represented by ZipEntry objects. A zip entry must be opened before data is written, and each
zip entry must be closed before the next one is opened. The putNextEntry() method opens a
new zip entry on the zip output stream:

public void putNextEntry(ZipEntry ze) throws IOException

If a previous zip entry is still open, it's closed automatically. The properties of the ZipEntry
argument ze specify the compression level and method. If ze leaves those unspecified, then
the defaults set by the last calls to setLevel() and setMethod() are used. The ZipEntry

Java I/O

168

object may also contain a CRC checksum, the time the file was last modified, the size of the
file, a comment, and perhaps some optional data with an application-specific meaning (for
instance, the resource fork of a Macintosh file). These are set by the setTime(), setSize(),
setCrc(), setComment(), and setExtra() methods of the ZipEntry class. (These are not
set by the ZipOutputStream class, as they will be different for each file stored in the
archive.)

9.3.2.5 Write the entry's data onto the output stream

Data is written into the zip entry using the usual write() methods of any output stream. Only
one write() method is overridden in ZipOutputStream :

public synchronized void write(byte[] data, int offset, int length)
 throws IOException

9.3.2.6 Close the zip entry

Finally, you may want to close the zip entry to prevent any further data from being written to
it. For this, use the closeEntry() method:

public void closeEntry() throws IOException

If an entry is still open when putNextEntry() is called or when you finish the zip output
stream, this method will be called automatically. Thus, an explicit invocation is usually
unnecessary.

9.3.2.7 Finish the zip output stream

A zip file stores meta-information in both the header and the tail of the file. The finish()
method writes out this tail information:

public void finish() throws IOException

Once a zip output stream is finished, no more data may be written to it. However, data may be
written to the underlying stream using a separate reference to the underlying stream. In other
words, finishing a stream does not close it.

9.3.2.8 Close the zip output stream

Most of the time you will want to close a zip output stream at the same time you finish it.
ZipOutputStream overrides the close() method inherited from
java.util.zip.DeflaterOutputStream.

public void close() throws IOException

This method finishes the zip output stream and then closes the underlying stream.

9.3.2.9 An example

Example 9.10 uses a zip output stream chained to a file output stream to create a single zip
archive from a group of files named on the command line. The name of the output zip file and

Java I/O

169

the files to be stored in the archive are read from the command line. An optional -d
command-line flag can be used to set the level of compression from 0 to 9.

Example 9.10. The Zipper Program

import java.util.zip.*;
import java.io.*;
import com.macfaq.io.*;

public class Zipper {

 public static void main(String[] args) {

 if (args.length < 2) {
 System.out.println("Usage: java Zipper [-d level] name.zip"+
 " file1 file2...");
 return;
 }

 String outputFile = args[0];
 // Maximum compression is our default.
 int level = 9;
 int start = 1;
 if (args[0].equals("-d")) {
 try {
 level = Integer.parseInt(args[1]);
 outputFile = args[2];
 start = 3;
 }
 catch (Exception e) {
 System.out.println("Usage: java Zipper [-d level] name.zip"
 " file1 file2...");
 return;
 }
 }

 try {
 FileOutputStream fout = new FileOutputStream(outputFile);
 ZipOutputStream zout = new ZipOutputStream(fout);
 zout.setLevel(level);
 for (int i = start; i < args.length; i++) {
 ZipEntry ze = new ZipEntry(args[i]);
 try {
 System.out.println("Compressing " + args[i]);
 FileInputStream fin = new FileInputStream(args[i]);
 zout.putNextEntry(ze);
 StreamCopier.copy(fin, zout);
 zout.closeEntry();
 fin.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
 zout.close();
 }
 catch (Exception e) {System.err.println(e);}
 }
}

Java I/O

170

9.3.3 The ZipInputStream Class

Zip input streams read data from zip archives, which are most commonly stored in files. As
with output streams, it's generally best not to read the raw data. (If you must read the raw
data, you can always use a bare file input stream.) Instead, the input is first parsed into zip
entries. Once you've positioned the stream on a particular zip entry, you read decompressed
data from it using the normal read() methods. Then the entry is closed, and you open the
next zip entry in the file. The sequence of steps you must follow to read data from a zip input
stream is as follows:

1. Construct a ZipInputStream object from an underlying stream, most commonly a file
input stream.

2. Open the next zip entry in the archive.
3. Read data from the zip entry using InputStream methods like read().
4. Close the zip entry (optional).
5. Repeat steps 2 through 4 as long as there are more entries (files) remaining in the

archive.
6. Close the zip input stream.

Steps 2 and 4, the opening and closing of zip entries in the archive, are new; you won't find
anything like them in other input stream classes. However, attempts to read data from a zip
input stream using only the regular read(), skip(), and close() methods without first
opening a zip entry are doomed to failure.

You probably noticed that the ZipInputStream class provides a second
way to decompress zip files. The ZipFile class approach shown in the
Unzipper program of Example 9.8 is the first. ZipInputStream uses
one input stream to read from successive entries. The ZipFile class
uses different input stream objects for different entries. Which to use is
mainly a matter of aesthetics. There's not a strong reason to prefer one
approach over the other, though the ZipInputStream is somewhat more
convenient in the middle of a sequence of filters.

9.3.3.1 Construct a ZipInputStream

There is a single ZipInputStream() constructor that takes as an argument the underlying
input stream:

public ZipInputStream(InputStream in)

For example:

FileInputStream fin = new FileInputStream("data.zip");
ZipInputStream zin = new ZipInputStream(fin);

No further initialization or parameter setting are needed. A zip input stream can read from a
file regardless of the compression method or level used.

Java I/O

171

9.3.3.2 Open the next zip entry

Reads from a zip input stream read successive zip entries from the stream. Zip entries are read
in the order in which they appear in the file. You do not need to read each entry in its entirety,
however. Instead, you can open an entry, close it without reading it, read the next entry, and
repeat until you come to the entry you want. The getNextEntry() method opens the next
entry in the zip input stream:

public ZipEntry getNextEntry() throws IOException

If the underlying stream throws an IOException, it's passed along by this method. If the
stream data doesn't represent a valid zip file, then a ZipException is thrown.

9.3.3.3 Reading from a ZipInputStream

Once the entry is open, you can read from it using the regular read(), skip(), and
available() methods of any input stream. (Zip input streams do not support marking and
resetting.) Only two of these are overridden:

public int read(byte[] data, int offset, int length) throws IOException
public long skip(long n) throws IOException

The read() method reads and the skip() method skips the decompressed bytes of data.

9.3.3.4 Close the zip entry

When you reach the end of a zip entry, or when you've read as much data as you're interested
in, you may call closeEntry() to close the zip entry and prepare to read the next one:

public void closeEntry() throws IOException

Explicitly closing the entry is optional. If you don't close an entry, it will be closed
automatically when you open the next entry or close the stream.

These three steps—open the entry, read from the entry, close the entry—may be repeated as
many times as there are entries in the zip input stream.

9.3.3.5 Close the ZipInputStream

When you are finished with the stream, you can close it using the close() method:

public void close() throws IOException

As usual for filter streams, this method also closes the underlying stream. Unlike zip output
streams, zip input streams do not absolutely have to be finished or closed when you're through
with them, but it's polite to do so.

Java I/O

172

9.3.3.6 An example

Example 9.11 is an alternative unzipper that uses a ZipInputStream instead of a ZipFile.
There's not really a huge advantage to using one or the other. Use whichever you find more
convenient or aesthetically pleasing.

Example 9.11. Another Unzipper

import java.util.*;
import java.util.zip.*;
import java.io.*;
import com.macfaq.io.*;

public class Unzipper2 {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 FileInputStream fin = new FileInputStream(args[i]);
 ZipInputStream zin = new ZipInputStream(fin);
 ZipEntry ze = null;
 while ((ze = zin.getNextEntry()) != null) {
 System.out.println("Unzipping " + ze.getName());
 FileOutputStream fout = new FileOutputStream(ze.getName());
 StreamCopier.copy(zin, fout);
 zin.closeEntry();
 fout.close();
 }
 zin.close();
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
 }
}

9.4 Checksums

Compressed files are especially susceptible to corruption. While changing a bit from to 1 or
vice versa in a text file generally only affects a single character, changing a single bit in a
compressed file often makes the entire file unreadable. Therefore, it's customary to store a
checksum with the compressed file so that the recipient can verify that the file is intact. The
zip format does this automatically, but you may wish to use manual checksums in other
circumstances as well.

There are many different checksum schemes. A particularly simple example adds a parity bit
to the data, typically 1 if the number of 1 bits is odd, if the number of 1 bits is even. This
checksum can be calculated by summing up the number of 1 bits and taking the remainder
when that sum is divided by two. However, this scheme isn't very robust. It can detect single-
bit errors, but in the face of bursts of errors as often occur in transmissions over modems and
other noisy connections, there's a 50/50 chance that corrupt data will be reported as correct.

Java I/O

173

Better checksum schemes use more bits. For example, a 16-bit checksum could sum up the
number of 1 bits and take the remainder modulo 65,536. This means that in the face of
completely random data, there's only 1 in 65,536 chances of corrupt data being reported as
correct. This chance drops exponentially as the number of bits in the checksum increases.
More mathematically sophisticated schemes can reduce the likelihood of a false positive even
further. For more details about checksums, see "Everything you wanted to know about CRC
algorithms, but were afraid to ask for fear that errors in your understanding might be
detected," by Ross Williams, available from
http://www.geocities.com/CapeCanaveral/Launchpad/3632/crcguide.htm. Of course, the
advantage of a class library is that you only really need to understand the interface of the
classes you use and what they do in broad perspective. You don't necessarily have to know all
the technical details of the algorithms used inside the classes.

The java.util.zip.Checksum interface defines four methods for calculating a checksum for
a sequence of bytes. Implementations of this interface provide specific checksum algorithms.

public abstract void update(int b)
public abstract void update(byte[] data, int offset, int length)
public abstract long getValue()
public abstract void reset()

The update() methods are used to calculate the initial checksum and to update the checksum
as more bytes are added to the sequence. As bytes increase, the checksum changes. For
example, using the parity checksum algorithm described earlier, if the byte 255 (binary
11111111) were added to the sequence, then the checksum would not change, because an
even number of 1 bits had been added. If the byte 3 (binary 00000011) were added to the
sequence, the checksum's value would flip (from 1 to or to 1), because an odd number of ones
had been added to the sequence.

The getValue() method returns the current value of the checksum. The reset() method
returns the checksum to its initial value. Example 9.12 shows about the simplest checksum
class imaginable, one that implements the parity algorithm described earlier.

Example 9.12. The Parity Checksum

import java.util.zip.*;

public class ParityChecksum implements Checksum {

 private long checksum = 0;

 public void update(int b) {

 int numOneBits = 0;
 for (int i = 1; i < 256; i *= 2) {
 if ((b & i) != 0) numOneBits++;
 }
 checksum = (checksum + numOneBits) % 2;
 }

 public void update(byte data[], int offset, int length) {

 for (int i = offset; i < offset+length; i++) {
 this.update(data[i]);
 }

Java I/O

174

 }

 public long getValue() {
 return checksum;
 }

 public void reset() {
 checksum = 0;
 }
}

The java.util.zip package provides two concrete implementations of the Checksum
interface, CRC32 and Adler32. Both produce 32-bit checksums. The Adler-32 algorithm is not
quite as reliable as CRC-32 but can be computed much faster. Both of these classes have a
single no-argument constructor:

public CRC32()
public Adler32()

They share the same five methods, four implementing the methods of the Checksum interface,
plus one additional update() method that reads an entire byte array:

public void update(int b)
public native void update(byte[] data, int offset, int length)
public void update(byte[] data)
public void reset()
public long getValue()

Example 9.13, FileSummer, is a simple program that calculates and prints a CRC-32
checksum for any file. However, it's structured such that the static getCRC32() method can
calculate a CRC-32 checksum for any stream.

Example 9.13. FileSummer

import java.io.*;
import java.util.zip.*;

public class FileSummer {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 FileInputStream fin = new FileInputStream(args[i]);
 System.out.println(args[i] + ":\t" + getCRC32(fin));
 fin.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
 }

 public static long getCRC32(InputStream in) throws IOException {

 Checksum cs = new CRC32();

 // It would be more efficient to read chunks of data
 // at a time, but this is simpler and easier to understand.

Java I/O

175

 int b;
 while ((b = in.read()) != -1) {
 cs.update(b);
 }
 return cs.getValue();
 }
}

This isn't as useful as it might appear at first. Most of the time, you don't want to read the
entire stream just to calculate a checksum. Instead, you want to look at the bytes of the stream
as they go past on their way to some other ultimate destination. You neither want to alter the
bytes nor consume them. The CheckedInputStream and CheckedOutputStream filters allow
you to do this.

9.4.1 Checked Streams

The java.util.zip.CheckedInputStream and java.util.zip.CheckedOutputStream
classes keep a checksum of the data they've read or written.

public class CheckedInputStream extends FilterInputStream
public class CheckedOutputStream extends FilterOutputStream

These are filter streams, so they're constructed from an underlying stream and an object that
implements the Checksum interface.

public CheckedInputStream(InputStream in, Checksum cksum)
public CheckedOutputStream(OutputStream out, Checksum cksum)

For example:

FileInputStream fin = new FileInputStream("/etc/passwd");
Checksum cksum = new CRC32();
CheckedInputStream cin = new CheckedInputStream(fin, cksum);

The CheckedInputStream and CheckedOutputStream classes have all the usual read(),
write(), and other methods you expect in a stream class. The CheckedInputStream
overrides two read() methods and one skip() method so that it can calculate the checksum
as the bytes are read or skipped.

public int read() throws IOException
public int read(byte[] data, int offset, int length) throws IOException
public long skip(long n) throws IOException

Externally, these behave exactly like the methods in the superclass and do not require any
special treatment.

Similarly, the CheckedOutputStream class overrides two write() methods from its
superclass:

public void write(int b) throws IOException
public void write(byte[] data, int offset, int length) throws IOException

Java I/O

176

Again, these do not change the data in any way and may be used exactly like any other
write() method. They simply update the internal checksum with the bytes written as they're
written. Both CheckedOutputStream and CheckedInputStream have a getChecksum()
method that returns the Checksum object for the stream. You can use this Checksum object to
get the current value of the checksum for the stream.

public Checksum getChecksum()

These methods return a reference to the actual Checksum object that's being used to calculate
the checksum. It is not copied first. Thus, if a separate thread is accessing this stream, the
value in the checksum may change while you're working with the Checksum object.
Conversely, if you invoke one of this Checksum object's update() methods, it affects the
value of the checksum for the stream as well.

9.5 JAR Files

Java 1.1 added support for Java ARchive files, JAR files for short. JAR files bundle the many
different classes, images, and sound files an applet requires into a single file. It is generally
faster for a web browser to download one JAR file than to download the individual files the
archive contains, since only one HTTP connection is required. An applet stored in a JAR file,
instead of as merely loose .class files, is embedded in a web page with an <applet> tag with
an archive attribute pointing to the JAR file. For example:

<applet code=NavigationMenu archive="NavigationMenu.jar" width=400
height=80>
</applet>

The code attribute still says that the main class of this applet is called NavigationMenu.
However, a Java 1.1 web browser, rather than asking the web server for the file
NavigationMenu.class as a Java 1.0 web browser would, asks the web server for the file
NavigationMenu.jar. Then the browser looks inside NavigationMenu.jar to find the file
NavigationMenu.class. Only if it doesn't find NavigationMenu.class inside
NavigationMenu.jar does it then go back to the web server and ask for NavigationMenu.class.
Now suppose the NavigationMenu applet tries to load an image called menu.gif. The applet
will look for this file inside the JAR archive too. It only has to make a new connection to the
web server if it can't find menu.gif in the archive.

Sun wisely decided not to attempt to define a new file format for JAR files. Instead, they
stuck with the tried-and-true zip format. This means that the classes, images, sounds, and
other files stored inside a JAR archive can be compressed, making the applet even faster to
download. This also means that standard tools like PKZip and standard zip libraries like
java.util.zip can work with JAR files.

JAR files have also become Java's preferred means of distributing Java Beans and class
libraries. For instance, the Java Cryptography Extension, discussed in the next chapter, is
mostly a set of classes packed up in the file jce12-ea-dom.jar. Since the library is distributed
as a single file rather than a collection of nested folders, it's harder for one file to get moved or
deleted. The overall system is more robust. To make the files contained in the archive
available to Java, the complete path to the archive itself is added to the class path. For

Java I/O

177

example, under Unix, to make the classes in the JAR archive jce12-rc1-dom.jar in the
directory /usr/local/java/lib available to your program, you'd use this command:

% setenv CLASSPATH $CLASSPATH:/usr/local/java/lib/jce12-rc1-dom.jar

The JAR file is treated like a directory in the context of the class path. This is sensible,
because although the archive is a file to the file system, it behaves like a directory to Java.

9.5.1 Meta-Infomation: Manifest Files and Signatures

Aside from the three-letter extension, the only distinction between a zip file and a JAR file is
that most (though not all) JAR files contain a manifest file that lists the contents of the JAR
file as well as various information about those contents. The manifest file is named
MANIFEST.MF and is stored in the META-INF directory at the top of the archive. This file
provides meta-information about the contents of the archive in a particular format. This
directory and file are not necessarily present in the unarchived collection. Generally, a
manifest is added as part of the archiving process. The lefthand side of Figure 9.3 shows a
directory structure for the com.macfaq package that can be stored in a JAR archive. The
righthand side shows the contents of the corresponding JAR archive.

Figure 9.3. JAR archive: before and after

At a minimum, a manifest file must contain this opening line:

Manifest-Version: 1.0

A manifest usually contains additional entries for some of the files in the archive. However,
the manifest does not necessarily contain an entry for every file in the archive. Entries are
separated from each other by a blank line. Each entry is composed of a list of name/value

Java I/O

178

pairs, one to a line. Names are separated from values by colons and whitespace, as in email
headers. For example:

Name: com/macfaq/awt/Filmstrip.class
Java-Bean: true
Last-modified: 09-07-1998
Depends-On: com/macfaq/io/StreamCopier.class
Brad: Majors
Digest-Algorithms: MD5
MD5-Digest: XD4578YEEIK9MGX54RFGT7UJUI9810

This defines an entry with the name com/macfaq/awt/Filmstrip.class. This entry has six
attributes: Java-Bean with the value true, Last-modified with the value 09-07-1998, Brad
with the value Majors, Depends-On with the value com/macfaq/io/StreamCopier.class,
and so on. Each of these has a specific meaning in a particular context. For instance, the
Java-Bean attribute with the value true means that this class is a Java Bean that can be
loaded into a visual builder tool. Digest-Algorithms gives you the types of message digests
computed from the file, and MD5-Digest gives the value of one particular digest. Most of the
attributes have an application-specific meaning. Applications reading a JAR archive that don't
understand a particular attribute should simply ignore it.

One possible manifest file for the directory shown in Figure 9.3 looks like this:

Manifest-Version: 1.0

Name: com/macfaq/awt/StreamedTextArea.class

Name: com/macfaq/io/BufferedStreamCopier.class

Name: com/macfaq/io/FileCopier.class

Name: com/macfaq/io/LittleEndianOutputStream.class

Name: com/macfaq/io/MultiOutputStream.class

Name: com/macfaq/io/NullOutputStream.class

Name: com/macfaq/io/PrintableInputStream.class

Name: com/macfaq/io/PrintableOutputStream.class

Name: com/macfaq/io/RandomInputStream.class

Name: com/macfaq/io/StreamCopier.class
Brad: Majors

Name: com/macfaq/io/TeeOutputStream.class
Riff: Raff

Name: com/macfaq/util/CommandLineArguments.class

The files in the JAR archive may be signed using a digital signature algorithm. Different
individuals may sign different files, and more than one person may sign each file. For each
file that's signed, the META-INF directory will also contain a signature file. I won't discuss
signatures in great detail here; for starters, they're very different in Java 1.1 and Java 2.
However, you should realize that signatures can be checked when a file is read from a JAR

Java I/O

179

archive. If the signatures no longer match the files, then an IOException can be thrown
(though this behavior is configurable at the programmer level).[4]

9.5.2 The jar Tool

Sun's JDK contains a simple command-line program called jar that packages a set of files or a
directory structure into a JAR file. Its syntax is modeled after the Unix tar command. For
instance, to verbosely compress the directory com into the file javaio.jar with the manifest file
javaio.mf, you would type at the command line:

% jar cvmf javaio.mf javaio.jar com
added manifest
adding: com/ (in=0) (out=0) (stored 0%)
adding: com/macfaq/ (in=0) (out=0) (stored 0%)
adding: com/macfaq/io/ (in=0) (out=0) (stored 0%)
adding: com/macfaq/io/StreamCopier.class (in=887) (out=552) (deflated 37%)
adding: com/macfaq/io/NullOutputStream.class (in=374) (out=225) (deflated
39%)
adding: com/macfaq/io/RandomInputStream.class (in=792) (out=487) (deflated
38%)
adding: com/macfaq/io/NullOutputStream.java (in=263) (out=149) (deflated
43%)
adding: com/macfaq/io/StreamCopier.java (in=764) (out=377) (deflated 50%)

Several lines have been deleted to save space. After this, the javaio.jar file can be placed in
the class path to provide access to all the files and packages it contains. To extract files,
change cvmf (c reate v erbose with m anifest f ile) to xvf (ex tract v erbose f ile). If you don't
care to see each file as it's added or extracted, you can omit the v argument:

% jar xf javaio.jar

You can also use any other zip tool to create or unpack JAR archives. However, you'll have to
include the META-INF/MANIFEST.MF file manually. The JDK also includes a jarsigner tool
that digitally signs JAR archives and verifies JAR archives signed by others using a public
key system.

9.5.3 The java.util.jar Package

The java.util.zip package was included in Java 1.1 primarily to support JAR archives. The
java.util.jar package, added in Java 2, provides additional support for reading and writing
manifests. It contains seven classes and one exception, shown in Figure 9.4. As you can see,
almost everything in this package is a subclass of a related class in the java.util.zip
package. JAR files are zip files, and they are read and written just like zip files. In fact, you
don't have to use the java.util.jar package at all. java.util.zip and the standard I/O and
string classes are enough to do anything you need to do, but java.util.jar certainly does
make your job easier when you need to read manifest entries.

4 If you're interested, the details are available in Java Security, by Scott Oaks (O'Reilly & Associates, 1998).

Java I/O

180

Figure 9.4. The java.util.jar package hierarchy

All of these classes are used much like their superclasses are. For instance, to read a JAR file,
follow these steps:

1. Construct a JarInputStream object from an underlying stream, most commonly a file
input stream.

2. Open the next JAR entry in the archive.
3. Read data from the JAR entry using InputStream methods like read().
4. Close the JAR entry (optional)
5. Repeat steps 2 through 4 as long as there are more entries (files) remaining in the

archive.
6. Close the JAR input stream.

These are the same six steps you use to read a zip file, only with the java.util.zip classes
replaced by their counterparts in java.util.jar. Even that much is unnecessary. All the
standard zip tools as well as the programs developed in this chapter can work equally well
with JAR files. However, the java.util.jar classes do provide some extra convenience
methods for reading and writing manifest entries.

9.5.4 JarFile

The java.util.jar.JarFile class represents a file in the JAR format. It is a subclass of
java.util.zip.ZipFile, and JarFile objects are almost exactly like ZipFile objects.

public class JarFile extends ZipFile // Java 2

The JarFile class has four constructors:

Java I/O

181

public JarFile(String filename) throws IOException //Java 2
public JarFile(String filename, boolean verify) throws IOException //Java 2
public JarFile(File file) throws IOException //Java 2
public JarFile(File file, boolean verify) throws IOException //Java 2

The first argument specifies the file to be read, either by name or with a java.io.File
object. The optional second argument verify is important only for signed JAR files. If
verify is true, signatures will be checked against the file's contents; if verify is false,
signatures will not be checked against the file's contents. The default is to check signatures.
An IOException is thrown if an entry does not match its signature when verified.

The JarFile class is so similar in interface and behavior to java.util.zip. ZipFile that I
can spare you a lot of details about most of its methods. It declares only five methods, though
of course you shouldn't forget about the others it inherits from its superclass.

public ZipEntry getEntry(String name) //Java 2
public Enumeration entries() //Java 2
public InputStream getInputStream(ZipEntry ze) throws IOException //Java 2
public JarEntry getJarEntry(String name) //Java 2
public Manifest getManifest() throws IOException //Java 2

getEntry(), entries(), and getInputStream() are used exactly as they are for zip files.
getJarEntry() is used almost exactly like getEntry(), except that it's declared to return an
instance of JarEntry, a subclass of ZipEntry. Some extra work takes place in these methods
to read the manifest file and verify signatures, but unless the signatures don't verify (in which
case an IOException is thrown), none of this is relevant to the client programmer. The one
really interesting new method in this list is getManifest(), which returns an instance of the
java.util.jar.Manifest class. You can use this to read the entries in the manifest file, as
described in the section on the Manifest class later in this chapter.

9.5.5 JarEntry

JarEntry objects represent files stored inside a JAR archive. JarEntry is a subclass of
java.util.zip.ZipEntry, and JarEntry objects are almost exactly like ZipEntry objects.

public class JarEntry extends ZipEntry // Java 2

JarEntry has three constructors:

public JarEntry(String filename) // Java 2
public JarEntry(ZipEntry ze) // Java 2
public JarEntry(JarEntry je) // Java 2

You might use the first one if you were creating a JAR file from scratch, though that's rare.
The other two are mainly for Java's internal use to allow the internal state of one JarEntry
object to be quickly copied to a new one.

JarEntry does not override any methods from ZipEntry. It inherits all of ZipEntry's
assorted getter and setter and utility methods. It also provides two new methods:

public Attributes getAttributes() throws IOException // Java 2
public Certificate[] getCertificates() // Java 2

Java I/O

182

The getAttributes() method returns the attributes for this entry as documented in the
manifest file of the archive. In brief, an Attributes object is a map of the name/value pairs
for the entry. This will be discussed further in the next section. The getCertificates()
method returns an array of java.security. cert.Certificate objects formed from any
signature files for this entry stored in the archive. These can be used to allow some classes
more access to the system than they would normally get. I won't go into this possibility here;
the details are available in Java Security.

9.5.6 Attributes

The java.util.jar.Attributes class is mostly just a concrete implementation of the
java.util.Map interface from the Collections API.

public class Attributes implements Map, Cloneable // Java 2

An Attributes object is a container for an entry in a manifest file. Recall that the entry is
composed of name/value pairs; the keys of the map are the names, while the values of the
entries are the values of the map. The Attributes class is accessed almost entirely through
the methods of the Map interface and has three public constructors:

public Attributes() // Java 2
public Attributes(int size) // Java 2
public Attributes(Attributes a) // Java 2

However, these are primarily for Java's internal use. Most of the time, you'll simply retrieve
Attributes objects from the getAttributes() method of JarEntry or the
getAttributes() and getMainAttributes() method of Manifest.

The Attributes class implements all the usual Map methods:

public Object get(Object name) // Java 2
public Object put(Object name, Object value) // Java 2
public Object remove(Object name) // Java 2
public boolean containsValue(Object value) // Java 2
public boolean containsKey(Object name) // Java 2
public void putAll(Map attr) // Java 2
public void clear() // Java 2
public int size() // Java 2
public boolean isEmpty() // Java 2
public Set keySet() // Java 2
public Collection values() // Java 2
public Set entrySet() // Java 2
public boolean equals(Object o) // Java 2
public int hashCode() // Java 2

The key objects for this map should all be Attributes.Name objects. Attributes.Name is a
rare public inner class called Name inside the Attributes class. However, it's simplest to just
think of it as another class in java.util.jar with a somewhat funny name. This strangely
named class has a single constructor:

public Attributes.Name(String name) // Java 2

Java I/O

183

The java.util.jar.Attributes.Name class represents the name half of the name/value
pairs in a manifest file. Attribute names are restricted to the upper- and lowercase letters A-Z,
the digits 0-9, the underscore, and the hyphen. The Attributes.Name() constructor checks to
make sure that the name is legal and throws an IllegalArgumentException if it isn't.

Attributes.Name overrides the three major utility methods but has no other methods. It
exists only to be a key in the Attributes map.

public boolean equals(Object o) // Java 2
public int hashCode() // Java 2
public String toString() // Java 2

The Attributes.Name class defines some mnemonic constants that identify particular
attribute names found in some kinds of JAR files. These are all Attributes.Name objects.

Attributes.Name.MANIFEST_VERSION // "Manifest-Version"
Attributes.Name.SIGNATURE_VERSION // "Signature-Version"
Attributes.Name.CONTENT_TYPE // "Content-Type"
Attributes.Name.CLASS_PATH // "Class-Path"
Attributes.Name.MAIN_CLASS // "Main-Class"
Attributes.Name.SEALED // "Sealed"
Attributes.Name.IMPLEMENTATION_TITLE // "Implementation-Title"
Attributes.Name.IMPLEMENTATION_VERSION // "Implementation-Version"
Attributes.Name.IMPLEMENTATION_VENDOR // "Implementation-Vendor"
Attributes.Name.SPECIFICATION_TITLE // "Specification-Title"
Attributes.Name.SPECIFICATION_VERSION // "Specification-Version"
Attributes.Name.SPECIFICATION_VENDOR // "Specification-Vendor"

Since Attributes implements Cloneable as well as Map, it also provides a clone() method:

public Object clone() // Java 2

Unlike maps in general, Attributes maps only contain strings, raw strings as values, and
strings embedded in an Attributes.Name object. Therefore, the Attributes class contains
three extra map-like methods for getting and putting strings into the map:

public String putValue(String name, String value) // Java 2
public String getValue(String name) // Java 2
public String getValue(Attributes.Name name) // Java 2

The last one takes an Attributes.Name object as an argument. Example 9.14 is a revised
version of the FancyZipLister from Example 9.9. This program works with JAR files and
prints the attributes of each entry as well as the information seen previously.

Example 9.14. JarLister

import java.util.*;
import java.util.zip.*;
import java.util.jar.*;
import java.io.*;

public class JarLister {

Java I/O

184

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 JarFile jf = new JarFile(args[i]);

 Enumeration e = jf.entries();
 while (e.hasMoreElements()) {
 JarEntry je = (JarEntry) e.nextElement();
 String name = je.getName();
 Date lastModified = new Date(je.getTime());
 long uncompressedSize = je.getSize();
 long compressedSize = je.getCompressedSize();
 long crc = je.getCrc();
 int method = je.getMethod();
 String comment = je.getComment();

 if (method == ZipEntry.STORED) {
 System.out.println(name + " was stored at " + lastModified);
 System.out.println("with a size of " + uncompressedSize
 + " bytes");
 }
 else if (method == ZipEntry.DEFLATED) {
 System.out.println(name + " was deflated at " + lastModified);
 System.out.println("from " + uncompressedSize + " bytes to "
 + compressedSize + " bytes, a savings of "
 + (100.0 - 100.0*compressedSize/uncompressedSize) + "%");
 }
 else {
 System.out.println(name
 + " was compressed using an unrecognized method at "
 + lastModified);
 System.out.println("from " + uncompressedSize + " bytes to "
 + compressedSize + " bytes, a savings of "
 + (100.0 - 100.0*compressedSize/uncompressedSize) + "%");
 }
 System.out.println("Its CRC is " + crc);
 if (comment != null && !comment.equals("")) {
 System.out.println(comment);
 }
 if (je.isDirectory()) {
 System.out.println(name + " is a directory");
 }
 Attributes a = je.getAttributes();
 if (a != null) {
 Object[] nameValuePairs = a.entrySet().toArray();
 for (int j = 0; j < nameValuePairs.length; j++) {
 System.out.println(nameValuePairs[j]);
 }
 }
 System.out.println();
 }
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
 }
}

Java I/O

185

9.5.7 Manifest

What the java.util.jar classes add to the superclasses in java.util.zip is the ability to
read the attributes of each JAR entry as well as the manifest for the entire JAR archive. Recall
that a JAR archive should have exactly one manifest file. That manifest file has entries that
apply to the entire file as well as entries for some (though perhaps not all) of the files stored in
the archive. Although physically the manifest file belongs to the entire archive, logically parts
of it belong to different entries in the archive. The java.util.jar.Manifest class represents
this manifest file.

public class Manifest extends Object implements Cloneable // Java 2

It has methods to get the entries and attributes of a manifest, to write the manifest onto an
output stream or to read entries from an input stream, and an assortment of utility methods.
The Manifest class has three constructors:

public Manifest() // Java 2
public Manifest(InputStream in) throws IOException // Java 2
public Manifest(Manifest man) // Java 2

The first constructor creates an empty manifest (one with no entries); the second reads the
manifest from the given stream; the third copies the manifest from the Manifest object
passed as an argument. However, all three are mostly for the internal use of Java. Instead,
client programmers use the getManifest() method of JarFile to retrieve the Manifest
object for the manifest file in a particular archive. For example:

JarFile jf = new JarFile("classes.jar");
Manifest m = jf.getManifest();

The Manifest class has three methods that return a map of the entries in the manifest.
getEntries() returns an unspecified Map (a HashMap object in JDK 1.2) in which the keys
are the entry names and the values are the Attributes objects for the entry:

public Map getEntries() // Java 2

The getMainAttributes() method returns an Attributes object representing the attributes
in the manifest file that apply to the file as a whole rather than to any individual entry in the
file, such as Manifest-Version:

public Attributes getMainAttributes() // Java 2

The getAttributes() method returns an Attributes object containing the name/value pairs
of the named entry. The Name attribute is not included in this list:

public Attributes getAttributes(String entryName) // Java 2

The clear() method removes all entries and attributes from the manifest so that it can be
reused; client programmers have little reason to call this method:

public void clear() // Java 2

Java I/O

186

The Manifest class also contains methods to read a Manifest object from an input stream
and write one onto an output stream. These are mostly for Java's private use.

public void write(OutputStream out) throws IOException // Java 2
public void read(InputStream in) throws IOException // Java 2

The write() method is particularly useless, since there's no good way to create a Manifest
object and add attributes to it from within Java.[5] Most commonly, you'll simply work with
Manifest objects returned by getManifest().

Finally, the Manifest class overrides the default implementations of equals() and clone():

public boolean equals(Object o) // Java 2
public Object clone() // Java 2

9.5.8 JarInputStream

JarInputStream is a subclass of ZipInputStream that reads data from JAR archives.

public class JarInputStream extends ZipInputStream // Java 2

There are two constructors that chain the JAR input stream to an underlying input stream.

public JarInputStream(InputStream in) throws IOException // Java 2
public JarInputStream(InputStream in, boolean verify)
 throws IOException // Java 2

By default, any signatures present in the JAR archive will be verified and an IOException
thrown if verification fails. However, you can turn this behavior off by passing false as the
second argument to the constructor. For example:

FileInputStream fin = new FileInputStream("javaio.jar");
JarInputStream jin = new JarInputStream(fin, false);

When the JarInputStream object is constructed, the manifest, if present, is read from the
stream and stored inside the class as a Manifest object. You do not get an opportunity to read
the manifest from the stream yourself. However, you can retrieve the Manifest object with
the getManifest() method:

public Manifest getManifest() // Java 2

Otherwise, a JAR input stream is used almost exactly like a zip input stream. You position the
stream on a particular entry in the file, then read data from it using the normal read()
methods. Any necessary inflation is performed transparently. When you've finished reading
an entry, you close it, then position the stream on the next entry. Two methods,
getNextEntry() and read(), are overridden so that verification of signatures can be
performed. A getNextJarEntry() method that returns a JarEntry instead of ZipEntry is
also available. This method can be used in place of getNextEntry(), if you like.

5 I suppose you could write a manifest file on a byte array output stream, create a byte array input stream from the output stream's byte array, then
read it back in, but that's really a kludge.

Java I/O

187

public ZipEntry getNextEntry() throws IOException // Java 2
public int read(byte[] data, int offset, int length)
 throws IOException // Java 2
public JarEntry getNextJarEntry() throws IOException // Java 2

9.5.9 JarOutputStream

JarOutputStream is a subclass of ZipOutputStream.

public class JarOutputStream extends ZipOutputStream // Java 2

You can specify a manifest for the archive in the constructor, but this is optional. If you don't
provide a manifest, none is written onto the stream.

public JarOutputStream(OutputStream out, Manifest man) throws IOException
 // Java 2
public JarOutputStream(OutputStream out) throws IOException // Java 2

This class is even closer to ZipOutputStream than JarInputStream is to ZipInputStream.
It overrides exactly one method, putNextEntry():

public void putNextEntry(ZipEntry ze) throws IOException // Java 2

This is done in order to store the JAR magic number with each entry, but you don't need to
know this. Other than the constructor invocation, you use this class exactly like you use
ZipOutputStream.

9.5.10 JarURLConnection

In Java 2 and later, one of the simplest ways to get information from a JAR file is through the
java.net.JarURLConnection class. This class represents an active connection to a JAR file,
generally either via the HTTP or file protocols.

public abstract class JarURLConnection extends URLConnection

It provides methods to get the URL, name, manifest, JAR entries, attributes, and certificates
associated with the JAR file and its entries. The only constructor in this class is protected:

protected JarURLConnection(URL url) throws MalformedURLException

As with most URLConnection subclasses, you don't instantiate JarURLConnection directly.
Instead, you create a URL object using the string form of a JAR URL and invoke its
openConnection() method. For example:

try {
 URL u = new URL(

"jar:http://www.oreilly.com/javaio.jar!/com/macfaq/io/StreamCopier.class");
 URLConnection juc = u.openConnection();
 // ...
}
catch (MalformedURLException e) {
 // ...
}

Java I/O

188

Notice the strange URL in the previous code. A JAR URL is like a normal HTTP or file URL
pointing to a JAR file with the prefix "jar:" added to the URL's scheme (i.e., jar:http: or
jar:file:). After the hostname, you place the pathname to the JAR file on the server. After the
JAR filename, you add an exclamation point and a path to the particular entry you want
within the JAR archive. For example, to refer to the file StreamCopier.class in the
com/macfaq/io directory of the JAR file javaio.jar located at http://www.oreilly.com/, you
would use the JAR URL
jar:http://www.oreilly.com/javaio.jar!/com/macfaq/io/StreamCopier.class. If the entry is
omitted, then the URL refers to the JAR archive as a whole; for example,
jar:http://www.oreilly.com/javaio.jar!/.

If you only want to read data from the connection using getInputStream() from the
URLConnection superclass, the previous code will suffice. If you want to use the methods of
the JarURLConnection class directly, then you should cast the object returned from
openConnection() to JarURLConnection. For example:

try {
 URL u = new URL(

"jar:http://www.oreilly.com/javaio.jar!/com/macfaq/io/StreamCopier.class");
 JarURLConnection juc = (JarURLConnection) u.openConnection();
 // ...
}
catch (MalformedURLException e) {
 // ...
}

Once you've done this, you can use eight methods that provide easy access to various meta-
information about the JAR file and its contents. This meta-information comes from the
archive's manifest or certificate files. The getJarFileURL() method returns the URL of the
JAR file for this connection:

public URL getJarFileURL()

This is most useful if the URL refers to a particular entry in the file. In that instance, the URL
returned by getJarFileURL() refers to the URL of the archive. For example:

URL u = new URL(

"jar:http://www.oreilly.com/javaio.jar!/com/macfaq/io/StreamCopier.class");
JarURLConnection juc = (JarURLConnection) u.openConnection();
URL base = juc.getURL();

The URL object base now refers to http://www.oreilly.com/javaio.jar.

The getEntryName() method returns the name of the JAR entry this JAR URL refers to. It
returns null if the JAR URL points to a JAR file as a whole rather than to one of the entries
in the file.

public String getEntryName()

The getJarFile() method returns an immutable JarFile object for the JAR archive referred
to by this URL. You can read the state of this object, but you cannot change it. Attempts to do

Java I/O

189

so throw a java.lang.UnsupportedOperationException. This is a runtime exception, so
you do not have to catch it.

public abstract JarFile getJarFile() throws IOException

The getJarEntry() method returns an immutable JarEntry object for the JAR entry
referred to by this URL. You can read the state of this object, but you cannot change it.
Attempts to do so throw a java.lang.UnsupportedOperationException .

public JarEntry getJarEntry() throws IOException

The getManifest() method returns an immutable Manifest object constructed from the
manifest file in the JAR archive. It returns null if the archive doesn't have a manifest. Again,
you cannot modify this Manifest object, and any attempt to do so will throw an
UnsupportedOperationException.

public Manifest getManifest() throws IOException

The getAttributes() method returns an Attributes object representing the attributes of
the JAR entry this URL refers to. It returns null if the URL refers to a JAR file rather than a
particular entry. To get the attributes of the entire archive, use the getMainAttributes()
method instead.

public Attributes getAttributes() throws IOException
public Attributes getMainAttributes() throws IOException

The getCertificates() method returns an array of java.security.cert.Certificate
objects containing the certificates for the JAR entry this URL refers to (if any). This method
returns null if the URL refers to a JAR file rather than a JAR entry.

public Certificate[] getCertificates() throws IOException

9.6 File Viewer, Part 4

Because of the nature of filter streams, it is relatively straightforward to add decompression
services to the FileDumper program last seen in Chapter 7. Generally, you'll want to
decompress a file before dumping it. Adding decompression does not require a new dump
filter. Instead, it simply requires passing the file through an inflater input stream before
passing it to one of the dump filters. We'll let the user choose from either gzipped or deflated
files with the command-line switches -gz and -deflate. When one of these switches is seen,
the appropriate inflater input stream is selected; it is an error to select both. Example 9.15,
FileDumper4, demonstrates.

Example 9.15. FileDumper4

import java.io.*;
import java.util.zip.*;
import com.macfaq.io.*;

public class FileDumper4 {

 public static final int ASC = 0;

Java I/O

190

 public static final int DEC = 1;
 public static final int HEX = 2;
 public static final int SHORT = 3;
 public static final int INT = 4;
 public static final int LONG = 5;
 public static final int FLOAT = 6;
 public static final int DOUBLE = 7;

 public static void main(String[] args) {

 if (args.length < 1) {
 System.err.println("Usage: java FileDumper4 [-ahdsilfx] [-little]"+
 "[-gzip|-deflated] file1...");
 }

 boolean bigEndian = true;
 int firstFile = 0;
 int mode = ASC;
 boolean deflated = false;
 boolean gzipped = false;

 // Process command-line switches.
 for (firstFile = 0; firstFile < args.length; firstFile++) {
 if (!args[firstFile].startsWith("-")) break;
 if (args[firstFile].equals("-h")) mode = HEX;
 else if (args[firstFile].equals("-d")) mode = DEC;
 else if (args[firstFile].equals("-s")) mode = SHORT;
 else if (args[firstFile].equals("-i")) mode = INT;
 else if (args[firstFile].equals("-l")) mode = LONG;
 else if (args[firstFile].equals("-f")) mode = FLOAT;
 else if (args[firstFile].equals("-x")) mode = DOUBLE;
 else if (args[firstFile].equals("-little")) bigEndian = false;
 else if (args[firstFile].equals("-deflated") && !gzipped) deflated =
true;
 else if (args[firstFile].equals("-gzip") && !deflated) gzipped =
true;
 }

 for (int i = firstFile; i < args.length; i++) {
 try {
 InputStream in = new FileInputStream(args[i]);
 dump(in, System.out, mode, bigEndian, deflated, gzipped);

 if (i < args.length-1) { // more files to dump
 System.out.println();
 System.out.println("--------------------------------------");
 System.out.println();
 }
 }
 catch (Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
 }

 public static void dump(InputStream in, OutputStream out, int mode,
 boolean bigEndian, boolean deflated, boolean gzipped) throws IOException
{

 // The reference variable in may point to several different objects

Java I/O

191

 // within the space of the next few lines. We can attach
 // more filters here to do decompression, decryption, and more.
 if (deflated) {
 in = new InflaterInputStream(in);
 }
 else if (gzipped) {
 in = new GZIPInputStream(in);
 }

 // could really pass to FileDumper3 at this point
 if (bigEndian) {
 DataInputStream din = new DataInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new IntFilter(din);
 break;
 case SHORT:
 in = new ShortFilter(din);
 break;
 case LONG:
 in = new LongFilter(din);
 break;
 case DOUBLE:
 in = new DoubleFilter(din);
 break;
 case FLOAT:
 in = new FloatFilter(din);
 break;
 default:
 }
 }
 else {
 LittleEndianInputStream lin = new LittleEndianInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new LEIntFilter(lin);
 break;
 case SHORT:
 in = new LEShortFilter(lin);
 break;
 case LONG:
 in = new LELongFilter(lin);
 break;
 case DOUBLE:
 in = new LEDoubleFilter(lin);
 break;
 case FLOAT:
 in = new LEFloatFilter(lin);
 break;

Java I/O

192

 default:
 }
 }
 StreamCopier.copy(in, out);
 in.close();
 }
}

Note how little I had to change to add support for compressed files. I simply imported one
package and added a couple of command-line switches and six lines of code (which could
easily have been two) to test for the command-line arguments and add one more filter stream
to the chain. Zip and JAR files would not be hard to support either. You'd just have to iterate
through the entries in the archive and dump each entry onto System.out. That's left as an
exercise for the reader.

Java I/O

193

Chapter 10. Cryptographic Streams
This chapter discusses filter streams that implement some sort of cryptography. The Java core
API contains two of these in the java.security package, DigestInputStream and
DigestOutputStream. There are two more cryptography streams in the javax.crypto
package, CipherInputStream and CipherOutputStream. All four of these streams use an
engine object to handle the filtering. DigestInputStream and DigestOutputStream use a
MessageDigest object, while CipherInputStream and CipherOutputStream use a Cipher
object. The streams rely on the programmer to properly initialize and—in the case of the
digest streams—clean up after the engines. Therefore, we'll first look at the engine classes,
then at the streams built around these engines.

In a sane world, these classes would all be part of the core API in a java.crypto package.
Regrettably, U.S. export laws prohibit the export of cryptographic software without special
permission. Therefore, the cryptography API and associated classes must be downloaded
separately from the main JDK. Collectively these are called the Java Cryptography Extension,
or JCE for short. To protect national security, you'll have to fill out a form promising you're
not an international terrorist before you can download it.[1] I feel safer already. If you're
outside the United States and Canada, and you're one of the three people worldwide who
actually respect U.S. export laws or who can't figure out how to penetrate the incredible
security Sun has placed around JCE to make sure it doesn't fall into the hands of international
terrorists, there are several third-party implementations of the JCE created outside the United
States and thus not subject to its laws, including at least two free ones. These may not be
completely synced with the beta release of the JCE 1.2 discussed here, but they should be
close by the time you read this.

Although the initial version of the JCE worked with Java 1.1, the only version available from
Sun at the time of this writing, JCE 1.2, requires Java 2 to run. The material in this chapter
about message digests, hash functions, and digest streams applies to both Java 1.1 and 2. The
remainder of the chapter, encryption and decryption mostly, only works in Java 2.

10.1 Hash Function Basics

Sometimes it's essential to know whether data has changed. For instance, crackers invading
Unix systems often replace crucial files like /etc/passwd or /usr/ucb/cc with their own hacked
versions that allow them to regain access to the system if the original hole they entered
through is plugged. Therefore, if you discover your system has been penetrated, one of the
first things you need to do is to replace any changed files. Of course, this raises the question
of how you identify the changed files, especially since anybody who's capable of replacing
system executables is more than capable of resetting the last-modified date of the files. You
can keep an offline copy of the system files, but this is costly and difficult, especially since
multiple copies need to be stored for long periods of time. If you don't discover a penetration
until several months after it occurred, you may need to roll back the system files to that point
in time. Recent backups are likely to have been made after the penetration occurred and thus
are also likely to be compromised.

As a less threatening example, suppose you want to be notified whenever a particular web
page changes. It's not hard to write a robot that connects to the site at periodic intervals,

1 Domestic terrorists may download it freely.

Java I/O

194

downloads the page, and compares it to a previously retrieved copy for changes. However, if
you need to do this for hundreds or thousands of web pages, the space to store the pages
becomes prohibitive. Email clients have similar needs. Many broken mail clients and mailing
list managers send multiple copies of the same message. A mail client should recognize when
multiple copies of the same message are being passed through the system and delete them. On
an ISP level, it might be possible to use this as a spam filter by comparing messages sent to
different customers.

All these tasks need a way to compare files at different times without storing the files
themselves. You can write a special kind of method called a hash function that reads an
indefinite number of sequential bytes and assigns a number to that sequence of bytes. This
number is called a hash code or digest. The size of the number depends on the hash function.
It is not necessarily the same size as any Java primitive data type like int or long. For
instance, digests calculated with the SHA algorithm are 20-byte numbers. You can store the
digest of the files, then compare the digests. The digests are generally much smaller than the
files themselves.

Hash functions are also used in digital signatures. To indicate that you actually authored a
document, you first calculate the hash function for the message, then encrypt the hash code
with your private key. To check your signature, the recipient of the message decrypts the hash
code with your public key and compares it to the hash function you calculated. If they match,
then only someone who knew your private key could have signed the message. Although you
could simply encrypt the entire message with your private key rather than a hash code, public
key algorithms are rather slow, and encrypting a 20-byte hash code is much faster than
encrypting even a short email message. In Java, digital signatures are implemented through
the java.security.Signature class. We won't talk much about that class in this book, but it
is dependent on the MessageDigest classes we will discuss.

10.1.1 Requirements for Hash Functions

Hash codes are calculated by hash functions, and there are better and worse hash functions.
Good hash functions (also called strong hash functions) make it extremely unlikely that two
different documents will share a hash value. Furthermore, hash functions used for
cryptography must also be one-way hash functions—that is, given a hash code, you should
not be able to create a document with that hash code. A strong one-way hash function must
meet several related criteria. Among these criteria are the following:

• Hash functions are deterministic. The same document always has the same hash code.
The hash code does not depend on the time it's calculated, a random number, or
anything other than the sequence of bytes in the document. Without this requirement,
the same document could have different hash codes at different times, thus indicating
that documents had changed, when in fact they hadn't.

• Hash codes should be uniformly distributed throughout the available range. Given any
sample of the documents you wish to track, all hash codes are equally likely. For
instance, given a 64-bit hash code, which might be interpreted as a long integer, it
would be an error if even numbers were substantially more likely than odd numbers.

• Hash codes should be extremely difficult to reverse engineer. Given a hash code, there
should be no means easier than brute force to produce a document that matches that
hash code. For instance, if I know the hash code is 9,423,456,789, I shouldn't be able
to then create a file that happens to have that exact hash code.

Java I/O

195

• It should be difficult to find two documents that share a hash code. You cannot easily
find two documents with the same hash code, regardless of what that hash code is. The
previous criterion means that you can't change the document to match a hash code.
This criterion says you can't change two documents to match each other.

• Small changes in documents produce large changes in the hash code. Mathematicians
call this criterion "sensitive dependence on initial conditions." Without this
requirement, somebody attempting to create a document with a given hash code could
modify the document a little at a time until the hash code matched, much as you might
adjust the hot and cold water faucets gradually until the water reaches a desired
temperature. A hash function should act more like a faucet that can scald or freeze you
after the tiniest nudge.

• The hash code does not say anything about the document it represents. The one-way
hash function is not even partially invertible. For instance, knowing that the hash code
is even should not suggest that the document being hashed contains an even number of
bytes. Nor should it suggest that the document being hashed is 60% more likely to
contain an even number of bytes than an odd number. While one-way hash functions
need to be reproducible—that is, the same document always has the same hash code—
they should otherwise be completely random. It is extremely hard, perhaps impossible,
to prove that any function meets this criterion. Nonetheless, stronger functions come
closer than weaker functions, and years of experience among cryptographers allow
them to make reasonable guesses about what are and are not strong hash functions,
even if their hunches can't be proved to a mathematical certainty.

The proper design of one-way hash functions is a well-studied field. It's easy to create weak
one-way hash functions. However, it is much harder to create truly strong, reliable, one-way
hash functions. Nonexperts tend to make nonobvious but serious mistakes when
implementing hash functions. Therefore, this is a task that's best left to the experts.
Fortunately, the Java core API contains some hash functions designed by experts that the rest
of us can use without earning a Ph.D. in applied mathematics first.

The hash codes used by the java.util.Hashtable class and returned
by the hashCode() method of any Java object are only intended to be
used as IDs for elements of a hash table, not as cryptographically strong
digest. These sorts of hash codes have different requirements for utility.
Most of the time, they only need to meet the first two of the six criteria
given earlier, and in practice they often don't meet even that. The
hashCode() method is a hash function but not necessarily a one-way
hash function.

10.2 The MessageDigest Class

The java.security.MessageDigest class is an abstract class that represents a hash code
and its associated algorithm. Concrete subclasses (actually concrete subclasses of
java.security.MessageDigestSPI, though the difference isn't relevant from a client's point
of view) implement particular, professionally designed, well-known hash code algorithms.
Thus, rather than constructing instances of this class directly, you ask the static
MessageDigest.getInstance() factory method to provide an implementation of an
algorithm with a particular name. Table 10.1 lists the standard names for message digest

Java I/O

196

algorithms. Depending on which service providers are installed, you may or may not have all
of these. The JDK 1.1 includes SHA-1 (which is the same as SHA) and MD5 but not MD2.
RSA's paywareCrypto-J cryptography library also supports MD2. (See
http://www.rsa.com/rsa/products/jsafe/.)

Table 10.1. Message Digest Algorithms in Java 1.1
Name Algorithm

SHA-
1

The Secure Hash Algorithm, as defined in Secure Hash Standard, NIST FIPS 180-1 (National Institute of
Standards and Technology Federal Information Processing Standards Publications 180-1); produces 20-
byte digests; see http://www.itl.nist.gov/div897/pubs/fip180-1.htm

SHA Another name for SHA-1

MD2
RSA-MD2 as defined in RFC 1319 and RFC 1423 (RFC 1423 corrects a mistake in RFC 1319); produces
16-byte digests; suitable for use with digital signatures; see http://www.faqs.org/rfcs/rfc1319.html and
http://www.faqs.org/rfcs/rfc1423.html

MD5 RSA-MD5 as defined in RFC 1321; produces 16-byte digests; quite fast on 32-bit machines; see
http://www.faqs.org/rfcs/rfc1321.html

10.2.1 Calculating Message Digests

There are four steps to calculating a hash code for a file or other sequential set of bytes with a
MessageDigest object; Figure 10.1 shows a flow chart for this process.

1. Pass the name of the algorithm you want to use to the static
MessageDigest.getInstance() factory method to get a new MessageDigest object.

2. Feed bytes into the update() method.
3. If more data remains, repeat step 2.
4. Invoke a digest() method to complete computation of the digest and return it as an

array of bytes.

Java I/O

197

Figure 10.1. The four steps to calculating a message digest

Once the digest() method has been invoked, the digest is reset. You can begin again at step
1 to calculate a new digest, but you cannot update the digest you've already created.

Example 10.1, URLDigest, is a simple program that uses the MessageDigest class to
calculate the SHA-1 hash for web pages named on the command line. The main() method
gets the input stream from a URL as discussed in Chapter 5, and passes it to printDigest().
The printDigest() method gets an SHA MessageDigest object named sha with the
getInstance() factory method. Then it repeatedly reads data from the input stream. All
bytes read are passed to sha.update(). When the stream is exhausted, the sha.digest()
method is called; it returns the SHA hash of the URL as an array of bytes, which is then
printed.

Example 10.1. URLDigest

import java.net.*;
import java.io.*;
import java.security.*;
import java.math.*;

Java I/O

198

public class URLDigest {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 printDigest(u.openStream());
 }
 catch (MalformedURLException e) {
 System.err.println(args[i] + " is not a URL");
 }
 catch (Exception e) {System.err.println(e);}
 }
 }

 public static void printDigest(InputStream in)
 throws IOException, NoSuchAlgorithmException {

 MessageDigest sha = MessageDigest.getInstance("SHA");
 byte[] data = new byte[128];
 while (true) {
 int bytesRead = in.read(data);
 if (bytesRead < 0) break;
 sha.update(data, 0, bytesRead);
 }
 byte[] result = sha.digest();
 for (int i = 0; i < result.length; i++) {
 System.out.print(result[i] + " ");
 }
 System.out.println();
 System.out.println(new BigInteger(result));
 }
}

Here's a sample run. The digest is shown both as a list of bytes and as one very long integer.
The java.math.BigInteger class converts the bytes to a decimal integer. This class was
added to the core API precisely to support cryptography, where arithmetic with very large
numbers is common.

D:\JAVA\ioexamples\10>java URLDigest http://www.oreilly.com
4 124 -18 84 -96 -20 -87 -65 101 14 47 31 17 -88 38 -98 91 -49 1 -95
591739989697434133978636109723084032701499868257806248107462640051391104703
30
951881925189906731448985158407464399141144743516185572360230826270737640774
81
322947443424819056185669636681480454022397848287114845876737887882358574012
46
917617160663605818778685214389486703113050033009347339540804583204307060808
15

This output doesn't really mean anything to a human reader. However, if you were to run the
program again, you'd get a different result if [2] the web page had changed in some way. Even a
small change that would be unlikely to be noticed by a human or even an HTML parser—for
instance, adding an extra space to the end of one line—would be picked up by the digest. If

2 There is an extremely small, though not quite zero, chance that two different pages will show the same message digest. This is true because there are
more possible pages than there are message digests. Part of the reason a message digest is used instead of the raw page is that it is smaller than the
page itself.

Java I/O

199

you only want to detect significant changes, you have to first filter the insignificant data from
the stream in a predictable fashion before calculating the message digest.

10.2.2 Creating Message Digests

There are no public constructors in java.security.MessageDigest. Instead, you generally
use one of two MessageDigest.getInstance() factory methods to retrieve the appropriate
digest for a particular algorithm.

public static MessageDigest getInstance(String algorithm)
 throws NoSuchAlgorithmException
public static MessageDigest getInstance(String algorithm, String provider)
 throws NoSuchAlgorithmException, NoSuchProviderException

For example:

MessageDigest sha = MessageDigest.getInstance("SHA");
MessageDigest md2 = MessageDigest.getInstance("MD2", "Cryptix");

Each of these methods returns an instance of a MessageDigest subclass that's configured
with the requested algorithm. These subclasses and the associated MessageDigestSPI classes
that actually implement the algorithms are installed when you install a cryptographic provider.
JDK 1.2 installs the Sun provider, which supplies implementations of SHA-1 and MD5.

Each provider provides a possibly redundant collection of message digest algorithms. The
factory method design pattern used here allows for the possibility that a particular algorithm
may be provided by different classes in different environments. For instance, the SHA
algorithm may be supplied by the sun.security.provider.SHA class in one development
environment and by the cryptix.provider.md.SHA1 class in another. Some standard
algorithm names are listed in Table 10.1. If you request an algorithm none of your installed
providers can supply, a NoSuchAlgorithmException is thrown. Most of the time, you're
content to simply request an algorithm and let any provider that can fulfill your request
provide it. However, if you want to specify a particular provider by name (for instance,
because it's got an especially fast native-code implementation of the algorithm you want), you
can pass the provider name as the second argument to MessageDigest.getInstance(). If
the provider you request isn't found, a NoSuchProviderException is thrown.

MessageDigest has a protected constructor for use by subclasses. If you were writing your
own provider, with your own message digest algorithms and implementations, you'd use this:

protected MessageDigest(String algorithm)

However, as I said earlier, the creation of message digest algorithms and implementations is
harder than it looks and is a task best left to the experts.[3]

3 If you want to design your own one-way hash functions, Applied Cryptography, by Bruce Schneier (John Wiley & Sons, 1995) is a good place to
start. For details about how to implement Java security providers that supply new message digest algorithms, see Chapter 9 of Java Cryptography, by
Jonathan Knudsen (O'Reilly & Associates, 1998).

Java I/O

200

10.2.3 Feeding Data to the Digest

Once you have a MessageDigest object, you feed data into that digest by passing bytes into
one of three update() methods. If you're digesting some other form of data, like Unicode
text, you must first convert that data to bytes.

public void update(byte input)
public void update(byte[] input)
public void update(byte[] input, int offset, int length)

For example:

byte[] data = new byte[128];
int bytesRead = in.read(data);
sha.update(data, 0, bytesRead);

The first update() method takes a single byte as an argument. The second method takes an
entire array of bytes. The third method takes the subarray of input beginning at offset and
continuing for length bytes. You can call update() repeatedly, as long as you have more
data to feed it. Example 10.1 passed in bytes as they were read from the input stream. The
only restriction is that the bytes should not be reordered between calls to update().

10.2.4 Finishing the Digest

In general, digest algorithms cannot finish the calculation and return the digest until the last
byte is received. When you are ready to finish the calculation and receive the digest, you
invoke one of three overloaded digest() methods:

public byte[] digest()
public byte[] digest(byte[] input)
public int digest(byte[] output, int offset, int length)
 throws DigestException

The first digest() method simply returns the digest as an array of bytes based on the data
that was already passed in through update(). For example:

<CODE>byte[] result = sha.digest();

The second digest() method receives one last chunk of data in the input array, then returns
the digest. The third digest() method calculates the digest and places it in the array output
beginning at offset and continuing for at most length bytes, then returns the number of
bytes in the digest. If there are more than length bytes in the digest a DigestException is
thrown. After you've called digest(), the MessageDigest object is reset so it can be reused
to calculate a new digest.

10.2.5 Reusing Digests

There's some overhead associated with creating a new message digest with
MessageDigest.getInstance(). Therefore, if you want to use the same algorithm to
calculate digests for many different files, web pages, or other streams, you can reset the digest
and reuse it. The reset() method accomplishes this:

Java I/O

201

public void reset()

In practice, you rarely call reset() directly, because the digest() method invokes the
reset() method after it's through. Once you've reset a message digest, all information you
had previously passed into it through update() is lost.

10.2.6 Comparing Digests

It's not all that hard to loop through two byte arrays to see whether or not they're equal.
Nonetheless, if you do have two MessageDigest objects, the MessageDigest class does
provide the simple static method MessageDigest.isEqual() that does the work for you. As
you certainly expect, this method returns true if the two byte arrays are byte-for-byte
identical, false otherwise.

public static boolean isEqual(byte[] digest1, byte[] digest2)

A little surprisingly, MessageDigest does not override equals(). Therefore,
md1.equals(md2) returns true if, and only if, md1 and md2 are both references to the same
MessageDigest object.

Example 10.2 uses this method to compare the byte arrays returned by two SHA digests, one
for an original web page and one for a mirror copy of the page. The URLs to compare are
passed in from the command line. However, it would not be hard to expand this to a general
program that automatically checked a list of mirror sites to determine whether or not they
needed to be updated.

Example 10.2. TrueMirror

import java.net.*;
import java.io.*;
import java.security.*;

public class TrueMirror {

 public static void main(String[] args) {

 if (args.length != 2) {
 System.err.println("Usage: java TrueMirror url1 url2");
 return;
 }

 try {
 URL source = new URL(args[0]);
 URL mirror = new URL(args[1]);
 byte[] sourceDigest = getDigestFromURL(source);
 byte[] mirrorDigest = getDigestFromURL(mirror);
 if (MessageDigest.isEqual(sourceDigest, mirrorDigest)) {
 System.out.println(mirror + " is up to date");
 }
 else {
 System.out.println(mirror + " needs to be updated");
 }
 }

Java I/O

202

 catch (MalformedURLException e) {System.err.println(e);}
 catch (Exception e) {System.err.println(e);}
 }

 public static byte[] getDigestFromURL(URL u)
 throws IOException, NoSuchAlgorithmException {

 MessageDigest sha = MessageDigest.getInstance("MD5");
 InputStream in = u.openStream();
 byte[] data = new byte[128];
 while (true) {
 int bytesRead = in.read(data);
 if (bytesRead < 0) { // end of stream
 break;
 }
 sha.update(data, 0, bytesRead);
 }

 return sha.digest();
 }
}

Here's a sample run:

% java TrueMirror http://metalab.unc.edu/javafaq/
http://sunsite.uakom.sk/javafaq/
http://metalab.uakom.sk/javafaq/ is up to date

10.2.7 Accessor Methods

The MessageDigest class contains three accessor methods that return information about the
digest:

public final Provider getProvider()
public final String getAlgorithm()
public final int getDigestLength()

The getProvider() method returns a reference to the instance of java.security.Provider
that provided this MessageDigest implementation. The getAlgorithm() method returns a
string containing the name of the digest algorithm as given in Table 10.1; for example, "SHA"
or "MD2". Finally, getDigestLength()returns the length of the digest in bytes. Digest
algorithms are supposed to have fixed lengths. For instance, SHA digests are always 20 bytes
long. However, this method allows for the possibility of variable length digests. It returns if
the length of the digest is not yet available.

10.2.8 Cloning Digests

Some digests allow themselves to be cloned, though not all do. A digest that does not
implement cloning throws a CloneNotSupportedException if you attempt to clone it. SHA
and MD5 digests from the JDK do support cloning. Cloning a digest is useful if you want to
view a series of intermediate digests before the entire data sequence has been read:

public Object clone() throws CloneNotSupportedException

Java I/O

203

After each successful call to update(), you can clone the digest and invoke the digest()
method on the clone. This lets you inspect the digest without interfering with the data that still
needs to be processed. This might be useful if you have an exceptionally large amount of data
read from a slow connection, and you don't want to wait for the end of the stream before
checking whether or not the data is corrupt. Of course, you would need the intermediate
digests for the original data, in addition to the digests for the data you're checking.

10.2.9 toString()

For completeness' sake, I'll note that MessageDigest overrides toString():

public String toString()

This returns a string in the form "algorithm Message Digest from provider,
<initialized>" or "<algorithm Message Digest from provider, in progress." For
example:

SHA Message Digest from SUN, <initialized>

10.3 Digest Streams

The MessageDigest class isn't particularly hard to use, as I hope Example 10.1 and Example
10.2 demonstrated. It's flexible and can be used to calculate a digest for anything that can be
converted into a byte array, such as a string, an array of floating point numbers, or the
contents of a text area. Nonetheless, the input data almost always comes from streams.
Therefore, the java.security package contains an input stream and an output stream class
that each possess a MessageDigest object to calculate a digest for the stream as it is read or
written. These are DigestInputStream and DigestOutputStream .

10.3.1 DigestInputStream

The DigestInputStream class is a subclass of FilterInputStream :

public class DigestInputStream extends FilterInputStream

DigestInputStream has all the usual methods of any input stream, like read(), skip(), and
close(). It overrides two read() methods to do its filtering. Clients use these methods exactly
as they use the read() methods of other input streams:

public int read() throws IOException
public int read(byte[] data, int offset, int length) throws IOException

DigestInputStream does not change the data it reads in any way. However, as each byte or
group of bytes is read, it is fed as input to a MessageDigest object stored in the class as the
protected digest field:

protected MessageDigest digest;

The digest field is normally set in the constructor:

public DigestInputStream(InputStream stream, MessageDigest digest)

Java I/O

204

For example:

URL u = new URL("http://java.sun.com");
DigestInputStream din = new DigestInputStream(u.openStream(),
 MessageDigest.getInstance("SHA"));

The digest is not cloned inside the class. Only a reference to it is stored. Therefore, the
message digest used inside the stream should only be used by the stream. Simultaneous or
interleaved use by other objects will corrupt the digest.

You can change the MessageDigest object used by the stream with the
setMessageDigest() method:

public void setMessageDigest(MessageDigest digest)

You can retrieve the message digest at any time by calling getMessageDigest():

public MessageDigest getMessageDigest()

After you invoke getMessageDigest(), the digest field of the stream has received all the
data read by the stream up to that point. However, it has not been finished. It is still necessary
to invoke digest() to complete the calculation. For example:

MessageDigest md = dis.getMessageDigest();
md.digest();

On rare occasion, you may only want to digest part of a stream. You can turn digesting off at
any point by passing false to the on() method:

public void on(boolean on)

You can turn digesting back on by passing true to on(). When digest streams are created,
they are on by default.

Finally, there's a toString() method, which is a little unusual in input streams. It simply
returns "[Digest Input Stream]" plus the string representation of the digest.

public String toString()

Here's a revised printDigest() method for Example 10.1 that makes use of a
DigestInputStream :

public static void printDigest(InputStream in)
 throws IOException, NoSuchAlgorithmException {

 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 byte[] data = new byte[128];
 while (true) {
 int bytesRead = din.read(data);
 if (bytesRead < 0) break;
 }
 MessageDigest md = din.getMessageDigest();

Java I/O

205

 byte[] result = md.digest();

 for (int i = 0; i < result.length; i++) {
 System.out.println(result[i]);
 }
}

The main purpose of DigestInputStream is to be one of a chain of filters. Otherwise, it
doesn't really make your work any easier. You still need to construct the MessageDigest
object by invoking getInstance(), pass it to the DigestInputStream() constructor,
retrieve the MessageDigest object from the input stream, invoke its digest() method, and
retrieve the digest data from that object. I would prefer the DigestInputStream to
completely hide the MessageDigest object. You could pass the name of the digest algorithm
to the constructor as a string rather than an actual MessageDigest object. The digest would
only be made available after the stream was closed, and then only through its data, not
through the actual object.

10.3.2 DigestOutputStream

The DigestOutputStream class is a subclass of FilterOutputStream that maintains a digest
of all the bytes it has written:

public class DigestOutputStream extends FilterOutputStream

DigestOutputStream has all the usual methods of any output stream, like write(),
flush(), and close(). It overrides two write() methods to do its filtering:

public void write(int b) throws IOException
public void write(byte[] data, int offset, int length) throws IOException

These are used much as they would be for any other output stream. DigestOutputStream
does not change the data it writes in any way. However, as each byte or group of bytes is
written, it is fed as input to a MessageDigest object stored in the class as the protected
digest field:

protected MessageDigest digest;

This is normally set in the constructor:

public DigestOutputStream(OutputStream out, MessageDigest digest)

For example:

FileOutputStream fout = new FileOutputStream("data.txt");
DigestOutputStream dout = new DigestOutputStream(fout,
 MessageDigest.getInstance("SHA"));

The digest is not cloned inside the class. Only a reference to it is stored. Therefore, the
message digest used inside the stream should only be used by the stream. Interleaved use by
other objects or simultaneous use by other threads will corrupt the digest. You can change the
MessageDigest object used by the stream with the setMessageDigest() method:

Java I/O

206

public void setMessageDigest(MessageDigest digest)

You can retrieve the message digest at any time by calling getMessageDigest():

public MessageDigest getMessageDigest()

After you invoke getMessageDigest(), the digest field contains the digest of all the data
written by the stream up to that point. However, it has not been finished. It is still necessary to
invoke digest() to complete the calculation. For example:

MessageDigest md = dout.getMessageDigest();
md.digest();

On rare occasions, you may only want to digest part of a stream. For instance, you might want
to calculate the digest of the body of an email message while ignoring the headers. You can
turn digesting off at any point by passing false to the on() method:

public void on(boolean on)

You can turn digesting back on by passing true to on(). When digest output streams are
created, they are on by default.

Finally, there's a toString() method, which is a little unusual in output streams. It simply
returns "[Digest Output Stream]" plus the string representation of the digest.

public String toString()

Example 10.3 is a FileDigestOutputStream class that reads data from a specified URL and
copies it into a file on the local system. As the file is written, its SHA digest is calculated.
When the file is closed, the digest is printed.

Example 10.3. FileDigestOutputStream

import java.net.*;
import java.io.*;
import java.security.*;

public class FileDigest {

 public static void main(String[] args) {

 if (args.length != 2) {
 System.err.println("Usage: java FileDigest url filename");
 return;
 }

 try {
 URL u = new URL(args[0]);
 FileOutputStream out = new FileOutputStream(args[1]);
 copyFileWithDigest(u.openStream(), out);
 out.close();
 }
 catch (MalformedURLException e) {
 System.err.println(args[0] + " is not a URL");
 }

Java I/O

207

 catch (Exception e) {System.err.println(e);}
 }

 public static void copyFileWithDigest(InputStream in, OutputStream out)
 throws IOException, NoSuchAlgorithmException {

 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestOutputStream dout = new DigestOutputStream(out, sha);
 byte[] data = new byte[128];
 while (true) {
 int bytesRead = in.read(data);
 if (bytesRead < 0) break;
 dout.write(data, 0, bytesRead);
 }
 dout.flush();
 byte[] result = dout.getMessageDigest().digest();
 for (int i = 0; i < result.length; i++) {
 System.out.print(result[i] + " ");
 }
 System.out.println();
 }
}

A sample run looks like this:

% java FileDigest http://www.oreilly.com/ oreilly.html
10 -10 103 -27 -110 3 -2 -115 8 -112 13 19 25 76 -120 31 51 116 -94 -58

To be perfectly honest, I'm not sure if DigestOutputStream is all that useful. You still need
to construct the MessageDigest object, pass it to the DigestOutputStream() constructor,
retrieve the MessageDigest object from the output stream, invoke its digest() method, and
retrieve the digest data from that object. The only real reason I can think of to use
DigestOutputStream would be if you needed a digest in the middle of a chain of filter
streams. For instance, you could write data onto a data output stream chained to a gzip output
stream chained to a file output stream. When you had finished writing the data onto the data
output stream, you could calculate the digest and write that directly onto the file output
stream. When the data was read back in, you could use a digest input stream chained to a data
input stream to check that the file had not been corrupted in the meantime. If the digest
calculated by the digest input stream matched the digest stored in the file, you'd know the data
was OK.

I would prefer the DigestOutputStream to completely hide the MessageDigest object. You
could pass the name of the digest algorithm to the constructor rather than an actual
MessageDigest object. The digest would only be made available after the stream was closed,
and then only through its data, not through the actual object. Example 10.4 demonstrates how
such a class might be implemented.

Example 10.4. EasyDigestOutputStream

package com.macfaq.security;

import java.io.*;
import java.security.*;

Java I/O

208

public class EasyDigestOutputStream extends FilterOutputStream {

 private boolean on = true;
 private boolean closed = false;
 protected byte[] result = null;
 protected MessageDigest digest;

 public EasyDigestOutputStream(OutputStream out, String algorithm)
 throws NoSuchAlgorithmException {
 super(out);
 digest = MessageDigest.getInstance(algorithm);
 }

 public EasyDigestOutputStream(OutputStream out, String algorithm,
 String provider) throws NoSuchAlgorithmException,
NoSuchProviderException {
 super(out);
 digest = MessageDigest.getInstance(algorithm, provider);
 }

 public void write(int b) throws IOException {
 if (on) digest.update((byte)b);
 out.write(b);
 }

 public void write(byte[] data, int offset, int length) throws IOException
{
 if (on) digest.update(data, offset, length);
 out.write(data, offset, length);
 }

 public void on(boolean on) {
 this.on = on;
 }

 public void close() throws IOException {
 out.close();
 result = digest.digest();
 closed = true;
 }

 public byte[] getDigest() {
 return result;
 }
}

Example 10.5 is similar to the FileDigest of Example 10.3 rewritten to use the
EasyDigestOutputStream. This program produces the same digests as Example 10.3, but it's
quite a bit shorter and doesn't require any explicit mucking around with MessageDigest
objects. That's all hidden inside the EasyDigestOutputStream class.

