Java and XSLT

Eric M. Burke

Publisher: O'Reilly
First Edition September 2001
ISBN: 0-596-00143-6, 528 pages

By GiantDino

Learn how to use XSL transformations in Java programs ranging
from stand-alone applications to servlets. Java and XSLT introduces
XSLT and then shows you how to apply transformations in real-
world situations, such as developing a discussion forum,

Copyright transforming documents from one form to another, and generating
content for wireless devices.

Table of Contents
Index

Full Description
About the Author
Reviews

Reader reviews
Errata

Java and XSLT

Preface
Audience
Software and Versions
Organization
Conventions Used in This Book
How to Contact Us

Acknowledgments

1. Introduction
1.1 Java, XSLT, and the Web
1.2 XML Review
1.3 Beyond Dynamic Web Pages
1.4 Getting Started

1.5 Web Browser Support for XSLT

2. XSLT Part 1 -- The Basics
2.1 XSLT Introduction
2.2 Transformation Process
2.3 Another XSLT Example, Using XHTML
2.4 XPath Basics
2.5 Looping and Sorting

2.6 Outputting Dynamic Attributes

3. XSLT Part 2 -- Beyond the Basics
3.1 Conditional Processing
3.2 Parameters and Variables
3.3 Combining Multiple Stylesheets

3.4 Formatting Text and Numbers
3.5 Schema Evolution

3.6 Ant Documentation Stylesheet

4. Java-Based Web Technoloqies

4.1 Traditional Approaches

4.2 The Universal Design
4.3 XSLT and EJB

4.4 Summary of Key Approaches

5. XSLT Processingwith Java
5.1 A Simple Example

5.2 Introduction to JAXP 1.1
5.3 Input and Output
5.4 Stylesheet Compilation

6. Servilet Basics and XSLT

6.1 Servlet Syntax

6.2 WAR Files and Deployment
6.3 Another Servlet Example

6.4 Stylesheet Caching Revisited
6.5 Servlet Threading Issues

7. Discussion Forum
7.1 Overall Process
7.2 Prototyping the XML
7.3 Making the XML Dynamic
7.4 Servilet Implementation

7.5 Finishing Touches

8. Additional Techniques
8.1 XSLT Page Layout Templates

8.2 Session Tracking Without Cookies

8.3 ldentifyving the Browser
8.4 Servlet Filters

8.5 XSLT as a Code Generator
8.6 Internationalization with XSLT

9. Development Environment, Testing, and Performance
9.1 Development Environment

9.2 Testing and Debuqgging
9.3 Performance Technigues

10. Wireless Applications
10.1 Wireless Technologies
10.2 The Wireless Architecture
10.3 Java, XSLT, and WML
10.4 The Future of Wireless

A. Discussion Forum Code

B. JAXP APl Reference

C. XSLT Quick Reference

Colophon

Preface

Java and Extensible Stylesheet Language Transformations (XSLT) are very different
technologies that complement one another, rather than compete. Java's strengths are portability,
its vast collection of standard libraries, and widespread acceptance by most companies. One
weakness of Java, however, is in its ability to process text. For instance, Java may not be the
best technology for merely converting XML files into another format such as XHTML or Wireless
Markup Language (WML). Using Java for such a task requires skilled programmers who
understand APIs such as DOM, SAX, or JDOM. For web sites in particular, it is desirable to
simplify the page generation process so nonprogrammers can participate.

XSLT is explicitly designed for XML transformations. With XSLT, XML data can be transformed
into any other text format, including HTML, XHTML, WML, and even unexpected formats such as
Java source code. In terms of complexity and sophistication, XSLT is harder than HTML but
easier than Java. This means that page authors can probably learn how to use XSLT successfully
but will require assistance from programmers as pages are developed.

XSLT processors are required to interpret and execute the instructions found in XSLT
stylesheets. Many of these processors are written in Java, making Java an excellent choice for
applications that must interoperate with XML and XSLT. For web sites that utilize XSLT, Java
servlets and EJBs are still required to intercept client requests, fetch data from databases, and
implement business logic. XSLT may be used to generate each of the XHTML web pages, but
this cannot be done without a language like Java acting as the coordinator.

This book explains the most important concepts behind the XSLT markup language but is not a
comprehensive reference on that subject. Instead, the focus is on interoperability with Java, with
particular emphasis on servlets and web applications. Every concept is backed by working
examples, all of which work on widely available, free tools.

Audience

Java programmers who want to learn how to use XSLT comprise the target audience for this
book. Java programming experience is essential, and basic familiarity with XML terminology is
helpful, but not required. Since so many of the examples revolve around web applications and
servlets, Chapter 4 and 6 are devoted to this topic, offering a fast-paced tutorial to servlet
technology. Chapter 2 and Chapter 3 contain a detailed XSLT tutorial, so no prior knowledge of
XSLT is required.

This book is particularly well-suited for readers who may have read a lot about these technologies
but have not used everything together in a complete application. Chapter 7, for example,
presents the implementation of a web-based discussion forum from start to finish. Fully worked
examples can be found in every chapter, ranging from an Ant build file documentation stylesheet
in Chapter 3 to internationalization techniques in Chapter 8.

Software and Versions

Keeping up with the latest technologies is always a challenge, particularly when writing about
XML-related tools. The set of tools listed in Table P-1 is sufficient to run just about every
example in this book.

Table P-1. Software and versions

Tool URL Description
Crimson Included with JAXP 1.1 XML parser from Apache
JAXP 1.1 http://java.sun.com/xml Java API for XML Processing
JDK 1.2.x http://java.sun.com Any Java 2 Standard Edition SDK
JDOM beta 6 http://www.jdom.org Open source alternative to DOM
JUnit 3.7 http://www.junit.org Open source unit testing framework
Tomcat 4.0 http://jakarta.apache.org Open source servlet container
Xalan Included with JAXP 1.1 XSLT processor

There are certainly other tools, most notably the SAXON XSLT processor available from
http://users.iclway.co.uk/mhkay/saxon. This can easily be substituted for Xalan because of
the vendor-independence that JAXP offers.