Example 10.5. EasyFileDigest

import java.net.*;
import java.io.*;
import com.macfaq.security.*;
import com.macfaq.io.*;

Java I/O

209

public class EasyFileDigest {

 public static void main(String[] args) {

 if (args.length != 2) {
 System.err.println("Usage: java FileDigest url filename");
 return;
 }

 try {
 URL u = new URL(args[0]);
 FileOutputStream out = new FileOutputStream(args[1]);
 EasyDigestOutputStream edout = new EasyDigestOutputStream(out,
"SHA");
 StreamCopier.copy(u.openStream(), edout);
 edout.close();
 byte[] result = edout.getDigest();
 for (int i = 0; i < result.length; i++) {
 System.out.print(result[i] + " ");
 }
 System.out.println();

 }
 catch (MalformedURLException e) {
 System.err.println(args[0] + " is not a URL");
 }
 catch (Exception e) {System.err.println(e);}
 }
}

10.4 Encryption Basics

In this section we begin discussing cryptography. The packages, classes, and methods
discussed in this and following sections are part of Sun's separately available Java
Cryptography Extension (JCE). As a standard extension to Java, the JCE cryptography
classes live in the javax package rather than the java package. They are not part of the core
API. You will need to download JCE from http://java.sun.com/products/jce/index.html and
install it before continuing.

Because Sun is not legally allowed to export the JCE outside the U.S. and Canada, a number
of third parties in other countries have implemented their own versions. In particular,
Austria's Institute for Applied Information Processing and Communications has released the
IAIK_ JCE, which is free for noncommercial use and can be retrieved from
http://jcewww.iaik.tu-graz.ac.at/products/jce/index.php. Also notable is the more-or-less open
source Cryptix package, which can be downloaded from many mirror sites worldwide. See
http://www.cryptix.org/.

There are many different kinds of codes and ciphers, both for digital and nondigital data. To
be precise, a code encrypts data at word or higher levels. Ciphers encrypt data at the level of
letters or, in the case of digital ciphers, bytes. Most ciphers replace each byte in the original,
unencrypted data, called plaintext, with a different byte, thus producing encrypted data, called
ciphertext. There are many different possible algorithms for determining how plaintext is
transformed into ciphertext (encryption) and how the ciphertext is transformed back into
plaintext (decryption).

Java I/O

210

10.4.1 Keys

All the algorithms discussed here, and included in the JCE, are key-based. The key is a
sequence of bytes used to parameterize the cipher. The same algorithm will encrypt the same
plaintext differently when a different key is used. Decryption also requires a key. Good
algorithms make it effectively impossible to decrypt ciphertext without knowing the right key.

One common attack on cryptosystems is an exhaustive search through all possible keys.
Therefore, one popular measure of algorithmic security is key length. Shorter keys (56 bits
and less) are definitely breakable by brute force search with specialized equipment. Keys of
112 bits are considered to have the minimum key length required for reasonable security. The
U.S. government generally only allows the export of cryptography with key lengths of 40 bits
or less (easily crackable on commodity hardware) and occasionally allows the export of
encryption software that uses 56-bit keys with special permission. However, remember that a
reasonable key length is only a necessary condition for security. Long key length is far from a
sufficient condition. Long keys do not protect a weak algorithm or implementation.

The U.S. government's data encryption standard, DES, specifies a 56-bit
key. The first draft of this book stated that "it is widely believed that the
United States National Security Agency (NSA) and likely similar
organizations in other governments are capable of breaking this
encryption scheme" by brute force search through the key space.

While this book was in editing, John Gilmore and the Electronic
Frontier Foundation built a custom machine for less than $250,000 that
can crack DES encryption in about four days. (See Cracking DES:
Secrets of Encryption Research, Wiretap Politics & Chip Design,
O'Reilly & Associates, 1998.) Now that design costs are covered, future
versions can be built for about $50,000, and following Moore's Law[4]
this price should drop by half every 18 months.

Since brute force search depends only on the key length and is more or
less independent of the exact algorithm used, this conclusively
demonstrated that all encryption algorithms are insecure with key
lengths of 56 bits or less. Not surprisingly, the U.S. government has
never considered DES sufficient for the protection of its own classified
data.

10.4.2 Secret Key Versus Public Key Algorithms

There are two primary kinds of ciphers: symmetric (secret key) ciphers and asymmetric
(public key) ciphers. Symmetric ciphers such as DES use the same key to encrypt and decrypt
the data. Symmetric ciphers rely on the secrecy of the key for security. Anybody who knows
the key can both encrypt and decrypt data. Asymmetric ciphers, also known as public key
ciphers, use different keys for encryption and decryption. This makes the problem of key
exchange relatively trivial. To allow people to send you encrypted messages, you simply send

4 In 1964 Gordon Moore, who was to co-found Intel four years later, noted that computing power at a fixed price was doubling roughly every year. In
the late 1970s, the rate slowed to doubling merely every 18 months.

Java I/O

211

them your encryption (public) key. Even if the key is intercepted, this only allows the
interceptor to send you encrypted messages. It does not allow them to decode encrypted
messages intended for you.

The most famous public key cipher is the patented[5] RSA cipher, named after its inventors,
Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. RSA has the particularly nice
property that either key can be used for encryption or decryption. Generally, you'll keep one
key secret (your private key) and publish the corresponding key. People can send encrypted
messages to you using your public key that you decrypt with your private key. Furthermore,
by encrypting either a message or a hash code of the message with your private key, which
may then be decrypted with your public key, you can digitally sign messages. Any message
that can be successfully decrypted with your public key may be presumed to have come from
you, because only you could have encrypted it with your private key in the first place. (Of
course, if someone steals your private key, all bets are off.)

10.4.3 Block Versus Stream Ciphers

Encryption algorithms may also be divided into block and stream ciphers. A block cipher
always encrypts a fixed number of bytes with each pass. For example, DES encrypts eight-
byte blocks. If the data you're encrypting is not an integral multiple of the block size, the data
must be padded with extra bytes to round up to the block size. Stream ciphers, by contrast, act
on each bit or byte individually in the order it appears in the stream; padding is not required.

Block ciphers can operate in a variety of modes that use various algorithms to determine how
the result of the encryption of one block of data influences the encryption of subsequent
blocks. This ensures that identical blocks of plaintext do not produce identical blocks of
ciphertext, a weakness code breakers can exploit. To ensure that messages that start with the
same plaintext (for example, many email messages or form letters) don't also start with the
same ciphertext (also a weakness code breakers can exploit), these modes require a nonsecret
initialization vector, generally of the same size as a block, in order to begin the encoding.
Initialization vectors are not secret and are generally passed in the clear with the encrypted
data.

10.4.4 Key Management

Storing keys securely is a difficult problem. If the key is stored in hardware like a smart card,
it can be stolen. If the key is stored in a file on a disk, the disk can be stolen. Many basic PC
protection schemes are based on OS- or driver-level operations that refuse to mount the disk
without the proper password, but simply using a new OS (or driver or custom hardware)
allows the key or unencrypted data to be read off the disk.

Ideally, keys should not be stored anywhere except in a human being's memory. Human
beings, however, have a hard time remembering arbitrary 56-bit keys like
0x78A53666090BCC, much less more secure 64 -, 112-, or 128-bit keys. Therefore, keys
humans have to remember are generally stored as a string of text called a password. Even
then, the password is vulnerable to a rubber hose attack. Truly secure systems like those used
to protect bank vaults require separate passwords remembered by two or more individuals.

5 The patent expires September 20, 2000.

Java I/O

212

A text password is converted into the raw bits of the key according to some well-known,
generally public hash algorithm. The simplest such algorithm is to use the bytes of the
password as the key, but this weakens the security, because the bits are somewhat predictable.
For instance, the bits 01110001 (q) are very likely to be followed by the bits 01110101 (u).
The bits 11111111 (the nonprinting delete character) are unlikely to appear at all. Because of
the less than random nature of text, passwords must be longer than the corresponding keys.
Unfortunately, little is known (at least outside three-letter agencies) about just how long a
password is really required for reliable security.

To make matters worse, humans like passwords that are common words or phrases, like
"secret," "password," or "sex." Therefore, one of the most common attacks on password-based
systems is to attempt decryption with every word in a dictionary. To make these sorts of
attacks harder, passwords are commonly "salted": combined with a random number that's also
stored in the ciphertext. Salting can increase the space that a dictionary-based attack must
search by several orders of magnitude.

Humans also have an annoying tendency to write passwords down, especially when they need
to store many different passwords for different networks, computers, and web sites. These
written passwords can then be stolen. In Java 2, the java.security.KeyStore class is a
simple, password-protected digital lockbox for keys of all sorts. Keys can be stored in the key
store, and only the password for the key store needs to be remembered.[6]

This discussion has been necessarily brief. A lot of interesting details
have been skimmed over or omitted entirely. For the more complete
story, see the Crypt Cabal's Cryptography FAQ at
http://www.faqs.org/faqs/cryptography-faq/ or the books Java
Cryptography, by Jonathan Knudsen, or Applied Cryptography, by
Bruce Schneier.

10.5 The Cipher Class

The javax.crypto.Cipher class is a concrete class that encrypts arrays of bytes. The default
implementation performs no encryption, but you'll never see this. You'll only receive
subclasses that implement particular algorithms.

public class Cipher extends Object

The subclasses of Cipher that do real encryption are supplied by providers. Different
providers can provide different sets of algorithms. For instance, an authoritarian government
might only allow the installation of algorithms it knew how to crack, and create a provider
that provided those algorithms and only those algorithms. A corporation might want to install
algorithms that allowed for key recovery in the event that an employee left the company or
forgot their password.

JDK 1.2 only includes the Sun provider that supplies no encryption schemes, though it does
supply several digest algorithms. The JCE adds one more provider, SunJCE, which provides

6 For more details, see Java Security, by Scott Oaks (O'Reilly & Associates, 1998).

Java I/O

213

DES, triple DES (DESede), and password-based encryption (PBE). RSA's payware JSafe
product has a security provider that provides the RSA, DES, DESede, RC2, RC4, and RC5
cipher algorithms. Ireland's Baltimore Technologies payware J/Crypto software has a security
provider that provides the RSA, DES, DESede, RC2, RC4, and PBE cipher algorithms. Table
10.2 lists several of the available security providers and the algorithms they implement.

Table 10.2. Security Providers
Product
(Company,
Country)

URL Digests Ciphers License

JDK 1.2 (Sun,
U.S.) http://java.sun.com/products/jdk/1.2/ SHA,

MD5 None Free

JCE (Sun, U.S.) http://java.sun.com/products/jce/index.html
Blowfish,
DESede,
DES, PBE

Free

JSafe (RSA Data
Security, U.S.) http://www.rsa.com/rsa/products/jsafe/ SHA,

MD5

DESede,
DES,
RC2,
RC4, RC5

Payware

IAIK-JCE
(Institute for
Applied
Information
Processing and
Communications,
Austria)

http://wwwjce.iaik.tu-graz.ac.at/product/jce/index.php SHA,
MD5

DESede,
DES,
IDEA,
RC2, RC4

Free for
non-
commercial
use

JCP CDK (JCP
Computer
Services LTD,
U.K.)

http://www.jcp.co.uk/secProducts/security_cdk_index.html SHA,
MD5

DESede,
DES,
IDEA,
RSA, RC4

Payware

Cryptix (the
Internet) http://www.cryptix.org/

Haval,
MD2,
MD4,
MD5,
RIPE-
MD128,
RIPE-
MD160,
SHA

Blowfish,
CAST 5,
DES,
DESede,
El Gamal,
IDEA,
Loki,
RC2,
RC4,
Safer,
Speed,
Square

Open
source

J/Crypto
(Baltimore
Technologies,
Ireland)

http://www.baltimore.ie/products/jcrypto/index.html SHA,
MD5

DESede,
DES,
RSA,
RC4, PBE

Per-copy or
per-user
royalty

Most providers provide some unique algorithms. However, providers usually also include
some algorithms already supplied by other providers. At compile time, you do not know
which providers will be installed at runtime. Indeed, different people running your program
are likely to have different providers available, especially if you ship internationally.
Therefore, rather than using constructors, the Cipher class relies on two static
getInstance() factory methods that return Cipher objects initialized to support particular
transformations:

Java I/O

214

public static final Cipher getInstance(String transformation)
 throws NoSuchAlgorithmException, NoSuchPaddingException
public static final Cipher getInstance(String transformation, String
provider)
 throws NoSuchAlgorithmException, NoSuchProviderException,
 NoSuchPaddingException

The first argument, transformation, is a string that names the algorithm, mode, and padding
scheme to be used to encrypt or decrypt the data. Examples include "DES",
"PBEWithMD5AndDES", and "DES/ECB/PKCS5Padding". The optional second argument to
getInstance(), provider, names the preferred provider for the requested transformation. If
more than one installed provider supports the transformation, the one named in the second
argument will be used. Otherwise, an implementation will be selected from any available
provider that supports the transformation. If you request a transformation from
getInstance() that the provider does not support, a NoSuchAlgorithmException or
NoSuchPaddingException will be thrown. If you request a provider that is not installed, a
NoSuchProviderException is thrown.

The transformation string always includes the name of a cryptographic algorithm: for
example, DES. The standard names for common algorithms are listed in Table 10.3. Not all of
these algorithms are guaranteed to be available. In fact, JDK 1.2 doesn't supply any of these.
If you install JCE, you get access to Blowfish, DES, Triple DES, and PBEWithMD5AndDES.
You'll need a third-party provider to use RSA, IDEA, RC2, or RC4.

Table 10.3. JCE Standard Algorithm Names
Name Algorithm

DES
The U.S. Federal government's Data Encryption Standard as defined by NIST in FIPS 46-1 and
46-2; a symmetric 64-bit block cipher that uses a 56-bit key; see
http://www.itl.nist.gov/div897/pubs/fip46-2.htm.

DESede

DES e ncryption-d ecryption-e ncryption; triple DES; like DES, a 64-bit symmetric block cipher.
DES encryption with one 56-bit key is followed by decryption with a different 56-bit key, which
is followed by encryption with a third 56-bit key, effectively providing a 168-bit key space. It is
considered possible that the NSA cannot penetrate this algorithm.

PBEWithMD5

AndDES

Password-Based Encryption as defined in RSA Laboratories, "PKCS #5: Password-Based
Encryption Standard," Version 1.5, Nov. 1993; based on DES; also requires a salt; see
http://www.rsa.com/rsalabs/pkcs/pkcs-5/index.html.

PBEWithMD5

AndTripleDES

Password-Based Encryption as defined in RSA Laboratories, "PKCS #5: Password-Based
Encryption Standard," version 1.5, Nov. 1993; based on DES; also requires a salt and an
initialization vector; see http://www.rsa.com/rsalabs/pkcs/pkcs-5/index.html.

RSA

The patented Rivest, Shamir, and Adleman asymmetric cipher algorithm; RSA encryption as
defined in the RSA Laboratories Technical Note PKCS#1,
http://www.rsa.com/rsalabs/pkcs/pkcs-1/index.html. It is considered possible that the NSA
cannot penetrate this algorithm.[7] The patent expires in 2000.

7 I have a hunch (not necessarily shared by experts in the field) that RSA and similar algorithms will be broken someday by means much less
computationally intensive than brute force search. RSA's strength rests on the difficulty of factoring a large number into two large primes. However, it
is not known whether such factorization is fundamentally hard or whether we just don't yet know the right factoring algorithms. It seems obvious to
me that there's a lot of structure in the prime numbers that has yet to be exploited or understood by number theorists. For instance, the Goldbach
conjecture and the number of prime pairs are still unsolved questions. Therefore, I would not be surprised if far more efficient factorization algorithms
are discovered. Any such algorithm would severely reduce the strength of encryption schemes like RSA. Furthermore, there's been an explosion of
interest and research in quantum computing, following the discovery that RSA would be much more easily cracked by a quantum computer than by a
traditional one. This does not seem to be the case for public-key encryption schemes based on something other than prime factorization, for instance,
discrete logarithms or elliptic curves.

Java I/O

215

IDEA

The International Data Encryption Algorithm developed and patented by Dr. X. Lai and
Professor J. Massey of the Federal Institute of Technology in Zurich, Switzerland; a symmetrical
64-bit block cipher with a 128-bit key; the algorithm is published but patented. The patent
expires in 2010 in the U.S., 2011 in Europe; see http://www.ascom.com/infosec/idea.html.

RC2

A variable key-size symmetric 64-bit block cipher designed by Ron Rivest as a drop-in
replacement for DES; it is generally allowed to be exported with a 40-bit key size and sometimes
with a 56-bit key length (which probably means the NSA doesn't have much trouble breaking it);
see IETF RFC 2268, http://www.faqs.org/rfcs/.

RC4

A symmetric stream cipher algorithm proprietary to RSA Data Security, Inc. used in Netscape's
Secure Sockets Layer (SSL), among other products. RC4 is a stream cipher designed by Ron
Rivest; since the U.S. government occasionally allows this to be exported, the NSA probably
knows how to break it. See ftp://idea.sec.dsi.unimi.it/pub/security/crypt/code/rc4.revealed.gz and
Chapter 17.1 of Bruce Schneier's Applied Cryptography.

Blowfish
An unpatented fast, free, symmetric, variable key length (32 to 448 bits) 64-bit block cipher
designed by Bruce Schneier as a drop-in replacement for DES; see
http://www.counterpane.com/blowfish.html.

When faced with input longer than its block size, a block cipher must divide and possibly
reorder that input into blocks of the appropriate size. The algorithm used to do this is called a
mode. A mode name may be included in the transformation string separated from the
algorithm by a slash. If a mode is not selected, the provider supplies a default. Modes apply to
block ciphers in general and DES in particular, though other block ciphers like Blowfish may
use some of these modes as well. The named modes in the JCE are listed in Table 10.4. All of
these modes are supported by the JCE, but modes are algorithm-specific. If you try to use an
unsupported mode or a mode that doesn't match the algorithm, a
NoSuchAlgorithmException is thrown.

Table 10.4. Block Cipher Modes
Name Mode

ECB

Electronic CodeBook Mode; the 64-bit blocks are encrypted independently of each other and may also be
decrypted independently of each other, so this mode is useful when you want random access to an
encrypted file but in general is less secure than other modes. It does not require an initialization vector.
See "DES Modes of Operation," National Institute of Standards and Technology Federal Information
Processing Standards Publication 81, December 1980; see http://www.itl.nist.gov/div897/pubs/fip81.htm
(NIST FIPS PUB 81).

CBC Cipher Block Chaining Mode, as defined in NIST FIPS PUB 81; best choice for encrypting files; uses an
initialization vector.

CFB
K-bit Cipher FeedBack Mode, as defined in NIST FIPS PUB 81; best choice for real-time encryption of
streaming data such as network connections where each byte must be sent immediately rather than being
buffered; uses an initialization vector.

OFB
K-bit Output FeedBack Mode, as defined in NIST FIPS PUB 8; designed so that a 1-bit error in the
ciphertext only produces a 1-bit error in the plaintext; therefore, the best choice on noisy, error-prone
channels; uses an initialization vector.

PCBC Propagating Cipher Block Chaining, as used in pre-Version 5 Kerberos; similar to the more secure CBC
mode used in Kerberos Version 5 and later; uses an initialization vector.

If the algorithm is a block cipher like DES, then the transformation string may include a
padding scheme that's used to add extra bytes to the input to fill out the last block. The named
padding schemes are shown in Table 10.5. Algorithms that use modes must generally also
specify the padding scheme.

Java I/O

216

Table 10.5. Padding Schemes
Name Scheme
NoPadding Do not add any padding bytes.

PKCS5Padding RSA Laboratories, "PKCS #5: Password-Based Encryption Standard," Version 1.5, Nov. 1993;
see http://www.rsa.com/rsalabs/pkcs/pkcs-5/index.html.

SSL3Padding
A slight variation of PKCS5Padding used in Secure Sockets Layer (SSL); see "SSL Protocol
Version 3.0, November 18, 1996, section 5.2.3.2 (CBC block cipher)" at
http://home.netscape.com/eng/ssl3/ssl-toc.html.

There are six steps to encrypting data with a Cipher object:

1. Create the key for the cipher.
2. Retrieve the transformation you want to use with the Cipher.getInstance() factory

method.
3. Initialize the cipher by passing Cipher.ENCRYPT_MODE and the key to the init()

method.
4. Feed data to the update() method.
5. While there's more data, repeat step 4.
6. Invoke doFinal().

Steps 1 and 2 can be reversed, as is done in the flow chart for this process, shown in Figure
10.2. Decryption is almost an identical process except that you pass Cipher.DECRYPT_MODE
to init() instead of Cipher.ENCRYPT_MODE. The same engine can both encrypt and decrypt
data with a given transformation.

Java I/O

217

Figure 10.2. Encrypting data

Example 10.6 is a simple program that reads a filename and a password from the command
line and encrypts the file with DES. The key is generated from the bytes of the password in a
fairly predictable and insecure fashion. The cipher is initialized for encryption with the DES
algorithm in CBC mode with PKCS5Padding and a random initialization vector. The
initialization vector and its length are written at the start of the encrypted file so they'll be
conveniently available for decryption.

Data is read from the file in 64-byte blocks. This happens to be an integral multiple of the
eight-byte block size used by DES, but that's not necessary. The Cipher object buffers as
necessary to handle nonintegral multiples of the block size. Each block of data is fed into the
update() method to be encrypted. update() returns either encrypted data or null if it
doesn't have enough data to fill out a block. If it returns the encrypted data, that's written into
the output file. When no more input data remains, the cipher's doFinal() method is invoked
to pad and flush any remaining data. Then both input and output files are closed.

Example 10.6. FileEncryptor

import java.io.*;
import java.security.*;

Java I/O

218

import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;

public class FileEncryptor {

 public static void main(String[] args) {

 if (args.length != 2) {
 System.err.println("Usage: java FileEncryptor filename password");
 return;
 }

 String filename = args[0];
 String password = args[1];

 if (password.length() < 8) {
 System.err.println("Password must be at least eight characters
long");
 }

 try {
 FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout = new FileOutputStream(args[0] + ".des");

 // Create a key.
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);

 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/CBC/PKCS5Padding");
 des.init(Cipher.ENCRYPT_MODE, desKey);

 // Write the initialization vector onto the output.
 byte[] iv = des.getIV();
 DataOutputStream dout = new DataOutputStream(fout);
 dout.writeInt(iv.length);
 dout.write(iv);

 byte[] input = new byte[64];
 while (true) {
 int bytesRead = fin.read(input);
 if (bytesRead == -1) break;
 byte[] output = des.update(input, 0, bytesRead);
 if (output != null) dout.write(output);
 }

 byte[] output = des.doFinal();
 if (output != null) dout.write(output);
 fin.close();
 dout.flush();
 dout.close();

 }
 catch (InvalidKeySpecException e) {System.err.println(e);}
 catch (InvalidKeyException e) {System.err.println(e);}

Java I/O

219

 catch (NoSuchAlgorithmException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 catch (NoSuchPaddingException e) {System.err.println(e);}
 catch (BadPaddingException e) {System.err.println(e);}
 catch (IllegalBlockSizeException e) {System.err.println(e);}
 catch (IOException e) {System.err.println(e);}
 }
}

There are a lot of different exceptions that must be caught. Except for the usual IOException,
these are all subclasses of java.security.GeneralSecurityException. You could save
some space simply by catching that. For example:

catch (GeneralSecurityException e) {
 System.err.println(e);
 e.printStackTrace();
 }

One exception I'll note in particular (because it threw me more than once while writing this
chapter): if you should see a NoSuchAlgorithmException, it probably means you haven't
properly installed the JCE or other provider that supports your algorithm.

java.security.NoSuchAlgorithmException: Algorithm DES not available
java.security.NoSuchAlgorithmException: Algorithm DES not available
 at javax.crypto.JceSecurity.getImpl(Compiled Code)
 at
javax.crypto.SecretKeyFactory.getInstance(SecretKeyFactory.java:105)
 at FileEncryptor.main(Compiled Code)

Adding the JCE classes to your class path is enough to get the program to compile, but to
actually run it, you'll need to add the following line to the java.security file in the
jre/lib/security directory in your JDK folder:

security.provider.2=com.sun.crypto.provider.SunJCE

To be honest, this is far too complicated and error-prone. For one thing, every time you
upgrade your JDK, this property will get overwritten and you'll have to do it all over again.
Sun really needs a better installer for the JCE that handles the setting of the necessary
properties.

Decrypting a file is similar, as Example 10.7 shows. The name of the input and output files
and the password are read from the command line. A DES key factory converts the password
to a DES secret key. Then both input and output files are opened in file streams, and a data
input stream is chained to the input file. The main reason for this is to read the initialization
vector. First the integer size is read, then the actual bytes of the vector. The resulting array is
used to construct an IvParameterSpec object that will be used along with the key to initialize
the cipher. Once the cipher has been initialized, the data is copied from input to output much
as before.

Java I/O

220

Example 10.7. FileDecryptor

import java.io.*;
import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;

public class FileDecryptor {

 public static void main(String[] args) {

 if (args.length != 3) {
 System.err.println("Usage: java FileDecryptor infile outfile
password");
 return;
 }

 String infile = args[0];
 String outfile = args[1];
 String password = args[2];

 if (password.length() < 8) {
 System.err.println("Password must be at least eight characters
long");
 }

 try {
 FileInputStream fin = new FileInputStream(infile);
 FileOutputStream fout = new FileOutputStream(outfile);

 // Create a key.
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);

 // Read the initialization vector.
 DataInputStream din = new DataInputStream(fin);
 int ivSize = din.readInt();
 byte[] iv = new byte[ivSize];
 din.readFully(iv);
 IvParameterSpec ivps = new IvParameterSpec(iv);

 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/CBC/PKCS5Padding");
 des.init(Cipher.DECRYPT_MODE, desKey, ivps);

 byte[] input = new byte[64];
 while (true) {
 int bytesRead = fin.read(input);
 if (bytesRead == -1) break;
 byte[] output = des.update(input, 0, bytesRead);
 if (output != null) fout.write(output);
 }

 byte[] output = des.doFinal();
 if (output != null) fout.write(output);
 fin.close();
 fout.flush();
 fout.close();

Java I/O

221

 }
 catch (InvalidKeySpecException e) {System.err.println(e);}
 catch (InvalidKeyException e) {System.err.println(e);}
 catch (InvalidAlgorithmParameterException e) {System.err.println(e);}
 catch (NoSuchAlgorithmException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 catch (NoSuchPaddingException e) {System.err.println(e);}
 catch (BadPaddingException e) {System.err.println(e);}
 catch (IllegalBlockSizeException e) {System.err.println(e);}
 catch (IOException e) {System.err.println(e);}
 }
}

Let's investigate some of the methods used in Examples Example 10.6 and Example 10.7 in
more detail.

10.5.1 init()

Before a Cipher object can encrypt or decrypt data, it requires four things:

• The mode to operate in[8]
• A key
• Algorithm parameters, e.g., an initialization vector
• A source of randomness

The init() method prepares the cipher by providing these four quantities or reasonable
defaults. There are six overloaded variants:

public final void init(int opmode, Key key) throws InvalidKeyException
public final void init(int opmode, Key key, SecureRandom random)
 throws InvalidKeyException
public final void init(int opmode, Key key, AlgorithmParameterSpec params)
 throws InvalidKeyException, InvalidAlgorithmParameterException
public final void init(int opmode, Key key, AlgorithmParameterSpec params,
 SecureRandom random) throws InvalidKeyException,
 InvalidAlgorithmParameterException
public final void init(int opmode, Key key, AlgorithmParameters params)
 throws InvalidKeyException, InvalidAlgorithmParameterException
public final void init(int opmode, Key key, AlgorithmParameters params,
 SecureRandom random) throws InvalidKeyException,
 InvalidAlgorithmParameterException

You can reuse a cipher object by invoking its init() method a second time. If you do, all
previous information in the object is lost.

10.5.1.1 Mode

The mode determines whether this cipher is used for encryption or decryption. The mode
argument has two possible values, which are both mnemonic constants defined by the Cipher
class: Cipher.ENCRYPT_MODE and Cipher.DECRYPT_MODE .

8 This is the mode the cipher should operate in; that is, encryption or decryption; this is not a block cipher mode.

Java I/O

222

public static final int ENCRYPT_MODE
public static final int DECRYPT_MODE

10.5.1.2 Key

The key is an instance of the java.security.Key interface that's used to either encrypt or
decrypt the data. Symmetric ciphers like DES use the same key for both encryption and
decryption. Asymmetric ciphers like RSA use different keys for encryption or decryption.
Keys are generally dependent on the cipher. For instance, an RSA key cannot be used to
encrypt a DES file or vice versa. If the key you provide doesn't match the cipher's algorithm,
an InvalidKeyException is thrown.

To create a key, you first use the bytes of the key to construct a KeySpec for the algorithm
you're using. Key specs are instances of the java.security.spec.KeySpec interface.
Algorithm-specific implementations in the java.security.spec package include
EncodedKeySpec, X509EncodedKeySpec, PKCS8EncodedKeySpec, DSAPrivateKeySpec, and
DSAPublicKeySpec. Algorithm-specific implementations in the javax.crypto.spec
package include DESKeySpec, DESedeKeySpec, DHPrivateKeySpec, DHPublicKeySpec,
PBEKeySpec, RSAPrivateKeyCrtSpec, RSAPrivateKeySpec, and RSAPublicKeySpec. For
example, if password is a string whose bytes are to form a DES key, the following creates a
DESKeySpec object that can be used to encrypt or decrypt:

byte[] desKeyData = password.getBytes();
DESKeySpec desKeySpec = new DESKeySpec(desKeyData);

Once you've constructed a key specification from the raw bytes of the key, you use a key
factory to generate the actual key. A key factory is normally an instance of an algorithm-
specific subclass of java.security.KeyFactory. It's retrieved by passing the name of the
algorithm to the factory method javax.crypto.SecretKeyFactory.getInstance(). For
example:

SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
SecretKey desKey = keyFactory.generateSecret(desKeySpec);

Providers should supply the necessary key factories and spec classes for any algorithms they
implement.

A few algorithms, most notably Blowfish, use raw bytes as a key without any further
manipulations. In these cases there may not be a key factory for the algorithm. Instead, you
simply use the key spec as the secret key. For example:

byte[] blowfishKeyData = password.getBytes();
SecretKeySpec blowfishKeySpec = new SecretKeySpec(blowfishKeyData,
 "Blowfish");
Cipher blowfish = Cipher.getInstance("Blowfish/ECB/PKCS5Padding");
blowfish.init(Cipher.ENCRYPT_MODE, blowfishKeySpec);

Most of the examples in this book use very basic and not particularly secure passwords as
keys. Stronger encryption requires more random keys. The javax.crypto.KeyGenerator
class provides methods that generate random keys for any installed algorithm. For example:

KeyGenerator blowfishKeyGenerator = KeyGenerator.getInstance("Blowfish");

Java I/O

223

SecretKey blowfishKey = blowfishKeyGenerator.generateKey();
Cipher blowfish = Cipher.getInstance("Blowfish/ECB/PKCS5Padding");
blowfish.init(Cipher.ENCRYPT_MODE, blowfishKey);

Generating random keys opens up the issue of how one stores and transmits the secret keys.
To my way of thinking, random key generation makes more sense in public key cryptography,
where all keys that need to be transmitted can be transmitted in the clear.

10.5.1.3 Algorithm parameters

The third possible argument to init() is a series of instructions for the cipher contained in an
instance of the java.security.spec.AlgorithmParameterSpec interface or an instance of
the java.security.AlgorithmParameters class. The AlgorithmParameterSpec interface
declares no methods or constants. It's simply a marker for more specific subclasses that can
provide additional, algorithm-dependent parameters for specific algorithms and modes (for
instance, an initialization vector). If the algorithm parameters you provide don't fit the cipher's
algorithm, an InvalidAlgorithmParameterException is thrown. The JCE provides several
AlgorithmParameterSpec classes in the javax.crypto.spec package, including
IVParameterSpec, which can set an initialization vector for modes that need it (CBC, CFB,
and OFB), and PBEParameterSpec for password-based encryption.

10.5.1.4 Source of randomness

The final possible argument to init() is a SecureRandom object. This argument is only used
when in encryption mode. This is an instance of the java.security.SecureRandom class, a
subclass of java.util.Random that uses a pseudo-random number algorithm based on the
SHA-1 hash algorithm instead of java.util.Random's linear congruential formula.
java.util.Random's random numbers aren't random enough for strong cryptography. In this
book, I will simply accept the default source of randomness.

10.5.2 update()

Once the init() method has prepared the cipher for use, the update() method feeds data
into it, encrypting or decrypting as it goes. There are four overloaded variants of this method.
The first two return the encrypted or decrypted bytes:

public final byte[] update(byte[] input) throws IllegalStateException
public final byte[] update(byte[] input, int inputOffset, int inputLength)
 throws IllegalStateException

These may return null if you're using a block cipher and not enough data has been provided
to fill a block. The input data to be encrypted or decrypted is passed in as an array of bytes.
Optional offsets and lengths may be used to select a particular subarray to be processed.
update() throws an IllegalStateException if the cipher has not been initialized or it has
already been finished with doFinal(). In either case, it's not prepared to accept data until
init() is called.

The second two variants of update() store the output in a buffer byte array passed in as the
fourth argument and return the number of bytes stored in the buffer:

Java I/O

224

public final int update(byte[] input, int inputOffset, int inputLength,
 byte[] output) throws IllegalStateException, ShortBufferException
public final int update(byte[] input, int inputOffset, int inputLength,
 byte[] output, int outputOffset) throws IllegalStateException,
 ShortBufferException

You can also provide an offset into the output array to specify where in the array data should
be stored. An offset is useful when you want to repeatedly encrypt/decrypt data into the same
array until the data is exhausted. You cannot, however, specify a length for the output data,
because it's up to the cipher to determine how many bytes of data it's willing to provide. The
trick here is to make sure your output buffer is big enough to hold the processed output. Most
of the time, the number of output bytes is close to the number of input bytes. However, block
ciphers sometimes return fewer bytes on one call and more on the next. You can use the
getOutputSize() method to determine an upper bound on the amount of data that will be
returned if you were to pass in inputLength bytes of data:

public final int getOutputSize(int inputLength) throws
IllegalStateException

If you don't do this and your output buffer is too small, update() throws a
ShortBufferException. In this case, the cipher stores the data for the next call to update().

Once you run out of data to feed to update(), invoke doFinal(). This signals the cipher that
it should pad the data with extra bytes if necessary and encrypt or decrypt all remaining bytes.

10.5.3 doFinal()

The doFinal() method is responsible for reading one final array of data, wrapping that up
with any data remaining in the cipher's internal buffer, adding any extra padding that might be
necessary, and then returning the last chunk of encrypted or decrypted data. The simplest
implementation of doFinal()takes no arguments and returns an array of bytes containing the
encrypted or decrypted data. This is used to flush out any data that still remains in the cipher's
buffer.

public final byte[] doFinal()
 throws IllegalStateException, IllegalBlockSizeException,
BadPaddingException

An IllegalStateException means that the cipher is not ready to be finished; it has not been
initialized; it has been initialized but no data has been fed into it; or it has already been
finished and not yet reinitialized. An IllegalBlockSizeException is thrown by encrypting
block ciphers if no padding has been requested, and the total number of bytes fed into the
cipher is not a multiple of the block size. A BadPaddingException is thrown by a decrypting
cipher that does not find the padding it expects to see.

There are five overloaded variants of doFinal() that allow you to provide additional input
data or to place the result in an output buffer you supply. These variants are:

public final int doFinal(byte[] output, int outputOffset)
 throws IllegalStateException, IllegalBlockSizeException,
 ShortBufferException, BadPaddingException

Java I/O

225

public final byte[] doFinal(byte[] input)
 throws IllegalStateException, IllegalBlockSizeException,
BadPaddingException
public final byte[] doFinal(byte[] input, int inputOffset, int inputLength)
 throws IllegalStateException, IllegalBlockSizeException,
BadPaddingException
public final int doFinal(byte[] input, int inputOffset, int inputLength,
 byte[] output) throws IllegalStateException, ShortBufferException,
 IllegalBlockSizeException, BadPaddingException
public final int doFinal(byte[] input, int inputOffset, int inputLength,
 byte[] output, int outputOffset) throws IllegalStateException,
 ShortBufferException, IllegalBlockSizeException, BadPaddingException

All of the arguments are essentially the same as they are for update(). output is a buffer
where the cipher places the encrypted or decrypted data. outputOffset is the position in the
output buffer where this data is placed. input is a byte array that contains the last chunk of
data to be encrypted. inputOffset and inputLength select a subarray of input to be
encrypted or decrypted.

10.5.4 Accessor Methods

As well as the methods that actually perform the encryption, the Cipher class has several
accessor methods that provide various information about the cipher. The getProvider()
method returns a reference to the Provider that's implementing this algorithm. This is an
instance of a subclass of java.security.Provider.

public final Provider getProvider()

For block ciphers, getBlockSize()returns the number of bytes in a block. For nonblock
methods, it returns 0.

public final int getBlockSize()

The getOutputSize() method tells you how many bytes of output will be produced by this
cipher for a given number of bytes of input. You generally use this before calling doFinal()
or update() to make sure you provide a large enough byte array for the output, given
inputLength additional bytes of data.

public final int getOutputSize(int inputLen) throws IllegalStateException

The length returned is the maximum number of bytes that may be needed. In some cases
fewer bytes may actually be returned when doFinal() is called. An
IllegalStateException is thrown if the cipher is not ready to accept more data.

The getIV() method returns a new byte array containing this cipher's initialization vector. It's
useful when the system picks a random initialization vector, and you need to find out what
that vector is so you can pass it to the decryption program, perhaps by storing it with the
encrypted data.

public final byte[] getIV()

Java I/O

226

getIV() returns null if the algorithm doesn't use initialization vectors or if the initialization
vector isn't yet set.

10.6 Cipher Streams

The Cipher class is the engine that powers encryption. Chapter 10 and Example 10.7 showed
how this class could be used to encrypt and decrypt data read from a stream. The
javax.crypto package also provides CipherInputStream and CipherOutputStream filter
streams that use a Cipher object to encrypt or decrypt data passed through the stream. Like
DigestInputStream and DigestOutputStream, they aren't a great deal of use in themselves.
However, you can chain them in the middle of several other streams. For example, if you
chain a GZIPOutputStream to a CipherOutputStream that is chained to a
FileOutputStream, you can compress, encrypt and write to a file, all with a single call to
write(). This is shown in Figure 10.3. Similarly, you might read from a URL with the input
stream returned by openStream(), decrypt the data read with a CipherInputStream, then
check the decrypted data with a MessageDigestInputStream, then finally pass it all into an
InputStreamReader for conversion from ISO Latin-1 to Unicode. On the other side of the
connection, a web server could read a file from its hard drive, write the file onto a socket with
an output stream, calculate a digest with a DigestOutputStream, and encrypt the file with a
CipherOutputStream.

Figure 10.3. The CipherOutputStream in the middle of a chain of filters

10.6.1 CipherInputStream

CipherInputStream is a subclass of FilterInputStream.

public class CipherInputStream extends FilterInputStream

CipherInputStream has all the usual methods of any input stream, like read(), skip(), and
close(). It overrides seven of these methods to do its filtering:

public int read() throws IOException
public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException
public long skip(long n) throws IOException
public int available() throws IOException
public void close() throws IOException
public boolean markSupported()

These methods are all invoked much as they would be for any other input stream. However,
as the data is read, the stream's Cipher object either decrypts or encrypts the data. (Assuming
your program wants to work with unencrypted data, as is most commonly the case, the cipher
input stream will decrypt the data.)

Java I/O

227

A CipherInputStream object contains a Cipher object that's used to decrypt or encrypt all
data read from the underlying stream before passing it to the eventual source. This Cipher
object is set in the constructor. Like all filter stream constructors, this constructor takes
another input stream as an argument:

public CipherInputStream(InputStream in, Cipher c)

The Cipher object used here must be a properly initialized instance of
javax.crypto.Cipher, most likely returned by Cipher.getInstance(). This Cipher object
must also have been initialized for either encryption or decryption with init() before being
passed into the constructor. There is also a protected constructor that might be used by
subclasses that want to implement their own, non-JCE-based encryption scheme:

protected CipherInputStream(InputStream in)

CipherInputStream overrides most methods declared in FilterInputStream. Each of these
makes the necessary adjustments to handle encrypted data. For example, skip() skips the
number of bytes after encryption or decryption, which is important if the ciphertext does not
have the same length as the plaintext. The available() method also returns the number of
bytes available after encryption or decryption. The markSupported() method returns false;
you cannot mark and reset a cipher input stream, even if the underlying class supports
marking and resetting. Allowing this would confuse many encryption algorithms. However,
you can make a cipher input stream the underlying stream of another class like
BufferedInputStream, which does support marking and resetting.

Strong encryption schemes have the distinct disadvantage that changing even a single bit in
the data can render the entire file unrecoverable gibberish. Therefore, it's useful to combine
encryption with a digest so you can tell whether a file has been modified. Example 10.8 uses
CipherInputStream to DES-encrypt a file named on the command line, but that's not all. The
ciphertext is also digested and the digest saved so corruption can be detected.

Example 10.8. DigestEncryptor

import java.io.*;
import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;

public class DigestEncryptor {

 public static void main(String[] args) {

 if (args.length != 2) {
 System.err.println("Usage: java DigestEncryptor filename password");
 return;
 }

 String filename = args[0];
 String password = args[1];

Java I/O

228

 if (password.length() < 8) {
 System.err.println("Password must be at least eight characters
long");
 }

 try {
 FileInputStream fin = new FileInputStream(filename);
 FileOutputStream fout = new FileOutputStream(filename +".des");
 FileOutputStream digest = new FileOutputStream(filename +
".des.digest");

 // Create the key.
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);

 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.ENCRYPT_MODE, desKey);
 CipherInputStream cin = new CipherInputStream(fin, des);

 // Use SHA digest algorithm.
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(cin, sha);

 byte[] input = new byte[64];
 while (true) {
 int bytesRead = din.read(input);
 if (bytesRead == -1) break;
 fout.write(input, 0, bytesRead);
 }

 digest.write(sha.digest());
 digest.close();
 din.close();
 fout.flush();
 fout.close();
 }
 catch (InvalidKeySpecException e) {System.err.println(e);}
 catch (InvalidKeyException e) {System.err.println(e);}
 catch (NoSuchAlgorithmException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 catch (NoSuchPaddingException e) {System.err.println(e);}
 catch (IOException e) {System.err.println(e);}
 }
}

The file is read with a file input stream chained to a cipher input stream chained to a digest
input stream. As the file is read, encrypted, and digested, it's written into an output file. After
the file has been completely read, the digest is written into another file so it can later be
compared with the first file. Because the cipher input stream appears before the digest input
stream in the chain, the digest is of the ciphertext, not the plaintext. If you read the file with a
file input stream chained to a digest input stream chained to a cipher input stream, you would
digest the plaintext. In fact, you could even use a file input stream chained to a digest input
stream chained to a cipher input stream chained to a second digest input stream to get digests
of both the plain- and ciphertext, though I won't do that here.

Java I/O

229

10.6.2 CipherOutputStream

CipherOutputStream is a subclass of FilterOutputStream.

public class CipherOutputStream extends FilterOutputStream

Each CipherOutputStream object contains a Cipher object used to decrypt or encrypt all
data passed as arguments to the write() method before writing it to the underlying stream.
This Cipher object is set in the constructor. Like all filter stream constructors, this constructor
takes another input stream as an argument:

public CipherOutputStream(OutputStream out, Cipher c)

The Cipher object used here must be a properly initialized instance of
javax.crypto.Cipher, most likely returned by Cipher.getInstance(). The Cipher object
c should be initialized for encryption or decryption by calling init() before being passed to
the CipherOutputStream() constructor. There is also a protected constructor that might be
used by subclasses that want to implement their own, non-JCE-based encryption scheme:

protected CipherOutputStream(OutputStream out)

CipherOutputStream has all the usual methods of any output stream, like write(),
flush(), and close(). It overrides five of these methods to do its filtering:

public void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException
public void flush() throws IOException
public void close() throws IOException

Clients use these methods the same way they use them in any output stream. Before the data
is written, the stream's cipher either decrypts or encrypts the data. Each of these five methods
makes the necessary adjustments to handle encrypted data. For example, the flush() method
(which is invoked by the close() method as well) calls doFinal() on the Cipher object to
make sure it has finished padding and encrypting all the data before it flushes the final data to
the underlying stream.

There are no new methods in CipherOutputStream not declared in the superclass. Anything
else you need to do, such as getting the cipher's initialization vector, must be handled by the
Cipher object.

Example 10.9 uses CipherOutputStream to decrypt files encrypted by the DigestEncryptor
of Example 10.8. A digest input stream chained to a file input stream checks the digest of the
ciphertext as it's read from the file. If the digest does not match, an error message is printed.
The file is still written into the output file, since—depending on the algorithm and mode
used—it may be partially legible, especially if the error does not occur until relatively late in
the encrypted data.

Java I/O

230

Example 10.9. DigestDecryptor

import java.io.*;
import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;

public class DigestDecryptor {

 public static void main(String[] args) {

 if (args.length != 3) {
 System.err.println("Usage: java DigestDecryptor infile outfile
password");
 return;
 }

 String infile = args[0];
 String outfile = args[1];
 String password = args[2];

 if (password.length() < 8) {
 System.err.println("Password must be at least eight characters
long");
 }

 try {
 FileInputStream fin = new FileInputStream(infile);
 FileOutputStream fout = new FileOutputStream(outfile);

 // Get the digest.
 FileInputStream digestIn = new FileInputStream(infile + ".digest");
 DataInputStream dataIn = new DataInputStream(digestIn);
 // SHA digests are always 20 bytes long .
 byte[] oldDigest = new byte[20];
 dataIn.readFully(oldDigest);
 dataIn.close();

 // Create a key.
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);

 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.DECRYPT_MODE, desKey);
 CipherOutputStream cout = new CipherOutputStream(fout, des);

 // Use SHA digest algorithm.
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(fin, sha);

 byte[] input = new byte[64];
 while (true) {
 int bytesRead = din.read(input);
 if (bytesRead == -1) break;
 cout.write(input, 0, bytesRead);
 }

Java I/O

231

 byte[] newDigest = sha.digest();
 if (!MessageDigest.isEqual(newDigest, oldDigest)) {
 System.out.println("Input file appears to be corrupt!");
 }

 din.close();
 cout.flush();
 cout.close();
 }
 catch (InvalidKeySpecException e) {System.err.println(e);}
 catch (InvalidKeyException e) {System.err.println(e);}
 catch (NoSuchAlgorithmException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 catch (NoSuchPaddingException e) {System.err.println(e);}
 catch (IOException e) {System.err.println(e);}
 }
}

10.7 File Viewer, Part 5

Handling a particular form of encryption in the FileDumper program is not hard. Handling
the general case is not. It's not that decryption is difficult. In fact, it's quite easy. However,
most encryption schemes require more than simply providing a key. You also need to know
an assortment of algorithm parameters, like initialization vector, salt, iteration count, and
more. Higher-level protocols are usually used to pass this information between the encryption
program and the decryption program. The most common type of protocol is to simply store
the information unencrypted at the beginning of the encrypted file. You saw an example of
this in the FileDecryptor and FileEncryptor programs. The FileEncryptor chose a
random initialization vector and placed its length and the vector itself at the beginning of the
encrypted file so the decryptor could easily find it.

For the next iteration of the FileDumper program, I am going to use the simplest available
encryption scheme, DES in ECB mode with PKCS5Padding. Furthermore, the key will
simply be the first eight bytes of the password. This is probably the least secure algorithm
discussed in this chapter; however, it doesn't require an initialization vector, salt, or other
meta-information to be passed between the encryptor and the decryptor. Because of the nature
of filter streams, it is relatively straightforward to add decryption services to the FileDumper
program, assuming you know the format in which the encrypted data is stored. Generally,
you'll want to decrypt a file before dumping it. This does not require a new dump filter.
Instead, I simply pass the file through a cipher input stream before passing it to one of the
dump filters.

When a file is both compressed and encrypted, compression is usually performed first.
Therefore, we'll always decompress after decrypting. The reason is twofold. Since encryption
schemes make data appear random, and compression works by taking advantage of
redundancy in nonrandom data, it is difficult, if not impossible, to compress encrypted files.
In fact, one quick test of how good an encryption scheme is checks whether encrypted files
are compressible; if they are, it's virtually certain the encryption scheme is flawed and can be
broken. Conversely, compressing files before encrypting them removes redundancy from the
data that a code breaker can exploit. Therefore, it may serve to shore up some weaker
algorithms. On the other hand, some algorithms have been broken by taking advantage of

Java I/O

232

magic numbers and other known plaintext sequences that some compression programs insert
into the encrypted data. Thus, there's no guarantee that compressing files before encrypting
them will make them harder to penetrate. The best option is simply to use the strongest
encryption that's available to you.

We'll let the user set the password with the -password command-line switch. The next
argument after -password is assumed to be the password. Example 10.10, FileDumper5,
demonstrates.

Example 10.10. FileDumper5

import java.io.*;
import java.util.zip.*;
import java.security.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import com.macfaq.io.*;

public class FileDumper5 {

 public static final int ASC = 0;
 public static final int DEC = 1;
 public static final int HEX = 2;
 public static final int SHORT = 3;
 public static final int INT = 4;
 public static final int LONG = 5;
 public static final int FLOAT = 6;
 public static final int DOUBLE = 7;

 public static void main(String[] args) {

 if (args.length < 1) {
 System.err.println(
 "Usage: java FileDumper5 [-ahdsilfx] [-little] [-gzip|-deflated] "
 + "[-password password] file1...");
 }

 boolean bigEndian = true;
 int firstFile = 0;
 int mode = ASC;
 boolean deflated = false;
 boolean gzipped = false;
 String password = null;

 // Process command-line switches.
 for (firstFile = 0; firstFile < args.length; firstFile++) {
 if (!args[firstFile].startsWith("-")) break;
 if (args[firstFile].equals("-h")) mode = HEX;
 else if (args[firstFile].equals("-d")) mode = DEC;
 else if (args[firstFile].equals("-s")) mode = SHORT;
 else if (args[firstFile].equals("-i")) mode = INT;
 else if (args[firstFile].equals("-l")) mode = LONG;
 else if (args[firstFile].equals("-f")) mode = FLOAT;
 else if (args[firstFile].equals("-x")) mode = DOUBLE;
 else if (args[firstFile].equals("-little")) bigEndian = false;
 else if (args[firstFile].equals("-deflated") && !gzipped) deflated =
true;
 else if (args[firstFile].equals("-gzip") && !deflated) gzipped =
true;

Java I/O

233

 else if (args[firstFile].equals("-password")) {
 password = args[firstFile+1];
 firstFile++;
 }
 }

 for (int i = firstFile; i < args.length; i++) {
 try {
 InputStream in = new FileInputStream(args[i]);
 dump(in, System.out, mode, bigEndian, deflated, gzipped, password);

 if (i < args.length-1) { // more files to dump
 System.out.println();
 System.out.println("--------------------------------------");
 System.out.println();
 }
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
 }

 public static void dump(InputStream in, OutputStream out, int mode,
 boolean bigEndian, boolean deflated, boolean gzipped, String password)
 throws IOException {

 // The reference variable in may point to several different objects
 // within the space of the next few lines.
 if (password != null) {
 // Create a key.
 try {
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);

 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.DECRYPT_MODE, desKey);

 in = new CipherInputStream(in, des);
 }
 catch (GeneralSecurityException e) {
 throw new IOException(e.getMessage());
 }
 }

 if (deflated) {
 in = new InflaterInputStream(in);
 }
 else if (gzipped) {
 in = new GZIPInputStream(in);
 }

Java I/O

234

 // could really pass to FileDumper3 at this point
 if (bigEndian) {
 DataInputStream din = new DataInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new IntFilter(din);
 break;
 case SHORT:
 in = new ShortFilter(din);
 break;
 case LONG:
 in = new LongFilter(din);
 break;
 case DOUBLE:
 in = new DoubleFilter(din);
 break;
 case FLOAT:
 in = new FloatFilter(din);
 break;
 default:
 }
 }
 else {
 LittleEndianInputStream lin = new LittleEndianInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new LEIntFilter(lin);
 break;
 case SHORT:
 in = new LEShortFilter(lin);
 break;
 case LONG:
 in = new LELongFilter(lin);
 break;
 case DOUBLE:
 in = new LEDoubleFilter(lin);
 break;
 case FLOAT:
 in = new LEFloatFilter(lin);
 break;
 default:
 }
 }
 StreamCopier.copy(in, out);
 in.close();
 }
}

Java I/O

235

Note how little we had to change. I simply imported two more packages and added a
command-line switch and about a dozen lines of code (which could easily have been half that)
to build a Cipher object and add a cipher input stream to the chain. Other encryption
schemes, like password-based encryption, would not be hard to support either. The main
difficulty lies in deciding exactly how the key would be entered, since not all schemes have
keys that map to passwords in a straightforward way. That's left as an exercise for the reader.

Java I/O

236

Part IV: Advanced and Miscellaneous Topics

Java I/O

237

Chapter 11. Object Serialization
The last several chapters have shown you how to read and write Java's fundamental data types
(byte, int, String, etc.). However, there's been one glaring omission. Java is a fully object-
oriented language; and yet aside from the special case of strings, you haven't seen any
general-purpose methods for reading or writing objects.

Object serialization, first used in the context of Remote Method Invocation (RMI) and later
for JavaBeans, addresses this need. The java.io.ObjectOutputStream class provides a
writeObject() method you can use to write a Java object onto a stream. The
java.io.ObjectInputStream class has a readObject() method you can use to read an
object from a stream. In this chapter you'll learn how to use these two classes to read and
write objects as well as how to customize the format used for serialization.

11.1 Reading and Writing Objects

Object serialization saves an object's state in a sequence of bytes so that the object can be
reconstituted from those bytes at a later time. Serialization in Java was first developed for use
in RMI. RMI allows an object in one virtual machine to invoke methods in an object in
another virtual machine, possibly in a different computer on the other side of the planet, by
sending arguments and return values across the Internet. This requires a way to convert those
arguments and return values to and from byte streams. It's a trivial task for primitive data
types, but you need to be able to convert objects as well. That's what object serialization
provides.

Object serialization is also used in the JavaBeans component software architecture. Bean
classes are loaded into visual builder tools like the BeanBox (shown in Figure 11.1) or
Borland's JBuilder. The designer then customizes the beans by assigning fonts, sizes, text, and
other properties to each bean and connects them together with events. For instance, a button
bean generally has a label property that is encoded as a string of text ("Start" in the button in
Figure 11.1). The designer can change this text.

Figure 11.1. The BeanBox showing a Juggler bean and an ExplicitButton bean

Once the designer has assembled and customized the beans, the form containing all the beans
must be saved. It's not enough to save the bean classes themselves; the customizations that
have been applied to the beans must also be saved. That's where serialization comes in: it

Java I/O

238

stores the bean as an object and thus includes any customizations, which are nothing more
than the values of the bean's fields. The customized beans are stored in a .ser file, which is
often placed inside a JAR archive. This JAR archive can then be loaded into web browsers as
an applet; then both the classes and the objects used by the applet are loaded into the virtual
machine. Thus, instead of having to write long init() methods that create and initialize
many different components and objects, you can assemble the components in a visual tool,
assign properties to them, save the whole group, and then load them back in. None of this
requires any extra code.

As long as you're using objects to store your application's state, object serialization provides a
predefined format you can use for saving files. For example, suppose you're writing a chess
game with a Board class that stores the locations of all the pieces on the board. It's not
particularly difficult to design a file format that includes the position of every piece on the
board and write the code to write the current state of the board into a file. It is, however, time-
consuming. With object serialization, you can write the entire board into a file with one
method call. All you need to do to save a game is write the Board object onto an object output
stream chained to a file output stream. To restore the game, read the Board object from an
object input stream chained to a file input stream. I don't suggest using object serialization for
all your file formats. For one thing, current incarnations of object serialization are slow and
will be a performance bottleneck for large and complicated files. (If you define your own
format, you can save just the information you need; serialization saves the entire object graph
for the Board, including lots of things that Java needs to know about but that you don't.)
Certainly, for small chores, though, object serialization provides a very convenient predefined
file format.

11.2 Object Streams

Objects are serialized by object output streams. They are deserialized by object input streams.
These are instances of java.io.ObjectOutputStream and java.io.ObjectInputStream,
respectively:

public class ObjectOutputStream extends OutputStream
 implements ObjectOutput, ObjectStreamConstants
public class ObjectInputStream extends InputStream
 implements ObjectInput, ObjectStreamConstants

The ObjectOutput interface is a subinterface of java.io.DataOutput that declares the basic
methods used to write objects and data. The ObjectInput interface is a subinterface of
java.io.DataInput that declares the basic methods used to read objects and data.
java.io.ObjectStreamConstants is an unimportant interface that merely declares
mnemonic constants for "magic numbers" used in the object serialization. (A major goal of
the object stream classes is shielding client programmers from details of the format used to
serialize objects such as magic numbers.)

Although these classes are not technically filter output streams, since they do not extend
FilterOutputStream and FilterInputStream, they are chained to underlying streams in
the constructors:

public ObjectOutputStream(OutputStream out) throws IOException
public ObjectInputStream(InputStream in) throws IOException

Java I/O

239

To write an object onto a stream, you chain an object output stream to the stream, then pass
the object to the object output stream's writeObject() method:

public final void writeObject(Object o) throws IOException

For example:

try {
 Point p = new Point(34, 22);
 FileOutputStream fout = new FileOutputStream("point.ser");
 ObjectOutputStream oout = new ObjectOutputStream(fout);
 oout.writeObject(p);
 oout.close();
}
catch (Exception e) {System.err.println(e);}

Later, the object can be read back using the readObject() method of the
ObjectInputStream class:

public final Object readObject()
 throws OptionalDataException, ClassNotFoundException,
IOException

For example:

try {
 FileInputStream fin = new FileInputStream("point.ser");
 ObjectInputStream oin = new ObjectInputStream(fin);
 Object o = oin.readObject();
 Point p = (Point) o;
 oin.close();
}
catch (Exception e) {System.err.println(e);}

The reconstituted point has the same values as the original point. Its x is 34 and its y is 22, just
like the Point object that was written. However, since readObject() is only declared to
return an Object, you usually need to cast the deserialized object to a more specific type.

Both writeObject() and readObject() throw IOException for all the usual reasons an I/O
operation can fail (disk filling up, network connection being severed, etc.). The
readObject() method also throws OptionalDataException if the stream doesn't appear to
contain an object in the proper format or a ClassNotFoundException if a definition for the
class of the object read from the input stream is not available in the current VM.

11.3 How Object Serialization Works

Objects possess state. This state is stored in the values of the nonstatic, nontransient fields of
an object's class. Consider this TwoDPoint class:

public class TwoDPoint {
 public double x;
 public double y;
}

Java I/O

240

Every object of this class has a state defined by the values of the double fields x and y. If you
know the values of those fields, you know the value of the TwoDPoint. Nothing changes if
you add some methods to the class or make the fields private, as in Example 11.1.

Example 11.1. The TwoDPoint Class

public class TwoDPoint {
 private double x;
 private double y;

 public TwoDPoint(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public double getX() {
 return x;
 }

 public double getY() {
 return y;
 }

 public void setX(double x) {
 this.x = x;
 }

 public void setY(double y) {
 this.y = y;
 }

 public String toString() {
 return "[TwoDPoint:x=" + this.x + ", y=" + y +"]";
 }
}

The object information, the information stored in the fields, is still the same. If you know the
values of x and y, you know everything there is to know about the state of the object. The
methods only affect the actions an object can perform. They do not change what an object is.
Now suppose you wanted to save the state of a particular point object by writing a sequence
of bytes onto a stream. This process is called serialization, since the object is serialized into a
sequence of bytes. You could add a writeState() method to your class that looked
something like this:

public void writeState(OutputStream out) throws IOException {
 DataOutputStream dout = new DataOutputStream(out);
 dout.writeDouble(x);
 dout.writeDouble(y);
 }

To restore the state of a Point object, you could add a readState() method like this:

public void readState(InputStream in) throws IOException {
 DataInputStream din = new DataInputStream(in);
 this.x = din.readDouble();
 this.y = din.readDouble();
 }

Java I/O

241

Needless to say, this is a lot of work. You would have to define readState() and
writeState() methods for every class whose instances you wanted to serialize. Furthermore,
you would have to track where in the byte stream particular values were stored, to make sure
that you didn't accidentally read the y coordinate of one point as the x coordinate of the next.
You'd also have to make sure you could serialize the object's superclasses, if the superclass
contained a relevant state. Classes composed of other classes would cause a lot of trouble,
since you'd need to serialize each object the first object contained, then each object those
objects contained, then the objects those objects contained, and so forth. Finally, you'd need to
avoid circular references that could put you in an infinite loop.

Fortunately, Sun's done all the work for you. Java 1.1 and later virtual machines possess code
that allows them to read the nonstatic, nontransient fields of an object and write them out in a
well-specified format. All you have to do is chain object output streams to an underlying
stream where you want the object to be written and call write(); you do not have to add any
new methods. Reading objects in from an object input stream is only slightly more
complicated; as well as reading the object from the stream, you also need to cast the object to
the correct type.

11.4 Performance

Serialization is often the easiest way to save the state of your program. You simply write out
the objects you're using, then read them back in when you're ready to restore the document.
There is a downside, however. First of all, serialization is slow. If you can define a custom file
format for your application's documents, using that format will almost certainly be much
faster than object serialization.

Second, serialization can slow or prevent garbage collection. Every time an object is written
onto an object output stream, the stream holds on to a reference to the object. Then, if the
same object is written onto the same stream again, it can be replaced with a reference to its
first occurrence in the stream. However, this means that your program holds on to live
references to the objects it has written until the stream is reset or closed—which means these
objects won't be garbage-collected. The worst-case scenario is when you keep a stream open
as long as your program runs and write every object you create onto the stream. This prevents
any objects from being garbage-collected.

The easy solution is to avoid keeping a running stream of the objects you create. Instead, save
the entire state only when the entire state is available, and then close the stream immediately.

If this isn't possible, you have the option to reset the stream by invoking its reset() method:

public void reset() throws IOException

reset() flushes the ObjectOutputStream object's internal cache of the objects it has already
written so they can be garbage-collected. However, this also means that an object may be
written onto the stream more than once, so use this method with caution.

11.5 The Serializable Interface

Unlimited serialization would introduce some security problems. For one thing, it allows
unrestricted access to an object's private fields. By chaining an object output stream to a byte

Java I/O

242

array output stream, a hacker can convert an object into a byte array. The byte array can be
manipulated and modified without any access protection or security manager checks. Then the
byte array can be reconstituted into a Java object by using it as the source of a byte array input
stream.

Security isn't the only potential problem. Some objects exist only as long as the current
program is running. A java.net.Socket object represents an active connection to a remote
host. Suppose a socket is serialized to a file, and the program exits. Later the socket is
deserialized from the file in a new program—but the connection it represents no longer exists.
Similar problems arise with file descriptors, I/O streams, and many more classes.

For these and other reasons, Java does not allow instances of arbitrary classes to be serialized.
You can only serialize instances of classes that implement the java.io.Serializable
interface. By implementing this interface, a class indicates that it may be serialized without
undue problems.

public interface Serializable

This interface does not declare any methods or fields; it serves purely to indicate that a class
may be serialized. You should recall, however, that subclasses of a class that implements a
particular interface also implement that interface by inheritance. Thus, many classes that do
not explicitly declare that they implement Serializable are in fact serializable. For instance,
java.awt.Component implements Serializable. Therefore, its direct and indirect
subclasses, including Button, Scrollbar, TextArea, List, Container, Panel,
java.applet.Applet, all subclasses of Applet, and all Swing components may be
serialized. java.lang.Throwable implements Serializable. Therefore, all exceptions and
errors are serializable.

Table 11.1 lists the classes in the Java 2 core API that directly implement Serializable.
Instances of these classes or their subclasses are serializable. Many packages not listed here
do contain serializable classes. However, these are only serializable because their superclasses
in another package are serializable. For example, java.applet.Applet is serializable
because java.awt.Component is serializable. Some of the unfamiliar names in Table 11.1 are
inner classes you don't normally see, like java.text.UnicodeClassMapping. Inner classes
are only serializable if they are declared to implement Serializable. That their outer class
implements Serializable is not enough to make the inner class serializable.

Table 11.1. Serializable Classes in the java Packages
Package Serializable

java.awt

BorderLayout, CardLayout, CheckboxGroup, Color,
Component, ComponentOrientation, Cursor,
Dimension, Event, FlowLayout, FocusManager, Font,
FontMetrics, GraphicsConfigTemplate,
GridBagConstraints, GridBagLayout,
GridBagLayoutInfo, GridLayout, ImageMediaEntry,
Insets, LightweightDispatcher, MediaTracker,
MenuComponent, MenuShortcut, Point, Polygon,
Rectangle, ScrollPaneAdjustable, SystemColor

java.awt.dnd DropTarget
java.awt.font TransformAttribute
java.awt.geom AffineTransform

Java I/O

243

java.awt.image.renderable ParameterBlock
java.beans PropertyChangeSupport, VetoableChangeSupport
java.beans.beancontext BeanContextChildSupport, BeanContextSupport

java.io Externalizable, File, FilePermission,
FilePermissionCollection, ObjectStreamClass

java.net InetAddress, SocketPermission,
SocketPermissionCollection, URL

java.rmi MarshalledObject

java.rmi.activation ActivationDesc, ActivationGroupDesc,
ActivationGroupID, ActivationID

java.rmi.dgc Lease, VMID
java.rmi.server ObjID, RemoteObject, UID

java.security

AllPermissionCollection, BasicPermission,
BasicPermissionCollection, CodeSource,
GuardedObject, Identity, Key, KeyPair, Permission,
PermissionCollection, Permissions,
PermissionsHash, SecureRandomSpi, SignedObject,
UnresolvedPermission,
UnresolvedPermissionCollection

java.text
BreakIterator, Collator, DateFormatSymbols,
DecimalFormatSymbols, Format, SpecialMapping,
TextBoundaryData, UnicodeClassMapping,
WordBreakTable

java.util
ArrayList, BitSet, Calendar, Date, EventObject,
HashMap, HashSet, Hashtable, LinkedList, Locale,
PropertyPermissionCollection, Random, TimeZone,
TreeMap, TreeSet, Vector

javax.swing.table
AbstractTableModel, DefaultTableCellRenderer,
DefaultTableColumnModel, DefaultTableModel,
TableColumn

javax.swing.text
AbstractDocument, EditorKit, GapContent,
SimpleAttributeSet, StringContent, StyleContext,
TabSet, TabStop

javax.swing.tree DefaultMutableTreeNode, DefaultTreeModel,
DefaultTreeSelectionModel, TreePath

You can glean some general principles about what classes are and are not likely to be
serializable. Exceptions, errors, and other throwable objects are always serializable. Streams,
readers and writers, and most other I/O classes are not serializable. Beyond these general
rules, you can look at specific packages. AWT components, containers, and events are
serializable, but event adapters, image filters, and AWT classes that abstract OS-dependent
features are not. java.beans classes are not serializable. Type wrapper classes are
serializable except for Void ; most other java.lang classes are not. Reflection classes are not
serializable. java.math classes are serializable. URLs are serializable. Socket,
URLConnection, and most other java.net classes are not. Container classes are serializable
(though see the next section). Compression classes are not serializable.

Overall, there are five reasons why a class may not be serializable:

1. It is too closely tied to native code (java.util.zip.Deflater).
2. The object's state depends on the internals of the virtual machine or the runtime

environment and thus may change from run to run. (java.lang.Thread ,
java.io.InputStream , java.io.FileDescriptor, java.awt.PrintJob).

Java I/O

244

3. Serializing it is a potential security risk (java.lang.SecurityManager,
java.security.MessageDigest).

4. The class is mostly a holder for static methods without any real internal state
(java.beans.Beans, java.lang.Math).

5. The person who wrote the class simply didn't think about serialization.

11.5.1 Classes That Implement Serializable but Aren't

Just because a class may be serialized does not mean that it can be serialized. Several
problems can prevent a class that implements Serializable from actually being serialized.
Attempting to serialize such a class throws a NotSerializableException, a kind of
IOException:

public class NotSerializableException extends ObjectStreamException

11.5.1.1 Problem 1: References to nonserializable objects

The first common problem that prevents a serializable class from being serialized is that its
graph contains objects that do not implement Serializable. The graph of an object is the
collection of all objects that the object holds references to, and all the objects those objects
hold references to, and all the objects those objects hold references to, and so on, until there
are no more connected objects that haven't appeared in the collection. For an object to be
serialized, all the objects it holds references to must also be serializable, and all the objects
they hold references to must be serializable, and so on. For instance, consider this skeleton of
a class:

import java.applet.*;
import java.net.*;

public class MyNetworkingApplet extends Applet {

 Socket theConnection;
 //...
}

MyNetworkingApplet extends Applet, which extends Panel, which extends Container,
which extends Component, which implements Serializable. Thus, MyNetworkingApplet
should be serializable. However, MyNetworkingApplet contains a reference to a
java.net.Socket object. Socket is not a serializable class. Therefore, if you try to pass a
MyNetworkingApplet instance to writeObject(), a NotSerializableException will be
thrown.

The situation is even worse for container classes like Hashtable and Vector. Since
serialization performs a deep copy to the output stream, storing even a single nonserializable
class inside a vector or hash table prevents it from being serialized. Since the objects stored in
a container can vary from program to program or run to run, there's no sure-fire way to know
whether or not a particular instance of a container class can be serialized, short of trying it.

The same problem commonly occurs in applets and other GUI programs that use a Container
to hold many different components connected by events. If any of the objects in the container

Java I/O

245

are not serializable, then the container won't be, either. Most Sun-supplied components are
serializable, but third-party components often aren't.

11.5.1.2 Problem 2: Missing a no-argument constructor in superclass

The second common problem that prevents a serializable class from being deserialized is that
a superclass of the class is not serializable and does not contain a no-argument constructor.
java.lang.Object does not implement Serializable, so all classes have at least one
superclass that's not serializable. When an object is deserialized, the no-argument constructor
of the closest superclass that does not implement Serializable is invoked to establish the
state of the object's nonserializable superclasses. If that class does not have a no-argument
constructor, then the object cannot be deserialized. For example, consider the
java.io.ZipFile class introduced in Chapter 9. It does not implement Serializable:

public class ZipFile extends Object implements java.util.zip.ZipConstants

Furthermore, it has only these two constructors, both of which take arguments:

public ZipFile(String filename) throws IOException
public ZipFile(File file) throws ZipException, IOException

Suppose you want to subclass it to allow the class to be serialized, as shown in Example 11.2.

Example 11.2. A SerializableZipFileNot

import java.io.*;
import java.util.zip.*;

public class SerializableZipFileNot extends ZipFile
 implements Serializable {

 public SerializableZipFileNot(String filename) throws IOException {
 super(filename);
 }

 public SerializableZipFileNot(File file) throws IOException {
 super(file);
 }

 public static void main(String[] args) {

 try {
 SerializableZipFileNot szf = new SerializableZipFileNot(args[0]);
 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 ObjectOutputStream oout = new ObjectOutputStream(bout);
 oout.writeObject(szf);
 oout.close();
 System.out.println("Wrote object!");

 ByteArrayInputStream bin = new
 ByteArrayInputStream(bout.toByteArray());
 ObjectInputStream oin = new ObjectInputStream(bin);
 Object o = oin.readObject();
 System.out.println("Read object!");
 }
 catch (Exception e) {e.printStackTrace();}
 }

Java I/O

246

}

The main() method attempts to create an instance of this class, serialize it to a byte array
output stream, then read it back in from a byte array input stream. However, here's what
happens when you run it:

D:\JAVA>java SerializableZipFileNot test.zip
Wrote object!
java.io.InvalidClassException: java.util.zip.ZipFile; <init>
 at java.io.ObjectInputStream.inputObject(Compiled Code)
 at java.io.ObjectInputStream.readObject(ObjectInputStream.java:363)
 at java.io.ObjectInputStream.readObject(ObjectInputStream.java:226)
 at SerializableZipFileNot.main(SerializableZipFileNot.java:28)

Since the superclass, ZipFile, is not itself serializable and cannot be instantiated with a no-
argument constructor, the subclass cannot be deserialized. It can be serialized, but that isn't
much use unless you can get the object back again. Later, you'll see how to make a
SerializableZipFile class that can be both written and read. However, to do this, you'll
have to give up something else, notably the ZipFile type.

11.5.1.3 Problem 3: Deliberate throwing of NotSerializableException

A few classes appear to be not serializable out of pure spite (though normally there's more
reason to it than that). Sometimes it's necessary, for security or other reasons, to make a class
not serializable, even though one of its superclasses does implement Serializable. Since a
subclass can't unimplement an interface implemented in its superclass, the subclass may
choose to deliberately throw a NotSerializableException when you attempt to serialize it.
You'll see exactly how this is done shortly.

11.5.1.4 Locating the offending object

When you encounter a class that you think should be serializable but isn't (and this happens
all too frequently, often after you've spent two hours adjusting and customizing several dozen
beans in a builder tool that now can't save your work), you'll need to locate the offending
class. The detailMessage field of the NotSerializableException contains the name of the
unserializable class. This can be retrieved with the getMessage() method of
java.lang.Throwable or as part of the string returned by toString():

try {
 out.writeObject(unserializableObject);
}
catch (NotSerializableException e) {
 System.err.println(e);
 System.err.println(e.getMessage() + " could not be serialized");
}

It is not always obvious where the offending class sneaked in. For example, if you're trying to
serialize a hash table that contains seven vectors, each of which contains many different
objects of different classes, a single nonserializable object in one of the vectors will cause a
NotSerializableException. You'll need to explore the source code to determine which
object caused the problem.

Java I/O

247

11.5.1.5 Making nonserializable fields transient

Once you've identified the problem object, the simplest solution to is to mark the field that
contains the object transient. For example, we can mark the Socket field transient in our
networking applet:

import java.applet.*;
import java.net.*;

public class MyNetworkingApplet extends Applet {

 transient Socket theConnection; //...
}

The transient keyword tells the writeObject() method not to serialize the Socket object
theConnection onto the underlying output stream. Instead, it's just skipped. When the object
is deserialized, you may need to ensure that the state is consistent with what you expect.
You'll learn how to do this in Section 11.8. It may be enough to make sure theConnection is
non-null before accessing it.

11.6 The ObjectInput and ObjectOutput Interfaces

As well as the ObjectInputStream and ObjectOutputStream classes, the java.io package
also provides ObjectInput and ObjectOutput interfaces:

public interface ObjectInput extends DataInput
public interface ObjectOutput extends DataOutput

These interfaces are not much used in Java 1.1 and 2. The only classes in the core API that
actually implement them are ObjectInputStream and ObjectOutputStream. However,
several methods used for customization of the serialization process are declared to accept
ObjectInput or ObjectOutput objects as arguments, rather than specifically
ObjectInputStream or ObjectOutputStream objects. This provides a little wiggle room for
Java to grow in unforeseen ways.

The ObjectInput interface declares seven methods, all of which ObjectInputStream
faithfully implements:

public abstract Object readObject()
 throws ClassNotFoundException, IOException
public abstract int read() throws IOException
public abstract int read(byte[] data) throws IOException
public abstract int read(byte[] data, int offset, int length)
 throws IOException
public abstract long skip(long n) throws IOException
public abstract int available() throws IOException
public abstract void close() throws IOException

The readObject() method has already been discussed in the context of object input streams.
The other six methods behave exactly as they do for all input streams. In fact, at first glance,
all these methods except readObject() appear superfluous, since any InputStream subclass
will possess read(), skip(), available(), and close() methods with these signatures.

Java I/O

248

However, this interface may be implemented by classes that aren't subclasses of
InputStream.

The ObjectOutput interface declares the following six methods, all of which
ObjectOutputStream faithfully implements. Except for writeObject(), which has already
been discussed in the context of object output streams, these methods should behave exactly
as they do for all output streams:

public abstract void writeObject(Object o) throws IOException
public abstract void write(int b) throws IOException
public abstract void write(byte data[]) throws IOException
public abstract void write(byte[] data, int offset, int length)
 throws IOException
public abstract void flush() throws IOException
public abstract void close() throws IOException

ObjectInput and ObjectOutput extend DataInput and DataOutput. Thus, as well as the
methods declared outright, classes that implement ObjectInput must provide these additional
methods as well:

public abstract void readFully(byte data[]) throws IOException
public abstract void readFully(byte data[], int offset, int length)
 throws IOException
public abstract int skipBytes(int n) throws IOException
public abstract boolean readBoolean() throws IOException
public abstract byte readByte() throws IOException
public abstract int readUnsignedByte() throws IOException
public abstract short readShort() throws IOException
public abstract int readUnsignedShort() throws IOException
public abstract char readChar() throws IOException
public abstract int readInt() throws IOException
public abstract long readLong() throws IOException
public abstract float readFloat() throws IOException
public abstract double readDouble() throws IOException
public abstract String readLine() throws IOException
public abstract String readUTF() throws IOException

Classes that implement ObjectOutput must provide these additional methods:

public abstract void write(int b) throws IOException
public abstract void write(byte[] data) throws IOException
public abstract void write(byte[] data, int offset, int length)
 throws IOException
public abstract void writeBoolean(boolean v) throws IOException
public abstract void writeByte(int b) throws IOException
public abstract void writeShort(int s) throws IOException
public abstract void writeChar(int c) throws IOException
public abstract void writeInt(int i) throws IOException
public abstract void writeLong(long l) throws IOException
public abstract void writeFloat(float f) throws IOException
public abstract void writeDouble(double d) throws IOException
public abstract void writeBytes(String s) throws IOException
public abstract void writeChars(String s) throws IOException
public abstract void writeUTF(String s) throws IOException

As I noted back in Chapter 7, there's a bit of asymmetry between the DataInput and
DataOutput interfaces. DataOutput declares the three write() methods you expect to find in

Java I/O

249

output streams, but DataInput does not declare the three corresponding read() methods you
expect to find in input streams. This asymmetry does not carry over into the ObjectInput and
ObjectOutput interfaces where ObjectInput has read() methods and ObjectOutput has
write() methods.

By extending DataInput and DataOutput, ObjectInput and ObjectOutput guarantee that
their implementers are able to read and write both objects and primitive types like int and
double. Since an object may contain fields of primitive types, anything that has to read or
write the state of an object also has to be able to read or write the primitive fields the object
contains.

11.7 Versioning

When an object is written onto a stream, only the state of the object and the name of the
object's class are stored; the byte codes for the object's class are not stored with the object.
There's no guarantee that a serialized object will be deserialized into the same environment
from which it was serialized. It's possible for the class definition to change between the time
the object is written and the time it's read. For instance, a Component object may be written in
Java 1.1 but read in Java 2. However, in Java 2 the Component class has three nonstatic,
nontransient fields the 1.1 version of Component does not:

boolean inputMethodsEnabled;
DropTarget dropTarget;
private PropertyChangeSupport changeSupport;

There are even more differences when methods, constructors, and static and transient fields
are considered. Not all changes, however, prevent deserialization. For instance, the values of
static fields aren't saved when an object is serialized. Therefore, you don't have to worry about
adding or deleting a static field to or from a class. Similarly, serialization completely ignores
the methods in a class, so changing method bodies or adding or removing methods does not
affect serialization. However, removing an instance field does affect serialization, because
deserializing an object saved by the earlier version of the class will result in an attempt to set
the value of a field that no longer exists.

11.7.1 Compatible and Incompatible Changes

Changes to a class are divided into two groups: compatible changes and incompatible
changes. Compatible changes are those that do not affect the serialization format of the object,
like adding a method or deleting a static field. Incompatible changes are those that do prevent
a previously serialized object from being restored. Examples include deleting an instance field
or changing the type of a field. As a general rule, any change that affects the signatures of the
nontransient instance fields of a class is incompatible, while any change that does not affect
the signatures of the nontransient instance fields of a class is compatible. However, there are a
couple of exceptions. The following is a complete list of compatible changes:

• Most changes to constructors and methods, whether instance or static. Serialization
doesn't touch the methods of a class. The exceptions are those methods directly
involved in the serialization process, particularly writeObject() and readObject().

• All changes to static fields—changing their type, their names, adding or removing
them, etc. Serialization ignores all static fields.

Java I/O

250

• All changes to transient fields—changing their type, their names, adding or removing
them, etc. Serialization ignores all transient fields.

• Adding an instance field. When an instance of the older version of the class is
deserialized, the new field will merely be set to its default value (0 for numeric types,
false for booleans, null for object types) when an object in that class is deserialized.

• Adding or removing an interface (except the Serializable interface) from a class.
Interfaces say nothing about the instance fields of a class.

• Adding or removing inner classes, provided no nontransient instance field has the type
of the inner class.

• Changing the access specifiers of a field. Serialization does not respect access
protection.

• Changing a field from static to nonstatic or transient to nontransient. This is the same
as adding a field.

The following incompatible changes prevent deserialization of serialized objects:

• Changing the name of a class.
• Changing the type of an instance field.
• Changing the name of an instance field. This is the same as removing the field with

the old name.
• Changing a field from nonstatic to static or nontransient to transient. This is the same

as removing the field.
• Changing the superclass of a class. This may affect the inherited state of an object.
• Changing the writeObject() or readObject() method (discussed later) in an

incompatible fashion.
• Changing a class from Serializable to Externalizable (discussed later) or

Externalizable to Serializable.

11.7.2 Version IDs

To help identify compatible or incompatible classes, each class may have a stream unique
identifier, SUID for short. This is a long calculated by a special hash function and stored in
the class in a static field called serialVersionUID like this:

public class UnicodeApplet extends Applet {

 static final long serialVersionUID = 5913267123532863320L;
 // ...

Every time you release a new version of a class that makes an incompatible change, you
should change the serialVersionUID field. The serialver tool, included with the JDK,
calculates the appropriate hash of the class's name and fields. For example:

% serialver UnicodeApplet
UnicodeApplet: static final long serialVersionUID =
5913267123532863320L;

There's also a GUI interface available with the -show flag, as shown in Figure 11.2.

Java I/O

251

Figure 11.2. The serialver GUI

You are not limited to the values that serialver calculates. You can use your own version-
numbering scheme. The simplest such scheme would be to give the first version of your
applet SUID 1, the second version SUID 2, and so forth. Whether you use a custom SUID or
let serialver calculate one for you, you are responsible for deciding when a change to a class is
compatible with serialization. The serialver tool does not necessarily generate the same SUID
for two compatible but different classes. Only the prgrammer can decide whether a new SUID
is required.

11.8 Customizing the Serialization Format

The default serialization procedure does not always produce the results you want. Most often,
a nonserializable field like a Socket or a FileOutputStream needs to be excluded from
serialization. Sometimes, a class may contain data in nonserializable fields like a Socket that
you nonetheless want to save—for example, the host that the socket's connected to. Or
perhaps a singleton object wants to verify that no other instance of itself exists in the virtual
machine before it's reconstructed.[1] Or perhaps an incompatible change to a class (such as
changing a Font field to three separate fields storing the font's name, style, and size) can be
made compatible with a little programmer-supplied logic. Or perhaps you want an
exceptionally large array of image data to be compressed before being written to disk. For
these or many other reasons, you're allowed to customize the serialization process.

The simplest way to customize serialization is to declare certain fields transient. The values of
transient fields will not be written onto the underlying output stream when an object in the
class is serialized. However, this only goes as far as excluding certain information from
serialization; it doesn't help you change the format that's used to store the data or take action
on deserialization or ensure that no more than one instance of a singleton class is created.

For more control over the details of your class's serialization, you can provide custom
readObject() and writeObject() methods. These are private methods that the virtual
machine uses to read and write the data for your class. This gives you complete control over
how objects in your class are written onto the underlying stream but does not require you to
handle data stored in your objects' superclasses.

If you need even more control over the superclasses and everything else, you can implement
the java.io.Externalizable interface, a subinterface of java.io.Serializable. When
serializing an externalizable object, the virtual machine does almost nothing except identify
the class. The class itself is completely responsible for reading and writing its state and its
superclass's state in whatever format it chooses.

1 Singleton is a popular design pattern that uses a private constructor to prevent instances of itself from being created. A single instance of the class is
created in a static block when the class is loaded, and references to this one instance of the class are returned by a public static get method. For
more details, see Design Patterns, Erich Gamma, et al., pp. 127-134, Addison-Wesley, 1995.

Java I/O

252

11.8.1 The readObject() and writeObject() Methods

The code that serializes objects is built into the virtual machine and is not part of the
ObjectInputStream and ObjectOutputStream classes. This allows the private data of an
object to be read and written. If serialization was written in pure Java without any special
access to the internals of all the different classes, it wouldn't be able to get at the private,
internal state of most objects. However, as long as serialization is allowed to access private
members of an object, that might as well be taken advantage of to customize the serialization
process without affecting the picture of a class shown to the rest of the world.

By default, serialization takes place as previously described. When an object is passed to an
ObjectOutput's writeObject() method, the ObjectOutput reads the data in the object and
writes it onto the underlying output stream in a specified format. Data is written starting with
the highest serializable superclass of the object and continuing down through the hierarchy.
However, before the data of each class is written, the virtual machine checks to see if the class
in question has methods with these two signatures:

private void writeObject(ObjectOutputStream out) throws IOException
private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException

(Actually, an ObjectOutput only checks to see if the object has a writeObject() method,
and an ObjectInput only checks for a readObject() method, but it's rare to implement one
of these methods without implementing the other.) If the appropriate method is present, it is
used to serialize the fields of this class rather than writing them directly. The object stream
still handles serialization for any superclass or subclass fields.

For example, let's return to the issue of making a SerializableZipFile. Previously it wasn't
possible, because the superclass, ZipFile, didn't have a no-argument constructor. In fact,
because of this problem, no subclass of this class can be serializable. However, it is possible
to use composition rather than inheritance to make our zip file serializable.[2] Example 11.3
shows a SerializableZipFile class that does not extend java.util.zip.ZipFile.
Instead, it stores a ZipFile object in a transient field in the class called zf. The zf field is
initialized either in the constructor or in the readObject() method. Invocations of the normal
ZipFile methods, like entries() or getInputStream(), are merely passed along to the
ZipFile field zf.

Example 11.3. SerializableZipFile

import java.io.*;
import java.util.*;
import java.util.zip.*;

public class SerializableZipFile implements Serializable {

 ZipFile zf;

 public SerializableZipFile(String filename) throws IOException {
 this.zf = new ZipFile(filename);
 }

2 Design pattern aficionados may recognize what's about to happen as an application of the Decorator pattern so common in the java.io
package. For more details, see Design Patterns, Erich Gamma, et al., pp. 179-184, Addison-Wesley, 1995.

Java I/O

253

 public SerializableZipFile(File file) throws IOException {
 this.zf = new ZipFile(file);
 }

 private void writeObject(ObjectOutputStream out) throws IOException {
 out.writeObject(zf.getName());
 }

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {

 String filename = (String) in.readObject();
 zf = new ZipFile(filename);
 }

 public ZipEntry getEntry(String name) {
 return zf.getEntry(name);
 }

 public InputStream getInputStream(ZipEntry entry) throws IOException {
 return zf.getInputStream(entry);
 }

 public String getName() {
 return zf.getName();
 }

 public Enumeration entries() {
 return zf.entries();
 }

 public int size() {
 return zf.size();
 }

 public void close() throws IOException {
 zf.close();
 }

 public static void main(String[] args) {

 try {
 SerializableZipFile szf = new SerializableZipFile(args[0]);
 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 ObjectOutputStream oout = new ObjectOutputStream(bout);
 oout.writeObject(szf);
 oout.close();
 System.out.println("Wrote object!");

 ByteArrayInputStream bin = new
ByteArrayInputStream(bout.toByteArray());
 ObjectInputStream oin = new ObjectInputStream(bin);
 Object o = oin.readObject();
 System.out.println("Read object!");
 }
 catch (Exception e) {e.printStackTrace();}
 }
}

Java I/O

254

Let's look closer at the serialization parts of this program. What does it mean to serialize
ZipFile? Internally a ZipFile object is a filename and a long integer that serves as a native
file descriptor to interface with the native zlib library. File descriptors have no state that
would make sense across multiple runs of the same program or from one machine to the next.
This is why ZipFile is not itself declared serializable. However, if you know the filename,
you can create a new ZipFile object that is the same for all practical purposes.

This is the approach Example 11.3 takes. To serialize an object, the writeObject() method
writes the filename onto the output stream. The readObject() method reads this name back
in and recreates the object. When readObject() is invoked, the virtual machine creates a
new SerializableZipFile object out of thin air; no constructor is invoked. The zf field is
set to null. Next, the private readObject() method of this object is called. The value of
filename is read from the stream. Finally, a new ZipFile object is created from the filename
and assigned to zf.

This scheme isn't perfect. In particular, the whole thing may come crashing down if the actual
file that's referred to isn't present when the object is deserialized. This might happen if the
actual file was deleted in between the time the object was written and the time it was read, for
example. However, this will only result in an IOException, which the client programmer
should be ready for in any case.

The main() method tests this scheme by creating a serializable zip file with a name passed in
from the command line. Then the serializable zip file is serialized. Next the
SerializableZipFile object is deserialized from the same byte array it was previously
written into. Here's the result:

D:\JAVA>java SerializableZipFile test.zip
Wrote object!
Read object!

11.8.2 The default WriteObject() and defaultReadObject() Methods

Sometimes rather than changing the format of an object that's serialized, all you want to do is
add some additional information, perhaps something that isn't normally serialized, like a static
field. In this case, you can use ObjectOutputStream's defaultWriteObject() method to
write the state of the object, then use ObjectOutputStream's defaultReadObject() method
to read the state of the object. After this is done, you can perform any custom work you need
to do on serialization or deserialization.

public final void defaultReadObject()
 throws IOException, ClassNotFoundException, NotActiveException
public final void defaultWriteObject() throws IOException

For example, let's suppose an application that would otherwise be serializable contains a
Socket field. As well as this field, assume it contains more than a few other complex fields,
so that serializing it by hand, while possible, would be onerous. It might look something like
this:

Java I/O

255

public class NetworkWindow extends Frame implements Serializable {

 private Socket theSocket;

 // several dozen other fields and methods
}

You could make this class fully serializable by merely declaring theSocket transient:

private transient Socket theSocket;

Let's assume you actually do want to restore the state of the socket when the object is
deserialized. In this case, you can use private readObject() and writeObject() methods as
in the last section. You can use defaultReadObject() and defaultWriteObject() methods
to handle all the normal, nontransient fields; then handle the socket specifically. For example:

private void writeObject(ObjectOutputStream out) throws IOException {

 out.defaultWriteObject();
 out.writeObject(theSocket.getInetAddress());
 out.writeInt(theSocket.getPort());
 }

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {

 in.defaultReadObject();
 InetAddress ia = (InetAddress) in.readObject();
 int thePort = in.readInt();

 this.theSocket = new Socket(ia, thePort);
 }

It isn't even necessary to know what the other fields are to make this work. The only extra
work that has to be done is for the transient fields. This technique applies far beyond this one
example. It can be used anytime when you're happy with the default behavior and merely
want to do additional things on serialization or deserialization. For instance, it can be used to
set the values of static fields or to execute additional code when deserialization is complete.
However, if the latter is your intent, you might be better served by validation, discussed later
in the chapter. For example, let's suppose you have a Die class that must have a value
between 1 and 6, as shown in Example 11.4.

Example 11.4. A Six-Sided Die

import java.util.*;
import java.io.*;

public class Die implements Serializable {

 private int face = 1;
 Random shooter = new Random();

 public Die(int face) {
 this.face = (int) (Math.abs(face % 6) + 1);
 }

Java I/O

256

 public int getFace() {
 return this.face;
 }

 public void setFace(int face) {
 this.face = (int) (Math.abs(face % 6) + 1);
 }

 public int roll() {
 this.face = (int) ((Math.abs(shooter.nextInt()) % 6) + 1);
 return this.face;
 }

 public static void main(String[] args) {

 Die d = new Die(2);
 for (int i = 0; i < 10; i++) {
 d.roll();
 System.out.println(d.getFace());
 }
 }
}

Obviously, this class, simple as it is, goes to a lot of trouble to ensure that the die always has a
value between 1 and 6. Every method that can possibly set the value of the private field face
carefully checks to make sure the value is between 1 and 6. However, serialization provides a
back door through which the value of face can be changed, because default serialization uses
neither constructors nor set methods but accesses the private field directly. To close the door,
you can provide a readObject() method that performs the necessary check:

private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {

 in.defaultReadObject();
 this.face = (int) (Math.abs(this.face % 6) + 1);
 }

In this example, the normal serialization format is perfectly acceptable, so that's completely
handled by defaultReadObject(). It's just that a little more work is required than merely
restoring the fields of the object.

11.8.3 Preventing Serialization

On occasion, you need to prevent a normally serializable subclass from being serialized. This
most commonly occurs with components that are serializable, because java.awt.Component
is serializable. You can prevent an object from being serialized, even though it or one of its
superclasses implements Serializable, by throwing a NotSerializableException from
writeObject(). NotSerializableException is a subclass of
java.io.ObjectStreamException, which is itself a kind of IOException:

public class NotSerializableException extends ObjectStreamException

For example:

Java I/O

257

private void writeObject(ObjectOutputStream out) throws IOException {
 throw new NotSerializableException();
}

private void readObject(ObjectInputStream in) throws IOException {
 throw new NotSerializableException();
}

11.8.4 Externalizable

Sometimes customization requires you to manipulate the values stored for the superclass of an
object as well as for the object's class. In these cases, you should implement the
java.io.Externalizable interface instead of Serializable. Externalizable is a
subinterface of Serializable:

public interface Externalizable extends Serializable

This interface declares two methods, readExternal() and writeExternal():

public void writeExternal(ObjectOutput out) throws IOException
public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException

Unlike writeObject() and readObject(), readExternal() and writeExternal() are
public. This allows the possibility of violating access protection by using these methods to
access the private fields of an object. Externalizable should therefore be used with caution.
The implementation of its methods is completely responsible for saving the object's state,
including the state stored in its superclasses. This is the primary difference between
implementing Externalizable and providing private readObject() and writeObject()
methods. Since some of the superclass's state may be stored in private or friendly fields that
are not accessible to the Externalizable object, saving and restoring can be a tricky
proposition. Furthermore, externalizable objects are responsible for tracking their own
versions; the virtual machine assumes that whatever version of the externalizable class is
available when the object is deserialized is the correct one. It does not check the
serialVersionUID field as it does for merely serializable objects. If you want to check for
different versions of the class, you must write your own code to do the checks.

For example, suppose you want a vector that can be serialized no matter what it contains; that
is, that will never throw a NotSerializableException even if it contains objects that aren't
serializable. You can do this by creating a subclass of Vector that implements
Externalizable, as in Example 11.5. The writeExternal() method uses instanceof to
test whether each element is or is not serializable before writing it onto the output. If the
element does not implement Serializable, then writeExternal() writes null in its place.
We'll start by peeking at the source code for java.util.Vector. (Source for the core API is
included with the JDK in a file called src.zip.) It contains three nonstatic, nontransient fields:

protected Object elementData[];
protected int elementCount;
protected int capacityIncrement;

These are all protected so subclasses can access them directly. (The key criterion for being
able to use Externalizable is that there are enough get and set methods to read and write all

Java I/O

258

necessary fields in the superclasses. If this isn't the case, often your only recourse is to use the
Decorator pattern to wrap a class to which you do have complete access around the original
class. This was the tack taken in Example 11.3 for SerializableZipFile.)

Example 11.5. SerializableVector

import java.util.*;
import java.io.*;
import java.net.*;

public class SerializableVector extends Vector
 implements Externalizable {

 public void writeExternal(ObjectOutput out) throws IOException {

 out.writeInt(capacityIncrement);
 out.writeInt(elementCount);
 for (int i = 0; i < elementCount; i++) {
 if (elementData[i] instanceof Serializable) {
 out.writeObject(elementData[i]);
 }
 else {
 out.writeObject(null);
 }
 }
 }

 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {

 this.capacityIncrement = in.readInt();
 this.elementCount = in.readInt();
 this.elementData = new Object[elementCount];
 for (int i = 0; i < elementCount; i++) {
 elementData[i] = in.readObject();
 }
 }

 public static void main(String[] args) throws Exception {

 SerializableVector sv1 = new SerializableVector();
 sv1.addElement("Element 1");
 sv1.addElement(new Integer(9));
 sv1.addElement(new URL("http://www.oreilly.com/"));

 // not Serializable
 sv1.addElement(new Socket("www.ora.com", 80));

 sv1.addElement("Element 1");
 sv1.addElement(new Integer(9));
 sv1.addElement(new URL("http://www.oreilly.com/"));

 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 ObjectOutputStream temp = new ObjectOutputStream(bout);
 temp.writeObject(sv1);
 temp.close();

 ByteArrayInputStream bin = new
ByteArrayInputStream(bout.toByteArray());
 ObjectInputStream oin = new ObjectInputStream(bin);

Java I/O

259

 Vector v = (Vector) oin.readObject();
 Enumeration e = v.elements();
 while (e.hasMoreElements()) {
 System.out.println(e.nextElement());
 }
 }
}

You may argue with my choice of name here; ExternalizableVector may seem more
accurate. However, from the perspective of a programmer using a class, it doesn't matter
whether a class is serializable or externalizable. In either case, instances of the class are
merely passed to the writeObject() method of an object output stream or read by the
readObject() method of an object input stream. The difference between Serializable and
Externalizable is hidden from the end user.

The writeExternal() method first writes capacityIncrement and elementCount onto the
stream using writeInt(). It then loops through all the elements in the vector, testing each
one with instanceof to see whether or not it's serializable. If the element is serializable, it's
written with writeObject(); otherwise, null is written instead. The readExternal()
method simply reads in the data and sets the appropriate fields in Vector.
capacityIncrement is read first, then elementCount. The elementData array was not
directly written onto the output in writeExternal(); instead, its individual elements were
written. Thus, a new elementData array is created with length elementCount. Finally, the
individual elements are read out and stored in elementData in the same order they were
written.

The main() method tests the program by serializing and deserializing a
SerializableVector that contains assorted serializable and nonserializable elements. Its
output is:

D:\JAVA>java SerializableVector
Element 1
9
http://www.oreilly.com/
null
Element 1
9
http://www.oreilly.com/

Other schemes are possible and might be useful in some circumstances. Since elementData
itself isn't stored but only recreated from its length, one obvious possibility is to omit the
nonserializable elements when writing the vector and to adjust the elementCount
accordingly. For example:

public void writeExternal(ObjectOutput out) throws IOException {

 out.writeInt(capacityIncrement);
 int numSerializable = 0;
 for (int i = 0; i < elementCount; i++) {
 if (elementData[i] instanceof Serializable) {
 numSerializable++;
 }
 }

Java I/O

260

 // when deserialized elementCount will be set to numSerializable
 out.writeInt(numSerializable);

 for (int i = 0; i < elementCount; i++) {
 if (elementData[i] instanceof Serializable) {
 out.writeObject(elementData[i]);
 }
 }
}

This still isn't a perfect solution. The vector may contain an object that implements
Serializable but isn't serializable: for example, a hash table that contains a socket. It seems
as if it would be a better solution to catch any such NotSerializableExceptions inside the
readExternal() method, then write null, possibly after backing the stream up to the
beginning of the element that threw the exception (using mark() and reset() and an extra
buffered stream if necessary). However, my tests showed that you cannot catch a
NotSerializableException inside the writeExternal() method. I can see no reason why
this should be the case. It's probably a result of how serialization is implemented by native
code in the virtual machine, so the exception isn't thrown exactly where the Java code
indicates it is. (I suspect this should be classified as a bug.)

11.9 Resolving Classes

The readObject() method of java.io.ObjectInputStream only creates new objects from
known classes. It doesn't load classes. If a class for an object can't be found, readObject()
throws a ClassNotFoundException. It specifically does not attempt to read the class data
from the object stream. This is limiting for some things you might want to do, particularly
RMI. Therefore, trusted subclasses of ObjectInputStream may be allowed to load classes
from the stream or some other source like a URL. Specifically, a class is trusted if, and only
if, it was loaded from the local class path; that is, the ClassLoader object returned by
getClassLoader() is null.

Two protected methods are involved. The first is the annotateClass() method of
ObjectOutputStream :

protected void annotateClass(Class c) throws IOException

In ObjectOutputStream this is a do-nothing method. A subclass of ObjectOutputStream
can provide a different implementation that provides data for the class. For instance, this
might be the byte code of the class itself or a URL where the class can be found.

Standard object input streams cannot read and resolve the class data written by
annotateClass(). For each subclass of ObjectOutputStream that overrides
annotateClass(), there will normally be a corresponding subclass of ObjectInputStream
that implements the resolveClass() method:

protected Class resolveClass(ObjectStreamClass v)
 throws IOException, ClassNotFoundException

In java.io.ObjectInputStream, this is a do-nothing method. A subclass of
ObjectInputStream can provide an implementation that loads a class based on the data read
from the stream. For instance, if annotateClass() wrote byte code to the stream, then

Java I/O

261

the resolveClass() method would need to have a class loader that read the data from the
stream. If annotateClass() wrote the URL of the class to the stream, then the
resolveClass() method would need a class loader that read the URL from the stream and
downloaded the class from that URL.

The resolveClass() method is called exactly once for each class encountered in the stream
(not just those written by annotateClass()). resolveClass() is responsible for knowing
what sort of data needs to be read to reconstruct the class and for reading it from the input
stream. resolveClass() should then load and return the class. If it can't do so, it should
throw a ClassNotFoundException . If it returns a class, but that class's SUID does not match
the SUID of the class in the stream, then the runtime throws a ClassNotFoundException.

11.10 Resolving Objects

There may be occasions where you want to replace the objects read from the stream with
other, alternative objects. Perhaps an old version of a program whose data you need to read
used Franc objects, but the new version of the program uses Euro objects. The
ObjectInputStream can replace each Franc object read with the equivalent Euro object.

Only trusted subclasses of ObjectInputStream may replace objects. A class is only trusted if
it was loaded from the local class path; that is, the class loader returned by
getClassLoader() is null. To make it possible for a trusted subclass to replace objects, you
must first pass true to its enableResolveObject() method:

protected final boolean enableResolveObject(boolean enable)
 throws SecurityException

Generally, you would do this in the constructor of any class that needed to replace objects.
Once object replacement is enabled, whenever an object is read, it is passed to the
ObjectInputStream subclass's resolveObject() method before readObject() returns:

protected Object resolveObject(Object o) throws IOException

The resolveObject() method may return the object itself (the default behavior) or return
a different object. Resolving objects is a tricky business. The substituted object must be
compatible with the use of the original object, or errors will soon surface as the program tries
to invoke methods or access fields that don't exist. Most of the time, the replacing object is an
instance of a subclass of the class of the replaced object. Another possibility is that the
replacing object and the object it replaces are both instances of different subclasses of
a common superclass or interface, where the original object was only used as an instance of
that superclass or interface.

11.11 Validation

It is not always enough to merely restore the state of a serialized object. You may need to
verify that the value of a field still makes sense, you may need to notify another object that
this object has come into existence, or you simply may need to have the entire graph of
the object available before you can finish initializing it.

Java I/O

262

For example, valid XML documents are essentially trees of elements combined with a
document type definition (DTD). The DTD defines a grammar the document must follow.[3]
The Document Object Model (DOM) defines a means of representing XML (and HTML)
documents as instances of Java classes and interfaces, including XMLNode, EntityReference,
EntityDeclaration , DocumentType, ElementDefinition , AttributeDefinition , and
others.

An XML document could be saved as a set of these serialized objects. In that case, when you
deserialized the document, you would want to check that the deserialized document is still
valid; that is, that the document adheres to the grammar given in the DTD. You can't do this
until the entire document—all its elements, and its entire DTD—has been read. There are also
a number of smaller checks you might want to perform. For instance, well-formedness (well-
formedness is a slightly less stringent requirement than validity) requires that all entity
references like &date; be defined in the DTD. To check this, it's not enough to have
deserialized the EntityReference object. You must also have deserialized the corresponding
DocumentType object that contains the necessary EntityDeclaration objects.

You can use the ObjectInputStream class's registerValidation() method to specify an
ObjectInputValidation object that will be notified of the object after its entire graph has
been reconstructed but before readObject() has returned it. This gives the validator an
opportunity to make sure that the object doesn't violate any implicit assertions about the state
of the system.

public synchronized void registerValidation(ObjectInputValidation oiv,
 int priority) throws NotActiveException, InvalidObjectException

This method is invoked inside the readObject() method of the object that needs to be
validated. Every time the readObject() method is called to read an object, that object is
registered with the stream as needing to be validated when the rest of the graph is available.
Invoking the registerValidation() method from anywhere except the readObject()
method throws a NotActiveException. The oiv argument is the object that implements the
ObjectInputValidation interface and that will validate deserialized objects. Most of the
time, this is the object that has the readObject() method; that is, objects tend to validate
themselves. The priority argument determines the order in which objects will be validated
if there's more than one registered ObjectInputValidation object for the class. Validators
with higher priorities are invoked first.

The ObjectInputValidation interface declares a single method, validateObject():

public abstract void validateObject() throws InvalidObjectException

If the object is invalid, validateObject() throws an InvalidObjectException.

For example, let's suppose an application maintains a hashtable of Person objects, each of
which is identified primarily by its Social Security Number. Let's further suppose that the
application doesn't allow two Person objects with the same Social Security Number to exist
at the same time. You can use an ObjectInputValidation to ensure that this doesn't happen.
Example 11.6 demonstrates.

3 For more details, see XML: Extensible Markup Language, by Elliotte Rusty Harold, IDG Books, 1998.

Java I/O

263

Example 11.6. Person

import java.util.*;
import java.io.*;

public class Person implements Serializable, ObjectInputValidation {

 static Hashtable thePeople = new Hashtable();

 String name;
 String ss;

 public Person(String name, String ss) {

 this.name = name;
 this.ss = ss;
 thePeople.put(ss, name);
 }

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {

 in.registerValidation(this, 5);
 in.defaultReadObject();

 }

 public void validateObject() throws InvalidObjectException {

 if (thePeople.containsKey(this.ss)) {
 throw new InvalidObjectException(this.name + " already exists");
 }
 else {
 thePeople.put(this.ss, this.name);
 }

 }

 public String toString() {
 return this.name + "\t" + this.ss;
 }

}

11.12 Sealed Objects

The JCE standard extension to Java 2, discussed in the last chapter, provides a SealedObject
class that lets you encrypt objects written onto an object output stream using any available
cipher. Most of the time, I suspect, you'll either encrypt the entire object output stream by
chaining it to a cipher output stream, or you won't encrypt anything at all. However, if there's
some reason to encrypt only some of the objects you're writing to the stream, you can make
them sealed objects.

The javax.crypto.SealedObject class wraps a serializable object in an encrypted digital
lockbox. The sealed object is serializable so it can be written onto object output streams and
read from object input streams as normal. However, the object inside the sealed object can
only be deserialized by someone who knows the key.

Java I/O

264

public class SealedObject extends Object implements Serializable

The big advantage to using sealed objects rather than encrypting the entire output stream is
that the sealed objects contain all necessary parameters for decryption (algorithm used,
initialization vector, salt, iteration count). All the receiver of the sealed object needs to know
is the key. Thus, there doesn't necessarily have to be any prior agreement about these other
aspects of encryption.

You seal an object with the SealedObject() constructor. The constructor takes as arguments
the object to be sealed, which must be serializable, and the properly initialized Cipher object
with which to encrypt the object:

public SealedObject(Serializable object, Cipher c)
 throws IOException, IllegalBlockSizeException

Inside the constructor, the object is immediately serialized by an object output stream chained
to a byte array output stream. The byte array is then stored in a private field that is encrypted
using the Cipher object c. The cipher's algorithms and parameters are also stored. Thus, the
state of the original object written onto the ultimate object output stream is the state of the
object when it was sealed; subsequent changes it may undergo between being sealed and
being written are not reflected in the sealed object. Since serialization takes place immediately
inside the constructor, the constructor throws a NotSerializableException if the object
argument cannot be serialized. It throws an IllegalBlockSizeException if c is a block
cipher with no padding and the length of the serialized object's contents is not an integral
multiple of the block size.

You unseal an object by first reading the sealed object from an object input stream, then
invoking one of the three getObject() methods to return the original object. All of these
methods require you to supply a key and an algorithm.

Example 11.7 is a very simple program that writes an encrypted java.awt.Point object into
the file point.des. First a file output stream is opened to the file point.des. Next this is chained
to the ObjectOutputStream oin. As in the last chapter, a fixed DES key called desKey is
built from a fixed array of bytes and used to construct a Cipher object called des. des is
initialized in encryption mode with the key. Finally both the des Cipher object and the Point
object tdp are passed into the SealedObject() constructor to create a SealedObject so.
Since SealedObject implements Serializable, this can be written on the
ObjectOutputStream oout as any other serializable object. At this point, this program closes
oout and exits. However, the same Cipher object des could be used to create more sealed
objects from serializable objects, and these could also be written onto the stream, if you had
more objects you wanted to serialize.

Example 11.7. SealedPoint

import java.security.*;
import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import java.awt.*;

Java I/O

265

public class SealedPoint {

 public static void main(String[] args) {

 String filename = "point.des";
 Point tdp = new Point(32, 45);

 try {
 FileOutputStream fout = new FileOutputStream(filename);
 ObjectOutputStream oout = new ObjectOutputStream(fout);

 // Create a key.
 byte[] desKeyData = {(byte) 0x90, (byte) 0x67, (byte) 0x3E,
 (byte) 0xE6, (byte) 0x42, (byte) 0x15, (byte) 0x7A, (byte) 0xA3 };
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);

 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.ENCRYPT_MODE, desKey);

 SealedObject so = new SealedObject(tdp, des);
 oout.writeObject(so);
 oout.close();
 }
 catch (IOException e) { System.err.println(e); }
 catch (GeneralSecurityException e) { System.err.println(e); }
 }
}

Reading a sealed object from an object input stream is easy. You read it exactly as you read
any other object from an object input stream. For example:

FileInputStream fin = new FileInputStream(filename);
ObjectInputStream oin = new ObjectInputStream(fin);
SealedObject so = (SealedObject) oin.readObject();

Once you've read the object, unsealing it to retrieve the original object is straightforward,
provided you know the key. There are three getObject() methods that return the original
object:

public final Object getObject(Key key) throws IOException,
 ClassNotFoundException, NoSuchAlgorithmException, InvalidKeyException
public final Object getObject(Cipher c) throws IOException,
 ClassNotFoundException, IllegalBlockSizeException, BadPaddingException
public final Object getObject(Key key, String provider) throws IOException,
 ClassNotFoundException, NoSuchAlgorithmException,
NoSuchProviderException,
 InvalidKeyException

The first variant is the most useful, since it only requires the key. It does not require you to
create and initialize a Cipher object. You will in general need to know the algorithm used in
order to know what kind of key to create, but that information is available from the
getAlgorithm() method:

public final String getAlgorithm()

Java I/O

266

For example:

if (so.getAlgorithm().startsWith("DES")) {
 byte[] desKeyData = {(byte) 0x90, (byte) 0x67, (byte) 0x3E, (byte) 0xE6,
 (byte) 0x42, (byte) 0x15, (byte) 0x7A, (byte) 0xA3, };
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);
 Object o = so.getObject(desKey);
}

Example 11.8 reads the sealed object from the point.des file written by Example 11.7, unseals
the object, then prints it on System.out.

Example 11.8. UnsealPoint

import java.security.*;
import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import java.awt.*;

public class UnsealPoint {

 public static void main(String[] args) {

 String filename = "point.des";

 try {
 FileInputStream fin = new FileInputStream(filename);
 ObjectInputStream oin = new ObjectInputStream(fin);

 // Create a key.
 byte[] desKeyData = {(byte) 0x90, (byte) 0x67, (byte) 0x3E,
 (byte) 0xE6, (byte) 0x42, (byte) 0x15, (byte) 0x7A, (byte) 0xA3 };
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);

 SealedObject so = (SealedObject) oin.readObject();

 Point p = (Point) so.getObject(desKey);
 System.out.println(p);
 oin.close();
 }
 catch (ClassNotFoundException e) {System.err.println(e);}
 catch (IOException e) {System.err.println(e);}
 catch (GeneralSecurityException e) {System.err.println(e);}
 }
}

Java I/O

267

Chapter 12. Working with Files
You've already learned how to read and write data in files using file input streams and file
output streams. That's not all there is to files. Files can be created, moved, renamed, copied,
deleted, and otherwise manipulated without respect to their contents. Files are also often
associated with meta-information that's not strictly part of the contents of the file, such as the
time the file was created, the icon for the file, the permissions that determine which users can
read or write to the file, and even the name of the file.

While the abstraction of the contents of a file as an ordered sequence of bytes used by file
input and output streams is almost standard across platforms, the meta-information is not. The
java.io.File class attempts to provide a platform-independent abstraction for common file
operations and meta-information. Unfortunately, this class really shows its Unix roots. It
works well on Unix, adequately on Windows and OS/2—with a few caveats—and fails
miserably on the Macintosh. Java 2 improves things, but there's still a lot of history—and
coming up with something that genuinely works on all platforms is an extremely difficult
problem.

File manipulation is thus one of the real difficulties of cross-platform Java programming.
Before you can hope to write truly cross-platform code, you need a solid understanding of the
filesystem basics on all the target platforms. This chapter tries to cover those basics for the
major platforms that support Java—Unix; DOS/Windows 3.x ; Windows 95, 98, and NT;
OS/2; and the Mac—then it shows you how to write your file code so that it's as portable as
possible.

12.1 Understanding Files

As far as a Java program knows, a file is a sequential set of bytes stored on a disk like a hard
drive or a CD-ROM. There is a first byte in the file, a second byte, and so on, until the end of
the file. In this way a file is similar to a stream. However, a program can jump around in a
file, reading first one part of a file, then another. This isn't possible with a stream.

Macintosh files are a little different. Mac files are divided into two forks, each of which is
equivalent to a separate file on other platforms. The first part of a Mac file is called the data
fork and contains the text, image data, or other basic information of the file. The second part
of the file is called the resource fork and typically contains localizable strings, pictures, icons,
graphical user interface components like menubars and dialogs, executable code, and more.
On a Macintosh, all the standard java.io classes work exclusively with the data fork.

12.1.1 Filenames

Every file has a name. The format of the filename is determined by the operating system. For
example, in DOS and Windows 3.1, filenames are case-insensitive, (though generally
rendered as all capitals), eight ASCII characters long with a three-letter extension.
README.TXT is a valid DOS filename, but Read me before you run this program or your
hard drive will get trashed is not. All ASCII characters from 32 up (that is, noncontrol
characters), except for the 15 punctuation characters (+=/][":;,?*\<>|) and the space
character, may be used in filenames. A period may be used only as a separator between the

Java I/O

268

eight-character name and the three-letter extension. Furthermore, the complete path to the file,
including the disk drive and all directories, may not exceed 80 characters in length.

On the other hand, Read me before you run this program or your hard drive will get trashed
is a valid Win32 (Windows 95, 98, and NT) filename. On those systems filenames may
contain up to 255 characters, though room also has to be left for the path to the file. The full
pathname may not exceed 255 characters. Furthermore, Win32 filenames are stored in
Unicode, though in most circumstances only the ISO Latin-1 character set is actually used to
name files. Win32 systems allow any Unicode character with value 32 or above to be used,
except \/*<>:?" and |. In particular, the +,;=][characters, forbidden in DOS and Windows
3.1, are legal in Win32 filenames.

Windows 95, 98, and NT also make short versions of the filename that
conform to the DOS 8.3 format available to non-32-bit applications that
don't understand the long filenames. Java understands the long
filenames and uses them in preference to the short form.

Read me before you run this program or your hard drive will get trashed is not a valid
Macintosh file name because Mac file and directory names cannot be longer than 31 bytes.
Volume names cannot be longer than 27 bytes. However, there's no fixed length to a full path
name. The exact number of characters allowed in a name depends on the number of bytes per
character used by the local encoding. Read me or your HD will be trashed only contains 27
bytes in most encodings and is thus a valid Macintosh file, directory, and volume name.
Macintosh filenames can contain slashes and backslashes (unlike Windows filenames) but
may not contain colons. Furthermore, while Macintosh filenames can and often do contain
periods, it is an extremely bad idea to begin a Macintosh file name with a period. On occasion
the Mac interprets filenames beginning with a period as being device drivers rather than
ordinary files, and this can lead to corrupted filesystems. Otherwise, any ASCII characters, as
well as eight-bit MacRoman characters like ® and , can be used in a Mac filename.

By way of contrast, many standard Unix files have names that begin with periods. .cshrc and
.login are just two of the most common examples. Beginning a file with a period is Unix's
way of telling that a file should be hidden. (FTPing a directory of Unix files to the Mac
without accounting for this can lead to a trashed Mac filesystem.) Most modern Unix systems
allow at least 255 characters in a filename,[1] and none of those 255 characters needs to be left
for a path. Just about any ASCII character except the forward slash (/) and the null (ASCII 0)
is valid in a Unix filename. However, because Unix makes heavy use of a command line,
filenames containing spaces, single quotation marks, double quotes, hyphens, or other
characters interpreted by the Unix shell are often inconvenient. Underscores (which aren't
interpreted by the Unix shell) are safe and often used in place of problematic characters; for
example, Read_me_or_your_HD_will_be_trashed.

OS/2 filenames depend on the filesystem being used. If a disk is formatted using the DOS
FAT filesystem, then OS/2 filenames are limited to DOS's 8.3 format filenames. Files may
have a title as well as a name, and the title may contain up to 254 printable characters. Any
character with value from 32 up may be used in the title, except \-/&<>:?" and |. Titles may

1 Extremely early versions of Unix on which Java doesn't run (and probably never will) limit filenames to 14 characters in length.

Java I/O

269

not begin with an @. Under OS/2's High Performance File System (HPFS), filenames are the
same as titles, and full paths may have indefinite length.

Character sets are a problem for filenames too. American Macintosh filenames are given in
the eight-bit MacRoman character set, but there are many internationalized versions of the
MacOS that use different character sets. The same is true for OS/2. Windows 95 and NT
filenames use Unicode characters. Some Unix versions use ISO Latin-1, some use ASCII
only, and some use Unicode (but only if optional software is installed). The lowest common
denominator character set for filenames is ASCII.

Case sensitivity is a problem too. Readme.txt and README.TXT are the same file on the Mac
and Windows, but represent two different files on Unix.

Handling different filename conventions is one of the difficulties of doing real cross-platform
work. For best results:

• Use only printable ASCII characters, periods, and underscores in filenames.
• Avoid punctuation characters in filenames where possible.
• Never begin a filename with a period, a hyphen, or an @.
• Avoid extended character sets and accented characters like ü, ç, and é.
• Use mixed-case filenames (since they're easier to read), but do not assume case alone

will distinguish between filenames.
• Try to keep your filenames to 32 characters or less so Macs won't have to truncate the

name and Windows PCs will be able to store them reasonably deep in a directory
hierarchy.

• If a filename can be stored in a DOS-compatible 8.3 format without excessive effort,
you might as well do so. However, Java itself assumes a system on which files have
long names with four- and five-character extensions, so don't go out of your way to do
this.

12.1.2 File Attributes

Most operating systems also store a series of attributes describing each file. The exact
attributes a file possesses are platform-dependent. For example, on Unix a file has an owner
ID, a group ID, a modification time, and a series of read, write, and execute flags that
determine who is allowed to do what with the file. If an operating system supports multiple
types of filesystems, as does Windows NT, the attributes of a file may vary depending on
what kind of filesystem it resides on.

The Macintosh has no concept of file ownership, since Macs aren't multiuser systems; but
most Mac files have a type code and a creator code as well as 12 boolean attributes that
determine whether a file is invisible or not, is on the desktop or not, is an alias or not, has a
custom icon or not, and eight other characteristics mostly unique to the Mac platform.

Windows and DOS systems store a file's last modification date, the actual size of the file, the
number of allocation blocks the file occupies, and essentially boolean information about
whether or not a file is hidden, read-only, a system file, or whether the file has been modified
since it was last backed up.

Java I/O

270

Windows NT supports multiple kinds of filesystems, including FAT (the basic DOS-
compatible filesystem) and NTFS (NT File System). NT 3.5.1 and earlier (but not NT 4.0 and
later) support OS/2's HPFS. Each of these filesystems supports a slightly different set of
attributes. They all support a superset of the basic DOS/Windows file attributes, including
creation time, modification time, access time, allocation size, file size, and whether the file is
read-only, system, hidden, archive, or control.

On Unix, file attributes may be viewed by using the -l switch to the ls command:

% ls -l
total 3408
-r--r--r-- 1 root other 89795 Aug 30 14:41 CHANGES
-r--r--r-- 1 root other 896 Aug 30 14:41 COPYRIGHT
-r--r--r-- 1 root other 5994 Aug 30 14:41 LICENSE
-r--r--r-- 1 root other 34689 Aug 30 14:41 README
drwxr-xr-x 3 root other 512 Oct 17 10:31 bin
drwxr-xr-x 24 root other 512 Oct 16 21:07 demo
drwxr-xr-x 4 root other 1024 Oct 17 10:31 include
-r--r--r-- 1 root other 2497 Aug 30 14:41 index.html
drwxr-xr-x 4 root other 1024 Oct 17 10:32 lib
-rw-r--r-- 1 root other 1593763 Aug 30 14:40 src.zip

The first column is a series of character flags indicating, respectively, the type of the file; the
owner's read, write, and execute permissions; the group's read, write and execute permissions;
and the world's read, write, and execute permissions. The number following that is the
number of links to this file. The next word, root in all these cases, is the username of the
owner of the file. The second word, other in this example, is the group associated with the
file. The following number is the size of the file in bytes. This is followed by the last
modification date of the file. The last column contains the name of the file itself.

The attributes of a Windows file may be viewed from a DOS window with the DIR command:

C:> DIR/X
 Volume in drive C has no label.
 Volume Serial Number is 9460-4CAA

 Directory of C:\

12/31/96 04:03p 0 AUTOEXEC.BAT
12/31/96 04:03p 0 CONFIG.SYS
12/31/96 04:48p <DIR> MSOffice
11/12/97 11:28a 45,088,768 pagefile.sys
11/05/97 08:13p <DIR> Pro18
12/31/96 03:54p <DIR> PROGRA~1 Program Files
12/31/96 04:03p <DIR> TEMP
11/12/97 11:29a <DIR> WINNT
 8 File(s) 45,088,768 bytes
 640,570,880 bytes free

This shows the file's name, optionally its short name, the size of the file in bytes (if it's not a
directory), and the date and time when the file was created. With the /T:A or /T:W flags, you
would see the time the file was last accessed or written (modified), respectively. DOS won't
show you the archive, hidden, system, or read-only flags directly, but by using the /A:A,
/A:H, /A:S, or /A:R flags, you can list only those files that have the specified attributes. By

Java I/O

271

placing a minus sign before the flag—e.g., /A:-S—you can see all files that do not have the
specified attributes.

The Macintosh has a different set of file attributes, which are not meant to be viewed as such
by the end user. However, a number of developers' tools, like ResEdit and Disktop, make
them explicit. Figure 12.1 shows the File Info screen of ResEdit listing the attributes of a
typical Macintosh file.

Figure 12.1. The File Info screen in ResEdit on the Macintosh

You see that the file has a name, a creation time and date, a four-letter type code, a four-letter
creator code, a last-modified time and date, sizes for both the resource and data forks, a label,
and various boolean flags, some whose meaning is obvious (shared, alias, invisible, use
custom icon, file locked, file in use, file protected), and some whose meaning is a little more
obscure (has BNDL, stationery, no INITs, inited, 7.x or 6.0.x, resources locked, printer driver
MultiFinder compatible). Some of these attributes, like modification date and time, are
common across most platforms, but many, like "Inited" and "Use Custom Icon," are unique to
the Macintosh.

Any cross-platform library like the java.io package is going to have trouble supporting all
these attributes. Java allows you to test a fairly broad cross-section of these possible attributes
for which most platforms have some reasonable equivalent. It does not allow you easy access
to platform-specific attributes, like Mac file types and creator codes, Windows' archive
attributes, or Unix group IDs.

The com.apple.mrj.MRJOSType and com.apple.mrj.MRJFileUtils classes
included in Macintosh Runtime for Java provide access to some of the unique
Macintosh file attributes. See
http://developer.apple.com/techpubs/java/MacOSandJava/MRJToolkit/mrjtoolkit.html
for more details.

Java I/O

272

12.1.3 Filename Extensions and File Types

Filename extensions are often used to indicate the type of a file. For example, a file that ends
with the four-letter extension .java is presumed to be a text file containing Java source code; a
file ending in the five-letter extension .class is assumed to contain compiled Java byte code; a
file ending in the three-letter extension .gif is assumed to contain a GIF image. Table 12.1 lists
some of the more common extensions and their associated types.

Table 12.1. Extension Type Mappings
Extension Type Extension Type
.txt ASCII text .sit StuffIt archive
.gif GIF image .bin MacBinary file
.jpg, .jpeg JPEG image .hqx BinHexed Macintosh file
.htm, .html HTML text .tar Unix tar archive
.java Java source code .doc Microsoft Word file
.class compiled Java class .c C source code
.jar JAR archive .pl Perl program
.zip Zip archive .cc, .cpp C++ source code
.Z Unix compressed file .o Prelinked native object code
.gz gzipped file .exe DOS/Windows executable

What does your computer do when you double-click on the file panther.gif? If your computer
is a Macintosh, it opens the file in the program that created the file. That's because the MacOS
stores a four-letter creator code for every file on a disk in the disk's volume catalog. Assuming
the application associated with that creator code can be found (it can't always, though), the
file panther.gif is opened in the creating program. On the other hand, if your computer is a
Windows PC or a Unix workstation, the creating program is not necessarily opened. Instead,
whichever program is registered as the viewer of .gif files is launched and used to view the
file. In command-line environments, like the Unix shell, this isn't really an issue, because you
begin by specifying the program to run; that is, you type xv panther.gif, not simply
panther.gif. But in GUI environments, the program that's opened may not be the program you
want to use.

File extensions have the further disadvantage that they do not really guarantee the content
type of their document and are an unreliable means of determining the type of a file. Users
can easily change them. For example, the simple command copy HelloWorld.java
HelloWorld.gif causes an ASCII text file to be misinterpreted as a GIF image. Filename
extensions are only as reliable as the user that assigned them. What's more, it's hard to
distinguish between files that belong to different applications that have the same type. For
instance, many users are surprised to discover that after installing Internet Explorer, all their
HTML files appear to belong to Explorer instead of Netscape.

The Macintosh solved this problem over a decade ago. Almost every Mac file has a four-letter
type code like "TEXT" and a four-letter creator code like "R*ch". Since each file has both a
type code and a creator code, a Mac can distinguish between files that belong to different
applications but have the same type. Installing Internet Explorer doesn't mean that IE
suddenly thinks it owns all your Netscape documents, as is the case when you install IE on
Windows. Software vendors register codes with Apple so companies don't accidentally step
on each other's toes; and since codes are almost never seen by end users, there's not a huge

Java I/O

273

rush to snap up all the good ones like "TEXT" and "HTML". The list of codes that a particular
Macintosh understands is stored in the Desktop database, a file users never see and only rarely
have to worry about. Overall, this is a pretty good system that's worked incredibly well for
more than a decade. Neither Windows nor Unix has anything nearly as simple and trouble-
free. Because Windows and Unix have not adopted Mac-style type and creator codes, Java
does not have any standard means for accessing them.

None of these solutions is perfect. On a Mac you're likely to want to use Photoshop to create
GIF files but use JPEGView or Netscape to view them. You can drag and drop the file onto
the desired application, but only if both the file and the application you want to view it with
are on the screen at the same time, which is not necessarily true if both are stored several
folders deep. Furthermore, it's relatively hard to say that you want all text files opened in
BBEdit. On the other hand, the Windows solution is prone to user error; filename extensions
are too exposed. For example, novice HTML coders often can't understand why their HTML
files painstakingly crafted in Notepad open as plaintext in Navigator. Notepad surreptitiously
inserts a .txt extension on all the files it saves unless the filename is enclosed in double quote
marks. For instance, a file saved as HelloWorld.html actually becomes HelloWorld.html.txt ,
while a file saved as "HelloWorld.html" is saved with the expected name. Furthermore,
filename extensions make it easy for a user to lie about the contents of a file, potentially
confusing and crashing applications. (You can lie about a file type on a Mac too, but it takes a
lot more work.) Finally, Windows provides absolutely no support for saying that you want
one group of GIF images opened in Photoshop and another group opened in DeBabelizer.

There are some algorithms that can attempt to determine a file's type from its contents, though
these are also error-prone. Many file formats require files to begin with a particular magic
number that uniquely identifies the format. For instance, all compiled Java class files begin
with the number 0xCAFEBABE (in hexadecimal). If the first four bytes of a file aren't
0xCAFEBABE, then it's definitely not a Java class file. Furthermore, barring deliberate fraud,
there's only about a one in four billion chance that a random, non-Java file will begin with
those four bytes. Unfortunately, only a few file formats require magic numbers. Text files, for
instance, can begin with any four ASCII characters. There are some heuristics you can apply
to identify such files. For example, a file of pure ASCII should not contain any bytes with
values between 128 and 255 and should have a limited number of control characters with
values less than 32. But such algorithms are complicated to devise and far from reliable. Even
if you are able to identify a file as ASCII text, how would you determine whether it contains
Java source code or a letter to your mother? Worse yet, how could you tell whether it contains
Java source code or C source code? It's not impossible, barring deliberately perverse files like
a concatenation of a C program with a Java program, but it's difficult and often not worth your
time.

One possible solution to the problem of identifying file types across platforms is using
MIME. The file-extension-content type mappings listed in Table 12.1 are de facto standards.
MIME, the Multipurpose Internet Mail Extensions, is a de jure (RFCs 2045-2049)
specification for embedding and identifying arbitrary data types in Internet email. MIME is
also used by HTTP servers that want to identify the kinds of data they're sending to a client.
And, in the BeOS, it's used as a Mac-like means of identifying file types. A MIME type
consists of a primary type like "text" or "image," followed by a forward slash, followed by a
subtype like "html" or "gif." "text/html" is a typical MIME content type that indicates a file of
textual information in the HTML format. MIME also uses x-types, like "application/x-tar"
and "application/x-mif," to allow ad hoc extensions to the standard. There may be more than

Java I/O

274

one x-type referring to the same basic type (for instance, "application/x-pict" and
"application/x-macpict" both refer to Macintosh PICT images), and the same x-type may be
used for different purposes by different programs. Nonetheless, since new MIME types are
adopted rather slowly, the x-types are important as well.

12.2 Directories and Paths

Modern operating systems organize files into hierarchical directories. Each directory contains
zero or more files or other directories. Like files, directories have names and attributes,
though—depending on the operating system—those names and attributes may be different
from the attributes allowed for files. For example on the Macintosh, a file or directory name
can be up to 31 bytes long, but a volume name can be no more than 27 bytes long.

12.2.1 Paths and Separators

To specify a file completely, you don't just give its name. You also give the directory the file
lives in. Of course, that directory may itself be inside another directory, which may be in
another directory, until you reach the root of the filesystem. The complete list of directories
from the root to a specified file plus the name of the file itself is called the absolute path to
the file. The exact syntax of absolute paths varies from system to system. Here are a few
examples:

DOS C:\PUBLIC\HTML\JAVAFAQ\INDEX.HTM
Win32 C:\public\html\javafaq\index.html
MacOS Macintosh HD:public:html:javafaq:index.html
Unix /public/html/javafaq/index.html

All three strings reference a file named index.html on the primary hard drive in the javafaq
directory, which is itself in the html directory, which is in the public directory. One obvious
difference is the file separator character. Unix uses a forward slash (/) to separate directories;
DOS-based filesystems, including the variants of Windows and OS/2, use a backslash (\);
Macs use a colon (:). Other platforms may use something completely different.

The separator used on a given system is available from the mnemonic constants
java.io.File.separator and java.io.File.separatorChar. File.separatorChar is
the first character of the string File.separator. All operating systems I'm familiar with use
a single character separator string, so these two variables are essentially the same. The
File.separator variable is set from the system property file.separator; that is:

public static final String separator =
System.getProperty("file.separator");
public static final char separatorChar = separator.charAt(0);

Java I/O

275

System Properties
System properties are a cross-platform abstraction of environment variables. Some
properties, like user.dir, are set directly from environment variables by the Java
runtime. Others are read from configuration files. Regardless of where system
properties come from, they're available to you from the static
System.getProperty() methods:

public static String getProperty(String name)
public static String getProperty(String name, String default)

The first version returns the value of the named property or null if the property isn't
found. The second returns the value of the named property or default if the
property isn't found. Property reads are subject to security manager checks.
Generally, applets are allowed to read properties that reveal information about the
runtime environment, like file.separator, but not ones that reveal information
about the host running the applet, such as user.home.

Many of these properties provide useful information about the host system in which
your program is running. For instance, the os.name property returns a string like
"Windows NT", "Solaris", or "MacOS" that tells you the operating system your
program is running on. The java.vendor property tells you who wrote this VM. No
matter how hard you try to write 100% pure Java, there are times when you simply
have to adjust your code to match a particular operating system or virtual machine.

Several properties provide full paths to directories according to the local filesystem
conventions. The security manager permitting, you can use these to construct cross-
platform filenames. Such properties include:

java.home

The directory where Java is installed; e.g., /usr/local/java on many Unix
systems.

java.class.path

The class path contains many directories separated by the path separator
character.

user.home

The user's home directory.

user.dir

The current working directory.

There may be others, but these four are guaranteed to have values.

Java I/O

276

There are also two unrelated mnemonic constants, File.pathSeparator and
File.pathSeparatorChar. The path separator string is set from the system property
path.separator. As with the separator character, File.pathSeparatorChar is the first
character in File.pathSeparator.

public static final String pathSeparator =
System.getProperty("path.separator");
public static final char pathSeparatorChar = pathSeparator.charAt(0);

The path separator is used to separate two files (generally with complete pathnames) in a list
of paths such as a class path. For example, with a separator of a slash and a path separator of a
colon, my class path looks like this:

.:/usr/local/java/lib:/home/users/elharo/:/home/users/elharo/JavaDis/

These four mnemonic constants are one of the few instances in the core
API where JavaSoft violates its convention of using all caps for public
final static fields. You'd expect these constants to be named
File.SEPARATOR, File.SEPARATOR_CHAR, File.PATH_SEPARATOR, and
File.PATH_SEPARATOR_CHAR. Perhaps a future version of Java will
conform to the standard naming conventions.

Now the bad news: although JavaSoft has provided a fairly powerful abstraction layer so that
programmers don't need to hardcode explicit separators and path separators, few programmers
actually use this. Many programmers simply assume that the file separator is a slash and the
path separator is a colon and hardcode those constants as "/" and ":" or '/' and ':'.
Therefore, to avoid breaking all this third-party code, Java 1.1 VMs on the Mac and Windows
generally use a slash for the separator and a colon for the path separator, then make the
appropriate conversions in the native code that underlies Java. Java 2 VMs pass pathnames
through a normalization phase that attempts to recognize the separator conventions and
convert those to the conventions of the local platform.

This isn't a big problem for Windows, since both the slash and the backslash are illegal
characters in filenames. However, on the Mac a filename can contain both a slash and a
backslash. Macintosh virtual machines have adopted a number of different and incompatible
schemes to distinguish between slashes that are part of filenames and slashes that represent
separators. One early scheme was to replace slashes by colons and colons by slashes.
However, all but one of the alternative Mac VM vendors have canceled their own VM efforts
in favor of Apple's own Macintosh Runtime for Java (MRJ), and thus the scheme that MRJ
uses seems likely to become the standard way to handle unusual filenames on the Mac.

Apple's translation scheme is loosely based on the x-www-form-urlencoded format for
encoding URLs. Any characters that are likely to cause problems in a filename are replaced
by a percent sign (%) followed by the two hexadecimal digits corresponding to the ASCII
value of that character. For example, the space is ASCII 32 (decimal) or 20 (hexadecimal).
Thus, it's encoded as %20. The forward slash is ASCII 47 (decimal) or 2f (hexadecimal).
Thus, it's encoded as %2f. The pathname for this chapter, Macintosh HD:Java:Java I/O:12
Working with Files/12 Working with Files.doc, would be encoded as
/Macintosh%20HD/Java/Java%20I%2fO/
12%20Working%20with%20Files/12%20Working%20with%20Files.doc. Table 12.2 gives a

Java I/O

277

complete list of the ASCII characters between 32 and 127 that must be encoded. For readers
not familiar with Macintosh files, let me emphasize that this is purely for use inside Java.
Native Macintosh code and the native Mac interface use the actual characters. As well as the
characters listed here, all the upper 128 characters with their high bit set—that is, characters
like and © and é—must be encoded. A little surprisingly, control characters between and 31
are not encoded.

Table 12.2. Hex-Encoded Characters in Macintosh Filenames
Character Encoded As Decimal Value
space %20 32
%23 35
% %25 37
/ %2f 47
< %3c 60
= %3d 61
> %3e 62
? %3f 63
@ %40 64
[%5b 91
\ %5c 92
] %5d 93
^ %5e 94
` %60 96
{ %7b 123
| %7c 124
} %7d 125
~ %7e 126

You probably don't need to know about the encoding at this level of detail unless you're trying
to manipulate filenames manually—for example, walking directories by looking for separator
characters rather than calling getParent(). The more you let Java do the work for you, the
better off you'll be. As long as you use the methods of the File class rather than parsing
pathnames directly as strings, this encoding scheme should be transparent.

12.2.2 Relative Versus Absolute Paths

There are two ways to reference a file, relative and absolute. Absolute addressing gives a
complete path to a file, starting with the disk or root of the filesystem and working its way
down. C:\PUBLIC\HTML\ JAVAFAQ\INDEX.HTM, Macintosh HD:
public:html:javafaq:index.htm, and /public/html/javafaq/index.htm are all examples of
absolute paths. Relative addressing does not use a complete path to a file; instead, it specifies
the path relative to the current working directory. A relative pathname may point to a file in
the current working directory by giving its name alone; other times it may point to a file in a
subdirectory of the current working directory by giving the name of the subdirectory and the
name of the file, and it may point to the parent of the current working directory with the
double period (..).

Java I/O

278

12.2.2.1 Absolute paths

On Unix all mounted disks, whether local or mounted over the network, are combined into a
single virtual filesystem. The root of this filesystem is the directory called /. You generally do
not need to concern yourself with which physical disk any particular directory resides on, as
long as that disk has sufficient space. Absolute paths always begin with the root directory, /.

On Windows and the Mac, there is no root directory. Each mounted disk partition or network
server is a separate and independent filesystem. On Windows, these disks are assigned drive
letters. A: is normally the floppy drive. B: is the second floppy drive (less common these
days, since fewer systems have multiple floppy drives.) C: is the primary boot disk. D: is
often reserved for a CD-ROM, though it can be an additional hard disk or partition as well. E:
through Z: can be used for further disks, partitions, or network servers. A full pathname
begins with the drive letter where the file resides, e.g.,
C:\PUBLIC\HTML\JAVAFAQ\INDEX.HTM.

On Windows 95, 98 and NT, an additional level is possible by specifying remote machines on
the network like this: \\BIO\C\PUBLIC\HTML\ JAVAFAQ\INDEX.HTM. This path refers to a
file called INDEX.HTM in the directory JAVAFAQ in the directory HTML in the directory
PUBLIC on the C drive of the machine BIO. Java 1.1 does not provide a pure Java means to
get a list of all the available volumes on Windows; the best you can do is check all possible
drive letters and catch any IOExceptions that occur. Java 2 does add a File.listRoots()
method that returns all the roots of the local system.

Like Windows, the Macintosh does not have a true root from which all mounted disks and
servers can be accessed. Each disk or disk partition and each server appear as a separate
volume, though the names are generally a little more descriptive than A, B, C, and D.
Macintosh virtual machines interpret a request to list the contents of the directory "/" as a
request for a list of all mounted volumes. You should be warned, however, that a single
Macintosh can have several volumes with the same name. This is rare on a single-user Mac
but relatively common in networked environments where file sharing can mount volumes on
other Macs with common names like Macintosh HD or untitled or Public Folder. This isn't a
problem for native code, which doesn't use names to identify volumes, but it's a real
showstopper for pure Java programs. To further complicate matters, the Mac's primary hard
drive may not be named Macintosh HD.

For these reasons and more, absolute pathnames are a royal pain to work with across
platforms. You should avoid hardcoding them in your programs whenever possible. Instead,
you should calculate them at runtime from system properties and user input.

12.2.2.2 Relative paths

The following are some examples of relative paths:

Unix html/index.html
DOS HTML\INDEX.HTM
Win32 html\index.html
MacOS :html:index.html
Unix index.html
DOS INDEX.HTM

Java I/O

279

Win32 index.html
MacOS index.html

Note that a filename in isolation constitutes a relative path on all platforms.

Generally, the running application identifies one directory as the current working directory.
Relative pathnames are interpreted relative to the working directory. Normally, this is the
directory in which the application was launched. For example, if you started your program
from the command line in the /home/users/elharo directory, then a relative path of
classes/juggler.class would point to a file with the absolute path
/home/users/elharo/classes/juggler.class. On the Macintosh, the current working directory is
generally whichever one the application lives in. If you're using JBindery to run your app,
then the current working directory will be the folder JBindery is in. If you launch a standalone
Java application, the current working directory will be the folder in which that application is.

On Unix and the Mac, the current working directory is fixed once a program starts running.
Java provides no means to change it. However, Windows with the JDK 1.1 is annoyingly
different. If you bring up a file dialog (discussed in the next chapter), then the current working
directory is changed to the directory in which the user selects a file. The current working
directory is fixed on all platforms under Java 2.

You must not assume that your .class file and any associated support files are necessarily in
the current working directory. For example, suppose I'm in the /home/users/elharo directory,
and I run the Java program Trivia which is located in the /home/users/bfrank directory, like
this:

% java -classpath /home/users/bfrank/Trivia

Although Trivia.class is located in the /home/users/bfrank directory, the current working
directory for this run of the Trivia program is /home/users/elharo. Suppose the Trivia program
expects to find support files—Trivia.gif, for example—in the current working directory. If
those files are in /home/users/bfrank along with Trivia.class, they won't be found, and the
program probably won't run. I've used full paths to make the cause of the problem more
obvious, but the problem would still occur if I used a relative path from the
/home/users/elharo directory:

% java -classpath ../bfrank/Trivia

If I first changed to the /home/users/bfrank/ directory, then the support files will be found and
the program will run. For example:

% cd /home/users/bfrank
% java Trivia

Java provides no reliable means to get the path of the currently running program's .class file.
Because the current working directory is unpredictable, you must not hardcode relative
pathnames into your application. You must place any data files your program requires in a
location that can be found independently of the location of the .class files for your program.
One possibility is to place the files on a web server accessible through a known URL. An
even better solution is to distribute your program as a JAR archive, store the data files in the
JAR file, then retrieve them with the various getResource(), getResourceAsStream(), and

Java I/O

280

findResource() methods of java.lang.Class or java.lang.ClassLoader. This works
irrespective of the current working directory as long as the JAR archive has been placed
somewhere in the class path.

When you consider all the difficulties of writing file access code that
works on all the platforms Java supports, you can become grateful that
applets aren't allowed to write files. Although this limits the sort of
applets you can write, perhaps what's really needed is not unlimited (or
even limited) file access but some non-file-oriented persistent storage
mechanism, probably some sort of database, that hides the
idiosyncrasies of each individual platform. JavaSoft is now working on
exactly such a mechanism called JavaSpaces, though it probably won't
appear in web browsers for some time

12.3 The File Class

Instances of the java.io.File class represent filenames on the local system, not actual files.
Occasionally, this distinction is crucial. For instance, File objects can represent directories as
well as files. Also, you cannot assume that a file exists just because you have a File object
for a file.

public class File extends Object implements Serializable

In Java 2, the File class also implements the java.lang.Comparable interface:

public class File extends Object implements Serializable, Comparable //
Java 2

Although there are no guarantees that a file named by a File object actually exists, the File
class does contain many methods for getting information about the attributes of a file and for
manipulating those files. The File class attempts to account for system-dependent features
like the file separator character and file attributes, though in practice it doesn't do a very good
job, especially in Java 1.0 and 1.1.

Each File object contains a single String field called path that contains either a relative or
absolute path to the file, including the name of the file or directory itself:

private String path

Many methods in this class work solely by looking at this string. They do not necessarily look
at any part of the filesystem.

12.3.1 Constructing File Objects

The java.io.File class has three constructors. Each accepts some variation of a filename as
an argument. This one is the simplest:

public File(String path)

Java I/O

281

The path argument should be either an absolute or relative path to the file in a format
understood by the host operating system. For example, using Unix filename conventions:

File uf1 = new File("25.html");
File uf2 = new File("course/week2/25.html");
File uf3 = new File("/public/html/course/week2/25.html");

Much poorly written Java code (including large parts of the Java 1.0 and Java 1.1 class
libraries) implicitly assumes Unix filename conventions, and most VMs take this into
account. Therefore, code that assumes Unix conventions is likely to produce reasonable
results on most operating systems. Windows VMs generally allow you to use Windows
conventions instead. For example:

File wf1 = new File("25.htm");
File wf2 = new File("course\\week2\\25.html");
File wf3 = new File("D:\\public\\html\\course\\week2\\25.htm");

The double backslashes are merely the escape sequence for the single backslash in a string
literal. Otherwise, attempts to compile this code would generate an "Invalid escape character"
error message. Remember that \t is a tab, \n a linefeed, and so on. Here, however, we need a
backslash to simply be a backslash.

Macintosh VMs use Unix conventions with the modifications noted previously in Table 12.2.
For example:

File mf1 = new File("25.html");
File mf2 = new File("course/week2/25.html");
File mf3 = new File("/Macintosh%20HD/public/html/course/week2/25.html");

The second File constructor specifies an absolute or relative pathname and a filename:

public File(String directory, String filename)

For example:

File f2 = new File("course/week2", "25.html");

This produces a File object with the path field set to course/week2/25.htm. The constructor
is smart enough to handle the case of directories with and without trailing separators. The
third constructor is identical to the second, except that the first argument is a File object
instead of a string.

public File(File directory, String filename)

This third constructor is the most robust of the lot, provided the filename is only a filename
like readme.txt and not a relative path like cryptozip/readme.txt. The reason is that this
constructor guarantees the use of the local path separator character and is thus more platform-
independent. You can use this to build a file structure that works on all platforms regardless of
path separators or normalization routines. For example, suppose you want to build a File
object that points to the file com/macfaq/io/StreamCopier.class. The following four lines do
this without reference to the file separator character:

Java I/O

282

File temp = new File("com");
temp = new File(temp, "macfaq");
temp = new File(temp, "io");
File scfile = new File(temp, "StreamCopier.class");

None of these constructors throw any exceptions. All the constructor does is set the path
field; Java never checks to see whether the file named by path actually exists or even whether
the name passed to the constructor is a valid filename. For example, the following File object
will cause problems on Unix, OS/2, the Mac, and Windows; but you can still construct it:

File f = new File("-This is not a /nice\\ file:\r\nno it isn't");

Some methods in other classes also return File objects, most notably the
java.awt.FileDialog and javax.awt.swing.JFileChooser methods discussed in the next
chapter. Using file dialogs or choosers to ask the user for a filename is preferable to
hardcoding them or reading them from the command line, because file dialogs properly
handle cross-platform issues and the distinctions between relative and absolute paths.

One thing you may not have noticed about these constructors: since a
File object does not represent a file as much as a filename, these
constructors do not actually create files. To create a new file with Java,
you can open a file output stream to the file or invoke the
createNewFile() method. The latter only works in Java 2 and later.

In Java 2 and later, construction of a File object includes normalization. This process reads
hardcoded pathnames and attempts to convert them to the conventions of the local platform.
This improves compatibility with code that's making assumptions about filenames. For
instance, if a Windows VM is asked to create a File object with the path
/public/html/javafaq/course/week2/index.html, it will actually set the path field to \ public\
html\ javafaq\ course\ week2\ index.html. The reverse process happens on Unix; backslashes
are converted to forward slashes. Java 2 is not available for the Mac at the time of this
writing, so it remains to be seen how the Mac will normalize filenames. Because it can only
really normalize separators, not filesystem roots, this scheme works better for relative
pathnames than absolute ones.