All of the examples, as well as JAR files for the tools listed in Table P-1, are available for
download from http://www.javaxslt.com and from the O'Reilly web site at
http://www.oreilly.com/catalog/javaxslt. The included README.txt file contains
instructions for compiling and running the examples.

Organization

This book consists of 10 chapters and 3 appendixes, as follows:

Chapter 1

Provides a broad overview of the technologies covered in this book and explains how
XML, XSLT, Java, and other APIs are related. Also reviews basic XML concepts for
readers who are familiar with Java but do not have a lot of XML experience.

Chapter 2

Introduces XSLT syntax through a series of small examples and descriptions. Describes
how to produce HTML and XHTML output and explains how XSLT works as a language.
XPath syntax is also introduced in this chapter.

Chapter 3

Continues with material presented in the previous chapter, covering more sophisticated
XSLT language features such as conditional logic, parameters and variables, text and
number formatting, and producing XML output. This chapter concludes with a more
sophisticated example that produces summary reports for Ant build files.

Chapter 4

Offers comparisons between popular web development technologies, comparing each
with the Java and XSLT approach. The model-view-controller architecture is discussed in
detail, and the relationship between XSLT web applications and EJB is touched upon.

Chapter 5

Shows how to use XSLT processors with Java applications and servlets. Older Xalan and
SAXON APIs are mentioned, but the primary focus is on Sun's JAXP. Key examples
show how to use XSLT and SAX to transform non-XML files and data sources, how to

improve performance through caching techniques, and how to interoperate with DOM
and JDOM.

Chapter 6
Provides a detailed review of Java servlet programming techniques. Shows how to create
web applications and WAR files, how to deploy XML and XSLT files within these web
applications, and how to perform XSLT transformations from servlets.

Chapter 7

Implements a complete web application from start to finish. In this chapter, a web-based
discussion forum is designed and implemented using Java, XML, and XSLT techniques.
The relationship between CSS and XSLT is presented, and XHTML Strict is used for all
web pages.

Chapter 8

Covers important Java and XSLT programming techniques that build upon concepts
presented in earlier chapters, concluding with a detailed discussion of XSLT
internationalization. Other topics include XSLT page layout templates, servlet session
tracking without cookies, browser identification, and servlet filters.

Chapter 9

Offers practical advice for making a wide range of XML parsers, XSLT processors, and
various other Java tools work together. Shows how to resolve conflicts with incompatible
XML JAR files, how to write simple unit tests with JUnit, and how to write custom JAXP
error handlers. Also discusses performance techniques and the relationship between
XSLT and EJB.

Chapter 10

Describes the world of wireless technologies, with emphasis on Wireless Markup
Language (WML). Shows how to detect wireless devices from a servlet, how to write
XSLT stylesheets for these devices, and how to test using a variety of cell phone
simulators. An online movie theater application is developed to reinforce the concepts.

Appendix A
Contains all of the remaining code from the discussion forum example presented in
Chapter 7.

Appendix B
Lists and briefly describes each of the classes in Version 1.1 of the JAXP API.

Appendix C

Contains a quick reference for the XSLT language. Lists all XSLT elements along with
required and optional attributes and allowable content within each element. Also cross
references each element with the W3C XSLT specification.

Conventions Used in This Book
Italic is used for:
Pathnames, filenames, and program names
New terms where they are defined
Internet addresses, such as domain names and URLs

Constant wi dt h is used for:

Anything that appears literally in a Java program, including keywords, datatypes,
constants, method names, variables, class names, and interface names

All Java code listings
HTML, XML, and XSLT documents, tags, and attributes

Constant wi dth italic isused for:

General placeholders that indicate that an item is replaced by some actual value in your
own program

Constant wi dt h bol d is used for:
Command-line entries

Emphasis within a Java or XML source file

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (FAX)

There is a web page for this book, which lists errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/javaxslt

To comment or ask technical questions about this book, send email to:

bookguestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

http://www.oreilly.com

Acknowledgments

| would like to thank my wife Jennifer for tolerating my absence during the past six months, as |
have locked myself in the basement researching, writing, and thinking. | also feel fortunate that
my two-year-old son Aidan goes to bed early; a vast majority of this book was written well after
8:30 P.M.!

Coming up with a list of people to thank is a difficult job because so many have influenced the
material in this book. | only hope that | do not leave anyone out. All of the technical reviewers did
an amazing amount of work, each offering a unique perspective and useful advice. The official
reviewers were Dean Wette, Kevin Heifner, Paul Jensen, Shane Curcuru, and Tim Brown.

| would also like to thank Weigi Gao, Shu Zhu, Santosh Shanbhag, and Suman Ganesh for help
with the internationalization example in Chapter 8. A technical article by Dan Troesser inspired
my servlet filter implementation, and Justin Michel and Brent Roberts reviewed some of the first
chapters that | wrote.

There are two companies that | really want to thank. O'Reilly has this little link on their home page
called "Write for Us." This book came into existence because | casually clicked on that link one
day and decided to submit a proposal. Although my original idea was not accepted, Mike
Loukides and | exchanged several emails after that in a virtual brainstorming session, and
eventually the proposal for this book emerged. | am still amazed that an unknown visitor to a web
site can become an O'Reilly author.

The other company | would like to thank is Object Computing, Inc. (OCI), my employer. They
have a remarkable group of highly talented software engineers, all of whom are always available
to answer questions, offer advice, and inspire me to learn more. These people are the reason |
work for OCI and are the reason this book was possible.

Finally, I would like to thank Mark Volkmann of OCI for teaching me about XML in the first place
and for answering countless questions during the past five years.

Chapter 1. Introduction

When XML first appeared, people widely believed that it was the imminent successor to HTML.
This viewpoint was influenced by a variety of factors, including media hype, wishful thinking, and
simple confusion about the number of new technologies associated with XML. The reality is that
millions of web sites are written in HTML, and no widely used browser fully supports XML and its
related standards. Even when browser vendors incorporate full support for XML and its family of
related technologies, it will take years before enough people use these new versions to justify
rewriting most web sites in XML. Although maintaining compatibility with older browsers is
essential, companies should not hesitate to move forward with XML and related technologies on
the server.