12.3.2 Listing the Roots

Java 2 provides a static File.listRoots() method that returns an array of all the available
roots of the filesystem as File objects:

public static File[] listRoots() // Java 2

On Unix, this array is likely to have length 1 and contain the single root /. On Windows, it
will probably contain all the drive letters mapped to one device or another, whether or not
there's actually any media in the drive; e.g., A:\, C:\, D:\, E:\, F:\, G:\. On the Mac, the list
will likely contain only the currently mounted drives, and these are likely to have somewhat
more descriptive names than C:\. If the security manager does not allow the program to read
a particular root, then that root is not included in the returned list. If the security manager does
not allow the program to read any root, then the returned list will have length zero. Do not

Java I/O

283

assume the array returned by listRoots() necessarily has any members! null is returned if
the list can't be determined at all. This is not the same thing as a zero-length array.

The list of roots may or may not contain drives that are mounted over the network. If the drive
is mounted in such a fashion that it pretends to be a local drive, it probably will be in the list.
If the filesystem does not look like a local drive, it probably won't appear in the list. For
instance, on Windows, network drives mapped to letters appear, but drives with UNC
pathnames do not. Example 12.1 is a very simple program to list the roots and print them.

Example 12.1. RootLister

import java.io.*;

public class RootLister {

 public static void main(String[] args) {

 File[] roots = File.listRoots();
 for (int i = 0; i < roots.length; i++) {
 System.out.println(roots[i]);
 }
 }
}

Here's the output produced by RootLister on my Windows NT system. A: is the floppy
drive. This system doesn't have a second floppy, which would normally be B:. C:, D:, E:, and
F: are all partitions of the primary hard drive that appear to be separate drives. G: is the Zip
drive, and H: is the CD-ROM. I: is a Macintosh drive mounted over the LAN.

D:\JAVA\ioexamples\12>java RootLister
A:\
C:\
D:\
E:\
F:\
G:\
H:\
I:\

The output on Unix is much simpler and is virtually guaranteed to look like this:

% java RootLister
/

Since Java 2 isn't available for the Mac at the time of this writing, I can only speculate about
what the output is likely to be on that platform. However, it will probably look something like
this:

Macintosh HD
System 8
Drive D
Drive F

The exact names would depend on the names the user gave to the individual hard drives and
network servers.

Java I/O

284

12.3.3 Listing Information About a File

The File class contains many methods that return particular information about the file. Most
of this information can be gleaned from the path field alone without accessing the filesystem.
Therefore, most of these methods do not throw IOExceptions.

12.3.3.1 Does the file exist? Is it a normal file? Is it a directory?

Since a File object does not necessarily correspond to a real file on the disk, the first question
you'll probably want to ask is whether the file corresponding to the File object actually
exists. This is especially important if you're relying on a user to type a filename rather than
select it from a dialog, because users routinely mistype filenames. The exists() method
returns true if the file named in this file object's path field exists, false if it doesn't:

public boolean exists()

There are two other ways to ask this question. The isFile() method returns true if the file
exists and is not a directory. On the other hand, the isDirectory() method returns true if
the file exists and is a directory.

public boolean isFile()
public boolean isDirectory()

The isDirectory() method does consider Unix symbolic links and Mac aliases to directories
to be directories themselves; it does not consider Windows shortcuts to directories to be
directories. All three of these methods throw a security exception if security manager does not
allow the specified file to be read. In fact, if the file couldn't be read if it did exist, then this
exception is thrown whether or not the file actually exists. Even determining whether or not
certain files exist can be considered to be a security violation. Like most security issues, this
is primarily a problem for applets, not applications.

12.3.3.2 Filename and path

The getName() method takes no arguments and returns the name of the file as a string:

public String getName()

The name does not include any part of the directory in which the file lives. That is, you get
back index.html instead of /public/html/javafaq/index.html. If the file is a directory like
/public/html/javafaq/, only the last name is returned (javafaq in this example).

The getPath() method returns the complete path to the file as stored in the File object's path
field:

public String getPath()

This is merely a get method that returns the path field. Therefore, the path is relative if the
File object was constructed with a relative path and absolute if the File object was
constructed with an absolute path. Furthermore, this method never throws IOExceptions.
Consider Example 12.2. This simple program constructs two File objects, one with a relative
path and one with an absolute path, then prints the name and path of each object.

Java I/O

285

Example 12.2. Paths

import java.io.*;

public class Paths {

 public static void main(String[] args) {

 File absolute = new File("/public/html/javafaq/index.html");
 File relative = new File("html/javafaq/index.html");

 System.out.println("absolute: ");
 System.out.println(absolute.getName());
 System.out.println(absolute.getPath());

 System.out.println("relative: ");
 System.out.println(relative.getName());
 System.out.println(relative.getPath());
 }
}

When the program is run on Unix, here's the output:

% java Paths
absolute:
index.html
/public/html/javafaq/index.html
relative:
index.html
html/javafaq/index.html

On Windows with Java 2, the output's a little different, because the File constructor
normalizes the file separator character to the backslash:

D:\JAVA\ioexamples\12>java Paths
absolute:
index.html
\public\html\javafaq\index.html
relative:
index.html
html\javafaq\index.html

12.3.3.3 Absolute paths

The getAbsolutePath() method returns the complete path to the file starting from a
filesystem root:

public String getAbsolutePath()

Examples of absolute paths include /public/html/javafaq/index.html and
D:\JAVA\ioexamples\12 but not html/javafaq/index.html or ioexamples\12. If the File object's
path field is already an absolute path, then its value is returned. Otherwise, a separator
character and the value of the path field are appended to the value of the system property
user.dir, which refers to the current working directory. This method throws a security
exception in most applet environments, because applets are usually not allowed to read the
user.dir property.

Java I/O

286

If you need to know whether a file is specified by a relative or absolute path, you can call
isAbsolute():

public boolean isAbsolute()

This does not throw any security exceptions, because it does not need to go outside the class
to determine whether or not a pathname is absolute. Instead, the check is performed by
looking at the first few characters of the path field. On Unix or the Mac an absolute path
begins with a /. On Windows or OS/2 an absolute path begins with a capital letter followed by
a colon and a backslash, like C:\.

12.3.3.4 Canonical paths

Exactly what a canonical path is, and how it differs from an absolute path, is system-
dependent, but it tends to mean that the path is somehow more real than the absolute path.
Typically, if the full path contains aliases, shortcuts, shadows, or symbolic links of some kind,
the canonical path resolves those aliases to the actual directories they refer to. The canonical
path is returned by the getCanonicalPath() method:

public String getCanonicalPath() throws IOException

For example, on Unix when getAbsolutePath() is invoked on a symbolic link or a file that
has a symbolic link (an alias or shortcut) in its path, the symbolic link is included in the path
that getAbsolutePath() returns. However getCanonicalPath() returns the path with all
symbolic links resolved. For example, suppose /bin/perl is a link to the real file at
/usr/local/bin/perl, and you construct a File object perlLink like this:

File perlLink = new File("/bin/perl");

perlLink.getAbsolutePath() returns /bin/perl, but perlLink.getCanonicalPath()
returns /usr/local/bin/perl.

On Windows and the Macintosh, getAbsolutePath() and getCanonicalPath() both
resolve shortcuts and aliases. Suppose /Macintosh%20HD/Desktop%20Folder/javac is an
alias to /Macintosh%20HD/Java/MRJ%202.0%20Early%20Access%
20Rel%202/MRJ%20SDK%202.0/Tools/javac, and a File object named alias is constructed
like this:

File alias = new File("/Macintosh%20HD/Desktop%20Folder/javac");

Both alias.getAbsolutePath() and alias.getCanonicalPath() return
/Macintosh%20HD/Java/MRJ%202.0%20Early%20Access%20Rel%202/MRJ%20SDK%202.
0/Tools/javac, not /Macintosh%20HD/Desktop%20Folder/javac . getCanonicalPath()
throws a security exception in most applet environments, because it reveals too much
information about the host the applet is running on. getCanonicalPath() also removes
relative references like the double period (..), which refers to the parent directory in many
command-line environments and in URLs. For instance, suppose the current working
directory is /home/users/elharo/javaio/ioexamples/12. Then you create a File object like this:

File f = new File("../11/index.html");
String absolutePath = f.getAbsolutePath();

Java I/O

287

String canonicalPath = f.getCanonicalPath();

absolutePath is now /home/users/elharo/javaio/ioexamples/12/../11/index.html. However,
canonicalPath is /home/users/elharo/javaio/ioexamples/11/index.html.

One use for canonical paths is to test whether two files are the same. You might need to do
this if you're reading from an input file and writing to an output file. While it might
occasionally be possible to read from and write to the same file, doing so always requires
special care. For example, the FileCopier program from Example 4.2 in Chapter 4, failed
when the source and destination were the same file. Now we can use canonical paths to
correct that flaw by testing whether two files are the same before copying, as shown in
Example 12.3. If the files are the same, no copy needs to take place.

Example 12.3. Safe FileCopier

import java.io.*;
import com.macfaq.io.*;

public class SafeFileCopier {

 public static void main(String[] args) {

 if (args.length != 2) {
 System.err.println("Usage: java FileCopier infile outfile");
 }
 try {
 copy(new File(args[0]), new File(args[1]));
 }
 catch (IOException e) {System.err.println(e);}
 }

 public static void copy(File inFile, File outFile) throws IOException {

 if (inFile.getCanonicalPath().equals(outFile.getCanonicalPath())) {
 // inFile and outFile are the same,
 // hence no copying is required.
 return;
 }

 FileInputStream fin = new FileInputStream(inFile);
 FileOutputStream fout = new FileOutputStream(outFile);
 StreamCopier.copy(fin, fout);
 fin.close();
 fout.close();
 }
}

I could test the files themselves, but since a single file may have multiple paths through
aliases or parent links, I'm still not guaranteed that the inFile and outFile aren't the same.
But each file has exactly one unique canonical path, so if inFile's canonical path is not equal
to outFile's canonical path, then they can't possibly be the same file. Conversely, if inFile's
canonical path is equal to outFile's canonical path, then they must be the same file.

The getCanonicalFile() method, new in Java 2, acts just like getCanonicalPath(),
except that it returns a new File object instead of a string:

Java I/O

288

public File getCanonicalFile() throws IOException // Java 2

The File object returned has a path field that's the canonical path of the file. In Java 1.1 you
can get the same effect for a File object f by calling new File(f.getCanonicalPath()).
Both getCanonicalPath() and getCanonicalFile() can throw IOExceptions, because
both need to read the filesystem to resolve aliases, shadows, symbolic links, shortcuts, and
parent directory references.

12.3.3.5 Parents

The getParent() method returns a string containing everything before the last file separator
in the path field:

public String getParent()

For example, if a File object's path field is
/home/users/elharo/javaio/ioexamples/11/index.html, then getParent() returns
/home/users/elharo/javaio/ ioexamples/11. If a File object's path field is
11/index.html, then getParent() returns 11. If a File object's path field is index.html, then
getParent() returns null. Files at the top level of the disk have no parent directories. For
these files, getParent() returns null.

In Java 2 the getParentFile() method does the same thing, except that it returns the parent
as a new File object instead of a string:

public File getParentFile() // Java 2

12.3.3.6 File attributes

The File class has several methods that return assorted information about the file, such as its
length, the time it was last modified, whether it's readable, whether it's writable, and whether
it's hidden.

The canWrite() method indicates whether the program can write into the file referred to by
this File object. The canRead() method indicates whether the program can read from the
file.

public boolean canRead()
public boolean canWrite()

Both these methods perform two checks. The first check determines whether Java's security
manager allows the file in question to be read or written; the second determines whether the
operating system allows the file to be read or written. If Java's security manager disallows the
access, a security exception is thrown. If the OS disallows the access, then the method returns
false but does not throw any exceptions. However, attempting to read from or write to such a
file will probably throw an IOException.[2]

2 If the attempt to read from or write to a file does not closely follow on the call to canRead() or canWrite(), it's theoretically possible
the file will have become readable or writable in the meantime. However, this is unusual, and you certainly shouldn't count on it.

Java I/O

289

The isHidden() method, only available in Java 2 and later, returns true if the file exists but
is hidden; that is, it does not appear in normal displays or listings. It returns false if the file
isn't hidden or doesn't exist.

public boolean isHidden() // Java 2

Exactly how a file is hidden varies from platform to platform. On Unix, any file whose name
begins with a period is hidden. On Windows and the Mac, hidden files are identified by
particular attributes. This method throws a security exception if the security manager doesn't
allow the file to be read.

The lastModified() method returns a long indicating the last time this file was modified:

public long lastModified()

Java 2 specifies that the long returned is the number of milliseconds since midnight, January
1, 1970, Greenwich Mean Time. However, in earlier VMs the conversion between this long
and a real date is platform-dependent, so it's only useful for comparing the modification dates
of different files, not for determining the absolute time a file was modified. This method
throws a security exception if the security manager doesn't allow the file to be read. It returns
if the file doesn't exist or the last modified date can't be determined.

Finally, the length() method returns the number of bytes in the file or if the file does not
exist:

public long length()

This method throws a security exception if the security manager doesn't allow the file to be
read.

12.3.3.7 An example

Example 12.4 is a character-mode program that lists all the available information about files
named on the command line. Names may be given as absolute or relative paths.

Example 12.4. The FileSpy Program

import java.io.*;
import java.util.*;

public class FileSpy {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 File f = new File(args[i]);
 if (f.exists()) {
 System.out.println("Name: " + f.getName());
 System.out.println("Absolute path: " + f.getAbsolutePath());
 try {
 System.out.println("Canonical path: " + f.getCanonicalPath());
 }

Java I/O

290

 catch (IOException e) {
 System.out.println("Could not determine the canonical path.");
 }

 String parent = f.getParent();
 if (parent != null) {
 System.out.println("Parent: " + f.getParent());
 }

 if (f.canWrite()) System.out.println(f.getName() + " is
writable.");
 if (f.canRead()) System.out.println(f.getName() + " is readable.");

 if (f.isFile()) {
 System.out.println(f.getName() + " is a file.");
 }
 else if (f.isDirectory()) {
 System.out.println(f.getName() + " is a directory.");
 }
 else {
 System.out.println("What is this?");
 }

 if (f.isAbsolute()) {
 System.out.println(f.getPath() + " is an absolute path.");
 }
 else {
 System.out.println(f.getPath() + " is not an absolute path.");
 }

 long lm = f.lastModified();
 if (lm != 0) System.out.println("Last Modified at " + new
Date(lm));

 long length = f.length();
 if (length != 0) {
 System.out.println(f.getName() + " is " + length + " bytes
long.");
 }
 }
 else {
 System.out.println("I'm sorry. I can't find the file " + args[i]);
 }
 }
 }
}

Here's the result of running FileSpy on itself:

D:\JAVA\ioexamples\12>java FileSpy FileSpy.java
Name: FileSpy.java
Absolute path: D:\JAVA\ioexamples\12\FileSpy.java
Canonical path: D:\Java\ioexamples\12\FileSpy.java
FileSpy.java is writable.
FileSpy.java is readable.
FileSpy.java is a file.
FileSpy.java is not an absolute path.
Last Modified at Fri Sep 11 15:11:24 PDT 1998
FileSpy.java is 1846 bytes long.

Java I/O

291

12.3.4 Manipulating Files

The File class has methods to create, move, rename, and delete files. A method to copy files
is a noticeable omission.

12.3.4.1 Creating files

Java 1.1 provides no method to create a new file. Opening a file output stream to the file you
want to create, then immediately closing it, has the same effect. For example, the following
method creates a file if, and only if, it doesn't already exist. Otherwise, it throws an
IOException:

public static void createFileSafely(File f) throws IOException {

 if (f.exists()) {
 throw new IOException(f.getName() + " already exists.");
 }
 FileOutputStream fout = new FileOutputStream(f);
 fout.close();
}

Java 2 adds the createNewFile() method:

public boolean createNewFile() throws IOException // Java 2

This method checks to see whether the file exists and creates the file if it doesn't already exist.
It returns true if the file was created and false if it wasn't created, either because it couldn't
be created or because the file already existed. For example:

File f = new File("output.dat");
boolean success = f.createNewFile();
if (success) {
 //...
}
else { //...

This method throws an IOException if an I/O error occurs. It throws a security exception if
the security manager vetoes the creation of the file.

12.3.4.2 Moving and renaming files

The renameTo() method changes the name of a file:

public boolean renameTo(File destination)

For example, to change the name of the file src.txt in the current working directory to dst.txt,
you would write:

File src = new File("src.txt");
File dst = new File("dst.txt");
src.renameTo(dst);

As well as renaming the source file, renameTo()moves the source file from its original
directory to the directory specified by the destination argument if the destination file is in a

Java I/O

292

different directory than the source file. For example, to move a file src to the directory
/usr/tmp on a Unix system without changing the file's name, do this:

File dest = new File("/usr/tmp/" + src.getName());
src.renameTo(dest);

If dest already exists, then it is overwritten by the source file (permissions permitting;
otherwise, an exception is thrown). If src is successfully renamed, the method returns true.
If the security manager doesn't allow the program to write to both the source file and the
destination file, a security exception is thrown. Otherwise, the method returns false.
However, this behavior is unreliable and platform-dependent. For instance, renameTo()
moves files if, and only if, the directory structure specified in the dest File object already
exists. I've also seen this code work on some Unix versions with some versions of the JDK
and fail on others. It's best not to rely on this method for more than renaming a file in the
same directory.

12.3.4.3 Copying files

There is no copy() method that merely copies a file to a new location without removing the
original. However, you can open a file output stream to the copy, open a file input stream
from the original file, then copy the data byte by byte from the original into the copy. For
example, to copy the file src to the file dst:

FileInputStream fin = new FileInputStream(src);
FileOutputStream fout = new FileOutputStream(dst);
StreamCopier.copy(fin, fout);
fin.close();
fout.close();

There are some serious problems with this code. First of all, it assumes that both src and dst
refer to files, not directories. Second, it only copies the contents of the files. If the file is
associated with meta-information or extra data, that data is lost. Macintosh files are most
vulnerable to this problem, since resource forks are lost in the copy operation. However,
Windows and Unix files also have permissions and other meta-information that will not
necessarily be maintained by the copy. Third, file copies can take nontrivial amounts of time.
It's rude to tie up the user's system without at least putting up some sort of progress bar.

12.3.4.4 Deleting files

The delete() method removes files from the filesystem permanently:

public boolean delete()

This method returns true if the file existed and was deleted. (You can't delete a file that
doesn't exist.) If the security manager disallows this action, a security exception is thrown.
Otherwise, delete() returns false. You can move a file by copying it then deleting the
original. For example, to move the file src to the file dst:

FileInputStream fin = new FileInputStream(src);
FileOutputStream fout = new FileOutputStream(dst);
StreamCopier.copy(fin, fout);
fout.close();

Java I/O

293

fin.close();
src.delete();

The warnings about copying files (meta-information and resource forks not maintained,
copies file-to-file only supported) go double for this sort of move, because after the move is
complete, the original file and all its data and meta-information are deleted. Any information
that wasn't copied is lost.

12.3.4.5 Changing file attributes

Java 2 allows an application to change a file's last modified time:

public boolean setLastModified(long time) // Java 2

The time argument is the number of milliseconds since midnight, GMT, January 1, 1970.
This will be converted to the format necessary for a particular platform's file modification
times. If the platform does not support millisecond-accurate file modification times, then the
time will be rounded to the nearest time the host platform does support. An
IllegalArgumentException is thrown if time is negative; a SecurityException is thrown
if the security manager disallows write access to the file.

The setReadOnly() method marks the file so that only reading of the file is allowed. Any
form of writing to the file is disallowed.

public boolean setReadOnly() // Java 2

It may be an oversight, but Java provides no way to undo the effects of this method and allow
a file to be written. To accomplish that, you'll need to use chmod (Unix), the Properties
window (Windows), the Get Info window (Mac), or whatever facility your platform provides
for locking and unlocking files. A SecurityException is thrown if the security manager
disallows write access to the file.

12.3.5 Temporary Files

Java 2 adds support for temporary files: files that only exist as long as the program runs. The
File class provides two methods that create temporary files and one method to mark a file to
be deleted when the program exits.

public static File createTempFile(String prefix, String suffix)
 throws IOException // Java 2
public static File createTempFile(String prefix, String suffix,
 File directory) throws IOException // Java 2

The createTempFile() methods create a file with a name that begins with the specified
prefix and ends with the specified suffix. The prefix is a string used at the beginning of all
temporary file names; the suffix is appended to the end of all temporary file names. The suffix
may be null. If so, .tmp will be used as the suffix. The same run of the same VM will not
create two files with the same name. For example, consider this for loop:

for (int i=0; i < 10; i++) {
 File f1 = File.createTempFile("mail", ".tem");
}

Java I/O

294

When run, it creates files named mail30446.tem, mail30447.tem, etc. through mail30455.tem.

By default, temporary files are placed in the directory named by the java.io.tmpdir
property. On Unix, this is likely to be /tmp or /var/tmp. On Windows, it's probably C:\temp or
C:\Windows\Temp. On the Mac, it's probably the invisible Temporary Items folder on the
startup drive. You can specify a different directory using the third argument to
createTempFile(). For instance, to create a temporary file in the current working directory:

File cwd = new File(System.getProperty("user.dir"));
File temp = File.createTempFile("rus", ".tmp", cwd);

You often want to delete temporary files when your program exits. You can accomplish this
by passing them to the deleteOnExit() method:

public void deleteOnExit() // Java 2

For example:

File temp = File.createTempFile("mail", ".tem");
temp.deleteOnExit();

This method works on any File object, not just temporary files. Be careful, because there's no
good way to cancel a request to delete files when your program exits.

Temporary files are useful when you need to operate on a file in place. You can do this in two
passes. In the first pass, you read from the file you're converting and write into the temporary
file. In the second pass, you read from the temporary file and write into the file you're
converting. Here's an example:

try {
 File infile = new File(args[2]);
 File outfile = new File(args[3]);
 boolean usingTempFile = false;

 if (infile.getCanonicalPath().equals(outfile.getCanonicalPath())) {
 outfile = File.createTempFile("temp", null);
 outfile.deleteOnExit();
 usingTempFile = true;
 }

 // perform operations as normal, then close both files...
 if (usingTempFile) {
 FileInputStream fin = new FileInputStream(outfile);
 FileOutputStream fout = new FileOutputStream(infile);
 StreamCopier.copy(fin, fout);
 fin.close();
 fout.close();
 }
}
catch (IOException e) {System.err.println(e);}

12.3.6 Utility Methods

The File class also contains the usual equals(), hashCode(), and toString() methods,
which behave exactly as you would expect. It does not contain a clone() method.

Java I/O

295

public int hashCode()
public boolean equals(Object o)
public String toString()

In Java 2, the File class implements the java.lang.Comparable interface so that two
pathnames may be compared to each other. This requires these two compareTo() methods:

public int compareTo(File pathname) // Java 2
public int compareTo(Object o) // Java 2

For example:

File f1 = new File("readme.txt");
File f2 = new File("README.TXT");
int result = f1.compareTo(f2);

This method returns a number less than zero if f1 is less than f2, zero if they're the same, and
a positive number if f1 is greater than f2. The comparison is made against the path fields of
f1 and f2. The algorithm used for comparison is more or less alphabetical. On case-
insensitive platforms like Windows and the Mac, case is not considered. For instance, the
previous result would be zero on the Mac or Windows but positive on Unix.

12.3.7 Working with Directories

A File object can represent a directory as easily as a file. Most of the File methods, like
getName(), canWrite(), and getPath(), behave exactly the same for a directory as they do
for a file. However, there are a couple of methods in the File class that behave differently
when they operate on directories than they do when operating on ordinary files.

The delete() method only works on empty directories. If a directory contains even one file,
it can't be easily deleted. If you attempt to delete a nonempty directory, delete() fails and
returns false. No exception is thrown.

The renameTo() method works on both empty and nonempty directories. However—whether
a directory is empty or not—renameTo() can only rename it, not move it to a different
directory. If you attempt to move a directory into another directory, renameTo() fails and
returns false. No exception is thrown.

The File class also has several methods that just work with directories, not with regular files.

12.3.7.1 Creating directories

To create a file, you open a FileOutputStream to it (Java 1.0 and 1.1) or call
createNewFile() (Java 2). This doesn't work for directories, though. For that purpose, the
File class has a mkdir() method:

public boolean mkdir()

The mkdir() method attempts to create a directory with the path specified in the path field. If
the directory is created, the method returns true. For example:

Java I/O

296

File f = new File("tmp/");
f.mkdir();

The trailing slash is optional, but it helps you to remember that you're dealing with a directory
rather than a plain file. If the security manager does not allow the directory to be created, a
security exception is thrown. If the directory cannot be created for any other reason, mkdir()
returns false. The mkdir() method only works for single directories. Trying to create a
directory like com/macfaq/io/ with mkdir() only works if com/macfaq already exists.

The mkdirs() method creates every directory in a path that doesn't already exist:

public boolean mkdirs()

For example:

File f = new File("com/macfaq/io/");
f.mkdirs();

mkdirs() returns true if all directories in this path are created or already exist and false if
only some or none of them are created. If mkdirs() returns false, you need to test each
directory in the path to see whether it was created, because the invocation could have been
partially successful.

One reason mkdir() and mkdirs() may return false (fail to create a directory) is that a file
already exists with the name the directory has. Neither mkdir() nor mkdirs() will overwrite
an existing file or directory.

12.3.7.2 Listing directories

The list() method returns an array of strings containing the names of each file in the
directory referred to by the File object:

public String[] list()

This method returns null if the File object doesn't point to a directory. It throws a security
exception if the program isn't allowed to read the directory being listed. An alternative version
of list() uses a FilenameFilter object (discussed later in the chapter) to restrict which
files are included in the list:

public String[] list(FilenameFilter filter)

Example 12.5 is a simple character-mode program that recursively lists all the files in a
directory, and all the files in directories in the directory, and all the files in directories in the
directory, and so on. Files are indented two spaces for each level deep they are in the
hierarchy.

Example 12.5. The DirList Program

import java.io.*;
import java.util.*;

Java I/O

297

public class DirList {

 File directory;
 int indent = 2;
 static Vector seen = new Vector();

 public static void main(String[] args) {
 try {
 for (int i = 0; i < args.length; i++) {
 DirList dl = new DirList(args[i]);
 dl.list();
 }
 }
 catch (IOException e) {System.err.println(e);}
 }

 public DirList(String s) throws IOException {
 this(new File(s), 2);
 }

 public DirList(File f) throws IOException {
 this(f, 2);
 }

 public DirList(File directory, int indent) throws IOException {
 if (directory.isDirectory()) {
 this.directory = new File(directory.getCanonicalPath());
 }
 else {
 throw new IOException(directory.toString() + " is not a directory");
 }
 this.indent = indent;
 String spaces = "";
 for (int i = 0; i < indent-2; i++) spaces += " ";
 System.out.println(spaces + directory + File.separatorChar);
 }

 public void list() throws IOException {

 if (!seen.contains(this.directory)) {
 seen.addElement(this.directory);
 String[] files = directory.list();
 String spaces = "";
 for (int i = 0; i < indent; i++) spaces += " ";
 for (int i = 0; i < files.length; i++) {
 File f = new File(directory, files[i]);
 if (f.isFile()) {
 System.out.println(spaces + f.getName());
 }
 else { // it's another directory
 DirList dl = new DirList(f, indent + 2);
 dl.list();
 }
 }
 }
 }
}

Special care has to be taken to make sure this program doesn't get caught in an infinite
recursion. If a directory contains an alias, shadow, shortcut, or symbolic link that points to one

Java I/O

298

of its own parents, there's potential for infinite recursion. To avoid this possibility, all paths
are converted to canonical paths in the constructor, and these paths are stored in the static
vector seen. A directory is listed only if it has not yet been traversed by this program.

12.3.7.3 The listFiles() methods

The two list() methods return arrays of strings. The strings contain the names of files. You
can use these to construct File objects. Java 2 allows you to eliminate the intermediate step
of creating File objects by providing two listFiles() methods that return arrays of File
objects instead of arrays of strings.

public File[] listFiles() // Java 2
public File[] listFiles(FilenameFilter filter) // Java 2
public File[] listFiles(FileFilter filter) // Java 2

The no-argument variant of listFiles() simply returns an array of all the files in the given
directory. The other two variants return the files that pass through their filters. File and
filename filters will be discussed shortly.

12.3.8 File URLs

File URLs are used inside web browsers to refer to a file on the local hard drive.[3] They have
the basic form:

file://<host>/<path>

<host> should be the fully qualified domain name of the system on which the <path> is
found, though if it's omitted, the local host is assumed. <path> is the hierarchical path to the
file, using a forward slash as a directory separator (regardless of host filename conventions)
and URL encoding of any special characters in filenames that would normally be encoded in a
URL. Examples of file URLs include:

file:///C|/docs/JCE%201.2%20beta%201/guide/API_users_guide.html
file:///usr/local/java/docs/JCE%201.2%20beta%201/guide/API_users_guide.html
file:///D%7C/JAVA/
file:///Macintosh%20HD/Java/Cafe%20%au%20%Lait/course/week4/01.5.html

Many web browsers allow other, nonstandard formats like:

file:///D:/JAVA/
file:///usr/local/java/docs/JCE 1.2 beta 1/guide/API_users_guide.html
file:///C|/jdk2beta4/docs/JCE 1.2 beta 1/guide/API_users_guide.html
file:///C:\jdk1.2beta4\docs\JCE 1.2 beta 1\guide\API_users_guide.html
file:/D:/Java/ioexamples/12/FileDialogApplet.html

Because of the differences between file, and directory names from one computer to the next,
the exact syntax of file URLs is unpredictable from platform to platform and web browser to
web browser. In Java 2 the File class has a toURL() method that returns a file URL that's
appropriate for the local platform:

public URL toURL() throws MalformedURLException // Java 2

3 Very early web browsers used file URLs to refer to FTP sites. However, that usage has mostly disappeared now.

Java I/O

299

12.4 Filename Filters

You often want to look for a particular kind of file—for example, text files. To do this, you
need a FilenameFilter object that specifies which files you'll accept. FilenameFilter is an
interface in the java.io package:

public interface FilenameFilter

This interface declares a single method, accept():

public abstract boolean accept(File directory, String name);

The directory argument is a File object pointing to a directory, and the name argument is
the name of a file. The method should return true if a file with this name in this directory
passes through the filter and false if it doesn't. Because FilenameFilter is an interface, it
must be implemented in a class. Example 12.6 is a class that filters out everything that is not
an HTML file.

Example 12.6. HTMLFilter

import java.io.*;

public class HTMLFilter implements FilenameFilter {

 public boolean accept(File directory, String name) {

 if (name.endsWith(".html")) return true;
 if (name.endsWith(".htm")) return true;
 return false;
 }
}

Files can be filtered using any criteria you like. An accept() method may test modification
date, permissions, file size, and any attribute Java supports. (You can't filter by attributes Java
does not support, like Macintosh file and creator codes, at least not without native methods or
some sort of access to the native API.) This accept() method tests whether the file ends with
.html and is in a directory where the program can read files:

public boolean accept(File directory, String name) {

 if (name.endsWith(".html") && directory.canRead()) {
 return true;
 }
 return false;
}

Filename filters are primarily intended for the use of file dialogs, which will be discussed in
the next chapter. However, in Java 2 the File class has a listFiles() method that takes
a FilenameFilter as an argument:

public File[] listFiles(FilenameFilter filter) // Java 2

This method assumes that the File object represents a directory. The array of File objects
returned by listFiles() only contains those files that passed the filter. For example,

Java I/O

300

the following lines of code list HTML files in the /public/html/javafaq directory using
the HTMLFilter of Example 12.6.

File dir = new File("/public/html/javafaq");
File[] htmlFiles = dir.listFiles(new HTMLFilter());
for (int i = 0; i < htmlFiles.length; i++) {
 System.out.println(htmlFiles[i]);
}

12.5 File Filters

Java 2 adds a new java.io.FileFilter interface that's very similar to FilenameFilter:

public abstract interface FileFilter // Java 2

The accept() method of FileFilter takes a single File object as an argument, rather than
two strings giving the directory and path:

public boolean accept(File pathname) // Java 2

Example 12.7 is a filter that only passes HTML files. Its logic is essentially the same as the
filter of Example 12.6.

Example 12.7. HTMLFileFilter

import java.io.*;

public class HTMLFileFilter implements FileFilter {

 public boolean accept(File pathname) {

 if (pathname.getName().endsWith(".html")) return true;
 if (pathname.getName().endsWith(".htm")) return true;
 return false;
 }
}

This class appears as an argument in one of the listFiles() methods of java.io.File:

public File[] listFiles(FileFilter filter) // Java 2

Example 12.8 uses the HTMLFileFilter to list the HTML files in the current working
directory.

Example 12.8. List HTML Files

import java.io.*;

public class HTMLFiles {

 public static void main(String[] args) {

 File cwd = new File(System.getProperty("user.dir"));
 File[] htmlFiles = cwd.listFiles(new HTMLFileFilter());

Java I/O

301

 for (int i = 0; i < htmlFiles.length; i++) {
 System.out.println(htmlFiles[i]);
 }
 }
}

There's a nasty name conflict between the java.io.FileFilter
interface and the abstract javax.swing.filechooser.FileFilter
class discussed in the next chapter. I would not be surprised if this
interface were replaced by a new abstract FileFilter class more like
javax.swing.filechooser.FileFilter.

12.6 File Descriptors

As I've said several times so far, the existence of a java.io.File object doesn't imply the
existence of the file it represents. A java.io.FileDescriptor object does, however, refer to
an actual file:

public final class FileDescriptor extends Object

A FileDescriptor object is an abstraction of an underlying machine-specific structure that
represents an open file. While file descriptors are very important for the underlying OS and
filesystem, their only real use in Java is to guarantee that data that's been written to a stream is
in fact committed to disk; that is, to synchronize between the program and the hardware.

In addition to open files, file descriptors can also represent open sockets, though this use
won't be emphasized in this book. There are also three file descriptors for the console:
System.in, System.out, and System.err. These are available as the three mnemonic
constants FileDescriptor.in, FileDescriptor.out, and FileDescriptor.err:

public static final FileDescriptor in
public static final FileDescriptor out
public static final FileDescriptor err

Because file descriptors are very closely tied to the native operating system, you never
construct your own file descriptors. Various methods in other classes that refer to open files or
sockets may return them. Both the FileInputStream and FileOutputStream classes and the
RandomAccessFile class have a getFD() method that returns the file descriptor associated
with the open stream or file:

public final FileDescriptor getFD() throws IOException

The java.net.SocketImpl class stores the file descriptor for a socket in a protected field
called fd :

protected FileDescriptor fd

This field is returned by SocketImpl's protected getFileDescriptor() method:

protected FileDescriptor getFileDescriptor()

Java I/O

302

Since file descriptors are only associated with open files and sockets, they become invalid as
soon as the file or socket is closed. You can test whether a file descriptor is still valid with the
valid() method:

public native boolean valid()

This returns true if the descriptor is still valid, false if it isn't.

The one real use to which a client programmer can put a file descriptor object is to sync a file.
This is accomplished with the aptly named sync() method:

public native void sync() throws SyncFailedException

The sync() method forces the system buffers to write all the data they contain to the actual
hardware. Generally, you'll want to flush the stream before syncing it. Flushing clears out
Java's internal buffers. Syncing clears out the operating system's, device driver's, and
hardware's buffers. If synchronization does not succeed, then sync() throws a
java.io.SyncFailedException, a subclass of IOException.

12.7 Random-Access Files

File input and output streams require you to start reading or writing at the beginning of a file
and then read or write the file in order, possibly skipping over some bytes or backing up but
more or less moving from start to finish. Sometimes, however, you need to read parts of a file
in a more or less random order, where the data near the beginning of the file isn't necessarily
read before the data nearer the end. Other times you need to both read and write the same file.
For example, in record-oriented applications like databases, the actual data may be indexed;
you would use the index to determine where in the file to find the record you need to read or
write. While you could do this by constantly opening and closing the file and skipping to the
point where you needed to read, this is far from efficient. Writes are even worse, since you
would need to read and rewrite the entire file, even to change just one byte of data.

Random-access files can be read from or written to or both from a particular byte position in
the file. A single random-access file can be both read and written without first being closed.
The position in the file where reads and writes start from is indicated by an integer called the
file pointer. Each read or write advances the file pointer by the number of bytes read or
written. Furthermore, the programmer can reposition the file pointer at different bytes in the
file without closing the file.

In Java, random file access is performed through the java.io.RandomAccessFile class. This
is not a subclass of java.io.File:

public class RandomAccessFile extends Object implements DataInput,
DataOutput

Among other differences between File objects and RandomAccessFile objects, the
RandomAccessFile constructors actually open the file in question and throw an IOException
if it doesn't exist:

public RandomAccessFile(String filename, String mode) throws
FileNotFoundException

Java I/O

303

public RandomAccessFile(File file, String mode) throws IOException

The first argument to the constructor is the file you want to access. The second argument is
the mode for access. The mode should be either the string literal "r" for read-only access or
the string "rw" for read/write access. Java does not support write-only access. For example:

RandomAccessFile raf = new RandomAccessFile("29.html", "r");

An IllegalArgumentException is thrown if anything other than the strings "rw" or "r" is
passed as the second argument to this constructor. A security exception is thrown if the
security manager does not allow the requested file to be read. A security exception is also
thrown if you request read/write access, but only read access is allowed. Security checks are
made only when the object is constructed. It is assumed that the security manger's policy
won't change while the program is running. Finally, an IOException is thrown if the
operating system doesn't allow the file to be accessed or some other I/O problem occurs.

The getFilePointer() and seek() methods allow you to determine and modify the position
in the file at which reads and writes occur. Attempts to seek (position the file pointer) past the
end of the file just move the file pointer to the end of the file. Attempts to write from the end
of the file extend the file.

public native long getFilePointer() throws IOException
public native void seek(long pos) throws IOException

Attempts to read from the end of the file throw an EOFException (a subclass of
IOException). You can determine the length of the file with the length() method:

public native long length() throws IOException

The RandomAccessFile class implements both the DataInput and DataOutput interfaces.
Therefore, reads and writes use methods exactly like the methods of the DataInputStream
and DataOutputStream classes, such as read(), readFully(), readBoolean(),
writeBoolean(), and so on.

public native int read() throws IOException
public int read(byte[] data, int offset, int length) throws IOException
public int read(byte[] data) throws IOException
public final void readFully(byte[] data) throws IOException
public final void readFully(byte[] data, int offset, int length)
 throws IOException
public native void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException
public final boolean readBoolean() throws IOException
public final byte readByte() throws IOException
public final int readUnsignedByte() throws IOException
public final short readShort() throws IOException
public final int readUnsignedShort() throws IOException
public final char readChar() throws IOException
public final int readInt() throws IOException
public final long readLong() throws IOException
public final float readFloat() throws IOException
public final double readDouble() throws IOException
public final String readLine() throws IOException

Java I/O

304

public final String readUTF() throws IOException
public final void writeBoolean(boolean b) throws IOException
public final void writeByte(int b) throws IOException
public final void writeShort(int s) throws IOException
public final void writeChar(int c) throws IOException
public final void writeInt(int i) throws IOException
public final void writeLong(long l) throws IOException
public final void writeFloat(float f) throws IOException
public final void writeDouble(double d) throws IOException
public final void writeBytes(String s) throws IOException
public final void writeChars(String s) throws IOException
public final void writeUTF(String s) throws IOException

Finally, there are a few miscellaneous methods. The getFD() method simply returns the file
descriptor for this file:

public final FileDescriptor getFD() throws IOException

The skipBytes() method attempts to reposition the file pointer n bytes further in the file
from where it is now. It returns the number of bytes actually skipped, which may be less than
n:

public int skipBytes(int n) throws IOException

The seek() method jumps to an absolute position in the file starting from 0, whereas
skipBytes() moves n bytes past wherever the file pointer is now:

public void seek(long position) throws IOException

Finally, the close() method closes the file:

public native void close() throws IOException

Once the file is closed, it may not be read from, though a new RandomAccessFile object that
refers to the same file can be created.

12.8 General Techniques for Cross-Platform File Access Code

File manipulation vies with AWT for being the part of Java where it's hardest to write truly
cross-platform, robust code. Until Java 2, Sun really didn't pay a lot of attention to differences
between filesystems on different platforms. The situation is getting better, however. The
java.io.File class does work much more reliably across Windows and Unix in Java 2 and
has hooks to allow it to work more naturally on other platforms as well. Of course, Java 1.1 is
still the primary delivery platform for most Java applications that work with files. To help you
achieve greater serenity and overall cross-platform nirvana, I've summarized some basic rules
from this chapter to help you write file manipulation code that's robust across a multitude of
platforms:

• Never, never, never hardcode pathnames in your application.
• Ask the user to name your files. If you must provide a name for a file, try to make it fit

in an 8.3 DOS filename with only pure ASCII characters.
• Do not assume the file separator is "/" (or anything else). Use File.separatorChar

instead.

Java I/O

305

• Do not parse pathnames to find directories. Use the methods of the java.io.File
class instead.

• Do not use renameTo() for anything except renaming a file. In particular, do not use it
to move a file.

• Try to avoid moving and copying files from within Java programs if at all possible.
• Do not use . to refer to the current directory. Use System.getProperty

("user.dir") instead.
• Do not use .. to refer to the parent directory. Use getParent() instead.
• Do not assume the current working directory is the one where your .class files live. It

almost certainly won't be that directory on the Mac, and it may not be on other
platforms, including Windows and Unix.

• Place any data files your program requires in JAR archives rather than directly in the
filesystem, then load them as resources from the class path.

• When in doubt, it never hurts to convert filenames to canonical form.
• Do not assume anything about filesystem conventions. Some platform somewhere will

surprise you. (Have you tested your program on BeOS yet?)
• Test your code on as many different filesystems as you can get your hands on.

Despite all the problems I've pointed out, it is mostly possible to write robust file access code
that works across all platforms where Java runs. But doing so requires understanding, effort,
and thought. You cannot simply write for Windows or Unix and hope things will work out for
the best on other platforms. You must plan to handle a wide range of filesystems and filename
conventions.

Java I/O

306

Chapter 13. File Dialogs and Choosers
Filenames are problematic, even if you don't have to worry about cross-platform
idiosyncrasies. Users forget filenames, mistype them, can't remember the exact path to files
they need, and more. The proper way to ask a user to select a file is to show them a list of the
files in the current directory and get them to select from that list. You also need to allow them
to navigate between directories, insert and remove floppy disks, mount network servers, and
more.

Most graphical user interfaces (and not a few nongraphical ones) provide standard widgets for
selecting a file. In Java the platform's native file selector widget is exposed through the
java.awt.FileDialog class. Like many native peer-based classes, however, FileDialog
doesn't behave exactly the same on all platforms. Therefore, Swing (part of the Java
Foundation Classes) provides a pure Java implementation of a file dialog, the
javax.swing.JFileChooser class.[1] JFileChooser (and Swing in general) has much more
reliable cross-platform behavior.

13.1 File Dialogs

I'm going to jump out of the java.io package for a minute to pick up one file-related class
from the AWT, java.awt.FileDialog. File dialogs are the standard open and save dialogs
provided by the host GUI. Users use them to pick a directory and a name under which to save
a file or to choose a file to open. The appearance varies from platform to platform, but the
intent is the same. Figure 13.1 shows a standard Save dialog on the Mac; Figure 13.2 shows a
standard open dialog on Solaris.

Figure 13.1. The Mac's standard Save dialog

1 The package name for Swing has changed several times since its first early access release. javax.swing is its final home—this package
name is used in Swing 1.1 (for use with JDK 1.1) and Java 2 (which includes Swing and the rest of JFC). For more information about Swing, see Java
Swing, by Robert Eckstein, Marc Loy, and Dave Wood (O'Reilly & Associates, 1998).

Java I/O

307

Figure 13.2. Motif standard Open dialog

FileDialog is a subclass of java.awt.Dialog that represents the native save and open
dialog boxes:

public class FileDialog extends Dialog

A file dialog is almost completely implemented by a native peer. Your program doesn't add
components to a file dialog or handle user interaction with event listeners. It just displays the
dialog and retrieves the name and directory of the file the user chose after the dialog is
dismissed.

Since applets normally can't read or write files, file dialogs are primarily useful only in
applications. Nonetheless, there is no specific security manager check to see whether file
dialogs are allowed. Sun's applet viewer, HotJava, and some recent versions of Netscape
Navigator do allow untrusted applets to display file dialogs, retrieve the name and path of the
file selected, and send that information back to the originating host over the network.
Although this is a very minor security hole, since it only exposes the name and path of a
single file selected by the user, it's still on the worrisome side for the paranoid. Internet
Explorer 4.0 and Navigator 4.0.3 and earlier do not allow applets to display file dialogs.
Certainly, you can't count on being allowed to use a file dialog in an applet, nor can you be
guaranteed that it isn't allowed either.

To ask the user to select a file from a file dialog, perform these four steps:

1. Construct a FileDialog object.
2. Set the default directory or file for the dialog (optional).
3. Make the dialog visible.
4. Get the name and directory of the file the user chose.

There is one FileDialog constructor:

public FileDialog(Frame parent, String title, int mode)

The first argument is the parent frame of this file dialog. This will normally be the main
window of the application, the applet's parent, or the frontmost window of the application.
Conversely, you can just create a new frame; you're not required to show the frame if you

Java I/O

308

don't want to. File dialogs are modal. While the file dialog is shown, input to the parent frame
is blocked, as with the parent frame of any modal dialog. The title argument is the prompt
string for the file dialog, normally something like "Please choose the file to open:". The mode
argument is one of the two mnemonic constants FileDialog.LOAD or FileDialog.SAVE:

public static final int LOAD = 0;
public static final int SAVE = 1;

Use FileDialog.LOAD if you want the user to choose a file to open. Use FileDialog.SAVE if
you want the user to choose a file to save the data into. A typical use of this constructor might
look like this:

FileDialog fd = new FileDialog(new Frame("Dummy frame"),
 "Please choose the file to open:", FileDialog.LOAD);

To specify that the file dialog should appear with a particular directory opened or a particular
file in that directory selected, you can invoke the setDirectory() and setFile() methods:

public synchronized void setDirectory(String directory)
public synchronized void setFile(String file)

For example:

fd.setDirectory("/etc");
fd.setFile("passwd");

You make the file dialog visible by invoking the file dialog's show() method, just like any
other window:

fd.show();

As soon as the file dialog becomes visible, the calling thread stops and waits for the user to
choose a file. The operating system takes over and handles user interaction until the user
chooses a file or presses the Cancel button. At this point, the file dialog disappears from the
screen, and normal program execution resumes.

Once the dialog has been dismissed, you can find out which file the user chose by using the
file dialog's getDirectory() and getFile() methods:

public String getFile()
public String getDirectory()

For example:

FileDialog fd = new FileDialog(new Frame(), "Please choose a file:",
FileDialog.LOAD);
fd.setVisible(true);
File f = new File(fd.getDirectory(), fd.getFile());

If the user cancels the file dialog without selecting a file, getFile() and getDirectory()
return null. You should be ready to handle this, or you'll bump into a
NullPointerException in short order.

Java I/O

309

Example 13.1 is a program that presents an open file dialog to the user, then writes the
contents of the file they selected on System.out. There are many good ways to do this. I
chose to write a static getFile() method that returns a File object; then open and print this
file back in the main() method.

Example 13.1. The FileTyper Program

import java.io.*;
import java.awt.*;
import com.macfaq.io.*;

public class FileChooser {

 public static void main(String[] args) {

 try {
 File f = getFile();
 if (f == null) return;
 FileInputStream fin = new FileInputStream(f);
 StreamCopier.copy(fin, System.out);
 }
 catch (IOException e) {System.err.println(e);}

 // Work around annoying AWT non-daemon thread bug.
 System.exit(0);
 }

 public static File getFile() throws IOException {

 // dummy Frame, never shown
 Frame parent = new Frame();
 FileDialog fd = new FileDialog(parent, "Please choose a file:",
 FileDialog.LOAD);
 fd.show();

 // Program stops here until user selects a file or cancels.

 String dir = fd.getDirectory();
 String file = fd.getFile();

 // Clean up our windows, they won't be needed again.
 parent.dispose();
 fd.dispose();

 if (dir == null || file == null) { // user cancelled the dialog
 return null;
 }
 return new File(dir, file);
 }
}

File dialogs only allow the user to select ordinary files, never directories. If you want to ask
users to pick a directory, you have to ask them to choose a file in that directory, then call
getDirectory(). (This workaround fails with empty directories.) Here's an alternative
main() method for the DirList program given in Example 12.5 that uses a file dialog to
select the directory to list rather than command-line arguments:

Java I/O

310

public static void main(String[] args) {

 try {
 FileDialog fd = new FileDialog(new Frame("Not important"),
 "Please select a file in the directory you want to list:",
 FileDialog.LOAD);
 fd.setVisible(true);
 if (fd.getDirectory() == null) return;
 DirList dl = new DirList(fd.getDirectory());
 dl.list();
 fd.dispose();
 }
 catch (IOException e) {System.err.println(e);}
}

A filename filter can be attached to a file dialog via the dialog's setFilenameFilter()
method:

public synchronized void setFilenameFilter(FilenameFilter filter)

Once a file dialog's filename filter is set, it should only display files that pass through the
filter. In practice, however, filename filters in file dialogs are only truly reliable on Unix.
Many early Mac VMs do not really support this feature, though some of the more recent ones
do. And Windows is almost congenitally unable to support it, because Windows' native file
chooser dialog can only filter by file extension. The problem is that filename filters are
designed for the Motif API. The Windows and Macintosh APIs provide different ways of
achieving the same effect.

Example 13.2 demonstrates the use of a filename filter in a file dialog. The TextChooser
class implements the FilenameFilter interface. The main() method calls the getFile()
method to load a file. Once a file is loaded, it's written on System.out. The getFile()
method uses a file dialog to ask the user what file should be written. A new TextChooser
object is passed to the file dialog's setFilter() method to indicate that this class's accept()
method should be used to filter files. The accept() method accepts files ending in .text, .txt,
.java, .jav, .html , and .htm; all others are rejected.

Example 13.2. The TextChooser Program

import java.io.*;
import java.awt.*;
import com.macfaq.io.*;

public class TextChooser implements FilenameFilter {

 public static void main(String[] args) {

 try {
 File f = getFile();
 if (f == null) return;
 FileInputStream fin = new FileInputStream(f);
 StreamCopier.copy(fin, System.out);
 }
 catch (IOException e) {System.err.println(e);}

Java I/O

311

 // Work around annoying AWT non-daemon thread bug.
 System.exit(0);
 }

 public boolean accept(File dir, String name) {

 if (name.endsWith(".java")) return true;
 else if (name.endsWith(".jav")) return true;
 else if (name.endsWith(".html")) return true;
 else if (name.endsWith(".htm")) return true;
 else if (name.endsWith(".txt")) return true;
 else if (name.endsWith(".text")) return true;
 return false;
 }

 public static File getFile() throws IOException {

 // dummy Frame, never shown
 Frame parent = new Frame();
 FileDialog fd = new FileDialog(parent, "Please choose a file:",
 FileDialog.LOAD);
 fd.setFilenameFilter(new TextChooser());
 fd.show();

 // Program stops here until user selects a file or cancels.

 String dir = fd.getDirectory();
 String file = fd.getFile();

 // Clean up our windows, they won't be needed again.
 parent.dispose();
 fd.dispose();

 if (dir == null || file == null) { // User cancelled the dialog.
 return null;
 }
 return new File(dir, file);
 }
}

This program demonstrates one problem of relying on file extensions to determine file type.
There are many other file extensions that indicate text files; for example, .c, .cc, .pl, .f, and
many more. Furthermore, there are a lot of text files, especially on Macintoshes, that don't
have any extension at all. This program completely ignores all those files.

You do not necessarily have to write a new subclass for each different file filter. Example
13.3 demonstrates a class that can be configured with different lists of filename extensions.
Every file with an extension in the list passes the filter. Others don't.

Example 13.3. ExtensionFilenameFilter

package com.macfaq.io;

import java.awt.*;
import java.util.*;
import java.io.*;

Java I/O

312

public class ExtensionFilenameFilter implements FilenameFilter {

 Vector extensions = new Vector();

 public ExtensionFilenameFilter(String extension) {

 if (extension.indexOf('.') != -1) {
 extension = extension.substring(extension.lastIndexOf('.')+1);
 }
 extensions.addElement(extension);
 }

 public void addExtension(String extension) {

 if (extension.indexOf('.') != -1) {
 extension = extension.substring(extension.lastIndexOf('.')+1);
 }
 extensions.addElement(extension);
 }

 public boolean accept(File directory, String filename) {

 String extension = filename.substring(filename.lastIndexOf('.')+1);
 if (extensions.contains(extension)) {
 return true;
 }
 return false;
 }
}

This class is designed to filter files by extension. You configure which extensions pass the
filter when you create the object or by calling addExtension(). This avoids excessive
proliferation of classes. Here's a method that can be used to test the extension filter:

public static void main(String[] args) {

 ExtensionFilenameFilter ef = new ExtensionFilenameFilter("txt");
 ef.addExtension(".pl");
 ef.addExtension(".c");
 ef.addExtension("c");
 ef.addExtension("h");
 ef.addExtension("cpp");
 ef.addExtension(".cc");
 ef.addExtension(".java");
 ef.addExtension(".html");
 ef.addExtension("htm");
 ef.addExtension(".c++");

 // dummy Frame, never shown
 Frame parent = new Frame();
 FileDialog fd = new FileDialog(parent, "Please choose a file:",
 FileDialog.LOAD);
 fd.setFilenameFilter(ef);
 fd.show();

 // Program stops here until user selects a file or cancels.

 String dir = fd.getDirectory();
 String file = fd.getFile();

Java I/O

313

 // Clean up our windows, they won't be needed again.
 parent.dispose();
 fd.dispose();

 if (dir == null || file == null) { // User cancelled the dialog.
 ;
 }
 else {
 File f = new File(dir, file);
 }
 System.exit(0);
}

13.2 JFileChooser

Swing, part of the Java Foundation Classes, provides a much more sophisticated and useful
file chooser component written in pure Java, javax.swing.JFileChooser :

public class JFileChooser extends JComponent implements Accessible

JFileChooser is not an independent, free-standing window like FileDialog. Instead, it is a
component you can add to your own frame, dialog, or other container or window. You can,
however, ask the JFileChooser class to create a modal dialog just for your file chooser.
Figure 13.3 shows a file chooser embedded in a JFrame window with the Metal look and
feel.[2] Of course, like all Swing components, the exact appearance depends on the look and
feel currently selected.

Figure 13.3. A JFileChooser with the Metal look and feel

For the most part, the file chooser works as you expect, especially if you're accustomed to
Windows. You select a file with the mouse. Double-clicking the filename or pressing the
Open button returns the currently selected file. You can change which files are displayed by
selecting different filters from the pop-up list of choosable file filters. All the components
have tooltips to help users who are a little thrown by an unfamiliar look and feel. One

2 Metal is a new look and feel designed specifically for Java.

Java I/O

314

difference between a Swing file chooser and a standard, native chooser may surprise you.
While double-clicking on a directory will open the directory as you expect, selecting a
directory and then pressing the Open button returns the selected directory as a File object.

The JFileChooser class relies on support from several classes in the
javax.swing.filechooser package, including:

public abstract class FileFilter
public abstract class FileSystemView
public abstract class FileView

Unfortunately, these classes still have a few rough edges as of Java 2. They still don't support
the Macintosh (though an early access release is available), and they have to jump through
some hoops to account for the different levels of support for I/O in Java 1.1 and Java 2.

To use JFileChooser, you follow at least these three steps:

1. Construct the file chooser.
2. Display the file chooser.
3. Get the files the user selected.

You can also set a lot of options for how files are displayed and chosen, which directory and
file are selected when the file chooser first appears, which files are and are not shown in the
choosers, and several other options. However, these three are your basic operations.

The JFileChooser works via direct access to the filesystem using the methods you learned
about in the last chapter. Therefore, this class will not work at all in untrusted applets.

13.2.1 Constructing File Choosers

There are six constructors in the JFileChooser class. These allow you to specify the initial
directory and file that appear when the chooser is shown and the view of the filesystem.

public JFileChooser()
public JFileChooser(String initialDirectoryPath)
public JFileChooser(File initialDirectory)
public JFileChooser(FileSystemView fileSystemView)
public JFileChooser(File initialDirectory, FileSystemView fileSystemView)
public JFileChooser(String initialDirectoryPath,
 FileSystemView fileSystemView)

Most of the time the no-argument constructor is sufficient. The first time a particular
JFileChooser object is shown, it brings up the user's home directory, at least on platforms
where the concept of a home directory makes sense. If you'd like it to appear somewhere else,
you can pass the directory to the constructor. For example, the following two lines construct a
file chooser that will appear with the Java home directory shown:

String javahome = System.getProperty("java.home");
JFileChooser chooser = new JFileChooser(javahome);

If you reuse the same file chooser repeatedly by showing and hiding it, every time it's shown,
it will initially display the last directory where the user chose a file.

Java I/O

315

13.2.2 Displaying File Choosers

Although JFileChooser is a component, not a window, you usually want to display a modal
dialog containing a JFileChooser component that asks the user to save or open a file. There
are two methods that do this without requiring you to construct a dialog or frame explicitly:

public int showOpenDialog(Component parent)
public int showSaveDialog(Component parent)

Although one method is for saving and one is for opening, you use them the same way. Both
of these methods display a modal dialog. This dialog will block input to all of the
application's windows and will block the current thread until the user either selects a file or
cancels the dialog. If the user did choose a file, both these methods return
JFileChooser.APPROVE_OPTION. If the user did not choose a file, both these methods return
JFileChooser.CANCEL_OPTION.

13.2.3 Getting the User's Selection

If showOpenDialog() or showSaveDialog() returns JFileChooser.APPROVE_OPTION, the
getSelectedFile() method returns a File object pointing to the file the user chose;
otherwise, it returns null:

public File getSelectedFile()

If the file chooser allows multiple selections, getSelectedFiles()returns an array of all the
files the user chose:

public File[] getSelectedFiles()

You can get a File object for the directory in which the selected file lives by calling
getCurrentDirectory():

public File getCurrentDirectory()

Example 13.4 is a program that uses JFileChooser to ask the user to select a file and then
prints the file's contents on System.out. This example is essentially the same as Example
13.1, except that it uses JFileChooser instead of FileDialog.

Example 13.4. JFileTyper

import java.io.*;
import javax.swing.*;
import com.macfaq.io.*;

public class JFileTyper {

 public static void main(String[] args) {

 JFileChooser fc = new JFileChooser();
 int result = fc.showOpenDialog(new JFrame());

Java I/O

316

 if (result == JFileChooser.APPROVE_OPTION) {
 try {
 File f = fc.getSelectedFile();
 if (f != null) { // Make sure the user didn't choose a directory.
 FileInputStream fin = new FileInputStream(f);
 StreamCopier.copy(fin, System.out);
 fin.close();
 }
 }
 catch (IOException e) {System.err.println(e);}
 }

 // Work around annoying AWT non-daemon thread bug.
 System.exit(0);
 }
}

This program is shorter and simpler than Example 13.1. It's also more reliable across different
platforms. The only downside is that it's noticeably slower to start up. However, that's because
it must load the entire Swing package. A program that's using many Swing classes won't have
to pay that penalty more than once. The only other disadvantage is that standard file extenders
like Action Files or Super Boomerang won't notice a file chooser, whereas they will work
inside a file dialog brought up by a Java program.

13.2.4 Programmatically Manipulating the JFileChooser

The JFileChooser class includes several methods to specify which files and directories are
selected and displayed when the chooser is shown. These include:

public void changeToParentDirectory()
public void rescanCurrentDirectory()
public void ensureFileIsVisible(File f)

The changeToParentDirectory() method simply displays the parent directory of the
directory currently displayed; that is, it moves one level up in the directory hierarchy. The
rescanCurrentDirectory() method refreshes the list of files shown. Use it when you have
reason to believe a file may have been added to or deleted from the directory.
ensureFileIsVisible() scrolls the list up or down until the specified file is shown.

Three methods allow you to specify which directory and file are selected in the file chooser:

public void setSelectedFile(File selectedFile)
public void setSelectedFiles(File[] selectedFiles)
public void setCurrentDirectory(File dir)

You can use these to point the user at a particular file. For instance, a Java source code editor
might like to set the filename to the title of the class being edited plus the customary .java
extension. Another common example: if the user opens a file, edits it, then selects Save As...
from the File menu, it's customary to bring up the save dialog with the previous location of
the file already selected. The user can change this if they like.

Java I/O

317

13.2.5 Custom Dialogs

File choosers support three dialog types: open, save, and custom. The type is indicated by one
of these three mnemonic constants:

FileChooser.OPEN_DIALOG
FileChooser.SAVE_DIALOG
FileChooser.CUSTOM_DIALOG

You set the type with the setDialogType() method or, less commonly, retrieve it with
getDialogType():

public int getDialogType()
public void setDialogType(int dialogType)

If you use a custom dialog, you should also set the dialog title, the text of the Approve
button's label, the text of the Approve button's tooltip, and the Approve button mnemonic
(shortcut key). Setting the Approve button's text automatically sets the dialog to custom type.
There are five set and four get methods to handle these tasks:

public void setDialogTitle(String dialogTitle)
public String getDialogTitle()
public void setApproveButtonToolTipText(String toolTipText)
public String getApproveButtonToolTipText()
public int getApproveButtonMnemonic()
public void setApproveButtonMnemonic(int mnemonic)
public void setApproveButtonMnemonic(char mnemonic)
public void setApproveButtonText(String approveButtonText)
public String getApproveButtonText()

Use these methods sparingly. If you use them, you'll probably want to store the exact strings
you use in a resource bundle so your code is easily localizable.

When you're showing a custom dialog, you'll simply use the showDialog() method rather
than showOpenDialog() or showSaveDialog() (since a custom dialog is neither):

public int showDialog(Component parent, String approveButtonText)

Suppose you want a file chooser that allows you to gzip files, then exit when the user presses
the Cancel button. You can set the Approve button text to "GZIP," the Approve button tooltip
to "Select a file, then press this button to gzip it," the Approve button mnemonic to the letter
"g" (for gzip), and the dialog title to "Please choose a file to gzip:," as Example 13.5
demonstrates. The chosen file is read from a file input stream. StreamCopier.copy() copies
this file onto a file output stream chained to a gzip output stream that compresses the data.
After both input and output streams are closed, the directory is rescanned so the compressed
file will appear in the list.

Example 13.5. GUIGZipper

import java.io.*;
import java.util.zip.*;
import javax.swing.*;
import com.macfaq.io.*;

Java I/O

318

public class GUIGZipper {

 public final static String GZIP_SUFFIX = ".gz";

 public static void main(String[] args) {

 JFrame parent = new JFrame(); // never shown
 JFileChooser fc = new JFileChooser();
 fc.setDialogTitle("Please choose a file to gzip: ");
 fc.setApproveButtonToolTipText(
 "Select a file, then press this button to gzip it");
 fc.setApproveButtonMnemonic('g');

 while (true) {
 int result = fc.showDialog(parent, "GZIP");
 if (result == JFileChooser.APPROVE_OPTION) {
 try {
 File f = fc.getSelectedFile();
 if (f == null) {
 System.out.println("Can only gzip files, not directories");
 break;
 }
 FileInputStream fin = new FileInputStream(f);
 FileOutputStream fout = new FileOutputStream(f.getAbsolutePath()
 + GZIP_SUFFIX);
 GZIPOutputStream gzout = new GZIPOutputStream(fout);
 StreamCopier.copy(fin, gzout);
 gzout.close();
 fin.close();
 fc.rescanCurrentDirectory();
 }
 catch (IOException e) {System.err.println(e);}
 }
 else {
 parent.dispose();
 break;
 // exit
 }
 }

 // Work around annoying AWT non-daemon thread bug.
 System.exit(0);
 }
}

13.2.6 Filters

A filename filter affects which files a file dialog shows to the user. The user cannot change
this list. For instance, a user can't switch from displaying HTML files to displaying Java
source code. However, a FileFilter in combination with a JFileChooser allows
programmers to give users a choice about which files are filtered by providing users with a
series of different file filters. By choosing a file filter from the pop-up menu in a file chooser
dialog, the user can adjust which files are and are not shown. Figure 13.4 shows a file chooser
that allows the user to select text files, all files, C and C++ files, Perl files, HTML files, or
Java source code files.

Java I/O

319

Figure 13.4. The choosable file filters pop-up in a file chooser

Annoyingly, these file filters are not instances of the java.io.FileFilter interface you're
already familiar with. Instead, they're instances of a new abstract class in the
javax.swing.filechooser package. Because of name conflicts with the
java.io.FileFilter interface, any file that imports both packages will have to use the fully
qualified name.

public abstract class javax.swing.filechooser.FileFilter

I would not be surprised to see these replaced by a
java.io.FileFilter objects in a future release.
javax.swing.filechooser.FileFilter is an abstract class instead of
an interface, and it declares a getDescription() method as well as an
accept() method; but other than these minor differences, the two
versions of FileFilter are identical in all important respects. Another
possibility is that the javax.swing.filechooser.FileFilter class
will be renamed javax.swing.filechooser.ChoosableFileFilter
to avoid the annoying name conflict.

This class declares two methods, both abstract:

public abstract boolean accept(File f);
public abstract String getDescription();

The accept() method returns true if the file passes the filter and should be displayed in the
chooser, false if it shouldn't be. Unlike the accept() method java.io.FilenameFilter,
this accept() method is called to filter directories as well as files. Most filters will accept all
directories to allow the user to navigate between directories. The getDescription() method
returns a string describing the filter to be shown to the user in the chooser's pop-up menu; for
example, Text files (*.txt, *.text). Example 13.6 is a simple file filter that only passes
Java source code files:

Java I/O

320

Example 13.6. JavaFilter

package com.macfaq.swing.filechooser;

import javax.swing.filechooser.*;
import java.io.*;

public class JavaFilter extends javax.swing.filechooser.FileFilter {

 public boolean accept(File f) {
 if (f.getName().endsWith(".java")) return true;
 else if (f.getName().endsWith(".jav")) return true;
 else if (f.isDirectory()) return true;
 return false;
 }

 public String getDescription() {
 return "Java source code (*.java)";
 }
}

Each file chooser stores a list of javax.swing.filechooser.FileFilter objects. The
JFileChooser class has methods for setting and getting the list of file filters:

public void addChoosableFileFilter(FileFilter filter)
public boolean removeChoosableFileFilter(FileFilter f)
public FileFilter[] getChoosableFileFilters()

You can add a file filter to the list with addChoosableFileFilter(). You can remove a file
filter from the list with removeChoosableFileFilter(). You can retrieve the current list of
file filters with getChoosableFileFilters().

At any given time, exactly one file filter is selected and active. In Figure 13.4, the Java filter
is active. That one file filter is returned by the getFileFilter() method and can be changed
by the setFileFilter() method:

public void setFileFilter(FileFilter filter)
public FileFilter getFileFilter()

By default, a JFileChooser object includes a file filter that accepts all files (*.*). A reference
to this object is returned by the getAcceptAllFileFilter() method:

public FileFilter getAcceptAllFileFilter()

The resetChoosableFileFilters() method removes all file filters from the list, except the
. filter:

public void resetChoosableFileFilters()

It is not possible to remove the *.* filter from the list. Example 13.7 uses the JavaFilter
class of Example 13.6 to set up a file chooser that passes Java source code files or all files.

Java I/O

321

Example 13.7. JavaChooser

import java.io.*;
import javax.swing.*;
import javax.swing.filechooser.*;
import com.macfaq.swing.filechooser.*;
import com.macfaq.io.*;

public class JavaChooser {

 public static void main(String[] args) {

 JFileChooser fc = new JFileChooser();
 fc.addChoosableFileFilter(new JavaFilter());
 int result = fc.showOpenDialog(new JFrame());
 if (result == JFileChooser.APPROVE_OPTION) {
 try {
 File f = fc.getSelectedFile();
 if (f != null) {
 FileInputStream fin = new FileInputStream(f);
 StreamCopier.copy(fin, System.out);
 fin.close();
 }
 }
 catch (IOException e) {System.err.println(e);}
 }

 System.exit(0);
 }
}

The JFileChooser class also a related accept() method:

public boolean accept(File f)

This passes the File object f through the file chooser's currently selected file filter. You'll
have little reason to call this method directly, and it's unclear why it's even public.

You do not need to construct a new subclass of FileFilter to create a new filter. Often it's
more convenient to encapsulate some algorithm in a subclass than parameterize the algorithm
in particular objects. For instance, Example 13.8 is an ExtensionFilter that extends
FileFilter. It's similar to the ExtensionFilenameFilter of Example 13.3. However, this
class also needs to store a description for each extension. Furthermore, the extensions are used
one at a time, not all at once. This reflects the difference between JFileChooser and
FileDialog.

Example 13.8. ExtensionFilter

package com.macfaq.swing.filechooser;

import java.io.*;
import javax.swing.filechooser.*;
import javax.swing.*;

Java I/O

322

public class ExtensionFilter extends javax.swing.filechooser.FileFilter {

 String extension;
 String description;

 public ExtensionFilter(String extension, String description) {

 if (extension.indexOf('.') == -1) {
 extension = "." + extension;
 }
 this.extension = extension;
 this.description = description;
 }

 public boolean accept(File f) {

 if (f.getName().endsWith(extension)) {
 return true;
 }
 else if (f.isDirectory()) {
 return true;
 }
 return false;
 }

 public String getDescription() {
 return this.description + "(*" + extension + ")";
 }
}

Here's a main() method that tests this class. ExtensionFilter is used in several of the
examples yet to come.

public static void main(String[] args) {

 JFrame parent = new JFrame(); // never shown
 JFileChooser fc = new JFileChooser();
 fc.setDialogTitle("Please choose a file: ");
 fc.addChoosableFileFilter(new ExtensionFilter("txt", "Text Files"));
 fc.addChoosableFileFilter(new ExtensionFilter("java",
 "Java Source Code"));
 fc.addChoosableFileFilter(new ExtensionFilter(".c", "C Source Code"));
 fc.addChoosableFileFilter(new ExtensionFilter(".pl",
 "Perl Source Code"));
 fc.addChoosableFileFilter(new ExtensionFilter(".html", "HTML Files"));

 fc.showOpenDialog(parent);
 parent.dispose();

 // Work around annoying AWT non-daemon thread bug.
 System.exit(0);
}

The Swing source code contains hints that a class like this may be added to a future release of
Swing.

Java I/O

323

13.2.7 Selecting Directories

A common complaint about FileDialog is that it doesn't provide a good way to select
directories instead of files. JFileChooser , by contrast, can have a selection mode that allows
the user to select files, directories, or both. The selection mode is set by
setFileSelectionMode() and returned by getFileSelectionMode():

public void setFileSelectionMode(int mode)
public int getFileSelectionMode()

The selection mode should be one of the three mnemonic constants
JFileChooser.FILES_ONLY, JFileChooser.DIRECTORIES_ONLY, or
JFileChooser.FILES_AND_DIRECTORIES:

public static final int FILES_ONLY = 0;
public static final int DIRECTORIES_ONLY = 1;
public static final int FILES_AND_DIRECTORIES = 2;

For example:

JFileChooser fc = new JFileChooser();
fc.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

You would expect that you could use
setFileSelectionMode(JFileChooser.FILES_ONLY) to allow for
selection only of files, thus avoiding all the tests as to whether the user
selected a file or a directory. Regrettably, this appears not to be the case.
This should probably be classified as a bug.

The isFileSelectionEnabled() method returns true if the selection mode allows files to
be selected—that is, the selection mode is either FILES_ONLY or FILES_AND_DIRECTORIES.

public boolean isFileSelectionEnabled()

The isDirectorySelectionEnabled() method returns true if the selection mode allows
directories to be selected—that is, the selection mode is either DIRECTORIES_ONLY or
FILES_AND_DIRECTORIES.

public boolean isDirectorySelectionEnabled()

Example 13.9 is a simple program that lets the user pick a directory from the file chooser. The
contents of that directory are then listed.

Example 13.9. DirectoryChooser

import java.io.*;
import javax.swing.*;
import javax.swing.filechooser.*;

Java I/O

324

public class DirectoryChooser {

 public static void main(String[] args) {

 JFileChooser fc = new JFileChooser();
 fc.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

 int result = fc.showOpenDialog(new JFrame());
 if (result == JFileChooser.APPROVE_OPTION) {
 File dir = fc.getSelectedFile();
 String[] contents = dir.list();
 for (int i = 0; i < contents.length; i++) {
 System.out.println(contents[i]);
 }
 }
 System.exit(0);
 }
}

13.2.8 Multiple Selections

JFileChooser also allows you to permit users to choose more than one file. To enable this
ability, pass true to setMultiSelectionEnabled():

public void setMultiSelectionEnabled(boolean b)

As of Java 2 and Swing 1.1, this functionality isn't yet available.

The isMultiSelectionEnabled() method returns true if the file chooser allows multiple
files to be selected at one time, false otherwise:

public boolean isMultiSelectionEnabled()

13.2.9 Hidden Files

Most operating systems have ways of hiding a file. By default, hidden files are not shown in
file choosers. However, you can change this by passing false to the
setFileHidingEnabled() method. You can check whether or not hidden files are shown
with the isFileHidingEnabled() method:

public boolean isFileHidingEnabled()
public void setFileHidingEnabled(boolean b)

13.2.10 File Views

A javax.swing.filechooser.FileView object determines how files are shown in the file
chooser. For example, it's responsible for finding the icon to represent each file. At the time of
this writing, this class is mostly undocumented and seems likely to change before final
release, so I won't say a lot about it. However, I will mention that you can change the file
view with the JFileChooser's setFileView() method or get the current view with the
getFileView() method:

Java I/O

325

public void setFileView(fileView)
public FileView getFileView()

The current file view determines how information about files is interpreted and displayed to
the user. For instance, you can use a file view to display names but not extensions, icons for
files, last-modified dates of files, file sizes, and more. In general, the more information you
choose to display in the file chooser, the slower your choosers are to display and the longer it
takes to switch directories.

The JFileChooser class has five methods that return information about a file. These methods
are used to display the list of files from which the user can select:

public String getName(File f)
public String getDescription(File f)
public String getTypeDescription(File f)
public Icon getIcon(File f)
public boolean isTraversable(File f)

Each of these methods delegates its work to the file chooser's internal FileView object. Most
of the time the default file view is enough. However, you can write your own subclass of
FileView that implements all five of these methods, then install it in the file chooser with
setFileView(). The getName() method should return the name of the file to be displayed to
the user. The getDescription() method returns a short description of the file, generally not
shown to the user. getTypeDescription() should return a short description of the general
kind of file, also generally not shown to the user. The getIcon() method returns a
javax.swing.ImageIcon object for the type of file, which is generally shown to the user to
the left of the filename. Finally, isTraversable() should return true for directories the user
can enter; returning false for a directory prevents the user from opening it. Example 13.10 is
a FileView class that describes compressed files.

Example 13.10. CompressedFileView

import java.io.*;
import javax.swing.*;
import javax.swing.filechooser.*;

public class CompressedFileView extends FileView {

 ImageIcon zipIcon = new ImageIcon("images/zipIcon.gif");
 ImageIcon gzipIcon = new ImageIcon("images/gzipIcon.gif");
 ImageIcon deflateIcon = new ImageIcon("images/deflateIcon.gif");

 public String getName(File f) {
 return f.getName();
 }

 public String getTypeDescription(File f) {

 if (f.getName().endsWith(".zip")) return "Zip archive";
 if (f.getName().endsWith(".gz")) return "Gzipped file";
 if (f.getName().endsWith(".dfl")) return "Deflated file";
 return null;
 }

Java I/O

326

 public Icon getIcon(File f) {

 if (f.getName().endsWith(".zip")) return zipIcon;
 if (f.getName().endsWith(".gz")) return gzipIcon;
 if (f.getName().endsWith(".dfl")) return deflateIcon;
 return null;
 }

 public String getDescription(File f) {
 return null;
 }

 public Boolean isTraversable(File f) {
 return null;
 }
}

Two methods in this class, getDescription() and isTraversable(), always return null.
The other three methods can return null if they don't recognize the file's extension. Returning
null in this context means that the look and feel should figure out the details for itself. Using
this class is easy once you've written it. Simply pass an instance of it to the file chooser's
setFileView() method like this:

fc.setFileView(new CompressedFileView());

You will also need to make sure that the GIF files images/zipIcon.gif, images/ gzipIcon.gif,
and images/deflateIcon.gif exist in the current working directory. In practice, it would
probably be more reliable to place these files in a JAR archive and load them from there,
perhaps through a JAR URL.

13.2.11 Filesystem Views

javax.swing.FileSystemView is an abstract class that attempts to abstract differences
between platforms. For example, it's responsible for deciding whether a file is hidden if it
begins with a period. On Unix the answer is yes; on other platforms the answer is no.
Currently Unix and Windows are supported. Programmers porting Swing to new platforms
like the Mac or BeOS will need to implement their own subclasses that recognize those
platforms' filesystem conventions. These programmers can use either the constructor or the
setFileSystemView() method to set the filesystem view. They can use
getFileSystemView() to determine what view is in effect:

public void setFileSystemView(FileSystemView fileSystemView)
public FileSystemView getFileSystemView()

The rest of us can safely ignore this class.

13.2.12 Handling Events

FileDialog is difficult to work with because of its synchronous nature. When a file dialog is
shown, it blocks execution of the calling thread and all input to the parent frame. A raw
JFileChooser, by contrast, (not a JFileChooser embedded in a modal dialog by
showOpenDialog(), showSaveDialog(), or showDialog()) is asynchronous. It follows the
standard 1.1 AWT event model and can fire action and property change events.

Java I/O

327

13.2.12.1 Action events

When the user hits the Approve button, the chooser fires an action event with the action
command JFileChooser.APPROVE_SELECTION. When the user hits the Cancel button, the
chooser fires an action event with the action command JFileChooser.CANCEL_SELECTION.

public static final String CANCEL_SELECTION = "CancelSelection";
public static final String APPROVE_SELECTION = "ApproveSelection";

You register and remove action listeners with the file chooser in the usual fashion using
addActionListener() and removeActionListener():

public void addActionListener(ActionListener l)
public void removeActionListener(ActionListener l)

The approveSelection() and cancelSelection() methods are called by the user interface
when the user hits the Approve or Cancel button, respectively. You can call them yourself if
you're driving the selection directly:

public void approveSelection()
public void cancelSelection()

Each of these methods fires an action event to all the registered action listeners by invoking
the fireActionPerformed() method:

protected void fireActionPerformed(String command)

I'll show you how to do this when we write a graphical frontend for the FileViewer program.

13.2.12.2 Property change events

When the state of a file chooser changes, the file chooser fires a property change event (an
instance of java.beans.PropertyChangeEvent). Property changes are triggered by file
selections, changing directories, hitting the Approve or Cancel button, and many more
actions. The event fired has its own name property set to one of the following constants in the
JFileChooser class:

public static final String CANCEL_SELECTION = "CancelSelection";
public static final String APPROVE_SELECTION = "ApproveSelection";
public static final String APPROVE_BUTTON_TEXT_CHANGED_PROPERTY =
 "ApproveButtonTextChangedProperty";
public static final String APPROVE_BUTTON_TOOL_TIP_TEXT_CHANGED_PROPERTY =
 "ApproveButtonToolTipTextChangedProperty";
public static final String APPROVE_BUTTON_MNEMONIC_CHANGED_PROPERTY =
 "ApproveButtonMnemonicChangedProperty";
public static final String DIRECTORY_CHANGED_PROPERTY = "directoryChanged";
public static final String SELECTED_FILE_CHANGED_PROPERTY =
 "ApproveSelection";
public static final String MULTI_SELECTION_ENABLED_CHANGED_PROPERTY =
 "fileFilterChanged";
public static final String FILE_SYSTEM_VIEW_CHANGED_PROPERTY =
 "FileSystemViewChanged";
public static final String FILE_VIEW_CHANGED_PROPERTY = "fileViewChanged";
public static final String FILE_HIDING_CHANGED_PROPERTY =
 "FileHidingChanged";

Java I/O

328

public static final String FILE_FILTER_CHANGED_PROPERTY =
 "fileFilterChanged";
public static final String FILE_SELECTION_MODE_CHANGED_PROPERTY =
 "fileSelectionChanged";
public static final String ACCESSORY_CHANGED_PROPERTY =
 "AccessoryChangedProperty";
public static final String DIALOG_TYPE_CHANGED_PROPERTY =
 "DialogTypeChangedProperty";
public static final String CHOOSABLE_FILE_FILTER_CHANGED_PROPERTY =
 "ChoosableFileFilterChangedProperty";

You listen for and respond to property change events through an instance of the
java.beans.PropertyChangeListener interface. This interface declares a single method,
propertyChange(). However, it's relatively rare to use a property change listener with a file
chooser. Most of the time, you don't need to do anything as a result of a state change in the
file chooser. You might want to respond to a property change event fired by a file chooser if
you're using an accessory to preview the selected file. In this case, you'll watch for changes in
the SELECTED_FILE_CHANGED_PROPERTY, as demonstrated in the next section.

13.2.13 Accessory

An accessory is an optional component you can add to the JFileChooser. The most common
use of this is to show a preview of the file. For example, a file chooser used to select an image
file might provide an accessory that shows a thumbnail of the picture. The setAccessory()
method adds an accessory to the file chooser, while the getAccessory() method returns a
reference to it:

public JComponent getAccessory()
public void setAccessory(JComponent newAccessory)

A JFileChooser object can have at most one accessory and does not need to have any.

Example 13.11 is a chooser that uses a JTextArea as an accessory to show the first few lines
of the selected text file. This TextFilePreview class extends JTextArea so it can easily
display text. It implements the PropertyChangeListener interface so it can be notified
through its propertyChange() method when the user changes the selected file and the
preview needs to be changed. The loadText() method reads in the first few hundred bytes of
the selected file and stores that data in the preview field. Finally, the main() method tests
this class by displaying a file chooser with this accessory. Figure 13.5 shows the result.

Example 13.11. TextFilePreview

import javax.swing.*;
import java.beans.*;
import java.io.*;
import java.awt.*;
import com.macfaq.io.*;

public class TextFilePreview extends JTextArea
 implements PropertyChangeListener {

 File selectedFile = null;
 String preview = "";
 int previewLength = 250;

Java I/O

329

 public TextFilePreview(JFileChooser fc) {
 super(10, 20);
 this.setEditable(false);
 this.setPreferredSize(new Dimension(150, 150));
 this.setLineWrap(true);
 fc.addPropertyChangeListener(this);
 }

 void loadText() {

 if (selectedFile != null) {
 try {
 FileInputStream fin = new FileInputStream(selectedFile);
 byte[] data = new byte[previewLength];
 int bytesRead = 0;
 for (int i = 0; i < previewLength; i++) {
 int b = fin.read();
 if (b == -1) break;
 bytesRead++;
 data[i] = (byte) b;
 }
 preview = new String(data, 0, bytesRead);
 fin.close();
 }
 catch (IOException e) {
 // File preview is not an essential operation so
 // we'll simply ignore the exception and return.
 }
 }
 }

 public void propertyChange(PropertyChangeEvent e) {

 if
(e.getPropertyName().equals(JFileChooser.SELECTED_FILE_CHANGED_PROPERTY)) {
 selectedFile = (File) e.getNewValue();
 if(isShowing()) {
 loadText();
 this.setText(preview);
 }
 }
 }

 public static void main(String[] args) {

 JFileChooser fc = new JFileChooser();
 fc.setAccessory(new TextFilePreview(fc));
 int result = fc.showOpenDialog(new JFrame());
 if (result == JFileChooser.APPROVE_OPTION) {
 try {
 File f = fc.getSelectedFile();
 if (f != null) {
 FileInputStream fin = new FileInputStream(f);
 StreamCopier.copy(fin, System.out);
 fin.close();
 }
 }
 catch (IOException e) {System.err.println(e);}
 }

Java I/O

330

 System.exit(0);
 }
}

Figure 13.5. A JFileChooser with a TextFilePreview accessory

13.2.14 Swing Methods

Like most Swing components, JFileChooser has several methods for working with the look
and feel. The updateUI() method is invoked if the look and feel has changed, to tell the
component to redraw itself:

public void updateUI()

The getUIClassID() method returns the name of the look-and-feel class that drew this file
chooser:

public String getUIClassID()

The getUI() method returns the actual object that implements the particular look and feel:

public FileChooserUI getUI()

It's unlikely you'll need to call any of these three methods directly.

getAccessibleContext() returns the com.sun.java.accessibility.AccessibleContext
object used to provide handicapped accessibility for the component:

public AccessibleContext getAccessibleContext()

Java I/O

331

13.3 File Viewer, Part 6

We've now got the tools needed to put a graphical user interface onto the FileViewer
application we've been developing. The back end doesn't need to change at all. It's still based
on the same filter streams we've used for the last several chapters. However, instead of
reading filenames from the command line, we can get them from a file chooser. Instead of
dumping the files on System.out, we can display them in a text area. And instead of relying
on the user remembering a lot of confusing command-line switches, we can provide simple
radio buttons for the user to choose from. This has the added advantage of making it easy to
repeatedly interpret the same file according to different filters.

Figure 13.6 shows the finished application. This will give you some idea of what the code is
aiming at. Initially, I started with a pencil-and-paper sketch, but I'll spare you my inartistic
renderings. The single JFrame window is organized with a border layout. The west panel
contains various controls for determining how the data is interpreted. The east panel contains
the JFileChooser used to select the file. Notice that the Approve button has been customized
to say "View File" rather than "Open". Ideally, I'd like to make the Cancel button say "Quit"
instead, but the JFileChooser class doesn't allow you to do that without using resource
bundles, a subject I would prefer to leave for another book. The south panel contains a scroll
pane. Inside the scroll pane is a streamed text area.

Figure 13.6. The FileViewer

One fact I discovered while developing this application was that Swing components don't get
along well with standard AWT components like Frame and TextArea. My initial attempts that

Java I/O

332

mixed AWT components with the Swing JFileChooser rapidly crashed the VM. Replacing
all components with their Swing equivalents solved the problem.

Let's begin the exegesis of the code where I began writing it, with the user interface. The main
driver class is FileViewer, shown in Example 13.12. This class extends JFrame. Its
constructor doesn't do a lot. Most of the work is relegated to the init() method, which sets
up the user interface composed of the three parts previously described, then centers the whole
frame on the primary display.

Example 13.12. FileViewer

import javax.swing.*;
import java.io.*;
import com.macfaq.io.*;
import com.macfaq.swing.*;
import java.awt.*;
import java.awt.event.*;

public class FileViewer extends JFrame
 implements WindowListener, ActionListener {

 JFileChooser fc = new JFileChooser();
 JStreamedTextArea theView = new JStreamedTextArea();
 ModePanel mp = new ModePanel();

 public FileViewer() {
 super("FileViewer");
 }

 public void init() {

 this.addWindowListener(this);

 fc.setApproveButtonText("View File");
 fc.setApproveButtonMnemonic('V');
 fc.addActionListener(this);

 this.getContentPane().add("Center", fc);
 JScrollPane sp = new JScrollPane(theView);
 this.getContentPane().add("South", sp);
 this.getContentPane().add("West", mp);
 this.pack();

 // Center on display.
 Dimension display = getToolkit().getScreenSize();
 Dimension bounds = this.getSize();

 int x = (display.width - bounds.width)/2;
 int y = (display.height - bounds.height)/2;
 if (x < 0) x = 10;
 if (y < 0) y = 15;
 this.setLocation(x, y);
 }

 public void actionPerformed(ActionEvent e) {

 if (e.getActionCommand().equals(JFileChooser.APPROVE_SELECTION)) {
 File f = fc.getSelectedFile();
 if (f != null) {

Java I/O

333

 theView.setText("");
 OutputStream out = theView.getOutputStream();
 try {
 FileInputStream in = new FileInputStream(f);
 FileDumper5.dump(in, out, mp.getMode(), mp.isBigEndian(),
 mp.isDeflated(), mp.isGZipped(), mp.getPassword());
 }
 catch (IOException ex) {
 }
 }
 }
 else if (e.getActionCommand().equals(JFileChooser.CANCEL_SELECTION)) {
 this.closeAndQuit();
 }
 }

 public void windowClosing(WindowEvent e) {
 this.closeAndQuit();
 }

 // Do-nothing methods for WindowListener.
 public void windowOpened(WindowEvent e) {}

 public void windowClosed(WindowEvent e) {}
 public void windowIconified(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}
 public void windowActivated(WindowEvent e) {}
 public void windowDeactivated(WindowEvent e) {}

 private void closeAndQuit() {

 this.setVisible(false);
 this.dispose();

 System.exit(0);
 }

 public static void main(String[] args) {

 FileViewer fv = new FileViewer();
 fv.init();
 fv.show();
 }
}

FileViewer implements the WindowListener interface simply so that it will be closed when
the user clicks the Close box. It also implements the ActionListener interface. However, the
action events that its actionPerformed() method responds to are fired by the file chooser,
indicating that the user pressed the View File button.

When the user presses the View File button, the mode panel is read to determine exactly how
the file is to be interpreted. These parameters and the selected file are fed to the static
FileDumper5.dumpFile() method from Chapter 10.

The next new class in this application is the ModePanel, shown in Example 13.13. This class
provides a simple user interface to allow the user to specify the format the file is in, whether
and how it's compressed, and the password, if any. This part of the GUI is completely
contained inside this class. Other methods that need access to this information can query the

Java I/O

334

ModePanel for it through any of several public get methods. They do not need to concern
themselves with the internal details of the ModePanel GUI.

Example 13.13. ModePanel

import java.awt.*;
import javax.swing.*;

public class ModePanel extends JPanel {

 JCheckBox bigEndian = new JCheckBox("Big Endian", true);
 JCheckBox deflated = new JCheckBox("Deflated", false);
 JCheckBox gzipped = new JCheckBox("GZipped", false);

 ButtonGroup dataTypes = new ButtonGroup();
 JRadioButton asciiRadio = new JRadioButton("ASCII");
 JRadioButton decimalRadio = new JRadioButton("Decimal");
 JRadioButton hexRadio = new JRadioButton("Hexadecimal");
 JRadioButton shortRadio = new JRadioButton("Short");
 JRadioButton intRadio = new JRadioButton("Int");
 JRadioButton longRadio = new JRadioButton("Long");
 JRadioButton floatRadio = new JRadioButton("Float");
 JRadioButton doubleRadio = new JRadioButton("Double");

 JTextField password = new JTextField();

 public ModePanel() {

 this.setLayout(new GridLayout(13, 1));
 this.add(bigEndian);
 this.add(deflated);
 this.add(gzipped);

 this.add(asciiRadio);
 asciiRadio.setSelected(true);
 this.add(decimalRadio);
 this.add(hexRadio);
 this.add(shortRadio);
 this.add(intRadio);
 this.add(longRadio);
 this.add(floatRadio);
 this.add(doubleRadio);

 dataTypes.add(asciiRadio);
 dataTypes.add(decimalRadio);
 dataTypes.add(hexRadio);
 dataTypes.add(shortRadio);
 dataTypes.add(intRadio);
 dataTypes.add(longRadio);
 dataTypes.add(floatRadio);
 dataTypes.add(doubleRadio);

 this.add(password);
 }

 public boolean isBigEndian() {
 return bigEndian.isSelected();
 }

 public boolean isDeflated() {

Java I/O

335

 return deflated.isSelected();
 }

 public boolean isGZipped() {
 return gzipped.isSelected();
 }

 public int getMode() {

 if (asciiRadio.isSelected()) return FileDumper6.ASC;
 else if (decimalRadio.isSelected()) return FileDumper6.DEC;
 else if (hexRadio.isSelected()) return FileDumper6.HEX;
 else if (shortRadio.isSelected()) return FileDumper6.SHORT;
 else if (intRadio.isSelected()) return FileDumper6.INT;
 else if (longRadio.isSelected()) return FileDumper6.LONG;
 else if (floatRadio.isSelected()) return FileDumper6.FLOAT;
 else if (doubleRadio.isSelected()) return FileDumper6.DOUBLE;
 else return FileDumper6.ASC;
 }

 public String getPassword() {
 return password.getText();
 }
}

One final class is needed. The StreamedTextArea of Chapter 2, turned out to be inadequate
here because of its apparent incompatibility with Swing components. Example 13.14 is a new
JStreamedTextArea class that's based on Swing's JTextArea rather than the AWT's
TextArea class.

Example 13.14. JStreamedTextArea

package com.macfaq.swing;

import javax.swing.*;
import java.io.*;
import java.awt.*;

public class JStreamedTextArea extends JTextArea {

 OutputStream theOutput = new TextAreaOutputStream();

 public JStreamedTextArea() {
 this("", 12, 20);
 }

 public JStreamedTextArea(String text) {
 this(text, 12, 20);
 }

 public JStreamedTextArea(int rows, int columns) {
 this("", rows, columns);
 }

 public JStreamedTextArea(String text, int rows, int columns) {
 super(text, rows, columns);
 this.setEditable(false);
 this.setFont(new Font("Monospaced", Font.PLAIN, 12));
 }

Java I/O

336

 public OutputStream getOutputStream() {
 return theOutput;
 }

 public Dimension getMinimumSize() {
 return new Dimension(72, 200);
 }

 public Dimension getPreferredSize() {
 return new Dimension(60*12, getLineCount()*12);
 }

 class TextAreaOutputStream extends OutputStream {

 public void write(int b) {

 // Recall that the int should really just be a byte.
 b &= 0x000000FF;

 // Must convert byte to a char in order to append it.
 char c = (char) b;
 append(String.valueOf(c));
 }

 public void write(byte[] b, int offset, int length) {
 append(new String(b, offset, length));
 }
 }
}

And there you have it: a graphical file viewer application. The I/O code hasn't changed at all,
but the resulting application is much easier to use. One final piece remains before we can say
the file viewer is complete. In Chapter 15, we will add support for many additional text
encodings besides the ASCII used here.

Java I/O

337

Chapter 14. Multilingual Character Sets and Unicode
We live on a planet on which many languages are spoken. I can walk out my front door in
Brooklyn on any given day and hear people conversing in French, Creole, Hebrew, Arabic,
Spanish, and languages I don't even recognize. And the Internet is even more diverse than
Brooklyn. A local doctor's office that sets up a storefront on the Web to sell vitamins may
soon find itself shipping to customers whose native language is Chinese, Gujarati, Turkish,
German, Portuguese, or something else. There's no such thing as a local business on the
Internet.

However, the first computers and the first programming languages were mostly designed by
English-speaking programmers in countries where English was the native language. These
programmers designed character sets that worked well for English text, though not much else.
The preeminent such set is ASCII. Since ASCII is a seven-bit character set, each ASCII
character can easily be represented as a single byte, signed or unsigned. Thus, it's natural for
ASCII-based programming languages to equate the character data type with the byte data
type. In these languages, such as C, the same operations that read and write bytes also read
and write characters.

Unfortunately, ASCII is inadequate for almost all non-English languages. It contains no
cedillas, umlauts, betas, thorns, or any of the other thousands of non-English characters that
are used to read and write text around the world. Fairly shortly after the development of
ASCII, there was an explosion of extended character sets around the world, each of which
encoded the basic ASCII characters as well as the additional characters needed for another
language like Greek, Turkish, Arabic, Chinese, Japanese, or Russian. Many of these character
sets are still used today, and much existing data is encoded in them.

However, these character sets are still inadequate for many needs. For one thing, most assume
that you only want to encode English plus one other language. This makes it difficult for a
Russian classicist to write a commentary on an ancient Greek text, for example. Furthermore,
documents are limited by their character sets. Email sent from Morocco may become illegible
in India if the sender is using an Arabic character set but the recipient is using Devanagari.

Unicode is an international effort to provide a single character set that everyone can use.
Unicode supports the characters needed for English, Arabic, Cyrillic, Greek, Devanagari, and
many others. Unicode isn't perfect. There are some omissions, especially in the ideographic
character sets for Chinese and Japanese, but it is the most comprehensive character set yet
devised for all the languages of planet Earth.

Java is one of the first programming languages to explicitly address the need for non-English
text. It does this by adopting Unicode as its native character set. All Java chars and strings are
given in Unicode. However, since there's also a lot of non-Unicode legacy text in the world,
in a dizzying array of encodings, Java also provides the classes you need to read and write
text in these encodings as well.

14.1 Unicode

Unicode is Java's native character set. Each Unicode character is a two-byte, unsigned number
with a value between and 65,535. This provides enough space for characters from all the

Java I/O

338

world's alphabetic scripts and the most common characters from the ideographic scripts of
Chinese and Japanese. The current version of Unicode (2.1) defines 38,887 different
characters from many languages, including English, Russian, Arabic, Hebrew, Greek, Thai,
Korean, and Sanskrit. The most common ideographic characters from Japanese and Chinese
are also included. However, Chinese alone contains over 80,000 different ideograms, so it's
impossible to include them all in a two-byte set. A four-byte Universal Character Set (UCS)
that will include the full Chinese and Japanese scripts is under development. Java does not yet
support UCS.

The first 128 Unicode characters (characters through 127) are identical to the ASCII character
set. 32 is the ASCII space; therefore, 32 is the Unicode space. 33 is the ASCII exclamation
point, so 33 is the Unicode exclamation point, and so on. Table B.1, in Appendix B, shows
this character set. The next 128 Unicode characters (characters 128 through 255) have the
same values as the equivalent characters in the Latin-1 character set defined by ISO standard
8859-1. Latin-1, a slight variation of which is used by Windows, adds the various accented
characters, umlauts, cedillas, upside-down question marks, and other characters needed to
write text in most Western European languages. Table B.2 shows these characters. The first
128 characters in Latin-1 are identical to the ASCII character set.

Values beyond 255 encode characters from various other character sets. Where possible,
character blocks describing a particular group of characters map onto established encodings
for that set of characters by simple transposition. For instance, Unicode characters 884
through 1011 encode the Greek alphabet and associated characters like the Greek question
mark (;).[1] This is a direct transposition by 756 of characters 128 through 255 of the ISO
8859-7 character set, which is in turn based on the Greek national standard ELOT 928. For

example, the small letter delta, , ISO 8859-7 character 228, is Unicode character 984. A
small epsilon, , ISO 8859-7 character 229, is Unicode character 985. In general, the
Unicode value for a Greek character equals the ISO 8859-7 value for the character plus 756.
Other character sets are included in Unicode in a similar fashion whenever possible.[2]

NextStep, BeOS, MacOS X Server, Bell Labs' Plan 9, and Windows NT 4.0 all support
Unicode to some extent. Unicode support in MacOS and Windows 98 is more nascent, but it's
coming. Application software is a little slower to appear, but Microsoft Word 97 and 98,
Netscape Navigator 4.0, and Internet Explorer 4.0 all support Unicode. The big hold-up on
most systems is fonts and input methods. Windows NT 5.0 will include fonts covering most
of the defined Unicode characters as well as input methods for most major languages.

14.2 Displaying Unicode Text

Although internally Java can handle full Unicode data (it's just numbers, after all), not all Java
environments can display all Unicode characters. In fact, I'll go so far as to say none of the
current Java environments, whether standalone virtual machines or web browsers, can display
all Unicode characters.

Unicode is divided into blocks. For example, characters through 127 are the Basic Latin block
and contain ASCII. Characters 128 through 255 are the Latin Extended-A block and contain

1 Indeed, the Greek question mark is nearly identical to a Latin semicolon; this is not a mistranslation of the character.
2 As much as I'd like to include complete tables for all Unicode characters, if I did so, this book would be little more than that table. For complete lists
of all the Unicode characters and associated glyphs, the canonical reference is The Unicode Standard, Version 2.0, by the Unicode Consortium, ISBN
0-201-48345-9. Online versions of the character tables can be found at http://unicode.org/charts/.

Java I/O

339

the upper 128 characters of the Latin-1 character set. Characters 9984 through 10,175 are the
Dingbats block and contain the characters in the popular Zapf Dingbats font. Characters
19,968 through 40,959 are the unified Chinese-Japanese-Korean ideograph block. Each block
represents a script or a subset of a script. As a rule of thumb, most runtime environments can
display only some of these blocks. Occasionally, a particular runtime may be able to display
some characters from a block but not others. For instance, most Macintoshes can display the
entire Latin Extended-A block except for the Icelandic characters þ, , Ý, ð, and Ð .

The biggest problem is the lack of fonts. Few computers have fonts for all the scripts Java
supports. Even computers that possess the necessary fonts can't install a lot of them because
of their size. A normal, 8-bit outline font ranges from about 30-60K. A Unicode font that
omits the Han ideographs will be about 10 times that size. And a full Unicode font that
includes the full range of Han ideographs will occupy between five and seven megabytes.
Furthermore, text display algorithms based on English often break down when faced with
right-to-left languages like Hebrew and Arabic, vertical languages like the traditional Chinese
still used in Taiwan, or context-sensitive languages like Arabic.

Finally, even web browsers that can handle Chinese, Cyrillic, Arabic, Japanese, or other non-
Roman scripts in HTML don't necessarily support those same scripts in applets. (HotJava 1.1
and earlier is a notable offender here.) It's even sometimes the case that characters an applet
can draw directly using a java.awt.Graphics object may not be able to be drawn by peer-
based components like text areas, labels, and buttons. However, all runtimes do support some
subset of full Unicode. It's not hard to write an applet that allows you to test a web browser's
support. Figure 14.1 shows such an applet. By selecting different character blocks, you'll see
which characters in those blocks your web browser can and cannot draw.

Figure 14.1. The UnicodeApplet showing the Dingbats character block

This applet is built from three new classes. The first is the CharacterBlock class, shown in
Example 14.1, which represents a character block, including its name, the start character in
the block, and the end character in the block. The constructor enforces restrictions on the valid
values for start and end. They must be greater than or equal to Character.MIN_VALUE (0) and
less than or equal to Character.MAX_VALUE (65,535). Furthermore, the start character must
be less than or equal to the end character. Since the constructor is private and only accessed

Java I/O

340

from inside the class with established values, these checks are not absolutely necessary; but
they did help me catch several data entry errors as this class was developed.

A private constructor is unusual but not unheard of, especially when there are only a finite
number of valid objects. There are only a few dozen character blocks defined in Unicode 2.0,
each with a precise range. Declaring the constructor private prevents arbitrary blocks from
being created. Instead, a Java static block initializes all possible character blocks the first time
the class is loaded and stores them in a Hashtable called blocks. From this point forward,
the static getBlock() method can retrieve a particular block by its name. The names of the
blocks are used as keys in the hash table. The static getNames() method returns a list of the
available blocks, and the static getNumBlocks() method returns the number of blocks stored
in the hash table. There are several instance methods as well. The getStart(), getEnd(),
and getName() methods are accessors that return the values of the respective fields. Finally,
getCharactersInBlock() returns an array of chars containing each of the defined
characters in the block in sequence. However, many of the blocks contain undefined empty
spaces. For example, characters 983, 984, and 985 in the middle of the Greek block are not
defined. Testing each character in the range with the static method Character.isDefined()
weeds out undefined characters.

Example 14.1. The CharacterBlock Class

import java.util.*;

public class CharacterBlock {

 String name;
 int start;
 int end;

 private static Hashtable blocks = new Hashtable(66);

 /* The blocks given here are as listed in The Unicode Standard,
 Version 2.0. Ranges are given in hexadecimal as in that
 document. It is not difficult to add additional blocks to this
 list as they're defined.
 */
 static {

 // General Scripts
 makeBlock("Basic Latin", 0x0000, 0x007F);
 makeBlock("Latin-1 Supplement", 0x0080, 0x00FF);
 makeBlock("Latin Extended-A", 0x0100, 0x017F);
 makeBlock("Latin Extended-B", 0x0180, 0x024F);
 makeBlock("IPA Extensions", 0x0250, 0x02AF);
 makeBlock("Spacing Modifier Letters", 0x02B0, 0x02FF);
 makeBlock("Combining Diacritical Marks", 0x0300, 0x036F);
 makeBlock("Greek", 0x0370, 0x03FF);
 makeBlock("Cyrillic", 0x0400, 0x04FF);
 makeBlock("Armenian", 0x0530, 0x058F);
 makeBlock("Hebrew", 0x0590, 0x05FF);
 makeBlock("Arabic", 0x0600, 0x06FF);
 makeBlock("Devanagari", 0x0900, 0x097F);
 makeBlock("Bengali", 0x0980, 0x09FF);
 makeBlock("Gurmukhi", 0x0A00, 0x0A7F);
 makeBlock("Gujarati", 0x0A80, 0x0AFF);
 makeBlock("Oriya", 0x0B00, 0x0B7F);
 makeBlock("Tamil", 0x0B80, 0x0BFF);

Java I/O

341

 makeBlock("Telugu", 0x0C00, 0x0C7F);
 makeBlock("Kannada", 0x0C80, 0x0CFF);
 makeBlock("Malayalam", 0x0D00, 0x0D7F);
 makeBlock("Thai", 0x0E00, 0x0E7F);
 makeBlock("Lao", 0x0E80, 0x0EFF);
 makeBlock("Tibetan", 0x0F00, 0x0FBF);
 makeBlock("Georgian", 0x10A0, 0x10FF);
 makeBlock("Hangul Jamo", 0x1100, 0x11FF);
 makeBlock("Latin Extended Additional", 0x1E00, 0x1EFF);
 makeBlock("Greek Extended", 0x1F00, 0x1FFF);

 // Symbols
 makeBlock("General Punctuation", 0x2000, 0x206F);
 makeBlock("Superscripts and Subscripts", 0x2070, 0x209F);
 makeBlock("Currency Symbols", 0x20A0, 0x20CF);
 makeBlock("Combining Marks for Symbols", 0x20D0, 0x20FF);
 makeBlock("Letterlike Symbols", 0x2100, 0x214F);
 makeBlock("Number Forms", 0x2150, 0x218F);
 makeBlock("Arrows", 0x2190, 0x21FF);
 makeBlock("Mathematical Operators", 0x2200, 0x22FF);
 makeBlock("Miscellaneous Technical", 0x2300, 0x234F);
 makeBlock("Control Pictures", 0x2400, 0x243F);
 makeBlock("Optical Character Recognition", 0x2440, 0x245F);
 makeBlock("Enclosed Alphanumerics", 0x2460, 0x24FF);
 makeBlock("Box Drawing", 0x2500, 0x257F);
 makeBlock("Block Elements", 0x2580, 0x259F);
 makeBlock("Geometric Shapes", 0x25A0, 0x25FF);
 makeBlock("Miscellaneous Symbols", 0x2600, 0x26FF);
 makeBlock("Dingbats", 0x2700, 0x27BF);

 // Chinese-Japanese-Korean Phonetics and Symbols
 makeBlock("CJK Symbols and Punctuation", 0x3000, 0x303F);
 makeBlock("Hiragana", 0x3040, 0x309F);
 makeBlock("Katakana", 0x30A0, 0x30FF);
 makeBlock("Bopomofo", 0x3100, 0x312F);
 makeBlock("Hangul Compatibility Jamo", 0x3130, 0x318F);
 makeBlock("Kanbun", 0x3190, 0x319F);
 makeBlock("Enclosed CJK Letters and Months", 0x3200, 0x32FF);
 makeBlock("CJK Compatibility", 0x3300, 0x33FF);

 // Chinese-Japanese-Korean Ideographs
 makeBlock("CJK Unified Ideographs", 0x4E00, 0x9FFF);

 // Hangul Syllables
 makeBlock("Hangul Syllables", 0xAC00, 0xD7A3);

 // Surrogates
 makeBlock("Surrogates", 0xD800, 0xDFFF);

 // Private Use
 makeBlock("Private Use", 0xE000, 0xF8FF);

 // Compatibility and Specials
 makeBlock("CJK Compatibility Ideographs", 0xF900, 0xFAFF);
 makeBlock("Alphabetic Presentation Forms", 0xFB00, 0xFB4F);
 makeBlock("Arabic Presentation Forms", 0xFB50, 0xFDFF);
 makeBlock("Combining Half Marks", 0xFE20, 0xFE2F);
 makeBlock("CJK Compatibility Forms", 0xFE30, 0xFE4F);
 makeBlock("Small Form Variants", 0xFE50, 0xFE6F);
 makeBlock("More Arabic Presentation Forms", 0xFE70, 0xFEFF);
 makeBlock("Halfwidth and Fullwidth Forms", 0xFF00, 0xFFEF);

Java I/O

342

 makeBlock("Specials", 0xFEFF, 0xFFFF);

 }

 /* Originally I inlined this method from the static block where it's
invoked.
 However, that produced excessively long lines in the static block that
 wouldn't look good in the printed book. So I split out this common
 invocation here. Since it's final, a good compiler can optimize it
away
 anyway.
 */
 private final static void makeBlock(String name, int start, int end) {
 blocks.put(name, new CharacterBlock(name, start, end));
 }

 private CharacterBlock(String name, int start, int end) {
 this.name = name;
 if (start < Character.MIN_VALUE || start > Character.MAX_VALUE
 || end < Character.MIN_VALUE || end > Character.MAX_VALUE) {
 throw new IllegalArgumentException("Ranges must fall between 0 and
65,535");
 }
 if (end < start) {
 throw new IllegalArgumentException("End must come after start");
 }
 this.start = start;
 this.end = end;
 }

 public static CharacterBlock getBlock(String name) {
 return (CharacterBlock) blocks.get(name);
 }

 public static int getNumBlocks() {
 return blocks.size();
 }

 public static String[] getBlockNames() {

 CharacterBlock[] cb = new CharacterBlock[blocks.size()];
 Enumeration e = blocks.elements();
 for (int i = 0; e.hasMoreElements(); i++) {
 cb[i] = ((CharacterBlock) e.nextElement());
 }

 // bubble sort based on start
 boolean sorted = false;
 while (!sorted) {
 sorted = true;
 for (int i = 0; i < cb.length-1; i++) {
 if (cb[i].start > cb[i+1].start) {
 sorted = false;
 CharacterBlock temp = cb[i+1];
 cb[i+1] = cb[i];
 cb[i] = temp;
 }
 }
 }

 String[] names = new String[blocks.size()];

Java I/O

343

 for (int i = 0; i < names.length; i++) names[i] = cb[i].name;
 return names;
 }

 public char[] getCharactersInBlock() {

 char[] block = new char[end-start+1];
 int j = 0;
 for (int i = start; i <= end; i++) {
 if (Character.isDefined((char) i)) {
 block[j++] = (char) i;
 }
 }
 char[] result = new char[j];
 System.arraycopy(block, 0, result, 0, j);
 return result;
 }

 public String getName() {
 return this.name;
 }

 public int getStart() {
 return this.start;
 }

 public int getEnd() {
 return this.end;
 }
}

Example 14.2 shows the BlockCanvas class, a custom component that is initialized with a
particular character block and draws all characters in that block. The block of characters it
draws may be changed with the setBlock() method or inspected with the getBlock()
method. The paint() method merely tries to fit a grid of characters into the allotted space.

Example 14.2. The BlockCanvas Class

import java.awt.*;

public class BlockCanvas extends Canvas {

 CharacterBlock block = CharacterBlock.getBlock("Basic Latin");

 int charWidth = 20;
 int charHeight = 15;
 int hgap = 5;
 int vgap = 0;

 public BlockCanvas() {
 setFont(new Font("Monospaced", Font.BOLD, 12));
 }

 public void setBlock(CharacterBlock block) {
 this.block = block;
 this.repaint();
 }
 public CharacterBlock getBlock() {
 return block;
 }

Java I/O

344

 public void paint(Graphics g) {

 char[] charsOnPage = block.getCharactersInBlock();
 int charsPerRow = (getSize().width - 2*hgap)/charWidth;
 if (charsPerRow <= 0) charsPerRow = 1;

 for (int i = 0; i < charsOnPage.length; i++) {
 int x = i % charsPerRow;
 int y = i / charsPerRow + 1;
 g.drawChars(charsOnPage, i, 1, hgap + charWidth*x, vgap +
charHeight*y);
 }
 }
}

Finally, Example 14.3 is an applet that allows the user to select a character block from a list
box and have it displayed in a block canvas. This applet was shown in Figure 14.1. The
init() method sets up the user interface. The list box is filled with the names returned from
CharacterBlock's getNames() method. UnicodeApplet implements ItemListener and
registers itself as the listener with the list box. When an item is selected from the list,
UnicodeApplet sets the block of the BlockCanvas to the chosen selection.

Example 14.3. The UnicodeApplet

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class UnicodeApplet extends Applet implements ItemListener {

 List scripts = new List(CharacterBlock.getNumBlocks());
 BlockCanvas theChart = new BlockCanvas();

 public void init() {

 setLayout(new BorderLayout());
 String[] names = CharacterBlock.getBlockNames();
 for (int i = 0; i < names.length; i++) {
 scripts.add(names[i]);
 }
 scripts.addItemListener(this);
 scripts.select(0);
 this.add("West", scripts);
 this.add("Center", theChart);
 }

 public void itemStateChanged(ItemEvent ie) {

 if (ie.getStateChange() == ItemEvent.SELECTED) {
 String selected = scripts.getSelectedItem();
 if (!selected.equals(theChart.getBlock().getName())) {
 theChart.setBlock(CharacterBlock.getBlock(selected));
 }
 }
 }
}

Java I/O

345

14.3 Unicode Escapes

Currently, there isn't a large installed base of Unicode text editors. There's an even smaller
installed base of machines with full Unicode fonts installed. Therefore, it's essential that all
valid Java programs can be written using nothing more than ASCII characters.

All Java keywords and operators as well as the names of all the classes, methods, and fields in
the core API may be written in pure ASCII. This is by deliberate design on the part of
JavaSoft. However, Unicode characters are explicitly allowed in comments, string and char
literals, and identifiers. The following, the opening line from Homer's Odyssey, should be
legal Java:

To enable statements like that in Java source, non-ASCII characters are embedded through
Unicode escape sequences. The escape sequence for a character is a backslash (\) followed
by a small u, followed by the four-digit hexadecimal code for the character. For example:

char tab = '\u0009';
char softHyphen = '\u00AD';
char sigma = '\u03C3';
char squareKeesu = '\u30B9';.

Using Unicode escapes, the opening line from Homer's Odyssey would be rendered as:

/* \u039F\u03B4\u03C5\u03C3\u03C3\u03B5\u03B9\u03B1 */
String \u03B1\u03C1\u03C7\u03B7 =
 "\u0386\u03BD\u03B4\u03C1\u03B1 \u03BC\u03BF\u03B9 "
 + "\u03AD\u03BD\u03BD\u03B5\u03C0\u03B5, "
 + "\u039C\u03BF\u03C5\u03C3\u03B1, "
 + " \u03BF\u03C2 \u03BC\u03AC\u03BB\u03B1 \u03C0\u03BF\u03BB\u03BB\u03B1";

Obviously, this is horribly inconvenient for anything more than an occasional non-ASCII
character.

Many Java compilers assume that source files are written in ASCII and that the only Unicode
characters present are Unicode escapes. During a single-pass preprocessing phase, the
compiler converts each raw ASCII character or Unicode escape sequence to a two-byte
Unicode character it stores in memory. Only after preprocessing is complete and the ASCII
file has been converted to in-memory Unicode, is the file actually compiled. Some compilers
and runtimes will also compile the upper 128 characters of the ISO Latin-1 character set.
However, some do not. Worse yet, some Java virtual machines can compile files containing
non-ASCII, ISO Latin-1 characters but can't run the files they've compiled. For safety's sake
and maximum portability, you should escape all non-ASCII characters.

Version 1.1 and later of Sun's javac compiler assumes a .java file is written in the platform's
default encoding, which is Latin-1 on Solaris and Windows, MacRoman on the Mac.
However, this produces incorrect results on Windows, because Windows does not use true
Latin-1 but a modified version that includes fewer control characters and more printing
characters.

Java I/O

346

Text editors that work with non-ASCII character sets like MacRoman, Arabic, or Big-5
Chinese can integrate with existing Java compilers by providing a preprocessing phase where
the natively encoded data is translated to Unicode-escaped ASCII before being passed to
Sun's javac compiler. Alternately, they can hand off the translation work to javac (1.1 and
later) by using its -encoding flag. For example, to specify that the file MyClass.java is
written in the ISO 8859-9 character set (essentially Latin-1 with the Turkish characters , , ,
, , and replacing the Icelandic characters þ, , ý, Ý, ð, and Ð) you would type:

% javac -encoding 8859_9 MyClass.java

Table B.4 lists the encodings that Java 1.1 understands.

14.4 UTF-8

Since every Unicode character is encoded in exactly two bytes, Unicode is a fairly simple
encoding. The first two bytes of a file are the first character. The next two bytes are the
second character, and so on. This makes parsing Unicode data relatively simple compared to
schemes that use variable-width characters. The downside is that Unicode is far from the most
efficient encoding possible. In a file containing mostly English text, the high bytes of almost
all the characters will be 0. These bytes can occupy as much as half of the file. If you're
sending data across the network, Unicode data can take twice as long.

A more efficient encoding can be achieved for files that are composed primarily of ASCII text
by encoding the more common characters in fewer bytes. UTF-8 is one such format that
encodes the non-null ASCII characters in a single byte, characters between 128 and 2047 and
ASCII null in two bytes, and the remaining characters in three bytes. While theoretically this
encoding might expand a file's size by 50%, because most text files contain primarily ASCII,
in practice it's almost always a huge savings. Therefore, Java uses UTF-8 in string literals,
identifiers, and other text data in compiled byte code. UTF-8 is also a common encoding for
XML files and the native encoding of Bell Labs' experimental Plan 9 operating system.

To better understand UTF-8, consider a typical Unicode character as a sequence of 16 bits:

x15 x14 x13 x12 x11 x10 x9 x8
x7 x6 x5 x4 x3 x2 x1 x0

Each ASCII character except the null character (each character between 1 and 127) has its
upper nine bits equal to 0:

0 0 0 0 0 0 0 0
0 x6 x5 x4 x3 x2 x1 x0

Therefore, it's easy to encode an ASCII character as a single byte. Just drop the high-order
byte:

0 x6 x5 x4 x3 x2 x1 x0

Now consider characters between 128 and 2047. These all have their top five bits equal to 0,
as shown here:

Java I/O

347

0 0 0 0 0 x10 x9 x8
x7 x6 x5 x4 x3 x2 x1 x0

These characters are encoded into two bytes, but not in the most obvious fashion. The 11
significant bits of the character are broken up:

1 1 0 x10 x9 x8 x7 x6
1 0 x5 x4 x3 x2 x1 x0

Neither of the bytes that make up this number begins with a bit. Thus, you can distinguish
between bytes that are part of a two-byte character and bytes that represent one-byte
characters (which all begin with 0).

The remaining characters have values between 2048 and 65,535. Any or all of the bits in these
characters may take on either value or 1. Thus, they are encoded in three bytes, like this:

1 1 1 0 x15 x14 x13 x12
1 0 x11 x10 x9 x8 x7 x6
1 0 x5 x4 x3 x2 x1 x0

Within this scheme, any byte beginning with a bit must be a single-byte ASCII character
between 1 and 127. Any byte beginning with the three bits 110 must be the first byte of a two-
byte character. Any byte beginning with the four bits 1110 must be the first byte of a three-
byte character. Finally, any byte beginning with the two bits 10 must be the second or third
byte of a multibyte character.

The DataOutputStream class provides a writeUTF() method that encodes a string into UTF-
8 format. It first writes the number of encoded bytes in the string (as an unsigned short)
followed by the UTF-8 encoded format of the string onto the underlying output stream:

public final void writeUTF(String s) throws IOException

The DataInputStream class provides two corresponding readUTF() methods to read a UTF-
8 encoded string from its underlying input stream:

public final String readUTF() throws IOException
public static final String readUTF(DataInput in) throws IOException

Each of these first reads a two-byte, unsigned short that tells it how many more bytes to read.
These bytes are then read and decoded from UTF-8 into a Java Unicode string. An
EOFException is thrown if the stream ends before all the expected bytes have been read. If
the bytes read cannot be interpreted as a valid UTF-8 string, then a
UTFDataFormatException is thrown.

DataInputStream and DataOutputStream actually read and write a slight modification of
the official UTF-8 format. They encode the null character (0x00) in two bytes rather than one.
This makes it slightly easier for C code that expects null-terminated strings to parse Java
.class files. The Reader and Writer classes discussed in the next chapter read and write true
UTF-8 with one-byte nulls.

Java I/O

348

14.5 The char Data Type

The char primitive data type in Java is a two-byte unsigned integer whose values range from
to 65,535. char variables may be assigned from int literals, like this:

char exclamationPoint = 33;

In the virtual machine, chars are promoted to ints in arithmetic operations like addition and
multiplication. Therefore, operations more complicated than a simple assignment require an
explicit cast to char, like this:

char a = 97;
char b = (char) (a + 1);

In practice, chars are rarely used in arithmetic operations. Instead, they're given symbolic
meanings through mappings to particular elements of the Unicode character set. For instance,
33 is the Unicode (and ASCII) character for the exclamation point (!). 97 is the Unicode (and
ASCII) character for the small letter a. When the Unicode and printable ASCII characters
converge, as they do for values between 32 and 127, a char may be written in Java source
code as a char literal. This is the desired ASCII character between single quote marks, like
this:

char exclamationPoint = '!';
char a = 'a';
char b = 'b';

For characters outside this range, you can assign values to chars using Unicode escape
sequences, like this:

char tab = '\u0009';
char softHyphen = '\u00AD';
char sigma = '\u03C3';
char squareKeesu = '\u30B9';

14.5.1 The java.lang.Character Class

As for the other primitive data types, the core API includes a type wrapper class for char
values. This is java.lang.Character :

public final class Character implements Serializable

In Java 2 Character also implements Comparable:

public final class Character implements Serializable, Comparable // Java 2

14.5.1.1 Constructor

This class has a single constructor:

public Character(char value)

For example:

Java I/O

349

Character g = new Character('g');
Character ya = new Character('\u0BAF');

14.5.1.2 Instance methods

There aren't many instance methods in this class. charValue()returns the char primitive that
this object wraps:

public char charValue()

There's also the usual trio of hashCode(), equals(), and toString() methods:

public int hashCode()
public boolean equals(Object obj)
public String toString()

The equals() method returns true if the compared object is a Character object wrapping
the same primitive char value. The hashCode() method returns the primitive value of this
object cast to an int. The toString() method returns a length 1 string containing the
character that this object wraps. In Java 2 you have two methods to implement the
Comparable interface:

public int compareTo(Character c) // Java 2
public int compareTo(Object o) // Java 2

The comparison is performed numerically. Both methods return -1 if the lefthand side of
compareTo() is less than the argument, if they're the same, and a positive number if the
lefthand side is greater than the argument. The second variant throws a ClassCastException
if its argument is not an instance of java.lang.Character.

That's pretty much all there is to say about the instance methods in the
java.lang.Character class. The only real purpose of Character objects is to wrap char
values for the Reflection API and other places where primitive data types must be embedded
in objects. However, this class has some interesting static utility methods.

14.5.1.3 Character types

Unicode defines 29 mutually exclusive categories or types of Unicode characters. The
Character class associates mnemonic byte constants with each of these types. The type of a
character is returned by the static getType() method:

public static int getType(char ch)

The possible types are:

public static final byte UNASSIGNED = 0;
public static final byte UPPERCASE_LETTER = 1;
public static final byte LOWERCASE_LETTER = 2;
public static final byte TITLECASE_LETTER = 3;
public static final byte MODIFIER_LETTER = 4;
public static final byte OTHER_LETTER = 5;
public static final byte NON_SPACING_MARK = 6;
public static final byte ENCLOSING_MARK = 7;

Java I/O

350

public static final byte COMBINING_SPACING_MARK = 8;
public static final byte DECIMAL_DIGIT_NUMBER = 9;
public static final byte LETTER_NUMBER = 10;
public static final byte OTHER_NUMBER = 11;
public static final byte SPACE_SEPARATOR = 12;
public static final byte LINE_SEPARATOR = 13;
public static final byte PARAGRAPH_SEPARATOR = 14;
public static final byte CONTROL = 15;
public static final byte FORMAT = 16;
public static final byte PRIVATE_USE = 18;
public static final byte SURROGATE = 19;
public static final byte DASH_PUNCTUATION = 20;
public static final byte START_PUNCTUATION = 21;
public static final byte END_PUNCTUATION = 22;
public static final byte CONNECTOR_PUNCTUATION = 23;
public static final byte OTHER_PUNCTUATION = 24;
public static final byte MATH_SYMBOL = 25;
public static final byte CURRENCY_SYMBOL = 26;
public static final byte MODIFIER_SYMBOL = 27;
public static final byte OTHER_SYMBOL = 28;

Every defined Unicode character is exactly one of these types. The isDefined() method
returns true if the specified character is a valid Unicode character. Although Unicode has
space for more than 65,000 different characters, only a few more than 38,000 are currently
defined. The rest are reserved for expansion or private use.

public static boolean isDefined(char c)

Unlike ASCII, Unicode does not suggest an easy algorithm for testing facts about particular
characters, such as whether the character is upper- or lowercase or whether it's a digit. The
following test determines whether an ASCII character is upper- or lowercase:

public static boolean isUpper(char c) {
 return char >= 'A' && char <= 'Z';
}

This test fails for the full Unicode character set, because uppercase characters are spread
throughout the full range. It gives incorrect results for , Ý, Á, , and many other
uppercase characters from non-ASCII character sets. A true test for whether or not a Unicode
character is uppercase must take into account all the different scripts Unicode encompasses.
Needless to say, this is a daunting proposition.

Fortunately, the Character class provides a number of static utility methods for determining
precisely this sort of information about Unicode characters. The isLetter() method returns
true if the specified character is a letter in one of the scripts Unicode supports; Chinese and
Japanese ideographs are generally considered letters:

public static boolean isLetter(char c)

Letters are divided into uppercase, lowercase, title case, modifiers, and "other." Lowercase
includes letters like a, b, c, d, e, ä, ð, , æ, and so on. Uppercase includes letters like A, B, C,
D, E, Ä, Ð, , Æ, etc. For almost all characters, upper case and title case are the same. For
instance, an uppercase "a" is "A." A title case "a" is also "A." However, there are four
exceptions. Unicode characters 453, 456, 459, and 498 are all single characters that appear as

Java I/O

351

two Latin letters. In uppercase they are D , LJ, NJ, and DZ. In lowercase they are d , lj, nj,
and dz. In title case they are D , Lj, Nj, and Dz. The isUpperCase() method returns true if
the specified character is defined as uppercase; isLowerCase()returns true if the specified
character is defined as lowercase; and isTitleCase()returns true if the specified character
is defined as title case by the Unicode specification.

public static boolean isLowerCase(char c)
public static boolean isUpperCase(char c)
public static boolean isTitleCase(char c)

Many characters are neither uppercase nor lowercase. For instance, both
Character.isLowerCase('7') and Character.isUpperCase('7') return false. The
Devanagari script used for Hindi, Sanskrit, and some other languages of the Indian
subcontinent does not have upper- and lowercases. The toUpperCase(), toLowerCase(), and
toTitleCase() methods return the upper-, lower-, and title case equivalents of the specified
character:

public static char toLowerCase(char c)
public static char toUpperCase(char c)
public static char toTitleCase(char c)

For example:

character upperA = Character.toUpperCase('a');

Not all letters and certainly not all characters have upper-, lower-, or title case equivalents. If
the specified character does not have an upper-, lower-, or title case equivalent, then the
unmodified character itself is returned.

The isDigit() method returns true if its argument is a digit in any character set. This
includes not just the usual ASCII digits through 9 but digits from Arabic, Devanagari,
Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Lao, Malayalam, Thai, and
Tibetan.

public static boolean isDigit(char ch)

The isLetterOrDigit() method returns true if the specified character is either a Unicode
letter or a Unicode digit as determined by the isLetter() and isDigit() methods:

public static boolean isLetterOrDigit(char c)

The isSpaceChar() method returns true if Unicode defines the specified character as a
space character:

public static boolean isSpaceChar(char c)

Space characters include ASCII spaces (32) but do not include some characters you might
expect, like carriage returns, tabs, or linefeeds.

Java I/O

352

The isWhitespace() method returns true if a character is a Unicode space separator
character other than a nonbreaking space (160 and 65,279). It also returns true if the
specified character is a line separator, a paragraph separator, a horizontal tab (\t, ASCII 9), a
vertical tab (ASCII 11), a formfeed (ASCII 12), a carriage return (\r, ASCII 13), a linefeed
(\n, ASCII 10), a file separator (ASCII 28), a group separator (ASCII 29), a record separator
(ASCII 30), or a unit separator (ASCII 31).

public static boolean isWhitespace(char ch)

The isSpace() method is a less accurate version of isWhitespace() held over from Java
1.0. It returns true if its argument is a carriage return, linefeed, horizontal tab, formfeed, or
ASCII space. Otherwise, it returns false. It's deprecated and should not be used in new code.

public static boolean isSpace(char c)

The isISOControl() method returns true if the specified character is an ISO Latin-1 control
character; in other words, if it's in the range to 31 or 127 to 159.

public static boolean isISOControl(char c)

14.5.1.4 Identifiers

Until Java, most programming languages were explicitly based on ASCII. Identifiers—e.g.,
variable names, class names, method names, and so forth—were defined as being composed
of some particular subset of these characters, generally allowing alphanumeric characters and
some punctuation marks like the underscore but excluding the rest of ASCII. Furthermore,
some languages distinguish between characters allowed in the middle of an identifier and
characters that may start an identifier.

The Unicode standard makes some suggestions for which Unicode characters should be
allowed in programming language identifiers. Generally, all the alphanumeric characters from
any script as well as certain joining characters and bidirectional indicators are allowed in
identifiers, while most other characters are not. However, programming language designers
are free to accept or reject the Unicode standard's suggestions in these matters.
Character.isUnicodeIdentifierStart() returns true if the specified character may be
the first character of an identifier; that is, if it is a Unicode letter.
Character.isUnicodeIdentifierPart() returns true if the specified character may be
part of the interior of a Unicode identifier; that is, the specified character is a letter, a digit, a
numeric letter like a Roman numeral, a combining mark, an underscore, a nonspacing mark,
or an ignorable control character.

public static boolean isUnicodeIdentifierStart(char c)
public static boolean isUnicodeIdentifierPart(char c)

Java's identifier syntax is not exactly the same as the Unicode identifier syntax, though they
are similar; the Java identifier characters are a superset of the Unicode identifier characters.
As well as the Unicode identifier characters, Java identifiers include currency symbols ($, £,
¢, ¥, , the Bengali rupee sign, the Thai currency symbol baht, the EC sign, the colon sign,
the cruzeiro sign, the French franc sign, the lira sign, the mill sign, the naira sign, the peseta
sign, the Indian rupee sign, the won sign, the new shekel sign, the dong sign, etc.). Java start
identifiers also include the connecting punctuation characters underscore, undertie, character

Java I/O

353

tie, and a few similar characters that may be included in the interior of a Unicode identifier
but may not start it.

The isJavaIdentifierStart() method returns true if the specified character is a valid
beginning of an identifier in Java source code; that is, if it's a letter as determined by
isLetter(), or if it's a currency indicator like $ or £, or if it's a connecting punctuation
character like the underscore (_).

public static boolean isJavaIdentifierStart(char c)

This method might be used by Java compilers and similar tools.

The isJavaIdentifierPart() method is similar but also returns true if the specified
character is a digit in any of Unicode's supported scripts. Digits are legal parts of Java
identifiers but may not begin an identifier.

public static boolean isJavaIdentifierPart(char c)

Numeric letters like Roman numerals, combining marks, nonspacing marks, and ignorable
control characters are also allowed in Java identifiers as long as they aren't the first characters
of the identifier. isJavaIdentifierStart() and isJavaIdentifierPart() are new in Java
1.1. Java 1.0 had identical methods, now deprecated, called isJavaLetter() and
isJavaLetterOrDigit():

public static boolean isJavaLetter(char c)
public static boolean isJavaLetterOrDigit(char c)

Certain Unicode characters are classified as ignorable within the context of Unicode and Java
identifiers. The name is something of a misnomer, since these characters aren't ignored. A
better name would be "illegal," since they can't be used in Java or Unicode identifiers.
Nonetheless, the word is ignorable; and the isIdentifierIgnorable() method returns true
if the character is ignorable:

public static boolean isIdentifierIgnorable(char c)

Ignorable characters include the nonwhitespace ASCII control characters through 8 and 14
through 27; the Latin-1 control characters 127 through 159; the joining characters 8024
through 8027; the bidirectional controls 8202 through 8206; the format controls 8298 through
8303; and the zero-width nonbreaking space 65,279.

14.5.1.5 Numeric values

java.lang.Character also has several methods for interpreting characters as numbers. The
digit() method returns the numeric value of the character c in the specified base:

public static int digit(char c, int base)

For example, Character.digit('A', 16) returns 10, because in hexadecimal (base 16) the
letter A is used as a digit with the value 10. This method handles bases between 2 and 36.
(The latter is 10 plus the 26 letters in the Roman alphabet.) These limits are available in the
mnemonic constants Character.MIN_RADIX and Character.MAX_RADIX respectively:

Java I/O

354

public static final int MIN_RADIX = 2;
public static final int MAX_RADIX = 36;

This method works for digit characters in any script (that is, characters for which
Character.isDigit() returns true) as well as for Roman letters A-Z and a-z, as long as the
base is large enough to include the specified digit. Most Unicode characters are not valid
digits in any base. If such a character or a character outside the range of the base (e.g., 9 in
base 8) is passed to digit(), digit() returns -1.

forDigit()reverses the procedure. It returns the char corresponding to a specified int in a
given base.

public static char forDigit(int digit, int base)

For example, Character.forDigit(11, 16) returns b. If the specified int is not available as
a character in the given base, forDigit() returns the null character \u0000. This is not the
same thing as the null reference provided by the Java keyword null. The null character is also
returned if the base is not inside the range Character.MIN_RADIX to Character.MAX_RADIX.

The getNumericValue() method returns the value of the specified character as a number:

public static int getNumericValue(char c)

For example, Character.getNumericValue('4') has the value 4. Unlike the digit()
method, getNumericValue() does not work in bases other than 10. However, it interprets
characters like \u217F, the Roman numeral for 1000, properly. If the specified character does
not have a numeric value, getNumericValue() returns -1. If the character has a numeric
value that cannot be represented as a nonnegative integer, getNumericValue() returns -2.
For example, Unicode character 189 is the fraction 1/2. Thus,
Character.getNumericValue('\u00BD') returns -2.

14.5.1.6 Character subsets

In Java 2, java.lang.Character contains two unusual public static inner classes, Subset
and UnicodeBlock:

public static class Character.Subset extends Object
public static class Character.UnicodeBlock extends Character.Subset

Each character subset represents a particular block of the complete Unicode character set.
This class has a single protected constructor:

protected Character.Subset(String name)

The only methods in the Character.Subset class are the standard utility methods equals(),
hashCode(), and toString():

public final boolean equals(Object o)
public final int hashCode()
public final String toString()

Java I/O

355

The most common type of character subset is a Unicode block. A Unicode block is a character
subset that maps onto one of the blocks defined by the Unicode consortium for the characters
in a particular script. Several more character subsets are defined in the
java.awt.im.InputSubset class for use with input methods for various languages.

14.5.1.7 Unicode blocks

You don't create instances of the Character.UnicodeBlock class directly. Instead, the
Character class preforms several dozen subsets:

Character.UnicodeBlock.BASIC_LATIN
Character.UnicodeBlock.LATIN_1_SUPPLEMENT
Character.UnicodeBlock.LATIN_EXTENDED_A
Character.UnicodeBlock.LATIN_EXTENDED_B
Character.UnicodeBlock.IPA_EXTENSIONS
Character.UnicodeBlock.SPACING_MODIFIER_LETTERS
Character.UnicodeBlock.COMBINING_DIACRITICAL_MARKS
Character.UnicodeBlock.GREEK
Character.UnicodeBlock.CYRILLIC
Character.UnicodeBlock.ARMENIAN
Character.UnicodeBlock.HEBREW
Character.UnicodeBlock.ARABIC
Character.UnicodeBlock.DEVANAGARI
Character.UnicodeBlock.BENGALI
Character.UnicodeBlock.GURMUKHI
Character.UnicodeBlock.GUJARATI
Character.UnicodeBlock.ORIYA
Character.UnicodeBlock.TAMIL
Character.UnicodeBlock.TELUGU
Character.UnicodeBlock.KANNADA
Character.UnicodeBlock.MALAYALAM
Character.UnicodeBlock.THAI
Character.UnicodeBlock.LAO
Character.UnicodeBlock.TIBETAN
Character.UnicodeBlock.GEORGIAN
Character.UnicodeBlock.HANGUL_JAMO
Character.UnicodeBlock.LATIN_EXTENDED_ADDITIONAL
Character.UnicodeBlock.GREEK_EXTENDED
Character.UnicodeBlock.GENERAL_PUNCTUATION
Character.UnicodeBlock.SUPERSCRIPTS_AND_SUBSCRIPTS
Character.UnicodeBlock.CURRENCY_SYMBOLS
Character.UnicodeBlock.COMBINING_MARKS_FOR_SYMBOLS
Character.UnicodeBlock.LETTERLIKE_SYMBOLS
Character.UnicodeBlock.NUMBER_FORMS
Character.UnicodeBlock.ARROWS
Character.UnicodeBlock.MATHEMATICAL_OPERATORS
Character.UnicodeBlock.MISCELLANEOUS_TECHNICAL
Character.UnicodeBlock.CONTROL_PICTURES
Character.UnicodeBlock.OPTICAL_CHARACTER_RECOGNITION
Character.UnicodeBlock.ENCLOSED_ALPHANUMERICS
Character.UnicodeBlock.BOX_DRAWING
Character.UnicodeBlock.BLOCK_ELEMENTS
Character.UnicodeBlock.GEOMETRIC_SHAPES
Character.UnicodeBlock.MISCELLANEOUS_SYMBOLS
Character.UnicodeBlock.DINGBATS
Character.UnicodeBlock.CJK_SYMBOLS_AND_PUNCTUATION
Character.UnicodeBlock.HIRAGANA
Character.UnicodeBlock.KATAKANA
Character.UnicodeBlock.BOPOMOFO

Java I/O

356

Character.UnicodeBlock.HANGUL_COMPATIBILITY_JAMO
Character.UnicodeBlock.KANBUN
Character.UnicodeBlock.ENCLOSED_CJK_LETTERS_AND_MONTHS
Character.UnicodeBlock.CJK_COMPATIBILITY
Character.UnicodeBlock.CJK_UNIFIED_IDEOGRAPHS
Character.UnicodeBlock.HANGUL_SYLLABLES
Character.UnicodeBlock.SURROGATES_AREA
Character.UnicodeBlock.PRIVATE_USE_AREA
Character.UnicodeBlock.CJK_COMPATIBILITY_IDEOGRAPHS
Character.UnicodeBlock.ALPHABETIC_PRESENTATION_FORMS
Character.UnicodeBlock.ARABIC_PRESENTATION_FORMS_A
Character.UnicodeBlock.COMBINING_HALF_MARKS
Character.UnicodeBlock.CJK_COMPATIBILITY_FORMS
Character.UnicodeBlock.SMALL_FORM_VARIANTS
Character.UnicodeBlock.ARABIC_PRESENTATION_FORMS_B
Character.UnicodeBlock.HALFWIDTH_AND_FULLWIDTH_FORMS
Character.UnicodeBlock.SPECIALS
Character.UnicodeBlock.LATIN
Character.UnicodeBlock.LATIN_DIGITS
Character.UnicodeBlock.TRADITIONAL_HANZI
Character.UnicodeBlock.SIMPLIFIED_HANZI
Character.UnicodeBlock.KANJI
Character.UnicodeBlock.HANJA
Character.UnicodeBlock.HALFWIDTH_KATAKANA

You can find out to which block a particular character belongs with the static
Character.UnicodeBlock.of() method:

public static Character.UnicodeBlock of(char c)

This returns one of the named constants in the previous list or null if the character doesn't
belong to any of those blocks.

14.6 Other Encodings

Although Unicode is the most advanced and comprehensive character set yet designed on this
planet, it has not taken the world by storm. Compared to the vast quantities of ASCII data,
there are virtually no Unicode files on today's computers. Although Unicode support is
growing, there will doubtless be legacy data in other encodings that must be read for centuries
to come. A lot of it is in the Unicode subsets ASCII and ISO Latin-1, but a lot of it is also in
less popular encoding schemes like EBCDIC and MacRoman. Those only cover English and a
few Western European languages. There are multiple encodings in use for Arabic, Turkish,
Hebrew, Greek, Cyrillic, Chinese, Japanese, Korean, and many other languages and scripts.
The Reader and Writer classes (discussed in the next chapter) allow you to read and write
data in these different character sets. The String class also has a number of methods that
convert between different encodings (though a String object itself is always represented in
Unicode). Furthermore, the JDK includes a character mode tool based on these classes called
native2ascii that performs such conversions on existing files.

The name native2ascii is a misnomer. Rather than converting to ASCII, it converts to ISO
Latin-1 with Unicode characters embedded with Unicode escape sequences like \u020F. It
can also work in reverse, converting an ISO Latin-1 file with embedded Unicode to a native
character set. For example, to copy the contents of the file macdata.txt from the MacRoman

Java I/O

357

encoding into a new file called isodata.txt encoded with ISO Latin-1 with Unicode escapes,
you would type:

% native2ascii -encoding MacRoman macdata.txt isodata.txt

You can convert it back with the -reverse option:

% native2ascii -encoding MacRoman -reverse isodata.txt macdata.txt

If you don't specify a particular encoding, native2ascii makes its best guess as to the
platform's native encoding. This best guess is read from the system property file.encoding.
On American Macs, the default is MacRoman. On American Solaris, the default is 8859_1
(ISO Latin-1). On American Windows, the default is also 8859_1. However, you shouldn't
rely on these values. Instead, check the property directly. Systems configured for other
countries are likely to have different default encodings. Table B.4 lists the many encodings
that Java, javac, and native2ascii understand. As extensive as this list is, there are a few
missing pieces. In particular, ISO 8859-10, a.k.a. Latin-6, includes ASCII plus various
characters used for Lappish, Nordic, and Inuit languages in the upper 128 places. Java cannot
currently convert characters in this set to Unicode.

Work is continuing on both Unicode and other character sets. ISO 8859-11 will provide a
standard encoding for Thai. ISO 8859-12, also known as Latin-7, will use the upper 128
characters past ASCII for Celtic. ISO 8859-13, also known as Latin-8, will use them for the
Baltic Rim languages. ISO 8859-14, also known as Latin-9, will encode ASCII plus Sami.
Eventually, converters will be needed for these encodings as well.

14.7 Converting Between Byte Arrays and Strings

The java.lang.String class has several constructors that form strings from byte arrays and
several methods that return a byte array corresponding to a given string. Anytime a Unicode
string is converted to bytes or vice versa, that conversion happens according to one of the
encodings listed in Table B.4. The same string can produce different byte arrays if different
encodings are used. Six constructors form a new String object from a byte array:

public String(byte[] ascii, int highByte)
public String(byte[] ascii, int highByte, int offset, int length)
public String(byte[] data, String encoding)
 throws UnsupportedEncodingException
public String(byte[] data, int offset, int length, String encoding)
 throws UnsupportedEncodingException
public String(byte[] data)
public String(byte[] data, int offset, int length)

The first two constructors, the ones with the highByte argument, are leftovers from Java 1.0
that are deprecated in Java 1.1. These two constructors do not accurately translate non-Latin-1
character sets into Unicode. Instead, they read each byte in the ascii array as the low-order
byte of a two-byte character, then fill in the high-order byte with the highByte argument. For
example:

byte[] isoLatin1 = new byte[256];
for (int i = 0; i < 256; i++) isoLatin1[i] = (byte) i;
String s = new String(isoLatin1, 0);

Java I/O

358

Frankly, this is a kludge; it's deprecated for good reason. This scheme works quite well for
Latin-1 data with a high byte of 0. However, it's extremely difficult to use for character sets
where different characters need to have different high bytes, and it's completely unworkable
for character sets like MacRoman that also need to adjust bits in the low-order byte to
conform to Unicode. The only approach that genuinely works for the broad range of character
sets Java programs may be asked to handle is table lookup. Each character set in Table B.4 is
associated with a table mapping characters in the set to Unicode characters. These tables are
hidden inside the sun.io package, but they are present; and they are how the next four
constructors translate from various encodings to Unicode.

The third and fourth constructors allow the client programmer to specify not only the byte
data but also the encoding table to be used when converting these bytes to Unicode chars.
The third constructor converts the entire array from the specified encoding into Unicode. The
fourth one only converts the specified subarray of data starting at offset and continuing for
length bytes. Otherwise, they're identical. The first argument is the data to be converted. The
final argument is the encoding scheme used to perform the conversion. For example:

byte[] isoLatin1 = new byte[256];
for (int i = 0; i < 256; i++) isoLatin1[i] = (byte) i;
String s = new String(isoLatin1, "8859_1");

The fifth and sixth constructors are similar to the third and fourth. However, they always use
the host platform's default encoding as specified by the system property file.encoding. If
this is ISO 8859-1, then you may write:

byte[] isoLatin1 = new byte[256];
for (int i = 0; i < 256; i++) isoLatin1[i] = (byte) i;
String s = new String(isoLatin1);

This code fragment produces different results on a platform with a different default encoding.

Three instance methods go the other direction, converting the Unicode string into an array of
bytes in a particular non-Unicode encoding:

public void getBytes(int srcBegin, int srcEnd, byte[] dst, int dstBegin)
public byte[] getBytes()
public byte[] getBytes(String encoding) throws UnsupportedEncodingException

Once again, the first method is deprecated. The byte array it returns only contains the low-
order bytes of the two-byte characters in the string (starting at srcBegin and continuing
through srcEnd). This works well enough for ASCII and ISO Latin-1 but fails miserably for
pretty much all other character sets. The no-argument getBytes() method properly converts
the Unicode characters in the string into a byte array in the platform's default encoding—
assuming a full conversion is possible (and it isn't always; you cannot, for example, convert a
string of Chinese ideographs into ISO Latin-1). The byte array returned contains the
converted characters. The third and final getBytes() method specifies the encoding to be
used to make the conversion. For example:

Java I/O

359

String openingLineInUnicode =
 "\u03B1\u03BD\u03B4\u03C1\u03B1 \u03BC\u03BF\u03B9 " +
 "\u03B5\u03BD\u03BD\u03B5\u03C0\u03B5, " +
 "\u03BC\u03BF\u03C5\u03C3\u03B1, " +
 "\u03C0\u03BF\u03BB\u03C5\u03C4\u03C1\u03BF\u03C0\u03BF\u03BD," +
 "\u03B7\u03BF\u03C2
\u03BC\u03B1\u03BB\u03B1\u03C0\u03BF\u03BB\u03BB\u03B1";
byte[] openingLineInMacGreek = openingLineInUnicode.getBytes("MacGreek");

This method throws an UnsupportedEncodingException if the requested encoding is not
understood by the Java virtual machine.

Java I/O

360

Chapter 15. Readers and Writers
A language that supports international text must separate the reading and writing of raw bytes
from the reading and writing of characters, since in an international system they are no longer
the same thing. Classes that read characters must be able to parse a variety of character
encodings, not just ASCII, and translate them into the language's native character set. Classes
that write characters must be able to translate the language's native character set into a variety
of formats and write those. In Java this task is performed by the Reader and Writer classes.

You're probably going to experience a little déjà vu. The java.io.Writer class is modeled
on the java.io.OutputStream class. The java.io.Reader class is modeled on the
java.io.InputStream class. The names and signatures of the members of the Reader and
Writer classes are similar (sometimes identical) to the names and signatures of the members
of the InputStream and OutputStream classes. The patterns these classes follow are similar
as well. Filtered input and output streams are chained to other streams in their constructors.
Similarly, filtered readers and writers are chained to other readers and writers in their
constructors. InputStream and OutputStream are abstract superclasses that identify common
functionality in the concrete subclasses. Likewise, Reader and Writer are abstract
superclasses that identify common functionality in the concrete subclasses. The difference
between readers and writers and input and output streams is that streams are fundamentally
byte based, while readers and writers are fundamentally character based. Where an input
stream reads a byte, a reader reads a character; where an output stream writes a byte, a writer
writes a character.

While bytes are a more or less universal concept, characters are not. As you learned in the last
chapter, the same character can be encoded differently in different character sets. Different
character sets encode different characters. Characters can even have different widths in
different character sets. For example, ASCII and ISO Latin-1 use one-byte characters.
Unicode uses two-byte characters. UTF-8 uses characters of varying width between one and
three bytes. Concrete subclasses of the Reader and Writer classes convert between different
character sets and Java's internal Unicode character set.

15.1 The java.io.Writer Class

The Writer class is abstract, just like OutputStream is abstract. You won't have any pure
instances of Writer that are not also instances of some concrete subclass of Writer.
However, many of the subclasses of Writer differ primarily in the targets of the text they
write, just as many concrete subclasses of OutputStream differ only in the targets of the data
they write. Most of the time you don't care about the difference between FileOutputStream
and ByteArrayOutputStream. Similarly, most of the time you won't care about the
differences between FileWriter and StringWriter. You'll just use the methods of the
common superclass, java.io.Writer.