From the browser perspective, HTML will remain dominant on the Web for many years to come.
Looking beneath the hood will reveal a much different picture, however, in which HTML is used
only during the last instant of presentation. Web applications must support a multitude of
browsers, and the easiest way to do this is to simply transform data into HTML before sending it
to the client. On the server side, XML is the preferred way to process and exchange data
because it is portable, standard, and easy to work with. This is where Java and XSLT enter the
picture.

1.1 Java, XSLT, and the Web

Extensible Stylesheet Language Transformations (XSLT) is designed to transform XML data into
some other form, most commonly HTML, XHTML, or another XML format. An XSLT processor ,
such as Apache's Xalan, performs transformations using one or more XSLT stylesheets , which
are also XML documents. As Figure 1-1 illustrates, XSLT can be utilized on the web tier while
web browsers on the client tier deal only with HTML.

Figure 1-1. XSLT transformation

e e ———) Wb Browser
3 Wabh Tiar TR T
&

Datahase HTML | oufput xnu.ua%] N
i F'ﬁﬁw : e

- |
O'REILLY”

XSLT Stylesheel .E

Typically in an XSLT- and Java-based web application, XML data is generated dynamically based
on database queries. Although some newer databases can export data directly as XML, you will
often write custom Java code to extract data using JDBC and convert it to XML. This XML data,
such as a customized list of benefit elections or perhaps an airline schedule for a specific time
window, may be different for each client using the application. In order to display this XML data
on most browsers, it must first be converted to HTML. As Figure 1-1 shows, the XML data is fed
into the processor as one input, and an XSLT stylesheet is provided as a second input. The
output is then sent directly to the web browser as a stream of HTML. The XSLT stylesheet
produces HTML formatting instructions, while the XML provides raw data.

1.1.1 What's Wrong with HTML?

One of the fundamental problems with HTML is its haphazard implementation. Although the
specification for HTML is available from the World Wide Web Consortium (W3C), its evolution
was driven mostly by competition between Netscape and Microsoft rather than a thoughtful
design process and open standards. This resulted in a bloated language littered with browser-
specific tags and varying support for standards. Since no two browsers support the exact same
set of HTML features, web authors often limit themselves to a subset of HTML. Another approach
is to create and maintain separate copies of each web page, which take advantage of the unique
features found in a particular browser. The limitations of HTML are compounded for dynamic
sites, in which Java programs are often responsible for accessing enterprise data sources and
presenting that information through the browser.

Extracting information from back-end data sources is much more difficult than simple web page
authoring. This requires skilled developers who know how to interact with Enterprise JavaBeans
or relational databases. Since skilled Java developers are a scarce and expensive resource, it
makes sense to let them work on the back-end data sources and business logic while web page
developers and less experienced programmers work on the HTML user interface. As we will see
in Chapter 4, this can be difficult with traditional Java servlet approaches because Java code is
often cluttered with HTML generation code.

1.1.2 Keeping Data and Presentation Separate

HTML does not separate data from presentation. For example, the following fragment of HTML
displays some information about a customer. In it, data fields such as "Aidan" and "Burke" are
clearly intertwined with formatting elements such as <t r > and <t d>:

<h3>Cust oner | nformation</h3>

<tabl e border="1" cel | paddi ng="2" cell spaci ng="0">
<tr><td>First Nanme:</td><td>A dan</td></tr>
<tr><td>Last Nane:</td><td>Burke</td></tr>
<l-- etc... -->

</ tabl e>

Traditionally, this sort of HTML is generated dynamically using pri nt | n() statementsin a
servlet, or perhaps through a JavaServer Page (JSP). Both require Java programmers, and
neither technology explicitly keeps business logic and data separated from the HTML generation
code. To support multiple incompatible browsers, you have to be careful to avoid duplication of a
lot of Java code and the HTML itself. This places additional burdens on Java developers who
should be working on more important problems.

There are ways to keep programming logic separate from the HTML generation, but extracting
meaningful data from HTML pages is next to impossible. This is because the HTML does not
clearly indicate how its data is structured. A human can look at HTML and determine what its
fields mean, but it is quite difficult to write a computer program that can reliably extract meaningful
data. Although you can search for text patterns such as Fi r st Nane: followed by <t d>, this

approach! fails as soon as the presentation is modified. For example, changing the page as
follows would cause this approach to fail:

[This approach is commonly known as "screen scraping.”

<tr><td>Ful |l Name: </td><t d>Ai dan Burke</td></tr>

1.1.3 The XSLT Solution

XSLT makes it possible to define clearly the roles of Java, XML, XSLT, and HTML. Java is used
for business logic, database queries and updates, and for creating XML data. The XML is
responsible for raw data, while XSLT transforms the XML into HTML for viewing by a browser. A
key advantage of this approach is the clean separation between the XML data and the HTML
views. In order to support multiple browsers, multiple XSLT stylesheets are written, but the same
XML data is reused on the server. In the previous example, the XML data for the customer did not
contain any formatting instructions:

<cust oner >
<firstNanme>Ai dan</first Nane>
<| ast Nane>Bur ke</ | ast Nane>
</ cust oner >

Since XML contains only data, it is almost always much simpler than HTML. Additionally, XML
can be created using a Java API such as JDOM (http://www.jdom.orqg). This facilitates error
checking and validation, something that cannot be achieved if you are simply printing HTML as
textusing Print Witer andprintln() statementsin a servlet.

Best of all, the XML-generation code has to be written only once. The XML data can then be
transformed by any number of XSLT stylesheets in order to support different browsers, alternate
languages, or even nonbrowser devices such as web-enabled cell phones.

1.2 XML Review

In a nutshell, XML is a format for storing structured data. Although it looks a lot like HTML, XML is
much more strict with quotes, properly terminated tags, and other such details. XML does not
define tag names, so document authors must invent their own set of tags or look towards a
standards organization that defines a suitable XML markup language. A markup language is
essentially a set of custom tags with semantic meaning behind each tag; XSLT is one such
markup language, since it is expressed using XML syntax.

The terms element and tag are often used interchangeably, and both are used in this book.
Speaking from a more technical viewpoint, element refers to the concept being modeled, while
tag refers to the actual markup that appears in the XML document. So <account > is a tag that
represents an account element in a computer program.