You use a writer almost exactly as you use an output stream. Rather than writing bytes, you
write chars. The write() method writes a subarray from the char array text starting at
offset and continuing for length characters:

public abstract void write(char[] text, int offset, int length)
 throws IOException

Java I/O

361

For example, given some Writer object w, you can write the string Testing 1-2-3 like this:

char[] test = {'T', 'e', 's', 't', 'i', 'n', 'g', ' ',
 '1', '-', '2', '-', '3'};
w.write(test, 0, test.length);

This method is abstract. Concrete subclasses that convert chars into bytes according to a
specified encoding and write those bytes onto an underlying stream must override this
method. An IOException may be thrown if the underlying stream's write() method throws
an IOException. You can also write a single character, an entire array of characters, a string,
or a substring:

public void write(int c) throws IOException
public void write(char[] text) throws IOException
public void write(String s) throws IOException
public void write(String s, int offset, int length) throws IOException

The default implementations of these four methods convert their first argument into an array
of chars and pass that to write(char[] text, int offset, int length). Specific
subclasses may provide more efficient implementations of these methods.

This is one of the few instances where the general structure of the
Writer and the OutputStream classes diverge, though not in a very
significant way. In OutputStream the fundamental, abstract method
that must be overridden by subclasses is the write() method that writes
a single byte. OutputStream's multibyte write() methods are
implemented in terms of the single-byte write() method, whereas
Writer's single-character write() method is implemented in terms of a
multicharacter write() method.

Like output streams, writers may be buffered, precisely because their underlying output
stream is buffered. To force the write to take place, call flush():

public abstract void flush() throws IOException

The close() method closes the writer and releases any resources associated with it:

public abstract void close() throws IOException

This flushes the writer, then closes the underlying output stream.

15.2 The OutputStreamWriter Class

java.io.Writer is an abstract class. Its most basic concrete subclass is
OutputStreamWriter:

public class OutputStreamWriter extends Writer

Its constructor connects a character writer to an underlying output stream:

Java I/O

362

public OutputStreamWriter(OutputStream out)
public OutputStreamWriter(OutputStream out, String encoding) throws
 UnsupportedEncodingException

The first constructor assumes that the text in the stream is to be written using the platform's
default encoding. The second constructor specifies an encoding. There's no easy way to
determine which encodings are supported, but the ones listed in Table B.4 in Appendix B, are
supported by most VMs. For example, this code attaches an OutputStreamWriter to
System.out with the default encoding:

OutputStreamWriter osw = new OutputStreamWriter(System.out);

The default encoding is normally ISO Latin-1, except on Macs, where it is MacRoman.
Whatever it is, you can find it in the system property file.encoding:

String defaultEncoding = System.getProperty("file.encoding");

On the other hand, if you want to write a file encoded in ISO 8859-7 (ASCII plus Greek) you
might do this:

FileOutputStream fos = new FileOutputStream("greek.txt");
OutputStreamWriter greekWriter = new OutputStreamWriter(fos, "8859_7");

The write() methods convert characters to bytes according to a specified character encoding
and write those bytes onto the underlying output stream:

public void write(int c) throws IOException
public void write(char[] text, int offset, int length) throws IOException
public void write(String s, int offset, int length) throws IOException

Once the Writer is constructed, writing the characters is easy. For example:

String arete = "\u03B1\u03C1\u03B5\u03C4\u03B7";
greekWriter.write(arete, 0, arete.length());

The String variable arete is the Unicode-escaped encoding of a?et?, the Greek word for
excellence. The second line writes this word in the ISO 8859-7 character set. In this encoding,
these five Unicode characters (10 bytes) become the five bytes 225, 241, 229, 244, 231, which
encode the word a?et? in ISO 8859-7. You don't have to worry about exactly how this
conversion is performed. You just have to construct the writer, write the string, and let Java
do the grunt work of figuring out which Unicode characters map to which externally encoded
characters.

Unicode is a fairly large character set; most other character sets don't have all the characters in
Unicode. Attempts to write characters that don't exist in a given set instead produce a
substitution character, generally a question mark.

The getEncoding() method returns a string containing the name of the encoding used by this
writer:

public String getEncoding()

Java I/O

363

The flush() and close() methods flush and close the underlying output stream.

public void flush() throws IOException
public void close() throws IOException

Example 15.1 loops through all 65,536 Unicode characters and writes them into the file given
on the command line, using the specified character encoding. If no character encoding is
specified, the platform's default encoding is used. If no file is specified, System.out is used.

Example 15.1. UnicodeTable

import java.io.*;

public class UnicodeTable {

 public static void main(String[] args) {

 String encoding = System.getProperty("font.encoding", "8859_1");
 String lineSeparator = System.getProperty("line.separator", "\r\n");

 OutputStream target = System.out;
 try {
 if (args.length > 0) target = new FileOutputStream(args[0]);
 }
 catch (IOException e) {System.err.println("Sending text to
System.out");}
 if (args.length > 1) encoding = args[1];

 OutputStreamWriter osw = null;
 try {
 osw = new OutputStreamWriter(target, encoding);
 }
 catch (UnsupportedEncodingException e) {
 osw = new OutputStreamWriter(target);
 }

 try {
 for (int i = Character.MIN_VALUE; i <= Character.MAX_VALUE; i++) {
 char c = (char) i;
 osw.write(i + ":\t" + c + lineSeparator);
 }
 osw.close();
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
}

15.3 The java.io.Reader Class

You use a reader almost exactly as you use an input stream. Rather than reading bytes, you
read characters. The basic read() method reads a specified number of characters from the
underlying input stream into an array starting at a given offset:

public abstract int read(char[] buffer, int offset, int length)
 throws IOException

Java I/O

364

This read() method returns the number of characters actually read. As with input streams
reading bytes, there may not be as many characters available as you requested. Also like the
read() method of an input stream, it returns -1 when it detects the end of the data.

This read() method is abstract. Concrete subclasses that read bytes from some source must
override this method. An IOException may be thrown if the underlying stream's read()
method throws an IOException or an encoding error is detected.

You can also fill an array with characters using this method:

public int read(char[] buffer) throws IOException

This is equivalent to invoking read(buffer, 0, buffer.length). Thus, it also returns the
number of characters read and throws an IOException when the underlying stream throws an
IOException or when an encoding error is detected. The following method reads a single
character and returns it:

public int read() throws IOException

Although an int is returned, this int is always between and 65,535 and may be cast to a char
without losing information. All three read() methods block until some input is available, an
I/O error occurs, or the end of the stream is reached.

You can skip a certain number of characters. This method also blocks until some characters
are available. It returns the number of characters skipped or -1 if the end of stream is reached.

public long skip(long n) throws IOException

The ready() method returns true if the reader is ready to be read from, false if it isn't.
Generally, this means the underlying stream has available data.

public boolean ready() throws IOException

This is not quite the same as InputStream's available() method. available() returns an
int specifying how many bytes are available to be read. However, it's not always possible to
tell how many characters are available in a stream without actually reading them, particularly
with encodings that use characters of different widths (such as UTF-8, where a character may
be one, two, or three bytes).

Readers may or may not support marking and resetting, like input streams. The
markSupported() method returns true if the underlying stream supports marking and
resetting, false if it doesn't.

public boolean markSupported()
public void mark(int readAheadLimit) throws IOException
public void reset() throws IOException

The close() method closes the reader and its underlying input stream and releases any
resources the reader held:

public abstract void close() throws IOException

Java I/O

365

15.4 The InputStreamReader Class

The most basic concrete subclass of Reader is InputStreamReader:

public class InputStreamReader extends Reader

The constructor connects a character reader to an underlying input stream:

public InputStreamReader(InputStream in)
public InputStreamReader(InputStream in, String encoding)
 throws UnsupportedEncodingException

The first constructor uses the platform's default encoding, as given by the system property
file.encoding. The second one uses the specified encoding. For example, to attach an
InputStreamReader to System.in with the default encoding (generally ISO Latin-1):

InputStreamReader isr = new InputStreamReader(System.in);

If you want to read a file encoded in Latin-5 (ASCII plus Turkish, as specified by ISO 8859-
9), you might do this:

FileInputStream fin = new FileInputStream("symbol.txt");
InputStreamReader isr = new InputStreamReader(fin, "8859_9");

There's no easy way to determine which encodings are supported, but the ones listed in Table
B.4 are supported by most VMs.

The read() methods read bytes from an underlying input stream and convert those bytes to
characters according to the specified encoding:

public int read() throws IOException
public int read(char c[], int off, int length) throws IOException

The getEncoding() method returns a string containing the name of the encoding used by this
reader:

public String getEncoding()

The remaining two methods just override methods from java.io.Reader but behave
identically from the perspective of the programmer:

public boolean ready() throws IOException
public void close() throws IOException

Example 15.2 uses an InputStreamReader to read a file in a user-specified encoding. The
FileConverter reads the name of the input file, the name of the of the output file, the input
encoding, and the output encoding. Characters that are not available in the output character set
are replaced by the substitution character, generally the question mark.

Java I/O

366

Example 15.2. CharacterSetConverter

import java.io.*;

public class CharacterSetConverter {

 public static void main(String[] args) {

 if (args.length < 2) {
 System.err.println(
 "Usage: java CharacterSetConverter "
 + "infile_encoding outfile_encoding infile outfile");
 return;
 }

 try {
 File infile = new File(args[2]);
 File outfile = new File(args[3]);

 if (infile.getCanonicalPath().equals(outfile.getCanonicalPath())) {
 System.err.println("Can't convert file in place");
 return;
 }

 FileInputStream fin = new FileInputStream(infile);
 FileOutputStream fout = new FileOutputStream(outfile);
 InputStreamReader isr = new InputStreamReader(fin, args[0]);
 OutputStreamWriter osw = new OutputStreamWriter(fout, args[1]);

 while (true) {
 int c = isr.read();
 if (c == -1) break; // end of stream
 osw.write(c);
 }
 osw.close();
 isr.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
}

Since this is just a simple example, I haven't put a lot of effort into the user interface. A more
realistic command-line interface would provide a set of flags and sensible defaults. Even
better would be a graphical user interface. I'll demonstrate that at the end of the chapter, when
we return to the file viewer program.

15.5 Character Array Readers and Writers

The java.io.ByteArrayInputStream and java.io.ByteArrayOutputStream classes let
programmers use stream methods to read and write arrays of bytes. The
java.io.CharArrayReader and java.io.CharArrayWriter classes allow programmers to
use Reader and Writer methods to read and write arrays of chars. Since char arrays are
purely internal to Java and thus composed of true Unicode characters, this is one of the few
uses of readers and writers where you don't need to concern yourself with conversions
between different encodings. If you want to read arrays of text encoded in some non-Unicode
encoding, you should chain a ByteArrayInputStream to an InputStreamReader instead.

Java I/O

367

Similarly, to write text into a byte array in a non-Unicode encoding, just chain an
OutputStreamWriter to a ByteArrayOutputStream.

15.5.1 The CharArrayWriter Class

The CharArrayWriter maintains an internal array of chars into which successive characters
are written. The array is expanded as needed. This array is stored in a protected field called
buf:

protected char[] buf

For efficiency, the array generally contains more components than characters. The number of
characters actually written is stored in a protected int field called count:

protected int count

The value of the count field is always less than or equal to buf.length.

The no-argument constructor creates a CharArrayWriter object with a 32-character buffer.
This is on the small side, so you can expand it with the second constructor:

public CharArrayWriter()
public CharArrayWriter(int initialSize)

The write() methods write their characters into the buffer. If there's insufficient space in buf
to hold the characters, its size is doubled.[1]

public void write(int c)
public void write(char[] text, int offset, int length)
public void write(String s, int offset, int length)

There is a flush() method, but it doesn't do anything, as CharArrayWriters operate
completely internally to Java and don't require flushing:

public void flush()

The close() method prevents further writes from taking place. Attempts to write to a
CharArrayWriter after it's been closed throw IOExceptions.

public void close()

However, even after the writer is closed, its buffer may be read in one of several ways. The
writeTo() method copies the text in the buffer onto another Writer object:

public void writeTo(Writer out) throws IOException

The toCharArray() method returns a copy of the text in the buffer:

public char[] toCharArray()

1 In other words, a new array is created of twice the length; the old text is copied into the new array; and the buf field is then set to the new array.
This is the same scheme used for growable arrays by the java.util.Vector class.

Java I/O

368

Changes to the copy do not affect the CharArrayWriter's internal data and vice versa.

The toString() method returns a string initialized from the characters stored in the buffer:

public String toString()

The size() method returns the number of characters currently stored in the buffer (i.e., the
value of count):

public int size()

Finally, the reset() method sets count back to 0, effectively emptying the buffer. However,
it may still be used for new data written to the CharArrayWriter:

public void reset()

For example, the following code fragment fills a char array with the complete Unicode
character set:

CharArrayWriter caw = new CharArrayWriter(65536);
for (int i = 0; i < 65536; i++) {
 caw.write(i);
}
caw.close();
char[] unicode = caw.toCharArray();

15.5.2 The CharArrayReader Class

A CharArrayReader uses an array of chars as the underlying source of text to be read. It is
one of the few readers that does not have an underlying input stream; it has an underlying
char array instead. This array is set in the constructor. Either an entire array may be used or a
specified subarray beginning at offset and continuing for length characters:

public CharArrayReader(char[] text)
public CharArrayReader(char[] text, int offset, int length)

The CharArrayReader class stores a reference to the text array in a protected field called
buf[]. A separate copy is not made. Thus, if the array is changed by another thread while the
reader is being read, synchronization problems can occur. The reader also stores the current
position in the array (the index of the next array component that will be returned by read()),
the number of chars in the array, and the current mark, if any.

protected char buf[]
protected int pos
protected int count
protected int markedPos

The read() methods read text from the buf array, updating the pos field as they do so:

public int read() throws IOException
public int read(char[] buffer, int offset, int length) throws IOException

Java I/O

369

These methods behave like any other reader's read() methods. If the end of the array is
reached, they return -1.

The skip() method skips chars in the buf array by advancing pos without actually returning
any characters:

public long skip(long n) throws IOException

The ready() method returns true if pos is less than count; that is, if any unread characters
remain in the array:

public boolean ready() throws IOException

CharArrayReaders support marking and resetting to the limit of the length of the array.
markSupported() returns true. mark() marks the current position in the stream by setting
markedPos equal to pos. The readAheadLimit argument is for compatibility; its value is
ignored. The reset() method sets pos equal to markedPos.

public boolean markSupported()
public void mark(int readAheadLimit) throws IOException
public void reset() throws IOException

Finally, the close() method sets buf to null. Attempts to read from a CharArrayReader
after it's been closed throw IOExceptions.

public void close()

15.6 String Readers and Writers

The java.io.StringReader and java.io.StringWriter classes allow programmers to use
Reader and Writer methods to read and write strings. Like char arrays, Java strings are also
composed of pure Unicode characters. Therefore, they're good sources of data for readers and
good targets for writers. This is the other common case where readers and writers don't need
to convert between different encodings.

15.6.1 String Writers

This class would more accurately be called StringBufferWriter, but StringWriter is more
poetic. A StringWriter maintains an internal java.lang.StringBuffer object to which
written characters are appended. This buffer can easily be converted to a string as necessary.

public class StringWriter extends Writer

There is a single public constructor:

public StringWriter()

There is also a constructor that allows you to specify the initial size of the internal string
buffer. This isn't too important, because string buffers (and, by extension, string writers) are
expanded as necessary. Still, if you can estimate the size of the string in advance, it's

Java I/O

370

marginally more efficient to select a size big enough to hold all characters that will be written.
The constructor is protected in Java 1.1 and public in Java 2:

protected StringWriter(int initialSize)
public StringWriter(int initialSize) // Java 2

The StringWriter class has the usual collection of write() methods, all of which just
append their data to the StringBuffer:

public void write(int c)
public void write(char[] text, int offset, int length)
public void write(String s)
public void write(String s, int offset, int length)

There are flush() and close() methods, but both have empty method bodies, as string
writers operate completely internal to Java and do not require flushing or closing:

public void flush()
public void close()

You can continue to write to a string writer even after it's been closed. This should probably
be classified as a bug, and I don't recommend that you write code that relies on this behavior.

There are two ways to get the current contents of the StringWriter's internal buffer. The
toString() method returns it as a new String object, while the getBuffer() method
returns the actual buffer:

public String toString()
public StringBuffer getBuffer()

Strings are immutable, but changes to the buffer object returned by getBuffer() change the
state of the StringWriter.

The following code fragment creates a string containing the printable ASCII character set:

StringWriter sw = new StringWriter(128);
for (int i = 32; i < 127; i++) {
 sw.write(i);
}
String ascii = sw.toString();

15.6.2 String Readers

A StringReader uses the methods of the Reader class to get characters from a string. This is
useful when you want to process each character in a string in sequential order. This class
replaces the deprecated StringBufferInputStream class from Java 1.0:

public class StringReader extends Reader

The single constructor sets the string that's the source of data for this reader:

public StringReader(String s)

Java I/O

371

Since string objects are immutable, the data in the string may not be changed after the
StringReader is constructed. The current position from which characters are read is stored in
a private field. Synchronization and thread safety are thus not major problems for this class.
Of course, the class has the usual read() methods, all of which read as many characters as
requested from the string:

public int read() throws IOException
public int read(char[] buffer, int offset, int length) throws IOException

These methods return -1 if the end of the string has been reached. They throw an
IOException if the reader has been closed.

The skip() method skips forward in the string the specified number of places and returns the
number of characters skipped. It throws an IOException if the reader is closed.

public long skip(long n) throws IOException

The ready() method returns true. Strings are always ready to be read.

public boolean ready() throws IOException

String readers support marking and resetting to the limit of the string's length.
markSupported() returns true. mark() marks the current position in the stream. (The
readAheadLimit argument is for compatibility only; its value is ignored.) The reset()
method moves backward in the string to the marked position.

public boolean markSupported()
public void mark(int readAheadLimit) throws IOException
public void reset() throws IOException

Finally, the close() method sets the internal string data to null. Attempts to read from a
StringReader after it's been closed throw IOExceptions.

public void close()

Here's a simple method that uses StringReader to break a string into its separate characters
and print them:

public static void printCharacters(String s) {

 StringReader sr = new StringReader(s);
 try {
 int c;
 while ((c = sr.read()) != -1) {
 System.out.println((char) c);
 }
 }
 catch (IOException e) {System.err.println(e);}
 return;
 }

Java I/O

372

Admittedly, this is a contrived example. If you really needed to do this, you could just call the
string's toCharArray() method and loop through that (or even the string itself) using its
charAt() method.

15.7 Reading and Writing Files

You've already learned how to chain an OutputStreamWriter to a FileOutputStream and
an InputStreamReader to a FileInputStream. Although this isn't hard, Java provides two
simple utility classes that take care of the details, java.io.FileWriter and
java.io.FileReader.

15.7.1 FileWriter

The FileWriter class is a subclass of OutputStreamWriter that writes text files using the
platform's default character encoding and buffer size. If you need to change these values,
construct an OutputStreamWriter on a FileOutputStream instead.

public class FileWriter extends OutputStreamWriter

This class has four constructors:

public FileWriter(String fileName) throws IOException
public FileWriter(String fileName, boolean append) throws IOException
public FileWriter(File file) throws IOException
public FileWriter(FileDescriptor fd)

The first constructor opens a file and positions the file pointer at the beginning of the file. Any
text in the file is overwritten. For example:

FileWriter fw = new FileWriter("36.html");

The second constructor allows you to specify that new text is appended to the existing
contents of the file rather than overwriting them by setting the second argument to true. For
example:

FileWriter fw = new FileWriter("36.html", true);

The third and fourth constructors use a File object and a FileDescriptor, respectively,
instead of a filename to identify the file to be written to. Any pre-existing contents in a file so
opened are overwritten.

No methods other than the constructors are declared in this class. You use the standard
Writer methods like write(), flush(), and close() to write the text in the file.

15.7.2 FileReader

The FileReader class is a subclass of InputStreamReader that reads text files using the
platform's default character encoding. If you need to change the encoding, construct an
InputStreamReader chained to a FileInputStream instead.

public class FileReader extends InputStreamReader

Java I/O

373

This class has three constructors that differ only in how the file to be read is specified:

public FileReader(String fileName) throws FileNotFoundException
public FileReader(File file) throws FileNotFoundException
public FileReader(FileDescriptor fd)

Only the constructors are declared in this class. You use the standard Reader methods like
read(), ready(), and close() to read the text in the file. For example:

try {
 FileReader fr = new FileReader("36.html");
 while (true) {
 int i = fr.read();
 if (i == -1) break;
 // ...
 }
}
catch (IOexception e) { System.err.println(e); }

Example 15.3 copies text from the file named in the first command-line argument to the file
named in the second command-line argument using a FileReader and a FileWriter. This
assumes both the input and output files are written using the platform's default encoding.

Example 15.3. TextFileCopier

import java.io.*;

public class TextFileCopier {

 public static void main(String[] args) {

 if (args.length != 2) {
 System.err.println("Usage: java TextFileCopier file1 file2");
 }
 try {
 copyFile(args[0], args[1]);
 }
 catch (IOException e) {System.err.println(e);}
 }

 public static void copyFile(String file1, String file2) throws
IOException {

 File infile = new File(file1);
 File outfile = new File(file2);

 if (infile.getCanonicalPath().equals(outfile.getCanonicalPath())) {
 return;
 }

 FileReader fr = new FileReader(infile);
 FileWriter fw = new FileWriter(outfile);

 while (true) {
 int i = fr.read();
 if (i == -1) break;
 fw.write(i);
 }

Java I/O

374

 fw.close();
 fr.close();
 }
}

15.8 Buffered Readers and Writers

Input and output can be time-consuming operations. It's often quicker to read or write text in
large chunks rather than in many separate smaller pieces, even when you only process the text
in the smaller pieces. The java.io.BufferedReader and java.io.BufferedWriter classes
provide internal character buffers. Text that's written to a buffered writer is stored in the
internal buffer and only written to the underlying writer when the buffer fills up or is flushed.
Likewise, reading text from a buffered reader may cause more characters to be read than were
requested; the extra characters are stored in an internal buffer. Future reads first access
characters from the internal buffer and only access the underlying reader when the buffer is
emptied.

15.8.1 Buffering Writes for Better Performance

The java.io.BufferedWriter class is a subclass of java.io.Writer that you chain to
another Writer class to buffer characters. This allows more efficient writing of text.

public class BufferedWriter extends Writer

There are two constructors. One has a default buffer size (8192 characters); the other lets you
specify the buffer size:

public BufferedWriter(Writer out)
public BufferedWriter(Writer out, int size)

Each time you write to an unbuffered writer, there's a matching write to the underlying output
stream. Therefore, it's a good idea to wrap a BufferedWriter around each writer whose
write() operations are expensive, such as a FileWriter. For example:

BufferedWriter bw = new BufferedWriter(new FileWriter("37.html"));

BufferedWriter overrides most of its superclass's methods, including:

public void write(int c) throws IOException
public void write(char[] text,int offset, int length) throws IOException
public void write(String s, int offset, int length) throws IOException
public void flush() throws IOException
public void close() throws IOException

These methods are used exactly as they are for any writer object. The differences are purely
internal.

The one new method in this class is newLine(). This method writes a platform-dependent line
terminator string: \n on Unix, \r on the Mac, \r\n on Windows. The value of this string is
taken from the system property line.separator.

public String newLine() throws IOException

Java I/O

375

Do not use the newLine() method if you're writing network code like
an HTTP server. Instead, explicitly write the carriage return/linefeed
pair. Most network protocols specify a \r\n line separator, regardless of
host-platform conventions.

Example 15.4 is a revised version of Example 15.1 that uses a BufferedWriter to increase
efficiency and handle platform-dependent line separators.

Example 15.4. BufferedUnicodeTable

import java.io.*;

public class BufferedUnicodeTable {

 public static void main(String[] args) {

 String encoding = System.getProperty("font.encoding", "8859_1");
 OutputStream target = System.out;
 try {
 if (args.length > 0) target = new FileOutputStream(args[0]);
 }
 catch (IOException e) {
 System.err.println("Sending text to System.out");
 }
 if (args.length > 1) encoding = args[1];

 OutputStreamWriter osw = null;
 try {
 osw = new OutputStreamWriter(target, encoding);
 }
 catch (UnsupportedEncodingException e) {
 osw = new OutputStreamWriter(target);
 }

 BufferedWriter bw = new BufferedWriter(osw);
 try {

 for (int i = Character.MIN_VALUE; i < Character.MAX_VALUE; i++) {
 char c = (char) i;
 bw.write(i + ":\t" + c);
 bw.newLine();
 }
 bw.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
}

15.8.2 Buffering Reads for Better Performance

The java.io.BufferedReader class is a subclass of java.io.Reader that is chained to
another Reader class to buffer input. This allows more efficient reading of characters and
lines.

public class BufferedReader extends Reader

Java I/O

376

BufferedReader is notable for its readLine() method that allows you to read text a line at a
time. This replaces the common but deprecated readLine() method in DataInputStream.

Each time you read from an unbuffered reader, there's a matching read from the underlying
input stream. Therefore, it's a good idea to wrap a BufferedReader around each reader whose
read() operations are expensive, such as a FileReader. For example:

BufferedReader br = new BufferedReader(new FileReader("37.html"));

There are two constructors. One has a default buffer size (8192 characters); the other requires
the programmer to specify the buffer size:

public BufferedReader(Reader in, int buffer_size)
public BufferedReader(Reader in)

BufferedReader overrides most of its superclass's methods, including:

public int read() throws IOException
public int read(char[] text, int offset, int length) throws IOException
public long skip(long n) throws IOException
public boolean ready() throws IOException

In Java 2 and later, the two multicharacter read() methods try to completely fill the specified
array or subarray of text by reading repeatedly from the underlying reader. They return only
when the requested number of characters have been read, the end of the data is reached, or the
underlying reader would block. This is not the case for most readers (including buffered
readers in Java 1.1.x), which only attempt one read from the underlying data source before
returning.

BufferedReader does support marking and resetting, at least up to the length of the buffer:

public boolean markSupported()
public void mark(int readAheadLimit) throws IOException
public void reset() throws IOException

The one new method in this class is readLine():

public String readLine() throws IOException

This method returns a string that contains a line of text from a text file. \r, \n, and \r\n are
assumed to be line breaks and are not included in the returned string. This method is often
used when reading user input from System.in, since most platforms only send the user's
input to the running program after the user has typed a full line (that is, hit the Return key).
readLine() has the same problem with line ends that DataInputStream's readLine()
method has; that is, the potential to hang on a lone carriage return that ends the stream. This
problem is especially acute on networked connections, where readLine() should never be
used.

Example 15.5 uses a BufferedReader and readLine() to read all files named on the
command line, line by line, and copy them to System.out. In essence it implements the Unix
cat or the DOS type utility.

Java I/O

377

Example 15.5. The cat Program

import java.io.*;

class Cat {

 public static void main (String[] args) {

 String thisLine;

 // Loop across the arguments.
 for (int i=0; i < args.length; i++) {

 // Open the file for reading.
 try {
 BufferedReader br = new BufferedReader(new FileReader(args[i]));
 while ((thisLine = br.readLine()) != null) {
 System.out.println(thisLine);
 } // end while
 } // end try
 catch (IOException e) {System.err.println("Error: " + e);}
 } // end for
 } // end main
}

15.8.3 Line Numbering

The java.io.LineNumberReader class is a subclass of java.io.BufferedReader that
keeps track of which line you're currently reading. It has all the methods of BufferedReader,
including readLine(). It also has methods to get and set the line number. This class replaces
the deprecated java.io.LineNumberInputStream class.

public class LineNumberReader extends BufferedReader

There are two constructors in this class. Both chain this reader to an underlying reader; the
second also sets the size of the buffer.

public LineNumberReader(Reader in)
public LineNumberReader(Reader in, int size)

The LineNumberReader class overrides these six methods from its superclass,
BufferedReader:

public int read() throws IOException
public int read(char[] text, int offset, int length) throws IOException
public long skip(long n) throws IOException
public void mark(int readAheadLimit) throws IOException
public void reset() throws IOException
public String readLine() throws IOException

However, the changes are solely for the purpose of keeping track of the line number. They do
not change the semantics of these methods at all. This class also introduces two methods:

public void setLineNumber(int lineNumber)
public int getLineNumber()

Java I/O

378

The setLineNumber() method does not change the line that you're reading in the file. It just
changes the value getLineNumber() returns. For example, it would allow you to start
counting from -5 if you knew there were six lines of header data you didn't want to count.

Example 15.6 uses a LineNumberReader and readLine() to read all files named on the
command line, line by line, and copy them to System.out, prefixing each line with its line
number.

Example 15.6. The LineCat Program

import java.io.*;

public class LineCat {

 public static void main (String args[]) {

 String thisLine;

 // Loop across the arguments.
 for (int i=0; i < args.length; i++) {

 //Open the file for reading.
 try {
 LineNumberReader br = new LineNumberReader(new FileReader(args[i]));
 while ((thisLine = br.readLine()) != null) {
 System.out.println(br.getLineNumber() + ": " + thisLine);
 } // end while
 } // end try
 catch (IOException e) {System.err.println("Error: " + e);}
 } // end for
 } // end main
}

15.9 Print Writers

The java.io.PrintWriter class is a subclass of java.io.Writer that contains the familiar
print() and println() methods from System.out and other instances of PrintStream. It's
deliberately similar to the java.io.PrintStream class. In Java 1.0 PrintStream was used
for text-oriented output, but it didn't handle multiple-byte character sets particularly well (or
really at all). In Java 1.1 and later, streams are only for byte-oriented and numeric output;
writers should be used when you want to output text.

The main difference between PrintStream and PrintWriter is that PrintWriter handles
multiple-byte and other non-ISO Latin-1 character sets properly. The other, more minor
difference is that automatic flushing is performed only when println() is invoked, not every
time a newline character is seen. Sun would probably like to deprecate PrintStream and use
PrintWriter instead, but that would break too much existing code. (In fact, Sun did
deprecate the PrintStream() constructors in 1.1, but they undeprecated them in Java 2.)

Java I/O

379

There are four constructors in this class:

public PrintWriter(Writer out)
public PrintWriter(Writer out, boolean autoFlush)
public PrintWriter(OutputStream out)
public PrintWriter(OutputStream out, boolean autoFlush)

The PrintWriter can send text either to an output stream or to another writer. If autoFlush
is set to true, the PrintWriter is flushed every time println() is invoked.

The PrintWriter class implements the abstract write() method from java.io.Writer and
overrides five other methods:

public void write(int c)
public void write(char[] text)
public void write(String s)
public void write(String s, int offset, int length)
public void flush()
public void close()

These methods are used almost identically to their equivalents in any other Writer class. The
one difference is that none of them throw IOExceptions; in fact, no method in the
PrintWriter class ever throws an IOException. If the underlying output stream or writer
throws an IOException, it's caught inside PrintWriter and an error flag is set. Read the
status of this flag with the checkError() method:

public boolean checkError()

Since checkError() returns a boolean, it only tells you that an I/O error has occurred; it
does not tell you what that error was. Furthermore, once an error has occurred, checkError()
always returns true—there is no way to reset it so you can test for later errors. On the other
hand, you can indicate that an error has occurred with setError():

protected void setError()

The main advantages of the PrintWriter class are the nine-way overloaded print() method
and the 10-way overloaded println() method. Any Java object, variable, or literal can be
printed by passing it to a print() or println() method. The println() method follows its
argument with a platform-dependent line separator (such as \r\n) and then flushes the output
if autoFlush is enabled. The print() method does not. Otherwise, these methods are the
same.

public void print(boolean b)
public void print(char c)
public void print(int i)
public void print(long l)
public void print(float f)
public void print(double d)
public void print(char[] text)
public void print(String s)
public void print(Object obj)
public void println()
public void println(boolean b)
public void println(char c)

Java I/O

380

public void println(int i)
public void println(long l)
public void println(float f)
public void println(double d)
public void println(char[] c)
public void println(String s)
public void println(Object o)

You should never use println(), either the PrintWriter or the PrintStream version, in
networking code. Most network protocols like HTTP expect to see a carriage return/linefeed
pair as the line separator character. If you use println(), your network programs may run on
Windows, but they'll have problems on most other platforms. Furthermore, these problems
can be hard to diagnose, because some servers and clients are more forgiving of improper
line-ending conventions than others.

15.10 Piped Readers and Writers

Piped readers and writers do for character streams what piped input and output streams do for
byte streams: they allow two threads to communicate. Character output from one thread
becomes character input for the other thread:

public class PipedWriter extends Writer
public class PipedReader extends Reader

The PipedWriter class has two constructors. The first constructs an unconnected
PipedWriter object. The second constructs one that's connected to the PipedReader object
sink:

public PipedWriter()
public PipedWriter(PipedReader sink) throws IOException

The PipedReader class also has two constructors. Again, the first constructor creates an
unconnected PipedReader object. The second constructs one that's connected to the
PipedWriter object source:

public PipedReader()
public PipedReader(PipedWriter source) throws IOException

Piped readers and writers are normally created in pairs. The piped writer becomes the
underlying source for the piped reader. This is one of the few cases where a reader does not
have an underlying input stream. For example:

PipedWriter pw = new PipedWriter();
PipedReader pr = new PipedReader(pw);

This simple example is a little deceptive, because these lines of code will normally be in
different methods and perhaps even different classes. Some mechanism must be established to
pass a reference to the PipedWriter into the thread that handles the PipedReader, or you can
create them in the same thread, then pass a reference to the connected stream into a separate
thread.

Alternately, you can start with a PipedReader and then wrap it with a PipedWriter:

Java I/O

381

PipedReader pr = new PipedReader();
PipedWriter pw = new PipedWriter(pr);

Or you can create them both unconnected, then use one or the other's connect() method to
link them:

public void connect(PipedReader sink) throws IOException
public void connect(PipedWriter source) throws IOException

PipedWriter's connect() method takes as an argument the PipedReader to connect to.
PipedReader's connect() argument takes as an argument the PipedWriter to connect to:

PipedReader pr = new PipedReader();
PipedWriter pw = new PipedWriter();
pr.connect(pw);

or:

PipedReader pr = new PipedReader();
PipedWriter pw = new PipedWriter();
pw.connect(pr);

Neither a PipedWriter nor a PipedReader may be connected to more than one reader or
writer. Attempts to do so throw IOExceptions. Furthermore, once connected, a
PipedWriter/PipedReader pair may not be disconnected. Otherwise, these classes have the
usual read(), write(), flush(), close(), and ready() methods like all reader and writer
classes. These are the remaining declared methods in PipedWriter:

public void write(char[] text, int offset, int length) throws IOException
public void flush() throws IOException
public void close() throws IOException

When characters are written on the PipedWriter, that text becomes available as input to be
read by the connected PipedReader. If a PipedReader tries to read characters, but its
connected PipedWriter hasn't yet provided it with any, the PipedReader blocks.

These are the remaining declared methods in PipedReader:

public int read(char[] text, int offset, int length) throws IOException
public void close() throws IOException

Closing either a PipedReader or a PipedWriter also closes the reader or writer it's connected
to.

15.11 Filtered Readers and Writers

The java.io.FilterReader and java.io.FilterWriter classes are abstract classes that
read characters and filter them in some way before passing the text along. You can imagine a
FilterReader that converts all characters to uppercase.

public abstract class FilterReader extends Reader
public abstract class FilterWriter extends Writer

Java I/O

382

Although FilterReader and FilterWriter are modeled after
java.io.FilterInputStream and java.io.FilterOutputStream, they are much less
commonly used than those classes. There are no concrete subclasses of FilterWriter in the
java packages and only one concrete subclass of FilterReader (PushbackReader discussed
later). These classes exist so you can write your own filters.

15.11.1 The FilterReader Class

FilterReader has a single constructor, which is protected:

protected FilterReader(Reader in)

The in argument is the Reader to which this filter is chained. This reference is stored in a
protected field called in from which text for this filter is read and is null after the filter has
been closed.

protected Reader in

Since FilterReader is an abstract class, only subclasses may be instantiated. Therefore, it
doesn't matter that the constructor is protected, since it may only be invoked from subclass
constructors.

FilterReader provides the usual collection of read(), skip(), ready(),
markSupported(), mark(), reset(), and close() methods:

public int read() throws IOException
public int read(char[] text, int offset, int length) throws IOException
public long skip(long n) throws IOException
public boolean ready() throws IOException
public boolean markSupported()
public void mark(int readAheadLimit) throws IOException
public void reset() throws IOException
public void close() throws IOException

These all simply invoke the equivalent method in the in field with the same arguments. For
example:

public long skip(long n) throws IOException {
 return in.skip(n);
}

Java source code is written in pure ASCII with Unicode characters written as a \u followed
by the four-hexadecimal-digit equivalent of the Unicode character. As an example, I'll write a
FilterReader subclass that reads a \u-escaped file and converts it to pure Unicode. This is a
much trickier problem than it first appears. First, there's not a fixed ratio between the number
of bytes and number of characters. Most of the time one byte is one character, but some of the
time five bytes are one character. The second difficulty is ensuring that \u09EF is recognized
as Unicode escape, while \\u09EF is not. In other words, only a u preceded by an odd number
of slashes is a valid Unicode escape. A u preceded by an even number of slashes should be
passed along unchanged. Example 15.7 shows a solution.

Java I/O

383

Example 15.7. SourceReader

package com.macfaq.io;

import java.io.*;

public class SourceReader extends FilterReader {

 public SourceReader(InputStream in) {
 this(new InputStreamReader(in));
 }

 public SourceReader(Reader in) {
 super(new BufferedReader(in));
 }

 private int backslashParity = 1;

 public int read() throws IOException {

 int c = in.read();
 if (c != '\\') return c;

 backslashParity *= -1;
 // If there are an even number of backslashes,
 // this is not a Unicode escape.
 if (backslashParity == 1) return c;

 // Mark is supported because I used
 // a BufferedReader in the constructor.
 in.mark(1);
 int next = in.read();
 if (next != 'u') { // This is not a Unicode escape
 in.reset();
 return c;
 }
 // Read next 4 hex digits.
 // If the next four chars do not make a valid hex digit
 // this is not a valid .java file and you need a compiler error.
 StringBuffer sb = new StringBuffer();
 sb.append((char) in.read());
 sb.append((char) in.read());
 sb.append((char) in.read());
 sb.append((char) in.read());
 String hex = sb.toString();
 try {
 return Integer.valueOf(hex, 16).intValue();
 }
 catch (NumberFormatException e) {
 throw new IOException("Bad Unicode escape");
 }
 }

Java I/O

384

 public int read(char[] text, int offset, int length) throws IOException {

 int numRead = 0;
 for (int i = offset; i < offset+length; i++) {
 int temp = this.read();
 if (temp == -1) break;
 text[i] = (char) temp;
 numRead++;
 }
 return numRead;
 }

 public long skip(long n) throws IOException {

 char[] c = new char[(int) n];
 int numSkipped = this.read(c);
 return numSkipped;
 }
}

15.11.2 The FilterWriter Class

The FilterWriter class has a single constructor and no other unique methods:

protected FilterWriter(Writer out)

The out argument is the writer to which this filter is chained. This reference is stored in a
protected field called out, to which text sent through this filter is written.

protected Writer out

Since FilterWriter is an abstract class, only subclasses may be instantiated. Therefore, it
doesn't matter that the constructor is protected, since it may only be invoked from subclass
constructors anyway. FilterWriter provides the usual collection of write(), close(), and
flush() methods:

public void write(int c) throws IOException
public void write(char[] text, int offset, int length) throws IOException
public void write(String s, int offset, int length) throws IOException
public void flush() throws IOException
public void close() throws IOException

These all simply invoke the equivalent method in the out field with the same arguments. For
example:

public void close() throws IOException {
 out.close();
}

In general, each subclass will have to override at least the three write() methods to perform
the filtering.

There are no subclasses of FilterWriter in the core API. Example 15.8, SourceWriter, is
an example of a FilterWriter that converts Unicode text to \u-escaped ASCII. The big

Java I/O

385

question is what to do if the input text contains an unescaped backslash. The easiest and most
robust solution is to replace it with \u005C, the Unicode escape for the backslash itself.

Example 15.8. SourceWriter

package com.macfaq.io;

import java.io.*;

public class SourceWriter extends FilterWriter {

 public SourceWriter(Writer out) {
 super(out);
 }

 public void write(char[] text, int offset, int length) throws IOException
{

 for (int i = offset; i < offset+length; i++) {
 this.write(text[i]);
 }
 }

 public void write(String s, int offset, int length) throws IOException {

 for (int i = offset; i < offset+length; i++) {
 this.write(s.charAt(i));
 }
 }

 public void write(int c) throws IOException {

 // We have to escape the backslashes below.
 if (c == '\\') out.write("\\u005C");
 else if (c < 128) out.write(c);
 else {
 String s = Integer.toHexString(c);
 // Pad with leading zeroes if necessary.
 if (c < 256) s = "00" + s;
 else if (c < 4096) s = "0" + s;
 out.write("\\u");
 out.write(s);
 }
 }
}

15.11.3 PushbackReader

The PushbackReader class is a filter that provides a pushback buffer around a given reader.
This allows a program to "unread" the last character it read. It's similar to
PushbackInputStream , discussed in Chapter 6, but instead of pushing back bytes, it pushes
back chars. Both PushbackReader and BufferedReader use buffers, but only
PushbackReader allows unreading and only BufferedReader allows marking and resetting.
The difference is that pushing back characters allows you to unread characters after the fact.
Marking and resetting requires you to mark in advance the location you want to reset to.

Java I/O

386

PushbackReader has two constructors, both of which take an underlying reader as an
argument. The first uses a one-character pushback buffer; the second sets the pushback buffer
to a specified size:

public PushbackReader(Reader in)
public PushbackReader(Reader in, int size)

The PushbackReader class has the usual collection of read() methods. These methods first
try to read the requested characters from the pushback buffer and only read from the
underlying reader if the pushback buffer is empty or has too few characters.

public int read() throws IOException
public int read(char[] text, int offset, int length) throws IOException

PushbackReader also has ready(), markSupported(), and close() methods:

public boolean ready() throws IOException
public boolean markSupported()
public void close() throws IOException

The ready() and close() methods merely invoke the ready() and close() methods of the
underlying reader. The markSupported() method returns false; pushback readers do not
support marking and resetting.

Three unread() methods push back specific characters. The first pushes back the character c;
the second pushes back the text array; the third pushes back the sub-array of text beginning
at offset and continuing for length chars.

public void unread(int c) throws IOException
public void unread(char[] text) throws IOException
public void unread(char[] text, int offset, int length) throws IOException

The unread characters aren't necessarily the same as the characters that were read. It would be
nicer if the PushbackReader itself kept track of which characters had been read, and all you
had to tell it was how many characters to unread. However, this approach does give the client
programmer the option of inserting tags or other data as the stream is read. The number of
characters you can push back onto the stream is limited by the size of the buffer set in the
constructor. Attempts to unread more characters than can fit in the buffer cause an
IOException to be thrown. An IOException is also thrown if you try to unread a closed
reader; once a PushbackReader has been closed, it can be neither read nor unread.

15.12 File Viewer Finis

As a final example of working with readers and writers, we return for the last time to the
FileDumper application last seen in Chapter 13. At that point, we had a GUI program that
allowed any file to be opened and interpreted in one of several formats, including ASCII,
decimal, hexadecimal, short, regular, and long integers in both big- and little-endian formats,
floating point, and double-precision floating point.

In this section we expand the program to read many different text formats besides ASCII. The
user interface must be adjusted to allow a binary choice of whether the file contains text or

Java I/O

387

numeric data. If they choose text, you'll need to use a reader to read the file instead of an input
stream. You'll also need to provide some means for the user to pick the encoding they want
text read in (e.g., MacRoman, ISO Latin-1, Unicode, etc). Since there are several dozen text
encodings, the best choice is a list box. All of this can be integrated into the mode panel.
Figure 15.1 shows the revised ModePanel2 class. The code is given in Example 15.9. Two
new public methods are added, isText() and getEncoding(). The rest of the changes are
fairly minor ones to set up the GUI.

Figure 15.1. A mode panel with a list box for encodings

Example 15.9. ModePanel2

import java.awt.*;
import javax.swing.*;

public class ModePanel2 extends JPanel {

 JCheckBox bigEndian = new JCheckBox("Big Endian", true);
 JCheckBox deflated = new JCheckBox("Deflated", false);
 JCheckBox gzipped = new JCheckBox("GZipped", false);

 ButtonGroup dataTypes = new ButtonGroup();
 JRadioButton asciiRadio = new JRadioButton("Text");
 JRadioButton decimalRadio = new JRadioButton("Decimal");
 JRadioButton hexRadio = new JRadioButton("Hexadecimal");
 JRadioButton shortRadio = new JRadioButton("Short");
 JRadioButton intRadio = new JRadioButton("Int");
 JRadioButton longRadio = new JRadioButton("Long");
 JRadioButton floatRadio = new JRadioButton("Float");
 JRadioButton doubleRadio = new JRadioButton("Double");

 JTextField password = new JTextField();

 final static String[] encodings = {"8859_1", "8859_2", "8859_3",
"8859_4",
 "8859_5", "8859_6", "8859_7", "8859_8", "8859_9", "Big5", "CNS11643",
 "Cp037", "Cp273", "Cp277", "Cp278", "Cp280", "Cp284", "Cp285", "Cp297",

Java I/O

388

 "Cp420", "Cp424", "Cp437", "Cp500", "Cp737", "Cp775", "Cp850", "Cp852",
 "Cp855", "Cp856", "Cp857", "Cp860", "Cp861", "Cp862", "Cp863", "Cp864",
 "Cp865", "Cp866", "Cp868", "Cp869", "Cp870", "Cp871", "Cp874", "Cp875",
 "Cp918", "Cp921", "Cp922", "Cp1006", "Cp1025", "Cp1026", "Cp1046",
 "Cp1097", "Cp1098", "Cp1112", "Cp1122", "Cp1123", "Cp1124", "Cp1250",
 "Cp1251", "Cp1252", "Cp1253", "Cp1254", "Cp1255", "Cp1256", "Cp1257",
 "Cp1258", "EUCJIS", "GB2312", "JIS", "JIS0208", "KSC5601", "MacArabic",
 "MacCentralEurope", "MacCroatian", "MacCyrillic", "MacDingbat",
"MacGreek",
 "MacHebrew", "MacIceland", "MacRoman", "MacRomania", "MacSymbol",
"MacThai",
 "MacTurkish", "MacUkraine", "SJIS", "UTF8", "Unicode" };

 JList theEncoding = new JList(encodings);

 public ModePanel2() {

 this.setLayout(new GridLayout(1, 2));

 JPanel left = new JPanel();
 JScrollPane right = new JScrollPane(theEncoding);
 left.setLayout(new GridLayout(13, 1));
 left.add(bigEndian);
 left.add(deflated);
 left.add(gzipped);

 left.add(asciiRadio);
 asciiRadio.setSelected(true);
 left.add(decimalRadio);
 left.add(hexRadio);
 left.add(shortRadio);
 left.add(intRadio);
 left.add(longRadio);
 left.add(floatRadio);
 left.add(doubleRadio);

 dataTypes.add(asciiRadio);
 dataTypes.add(decimalRadio);
 dataTypes.add(hexRadio);
 dataTypes.add(shortRadio);
 dataTypes.add(intRadio);
 dataTypes.add(longRadio);
 dataTypes.add(floatRadio);
 dataTypes.add(doubleRadio);

 left.add(password);
 this.add(left);
 this.add(right);
 }

 public boolean isBigEndian() {
 return bigEndian.isSelected();
 }

 public boolean isDeflated() {
 return deflated.isSelected();
 }

 public boolean isGZipped() {
 return gzipped.isSelected();
 }

Java I/O

389

 public boolean isText() {
 if (this.getMode() == FileDumper6.ASC) return true;
 return false;
 }

 public String getEncoding() {
 return (String) theEncoding.getSelectedValue();
 }

 public int getMode() {

 if (asciiRadio.isSelected()) return FileDumper6.ASC;
 else if (decimalRadio.isSelected()) return FileDumper6.DEC;
 else if (hexRadio.isSelected()) return FileDumper6.HEX;
 else if (shortRadio.isSelected()) return FileDumper6.SHORT;
 else if (intRadio.isSelected()) return FileDumper6.INT;
 else if (longRadio.isSelected()) return FileDumper6.LONG;
 else if (floatRadio.isSelected()) return FileDumper6.FLOAT;
 else if (doubleRadio.isSelected()) return FileDumper6.DOUBLE;
 else return FileDumper6.ASC;
 }

 public String getPassword() {
 return password.getText();
 }

 // A simple test method.
 public static void main(String[] args) {

 JFrame jf = new JFrame("Test Mode Panel");
 ModePanel2 mp2 = new ModePanel2();
 jf.getContentPane().add(mp2);
 jf.pack();
 jf.show();
 System.out.println("done");
 }
}

Next we need to expand the FileDumper class to read and write text in a variety of encodings.
This is straightforward and only requires one new overloaded dump() method, as shown in
Example 15.10.

Example 15.10. FileDumper6

import java.io.*;
import java.util.zip.*;
import java.security.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import com.macfaq.io.*;

public class FileDumper6 {

 public static final int ASC = 0;
 public static final int DEC = 1;
 public static final int HEX = 2;
 public static final int SHORT = 3;
 public static final int INT = 4;
 public static final int LONG = 5;

Java I/O

390

 public static final int FLOAT = 6;
 public static final int DOUBLE = 7;

 public static void dump(InputStream in, OutputStream out, int mode,
 boolean bigEndian, boolean deflated, boolean gzipped, String password)
 throws IOException {

 // The reference variable in may point to several different objects
 // within the space of the next few lines.

 if (password != null && !password.equals("")) {
 // Create a key.
 try {
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);

 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.DECRYPT_MODE, desKey);

 in = new CipherInputStream(in, des);
 }
 catch (GeneralSecurityException e) {
 throw new IOException(e.getMessage());
 }
 }

 if (deflated) {
 in = new InflaterInputStream(in);
 }
 else if (gzipped) {
 in = new GZIPInputStream(in);
 }

 // Could really pass to FileDumper3 at this point.
 if (bigEndian) {
 DataInputStream din = new DataInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new IntFilter(din);
 break;
 case SHORT:
 in = new ShortFilter(din);
 break;
 case LONG:
 in = new LongFilter(din);
 break;
 case DOUBLE:
 in = new DoubleFilter(din);
 break;
 case FLOAT:
 in = new FloatFilter(din);
 break;

Java I/O

391

 default:
 }
 }
 else {
 LittleEndianInputStream lin = new LittleEndianInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new LEIntFilter(lin);
 break;
 case SHORT:
 in = new LEShortFilter(lin);
 break;
 case LONG:
 in = new LELongFilter(lin);
 break;
 case DOUBLE:
 in = new LEDoubleFilter(lin);
 break;
 case FLOAT:
 in = new LEFloatFilter(lin);
 break;
 default:
 }
 }
 StreamCopier.copy(in, out);
 in.close();
 }

 public static void dump(InputStream in, OutputStream out,
 String inputEncoding, String outputEncoding, boolean deflated,
 boolean gzipped, String password) throws IOException {

 if (inputEncoding == null || inputEncoding.equals("")) {
 dump(in, out, ASC, true, deflated, gzipped, password);
 return;
 }

 if (outputEncoding == null || outputEncoding.equals("")) {
 outputEncoding = System.getProperty("file.encoding", "8859_1");
 }

 // Note that the reference variable in
 // may point to several different objects
 // within the space of the next few lines.
 if (password != null && !password.equals("")) {
 try {
 // Create a key.
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);

 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.DECRYPT_MODE, desKey);

Java I/O

392

 in = new CipherInputStream(in, des);
 }
 catch (GeneralSecurityException e) {
 throw new IOException(e.getMessage());
 }
 }

 if (deflated) {
 in = new InflaterInputStream(in);
 }
 else if (gzipped) {
 in = new GZIPInputStream(in);
 }

 InputStreamReader isr = new InputStreamReader(in, inputEncoding);
 OutputStreamWriter osw = new OutputStreamWriter(out, outputEncoding);

 int c;
 while ((c = isr.read()) != -1) {
 osw.write(c);
 }
 isr.close();
 osw.close();
 }
}

There's one new method in this class. An overloaded variant of dump() can be invoked to
dump a text file in a particular encoding. This method accepts an input encoding string and an
output encoding string as arguments. These are used to form readers and writers that interpret
the bytes read from the file and written onto the output stream. Output encoding is optional. If
it's omitted, the platform's default encoding is used.

The FileViewer2 class is straightforward. Aside from using a ModePanel2 instead of a
ModePanel, the only change it really requires is in the actionPerformed() method. Here you
have to test whether the format is text or numeric and select the dump() method accordingly.
Example 15.11 illustrates.

Example 15.11. FileViewer2

import javax.swing.*;
import java.io.*;
import com.macfaq.io.*;
import com.macfaq.swing.*;
import java.awt.*;
import java.awt.event.*;

public class FileViewer2 extends JFrame
 implements WindowListener, ActionListener {

 JFileChooser fc = new JFileChooser();
 JStreamedTextArea theView = new JStreamedTextArea();
 ModePanel2 mp = new ModePanel2();

 public FileViewer2() {
 super("FileViewer");
 }

Java I/O

393

public void init() {

 this.addWindowListener(this);

 fc.setApproveButtonText("View File");
 fc.setApproveButtonMnemonic('V');
 fc.addActionListener(this);

 this.getContentPane().add("Center", fc);
 JScrollPane sp = new JScrollPane(theView);
 this.getContentPane().add("South", sp);
 this.getContentPane().add("West", mp);
 this.pack();

 // Center on display.
 Dimension display = getToolkit().getScreenSize();
 Dimension bounds = this.getSize();

 int x = (display.width - bounds.width)/2;
 int y = (display.height - bounds.height)/2;
 if (x < 0) x = 10;
 if (y < 0) y = 15;
 this.setLocation(x, y);
 }

 public void actionPerformed(ActionEvent e) {

 if (e.getActionCommand().equals(JFileChooser.APPROVE_SELECTION)) {
 File f = fc.getSelectedFile();
 if (f != null) {
 theView.setText("");
 try {
 InputStream in = new FileInputStream(f);
 OutputStream out = theView.getOutputStream();
 if (!mp.isText()) {
 FileDumper6.dump(in, out, mp.getMode(), mp.isBigEndian(),
 mp.isDeflated(), mp.isGZipped(), mp.getPassword());
 }
 else {
 FileDumper6.dump(in, out, mp.getEncoding(), null,
 mp.isDeflated(), mp.isGZipped(), mp.getPassword());
 }
 }
 catch (IOException ex) {}
 }
 }
 else if (e.getActionCommand().equals(JFileChooser.CANCEL_SELECTION)) {
 this.closeAndQuit();
 }
 }

 public void windowClosing(WindowEvent e) {
 this.closeAndQuit();
 }

 // Do-nothing methods for WindowListener
 public void windowOpened(WindowEvent e) {}

 public void windowClosed(WindowEvent e) {}
 public void windowIconified(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}

Java I/O

394

 public void windowActivated(WindowEvent e) {}
 public void windowDeactivated(WindowEvent e) {}

 private void closeAndQuit() {

 this.setVisible(false);
 this.dispose();
 System.exit(0);

 }
 public static void main(String[] args) {

 FileViewer2 fv = new FileViewer2();
 fv.init();
 fv.show();
 }
}

Figure 15.2 shows the completed FileViewer application displaying a file full of Unicode
text. Unfortunately, the JTextArea component doesn't yet do a great job of handling
international characters so there are a lot of question marks serving as substitution characters.

Figure 15.2. The final FileViewer application

This completes this program, at least as far as it will be taken in this book. You could
certainly extend it further. For example, the program can be quite slow as it reads large files,
so both optimization and a progress bar are called for. Still larger files may cause out-of-
memory errors, so some sort of paging scheme is suggested. And it would be a nice touch to
add support for various image formats and perhaps even formatted text like HTML files.
However, this would take us too far afield from the topic of this book, so I leave further
improvements as exercises for the motivated reader.

Java I/O

395

Chapter 16. Formatted I/O with java.text
One of the most obvious differences between Java and C is that Java has no equivalent of
printf() or scanf(). Part of the reason is that Java doesn't support the variable length
argument lists on which these functions depend. However, the real reason Java doesn't have
equivalents to C's formatted I/O routines is a difference in philosophy. C's printf() and the
like combine number formatting with I/O in an inflexible manner. Java separates number
formatting and I/O into separate packages and by so doing produces a much more general and
powerful system.

More than one programmer has attempted to recreate printf() and scanf() in Java. This
task is difficult, since those functions are designed around variable length argument lists,
which Java does not support. However, overloading the + signs for string concatenation is
easily as effective, probably more so, since it doesn't share the problems of mismatched
argument lists. For example, which is clearer to you? This:

printf("%s worked %d hours at $%d per/hour for a total of %d dollars.\n",
 hours, salary, hours*salary);

or this:

System.out.println(employee + " worked " + hours + " hours at $" + salary
 + "per/hour for a total of $%d.");

I'd argue that the second is clearer. Among other advantages, it avoids problems with
mismatched format strings and argument lists. (Did you notice that an argument is missing
from the previous printf() statement?) On the flip side, the format string approach is a little
less prone to missing spaces. (Did you notice that the println() statement would print pay
scales as "$5.35per/hour" rather than "$5.35 per/hour"?) However, this is only a cosmetic
problem and is easily fixed. A mismatched argument list in a printf() or scanf() statement
may crash the computer, especially if pointers are involved.

The real advantage of the printf()/scanf() family of functions is not the format string. It's
number formatting:

printf(
"%s worked %4.1d hours at $%6.2d per/hour for a total of %8.2d dollars.\n",
 employee, hours, salary, hours*salary);

Java 1.0 did not provide classes for specifying the width, precision, and alignment of numeric
strings. Java 1.1 and later make these available as subclasses of java.text.NumberFormat.
As well as handling the traditional formatting achieved by languages like C and Fortran,
NumberFormat also internationalizes numbers with different character sets, thousands
separators, decimal points, and digit characters.

16.1 The Old Way

Traditional computer languages have combined input of text with the parsing of numeric
strings. For example, to read a decimal number into the variable x, programmers are
accustomed to writing C code like this:

Java I/O

396

scanf("%d", &x);

In C++, that line would become:

cin >> x;

In Pascal:

READLN (X);

In Fortran:

READ 2, X
 2 FORMAT (F5.1)

Similarly, formatting numeric strings for output tends to be mixed up with writing the string
to the screen. For instance, consider the simple task of writing the double variable salary
with two decimal digits of precision. In C, you'd write this:

printf("%.2d", salary);

In C++:

cout.precision(2);
cout << salary;

In Fortran:

PRINT 20, SALARY
 20 FORMAT(F10.2)

This conflation of basic input and output with number formatting is so ingrained in most
programmers today that we rarely stop to think whether it actually makes sense. What,
precisely, does the formatting of numbers as text strings have to do with input and output? It's
certainly true that you often need to format numbers to print numbers on the console, but you
also need to format numbers to write data in files, to include numbers in text fields and text
areas, and to send data across the network. What makes the console so special that it has to
have a group of number-formatting routines all to itself? In C, the printf() and scanf()
functions are supplemented by fprintf() and fscanf() for formatted I/O to files and by
sprintf() and sscanf() for formatted I/O to strings. Perhaps the conflation of I/O with
number formatting is really a relic of a time when command-line interfaces were a lot more
important than they are today, and it's simply that nobody's thought to challenge this
assumption, at least until Java. When you think about it, there's no fundamental connection
between converting a binary number like 11010100110110100100011101011011 to a text
string like " -7.500E+12" and writing that string onto an output stream. These are two
different operations, and in Java they're handled by separate classes. Input and output are
handled by all the streams and readers and writers I've been discussing, while number
formatting is handled by a few NumberFormat classes from the java.text package I'll
introduce in this chapter.

In Java you don't just say, "Print the double variable salary 12 places wide with three
decimal places of precision." Instead, you say "First, make a string variable from the double

Java I/O

397

variable salary 12 places wide with three decimal places of precision. Then print that string."
Similarly, when doing input, you first read the string, then convert it to a number. You don't
read the number directly. This really isn't very different from the programs you're used to
writing in other languages; it adds a step, but the benefit is enhanced flexibility, particularly in
regard to internationalization. It's easy to add new NumberFormat classes and locales that
handle different kinds of formatting—much easier than reinventing all this from scratch,
because the formatting is too tightly coupled to I/O, as it is in traditional languages and APIs.

In this chapter, we'll explore how to use the java.text.NumberFormat and
java.text.DecimalFormat classes to format integers and floating point numbers. You'll also
learn how the java.util.Locale class lets you select number formats matched to different
languages, cultures, and countries. And you'll see how to write your own subclasses of
NumberFormat that provide alternative formats such as exponential notation. There's more in
the java.text package I won't cover. In particular, java.text includes classes for
formatting dates, and sorting and collating text. These classes can also be customized to
different locales. The date formats in particular work very similarly to the number formats
discussed in this chapter and should not be hard to pick up from Sun's class library
documentation once you understand NumberFormat.

16.2 Choosing a Locale

Number formats are dependent on the locale ; that is, the country/language/ culture group of
the local operating system. The number formats most English-speaking Americans are
accustomed to use are a period as a decimal point, a comma to separate every three orders of
magnitude, a dollar sign for currency, and numbers in base 10 that read from left to right. In
this locale, Bill Gates's personal fortune,[1] in Microsoft stock alone as of January 12, 1998, is
represented as $74,741,086,650.

However, in Egypt this number would be written as:

The primary difference here is that Egyptians use a different set of glyphs for the digits
through 9. For example, in Egypt zero is a and the glyph means 6. There are other
differences in how Arabic and English treat numbers, and these vary from country to country.
In most of the rest of North Africa, this number would be $74,741,086,650 as it is in the U.S.
These are just two different scripts; there are several dozen more to go!

Java encapsulates many of the common differences between language/script/culture/country
combinations in a loosely defined group called a locale. There's really no better word for it.
You can't just rely on language or country or culture alone. Many languages are shared
between countries (English is only the most obvious example) but with subtle differences
between how they are used in different places: Do commas and periods belong inside or
outside of quotation marks? Is it color or colour? Many countries have no clearly dominant
tongue: Is Canada an English- or a French-speaking nation? Switzerland has four official

1 See http://www.webho.com/WealthClock for up-to-date figures. It's a little depressing that between the first draft of this chapter and the copyedit
phase this figure more than doubled. If, like me, you have a little trouble visualizing what this all means, you might want to check out the Bill Gates
Wealth Index, by Brad Templeton, at http://www.templetons.com/brad/billg.html or the Bill Gates Net Worth Page at
http://www.quuxuum.org/~evan/bgnw.html.

Java I/O

398

languages.[2] Almost all countries have significant minority populations with their own
languages. The New York City public school system has to hire teachers fluent in over 100
different languages.

Java isn't quite ready for use in New York City public schools. Sun's JDK 1.1 and most
derivatives, such as Apple's Macintosh Runtime for Java 2.0, only support the 50 locales
listed in Table 16.1. The first three columns are self-explanatory. The fourth is the ISO 639
two-letter language code, and the fifth is the ISO 3166 two- letter country code. These are
used when constructing new Locale objects. If a locale doesn't have a country code, you can
construct it with the language code. The last column is the mnemonic constant (public final
static variable) that refers to a Locale object for a given locale. Not all locales supported are
associated with such constants. Microsoft's Java virtual machine adds about 50 locale
constants to those in Table 16.1 and includes support for several dozen additional locales.

Table 16.1. The Locales Supported in Java 1.1

Language Script Country Language
Code

Country
Code Constant

Albanian Roman Albania sq
Arabic Arabic Egypt ar
Byelorussian Cyrillic Belarus be
Bulgarian Cyrillic Bulgaria bg
Catalan Roman Spain ca

Chinese Chinese China zh
Locale.SIMPLIFIED_CHINESE
Locale.CHINA
Locale.PRC

Chinese Chinese Taiwan zh TW Locale.TRADITIONAL_CHINESE
Locale.TAIWAN

Croatian Roman Croatia hr

Czech Roman Czech
Republic cs

Danish Roman Denmark da
Dutch Roman Netherlands nl
Dutch Roman Belgium nl BE
English Roman Canada en CA Locale.CANADA

English Roman United
Kingdom en GB Locale.UK

English Roman Ireland en IE
English Roman United States en Locale.US

Estonian Roman Estonia et
Finnish Roman Finland fi
French Roman France fr Locale.FRANCE

French Roman Belgium fr BE
French Roman Canada fr CA Locale.CANADA_FRENCH

French Roman Switzerland fr CH
German Roman Germany de Locale.GERMANY

German Roman Austria de AT
German Roman Switzerland de CH
Greek Greek Greece el

2 Three of the four are German, French, and Italian. Can you identify the fourth? I'll give you a hint: it's not English.

Java I/O

399

Hebrew Hebrew Israel iw
Hungarian Roman Hungary hu
Icelandic Roman Iceland is
Italian Roman Italy it Locale.ITALY

Italian Roman Switzerland it CH
Japanese Japanese Japan ja Locale.JAPAN

Korean Korean Korea ko Locale.KOREA

Latvian Roman Latvia lv
Lithuanian Roman Lithuania lt
Macedonian Cyrillic Macedonia mk
Norwegian
(Bokmål) Roman Norway no

Norwegian
(Nynorsk) Roman Norway no NO

Polish Roman Poland pl
Portuguese Roman Portugal pt
Romanian Roman Romania ro
Russian Cyrillic Russia ru
Serbian Cyrillic Serbia sr
Serbian Roman Serbia sh
Slovak Roman Slovakia sk
Slovene Roman Slovenia sl
Spanish - Modern
Sort Roman Spain es

Swedish Roman Sweden sv
Turkish Roman Turkey tr
Ukrainian Cyrillic Ukraine uk

In addition to the constants shown in Table 16.1, there are seven constants that refer only to a
language, not to a specific country or region:

Locale.ENGLISH
Locale.FRENCH
Locale.GERMAN
Locale.ITALIAN
Locale.JAPANESE
Locale.KOREAN
Locale.CHINESE

If there isn't a mnemonic constant for the locale you need, you can create your own using the
constructors in java.util.Locale:

public Locale(String languageCode, String countryCode)
public Locale(String languageCode, String countryCode, String variantCode)

The language and country codes are the two-letter codes given in Table 16.1. If no two-letter
country code is listed for the locale in Table 16.1, just pass in the empty string instead. For
example:

Locale turkey = new Locale("tr", "");
Locale swissItalian = new Locale("it", "CH");

Java I/O

400

The variant is for vendor-specific extensions and is rarely used. The only encodings in Table
16.1 that list variants are the two Norwegian encodings, Norwegian (Bokmål) and Norwegian
(Nynorsk). The Nynorsk encoding has a variant code of "NY". It is permissible to provide
Java more information than it needs. If Java cannot find the variant locale you request, it
provides a locale that only matches the language and country. If it cannot find a locale that
matches the language and the country, it will settle for one that matches the language.

16.3 Number Formats

To print a formatted number in Java, perform these two steps:

1. Format the number as a string.
2. Print the string.

Simple, right? Of course, this is a little like the old recipe for rabbit stew:

1. Catch a rabbit.
2. Boil rabbit in pot with vegetables and spices.

Obviously, step 1 is the tricky part. Fortunately, formatting numbers as strings is somewhat
easier than catching a rabbit. The key class that formats numbers as strings is
java.text.NumberFormat. This is an abstract subclass of java.text.Format. Concrete
subclasses such as java.text.DecimalFormat implement formatting policies for particular
kinds of numbers.

public abstract class NumberFormat extends Format implements Cloneable

The static NumberFormat.getAvailableLocales() method returns a list of all locales
installed that provide number formats. (There may be a few locales installed that only provide
date or text formats, not number formats.)

public static Locale[] getAvailableLocales()

You can request a NumberFormat object for the default locale of the host computer or for one
of the specified locales in Table 16.1 using the static NumberFormat.getInstance() method.
For example:

NumberFormat myFormat = NumberFormat.getInstance();
NumberFormat canadaFormat = NumberFormat.getInstance(Locale.CANADA);
Locale turkey = new Locale("tr", "");
NumberFormat turkishFormat = NumberFormat.getInstance(turkey);
Locale swissItalian = new Locale("it", "CH");
NumberFormat swissItalianFormat = NumberFormat.getInstance(swissItalian);

The number format returned by NumberFormat.getInstance() should do a reasonable job
of formatting most numbers. However, there's at least a theoretical possibility that the
instance returned will format numbers as currencies or percentages. Therefore, it wouldn't
hurt to use NumberFormat.getNumberInstance() instead:

public static final NumberFormat getNumberInstance()
public static NumberFormat getNumberInstance(Locale inLocale)

Java I/O

401

For example:

NumberFormat myFormat = NumberFormat.getNumberInstance();
NumberFormat canadaFormat = NumberFormat.getNumberInstance(Locale.CANADA);

16.3.1 Formatting Numbers

Once you've got a NumberFormat object, you can convert integers and floating point numbers
into formatted strings using one of NumberFormat's five overloaded format methods:

public final String format(long number)
public final String format(double number)
public abstract StringBuffer format(long number, StringBuffer toAppendTo,
 FieldPosition pos)
public abstract StringBuffer format(double number, StringBuffer toAppendTo,
 FieldPosition pos)
public final StringBuffer format(Object number, StringBuffer toAppendTo,
 FieldPosition pos)

These methods all read the number and return a string or a modified string buffer based on
that number using the number format's default formatting rules. These rules generally specify:

• Maximum and minimum integer width
• Maximum and minimum fraction width (precision, number of decimal places)
• Whether or not digits are grouped (e.g., 2,109,356 versus 2109356)

For any given number format, these rules can be quite complex. For instance, they may or
may not take into account different digit sets, exponential or scientific notation, Roman
numerals, or more. By creating new subclasses of NumberFormat, you can specify arbitrarily
complex rules for converting binary numbers into strings. Regardless of exactly how a
number format formats numbers, they are all manipulated the same way.

The last three format() methods append the string to the specified StringBuffer
toAppendTo. They then return that modified string buffer. They use a
java.text.FieldPosition object to provide information to the client programmer about
where the different parts of the number fall. This will be discussed later. The final format()
method is used to format instances of the numeric type wrapper classes; that is,
java.lang.Double, java.lang.Float, java.lang.Long, java.lang.Integer,
java.lang.Short, java.lang.Character, and java.lang.Byte. It merely determines the
type of the argument and passes either the double or long value of the argument to the
format() method. Passing any other kind of object to this method will cause an
IllegalArgumentException.

Example 16.1 is about the simplest use of NumberFormat imaginable. It uses the default
number format for the default locale to print multiples of . For comparison, both the
formatted and unformatted numbers are printed.

Java I/O

402

Example 16.1. Multiples of pi

import java.text.*;

public class FormatTest {

 public static void main(String[] args) {

 NumberFormat nf = NumberFormat.getInstance();
 for (double x = Math.PI; x < 100000; x *= 10) {
 String formattedNumber = nf.format(x);
 System.out.println(formattedNumber + "\t" + x);
 }
 }
}

On my U.S. English system, the results look like this:

3.141 3.14159265358979
31.415 31.4159265358979
314.159 314.159265358979
3,141.592 3141.5926535897897
31,415.926 31415.926535897896

The formatted numbers don't use a ridiculous number of decimal places and group the integer
part with commas when it becomes large. Of course, the exact formatting depends on the
default locale. For instance, when I changed the locale to French, I encountered this result:

3,141 3.14159265358979
31,415 31.4159265358979
314,159 314.159265358979
3 141,592 3141.5926535897897
31 415,926 31415.926535897896

The French locale uses a decimal comma instead of a decimal point and separates every three
digits in the integer part with a space. This may be confusing to an American, but seems
perfectly normal to a Parisian. One of the advantages of number formats is that by using the
default number format for the system, much of your program is automatically localized. No
extra code is required to do the right thing on French systems, on Canadian systems, on
Japanese systems, and so on.

16.3.2 Specifying Precision

Number formats have both a maximum and a minimum number of integer and fraction digits
that are presented in each number. For instance, in the number 31.415 there are two integer
digits and three fraction digits. If the maximum number of digits in a part is less than the
number actually present, the number is truncated (integer part) or rounded (fraction part). If
the minimum is greater than the number of digits actually present, then extra zeros are added
at the beginning of the integer part or after the fraction part. For example, with a minimum of
three integer digits and a maximum of two fraction digits, 31.415 would be formatted as
031.42.

You specify the minimum and maximum of each type you want in each number using these
four methods:

Java I/O

403

public void setMaximumIntegerDigits(int newValue)
public void setMinimumIntegerDigits(int newValue)
public void setMaximumFractionDigits(int newValue)
public void setMinimumFractionDigits(int newValue)

For example, to specify that myFormat should format numbers with at least 10 digits before
the decimal point and at most 3 digits after, you would type:

myFormat.setMinimumIntegerDigits(10);
myFormat.setMaximumFractionDigits(3);

Setting the minimum digits guarantees that those digits will be printed, filled with zeros if
necessary. Setting the maximum digits allows the digits to be printed if they're nonzero or a
place-holding zero (i.e., not the leftmost or rightmost digit). Leftmost and rightmost strings of
zeros will only be printed if it's required to meet the minimum number of digits. If you try to
set a maximum below a minimum or a minimum above a maximum, the last one set takes
precedence. Java raises the maximum to meet the minimum or lowers the minimum to meet
the maximum.

Specifying the number of digits is useful when printing many columns of numbers in a tabular
format to the console or in a monospaced font. Example 16.2 prints a three-column table of
the angles between and 360 degrees in degrees, radians and grads without any formatting.

Example 16.2. UglyTable

public class UglyTable {

 public static void main(String[] args) {

 System.out.println("Degrees \tRadians \tGrads");
 for (double degrees = 0.0; degrees < 360.0; degrees++) {
 double radians = Math.PI * degrees / 180.0;
 double grads = 400 * degrees / 360;
 System.out.println(degrees + "\t" + radians + "\t" + grads);
 }
 }
}

Its output looks like this (not very pretty):

300.0 5.2359877559829835 333.3333333333333
301.0 5.253441048502927 334.44444444444446
302.0 5.27089434102287 335.55555555555554
303.0 5.288347633542813 336.6666666666667
304.0 5.305800926062757 337.77777777777777
305.0 5.3232542185827 338.8888888888889
306.0 5.340707511102643 340.0

Example 16.3 prints the same table with each number formatted to at least three integer digits
and exactly two fraction digits (both minimum and maximum set to 2).