1.2.1 SGML, XML, and Markup Languages

Standard Generalized Markup Language (SGML) forms the basis for HTML, XHTML, XML, and
XSLT, but in very different ways for each. Figure 1-2 illustrates the relationships between these
technologies.

Figure 1-2. SGML heritage

SGML
XML | Qo

metalanguages

4

HTML XHTML XSLT

markup languages

SGML is a very sophisticated metalanguage designed for large and complex documentation. As a
metalanguage, it defines syntax rules for tags but does not define any specific tags. HTML, on the
other hand, is a specific markup language implemented using SGML. A markup language defines
its own set of tags, such as <h1> and <p>. Because HTML is a markup language instead of a
metalanguage, you cannot add new tags and are at the mercy of the browser vendor to properly
implement those tags.

XML, as shown in Figure 1-2, is a subset of SGML. XML documents are compatible with SGML
documents, however XML is a much smaller language. A key goal of XML is simplicity, since it
has to work well on the Web where bandwidth and limited client processing power is a concern.
Because of its simplicity, XML is easier to parse and validate, making it a better performer than
SGML. XML is also a metalanguage, which explains why XML does not define any tags of its
own. XSLT is a particular markup language implemented using XML, and will be covered in detail
in the next two chapters.

XHTML, like XSLT, is also an XML-based markup language. XHTML is designed to be a
replacement for HTML and is almost completely compatible with existing web browsers. Unlike
HTML, however, XHTML is based strictly on XML, and the rules for well-formed documents are
very clearly defined. This means that it is much easier for vendors to develop editors and
programming tools to deal with XHTML, because the syntax is much more predictable and can be
validated just like any other XML document. Many of the examples in this book use XHTML
instead of HTML, although XSLT can easily handle either format.

XHTML Basics

XHTML is a W3C Recommendation that represents the future of HTML.
Based on HTML 4.0, XHTML is designed to be compatible with existing
web browsers while complying fully with XML. This means that a properly
written XHTML document is always a well-formed XML document.
Furthermore, XHTML documents must adhere to one or more of the
XHTML DTDs, therefore XHTML pages can be validated using today's
XML parsers such as Apache's Crimson.

XHTML is designed to be modular; therefore, subsets can be extracted
and utilized for wireless devices such as cell phones. XHTML Basic, also
a W3C Recommendation, is one such modularization effort, and will
likely become a force to be reckoned with in the wireless space.

Here is an example XHTML document:

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0

Strict//EN'
"http://ww. W3. org/ TR/ xht ml 1/ DTDY xht m 1-
strict.dtd">
<htmm xm ns="http://ww. w3. org/ 1999/ xht m " >
<head>
<title>Hello, Wrld!l</title>
</ head>
<body>
<p>Hel l o, Worl d!</p>
</ body>
</htm >

Some of the most important XHTML rules include:

XHTML documents must be well-formed XML and must adhere to
one of the XHTML DTDs. As expected with XML, all elements
must be properly terminated, attribute values must be quoted, and
elements must be properly nested.

The <! DOCTYPE ... >tag is required.
Unlike HTML, tags must be lowercase.

The root element must be <ht 1 > and must designate the
XHTML namespace as shown in the previous example.

<head> and <body> are required.

The preceding document adheres to the strict DTD, which eliminates
deprecated HTML tags and many style-related tags. Two other DTDs,
transitional and frameset, provide more compatibility with existing web
browsers but should be avoided when possible. For full information, refer
to the W3C's specifications and documentation at http://www.w3.0rg.

As we look at more advanced techniques for processing XML with XSLT, we will see that XML is
not always dealt with in terms of a text file containing tags. From a certain perspective, XML files
and their tags are really just a serialized representation of the underlying XML elements. This
serialized form is good for storing XML data in files but may not be the most efficient format for

exchanging data between systems or programmatically modifying the underlying data. For
particularly large documents, a relational or object database offers far better scalability and
performance than native XML text files.

1.2.2 XML Syntax

Example 1-1 shows a sample XML document that contains data about U.S. Presidents. This
document is said to be well-formed because it adheres to several basic rules about proper XML

formatting.

Example 1-1. presidents.xml

<?xm version="1.0" encodi ng="UTF-8""?>
<I DOCTYPE presi dents SYSTEM "presidents. dtd">

<pr esi dent s>
<pr esi dent >
<term frone"1789" to="1797"/>
<nane>
<first>Ceorge</first>
<l ast >Washi ngt on</ | ast >
</ nanme>
<party>Federalist</party>
<vi cePresi dent >
<namne>
<first>John</first>
<| ast >Adans</ | ast >
</ name>
</ vi cePresi dent >
</ president>
<pr esi dent >
<term fronm="1797" to="1801"/>
<nane>
<first>John</first>
<l ast >Adans</ | ast >
</ nane>
<party>Federal i st</party>
<vi cePresi dent >
<namne>
<first>Thomas</first>
<l ast>Jefferson</| ast >
</ name>
</ vi cePresi dent >
</ president>

<l-- remmining presidents onmtted -->

</ presi dent s>

In HTML, a missing tag here and there or mismatched quotes are not disastrous. Browsers make
every effort to go ahead and display these poorly formatted documents anyway. This makes the
Web a much more enjoyable environment because users are not bombarded with constant
syntax errors.

Since the primary role of XML is to represent structured data, being well-formed is very important.
When two banking systems exchange data, if the message is corrupted in any way, the receiving
system must reject the message altogether or risk making the wrong assumptions. This is
important for XSLT programmers to understand because XSLT itself is expressed using XML.
When writing stylesheets, you must always adhere to the basic rules for well-formed documents.

All well-formed XML documents must have exactly one root element . In Example 1-1, the root
element is <pr esi dent s>. This forms the base of a tree data structure in which every other
element has exactly one parent and zero or more children. Elements must also be properly
terminated and nested:

<nane>
<first>George</first>
<l ast >Washi ngt on</ | ast >
</ nane>

Although whitespace (spaces, tabs, and linefeeds) between elements is typically irrelevant, it can
make documents more readable if you take the time to indent consistently. Although XML parsers
preserve whitespace, it does not affect the meaning of the underlying elements. In this example,

the <f i r st > tag must be terminated with a corresponding </ f i r st >. The following XML would
be illegal because the tags are not properly nested:

<nanme>
<first>CGeorge
<| ast >Washi ngt on</first>
</l ast>
</ nanme>

XML provides an alternate syntax for terminating elements that do not have children, formally
known as empty elements . The <t er > element is one such example:

<term fronm="1797" to="1801"/>

The closing slash indicates that this element does not contain any content , although it may
contain attributes. An attribute is a name/value pair, such as f r on=" 1797" . Another requirement
for well-formed XML is that all attribute values be enclosed in quotes (" ") or apostrophes (' ').

Most presidents had middle names, some did not have vice presidents, and others had several
vice presidents. For our example XML file, these are known as optional elements. Ulysses Grant,
for example, had two vice presidents. He also had a middle name:

<pr esi dent >
<term from="1869" to="1877"/>
<nane>
<first>U ysses</first>
<m ddl e>Si npson</ m ddl e>
<last>G ant</| ast >
</ nane>
<party>Republ i can</ party>
<vi cePresi dent >
<nane>
<first>Schuyler</first>
<l ast >Col f ax</ | ast >
</ nanme>
</ vi cePresi dent >
<vi cePresi dent >
<nane>
<first>Henry</first>
<l ast >W | son</ | ast >
</ nanme>
</ vi cePresi dent >
</ presi dent >

Capitalization is also important in XML. Unlike HTML, all XML tags are case sensitive. This
means that <pr esi dent > is not the same as <PRESI DENT>. It does not matter which
capitalization scheme you use, provided you are consistent. As you might guess, since XHTML
documents are also XML documents, they too are case sensitive. In XHTML, all tags must be
lowercase, such as <ht nml >, <body>, and <head>.

The following list summarizes the basic rules for a well-formed XML document:

It must contain exactly one root element; the remainder of the document forms a tree
structure, in which every element is contained within exactly one parent.

All elements must be properly terminated. For example, <nane>Eri c</ nane> is
properly terminated because the <nane> tag is terminated with </ nane>. In XML, you
can also create empty elements like <marri ed/ >.

Elements must be properly nested. This is legal:
<i >bol d and italic</i>

But this is illegal:
<i >bol d and italic</i>

Attributes must be quoted using either quotes or apostrophes. For example:
<dat e nont h="march" day='01" year="1971"/>

Attributes must contain name/value pairs. Some HTML elements contain marker
attributes, such as <t d now ap>. In XHTML, you would write this as <t d

now ap="now ap"/ >. This is compatible with XML and should work in existing web
browsers.

This is not the complete list of rules but is sufficient to get you through the examples in this book.
Clearly, most HTML documents are not well-formed. Many tags, such as
 or <hr >, violate
the rule that all elements must be properly terminated. In addition, browsers do not complain
when attribute values are not quoted. This will have interesting ramifications for us when we write
XSLT stylesheets, which are themselves written in XML but often produce HTML. What this
basically means is that the stylesheet must contain well-formed XML, so it is difficult to produce
HTML that is not well-formed. XHTML is certainly a more natural fit because it is also XML, just
like the XSLT stylesheet.

1.2.3 Validation

A well-formed XML document adheres to the basic syntax guidelines just outlined. A valid XML
document goes one step further by adhering to either a Document Type Definition (DTD) or an
XML Schema. In order to be considered valid, an XML document must first be well-formed.
Stated simply, DTDs are the traditional approach to validation, and XML Schemas are the logical
successor. XML Schema is another specification from the W3C and offers much more
sophisticated validation capabilities than DTDs. Since XML Schema is very new, DTDs will
continue to be used for quite some time. You can learn more about XML Schema at
http://www.w3.org/XML/Schema.

The second line of Example 1-1 contains the following document type declaration:
<! DOCTYPE presi dents SYSTEM "presidents.dtd">

This refers to the DTD that exists in the same directory as the presidents.xml file. In many cases,
the DTD will be referenced by a URI instead:

<! DOCTYPE presi dents SYSTEM
"http://ww.javaxslt.conl dtds/presidents.dtd">

Regardless of where the DTD is located, it contains rules that define the allowable structure of the
XML data. Example 1-2 shows the DTD for our list of presidents.

Example 1-2. presidents.dtd

ELEMENT presidents (president+)>

ELEMENT president (term name, party, vicePresident*)>
ELEMENT nane (first, mddle*, |ast, nicknane?)>
ELEMENT vi cePresi dent (nane)>

ELEMENT first (#PCDATA) >

ELEMENT | ast (#PCDATA) >

ELEMENT mi ddl e (#PCDATA) >

ELEMENT ni cknane (#PCDATA) >

ELEMENT party (#PCDATA) >

ELEMENT term EMPTY>

<!
<
<
<l
<!
<
<
<l
<
<

<I ATTLI ST term
from CDATA #REQUI RED

to CDATA #REQUI RED
>

The first line in the DTD says that the <pr esi dent s> element can contain one or more

<presi dent > elements as children. The <pr esi dent >, in turn, contains one each of <t er nw,
<nane>, and <par t y> in that order. It then may contain zero or more <vi cePr esi dent >
elements. If the XML data did not adhere to these rules, the XML parser would have rejected it as
invalid.

The <nane> element can contain the following content: exactly one <f i r st >, followed by zero
or more <m ddl| e>, followed by exactly one <| ast >, followed by zero or one <ni cknane>. If
you are wondering why <ni dd| e> can occur many times, consider this former president:

<nane>
<first>George</first>
<m ddl e>Her bert </ m ddl e>
<m ddl e>\Wal ker </ m ddl e>
<| ast >Bush</ | ast >

</ nane>

Elements such as <f i r st >Ceor ge</ fi r st > are said to contain #PCDATA , which stands for
parsed character data. This is ordinary text that can contain markup, such as nested tags. The
CDATA type, which is used for attribute values, cannot contain markup. This means that <
characters appearing in attribute values will have to be encoded in your XML documents as

&l t;.The <t er n> element is EMPTY, meaning that it cannot have content. This is not to say that
it cannot contain attributes, however. This DTD specifies that <t er > must have f romand t o
attributes:

<term fronm="1869" to="1877"/>

We will not cover the remaining syntax rules for DTDs in this book, primarily because they do not
have much impact on our code as we apply XSLT stylesheets. DTDs are primarily used during
the parsing process, when XML data is read from a file into memory. When generating XML for a
web site, you generally produce new XML rather than parse existing XML, so there is much less
need to validate. One area where we will use DTDs, however, is when we examine how to write
unit tests for our Java and XSLT code. This will be covered in Chapter 9.