Java I/O

404

Example 16.3. PrettyTable

import java.text.*;

public class PrettyTable {

 public static void main(String[] args) {

 System.out.println("Degrees Radians Grads");
 NumberFormat myFormat = NumberFormat.getInstance();
 myFormat.setMinimumIntegerDigits(3);
 myFormat.setMaximumFractionDigits(2);
 myFormat.setMinimumFractionDigits(2);
 for (double degrees = 0.0; degrees < 360.0; degrees++) {
 String radianString = myFormat.format(Math.PI * degrees / 180.0);
 String gradString = myFormat.format(400 * degrees / 360);
 String degreeString = myFormat.format(degrees);
 System.out.println(degreeString + " " + radianString
 + " " + gradString);
 }
 }
}

Its output looks like this (much nicer):

300.00 005.23 333.33
301.00 005.25 334.44
302.00 005.27 335.55
303.00 005.28 336.66
304.00 005.30 337.77
305.00 005.32 338.88
306.00 005.34 340.00
...

Note that the extra integer digits are padded with zeros rather than spaces. You'll learn how to
fix that shortly.

There are getMinimumIntegerDigits() and getMaximumIntegerDigits() methods that let
you inspect the minimum and maximum number of digits provided by any number format,
including the default:

public int getMaximumIntegerDigits()
public int getMinimumIntegerDigits()
public int getMaximumFractionDigits()
public int getMinimumFractionDigits()

16.3.3 Grouping

How big is 299792500? You can't easily tell because the number is hard to read. It's obviously
a pretty big number, but at a glance most people can't tell whether it's in the ballpark of 3
million, 30 million, 300 million, or 3 billion. On the other hand, if it's written as 299,792,500,
it's a lot more obvious that the number is about 300 million. The commas group different parts
of the number. By counting the groups, you get a quick idea of the number's order of
magnitude.

Java I/O

405

Like other aspects of text formatting, different locales use different grouping conventions. In
Belgium, Denmark, Holland, Spain, and Germany, a period groups thousands and a comma is
used as the "decimal point." Thus, the U.S. number 2,365,335.32 is equivalent to the
Danish/Dutch number 2.365.335,32. Finnish uses an English-style decimal point but separates
characters with a space rather than a comma. Thus, 2,365,335.32 is, in Finnish, 2 365 335.32.
France, Sweden, and Norway also separate thousands with spaces but use a decimal comma: 2
365 335,32. Francophone Canada follows France's convention, but Canadian Anglophones
use the American-British convention. And in Switzerland, an apostrophe is used to separate
thousands in all four languages: 2'365'335.32

Most number formats support grouping, and some use it by default. You may inquire whether
a particular NumberFormat uses grouping with the isGroupingUsed() method:

public boolean isGroupingUsed()

This method returns true if the format groups numbers, false if it doesn't. You can turn
grouping on or off for a number format with the setGroupingUsed() method:

public void setGroupingUsed(boolean groupNumbers)

Passing true turns grouping on. Passing false turns it off. You'll usually want to use
grouping in strings that will be read by human beings and not use grouping in strings that will
be parsed by computers.

16.3.4 Currency Formats

It's not hard to tack on a dollar sign before a decimal number with two digits of precision. The
NumberFormat class does a little more, handling international currencies with relative ease. If
you know you're going to be working with money, you can request the default locale's
currency formatter with the static NumberFormat.getCurrencyInstance() method:

public static final NumberFormat getCurrencyInstance()

To get a currency formatter for a different locale, pass the locale to Number-
Format.getCurrencyInstance():

public static NumberFormat getCurrencyInstance(Locale inLocale)

Example 16.4 calculates the annual earnings of a worker making minimum wage in U.S.
dollars. A currency format returned by
NumberFormat.getCurrencyInstance(Locale.ENGLISH) formats the monetary quantities.

Example 16.4. Currency Formats

import java.text.*;
import java.util.*;

Java I/O

406

public class MinimumWage {

 public static void main(String[] args) {

 NumberFormat dollarFormat =
NumberFormat.getCurrencyInstance(Locale.ENGLISH);
 double minimumWage = 5.15;

 System.out.println("The minimum wage is "
 + dollarFormat.format(minimumWage));
 System.out.println("A worker earning minimum wage and working for
forty");
 System.out.println("hours a week, 52 weeks a year, would earn "
 + dollarFormat.format(40*52*minimumWage));
 }
}

This program prints:

The minimum wage is $5.15
A worker earning minimum wage and working for forty
hours a week, 52 weeks a year, would earn $10,712.00

Notice how nicely the numbers are formatted. Nowhere did I add dollar signs, say that I
wanted exactly two numbers after the decimal point, or say that I wanted to separate the
thousands with commas. The NumberFormat class took care of that.

There are limits to how far currency formatting goes. Currency formats may change the
currency sign in different locales, but they won't convert the values (between U.S. and
Canadian dollars or between U.S. dollars and British pounds, for example). Since conversion
rates float from day to day and minute to minute, that's a bit much to ask of a static class. If
you want to do this, you need to provide some source of the conversion rate information,
either from user input or pulled off the network.

16.3.5 Percent Formats

Number formats can also handle percentages in a variety of international formats. In grammar
school math you learned that a number followed by a percent sign is really one-hundredth of
its apparent value. Thus, 50% is really decimal 0.5, 100% is 1.0, 10% is 0.1, and so on.
Percent formats allow you to use the actual decimal values in your code but print out the
hundred-times larger percent values in the output. You request the default locale's percentage
formatter with the static method NumberFormat.getPercentInstance():

public static final NumberFormat getPercentInstance()

To get a percentage formatter for a different locale, pass the locale to
NumberFormat.getPercentInstance():

public static NumberFormat getPercentInstance(Locale inLocale)

Example 16.5 prints a table of percents between 1% and 100%. Notice that doubles are used
in the code, but integral percents appear in the output.

Java I/O

407

Example 16.5. PercentTable

import java.text.*;
import java.util.*;

public class PercentTable {

 public static void main(String[] args) {

 NumberFormat percentFormat =
NumberFormat.getPercentInstance(Locale.ENGLISH);

 for (double d = 0.0; d <= 1.0; d += 0.005) {
 System.out.println(percentFormat.format(d));
 }
 }
}

Here's some of the output:

0%
0%
1%
1%
2%
2%
3%
3%
4%
4%
...

Notice that all percentage values are rounded to the nearest whole percent. This could be a
problem if you need to format something like a tax rate. There is no 0.5% or 8.25% as you
might need when describing sales tax. If you want to include fractional percents, you can use
the same setMinimumFractionDigits() and setMaximumFractionDigits() methods you'd
use for any NumberFormat object. For example:

NumberFormat percentFormat =
NumberFormat.getPercentInstance(Locale.ENGLISH);
percentFormat.setMaximumFractionDigits(2);

16.3.6 Utility Methods

For completeness, I'll note that NumberFormat overrides the usual three utility methods from
java.lang.Object, hashCode(), clone(), and equals():

public int hashCode()
public boolean equals(Object obj)
public Object clone()

One NumberFormat equals another NumberFormat if they're instances of the same subclass of
NumberFormat (NumberFormat is abstract, so there aren't any pure instances of it), and the
two objects specify the same maximum and minimum number of integer digits, the same
maximum and minimum number of fraction digits, and both either can or cannot only parse
integers.

Java I/O

408

16.4 Specifying Width with FieldPosition

The Java core API does not include any classes that pad numbers with spaces like the
traditional I/O APIs in Fortran, C, and other languages. Part of the reason is that it's no longer
a valid assumption that all output is written in a monospaced font on a VT-100 terminal.
Therefore, spaces are insufficient to line up numbers in tables. Ideally, if you're writing
tabular data in a GUI, you can use a real table component like JTable in the Java foundation
classes. If that's not possible, you can measure the width of the string using a FontMetrics
object and offset the position at which you draw the string. And if you are outputting to a
terminal or a monospaced font, then you can manually prefix the string with the right number
of spaces.

The java.text.FieldPosition class separates strings into their component parts, called
fields. (This is another unfortunate example of an overloaded term. These fields have nothing
to do with the fields of a Java class.) For example, a typical date string can be separated into
18 fields including era, year, month, day, date, hour, minute, second, and so on. Of course, not
all of these may be present in any given string. For example, 1999 CE includes only a year
and an era field. The different fields that can be parsed are represented as public final
static int fields (there's that annoying overloading again) in the corresponding format class.
The java.text.DateFormat class defines these kinds of fields as mnemonic constants:

public static final int ERA_FIELD
public static final int YEAR_FIELD
public static final int MONTH_FIELD
public static final int DATE_FIELD
public static final int HOUR_OF_DAY1_FIELD
public static final int HOUR_OF_DAY0_FIELD
public static final int MINUTE_FIELD
public static final int SECOND_FIELD
public static final int MILLISECOND_FIELD
public static final int DAY_OF_WEEK_FIELD
public static final int DAY_OF_YEAR_FIELD
public static final int DAY_OF_WEEK_IN_MONTH_FIELD
public static final int WEEK_OF_YEAR_FIELD
public static final int WEEK_OF_MONTH_FIELD
public static final int AM_PM_FIELD
public static final int HOUR1_FIELD
public static final int HOUR0_FIELD
public static final int TIMEZONE_FIELD

Number formats are a little simpler. They are divided into only two fields, the integer field
and the fraction field. These are represented by the mnemonic constants
NumberFormat.INTEGER_FIELD and NumberFormat.FRACTION_FIELD:

public static final int INTEGER_FIELD
public static final int FRACTION_FIELD

The integer field is everything before the decimal point. The fraction field is everything after
the decimal point. For instance, the string "-156.32" has an integer field of "-156" and a
fraction field of "32".

The java.text.FieldPosition class identifies the boundaries of each field in the numeric
string. You can then manually add the right number of monospaced characters or pixels to

Java I/O

409

align the decimal points in a column of numbers. You create a FieldPosition object by
passing one of these numeric constants into the FieldPosition() constructor:

public FieldPosition(int field)

For example, to get the integer field:

FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);

There's a getField() method that returns this constant:

public int getField()

Next you pass this object into one of the format() methods that takes a FieldPosition
object as an argument:

NumberFormat nf = NumberFormat().getNumberInstance();
StringBuffer sb = nf.format(2.71828, new StringBuffer(), fp);

When format() returns, the FieldPosition object contains the beginning and ending index
of the field in the string. These methods return those items:

public int getBeginIndex()
public int getEndIndex()

You can subtract getBeginIndex() from getEndIndex() to find the number of characters in
the field. If you're working with a monospaced font, this may be all you need to know. If
you're working with a proportionally spaced font, you'll probably use
java.awt.FontMetrics to measure the exact width of the field instead. Example 16.6 shows
how to work in a monospaced font. This is essentially another version of the angle table. Now
a FieldPosition object is used to figure out how many spaces to add to the front of the
string; the getSpaces() method is simply used to build a string with a certain number of
spaces.

Example 16.6. PrettierTable

import java.text.*;

public class PrettierTable {

 public static void main(String[] args) {

 NumberFormat myFormat = NumberFormat.getNumberInstance();
 FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
 myFormat.setMaximumIntegerDigits(3);
 myFormat.setMaximumFractionDigits(2);
 myFormat.setMinimumFractionDigits(2);

 System.out.println("Degrees Radians Grads");
 for (double degrees = 0.0; degrees < 360.0; degrees++) {
 String radianString = myFormat.format(
 radianString = getSpaces(3 - fp.getEndIndex()) + radianString;
 String gradString = myFormat.format(
 gradString = getSpaces(3 - fp.getEndIndex()) + gradString;

Java I/O

410

 String degreeString = myFormat.format(
 degrees, new StringBuffer(), fp).toString();
 degreeString = getSpaces(3 - fp.getEndIndex()) + degreeString;
 System.out.println(degreeString + " " + radianString + " " +
gradString);
 }
 }

 public static String getSpaces(int n) {

 StringBuffer sb = new StringBuffer(n);
 for (int i = 0; i < n; i++) sb.append(' ');
 return sb.toString();
 }
}

Here's some sample output. Notice the alignment of the decimal points:

% java PrettierTable
Degrees Radians Grads
 0.00 0.00 0.00
 1.00 0.02 1.11
 2.00 0.03 2.22
 3.00 0.05 3.33
 4.00 0.07 4.44
 5.00 0.09 5.56
 6.00 0.10 6.67
 7.00 0.12 7.78
 8.00 0.14 8.89
 9.00 0.16 10.00
 10.00 0.17 11.11
 11.00 0.19 12.22
 12.00 0.21 13.33
 13.00 0.23 14.44

This technique only works with monospaced fonts. In GUI environments, you'll need to work
with pixels instead of characters. Instead of prefixing a string with spaces, you adjust the
position where the pen starts drawing each string. The getBeginIndex() and
getEndIndex() methods, along with substring() in java.lang.String can be used to get
the actual field, and the stringWidth() method in the java.awt.FontMetrics class can tell
you how wide the field is.

Example 16.7 is yet another variant of the angle table. This one draws the angles in an applet.
Figure 16.1 shows a screen shot of the running applet. This technique works equally well in a
panel, frame, scroll pane, canvas, or other drawing environment with a paint() method.

Java I/O

411

Figure 16.1. The PrettiestTable applet

Example 16.7. PrettiestTable

import java.text.*;
import java.applet.*;
import java.awt.*;

public class PrettiestTable extends Applet {

 NumberFormat myFormat = NumberFormat.getNumberInstance();
 FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);

 public void init() {

 this.setFont(new Font("Serif", Font.BOLD, 12));
 myFormat.setMaximumIntegerDigits(3);
 myFormat.setMaximumFractionDigits(2);
 myFormat.setMinimumFractionDigits(2);
 }

 public void paint(Graphics g) {

 FontMetrics fm = this.getFontMetrics(this.getFont()) ;
 int xmargin = 5;
 int lineHeight = fm.getMaxAscent() + fm.getMaxDescent();
 int y = lineHeight;
 int x = xmargin;
 int desiredPixelWidth = 3 * fm.getMaxAdvance();
 int fieldWidth = 6 * fm.getMaxAdvance();
 int headerWidth = fm.stringWidth("Degrees");
 g.drawString("Degrees", x + (fieldWidth - headerWidth)/2, y);
 headerWidth = fm.stringWidth("Radians");
 g.drawString("Radians", x + fieldWidth + (fieldWidth - headerWidth)/2,
y);
 headerWidth = fm.stringWidth("Grads");
 g.drawString("Grads", x + 2*fieldWidth + (fieldWidth - headerWidth)/2,
y);

Java I/O

412

 for (double degrees = 0.0; degrees < 360.0; degrees++) {
 y += lineHeight;
 String degreeString = myFormat.format(degrees, new StringBuffer(),
 fp).toString();
 String intPart = degreeString.substring(0, fp.getEndIndex());
 g.drawString(degreeString, xmargin + desiredPixelWidth
 - fm.stringWidth(intPart), y);
 String radianString = myFormat.format(Math.PI*degrees/180.0,
 new StringBuffer(), fp).toString();
 intPart = radianString.substring(0, fp.getEndIndex());
 g.drawString(radianString,
 xmargin + fieldWidth + desiredPixelWidth -
fm.stringWidth(intPart), y);
 String gradString = myFormat.format(400 * degrees / 360,
 new StringBuffer(), fp).toString();
 intPart = gradString.substring(0, fp.getEndIndex());
 g.drawString(gradString,
 xmargin + 2*fieldWidth + desiredPixelWidth -
fm.stringWidth(intPart), y);
 }
 }
}

16.5 Parsing Input

Number formats also handle input. When used for input, a number format converts a string in
the appropriate format to a binary number, achieving more flexible conversions than you can
get with the methods in the type wrapper classes (like Integer.parseInt()). For instance, a
percent format parse() method can interpret 57% as 0.57 instead of 57. A currency format
can read (12.45) as -12.45.

There are three parse() methods in the NumberFormat class. All do roughly the same thing:

public Number parse(String text) throws ParseException
public abstract Number parse(String text, ParsePosition parsePosition)
public final Object parseObject(String source, ParsePosition parsePosition)

The first parse() method attempts to parse a number from the given text. If the text
represents an integer, it's returned as an instance of java.lang.Long. Otherwise, it's returned
as an instance of java.lang.Double. If a string contains multiple numbers, only the first one
is returned. For instance, if you parse "32 meters" you'll get the number 32 back. Java throws
away everything after the number finishes. If the text cannot be interpreted as a number in the
given format, a ParseException is thrown. The second parse() method specifies where in
the text parsing starts. The position is given by a ParsePosition object. This is a little more
complicated than using a simple int but does have the advantage of allowing one to read
successive numbers from the same string. The third parse() method merely invokes the
second. It's declared to return Object rather than Number so that it can override the method of
the same signature in java.text.Format. If you know you're working with a NumberFormat
rather than a DateFormat or some other nonnumeric format, there's no reason to use it.

The java.text.ParsePosition class has one constructor and two public methods:

public ParsePosition(int index)
public int getIndex()
public void setIndex(int index)

Java I/O

413

This whole class is just a wrapper around an int position, which is set by the constructor and
the setIndex() mutator method. It's returned by the getIndex() method. As a
NumberFormat parses a string, it updates the associated ParsePosition's index. Thus, when
passed into a parse() method, the ParsePosition contains the index where parsing will
begin. When the parse() method returns, the ParsePosition contains the index
immediately after the last character parsed. If parsing fails, the parse position is unchanged.

Some number formats can only read integers, not floating point numbers. The
isParseIntegerOnly() method returns true if this is the case, false otherwise.

public boolean isParseIntegerOnly()
public void setParseIntegerOnly(boolean value)

The setParseInteger() method lets you specify that the format should only parse integers.
If a decimal point is encountered, then parsing should stop.

Example 16.8 is a simple program of the sort that's common in CS 101 courses. The
assignment is to write a program that reads a number entered from the command line and
prints its square root. Successive numbers are read until a negative number is entered, at
which point the program halts. Although this is a very basic exercise, it's relatively complex
in Java, because Java separates string parsing from basic I/O. Nonetheless, while it may not
be suitable for the first week's homework, students should be able to handle it by the end of
the semester.

Example 16.8. RootFinder

import java.text.*;
import java.io.*;

public class RootFinder {

 public static void main(String[] args) {

 Number input = null;

 try {
 BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
 NumberFormat nf = NumberFormat.getInstance();
 while (true) {
 System.out.println("Enter a number (-1 to quit): ");
 String s = br.readLine();
 try {
 input = nf.parse(s);
 }
 catch (ParseException e) {
 System.out.println(s + " is not a number I understand.");
 continue;
 }
 double d = input.doubleValue();
 if (d < 0) break;
 double root = Math.sqrt(d);
 System.out.println("The square root of " + s + " is " + root);
 }
 }

Java I/O

414

 catch (IOException e) {System.err.println(e);}
 }
}

Here's a sample run:

% java RootFinder
Enter a number (-1 to quit):
87
The square root of 87 is 9.327379053088816
Enter a number (-1 to quit):
3.151592
The square root of 3.151592 is 1.7752723734683644
Enter a number (-1 to quit):
2,345,678
The square root of 2,345,678 is 1531.5606419596973
Enter a number (-1 to quit):
2.998E+8
The square root of 2.998E+8 is 1.7314733610425546
Enter a number (-1 to quit):
299800000
The square root of 299800000 is 17314.733610425545
Enter a number (-1 to quit):
0.0
The square root of 0.0 is 0.0
Enter a number (-1 to quit):
four
four is not a number I understand.
Enter a number (-1 to quit):
4
The square root of 4 is 2.0
Enter a number (-1 to quit):
(12)
(12) is not a number I understand.
Enter a number (-1 to quit):
-1

These results tell you a few things about the default number format on the platform where I
ran it (U.S. English Solaris, JDK 1.1.4). First, it doesn't understand exponential notation. The
square root of 2.998E+8 is not 1.7314733610425546; it's 1.7314733610425546E+4. The
number format parsed up to the first character it didn't recognize (E) and stopped, thus
returning the square root of 2.998 instead. You can also see that this number format doesn't
understand negative numbers represented by parentheses or words like "four." On the other
hand, it can parse numbers with thousands separators like 2,345,678. This is more than the I/O
libraries in most other languages can do. With the appropriate, nondefault number format,
Java could parse (12), four, and 2.998E+8 as well.

16.6 Decimal Formats

The java.text package contains a single concrete subclass of NumberFormat,
DecimalFormat. The DecimalFormat class provides even more control over how floating
point numbers are formatted:

public class DecimalFormat extends NumberFormat

Java I/O

415

Most number formats are in fact decimal formats. Generally, you can simply cast any number
format to a decimal format, like this:

DecimalFormat df = (DecimalFormat) NumberFormat.getCurrencyInstance();

At least in theory, you might encounter a nondecimal format. Therefore, you should use
instanceof to test whether or not you've got a DecimalFormat:

NumberFormat nf = NumberFormat.getCurrencyInstance();
if (nf instanceof DecimalFormat) {
 DecimalFormat df = (DecimalFormat) NumberFormat.getCurrencyInstance();
 //...
}

Alternately, you can place the cast and associated operations in a try/catch block that
catches ClassCastExceptions:

try {
 DecimalFormat df = (DecimalFormat) NumberFormat.getCurrencyInstance();
 //...
}
catch (ClassCastException e) {System.err.println(e);}

16.6.1 Decimal Format Patterns and Symbols

Every DecimalFormat object has a pattern that describes how numbers are formatted and a
list of symbols that describes with which characters they're formatted. This allows the single
DecimalFormat class to be parameterized so that it can handle many different formats for
different kinds of numbers in many locales. The pattern is given as an ASCII string. The
symbols are provided by a DecimalFormatSymbols object. These are accessed and
manipulated through the following six methods:

public DecimalFormatSymbols getDecimalFormatSymbols()
public void setDecimalFormatSymbols(DecimalFormatSymbols newSymbols)
public String toPattern()
public String toLocalizedPattern()
public void applyPattern(String pattern)
public void applyLocalizedPattern(String pattern)

The decimal format symbols specify the characters or strings used for the zero digit, the
grouping separator, the decimal sign, the percent sign, the mille percent sign, infinity (IEEE
754 Inf), not a number (IEEE 754 NaN), and the minus sign. In American English these are 0,

,, ., %, , Inf, NaN, and -, respectively. They may be other things in different locales.

The pattern specifies whether leading and trailing zeros are to be printed, whether the
fractional part of the number is printed, the number of digits in a group (three in American
English), and the leading and trailing suffixes for negative and positive numbers. Patterns are
described using an almost Backus-Naur Form (BNF) grammar, given here:

pattern -> subpattern{;subpattern}
subpattern -> {prefix}integer{.fraction}{suffix}
prefix -> '\\u0000'..'\\uFFFD' - specialCharacters
suffix -> '\\u0000'..'\\uFFFD' - specialCharacters

Java I/O

416

integer -> '#'* '0'* '0'
fraction -> '0'* '#'*

The first line is not pure BNF. The first subpattern is used for positive numbers. The second
subpattern, which may not be present, is used for negative numbers. If it's not present,
negative numbers use the positive format but are prefixed with a minus sign. Table 16.2
defines the symbols used in the grammar.

Table 16.2. Symbols Used in Decimal Format Patterns
Symbol Meaning
0 A digit, including leading or trailing zeros
A digit, except for leading or trailing zero
. Decimal separator
, Grouping separator
; Separates formats
- Default negative prefix
% Divide by 100 and show as percentage
X Any other characters can be used in the prefix or suffix
' Used to quote special characters in a prefix or suffix
X* Zero or more occurrences of X
(X | Y) Either X or Y
X..Y Any character from X through Y inclusive
S - T Characters in S but not in T

This results in patterns like those seen in Table 16.3 for various locales. For instance,
#,##0.### is the decimal format pattern for U.S. English and most other non-Arabic-speaking
locales. The # mark means any digit character except a leading or trailing zero. The comma is
the grouping separator, the period is the decimal point separator, and the is a digit that will be
printed even if it's a nonsignificant zero. You interpret this pattern as follows:

1. The integer part contains as many digits as necessary.
2. These are separated every three digits with the grouping separator.
3. If the integer part contains only zeros, there is a single zero before the decimal

separator.
4. Up to three digits are printed after the decimal separator. However, they are not

printed if they are trailing zeros.
5. No separate pattern is included for negative numbers. Therefore, they will be printed

the same as a positive number but prefixed with a minus sign.

It's relatively painful to work with this grammar directly. Fortunately, there are methods that
allow you to get and set the values of these individual pieces directly, and I recommend that
you use them:

public String getPositivePrefix()
public void setPositivePrefix(String newValue)
public String getPositiveSuffix()
public void setPositiveSuffix(String newValue)
public String getNegativePrefix()
public void setNegativePrefix(String newValue)
public String getNegativeSuffix()
public void setNegativeSuffix(String newValue)

Java I/O

417

public int getMultiplier()
public void setMultiplier(int newValue)
public int getGroupingSize()
public void setGroupingSize(int newValue)
public boolean isDecimalSeparatorAlwaysShown()
public void setDecimalSeparatorAlwaysShown(boolean newValue)

I can only guess why the patterns and the decimal format symbols themselves are exposed as
much as they are in the java.text package. In my opinion, this is poor design, since it ties
the interface too closely to the implementation of the class. The get and set methods are
fully adequate for manipulating the formatting. Since you probably won't be setting a pattern
more than once or twice in a program (how many different formats does one program need?),
there's no significant performance gain by using a pattern instead of the get and set methods.
And there is a significant cost in complexity. Allowing direct setting of patterns requires the
class to check that the patterns are valid and throw a ParseException if they're not. The only
advantage I can see to manipulating number formats as pattern strings is that it makes them
easy to store in resource bundles. However, I'm not sure this ability really needs to be public.

The positive prefix is the string prefixed to positive numbers. Most of the time this is the
empty string "", but in some circumstances you might want to use a plus sign (+). In currency
formats, the positive prefix is often set to the currency sign, like $ or £, depending on the
locale. You can also set a positive suffix; that is, a string that is appended to all positive
numbers. I'm not aware of any number formats that use positive suffixes, but if you need to,
you can. The negative prefix is the minus sign (-). However, in accounting and other financial
applications it may be an open parenthesis instead. In these applications, there's also a
negative suffix, generally a closing parenthesis. Thus, -12 might be formatted as (12).

The multiplier is an integer by which the number is multiplied before being formatted. This is
commonly used in percent formats. This allows a number like 0.85 to be formatted as 85%
instead of 0.85%. 1, 100, and 1000 are the only common values of this number. Grouping size
is the number of digits between grouping separators, commas in English. This is how 75365
becomes 75,365. Most locales, including English, break every three digits; a few break every
four, formatting 75365 as 7,5365. Finally, you can specify whether or not the decimal
separator (decimal point) is shown in numbers without fractional parts. By default, a number
like 1999 does not have a decimal point. However, there are situations (C source code, for
example) where the difference between 1999 and 1999. is significant.

You also have access to the following methods, inherited from java.text.NumberFormat,
which allow you to set and get the minimum and maximum number of integer and fraction
digits and control whether or not grouping is used at all. These work just as well with decimal
formats as they do with regular number formats.

public boolean isGroupingUsed()
public void setGroupingUsed(boolean useGrouping)
public int getMaximumIntegerDigits()
public void setMaximumIntegerDigits(int maxDigits)
public int getMinimumIntegerDigits()
public void setMinimumIntegerDigits(int minDigits)
public int getMaximumFractionDigits()
public void setMaximumFractionDigits(int maxDigits)
public int getMinimumFractionDigits()
public void setMinimumFractionDigits(int minDigits)

Java I/O

418

Table 16.3 lists the default patterns used by different locales' decimal formats. For the basic
decimal format shown in columns 2 and 3, most of the locales use the same pattern as the U.S.
English locale. The notable exceptions are the Arabic-speaking countries and Macedonia. The
primary difference between locales comes in the decimal format symbols, not the pattern. The
percent formats, (not shown) all round down to the nearest integer. With one exception, all

locales share the percent format #,##0%. The one exception is the #,##0 used in the
mainland China locale. This uses a per mille (per thousand), as opposed to the more common
percent (per hundred).

The currency formats, shown in columns 4 and 5, are a lot more interesting, because most
countries have their own currencies with their own unique symbols. Even when countries
share a symbol and a name for the currency, such as the dollar ($), it's still important to
distinguish between Canadian, American, and Australian dollars. Many of the currencies in
Table 16.3, especially for country-independent language locales, use the symbol, which
refers to a currency of indeterminate type. The [RLM] you'll see in many of the Arabic
formats stands for the non-printing Unicode character \u200f, the right-to-left marker, used
to ensure proper directionality in the number in Arabic's right-to-left system. Hebrew is also a
right-to-left script, but in modern Hebrew numbers are generally written in the European
fashion from left to right.

Table 16.3. Decimal Format Patterns

Language (Country) Decimal Pattern Example:-
1234.56 Currency Pattern Example: -

1,234.56
Albanian #,##0.### -1.234,56 #,##0.00 - 1.234,56
Albanian (Albania) #,##0.### -1.234,56 Lek#,##0.### -Lek1.234,56
Arabic #,##0.### -1,234.56 #,##0.00 - 1,234.56

Arabic (Algeria) #,##0.###; #,
##0.###- 1,234.56- .[RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Bahrain) #,##0.###;#,
##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Egypt) #,##0.###;#,
##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Iraq) #,##0.###;#,
##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Jordan) #,##0.###;#,
##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Kuwait) #,##0.###;#,
##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Lebanon) #,##0.###;#,
##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-
Arabic (Libyan Arab
Jamahiriya)

#,##0.###;#,
##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Morocco) #,##0.###;#,
##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Oman) #,##0.###;#,
##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Qatar) #,##0.###;
#,##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Java I/O

419

Arabic (Saudi Arabia) #,##0.###;
#,##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Sudan) #,##0.###;
#,##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Syria) #,##0.###;
#,##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Tunisia) #,##0.###;
#,##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (United Arab
Emirates)

#,##0.###;
#,##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-

Arabic (Yemen) #,##0.###;
#,##0.###- 1,234.56- [RLM] #,##0.###;

[RLM] #,##0.###-
[RLM]

1,234.56-
Bulgarian #,##0.### -1 234,56 #,##0.00 - 1 234,56
Bulgarian (Bulgaria) #,##0.### -1 234,56 #,##0.## - 1 234,56
Byelorussian #,##0.### -1 234,56 #,##0.00 - 1 234,56
Byelorussian (Belarus) #,##0.### -1 234,56 #,##0.## - 1 234,56
Catalan #,##0.### -1.234,56 #,##0.00 - 1.234,56
Catalan (Spain) #,##0.### -1.234,56 Pts #,##0 -Pts 1.235
Chinese #,##0.### -1,234.56 #,##0.00 - 1,234.56
Chinese (China) #,##0.### -1,234.56 ¥#,##0.00 -¥1,234.56
Chinese (Taiwan) #,##0.### -1,234.56 NT$#,##0.00 -NT$1,234.56
Croatian #,##0.### -1.234,56 #,##0.00 - 1.234,56
Croatian (Croatia) #,##0.### -1.234,56 Kn #,##0.## -Kn 1.234,56
Czech #,##0.### -1.234,56 #,##0.00 - 1.234,56
Czech (Czech Republic) #,##0.### -1.234,56 #,##0.##; -#,##0.## -1.234,56
Danish #,##0.### -1.234,56 #,##0.00 - 1.234,56
Danish (Denmark) #,##0.### -1.234,56 kr #,##0.00; kr -#,##0.00 kr -1.234,56
Dutch #,##0.### -1.234,56 #,##0.00 - 1.234,56
Dutch (Belgium) #,##0.### -1.234,56 #,##0.00 BF -1.234,56 BF
Dutch (Netherlands) #,##0.### -1.234,56 fl #,##0.00; fl #,##0.00- fl 1.234,56-
English #,##0.### -1,234.56 #,##0.00 - 1,234.56
English (Australia) #,##0.### -1,234.56 $#,##0.00 -$1,234.56
English (Canada) #,##0.### -1,234.56 $#,##0.00 -$1,234.56
English (Ireland) #,##0.### -1,234.56 IR£#,##0.00 -IR£1,234.56
English (New Zealand) #,##0.### -1,234.56 $#,##0.00 -$1,234.56
English (South Africa) #,##0.### -1,234.56 R #,##0.00; R-#,##0.00 R-1,234.56
English (United
Kingdom) #,##0.### -1,234.56 £#,##0.00 -£1,234.56

English (United States) #,##0.### -1,234.56 $#,##0.00; ($#,##0.00) ($1,234.56)
Estonian #,##0.### -1 234,56 #,##0.00 - 1 234,56
Estonian (Estonia) #,##0.### -1 234,56 #,##0.## kr -1 234,56 kr
Finnish #,##0.### -1 234,56 #,##0.00 - 1 234,56
Finnish (Finland) #,##0.### -1 234,56 #,##0.00 mk -1 234,56 mk
French #,##0.### -1,234,56 #,##0.00 - 1,234,56
French (Belgium) #,##0.### -1.234,56 #,##0.00 FB -1.234,56 FB
French (Canada) #,##0.### -1 234,56 #,##0.00 $; (#,##0.00$) (1 234,56$)
French (France) #,##0.### -1 234,56 #,##0.00 F -1 234,56 F

Java I/O

420

French (Switzerland) #,##0.### -1'234.56 SFr. #,##0.00; SFr.-#,##0.00 SFr.-1'234.56
German #,##0.### -1.234,56 #,##0.00 - 1.234,56
German (Austria) #,##0.### -1.234,56 öS #,##0.00 - öS 1.234,56
German (Germany) #,##0.### -1.234,56 #,##0.00 DM -1.234,56 DM
German (Switzerland) #,##0.### -1'234.56 SFr. #,##0.00; SFr.-#,##0.00 SFr.-1'234.56
Greek #,##0.### -1.234,56 #,##0.00 - 1.234,56
Greek (Greece) #,##0.### -1.234,56 #,##0.00 -1.234,56
Hebrew #,##0.### -1,234.56 #,##0.00 - 1,234.56
Hebrew (Israel) #,##0.### -1,234.56 #,##0.## -1,234.56
Hungarian #,##0.### -1 234,56 #,##0.00 - 1 234,56
Hungarian (Hungary) #,##0.### -1 234,56 Ft#,##0.## -Ft1 234,56
Icelandic #,##0.### -1.234,56 #,##0.00 - 1.234,56
Icelandic (Iceland) #,##0.### -1.234,56 #,##0.## kr. -1.234,56 kr.
Italian #,##0.### -1.234,56 #,##0.00 - 1.234,56
Italian (Italy) #,##0.### -1.234,56 L. #,##0 -L. 1.235
Italian (Switzerland) #,##0.### -1'234.56 SFr. #,##0.00; SFr.-#,##0.00 SFr.-1'234.56
Japanese #,##0.### -1,234.56 #,##0.00 - 1,234.56
Japanese (Japan) #,##0.### -1,234.56 ¥#,##0.00 -¥1,234.56
Korean #,##0.### -1,234.56 #,##0.00 - 1,234.56
Korean (South Korea) #,##0.### -1,234.56 #,##0 - 1,235
Latvian (Lettish) #,##0.### -1 234,56 #,##0.00 - 1 234,56
Latvian (Lettish)
(Latvia) #,##0.### -1 234,56 #,##0.## Ls -1 234,56 Ls

Lithuanian #,##0.### -1.234,56 #,##0.00 - 1.234,56
Lithuanian (Lithuania) #,##0.## -1.234,56 #,##0.## Lt -1.234,56 Lt
Macedonian #,##0.### -1.234,56 #,##0.00 - 1.234,56
Macedonian
(Macedonia)

#,##0.###;
(#,##0.###) (1.234,56) Den #,##0.## -Den 1.234,56

Norwegian #,##0.### -1 234,56 #,##0.00 - 1 234,56
Norwegian (Norway) #,##0.### -1 234,56 kr #,##0.00; kr -#,##0.00 kr -1 234,56
Norwegian (Norway) #,##0.### -1 234,56 kr #,##0.00; kr -#,##0.00 kr -1 234,56
Polish #,##0.### -1 234,56 #,##0.00 - 1 234,56
Polish (Poland) #,##0.### -1 234,56 #,##0.## -1 234,56
Portuguese #,##0.### -1.234,56 #,##0.00 - 1.234,56
Portuguese (Brazil) #,##0.### -1.234,56 R$ #,##0.## -R$ 1.234,56
Portuguese (Portugal) #,##0.### -1.234,56 #,##0.00 Esc. -1.234,56 Esc.
Romanian #,##0.### -1.234,56 #,##0.00 - 1.234,56
Romanian (Romania) #,##0.### -1.234,56 #,##0.00 LEI -1.234,56 LEI
Russian #,##0.### -1 234,56 #,##0.00 - 1 234,56
Russian (Russian
Federation) #,##0.### -1 234,56 #,##0.## -1 234,56

Serbian #,##0.### -1 234,56 #,##0.00 - 1 234,56
Serbian (Yugoslavia) #,##0.### -1 234,56 #,##0.00 - 1 234,56
Serbo-Croatian #,##0.### -1.234,56 #,##0.00 - 1.234,56
Serbo-Croatian
(Yugoslavia) #,##0.### -1.234,56 Din #,##0.00 -Din 1.234,56

Java I/O

421

Slovak #,##0.### -1 234,56 #,##0.00 - 1 234,56
Slovak (Slovakia) #,##0.### -1 234,56 Sk #,##0.00 ; -#,##0.00 Sk -1 234,56 Sk
Slovenian #,##0.### -1.234,56 #,##0.00 - 1.234,56
Slovenian (Slovenia) #,##0.### -1.234,56 tol #,##0.## -tol 1.234,56
Spanish #,##0.### -1.234,56 #,##0.00 - 1.234,56
Spanish (Argentina) #,##0.### -1.234,56 $#,##0.00; ($#,##0.00) ($1.234,56)
Spanish (Bolivia) #,##0.### -1,234.56 B$#,##0.00; (B$#,##0.00) (B$1,234.56)
Spanish (Chile) #,##0.### -1.234,56 Ch$#,##0.00; Ch$-#,##0.00 Ch$-1.234,56
Spanish (Colombia) #,##0.### -1,234.56 C$#,##0.00; (C$#,##0.00) (C$1,234.56)
Spanish (Costa Rica) #,##0.### -1,234.56 C#,##0.00; (C#,##0.00) (C1,234.56)
Spanish (Dominican
Republic) #,##0.### -1,234.56 RD$#,##0.00; (RD$#,##0.00) (RD$1,234.56)

Spanish (Ecuador) #,##0.### -1,234.56 S/#,##0.00; S/-#,##0.00 S/-1,234.56
Spanish (El Salvador) #,##0.### -1,234.56 C#,##0.00; (C#,##0.00) (C1,234.56)
Spanish (Guatemala) #,##0.### -1,234.56 Q#,##0.00; (Q#,##0.00) (Q1,234.56)
Spanish (Honduras) #,##0.### -1,234.56 L#,##0.00; (L#,##0.00) (L1,234.56)
Spanish (Mexico) #,##0.### -1,234.56 $#,##0.00; ($#,##0.00) ($1,234.56)
Spanish (Nicaragua) #,##0.### -1,234.56 $C#,##0.00; ($C#,##0.00) ($C1,234.56)
Spanish (Panama) #,##0.### -1,234.56 B#,##0.00; (B#,##0.00) (B1,234.56)
Spanish (Paraguay) #,##0.### -1.234,56 G#,##0.00; (G#,##0.00) (G1.234,56)
Spanish (Peru) #,##0.### -1.234,56 S/#,##0.00; S/-#,##0.00 S/-1.234,56
Spanish (Puerto Rico) #,##0.### -1,234.56 $#,##0.00; ($#,##0.00) ($1,234.56)
Spanish (Spain) #,##0.### -1.234,56 #,##0.00 Pts -1.234,56 Pts
Spanish (Uruguay) #,##0.### -1.234,56 NU$ #,##0.00; (NU$#,##0.00) (NU$1.234,56)
Spanish (Venezuela) #,##0.### -1.234,56 Bs#,##0.00; Bs -#,##0.00 Bs -1.234,56
Swedish #,##0.### -1 234,56 #,##0.00 - 1 234,56
Swedish (Sweden) #,##0.### -1 234,56 #,##0.00 kr -1 234,56 kr
Thai #,##0.### -1,234.56 #,##0.00 - 1,234.56
Thai (Thailand) #,##0.### -1,234.56 #,##0.00; -#,##0.00 -1,234.56
Turkish #,##0.### -1.234,56 #,##0.00 - 1.234,56
Turkish (Turkey) #,##0.### -1.234,56 #,##0.00 TL -1.234,56 TL
Ukrainian #,##0.### -1.234,56 #,##0.00 - 1.234,56
Ukrainian (Ukraine) #,##0.### -1.234,56 #,##0.## -1.234,56

16.6.2 DecimalFormatSymbols

Each DecimalFormat object has a DecimalFormatSymbols object that contains a list of the
different symbols used by decimal number formats in a particular locale. The decimal format
symbols specify the characters or strings used for the zero digit, the grouping separator, the
decimal sign, the percent sign, the mille percent sign, infinity (IEEE 754 Inf), not a number
(IEEE 754 NaN), and the minus sign. DecimalFormatSymbols has two constructors, but
they're rarely used:

public DecimalFormatSymbols()
public DecimalFormatSymbols(Locale locale)

Instead, the DecimalFormatSymbols object is retrieved from a particular DecimalFormat
object using its getDecimalFormatSymbols() method:

Java I/O

422

public DecimalFormatSymbols getDecimalFormatSymbols()

If you create your own DecimalFormatSymbols object, perhaps for a locale Java doesn't
support, you can make a DecimalFormat use it by passing it to DecimalFormat's
setDecimalFormatSymbols() method:

public void setDecimalFormatSymbols(DecimalFormatSymbols newSymbols)

The DecimalFormatSymbols class contains mostly get and set methods for inspecting and
setting the values of the different symbols:

public char getZeroDigit()
public void setZeroDigit(char zeroDigit)
public char getGroupingSeparator()
public void setGroupingSeparator(char groupingSeparator)
public char getDecimalSeparator()
public void setDecimalSeparator(char decimalSeparator)
public char getPercent()
public void setPercent(char percent)
public char getPerMill()
public void setPerMill(char perMill)
public String getInfinity()
public void setInfinity(String infinity)
public String getNaN()
public void setNaN(String NaN)
public char getMinusSign()
public void setMinusSign(char minusSign)

The zero digit is the character used for zero. This is in most Western languages but is different
in Arabic and a few other locales. The grouping separator is the character used to split groups;
a comma is used in the U.S., but a period is used in some other countries that use a comma as
the decimal separator. The decimal separator is a decimal point (a period) in English but a

comma in some other locales. The percent and per mille characters are % and in English,
occasionally other things in other locales. The infinity and not-a-number strings are rarely
changed. They're Inf and NaN as specified by IEEE 754, generally even in non-English
languages like German, where the word for infinity is Unbegrenztheit and "not a number"
translates as "nicht eine Zahl." Finally, the minus sign is the default character used for
negative numbers that do not have a specific prefix. It's a hyphen (-) in English. This character
is not used if the associated pattern has set a negative prefix.

The DecimalFormatSymbols class also lets you set two of the characters used in patterns. The
digit character, # by default, and the pattern separator character, a semicolon by default, can
be changed if you want to use one of those characters as a literal in the pattern; for example,
by using a # instead of a period for the decimal separator.

public char getDigit()
public void setDigit(char digit)
public char getPatternSeparator()
public void setPatternSeparator(char patternSeparator)

The pattern separator is used to separate positive from negative patterns. If no explicit
negative pattern is given, then a minus sign is simply prefixed onto the positive pattern
instead.

Java I/O

423

16.6.2.1 Utility methods

For completeness, I'll note that DecimalFormatSymbols overrides the usual three utility
methods from java.lang.Object, hashCode(), clone(), and equals():

public int hashCode()
public boolean equals(Object obj)
public Object clone()

One DecimalFormatSymbols object is equal to another DecimalFormatSymbols object if
they're instances of the same class and all their symbols are the same.

16.6.3 Constructing Decimal Formats with Patterns and Symbols

Most of the time, you use the factory methods in NumberFormat to get DecimalFormat
instances. However, there are three public DecimalFormat constructors you can use to create
DecimalFormat instances directly:

public DecimalFormat()
public DecimalFormat(String pattern)
public DecimalFormat(String pattern, DecimalFormatSymbols symbols)

The no-argument constructor creates a decimal format that uses the default pattern and
symbols for the default locale. The second constructor creates a decimal format that uses the
specified pattern and the default symbols for the default locale. The third constructor creates a
decimal format that uses the specified pattern and the specified symbols for the default locale.
These are useful for special cases that aren't handled by the default patterns and symbols.

16.7 An Exponential Number Format

The DecimalFormat class is useful for medium-sized numbers, but it doesn't work very well
for exceptionally large numbers like Avogadro's number
(6,022,094,300,000,000,000,000,000) or exceptionally small numbers like Planck's constant
(0.00000000000000000000000000625 erg-seconds). These are traditionally written in
scientific notation as a decimal number times 10 to a certain power, positive or negative; for
example, 6.0220943 × 1023 and 6.25 × 10-27 erg-seconds. In most programming languages,
including Java, an E followed by either a + or a - is used to represent "× 10 to the power"; for
example, 6.0220943E+23 or 6.25E-27 erg-seconds.

The java.text package does not provide support for formatting numbers in scientific
notation,[3] so as the final example of this chapter, I'll develop a new subclass of
NumberFormat that does use scientific notation. Technically, scientific notation requires
exactly one nonzero digit before the decimal point, but I'll be a little more general than that,
providing for numbers like 13.2E-8 as well.

The NumberFormat class is abstract. It declares three abstract methods any subclass must
implement:

3 The java.lang.Double class's toString() methods do format numbers less than 0.001 or greater than 10 million in scientific
notation.

Java I/O

424

public abstract StringBuffer format(double number, StringBuffer toAppendTo,
 FieldPosition pos)
public abstract StringBuffer format(long number, StringBuffer toAppendTo,
 FieldPosition pos)
public abstract Number parse(String text, ParsePosition parsePosition)

The two format methods must format a long and a double respectively, update the
FieldPosition object with the locations of the different fields, append the formatted string
to the string buffer toAppendTo, and return that same string buffer. The parse() method
must read a number in scientific notation, convert it to a java.lang.Number (that is, a
java.lang.Long or a java.lang.Double) and return that.

The concrete formatting methods in NumberFormat all invoke these methods, so they may be
kept as is rather than being overridden. However, it would not hurt to override clone(),
hashCode(), and equals(). You could also add some additional methods to specify
formatting of the exponent. However, to keep this example reasonably compact, I'll assume
that the exponent is only as wide as it needs to be with either a + or a - prefix. This is large
enough to handle both the largest and the smallest double values in Java
(1.79769313486231570e+308 and 4.94065645841246544e-324, respectively).

A typical exponential number has three fields: the integer, the fraction, and the exponent. It
would be nice to define constants for these fields and use the FieldPosition object passed to
format() to identify the locations of these fields in the formatted output. Regrettably, the
java.text API does not provide adequate support for third-party formatting classes. The
FieldPosition set methods are "friendly"—that is, accessible only to other classes in the
same package—so our class can't use them.

void setBeginIndex(int bi)
void setEndIndex(int ei)

Similarly, there's no way to add extra field definitions, such as an exponent field. Therefore,
any user-created Format subclass will be crippled relative to the ones JavaSoft provides.

Example 16.9 shows the code for the ExponentialFormat class. There are at least three
different ways to parse and format exponential numbers. The simplest, and the one I've used
here, is to treat an exponential number as a combination of a decimal number plus the letter
"e" or "E" plus an integer. Then use DecimalFormat to format or parse those parts. It would
be slightly more efficient to do all formatting directly, but the benefits of code reuse more
than offset a small increase in efficiency. Internationalization comes for free, since the
DecimalFormat class handles internationalization. A DecimalFormat object for a given
locale may be passed to the constructor. Otherwise, the format for the default locale is
selected.

Example 16.9. ExponentialFormat

import java.text.*;
import java.io.*;
import java.util.*;

Java I/O

425

/**
 * Concrete class for formatting large and small numbers, allowing a
variety
 * of exponential/scientific notation
 * @see java.util.Format
 * @see java.text.NumberFormat
 * @version 1.0 25 Jan 1998
 * @author Elliotte Rusty Harold
 */
public class ExponentialFormat extends NumberFormat {

 // might make this only a number format
 DecimalFormatSymbols symbols;
 DecimalFormat parser;

 public ExponentialFormat() {
 this(new DecimalFormat());
 }

 /**
 * Create an ExponentialFormat from the given format and the symbols
 * for the default locale.
 * <p>
 * @param format The decimal format that parses the parts of the
exponential.
 */
 public ExponentialFormat(DecimalFormat format) {
 this.parser = format;
 this.symbols = format.getDecimalFormatSymbols();
 this.parser.setGroupingUsed(false);
 }

 public StringBuffer format(double number, StringBuffer toAppendTo,
 FieldPosition pos) {

 if (Double.isNaN(number)) {
 toAppendTo.append(symbols.getNaN());
 }
 else if (number < 0) {
 toAppendTo.append(symbols.getMinusSign());
 number = -number;
 }
 // Now we just have to format a nonnegative number.
 if (Double.isInfinite(number)) {
 toAppendTo.append(symbols.getInfinity());
 }
 else {
 int maxFractionDigits = this.getMaximumFractionDigits();
 if (maxFractionDigits <= 0) maxFractionDigits = 1;
 int maxIntegerDigits = this.getMaximumIntegerDigits();
 if (maxIntegerDigits <= 0) maxIntegerDigits = 1;
 int minIntegerDigits = this.getMinimumIntegerDigits();
 if (minIntegerDigits <= 0) minIntegerDigits = 1;
 int minFractionDigits = this.getMinimumFractionDigits();
 if (minFractionDigits <= 0) minFractionDigits = 1;
 if (number == 0.0) {
 for (int i = 0; i < minIntegerDigits; i++) {
 toAppendTo.append(symbols.getZeroDigit());
 }
 toAppendTo.append(symbols.getDecimalSeparator());
 for (int i = 0; i < minFractionDigits; i++){

Java I/O

426

 toAppendTo.append(symbols.getZeroDigit());
 }
 toAppendTo.append("E+000");
 }
 else { // positive number
 // Find integer, fraction, and exponent.
 // This method creates some round-off error but is relatively easy
 // to understand. If round-off is a concern, an alternative method
 // that treats the double as a binary number may be seen in the
 // source code for java.lang.FloatingDecimal.
 double exponent = Math.floor(Math.log(number) / Math.log(10));
 double normalized = number / Math.pow(10, exponent);
 for (int i = 1; i < minIntegerDigits; i++) {
 normalized *= 10;
 exponent--;
 }
 parser.setMinimumFractionDigits(minFractionDigits);
 parser.format(normalized, toAppendTo, pos);
 toAppendTo.append('E');
 if (exponent >= 0) toAppendTo.append('+');
 toAppendTo.append((int) exponent);
 }
 }
 return toAppendTo;
 }

 public StringBuffer format(long number, StringBuffer toAppendTo,
 FieldPosition pos) {

 if (number < 0) {
 toAppendTo.append(symbols.getMinusSign());
 number = -number;
 }

 int maxFractionDigits = this.getMaximumFractionDigits();
 if (maxFractionDigits <= 0) maxFractionDigits = 1;
 int maxIntegerDigits = this.getMaximumIntegerDigits();
 if (maxIntegerDigits <= 0) maxIntegerDigits = 1;
 int minIntegerDigits = this.getMinimumIntegerDigits();
 if (minIntegerDigits <= 0) minIntegerDigits = 1;
 int minFractionDigits = this.getMinimumFractionDigits();
 if (minFractionDigits <= 0) minFractionDigits = 1;
 if (number == 0) {
 for (int i = 0; i < minIntegerDigits; i++) {
 toAppendTo.append(symbols.getZeroDigit());
 }
 toAppendTo.append(symbols.getDecimalSeparator());
 for (int i = 0; i < minFractionDigits; i++) {
 toAppendTo.append(symbols.getZeroDigit());
 }
 toAppendTo.append("E+000");
 }
 else { // positive number
 // Find integer, fraction, and exponent.

 int exponent = (int) Math.floor(Math.log(number) / Math.log(10));
 exponent -= minIntegerDigits - 1;
 String digits = Long.toString(number);
 while (digits.length() < minIntegerDigits + maxFractionDigits) {
 digits += '0';
 }

Java I/O

427

 String integerField = digits.substring(0, minIntegerDigits);
 String fractionField = digits.substring(minIntegerDigits,
 minIntegerDigits+maxFractionDigits);

 toAppendTo.append(integerField);
 toAppendTo.append(symbols.getDecimalSeparator());
 toAppendTo.append(fractionField);
 toAppendTo.append('E');
 if (exponent > 0) toAppendTo.append('+');
 toAppendTo.append(exponent);
 }
 return toAppendTo;
 }

public Number parse(String text, ParsePosition parsePosition) {

 int oldIndex = parsePosition.getIndex();

 try {
 double result = parser.parse(text, parsePosition).doubleValue();
 int eposition = text.toUpperCase().indexOf('E');
 if (eposition != -1) {
 // advance past the E
 parsePosition.setIndex(eposition + 1);
 // ignore a + sign
 if (text.charAt(parsePosition.getIndex()) == '+') {
 parsePosition.setIndex(parsePosition.getIndex() + 1);
 }
 int exponent = parser.parse(text, parsePosition).intValue();
 result *= Math.pow(10, exponent);
 }
 return new Double(result);
 }
 catch (Exception e) {
 parsePosition.setIndex(oldIndex);
 return null;
 }
 }
 public Object clone() {

 ExponentialFormat theClone = (ExponentialFormat) super.clone();
 theClone.parser = (DecimalFormat) parser.clone();
 theClone.symbols = (DecimalFormatSymbols)
 theClone.parser.getDecimalFormatSymbols();
 return theClone;
 }

 /**
 * Overrides equals
 */
 public boolean equals(Object o) {

 if (!super.equals(o)) return false;
 ExponentialFormat other = (ExponentialFormat) o;
 other.symbols = other.parser.getDecimalFormatSymbols();
 if (!this.parser.equals(other.parser)) return false;
 if (!this.symbols.equals(other.symbols)) return false;
 return true;
 }

Java I/O

428

 /**
 * Overrides hashCode
 */
 public int hashCode() {
 return super.hashCode() * 31 + parser.getNegativePrefix().hashCode();
 }
}

Aside from special cases like Inf and NaN, the big trick in formatting both longs and doubles
is to separate the mantissa from the exponent. The mantissa is the set of digits that comes
before the E. For example, in 6.0220943E+23 the mantissa is 6.0220943. (Technically, the
mantissa is 60220943 without a decimal point, but for reasons you'll see shortly, I need to
hang onto it.) By separating the mantissa from the exponent, we can format each one
separately, then concatenate them together with an "E" in between. The problem is that Java
doesn't have any real concept of mantissa or exponent, especially in base 10. We find the
exponent by taking the log10 of the number and rounding toward zero to the nearest integer.
(Math.floor(Math.log(number) / Math.log(10))). Dividing the loose line number by
Math.pow(10, exponent), we get a mantissa between 1 and 9.999999999.

For true scientific notation, this is exactly what you want. However, this program is a little
more general and allows programmers to choose to format numbers as 13.24E+12 instead of
the equivalent 1.324E+13. Therefore, if the programmer sets the minimum integer digits
higher than 1, we shift the mantissa to the left (multiply by 10) and subtract 1 from the
exponent for each shift. In exponential notation, unlike regular decimal notation, a minimum
number of integer digits greater than the available number of integer digits does not lead to
insignificant zeros.

Parsing is easier. All we have to do is read the exponential string, like 6.345E-1, twice. The
first time you read, you get the mantissa (6.345). The parse() method automatically stops
when it encounters the nonnumeric character E. Advance the parse position one space to skip
past the E and read the exponent. Then multiply the mantissa by Math.pow(10, exponent),
convert that into a Double object, and return it. If there's a problem parsing the exponent, then
we reset parsePosition back to its original value and return null.

By the way, in case you were wondering, the fourth official language of Switzerland is
Romansh, also known as Rhaeto-Romanic. Romansh is spoken by about 1.5% of
Switzerland's population and survives the onslaught of German/French/English/Italian by
virtue of being prevalent in many isolated mountain communities in the Alps.

Java I/O

429

Chapter 17. The Java Communications API
This chapter covers the Java Communications API 2.0, a standard extension available in Java
1.1 and later that allows Java applications (but not applets) to send and receive data to and
from the serial and parallel ports of the host computer. The Java Communications API allows
Java programs to communicate with essentially any device connected to a serial or parallel
port, like a printer, a scanner, a modem, a tape backup unit, and so on. The Comm API
operates at a very low level. It only understands how to send and receive bytes to these ports.
It does not understand anything about what these bytes mean. Doing useful work generally
requires not only understanding the Java Communications API (which is actually quite
simple) but also the protocols spoken by the devices connected to the ports (which can be
almost arbitrarily complex).

17.1 The Architecture of the Java Communications API

Because the Java Communications API is a standard extension, it is not installed by default
with the JDK. You have to download it from
http://java.sun.com/products/javacomm/index.html and install it separately.

This chapter is based on the first beta of the Java Communications API.
It is almost certain that some parts of this chapter will become
inaccurate by the time you read this. Indeed, throughout the process of
writing this chapter, I identified a number of bugs and inconsistencies
that I forwarded to Sun. They even fixed a few in between early access
3 and beta 1. If you have trouble with anything you see here, cross-
check it with the most up-to-date documentation from Sun. I'll also try
to post minor corrections on my web site at
http://metalab.unc.edu/javafaq/books/javaio/.

The Java Communications API contains a single package, javax.comm, which holds a baker's
dozen of classes, exceptions, and interfaces. Because the Comm API is a standard extension,
the javax prefix is used instead of the java prefix. The Java Comm API also includes a DLL,
or shared library, containing the native code to communicate with the ports, and a few driver
classes in the com.sun.comm package that mostly handle the vagaries of Unix or Wintel ports.
Other vendors may need to muck around with these if they're porting the Comm API to
another platform (e.g., the Mac or OS/2), but as a user of the API, you'll only concern yourself
with the documented classes in javax.comm.

javax.comm is divided into high-level and low-level classes. High-level classes are
responsible for controlling access to and ownership of the communication ports and
performing basic I/O. The CommPortIdentifier class lets you find and open the ports
available on a system. The CommPort class provides input and output streams connected to the
ports. Low-level classes—javax.comm.SerialPort and javax.comm.ParallelPort, for
example—manage interaction with particular kinds of ports and help you read and write the
control wires on the ports. They also provide event-based notification of changes to the state
of the port.

Java I/O

430

Version 2.0 of the Java Comm API understands RS-232 serial ports and IEEE 1284-type
parallel ports. Future releases may add support for other kinds of ports, like the Universal
Serial Bus (USB), FireWire, or SCSI.

17.2 Identifying Ports

The javax.comm.CommPortIdentifier class is the control room for the ports on a system. It
has methods that list the available ports, figure out which program owns them, take control of
a port, and open a port so you can perform I/O with it. The actual I/O, stream-based or
otherwise, is performed through an instance of javax.comm.CommPort that represents the port
in question. The purpose of CommPortIdentifier is to mediate between different programs,
objects, or threads that want to use the same port.

17.2.1 Finding the Ports

Before you can use a port, you need a port identifier for the port. Because the possible port
identifiers are closely tied to the physical ports on the system, you cannot simply construct an
arbitrary CommPortIdentifier object. (For instance, Macs have no parallel ports, and iMacs
don't have serial or parallel ports.) Instead, you use one of several static methods in
javax.comm.CommPortIdentifier that use native methods and nonpublic constructors to
find and create the right port. These include:

public static Enumeration getPortIdentifiers()
public static CommPortIdentifier getPortIdentifier(String portName)
 throws NoSuchPortException
public static CommPortIdentifier getPortIdentifier(CommPort port)
 throws NoSuchPortException

The most general of these is CommPortIdentifier.getPortIdentifiers(), which returns a
java.util.Enumeration containing one CommPortIdentifier for each of the ports on the
system. Example 17.1 uses this method to list all the ports on the system.

Example 17.1. PortLister

import javax.comm.*;
import java.util.*;

public class PortLister {

 public static void main(String[] args) {

 Enumeration e = CommPortIdentifier.getPortIdentifiers();
 while (e.hasMoreElements()) {
 System.out.println((CommPortIdentifier) e.nextElement());
 }
 }
}

Here's the output I got when I ran PortLister on my fairly stock Wintel PC:

D:\JAVA\17\>java PortLister
javax.comm.CommPortIdentifier@be3c9581
javax.comm.CommPortIdentifier@be209581
javax.comm.CommPortIdentifier@be489581

Java I/O

431

javax.comm.CommPortIdentifier@be4c9581

This shows you that my system has four ports, though it doesn't tell you what those ports are.
Of course, the output will vary depending on how many serial and parallel ports your system
possesses, and those first few lines are liable to disappear in the release version of the Comm
API. Clearly, a better toString() method is needed. (CommPortIdentifier merely inherits
java.lang.Object's toString() method.) You'll see how to work around this in the next
section.

You can also get a CommPortIdentifier by using the static method getPortIdentifier()
to request a port identifier, either by name or by the actual port object. The latter assumes that
you already have a reference to the relevant port, which usually isn't the case. The former
allows you to choose from Windows standard names like "COM1" and "LPT2" or Unix
names like "Serial A" and "Serial B." The exact format of a name is highly platform- and
implementation-dependent. If you ask for a port that doesn't exist, a NoSuchPortException is
thrown. Example 17.2 looks for serial and parallel ports by starting with COM1 and LPT1 and
counting up until one is missing. Be warned that this code is highly platform-dependent and
probably won't work on Unix or the Mac.

Example 17.2. NamedPortLister

import javax.comm.*;

public class NamedPortLister {

 public static void main(String[] args) {

 // List serial (COM) ports.
 try {
 int portNumber = 1;
 while (true) {
 CommPortIdentifier.getPortIdentifier("COM" + portNumber);
 System.out.println("COM" + portNumber);
 portNumber++;
 }
 }
 catch (NoSuchPortException e) {
 // Break out of loop.
 }

 // List parallel (LPT) ports.
 try {
 int portNumber = 1;
 while (true) {
 CommPortIdentifier.getPortIdentifier("LPT" + portNumber);
 System.out.println("LPT" + portNumber);
 portNumber++;
 }
 }
 catch (NoSuchPortException e) {
 // Break out of loop.
 }
 }
}

Once again, here's the output from a stock Wintel box:

Java I/O

432

D:\JAVA\16>java NamedPortLister
COM1
COM2
LPT1
LPT2

Now you can see that I have two serial and two parallel ports. However, this same program
would fail on Unix, because it relies on hard-wired port names.

17.2.2 Getting Information About a Port

Once you have a CommPortIdentifier identifying a particular port, you can discover
information about the port by calling several accessor methods. These include:

public String getName()
public int getPortType()
public String getCurrentOwner()
public boolean isCurrentlyOwned()

The getName() method returns the platform-dependent name of the port, such as "COM1"
(Windows) "Serial A" (Solaris) or "modem" (Mac).[1] The getPortType() method returns one
of the two mnemonic constants CommPortIdentifier.PORT_SERIAL or
CommPortIdentifier.PORT_PARALLEL:

public static final int PORT_SERIAL = 1;
public static final int PORT_PARALLEL = 2;

The isCurrentlyOwned() method returns true if some process, thread, or application
currently has control of the port. It returns false otherwise. If a port is owned by another Java
program, the getCurrentOwner() returns the name supplied by the program that owns it;
otherwise, it returns null. This isn't too useful, because it doesn't handle the much more likely
case that a non-Java program like Dial-Up Networking or PPP is using the port. A comment
in the source code indicates that this should be fixed so that non-Java programs can also be
identified; this limitation may not exist by the time you read this. Example 17.3 is a revision
of the PortLister in Example 17.1 that uses these four accessor methods to provide
information about each port rather than relying on the inherited toString() method.

Example 17.3. PrettyPortLister

import javax.comm.*;
import java.util.*;

public class PrettyPortLister {

 public static void main(String[] args) {

 Enumeration e = CommPortIdentifier.getPortIdentifiers();
 while (e.hasMoreElements()) {
 CommPortIdentifier com = (CommPortIdentifier) e.nextElement();
 System.out.print(com.getName());

1 That last one is hypothetical. The Comm API hasn't been ported to the Mac as of the time of this writing.

Java I/O

433

 switch(com.getPortType()) {
 case CommPortIdentifier.PORT_SERIAL:
 System.out.print(", a serial port, ");
 break;
 case CommPortIdentifier.PORT_PARALLEL:
 System.out.print(", a parallel port, ");
 break;
 default:
 // Important since other types of ports like USB
 // and firewire are expected to be added in the future.
 System.out.print(" , a port of unknown type, ");
 break;
 }
 if (com.isCurrentlyOwned()) {
 System.out.println("is currently owned by "
 + com.getCurrentOwner() + ".");
 }
 else {
 System.out.println("is not currently owned.");
 }
 }
 }
}

Here's the output when run on a stock Wintel box:

D:\JAVA\16>java PrettyPrintLister
COM1, a serial port, is not currently owned.
COM2, a serial port, is not currently owned.
LPT1, a parallel port, is not currently owned.
LPT2, a parallel port, is not currently owned.

This output originally confused me, because I expected one of the COM ports to be occupied
by the Dial-Up Networking PPP connection on the internal modem (COM2). However, the
isCurrentlyOwned() method only notices other Java programs in the same VM occupying
ports. To detect whether a non-Java program is controlling a port, you must try to open the
port and watch for PortInUseExceptions, as discussed in the next section.

17.2.3 Opening Ports

Before you can read from or write to a port, you have to open it. Opening a port gives your
application exclusive access to the port until you give it up or the program ends. (Two
different programs should not send data to the same modem or printer at the same time, after
all.) Opening a port is not guaranteed to succeed. If another program (Java or otherwise) is
using the port, a PortInUseException will be thrown when you try to open the port.
Surprisingly, this is not a subclass of IOException.

public class PortInUseException extends Exception

CommPortIdentifier has two open() methods; they return a javax.comm. CommPort object
you can use to read data from and write data to the port. The first variant takes two arguments,
a name and a time-out value:

public synchronized CommPort open(String name, int timeout)
 throws PortInUseException

Java I/O

434

The name argument is a name for the program that wants to use the port and will be returned
by getCurrentOwner() while the port is in use. The timeout argument is the maximum
number of milliseconds this method will block while waiting for the port to become available.
If the operation does not complete within that time, a PortInUseException is thrown.
Example 17.4 is a variation of the PortLister program that attempts to open each unowned
port.

Example 17.4. PortOpener

import javax.comm.*;
import java.util.*;

public class PortOpener {

 public static void main(String[] args) {

 Enumeration thePorts = CommPortIdentifier.getPortIdentifiers();
 while (thePorts.hasMoreElements()) {
 CommPortIdentifier com = (CommPortIdentifier) thePorts.nextElement();
 System.out.print(com.getName());

 switch(com.getPortType()) {
 case CommPortIdentifier.PORT_SERIAL:
 System.out.print(", a serial port, ");
 break;
 case CommPortIdentifier.PORT_PARALLEL:
 System.out.print(", a parallel port, ");
 break;
 default:
 // important since other types of ports like USB
 // and firewire are expected to be added in the future
 System.out.print(" , a port of unknown type, ");
 break;
 }
 try {
 CommPort thePort = com.open("PortOpener", 10);
 System.out.println("is not currently owned.");
 thePort.close();
 }
 catch (PortInUseException e) {
 String owner = com.getCurrentOwner();
 if (owner == null) owner = "unknown";
 System.out.println("is currently owned by " + owner + ".");
 }
 }
 }
}

Here's the output:

D:\JAVA\16>java PortOpener
COM1, a serial port, is not currently owned.
COM2, a serial port, is currently owned by Port currently not owned.
LPT1, a parallel port, is not currently owned.
LPT2, a parallel port, is currently owned by Port currently not owned.

Java I/O

435

In this example, you see that COM2 is occupied, though by a non-Java program that did not
register its name. You also see that LPT2 is occupied, which was something of a surprise to
me—I didn't think I was using any parallel ports.

The second open() method takes a file descriptor as an argument:

public CommPort open(FileDescriptor fd) throws
UnsupportedCommOperationException

This may be useful on operating systems like Unix, where all devices, serial ports included,
are treated as files. On all other platforms, this method throws an
UnsupportedCommOperationException:

public class UnsupportedCommOperationException extends Exception

There is no corresponding close() method in the CommPortIdentifier class. The necessary
close() method is included in the CommPort class itself. You should close all ports you've
opened when you're through with them.

17.2.4 Waiting for a Port with Port Ownership Events

The CommPortIdentifier class has two methods that are used to receive notification of
changes in the ownership of the port. These are:

public void addPortOwnershipListener(CommPortOwnershipListener listener)
public void removePortOwnershipListener(CommPortOwnershipListener listener)

Port ownership events are fired to signal that a port has been opened, a port has been closed,
or another application wants to take control of the port. To listen for ownership changes on a
particular port, you must register a CommPortOwnershipListener object with the
CommPortIdentifier object representing the port using the addPortOwnershipListener()
method:

public void addPortOwnershipListener(CommPortOwnershipListener listener)

You can deregister the port ownership listener by passing it to removePort-
OwnershipListener():

public void removePortOwnershipListener(CommPortOwnershipListener listener)

The javax.comm.CommPortOwnershipListener is a subinterface of
java.util.EventListener that declares the single method ownershipChange():

public abstract void ownershipChange(int type)

The CommPortOwnershipListener interface is unusual; unlike other event listener interfaces,
the listener method is passed an int rather than an event. This int will generally have one of
three values that indicate particular changes in the ownership of the port. All three values are
defined as mnemonic constants in javax.comm.CommPortOwnershipListener:

Java I/O

436

CommPortOwnershipListener.PORT_OWNED
CommPortOwnershipListener.PORT_UNOWNED
CommPortOwnershipListener.PORT_OWNERSHIP_REQUESTED

PORT_OWNED means some application has taken ownership of the port. PORT_UNOWNED means
some application has released ownership of the port. Finally, PORT_OWNERSHIP_REQUESTED
means some application has requested ownership of the port but does not yet have it, because
another application owns it. If the owner of the port hears the event, it can close the port to
give it up to the requesting application. Example 17.5 is a program that watches for port
ownership changes. It's of limited use, since these events only appear to be fired when a Java
program takes over or releases a port, not when other programs do.

Example 17.5. PortWatcher

import javax.comm.*;

public class PortWatcher implements CommPortOwnershipListener {

 String portName;

 public PortWatcher(String portName) throws NoSuchPortException {
 this.portName = portName;
 CommPortIdentifier portIdentifier =
 CommPortIdentifier.getPortIdentifier(portName);
 portIdentifier.addPortOwnershipListener(this);
 }

 public void ownershipChange(int type) {

 switch (type) {

 case CommPortOwnershipListener.PORT_OWNED:
 System.out.println(portName + " has become unavailable");
 break;
 case CommPortOwnershipListener.PORT_UNOWNED:
 System.out.println(portName + " has become available");
 break;
 case CommPortOwnershipListener.PORT_OWNERSHIP_REQUESTED:
 System.out.println("An application has requested onwership of "
 + portName);
 break;
 default:
 System.out.println("Unknown port ownership event, type " + type);
 }
 }

 public static void main(String[] args) {

 try {
 PortWatcher pw = new PortWatcher(args[0]);
 }
 catch (Exception e) {
 System.err.println("Usage: java PortWatcher port_name");
 }
 }
}

Java I/O

437

17.2.5 Registering Ports

For completeness, I'll note the static CommPortIdentifier.addPortName() method:

public static void addPortName(String portName, int portType, CommDriver
driver)

This method registers a particular name, type, and driver with the Comm API so that it can be
returned by CommPortIdentifier.getPortIdentifiers() and similar methods. Like the
javax.comm.CommDriver class that addPortName() takes as its third argument, this method
is intended only for implementers of the Java Comm API, not for application programmers.

17.3 Communicating with a Device on a Port

The open() method of the CommPortIdentifier class returns a CommPort object. The
javax.comm.CommPort class has methods for getting input and output streams from a port
and for closing the port. There are also a number of driver-dependent methods for adjusting
the properties of the port.

17.3.1 Communicating with a Port

There are five basic steps to communicating with a port:

1. Open the port using the open() method of CommPortIdentifier. If the port is
available, this returns a CommPort object. Otherwise, a PortInUseException is
thrown.

2. Get the port's output stream using the getOutputStream() method of CommPort.
3. Get the port's input stream using the getInputStream() method of CommPort.
4. Read and write data onto those streams as desired.
5. Close the port using the close() method of CommPort.

Steps 2 through 4 are new. However, they're not particularly complex. Once the connection
has been established, you simply use the normal methods of any input or output stream to read
and write data. The getInputStream() and getOutputStream() methods of CommPort are
similar to the methods of the same name in the java.net.URL class. The primary difference
is that with Comm ports, you're completely responsible for understanding and handling the
data that's sent to you. There are no content or protocol handlers that perform any
manipulation of the data. If the device attached to the port requires a complicated protocol—
for example, a fax modem—then you'll have to handle the protocol manually.

public abstract InputStream getInputStream() throws IOException
public abstract OutputStream getOutputStream() throws IOException

Although these methods are declared abstract in CommPort, any instance of CommPort you
retrieve from open() will naturally be a concrete subclass of CommPort in which these
methods are implemented.

Some ports are unidirectional. In other words, the port hardware only supports writing or
reading, not both. For instance, early PC parallel ports only allowed the computer to send data
to the printer but could only send a small number of precisely defined signals back to the

Java I/O

438

computer. This was fine for a printer, but it meant that the parallel port wasn't useful for a
device like a CD-ROM or a Zip drive. If the port you've opened doesn't allow writing,
getOutputStream() returns null. If the port doesn't allow reading, getInputStream()
returns null.

Example 17.6 is a simple character-mode program that allows you to type back and forth with
a port. If a modem is attached to the port, you can use it as an extremely rudimentary terminal
emulator. Two separate threads handle input and output so that input doesn't get blocked
waiting for output and vice versa.