1.2.4 Java and XML

Java APIs for XML such as SAX, DOM, and JDOM will be used throughout this book. Although
we will not go into a great deal of detail on specific parsing APIs, the Java-based XSLT tools do
build on these technologies, so it is important to have a basic understanding of what each API
does and where it fits into the XML landscape. For in-depth information on any of these topics,
you might want to pick up a copy of Java & XML by Brett McLaughlin (O'Reilly).

A parser is a tool that reads XML data into memory. The most common pattern is to parse the
XML data from a text file, although Java XML parsers can also read XML from any Java

I nput St r eamor even a URL. If a DTD or Schema is used, then validating parsers will ensure
that the XML is valid during the parsing process. This means that once your XML files have been
successfully parsed into memory, a lot less custom Java validation code has to be written.

1.2.4.1 SAX

In the Java community, Simple API for XML (SAX) is the most commonly used XML parsing
method today. SAX is a free API available from David Megginson and members of the XML-DEV
mailing list (http://www.xml.org/xml-dev). It can be downloaded! from

http://www.megginson.com/SAX. Although SAX has been ported to several other
languages, we will focus on the Java features. SAX is only responsible for scanning through XML
data top to bottom and sending event notifications as elements, text, and other items are
encountered; it is up to the recipient of these events to process the data. SAX parsers do not
store the entire document in memory, therefore they have the potential to be very fast for even
huge files.

[21 One does not generally need to download SAX directly because it is supported by and included with all of
the popular XML parsers.

Currently, there are two versions of SAX: 1.0 and 2.0. Many changes were made in version 2.0,
and the SAX examples in this book use this version. Most SAX parsers should support the older
1.0 classes and interfaces, however, you will receive deprecation warnings from the Java
compiler if you use these older features.

Java SAX parsers are implemented using a series of interfaces. The most important interface is
org. xm . sax. Cont ent Handl er , which has methods such as st art Docunent ()
startEl enent() ,characters() ,endEl enent() ,and endDocunent() . During the
parsing process, st art Docunent () is called once, then st art El enent () and

endEl emrent () are called once for each tag in the XML data. For the following XML:

<first>CGeorge</first>

the st art El enent () method will be called, followed by char acters(), followed by
endEl ement (). Thecharacters() method provides the text " Geor ge" in this example.
This basic process continues until the end of the document, at which time endDocunent () is
called.

‘ Depending on the SAX implementation, the characters()
WA method may break up contiguous character data into several

chunks of data. In this case, the char act er s() method will
be called several times until the character data is entirely
parsed.

Since Cont ent Handl er is an interface, it is up to your application code to somehow implement
this interface and subsequently do something when the parser invokes its methods. SAX does
provide a class called Def aul t Handl er that implements the Cont ent Handl er interface. To
use Def aul t Handl er, create a subclass and override the methods that interest you. The other
methods can safely be ignored, since they are just empty methods. If you are familiar with AWT
programming, you may recognize that this idiom is identical to event adapter classes such as

j ava. awt . event . W ndowAdapt er .

Getting back to XSLT, you may be wondering where SAX fits into the picture. It turns out that
XSLT processors typically have the ability to gather input from a series of SAX events as an
alternative to static XML files. Somewhat nonintuitively, it also turns out that you can generate
your own series of SAX events rather easily -- without using a SAX parser. Since a SAX parser
just calls a series of methods on the Cont ent Handl er interface, you can write your own
pseudo-parser that does the same thing. We will explore this in Chapter 5 when we talk about
using SAX and an XSLT processor to apply transformations to non-XML data, such as results
from a database query or content of a comma separated values (CSV) file.

1.2.4.2 DOM

The Document Object Model (DOM) is an API that allows computer programs to manipulate the
underlying data structure of an XML document. DOM is a W3C Recommendation, and
implementations are available for many programming languages. The in-memory representation
of XML is typically referred to as a DOM tree because DOM is a tree data structure. The root of
the tree represents the XML document itself, using the or g. w3c. dom Docunent interface. The
document root element, on the other hand, is represented using the or g. w3c. dom El enent
interface. In the presidents example, the <pr esi dent s> element is the document root element.
In DOM, almost every interface extends from the or g. w3c. dom Node interface; Docunent and
El enent are no exception. The Node interface provides numerous methods to navigate and
modify the DOM tree consistently.

Strangely enough, the DOM Level 2 Recommendation does not provide standard mechanisms for
reading or writing XML data. Instead, each vendor implementation does this a little bit differently.
This is generally not a big problem because every DOM implementation out there provides some
mechanism for both parsing and serializing, or writing out XML files. The unfortunate result,
however, is that reading and writing XML will cause vendor-specific code to creep into any
application you write.

o

At the time of this writing, a new W3C document called
Pkl . “"Document Object Model (DOM) Level 3 Content Models and

Load and Save Specification" was in the working draft status.
Once this specification reaches the recommendation status,
DOM will provide a standard mechanism for reading and
writing XML.

Since DOM does not specify a standard way to read XML data into memory, most DOM (if not all)
implementations delegate this task to a dedicated parser. In the case of Java, SAX is the

preferred parsing technology. Figure 1-3 illustrates the typical interaction between SAX parsers
and DOM implementations.

Figure 1-3. DOM and SAX interaction

decument
DOM Implementation root element

!
org.xml s DOM Tree /

ContentHandler Document V4

SAX notify StartDocument w

------------------- # startElement

parser characters
'y endElement m m
i parse endDocument

seralize — =
XML file |- Vendor-Specific Serializer =

Lmodity) Java
Application
T

seriaize

Although it is important to understand how these pieces fit together, we will not go into detailed
parsing syntax in this book. As we progress to more sophisticated topics, we will almost always
be generating XML dynamically rather than parsing in static XML data files. For this reason, let's
look at how DOM can be used to generate a new document from scratch. Example 1-3 contains
XML for a personal library.