Example 17.6. PortTyper

import javax.comm.*;
import java.util.*;
import java.io.*;

public class PortTyper {

 public static void main(String[] args) {

 if (args.length < 1) {
 System.out.println("Usage: java PortTyper portName");
 return;
 }

 try {
 CommPortIdentifier com =
CommPortIdentifier.getPortIdentifier(args[0]);
 CommPort thePort = com.open("PortOpener", 10);
 CopyThread input = new CopyThread(System.in,
thePort.getOutputStream());
 CopyThread output = new CopyThread(thePort.getInputStream(),
System.out);
 input.start();
 output.start();
 }
 catch (Exception e) {System.out.println(e);}
 }
}

class CopyThread extends Thread {

 InputStream theInput;
 OutputStream theOutput;

 CopyThread(InputStream in) {
 this(in, System.out);
 }

 CopyThread(OutputStream out) {
 this(System.in, out);
 }

 CopyThread(InputStream in, OutputStream out) {
 theInput = in;
 theOutput = out;
 }

Java I/O

439

 public void run() {

 try {
 byte[] buffer = new byte[256];
 while (true) {
 int bytesRead = theInput.read(buffer);
 if (bytesRead == -1) break;
 theOutput.write(buffer, 0, bytesRead);
 }
 }
 catch (IOException e) {System.err.println(e);}
 }
}

Here's a sample session where I used this program to connect to my ISP. After I logged out,
the incoming line rang three times, which you also see:

D:\JAVA\16>java PortTyper COM2
at&f
at&f

OK
atdt 321-1444
atdt 321-1444

CONNECT 9600/ARQ
Welcome to Cloud 9 Internet!

If you're already a user, please login below.
To sign up for an account, type 'new', with no password.

If you have trouble logging in, please call (914)696-4000.

login: elharo
elharo
Password: **********

Password: **********

Last login: Thu May 28 18:26:14 from 168.100.253.71
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
 The Regents of the University of California. All rights reserved.

FreeBSD 2.2.6-RELEASE (EARL-GREY) #0: Tue May 19 10:39:36 EDT 1998

You have new mail.
> logout
logo
Connection closed.

NO CARRIER

RING

RING

RING

This program would have been state of the art in 1978. These days, it's rather crude, and you'd
have to do a lot of work to develop it further. For one thing, local echo mode should be turned

Java I/O

440

off in the modem so that you don't see duplicates of everything you type. (Even my password
originally appeared on the screen in clear text. I replaced it with asterisks manually.) And no
effort at all is made to perform terminal emulation of any sort. Furthermore, there's no way to
exit the program and close the port. Terminating it with a Ctrl-C forces abnormal execution
that fails to release control of the port. Nonetheless, it's amazing just how quick and easy it is
to write a program that communicates with a simple serial port device. Communicating with a
basic daisy-wheel printer would be no harder.

17.3.2 Port Properties

The javax.comm.CommPort class has a number of driver-dependent methods for adjusting the
properties of the port. These properties are mostly generic characteristics, like buffer size, that
may be implemented in software. More specific properties of a particular type of port, like the
baud rate of a serial port or the mode of the parallel port, must be set using a more specific
subclass, like javax.comm.SerialPort or javax.comm.ParallelPort.

The five generic properties are receive threshold, time-out value, receive framing byte, input
buffer size, and output buffer size. Four of these properties—receive threshold, receive time-
out, receive framing and input buffer size—determine exactly how and when the input stream
blocks. The receive threshold specifies the number of bytes that must be available before a
call to read() returns. The receive time-out specifies the number of milliseconds that must
pass before a call to read() returns. The input buffer size specifies how large a buffer will be
provided for the serial port. If the buffer fills up, the read() method returns.

For instance, if the receive threshold is set to 5, read() won't return until at least 5 bytes are
available. If the receive timeout is set to 10 milliseconds, read() will wait 10 milliseconds
before returning. However, if data becomes available before 10 milliseconds are up, read()
returns immediately. For example, if the receive threshold is set to 5 bytes and the receive
time-out is set to 10 milliseconds, then read() will wait until either 10 milliseconds pass or 5
bytes are available before returning. If the input buffer size is set and the receive threshold is
set, the lower of the two values must be reached before read() will return. Finally, if receive
framing is enabled, all reads return immediately, regardless of the other values. Table 17.1
summarizes.

Table 17.1. When Does read() Return?
Receive
Threshold

Receive
Time-out

Receive
Framing

Input
Buffer Size read() Returns When

disabled disabled disabled b bytes Returns when any data is available.

n bytes disabled disabled b bytes Returns when either n or b bytes are available,
whichever is less.

disabled t ms disabled b bytes Returns after t milliseconds or when any data is
available.

n bytes t ms disabled b bytes Returns after t milliseconds or when either n or b
bytes are available, whichever is less.

disabled disabled enabled b bytes Returns immediately.
n bytes disabled enabled b bytes Returns immediately.
disabled t ms enabled b bytes Returns immediately.
n bytes t ms enabled b bytes Returns immediately.

Java I/O

441

The output buffer size is the number of bytes the driver can store for the output stream before
it can write to the port. This is important, because it's easy for a fast program to write data
faster than the port can send it out. Buffer overruns are a common problem, especially on
older PCs with slower serial ports.

Each of these properties has four methods: one enables the property, one disables it, one
checks whether the property is enabled, and one returns the current value. For instance, the
receive threshold is adjusted by these four methods:

public abstract void enableReceiveThreshold(int size)
 throws UnsupportedCommOperationException
public abstract void disableReceiveThreshold()
public abstract boolean isReceiveThresholdEnabled()
public abstract int getReceiveThreshold()

The other three properties follow the same naming conventions. These four methods adjust
the receive time-out:

public abstract void enableReceiveTimeout(int rcvTimeout)
 throws UnsupportedCommOperationException
public abstract void disableReceiveTimeout()
public abstract boolean isReceiveTimeoutEnabled()
public abstract int getReceiveTimeout()

These four methods adjust the receive framing property:

public abstract void enableReceiveFraming(int framingByte)
 throws UnsupportedCommOperationException
public abstract void disableReceiveFraming()
public abstract boolean isReceiveFramingEnabled()
public abstract int getReceiveFramingByte()

These four methods adjust the input and output buffer sizes:

public abstract void setInputBufferSize(int size)
public abstract int getInputBufferSize()
public abstract void setOutputBufferSize(int size)
public abstract int getOutputBufferSize()

All drivers must support input and output buffers, so there are no isInputBufferEnabled()
or disableOutputBuffer() methods. However, other than the input and output buffer sizes,
drivers are not required to support these properties. If a driver does not support the given
property, then enabling it will throw an UnsupportedCommOperationException. You can
determine whether or not a driver supports a property by trying to enable it and seeing
whether or not an exception is thrown. Example 17.7 uses this scheme to test the properties
for the ports of the host system.

Example 17.7. PortTester

import javax.comm.*;
import java.util.*;

public class PortTester {

Java I/O

442

 public static void main(String[] args) {

 Enumeration thePorts = CommPortIdentifier.getPortIdentifiers();
 while (thePorts.hasMoreElements()) {
 CommPortIdentifier com = (CommPortIdentifier) thePorts.nextElement();
 System.out.print(com.getName());

 switch(com.getPortType()) {
 case CommPortIdentifier.PORT_SERIAL:
 System.out.println(", a serial port: ");
 break;
 case CommPortIdentifier.PORT_PARALLEL:
 System.out.println(", a parallel port: ");
 break;
 default:
 // important since other types of ports like USB
 // and firewire are expected to be added in the future
 System.out.println(" , a port of unknown type: ");
 break;
 }

 try {
 CommPort thePort = com.open("Port Tester", 20);
 testProperties(thePort);
 thePort.close();
 }
 catch (PortInUseException e) {
 System.out.println("Port in use, can't test properties");
 }
 System.out.println();
 }
 }

 public static void testProperties(CommPort thePort) {

 try {
 thePort.enableReceiveThreshold(10);
 System.out.println("Receive threshold supported");
 }
 catch (UnsupportedCommOperationException e) {
 System.out.println("Receive threshold not supported");
 }

 try {
 thePort.enableReceiveTimeout(10);
 System.out.println("Receive timeout not supported");
 }
 catch (UnsupportedCommOperationException e) {
 System.out.println("Receive framing not supported");
 }

 try {
 thePort.enableReceiveFraming(10);
 System.out.println("Receive framing supported");
 }
 catch (UnsupportedCommOperationException e) {
 System.out.println("Receive framing not supported");
 }
 }
}

Java I/O

443

Here's the results for both serial and parallel ports from a Windows NT box running the
Comm API 2.0:

D:\JAVA\16>java PortTester
COM1, a serial port:
Receive threshold supported
Receive timeout supported
Receive framing supported

COM2, a serial port:
Port in use, can't test properties

LPT1, a parallel port:
Receive threshold supported
Receive timeout supported
Receive framing supported

LPT2, a parallel port:
Port in use, can't test properties

17.4 Serial Ports

The javax.comm.SerialPort class is an abstract subclass of CommPort that provides various
methods and constants useful for working with RS-232 serial ports and devices. The main
purposes of the class are to allow the programmer to inspect, adjust, and monitor changes in
the settings of the serial port. Simple input and output is accomplished with the methods of
the superclass, CommPort. SerialPort has a public constructor, but that shouldn't be used by
applications. Instead, you should call the open() method of a CommPortIdentifier that
maps to the port you want to communicate with, then cast the result to SerialPort. For
example:

CommPortIdentifier cpi = CommPortIdentifier.getPortIdentifier("COM2");
 if (cpi.getType() == CommPortIdentifier.PORT_SERIAL) {
 try {
 SerialPort modem = (SerialPort) cpi.open();
 }
 catch (PortInUseException e) {}
 }

Methods in the SerialPort class fall into roughly three categories:

• Methods that return the state of the port
• Methods that set the state of the port
• Methods that listen for the changes in the state of the port

17.4.1 Control Functions

Data cannot simply be sent over a wire; you need to deal with many issues, like timing, noise,
and the fundamentally analog nature of electronics. Therefore, there's a host of layered
protocols so that the receiving end can recognize when data is being sent, whether the data
was received correctly, and more.

Serial communication uses some very basic, simple protocols. Sending between 3 and 25
volts across the serial cable for a number of nanoseconds inversely proportional to the baud

Java I/O

444

rate of the connection is a one bit. Sending between -3 and -25 volts for the same amount of
time is a bit.[2] These bits are grouped into serial data units, SDUs for short. Common SDU
lengths are 8 (used for binary data) and 7 (used for basic ASCII text). Most modern devices
use eight data bits per SDU. However, some older devices use seven, six, or even five data
bits per SDU. Once an SDU is begun, the rest of the SDU follows in close order. However,
there may be gaps of indeterminate length between SDUs.

One of the problems faced by asynchronous serial devices is determining SDU boundaries. If
a modem receives eight data bits, how is it to tell whether that's an entire SDU or the last four
bits of one SDU and the first four bits of another, especially if the connection has some noise
and isn't particularly reliable? To assist with this, each SDU is preceded by a single start bit
that's always 0, and followed by between one and two stop bits. Stop bits last longer than data
bits so they can always be identified.

In addition to the data and the start and stop bits, an SDU may have a parity bit. Parity is a
very simple error detection scheme that can detect (but not correct) single bit errors in an
SDU. There are two basic parity schemes. Even parity adds an extra one bit to the end of the
SDU if there are an even number of one bits in the data. Odd parity adds an extra one bit to
the end of the SDU if there are an odd number of one bits in the data.[3] No parity simply omits
the parity bit. The combination of data bits, parity scheme, and stop bits is abbreviated in
forms like 8N1 or 7E1. 8N1 means a connection uses eight data bits, no parity, and one stop
bit; 7E1 means seven data bits, even parity, and one stop bit. Virtually all modern systems use
8N1.

The baud rate is the number of times per second the state of the communication channel
changes. This is not the same as bits per second. Modern modems send multiple bits per baud.
Most U.S. phone lines, configured primarily for voice calls, have a maximum baud rate of
3200. Modems that send higher bit rates send multiple bits with each baud. A 28,800 bps
modem is a 3200 baud modem with nine states, for example. In fact, a standard 2400 bps
modem is really a 600 baud modem with four states.

The Java Comm API lets you set all of these parameters, including baud rate, data bits, stop
bits, and parity. They should all be familiar to anyone who's struggled with modem init strings
and terminal software in the bad old days before the Internet separated connectivity from
content. Four methods in the SerialPort class return the values of these settings. They are:

public abstract int getBaudRate()
public abstract int getDataBits()
public abstract int getStopBits()
public abstract int getParity()

A little surprisingly, you can't set these values independently. Instead, all four values (baud,
data bits, stop bits, and parity) are set at once with the setSerialPortParams() method:

public abstract void setSerialPortParams(int baud, int dataBits, int
 stopBits, int parity) throws UnsupportedCommOperationException

2 Sending between 3 and -3 volts is a hardware error.
3 There are two more parity schemes you may encounter in brain-damaged hardware. Mark parity always adds a one bit for the parity; space parity
always adds a zero bit. These convey no useful information and are almost never used.

Java I/O

445

If the requested values are not supported by the driver (e.g., a 240,000 baud connection), an
UnsupportedCommOperationException is thrown. Except for the baud rate, these arguments
should be one of several mnemonic constants in the SerialPort class:

SerialPort.DATABITS_5 // 5 data bits per byte
SerialPort.DATABITS_6 // 6 data bits per byte
SerialPort.DATABITS_7 // 7 data bits per byte
SerialPort.DATABITS_8 // 8 data bits per byte
SerialPort.STOPBITS_1 // 1 stop bit
SerialPort.STOPBITS_2 // 2 stop bits
SerialPort.STOPBITS_1_5 // 1.5 stop bits[4]

SerialPort.PARITY_NONE // no parity
SerialPort.PARITY_ODD // odd parity
SerialPort.PARITY_EVEN // even parity

17.4.2 Flow Control

Serial ports and the devices connected to them need a protocol to determine when the port is
sending and the device is receiving, when the device is sending and the port is receiving, and
how to switch between the two states. There are two main protocols that are used:
XON/XOFF and RTS/CTS. They are not mutually exclusive, though it's rare to use both at
the same time, and nothing is gained by doing so. XON/XOFF is a software-based protocol; it
works by sending special characters down the communication line to tell the other end when
to stop and start sending. RTS/CTS is implemented in hardware and requires a special
hardware handshaking cable that supports it. Almost all modern hardware, including all
modems faster than 2400 bps, supports hardware flow control.

The Java Comm API contains two methods to get and set the flow-control protocol:

public abstract int getFlowControlMode()
public abstract void setFlowControlMode(int protocol)
 throws UnsupportedCommOperationException

The int returned by getFlowControlMode() and the argument passed to
setFlowControlMode() should be a bitwise AND of the following constants:

SerialPort.FLOWCONTROL_NONE // no flow control
SerialPort.FLOWCONTROL_RTSCTS_IN // RTS/CTS for input
SerialPort.FLOWCONTROL_RTSCTS_OUT // RTS/CTS for output
SerialPort.FLOWCONTROL_XONXOFF_IN // XON/XOFF for input
SerialPort.FLOWCONTROL_XONXOFF_OUT // XON/XOFF for output

To set the flow control of the SerialPort object com1 to RTS/CTS for both input and output,
you would write:

com1.setFlowControlMode(SerialPort.FLOWCONTROL_RTSCTS_IN
 | SerialPort.FLOWCONTROL_RTSCTS_OUT);

4 If one and a half stop bits sounds a little funny to you, just remember that serial communications is ultimately an analog procedure, digital
abstractions like bits not withstanding. A bit on a serial line is simply a raised or lowered voltage for a given unit of time. One and a half stop bits is
simply a raised or lowered voltage for 150% of the normal time used to transfer a bit.

Java I/O

446

17.4.3 Control Wires

A serial port sends data one bit at a time, but it actually uses eight wires to do it. One wire is
used for sending, one for receiving, and the other six for various control information. One or
two more pins are connected to ground. Modern serial ports generally come in a nine-pin
configuration that reflects this, though most modems and some older PCs and terminals use a
25-pin connector. Table 17.2 shows the "pin-outs" of the standard nine-pin serial port you're
likely to find on the back of a PC. Table 17.3 shows the "pin-outs" of the standard 25-pin
serial port you're likely to find on a modem.

Table 17.2. Nine-Pin Serial Port Pin-outs
Pin Name Code Direction
1 Carrier Detect CD Device Computer
2 Receive Data RD Device Computer
3 Transmit Data TD Computer Device
4 Data Terminal Ready DTR Computer Device
5 Signal Ground GND
6 Data Set Ready DSR Device Computer
7 Request To Send RTS Computer Device
8 Clear To Send CTS Device Computer
9 Ring Indicator RI Device Computer

Table 17.3. 25-pin Serial Port Pin-outs
Pin Name Code Direction
1 Chassis ground
2 Transmit Data TD Computer Device
3 Receive Data RD Device Computer
4 Request To Send RTS Computer Device
5 Clear To Send CTS Device Computer
6 Data Set Ready DSR Device Computer
7 Signal Ground GND
8 Carrier Detect CD Device Computer
20 Data Terminal Ready DTR Computer Device
22 Ring Indicator RI Device Computer

The 15 extra pins on the 25-pin port are generally not connected to anything; Java does not
provide methods for manipulating them even if they are.[5]

On a straight DB-25-to-DB-25 connection, about the simplest connection imaginable, used on
some early PCs and some current Unix workstations, the serial cable that connects the PC to
the modem runs wires between the corresponding pins. That is, the CD pin is connected to the
CD pin, the TD pin is connected to the TD pin, and so forth. Figure 17.1 shows the
connection from a PC DB-25 serial port to a DB-25 modem.

5 The other 15 pins are actually assigned meanings in the RS-232 standard. However, almost no hardware uses those pins, and the Java
Communications API does not provide methods for reading or writing the state of those pins.

Java I/O

447

Figure 17.1. PC DB-25 serial port to a DB-25 modem

The computer and the modem communicate with each other by raising or lowering voltages
on these lines. Each line is one-way. A device reads from or writes to that line but never both.
The computer sends data to the modem across the TD line. The modem sends data to the
computer across the RD line. The computer tells the modem its ready to send by raising the
voltage on the RTS line. The modem says its OK for the PC to send using the CTS line. The
modem indicates to the computer its ready using the DSR line and that it's detected a carrier
by using the DCD line. If the modem loses the carrier signal (e.g., the phone hangs up), it
lowers the voltage on the DCD line. Finally, the computer indicates it's ready by raising the
voltage on the DTR line.

These cables can get a little more complicated as different kinds of ports get connected.
However, the main reason for the complexity is that not all ports put the same pins in the
same positions. For example, Figure 17.2 shows a standard DB-9 PC port connected to a
standard DB-25 modem port. It looks hairier, but if you look closer, you'll see that all that
happened was that the pins swapped positions, taking their connections with them. The TD
pin is still connected to the TD pin; the RD pin is still connected to the RD pin; and so forth.
The only changes are the numbers of the pins and the omission of one ground pin from the
DB-9 port.

Figure 17.2. PC DB-9 serial port to a DB-25 modem

A standard modem cable connects the same pin on one end of the wire to the corresponding
pin on the other end of the wire (e.g., DTR to DTR), as shown in Figure 17.1 and Figure 17.2.
Cables for connecting other kinds of devices often deliberately cross or split wires. For
instance, in a null modem cable, shown in Figure 17.3, used for direct connections between
PCs, the TD pins are connected to the RD pins; the RTS pin is connected to the CTS pin; and

Java I/O

448

the DTR pin is connected to the DCD and DSR pins. This allows two PCs to communicate
using a communications program and a direct serial connection without any modem. This is
why not all serial cables are created equal, and the cable that works for one device may not
work for another.

Figure 17.3. PC null modem cable

Data is sent from computer to device across the TD line and from device to computer across
the RD line. You access these lines through the output and input streams returned by
CommPort's getOutputStream() and getInputStream() methods. You do not directly
manipulate these pins. The ground pins are used only to maintain a common reference voltage
between the devices. No program ever sends voltage over these lines. This leaves six pins you
may want to read or write. These are:

• DTR
• RTS
• CTS
• DSR
• RI
• CD

Each of these has an effectively boolean value: true if it's showing voltage relative to ground,
false if it isn't. The SerialPort class provides methods to read the current state of all these
pins. It provides methods to write to those pins that would normally be written to by the
computer end of the connection.

17.4.3.1 DTR

Data Terminal Ready, DTR, means the computer is ready to send or receive data. CR,
Computer Ready, would be more likely true nowadays, but the RS-232 standard was
developed in the days of dumb terminals, when personal computers were still an oddity.

public abstract void setDTR(boolean dtr)
public abstract boolean isDTR()

17.4.3.2 RTS

Request To Send, RTS, is one-half of hardware handshaking. The computer raises voltage on
the RTS line to tell the modem it's waiting to send.

Java I/O

449

public abstract void setRTS(boolean rts)
public abstract boolean isRTS()

17.4.3.3 CTS

Clear To Send, CTS, is the other half of hardware handshaking. The modem raises the voltage
on this wire to tell the computer that it's ready to receive data. It drops the voltage when it's no
longer ready to receive data.

public abstract boolean isCTS()

You cannot set the Clear To Send wire directly. Only the serial device can tell you when it is
ready to receive. You cannot force it to be ready.

17.4.3.4 DSR

The modem raises the voltage on the DSR line, Data Set Ready, to indicate that it's turned on
and operating. This line is also read-only.

public abstract boolean isDSR()

17.4.3.5 RI

The modem raises the voltage on the RI wire, Ring Indicator, to tell the computer that the
phone is ringing.

public abstract boolean isRI()

You cannot set the Ring Indicator bit directly. This is used only for one-way communication
from the device back to the computer, not for the computer to send information to the device.
(In other words, the computer can't tell the modem the phone is ringing.)

17.4.3.6 CD

The modem uses the CD wire, Carrier Detect, to tell the computer that it has successfully
negotiated the low-level modem protocols with the modem on the other end of the connection.

public abstract boolean isCD()

You cannot set the Carrier Detect bit directly. This is used only for one-way communication
from the device back to the computer, not for the computer to send information to the device.

17.4.4 Serial Port Events

The examples shown so far all depended on the computer taking the initiative. The computer
tells the modem when to dial, the printer when to print, and so on. By analogy with network
programming, this is client-based. However, there's another model for port programs, the
server-based program. Just as an Internet server waits for an incoming connection, a program
can wait for incoming faxes through a fax modem, incoming BBS connections through a
modem, notifications of impending shutdown from an uninterruptable power supply, paper-
empty messages from a printer on a parallel port, and more. However, unlike the abstract
network ports of Chapter 5, computers have no concept of binding to a serial port, at least

Java I/O

450

within the Java Comm API. Although you can check the various pins used to send
information from a modem or other serial port device to the computer whenever you want to,
it's more convenient to do it asynchronously.

Incoming port access relies on an event-based model; in fact, the same model used by
JavaBeans and the AWT 1.1 and later. When the runtime detects a change in state at a
monitored serial port, it fires a serial port event to the registered serial port listener. The
SerialPortEvent class has a public constructor, but you shouldn't use it. Instead, the VM
creates and fires serial port events to indicate a change on one of the standard serial port lines:

public SerialPortEvent (SerialPort src, int type, boolean oldValue,
 boolean newValue)

The javax.comm.SerialPortEvent class declares these three public methods:

public int getEventType()
public boolean getNewValue()
public boolean getOldValue()

The getEventType() method returns a named constant from the SerialPortEvent class that
specifies what caused the event to be fired. There are 10 possibilities:

SerialPortEvent.DATA_AVAILABLE // Data has arrived at the port.
SerialPortEvent.OUTPUT_BUFFER_EMPTY // Output buffer on the port is empty.
SerialPortEvent.CTS // The Clear To Send pin has changed
state.
SerialPortEvent.DSR // The Data Set Ready pin has changed
state.
SerialPortEvent.RI // The Ring Indicator pin has changed
state.
SerialPortEvent.CD // The Carrier Detect pin has changed
state.
SerialPortEvent.OE // An overrun error occurred.
SerialPortEvent.PE // A parity error occurred.
SerialPortEvent.FE // A framing error occurred.
SerialPortEvent.BI // A break interrupt was detected.

SerialPortEvent.DATA_AVAILABLE and SerialPortEvent.OUTPUT_BUFFER_EMPTY are
enough information all by themselves. The other eight possible types, however, represent a
boolean change from one state to another, from on to off or off to on. Therefore, there are also
getNewValue() and getOldValue() methods to tell you what the state of the pin was before
and after the event:

public boolean getNewValue()
public boolean getOldValue()

17.4.5 Serial Port Event Listeners

There are three steps to respond to serial port events:

1. Implement the SerialPortEventListener interface.
2. Register your SerialPortEventListener object with the SerialPort object

representing the serial port you want to monitor.
3. Tell the SerialPort object the types of events you want to be notified of.

Java I/O

451

Steps 1 and 2 should be familiar from JavaBeans and the Java 1.1 AWT. Step 3 is used to
avoid getting notifications of events you're not interested in.

17.4.5.1 Step 1

As you might guess, you listen for serial port events with a SerialPortEvent-Listener:

public interface SerialPortEventListener extends EventListener

This interface declares a single method, serialEvent():

public abstract void serialEvent(SerialPortEvent spe)

Inside this method, you would generally use the getEventType() method of
SerialPortEvent to determine exactly what caused the serial port event and to respond
appropriately.

17.4.5.2 Step 2

Once you've constructed a SerialPortEventListener, you need to pass it to the
SerialPort object's addEventListener() method:

public abstract void addEventListener(SerialPortEventListener listener)
 throws TooManyListenersException

You are limited to one event listener per port. Adding a second event listener throws a
java.util.TooManyListenersException. If this is a problem, you can install an
intermediate event listener directly with the SerialPort object. This listener could keep a list
of other SerialPortEventListener objects and dispatch the events it receives to the other
event listeners.

Should you need to, you can remove a listener from the port with the SerialPort object's
removeEventListener() method. This method takes no arguments, because there's never
more than one event listener registered directly with the port.

public abstract void removeEventListener()

17.4.5.3 Step 3

In many circumstances you may not be interested in some or all of these events. By default,
none of these events are fired unless you first enable them with one of the 10 notify methods
in javax.comm.SerialPort:

public abstract void notifyOnDataAvailable(boolean enable)
public abstract void notifyOnOutputEmpty(boolean enable)
public abstract void notifyOnCTS(boolean enable)
public abstract void notifyOnDSR(boolean enable)
public abstract void notifyOnRingIndicator(boolean enable)
public abstract void notifyOnCarrierDetect(boolean enable)
public abstract void notifyOnOverrunError(boolean enable)
public abstract void notifyOnParityError(boolean enable)
public abstract void notifyOnFramingError(boolean enable)
public abstract void notifyOnBreakInterrupt(boolean enable)

Java I/O

452

By default, no events are fired when the serial port's state changes. If you pass true to any of
these methods, the VM will fire a serial port event when the matching state changes. Example
17.8 activates the Ring Indicator and prints a message on System.out when the modem tells
the computer the phone is ringing.

Example 17.8. PhoneListener

import javax.comm.*;
import java.util.TooManyListenersException;

public class PhoneListener implements SerialPortEventListener {

 public static void main(String[] args) {

 String portName = "COM1";
 if (args.length > 0) portName = args[0];

 PhoneListener pl = new PhoneListener();

 try {
 CommPortIdentifier cpi =
CommPortIdentifier.getPortIdentifier(portName);
 if (cpi.getPortType() == CommPortIdentifier.PORT_SERIAL) {
 SerialPort modem = (SerialPort) cpi.open("Phone Listener", 1000);
 modem.notifyOnRingIndicator(true);
 modem.addEventListener(pl);
 }
 }
 catch (NoSuchPortException e) {
 System.err.println("Usage: java PhoneListener port_name");
 }
 catch (TooManyListenersException e) {
 // shouldn't happen in this example
 }
 catch (PortInUseException e) {System.err.println(e);}
 }

 public void serialEvent(SerialPortEvent evt) {

 System.err.println(evt.getEventType());
 if (evt.getEventType() == SerialPortEvent.RI) {
 System.out.println("The phone is ringing");
 }
 }
}

17.5 Parallel Ports

Parallel ports are most common on PCs. Sun SparcStations from the Sparc V on also have
them. However, Macs do not have them, nor do many non-x86 workstations. Parallel ports are
sometimes called printer ports, because their original purpose was to support printers. The
names of the parallel ports—"LPT1," "LPT2," etc.—stand for "Line PrinTer," reflecting this
usage. Nowadays, parallel ports are also used for Zip drives, tape drives, and various other
devices. However, parallel ports are still largely limited by their original goal of providing
simple printing. A parallel port sends data eight bits at a time on eight wires. These bits are
sent at the same time in parallel, hence the name. The original parallel ports only allowed data
to flow one way, from the PC to the printer. The printer could only respond by sending a few

Java I/O

453

standard messages on other wires. Each return wire corresponded to a particular message, like
"Out of paper" or "Printer busy." Modern parallel ports allow full, bidirectional
communication.

The javax.comm.ParallelPort class is a concrete subclass of javax.comm.CommPort that
provides various methods and constants useful for working with parallel ports and devices.
The main purposes of the class are to allow the programmer to inspect, adjust, and monitor
changes in the settings of the parallel port. Simple input and output are accomplished with the
methods of the superclass, CommPort. ParallelPort has a single public constructor, but that
shouldn't be used by applications. Instead, you should simply call the open() method of a
CommPortIdentifier that maps to the port you want to communicate with, then cast it to
ParallelPort:

CommPortIdentifier cpi = CommPortIdentifier.getPortIdentifier("LPT2");
 if (cpi.getType() == CommPortIdentifier.PORT_PARALLEL) {
 try {
 ParallelPort printer = (ParallelPort) cpi.open ();
 }
 catch (PortInUseException e) {}
 }

Methods in the ParallelPort class fall into roughly four categories:

• Methods that adjust the port mode
• Methods to control the port
• Methods to inspect the state of the port
• Methods that listen for changes in the state of the port

17.5.1 Parallel Port Modes

Like most other computer hardware, parallel ports have evolved over the last two decades.
Modern parallel ports support bidirectional communication and other features never
envisioned for the original parallel port that was only supposed to send data to a daisy-wheel
printer. However, older peripherals may not work with newer parallel ports, so they can, if
necessary, be downgraded to any of several various compatibility modes. All of these are
available as named int constants in the javax.comm.ParallelPort class:

ParallelPort.LPT_MODE_ANY // Use the most advanced mode possible.
ParallelPort.LPT_MODE_SPP // Original lineprinter mode. Unidirectional
 // transfer from PC to printer. Most
compatible
 // with older peripherals.
ParallelPort.LPT_MODE_PS2 // Byte at a time, bidirectional mode as
 // introduced in the IBM PS/2 family.
ParallelPort.LPT_MODE_EPP // Extended parallel port.
ParallelPort.LPT_MODE_ECP // Enhanced capabilities port.
ParallelPort.LPT_MODE_NIBBLE // Nibble (4 bits, half a byte) at a time
mode,
 // bidirectional, used by some Hewlett Packard
 // equipment.

The mode the parallel port uses is returned by the getMode() method and set by passing the
appropriate constant to the setMode() method:

Java I/O

454

public abstract int getMode()
public abstract int setMode(int mode) throws
UnsupportedCommOperationException

Attempts to set the port to an unsupported mode will throw an Unsupported-
CommOperationException .

17.5.2 Controlling the Parallel Port

Data is sent to the parallel port and its attached device using the output stream returned by the
CommPort class's getOutputStream() method. You can interrupt this data by sending the
appropriate signals out the parallel port to the printer. The suspend() and restart()
methods send these signals:

public abstract void restart()
public abstract void suspend()

These are generally interpreted as stopping and restarting printing. You normally suspend and
restart printing if the printer reports an error. These methods do not automatically start a print
job over from the beginning. You are still responsible for sending the printer whatever data it
needs to print from whatever point it was printing or from the point where you want to restart
printing.

17.5.3 Checking the State of the Port

The original parallel port allowed printers to send only a few predefined messages. Each
message was sent by raising the voltage on a specific wire connecting the port to the printer.
These messages are always sent from the printer to the CPU, never in the other direction.
Therefore, Java only allows you to check the state of each of these pins, not to set them. The
methods are:

public abstract boolean isPaperOut()
public abstract boolean isPrinterBusy()
public abstract boolean isPrinterSelected()
public abstract boolean isPrinterTimedOut()
public abstract boolean isPrinterError()

Each of these methods returns true if the matching wire is showing voltage relative to
ground, false if it isn't.

There is also a getOutputBufferFree() method that returns the number of bytes currently
available in the parallel port's output buffer—in other words, the number of bytes you can
write before the buffer fills up:

public abstract int getOutputBufferFree()

17.5.4 Parallel Port Events

Although you can check the various pins used to send information from a printer to the
computer whenever you want to, it's more convenient to be able to do it asynchronously. The
Java Comm API supports asynchronous notification of activity occurring on parallel ports.
The model used for notification is the same one used for JavaBeans, the Java 1.1 AWT, and

Java I/O

455

serial port events: when the runtime detects a change in state at a monitored parallel port, it
fires a parallel port event to the registered parallel port listener. A parallel port event signals
some sort of activity on the parallel port, either an error or an empty output buffer. Parallel
port events are represented by instances of the javax.comm.ParallelPortEvent class, a
subclass of java.util.EventObject:

public class ParallelPortEvent extends EventObject

The ParallelPortEvent class has a single public constructor, but you shouldn't use it.
Instead, the runtime creates and fires parallel port events when it wants to indicate a change
on one of the standard parallel port pins.

public ParallelPortEvent(ParallelPort src, int type, boolean oldValue,
boolean newValue)

The javax.comm.ParallelPortEvent class declares these three public methods:

public int getEventType()
public boolean getNewValue()
public boolean getOldValue()

The getEventType() method returns a named constant from the ParallelPortEvent class
that specifies what caused the event to be fired. There are two possibilities: an error and an
empty output buffer. Each parallel port event has an eventType field; its value should be one
of these mnemonic constants:

ParallelPortEvent.PAR_EV_ERROR // An error occurred on the port.
ParallelPortEvent.PAR_EV_BUFFER // The output buffer is empty.

These represent a change from one state to another, from on to off or off to on. Therefore,
there are also getNewValue() and getOldValue() methods to tell you the state of the pin
before and after the event:

public boolean getNewValue()
public boolean getOldValue()

17.5.5 Parallel Port Event Listeners

There are three steps to respond to parallel port events:

1. Implement the ParallelPortEventListener interface.
2. Register your ParallelPortEventListener object with the ParallelPort object

representing the parallel port you want to monitor.
3. Tell the parallel port the types of events you want to be notified of.

Steps 1 and 2 should be familiar from JavaBeans and the Java 1.1 AWT. Step 3 is used to
avoid getting notifications of events you're not interested in and is similar to the same step for
serial port events.

Java I/O

456

17.5.5.1 Step 1

As you would probably guess, you listen for parallel port events with a Parallel-
PortEventListener:

public interface ParallelPortEventListener extends EventListener

This interface declares a single method, parallelEvent():

public abstract void parallelEvent(ParallelPortEvent ppe)

Inside this method, you generally use the getEventType() method of Parallel-PortEvent
to determine exactly what caused the parallel port event:

public int getEventType()

This should return ParallelPortEvent.PAR_EV_BUFFER to signal an empty output buffer or
ParallelPortEvent.PAR_EV_ERROR to signal some other sort of error.

The getNewValue() and getOldValue() methods tell you what the state of the parallel port
was before and after the event:

public boolean getNewValue()
public boolean getOldValue()

17.5.5.2 Step 2

Once you've constructed a ParallelPortEventListener, you need to pass it to the
ParallelPort object's addEventListener() method:

public abstract void addEventListener(ParallelPortEventListener listener)
 throws TooManyListenersException

You are limited to one event listener per port. Attempting to add a second event listener
throws a java.util.TooManyListenersException. If this is a problem, you can install a
single intermediate event listener directly with the ParallelPort object, which keeps a list of
ParallelPortEventListener objects and dispatches events it receives to the other event
listeners.

Should you need to, you can remove a listener from the port with the ParallelPort object's
removeEventListener() method:

public abstract void removeEventListener()

This method takes no arguments, because there's never more than one event listener registered
directly with the port.

Java I/O

457

17.5.5.3 Step 3

In many circumstances, you may not be interested in both of these events. By default, neither
of these events is fired unless you first enable them with the right notify method in
javax.comm.ParallelPort:

public abstract void notifyOnError(boolean notify)
public abstract void notifyOnBuffer(boolean notify)

By default no events are fired when the parallel port's state changes. However, if you pass
true to either of these methods, it will fire a parallel port event when the matching state
changes.

Java I/O

458

Part V: Appendixes

Java I/O

459

Appendix A. Additional Resources
When I began work on this book, I thought it would take me about 200 pages and about two
months. Now, more than a year and 500 pages later, I can see that I/O is a far larger, more
important, and more encompassing topic than I originally guessed. Many chapters could
easily lead to books of their own. Indeed, several (Chapter 5, and Chapter 10) already are
other books.

Since I can't possibly say everything there is to say about all these fascinating topics I've
touched on in one page or another in this tome, I'd like to point you to several books, mailing
lists, and web sites that explore some of the issues raised in this book in greater detail. Some
of these are I/O-specific; some are mostly tangential. However, they're all interesting and
worthy of further study and thought.

A.1 Digital Think

Digital Think (http://www.digitalthink.com/) offers web-based training courses for
programmers, developers, system administrators, and end users in C, C++, Java, Windows,
web development, object-oriented programming, and more. This book grew out of two web-
based courses I wrote for Digital Think, Java Streams
(http://www.digitalthink.com/catalog/cs/cs108/) and Java Readers and Writers
(http://www.digitalthink.com/catalog/cs/cs208/). Although this book is far more
comprehensive than those two courses, they're a good way to get started with this material,
especially if you think you need a personal helping hand or a leg up. Each course includes
graded exercises, a hands-on course project, and tutors to answer your questions and assist
you with the difficult parts.

A.2 Design Patterns

At the time I was writing the first draft of this book, I also happened to be learning about
design patterns. Gradually, it became obvious that much of the AWT was written by
programmers who had patterns on the brain. The java.awt.Toolkit class is a textbook
example of the "abstract factory" pattern. The URL class's openConnection() method is a
factory method. The Reader and Writer classes are decorators on top of InputStream and
OutputStream. The engine classes in the JCE are proxies, and I could cite many more
examples. Much of the class library—including the java.io package—has been designed
with design patterns, and it will all make a lot more sense if you're familiar with the standard
patterns.

The seminal text on the subject is Design Patterns, by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley, 1995). The four authors are colloquially
known as the "Gang of Four," and the book is often cited informally as "GoF." The 23
patterns covered in GoF are rapidly becoming part of the vocabulary of the object-oriented
programming community. Design patterns are also beginning to be covered in many more
introductory books about object-oriented programming and Java.

There are also several extremely active mailing lists and web sites devoted to design patterns.
To subscribe to the patterns@cs.uiuc.edu list send email to patterns-request@cs.uiuc.edu with

Java I/O

460

the word "subscribe" in the Subject: field. Archives of this and several related lists may be
perused at http://www.DistributedObjects.com/portfolio/archives/patterns/index.html.

A.3 The java.io Package

The original source for much of the information contained herein about I/O is the javadoc
documentation for the java.io package. You should have downloaded this with the JDK, but
it's also available online at:

http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html (Java
1.2)
http://java.sun.com/products/jdk/1.1/docs/api/Package-java.io.html (Java 1.1)
http://java.sun.com/products/jdk/1.0.2/api/Package-java.io.html (Java 1.0)

The class library documentation is, however, woefully incomplete. While it explains what
each method does, it often fails to explain how, why, or when you should use those methods.
Furthermore, it only occasionally discusses assumptions about the behavior of those
methods—assumptions that are crucial for anyone not merely using but also subclassing
particular classes. There are many implicit assumptions about what particular methods should
do (for instance, that a close() method of a filter input stream also closes any other streams
it's connected to), and these are generally not documented anywhere (or at least they weren't
until I wrote this book).

I've tried to document all of these assumptions in this book, but if you're faced with a new
class not covered here, the canonical reference is the source code itself. The JDK includes
Java source code for the java packages. You'll find it in a file called src.zip in your JDK
distribution. Sometimes the only way to figure out exactly what Sun intended particular
classes to do or how they expected them to do it is to read the source code for those classes.

A.4 Network Programming

In many ways this book is a prequel to my previous book with O'Reilly, Java Network
Programming. Although written first, Java Network Programming presumes a solid
familiarity with input and output, streams, and readers and writers as discussed in this book.
Java Network Programming explains the fundamental protocols and technology that underlie
the Internet, shows you how to communicate with sockets, provides detailed examples of
working network clients and servers, and even develops content and protocol handlers. If you
want to learn more about TCP/IP, HTTP, URLs, sockets and server sockets, and other
elements of Internet programming in Java, you should definitely pick up Java Network
Programming. (There's probably an ad for it in the back of this very book.)

The Centre for Distance-spanning Technology (CDT) runs the unmoderated java-
networking@cdt.luth.se list for informal discussion of Java network programming, which I
participate in. To subscribe, send an email containing the word "subscribe" in the body of the
message to java-networking-request@cdt.luth.se. An archive of the list and complete
instructions are available from http://www.cdt.luth.se/~peppar/java/java-networking-list/.

Java I/O

461

A.5 Data Compression

Java supports several related compression formats, including zlib, deflate, and gzip. These
formats are documented in RFCs 1950, 1951, and 1952, and are available wherever RFCs are
found, including http://www.faqs.org/rfcs/. The master site for these particular RFCs is
ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html.

Java's compression classes are native wrappers around the ZLIB compression library written
by Jean-Loup Gailly and Mark Adler. You can learn about this library at
http://www.cdrom.com/pub/infozip/zlib/.

For more general information about compression and archiving algorithms and formats, the
comp.compression FAQ is a good place to start. See http://www.faqs.org/faqs/compression-
faq/part1/preamble.html. More technical details and sample code in C for a variety of
algorithms are available in The Data Compression Book, by Mark Nelson and Jean-Loup
Gailly (M&T Books, 1996, ISBN 1-55851-434-1).

The JAR file format was developed by Sun for Java. The full specification can be found at
http://java.sun.com/products/jdk/1.2/docs/guide/jar/jarGuide.html (Java 2) or
http://java.sun.com/products/jdk/1.1/docs/guide/jar/jarGuide.html (Java 1.1). Aside from the
name, the only thing that really distinguishes a JAR file from a zip file is the optional
manifest of the contents. The manifest format specification can be found at
http://java.sun.com/products/jdk/1.2/docs/guide/jar/manifest.html.

A.6 Encryption and Related Technology

Chapter 10 only began to explore the fascinating subject of cryptography. The JCE is
explicated in much more detail by Jonathan Knudsen in Java Cryptography (O'Reilly &
Associates, 1998) Java Cryptography expands on the coverage of the Cipher and
MessageDigest classes you'll find in this book. It also includes thorough discussions of the
java.security package and the Java Cryptography Extension (JCE), showing you how to
use security providers and even implement your own provider. It discusses authentication, key
management, and public and private key encryption and includes a secure talk application that
encrypts all data sent over the network. If you write Java programs that communicate
sensitive data, you'll find this book indispensable.

For a more in-depth look at the mathematics and protocols that underlie the JCE, you'll want
to check out Bruce Schneier's Applied Cryptography (John Wiley & Sons, 1995). This is the
standard practical text on cryptographic protocols and algorithms, and the attacks on them.
Schneier discusses a wide range of cryptographic algorithms, key management and exchange
schemes, one-way hash functions, signature algorithms, and many other problems in
sufficient detail to allow a competent programmer to implement them. Although Schneier's
language of choice is C, the techniques discussed are applicable in any language.

The formal specification of the Java Cryptography API is available from Sun at
http://java.sun.com/products/jdk/1.2/docs/guide/security/CryptoSpec.html. The actual
implementation is in beta at the time of this writing and can be downloaded from
http://developer.java.sun.com/developer/earlyAccess/jdk12/jce.html.

Java I/O

462

A.7 Object Serialization

Sun's serialization web page at http://java.sun.com/products/jdk/1.2/docs/guide/serialization/
includes a FAQ list, sample code, and the complete object serialization specification. The
specification covers serialization as implemented in Java 1.2, which is mostly upward-
compatible with the Java 1.1 serialization discussed in Chapter 11. An earlier prebeta
specification that covers Java 1.0.2 serialization is posted at
http://java.sun.com/products/jdk/rmi/doc/serial-spec/serialTOC.doc.html. A formal
specification of Java 1.1 serialization was never published. However, the Java 1.2 spec is
mostly the same, with the addition of a few extra features like the readResolve() method.

Sun's formal specification for object serialization is not always clear, especially when it
comes to motivating the more esoteric areas of serialization like ObjectInputValidation.
However, it is complete and does add some to what I discussed in Chapter 11, including the
binary protocol for serialized objects and .ser files.

Object serialization was originally developed to support Remote Method Invocation (RMI),
an architecture that allows Java objects in one virtual machine to invoke methods on objects
in another virtual machine, possibly running on a different computer somewhere else on the
Internet. RMI is discussed briefly in Chapter 14 of my Java Network Programming and at
great length in Jim Farley's Java Distributed Computing (O'Reilly & Associates, 1998, ISBN
1-56592-206-9).

Object serialization is also used extensively as part of the JavaBeans component software
architecture, a standard part of Java 1.1 and later. To learn more about this, I recommend you
pick up Robert Englander's Developing Java Beans (O'Reilly & Associates, 1997, ISBN 1-
56592-289-1) or my own JavaBeans: Developing Component Software in Java (IDG Books,
1997, ISBN 0-76458-052-3).

A.8 International Character Sets and Unicode

The canonical reference to Unicode is The Unicode Standard, Version 2.0 (Addison-Wesley,
1996, ISBN 0-201-48345-9). This book features detailed analysis of the Unicode standard as
well as discussion of the difficulties of defining character sets for all the world's different
languages. It's also got tables of almost all the defined characters in Unicode, including about
20,000 Han ideographs. The size of the book and the large number of interesting tables of
different scripts from around the world make it a good choice for a techie coffee-table book
that can even amuse your liberal arts friends. Updates, corrections, and errata to that volume
are available on the Web at http://www.unicode.org/.

There's no single source of information for all the different non-Unicode character sets Java
readers and writers can translate. However, most of the Windows character sets are
enumerated in Developing International Software for Windows 95 and NT, by Nadine Kano
(Microsoft Press, 1995, ISBN 1-55615-840-8). Kano ignores non-Windows platforms, and
she does occasionally sound too much like a Microsoft press release. Nonetheless, this book
contains a lot of useful details about how various localized versions of Windows operate. This
book is also available on the MSDN Online Library web site at
http://premium.microsoft.com/msdn/library/. Registration is required, but otherwise it's free.
Assuming Microsoft hasn't added an actually navigable interface to MSDN by the time you
read this, you'll find it by clicking on "Books" in the lefthand frame, then clicking on

Java I/O

463

"Developing International Software." (I normally wouldn't bother you with such details, but
the interface really is painfully obscure.)

Roman Czyborra maintains a lot of useful information about various ISO 8859 and Cyrillic
character sets on his web site at http://czyborra.com/, including charts of a wide range of
character sets and code pages.

Ken Lunde's CJKV Information Processing: Chinese, Japanese, Korean & Vietnamese
Computing (O'Reilly & Associates, 1999, ISBN 1-56592-224-7) is the most comprehensive
English language reference to developing code for ideographic and other Far Eastern
languages and scripts. To some extent this book is based on his free CJK.INF file available
from ftp://ftp.ora.com/pub/examples/nutshell/ujip/doc/cjk.inf.

Finally, for a fascinating look at about 500 of the world's languages and the scripts they use,
check out Kenneth Katzner's Languages of the World (Routledge, 1995). This small
paperback describes and provides samples of about 500 of the world's languages, from the
extremely popular (English and Chinese) to the painfully obscure (Romansh, Komi, Ostyak).

A.9 Java Communications API

This may well be the first book to cover the Java Communications API. Sun includes a
limited amount of documentation with the Java Communications API itself, mostly javadoc
class library documentation. The latter is also available from Sun's web site at
http://java.sun.com/products/javacomm/javadocs/Package-javax.comm.html.

The RS-232 serial port and IEEE 1284 parallel port standards predate the Web and
widespread use of the Internet. Thus, these standards are still available only on dead trees for
the moment. A number of books do cover them in reasonable detail, including Scott Mueller's
Upgrading and Repairing PCs, 10th edition (Que, 1998, ISBN 0-7897-1636-4).

Several books discuss writing port-aware programs in a variety of languages. Although none
yet use Java, it's generally not hard to translate from the low-level C or Basic code to the
equivalent code that uses the Java Communications API. The best book I've found for parallel
ports is Jan Axelson's Parallel Port Complete (Lakeview Research, 1996, ISBN 096508191-
5).

There are more choices for serial port books, but the most comprehensive one is certainly Joe
Campbell's C Programmer's Guide to Serial Communications (Sams, 1993, ISBN 0-672-
30286-1). Despite the title, the first half of this 900-page tome is an exhaustive treatment of
more or less language-independent serial communication hardware and protocols from 19th-
century telegraphy to the present day.

A.10 Updates and Breaking News

In the fast-moving world of Java, it's an effort to publish a book that isn't out of date by the
time it reaches store shelves. Most of what I've written about in this book seems fairly stable.
However, there will undoubtedly by many new developments after publication. The following
three web sites can help you stay abreast of new technologies and strategies for Java I/O.

Java I/O

464

A.10.1 Café au Lait

My Café au Lait site at http://metalab.unc.edu/javafaq/ features almost daily news updates
about Java topics. I pay special attention to new material that's closely related to my books,
like I/O and networking libraries. Café au Lait also features many resources to help you
develop your Java programming skills, including FAQ lists, tutorials, course notes, examples,
exercises, book reviews, and more. Of particular interest will be the Java I/O page at
http://metalab.unc.edu/javafaq/books/javaio/. I'll post corrections and updates to this book
there as necessary.

A.10.2 java.oreilly.com

O'Reilly's official Java site at http://java.oreilly.com/ contains feature articles and links to the
official O'Reilly sites for all our Java books. You can peruse the rather impressive O'Reilly
Java catalog (18 books and counting) and view descriptions, author bios, tables of contents,
indexes, reviews, exercises, examples, errata, and reader comments for all the books
(including this one).

A.10.3 JavaWorld

I/O isn't the sexiest topic in the programming community, but it is one of the most important.
IDG's JavaWorld (http://www.javaworld.com/) is to be commended for treating I/O on an
equal footing with sexier topics like JavaBeans and the Java Media APIs. JavaWorld
publishes monthly how-to articles, book reviews, news, and more. They're particularly
notable for providing short, technical articles that show you how to do things Sun's only
hinted at and how to work around common problems programmers face.

Java I/O

465

Appendix B. Character Sets
The first 128 Unicode characters—that is, characters through 127—are identical to the ASCII
character set. 32 is the ASCII space; therefore, 32 is the Unicode space. 33 is the ASCII
exclamation point; therefore, 33 is the Unicode exclamation point, and so on. Table B.1 lists
this character set.

Table B.1. The first 128 Unicode Characters, Also Known as the ASCII Character Set
Code Character Code Character Code Character Code Character
0 nul (null) 32 space 64 @ 96 `
1 soh (start of header) 33 ! 65 A 97 a
2 stx (start of text) 34 " 66 B 98 b
3 etx (end of text) 35 # 67 C 99 c
4 eot (end of transmission) 36 $ 68 D 100 d
5 enq (enquiry) 37 % 69 E 101 e
6 ack (acknowledge) 38 & 70 F 102 f
7 bel (bell) 39 ` 71 G 103 g
8 bs (backspace) 40 (72 H 104 h
9 tab (tab) 41) 73 I 105 i
10 lf (linefeed) 42 * 74 J 106 j
11 vtb (vertical tab) 43 + 75 K 107 k
12 ff (formfeed) 44 , 76 L 108 l
13 cr (carriage return) 45 - 77 M 109 m
14 so (shift out) 46 . 78 N 110 n
15 si (shift in) 47 / 79 O 111 o
16 dle (data link escape) 48 0 80 P 112 p
17 dc1 (device control 1, XON) 49 1 81 Q 113 q
18 dc2 (device control 2) 50 2 82 R 114 r
19 dc3 (device control 3, XOFF) 51 3 83 S 115 s
20 dc4 (device control 4) 52 4 84 T 116 t
21 nak (negative acknowledge) 53 5 85 U 117 u
22 syn (synchronous idle) 54 6 86 V 118 v
23 etb (end of transmission block) 55 7 87 W 119 w
24 can (cancel) 56 8 88 X 120 x
25 em (end of medium) 57 9 89 Y 121 y
26 sub (substitute) 58 : 90 Z 122 z
27 esc (escape) 59 ; 91 [123 {
28 is4 (file separator) 60 < 92 \ 124 |
29 is3 (group separator) 61 = 93] 125 }
30 is2 (record separator) 62 > 94 ^ 126 ~
31 is1 (unit separator) 63 ? 95 _ 127 del (delete)

In the first column, characters through 31 are referred to as control characters, because they're
traditionally entered by holding down the control key and a letter key (on at least some dumb
terminals). For instance Ctrl-H is often ASCII 8, backspace. Ctrl-S is often mapped to ASCII
19, DC3 or XOFF. Ctrl-Q is often mapped to ASCII 17, DC1 or XON. Generally, each
control character is entered by pressing the Control key and the printable character whose

Java I/O

466

ASCII value is the ASCII value of the character you want plus 64 (or 96, if you count from
the capitals). Character 127, delete, is also a control character.

The common abbreviation for the character is given first, followed by its common meaning.
Some of these codes are pretty much obsolete. For instance, I'm not aware of any modern OS
that actually uses characters 28 through 31 as file, group, record, and unit separators. Those
control codes that are still used often have different meanings on different platforms. For
example, character 10, the linefeed, originally meant move the platen on the printer up one
line, while character 13, the carriage return, meant return the print-head to the beginning of
the line. On paper-based teletype terminals, this could be used to position the print-head
anywhere on a page and perhaps overtype characters that had already been typed. This no
longer makes sense in an era of glass terminals and GUIs, so linefeed has come to mean a
generic end-of-line character.

The next 128 Unicode characters—that is 128 through 255—have the same values as the
equivalent characters in the Latin-1 character set defined in ISO standard 8859-1. Latin-1, a
slight variation of which is used by Windows, adds the various accented characters, umlauts,
cedillas, upside-down question marks, and other characters needed to write text in most
Western European languages. Table B.2 shows these characters. The first 128 characters in
Latin-1 are the ASCII characters shown in Table B.1.

Table B.2. Unicode Characters Between 128 and 255, Also the Second Half of the ISO 8859-1
Latin-1 Character Set

Code Character Code Character Code Character Code Character
128 pad (padding character) 160 non-breaking space 192 À 224 à
129 hop (high octet preset) 161 ¡ 193 Á 225 á
130 bph (break permitted here) 162 ¢ 194 Â 226 â
131 nbh (no break here) 163 £ 195 Ã 227 ã
132 ind (index) 164 196 Ä 228 ä
133 nel (next line) 165 ¥ 197 Å 229 å
134 ssa (start of selected area) 166 | 198 Æ 230 æ
135 esa (end of selected area) 167 § 199 Ç 231 ç
136 hts (character tabulation set) 168 200 È 232 è

137 htj (character tabulation with
justification) 169 © 201 É 233 é

138 vts (line tabulation set) 170 ª 202 Ê 234 ê
139 pld (partial line forward) 171 « 203 Ë 235 ë
140 plu (partial line backward) 172 ¬ 204 Ì 236 ì

141 ri (reverse line feed) 173 soft (optional)
hyphen 205 Í 237 í

142 ss2 (single-shift two) 174 ® 206 Î 238 î
143 ss3 (single-shift three) 175 ¯ 207 Ï 239 ï
144 dcs (device control string) 176 (degree) 208 Ð 240 ð
145 pu1 (private use one) 177 ± 209 Ñ 241 ñ
146 pu2 (private use two) 178 2 210 Ò 242 ò
147 sts (set transmit state) 179 3 211 Ó 243 ó
148 cch (cancel character) 180 ´ 212 Ô 244 ô
149 mw (message waiting) 181 213 Õ 245 õ
150 spa (start of guarded area) 182 ¶ 214 Ö 246 ö

Java I/O

467

151 epa (end of guarded area) 183 · 215 × 247 ÷
152 sos (start of string) 184 (cedilla) 216 Ø 248 ø

153 sgi (single graphic character
introducer) 185 1 217 Ù 249 ù

154 sci (single character introducer) 186 º 218 Ú 250 ú
155 csi (control sequence introducer) 187 » 219 Û 251 û
156 st (string terminator) 188 1/4 220 Ü 252 ü
157 osc (operating system command) 189 1/

2 221 Ý 253 ý

158 pm (privacy message) 190 3/
4 222 254 þ

159 apc (application program command) 191 ¿ 223 ß 255 ÿ

Characters 128 through 159 are nonprinting control characters, much like characters through
31 of the ASCII set. Unicode does not specify any meanings for these 32 characters, but their
common interpretations are listed in the table. On Windows most of these positions are used
for noncontrol characters not normally included in Latin-1. These alternate interpretations are
given in Table B.3.

Table B.3. Windows Characters Between 128 and 159
Code Character Code Character Code Character Code Character
128 undefined 136 ^ 144 undefined 152 ~

129 undefined 137 145 ` 153 ™

130 , 138

146 ' 154
131 ƒ 139 ‹ 147 " 155 ›
132 „ 140 148 " 156 œ
133 ... 141 undefined 149 157 undefined

134 142 [A] 150 - 158 [A]

135 143 undefined 151 — 159 Ÿ

Values beyond 255 encode characters from various other character sets. Where possible,
character blocks describing a particular group of characters map onto established encodings
for that set of characters by simple transposition. For instance, Unicode characters 884
through 1011 encode the Greek alphabet and associated characters like the Greek question
mark (;). This is a direct transposition by 720 of characters 128 through 255 of the ISO 8859-
7 character set, which is in turn based on the Greek national standard ELOT 928. For
example, the small letter delta, d, Unicode character 948, is ISO 8859-7 character 228. A
small epsilon, e, Unicode character 949, is ISO 8859-7 character 229. In general, the Unicode
value for a Greek character equals the ISO 8859-7 value for the character plus 720. Other
character sets are included in Unicode in a similar fashion whenever possible.

As much as I'd like to include complete tables for all Unicode characters, if I did so, this book
would be little more than that table. For complete lists of all the Unicode characters and
associated glyphs, the canonical reference is The Unicode Standard Version 2.0, by the
Unicode Consortium, ISBN 0-201-48345-9. Updates to that book can be found at
http://www.unicode.org/. Online charts can be found at http://unicode.org/charts.

A These values are true for some, but not all, Windows systems. They are otherwise undefined.

Java I/O

468

Table B.4 lists the encodings that Java, javac, and native2ascii understand. Detailed
information about how these character sets map to Unicode can be found in the various files
at ftp://ftp.unicode.org/Public/MAPPINGS/.

Table B.4. Available Encodings in Java 1.1
Name Encoding

8859_1

ISO Latin-1, ASCII plus the characters needed for most Western European languages,
including Danish, Dutch, English, Faroese, Finnish, Flemish, German, Icelandic, Irish,
Italian, Norwegian, Portuguese, Spanish, and Swedish. Some non-European languages are
also sometimes written with these characters, including Hawaiian, Indonesian, and Swahili.

8859_2 ISO Latin-2, ASCII plus the characters needed for most Central European languages,
including Croatian, Czech, Hungarian, Polish, Romanian, Slovak, and Slovenian.

8859_3 ISO Latin-3, ASCII plus the characters needed for Esperanto, Maltese, Turkish, and
Galician, though Latin-5, ISO 8859-9, is now preferred for Turkish.

8859_4 ISO Latin-4, ASCII plus the characters needed for the Baltic languages Latvian, Lithuanian,
Greenlandic, and Lappish

8859_5 ASCII plus variant forms of Cyrillic characters used for Byelorussian, Bulgarian,
Macedonian, Russian, Serbian, and Ukrainian.

8859_6 ASCII plus Arabic.
8859_7 ASCII plus modern Greek.
8859_8 ASCII plus Hebrew.

8859_9 ISO Latin-5. This is essentially the same as Latin-1 (ASCII plus Western Europe) except that
the Icelandic letters Ý, ý, Ð, ð, and þ are replaced with the Turkish letters , , , , , and .

Big5 Big5, traditional Chinese.

CNS11643 CNS 11643, the Han character standard interchange code for general use, traditional
Chinese.

Cp037
EBCDIC, a non-ASCII-based character set, primarily used on IBM mainframes. This version
includes characters for U.S., Australian, and Canadian English, Canadian French, Dutch, and
Portuguese.

Cp273 EBCDIC for German.
Cp277 EBCDIC for Danish and Norwegian.
Cp278 EBCDIC for Finnish and Swedish.
Cp280 EBCDIC for Italian.
Cp284 EBCDIC for Spanish and Catalan.
Cp285 EBCDIC for British English (also used in Ireland).
Cp297 EBCDIC for French.
Cp420 EBCDIC for Arabic.
Cp424 EBCDIC for Hebrew.

Cp437

DOS English character set for the United States, Australia, New Zealand, South Africa,
ASCII plus various accented characters. Furthermore, like most DOS-based character sets,
this includes a number of line and corner characters commonly used to display spreadsheets
and tables. These are called box-drawing characters.

Cp500 EBCDIC International, essentially a reordered set of the same characters in Latin-1.
Cp737 DOS ASCII plus Greek and various box-drawing characters in the upper 128 places.
Cp775 DOS ASCII plus Baltic and various box-drawing characters in the upper 128 places.
Cp838 EBCDIC for Thai.

Cp850 DOS ASCII plus Western European and various box-drawing characters in the upper 128
places.

Cp852 DOS ASCII plus Central European and various box-drawing characters in the upper 128
places.

Cp855 DOS ASCII plus Cyrillic and various box-drawing characters in the upper 128 places.

Java I/O

469

Cp857 DOS ASCII plus Turkish and various box-drawing characters in the upper 128 places.
Cp860 DOS ASCII plus Portuguese and various box-drawing characters in the upper 128 places.
Cp861 DOS ASCII plus Icelandic and various box-drawing characters in the upper 128 places.
Cp862 DOS ASCII plus Hebrew and various box-drawing characters in the upper 128 places.

Cp863 DOS ASCII plus Canadian French and various box-drawing characters in the upper 128
places.

Cp864 DOS ASCII plus Arabic characters in the upper 128 places.
Cp865 DOS ASCII plus Nordic and various box-drawing characters in the upper 128 places.
Cp866 DOS ASCII plus Cyrillic and various box-drawing characters in the upper 128 places.
Cp868 DOS Arabic used in Pakistan for the Urdu language plus various box-drawing characters.
Cp869 DOS ASCII plus modern Greek and various box-drawing characters in the upper 128 places.
Cp870 ASCII plus most of the Central European characters found in Latin-2.
Cp871 EBCDIC for Icelandic.
Cp874 DOS ASCII plus Thai and various box-drawing characters in the upper 128 places.
Cp875 EBCDIC for Greek.

Cp918 DOS ASCII plus Arabic as used in Pakistan for the Urdu language plus various box-drawing
characters.

Cp921 DOS/AIX ASCII plus the characters needed for Latvian and Lithuanian in the upper 128
places.

Cp922 DOS/AIX ASCII plus the characters needed for Estonian in the upper 128 places.
Cp930 Japanese Katakana-Kanji mixed with 4,370 user-defined characters, a superset of 5026.
Cp933 Korean mixed with 1,880 user-defined characters, a superset of 5029.
Cp935 Simplified Chinese Host mixed with 1,880 user-defined characters, superset of 5031.
Cp937 Traditional Chinese Host mixed with 6,204 user-defined characters, superset of 5033.
Cp939 Japanese Latin Kanji mixed with 4,370 user-defined characters, superset of 5035.
Cp942 Japanese encoding used by OS/2, a superset of the SJIS Japanese Windows encoding.
Cp948 Chinese encoding used by Taiwanese localized OS/2, a superset of Cp938.
Cp949 Windows Unified Hangul (Extended Wansung) Korean.
Cp950 Windows ASCII plus Big5 Chinese, used in Hong Kong and Taiwan.
Cp964 AIX Chinese used in Taiwan.
Cp970 AIX Korean.
Cp1006 AIX Arabic used in Pakistan for Urdu.
Cp1025 EBCDIC Multilingual Cyrillic used in Bulgaria, Bosnia, Herzegovina, Macedonia.
Cp1026 EBCDIC plus Turkish.
Cp1046 "IBM Open Edition US EBCDIC," ASCII plus Arabic.
Cp1097 EBCDIC plus Farsi, a.k.a. Persian (Iran).
Cp1098 ASCII plus Farsi, a.k.a. Persian and various box-drawing characters (Iran).
Cp1112 EBCDIC plus the characters needed for Latvian and Lithuanian.
Cp1122 EBCDIC plus the characters needed for Estonian.
Cp1123 EBCDIC plus the characters needed for Ukrainian.
Cp1124 AIX ASCII plus the characters needed for Ukrainian.

Cp1250 Windows, 3.1 Central European, identical with Latin-2 except for some additional
noncontrol characters in the positions 128 to 159, as shown in Table B.3.

Cp1251 Windows, ASCII plus Cyrillic in the upper 128 characters.

Cp1252 Windows, Western European, identical with Latin-1 except for some additional noncontrol
characters in the positions 128 to 159, as shown in Table B.3.

Cp1253 Windows, ASCII plus Greek in the upper 128 characters.
Cp1254 Windows, ASCII plus Turkish in the upper 128 characters.
Cp1255 Windows, ASCII plus Hebrew in the upper 128 characters.

Java I/O

470

Cp1256 Windows, ASCII plus Arabic in the upper 128 characters.
Cp1257 Windows, ASCII plus Baltic in the upper 128 characters.
Cp1258 Windows, ASCII plus Vietnamese in the upper 128 characters.
Cp1381 OS/2, DOS Chinese encoding used in the People's Republic of China.
Cp1383 AIX, Chinese encoding used in the People's Republic of China.
Cp33722 IBM-eucJP, Japanese (superset of 5050).
EUCJIS Unix, JIS, EUC encoding, Japanese.
GB2312 GB2312, EUC encoding, simplified Chinese.
GBK GBK, simplified Chinese.

ISO2022CN ISO 2022, a standard for encoding multibyte characters in seven and eight-bit character sets,
as used to encode Chinese.

ISO2022CN_CNS CNS 11643 in ISO-2022-CN form, traditional Chinese.
ISO2022CN_GB GB 2312 in ISO-2022-CN form, simplified Chinese.
ISO2022KR ISO 2022 Korean.

JIS One of four Japanese Industrial Standards for encoding Japanese text; the exact encoding is
auto-detected as the file is read.

JIS0208 Japanese Industrial Standard X 0208 for encoding Japanese.

KOI8_R ASCII plus various box-drawing characters, a few mathematical symbols, and Cyrillic
characters, generally used for Russian.

KSC5601 KSC 5601, Korean.
MS874 Windows Thai.
MacArabic Macintosh Arabic.
MacCentralEurope Macintosh Latin-2.
MacCroatian Macintosh Croatian.
MacCyrillic Macintosh Cyrillic.
MacDingbat Zapf Dingbats.
MacGreek Macintosh Greek.
MacHebrew Macintosh Hebrew.
MacIceland Macintosh Icelandic.

MacRoman

Macintosh Roman, the basic eight-bit character set used on most Macs in English-speaking
countries and Western Europe. This character set has almost all the characters in Latin-1 with
the notable exception of the lower- and uppercase thorn. However, characters are assigned
different numeric values than they are in Latin-1.

MacRomania Macintosh Romanian.

MacSymbol The Macintosh Symbol font, essentially a MacRoman font that uses Greek glyphs in place of
English ones.

MacThai Macintosh Thai.
MacTurkish Macintosh Turkish.
MacUkraine Macintosh Ukrainian.

SJIS Shift-JIS, same as JIS X 0208 but with the high bit set and no escape sequences, the standard
Windows encoding of Japanese.

Unicode

Unicode with a byte order mark. This conversion determines whether the file is big-endian or
little-endian by reading the first two bytes. If they are 0xFEFF, the file is assumed to contain
big-endian data. If they are 0xFFFE, the file is assumed to contain little-endian data. If the
first two bytes are anything else, a MalformedInputException is thrown.

UnicodeBig Unicode with big-endian byte order.
UnicodeLittle Unicode in little endian byte order.
UTF8 The UTF-8 encoding of full Unicode.

Java I/O

471

As extensive as this list is, there are a few missing pieces. ISO 8859-10, a.k.a. Latin-6,
includes ASCII plus various characters used for Lappish, Nordic, and Inuit languages in the
upper 128 places. Java cannot currently convert characters in this set to Unicode.

Work is ongoing on both Unicode and other character sets. ISO 8859-11 will provide a
standard encoding for Thai. ISO 8859-12, also known as Latin-7, will use the upper 128
characters past ASCII for Celtic. ISO 8859-13, also known as Latin-8, will use them for the
Baltic Rim languages. ISO 8859-14, also known as Latin-9, will encode ASCII plus Sami.
Eventually, converters will be needed for these encodings as well.

Java I/O

472

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The
animal on the cover of this book is a white rabbit. The image is taken from the Dover Pictorial
Archive. The cover layout was produced with Quark XPress 3.3 using the Bodoni Black font
from URW Software and BT Bodoni Bold Italic from Bitstream. The inside layout was
designed by Nancy Priest. The heading font is Bodoni BT; the text font is New Baskerville.

Clairemarie Fisher O'Leary was the production editor and copyeditor for Java I/O; Sheryl
Avruch was the production manager; Madeleine Newell, Ellie Cutler, and Debby English
provided quality control. Ruth Rautenberg wrote the index. Robert Romano created the
illustrations using Adobe Photoshop 4 and Macromedia FreeHand 7. Text was prepared by
Mike Sierra in FrameMaker 5.5.

	Cover
	Table of Contents
	Dedication
	Preface
	Correcting Misconceptions
	Organization of the Book
	Who You Are
	Versions
	Security Issues
	Conventions Used in This Book
	Request for Comments
	Acknowledgments

	I: Basic I/O
	1. Introducing I/O
	1.1 What Is a Stream?
	1.2 Numeric Data
	1.3 Character Data
	1.4 Readers and Writers
	1.5 The Ubiquitous IOException
	1.6 The Console: System.out, System.in, and System.err
	1.7 Security Checks on I/O

	2. Output Streams
	2.1 The OutputStream Class
	2.2 Writing Bytes to Output Streams
	2.3 Writing Arrays of Bytes
	2.4 Flushing and Closing Output Streams
	2.5 Subclassing OutputStream
	2.6 A Graphical User Interface for Output Streams

	3. Input Streams
	3.1 The InputStream Class
	3.2 The read() Method
	3.3 Reading Chunks of Data from a Stream
	3.4 Counting the Available Bytes
	3.5 Skipping Bytes
	3.6 Closing Input Streams
	3.7 Marking and Resetting
	3.8 Subclassing InputStream
	3.9 An Efficient Stream Copier

	II: Data Sources
	4. File Streams
	4.1 Reading Files
	4.2 Writing Files
	4.3 File Viewer, Part 1

	5. Network Streams
	5.1 URLs
	5.2 URL Connections
	5.3 Sockets
	5.4 Server Sockets
	5.5 URLViewer

	III: Filter Streams
	6. Filter Streams
	6.1 The Filter Stream Classes
	6.2 The Filter Stream Subclasses
	6.3 Buffered Streams
	6.4 PushbackInputStream
	6.5 Print Streams
	6.6 Multitarget Output Streams
	6.7 File Viewer, Part 2

	7. Data Streams
	7.1 The Data Stream Classes
	7.2 Reading and Writing Integers
	7.3 Reading and Writing Floating-Point Numbers
	7.4 Reading and Writing Booleans
	7.5 Reading Byte Arrays
	7.6 Reading and Writing Text
	7.7 Miscellaneous Methods
	7.8 Reading and Writing Little-Endian Numbers
	7.9 Thread Safety
	7.10 File Viewer, Part 3

	8. Streams in Memory
	8.1 Sequence Input Streams
	8.2 Byte Array Streams
	8.3 Communicating Between Threads with Piped Streams

	9. Compressing Streams
	9.1 Inflaters and Deflaters
	9.2 Compressing and Decompressing Streams
	9.3 Working with Zip Files
	9.4 Checksums
	9.5 JAR Files
	9.6 File Viewer, Part 4

	10. Cryptographic Streams
	10.1 Hash Function Basics
	10.2 The MessageDigest Class
	10.3 Digest Streams
	10.4 Encryption Basics
	10.5 The Cipher Class
	10.6 Cipher Streams
	10.7 File Viewer, Part 5

	IV: Advanced and Miscellaneous Topics
	11. Object Serialization
	11.1 Reading and Writing Objects
	11.2 Object Streams
	11.3 How Object Serialization Works
	11.4 Performance
	11.5 The Serializable Interface
	11.6 The ObjectInput and ObjectOutput Interfaces
	11.7 Versioning
	11.8 Customizing the Serialization Format
	11.9 Resolving Classes
	11.10 Resolving Objects
	11.11 Validation
	11.12 Sealed Objects

	12. Working with Files
	12.1 Understanding Files
	12.2 Directories and Paths
	12.3 The File Class
	12.4 Filename Filters
	12.5 File Filters
	12.6 File Descriptors
	12.7 Random-Access Files
	12.8 General Techniques for Cross-Platform File Access Code

	13. File Dialogs and Choosers
	13.1 File Dialogs
	13.2 JFileChooser
	13.3 File Viewer, Part 6

	14. Multilingual Character Sets and Unicode
	14.1 Unicode
	14.2 Displaying Unicode Text
	14.3 Unicode Escapes
	14.4 UTF-8
	14.5 The char Data Type
	14.6 Other Encodings
	14.7 Converting Between Byte Arrays and Strings

	15. Readers and Writers
	15.1 The java.io.Writer Class
	15.2 The OutputStreamWriter Class
	15.3 The java.io.Reader Class
	15.4 The InputStreamReader Class
	15.5 Character Array Readers and Writers
	15.6 String Readers and Writers
	15.7 Reading and Writing Files
	15.8 Buffered Readers and Writers
	15.9 Print Writers
	15.10 Piped Readers and Writers
	15.11 Filtered Readers and Writers
	15.12 File Viewer Finis

	16. Formatted I/O with java.text
	16.1 The Old Way
	16.2 Choosing a Locale
	16.3 Number Formats
	16.4 Specifying Width with FieldPosition
	16.5 Parsing Input
	16.6 Decimal Formats
	16.7 An Exponential Number Format

	17. The Java Communications API
	17.1 The Architecture of the Java Communications API
	17.2 Identifying Ports
	17.3 Communicating with a Device on a Port
	17.4 Serial Ports
	17.5 Parallel Ports

	V: Appendixes
	A. Additional Resources
	A.1 Digital Think
	A.2 Design Patterns
	A.3 The java.io Package
	A.4 Network Programming
	A.5 Data Compression
	A.6 Encryption and Related Technology
	A.7 Object Serialization
	A.8 International Character Sets and Unicode
	A.9 Java Communications API
	A.10 Updates and Breaking News

	B. Character Sets

	Colophon