Example 1-3. library.xml

<?xm version="1.0" encodi ng="UTF-8"7?>
<IDOCTYPE |ibrary SYSTEM "library.dtd">
<library>
<l-- This is an XML coment -->
<publ i sher id="oreilly">
<nane>0 Rei | | y</ name>
<street>101 Morris Street</street>
<ci t y>Sebast opol </ city>
<st at e>CA</ st at e>
<post al >95472</ post al >
</ publ i sher>
<book publisher="oreilly" isbn="1-56592-709-5">
<edi tion>1</edition>
<publicationbDate mm¥="10" yy="1999"/>
<title>XM. Pocket Reference</title>
<aut hor >Robert Eckst ei n</ aut hor >
</ book>
<book publisher="oreilly" isbn="0-596-00016-2">
<edition>1l</edition>
<publ i cationbDate mm¥"06" yy="2000"/>
<title>Java and XM.</title>
<aut hor>Brett McLaughl i n</aut hor >
</ book>
</library>

As shown in library.xml, a <| i br ar y> consists of <publ i sher > elements and <book>
elements. To generate this XML, we will use Java classes called Li br ar y, Book, and

Publ i sher . These classes are not shown here, but they are really simple. For example, here is
a portion of the Book class:

public class Book {
private String author;
private String title;

public String getAuthor() {
return this.author;
}

public String getTitle() {
return this.title;

}
.

Each of these three helper classes is merely used to hold data. The code that creates XML is
encapsulated in a separate class called Li br ar yDOVCr eat or , which is shown in Example 1-4.

Example 1-4. XML generation using DOM
package chapl

i mport java.io.*;

i mport java.util.*;

i mport org.w3c.dom Documnent ;
i mport org.w3c.dom El enent;

/**

* An exanple from Chapter 1. Creates the library XML file using the
* DOM API .

*/

public class LibraryDOVMCreator ({

/**

* Create a new DOM org. w3c. dom Docunent object fromthe specified
* Library object.

*

* @aramlibrary an application defined class that

* provides a list of publishers and books.

* @eturn a new DOM docunent .

*

~

publ i c Docunent createDocunent (Library |ibrary)
throws javax.xnl . parsers. Parser Confi gurati onException {
/1 Use Sun's Java APl for XML Parsing to create the
/1 DOM Docunent
j avax. xm . par sers. Docunent Bui | der Factory dbf =
j avax. xm . par sers. Docunent Bui | der Fact ory. new nst ance();
j avax. xm . par sers. Docunent Bui | der docBui |l der =
dbf . newDocunent Bui | der () ;
Document doc = docBui |l der. newbDocunent () ;

/1 NOTE: DOM does not provide a factory nethod for creating

/1 <IDOCTYPE |ibrary SYSTEM "library.dtd">

/'l Apache's Xerces provides the createDocunent Type nethod

/1 on their Docurmentlnpl class for doing this. Not used here.

/'l create the <library> docunent root el enent
El enent root = doc.createEl enent("library");
doc. appendChi | d(root);

/1 add <publisher> children to the <library> el enent
Iterator publisherliter = library.getPublishers().iterator();
whil e (publisherlter.hasNext()) {

Publ i sher pub = (Publisher) publisherlter.next();

El ement pubEl em = creat ePubl i sher El enent (doc, pub);

root . appendChi | d(pubEl en);

}

/1 now add <book> children to the <library> el ement
Iterator booklter = library.getBooks().iterator();
whi | e (booklter.hasNext()) {

Book book = (Book) booklter.next();

El ement bookEl em = creat eBookEl enent (doc, book);

root . appendChi | d(bookEl en) ;

}

return doc;

}

private El enent createPublisherEl enent (Docunent doc, Publisher pub)
El enent pubEl em = doc. cr eat eEl enent (" publ i sher");

/1 set id="oreilly" attribute
pubEl em set Attribute("id", pub.getld());

El enent nane = doc. creat eEl enent (" nane");
nane. appendChi | d(doc. cr eat eText Node(pub. get Name()));
pubEl em appendChi | d(nane) ;

El enent street = doc.createEl enment("street");
street. appendChil d(doc. creat eText Node(pub. getStreet()));
pubEl em appendChi |l d(street);

El enent city = doc.createEl enent("city");
city.appendChil d(doc. creat eText Node(pub.getCity()));
pubEl em appendChi l d(city);

El enent state= doc. createEl enent ("state");
st at e. appendChi | d(doc. creat eText Node(pub. getState()));
pubEl em appendChi |l d(state);

El enent postal = doc.createEl ement ("postal");
post al . appendChi | d(doc. cr eat eText Node(pub. get Postal ()));
pubEl em appendChi | d(postal);

return pubEl em
}

private El enent createBookEl enent (Docunent doc, Book book) {
El enent bookEl em = doc. creat eEl enent (" book") ;

bookEl em set At tri bute("publisher", book.getPublisher().getld(
bookEl em set Attri bute("isbn", book.getl SBN());

El enent edition = doc.createEl enent("edition");
edi tion. appendChi | d(doc. cr eat eText Node(

I nteger.toString(book.getEdition())));
bookEl em appendChi | d(edi tion);

El enent publicationDate = doc. creat eEl enent ("publicationDate");
publicationDate.setAttribute("nmt,

I nteger.toString(book. getPublicationMonth()));
publicationDate.setAttribute("yy",

I nteger.toString(book. getPublicationYear()));
bookEl em appendChi | d(publi cati onDat e);

El enent title = doc.createEl enent("title");
title.appendChil d(doc. creat eText Node(book.getTitle()));
bookEl em appendChi l d(title);

El enent author = doc. createEl enment ("author");
aut hor . appendChi | d(doc. cr eat eText Node(book. get Author()));
bookEl em appendChi | d(aut hor);

return bookEl em
public static void main(String[] args) throws | OException

j avax. xm . parsers. Par ser Confi gurati onException {
Library lib = new Library();

Li braryDOMCreator |dc = new Li braryDOMCreator();
Docunment doc = | dc. createDocunent (Iib);

/1 wite the Docunment using Apache Xerces
/'l output the Docunent with UTF-8 encodi ng; indent each |ine
org. apache. xm . serialize. Qut put Format fnt =

new org. apache. xnl . seri al i ze. Qut put For mat (doc, "UTF-8",

true);
org. apache. xm . serialize. XM_Serializer serial =
new org. apache. xm . serialize. XM_.Serializer(Systemout, fnt);
serial .serialize(doc. get DocunentEl enent());
}
}

This example starts with the usual series of i mport statements. Notice that or g. w3c. dom * is
imported, but packages such as or g. apache. xm . seri al i ze. * are not. The code is written
this way in order to make it obvious that many of the classes you will use are not part of the
standard DOM API. These nonstandard classes all use fully qualified class and package names
in the code. Although DOM itself is a W3C recommendation, many common tasks are not
covered by the spec and can only be accomplished by reverting to vendor-specific code.

The workhorse of this class is the cr eat eDocunent method, which takesa Li brary as a
parameter and returns an or g. w3c. dom Docunent object. This method could throw a
Par ser Conf i gurati onExcepti on, which indicates that Sun's Java API for XML Parsing
(JAXP) could not locate an XML parser:

publ i ¢ Docurment createDocunent (Library library)
throws javax.xm . parsers. ParserConfi gurati onException {

The Li brary class simply stores data representing a personal library of books. In a real
application, the Li br ar y class might also be responsible for connecting to a back-end data
source. This arrangement provides a clear separation between XML generation code and the
underlying database. The sole purpose of Li br ar yDOVCr eat or is to crank out DOM trees,
making it easy for one programmer to work on this class while another focuses on the
implementation of Li br ar y, Book, and Publ i sher.

The next step is to begin constructing a DOM Docunent object:

j avax. xm . par sers. Docunent Bui | der Fact ory dbf =

j avax. xm . par sers. Docunent Bui | der Fact ory. newl nst ance();
javax. xm . par sers. Docunent Bui | der docBui |l der =

dbf . newDocunent Bui | der () ;
Docunment doc = docBuil der. newDocunent();

This code relies on JAXP because the standard DOM API does not provide any support for
creating a new Docurnrent object in a standard way. Different parsers have their own proprietary
way of doing this, which brings us to the whole point of JAXP: it encapsulates differences
between various XML parsers, allowing Java programmers to use a consistent API regardless of
which parser they use. As we will see in Chapter 5, JAXP 1.1 adds a consistent wrapper around
various XSLT processors in addition to standard SAX and DOM parsers.

JAXP provides a Docunent Bui | der Fact ory to construct a Docunent Bui | der , which is then
used to construct new Docunent objects. The Docunent class is a part of DOM, so most of the
remaining code is defined by the DOM specification.

In DOM, new XML elements must always be created using factory methods, such as
createEl enent (...),onaninstance of Docunent . These elements must then be added to

either the document itself or one of the elements within the document before they actually
become part of the XML:

/'l create the <library> docunent root el enent
El ement root = doc.createEl ement("library");
doc. appendChi | d(root);

At this point, the <| i br ar y/ > element is empty, but it has been added to the document. The
code then proceeds to add all <publ i sher > children:

/1 add <publisher> children to the <library> el enent
Iterator publisherlter = library.getPublishers().iterator();
while (publisherlter.hasNext()) {

Publ i sher pub = (Publisher) publisherlter.next();

El ement pubEl em = creat ePubl i sher El enent (doc, pub);

root . appendChi | d(pubEl em ;

}

For each instance of Publ i sher,a<publ i sher> El enent is created and then added to
<library>.Thecreat ePubl i sher El enent method is a private helper method that simply
goes through the tedious DOM steps required to create each XML element. One thing that may
not seem entirely obvious is the way that text is added to elements, such as O Rei | | y in the
<nane>0 Rei | | y</ nanme> tag:

El ement nane = doc. creat eEl enent (" nane");
nane. appendChi | d(doc. cr eat eText Node(pub. get Name()));
pubEl em appendChi | d(nane) ;

The first line is pretty obvious, simply creating an empty <nane/ > element. The next line then
adds a new text node as a child of the name object rather than setting the value directly on the
name. This is indicative of the way that DOM represents XML: any parsed character data is
considered to be a child of a node, rather than part of the node itself. DOM uses the

org. w3c. dom Text interface, which extends from or g. w3c. dom Node, to represent text
nodes. This is often a nuisance because it results in at least one extra line of code for each
element you wish to generate.

The nai n() method in Example 1-4 creates a Li br ar y object, converts it into a DOM tree,
then prints the XML text to Syst em out . Since the standard DOM API does not provide a
standard way to convert a DOM tree to XML, we introduce Xerces specific code to convert the
DOM tree to text form:

/'l wite the docunment using Apache Xerces
/1 output the docunent with UTF-8 encoding; indent each |ine
org. apache. xm . serialize. Qut put Format fnt =

new or g. apache. xnl . seri al i ze. Qut put For mat (doc, "UTF-8", true);
org. apache. xm .serialize. XM.Seri alizer serial =

new or g. apache. xm . serialize. XM.Seri alizer(Systemout, fnt);
serial.serialize(doc. get DocumentEl ement());

As we will see in Chapter 5, JAXP 1.1 does provide a mechanism to perform this task using its
transformation APIs, so we do not technically have to use the Xerces code listed here. The JAXP
approach maximizes portability but introduces the overhead of an XSLT processor when all we
really need is DOM.

1.2.4.3JDOM

DOM is specified in the language independent Common Object Request Broker Architecture
Interface Definition Language (CORBA IDL), allowing the same interfaces and concepts to be
utilized by many different programming languages. Though valuable from a specification
perspective, this approach does not take advantage of specific Java language features. JDOM is

a Java-only API that can be used to create and modify XML documents in a more natural way. By
taking advantage of Java features, JDOM aims to simplify some of the more tedious aspects of
DOM programming.

JDOM is not a W3C specification, but is open source softwarel! available at
http://www.jdom.org. JDOM is great from a programming perspective because it results in
much cleaner, more maintainable code. Since JDOM has the ability to convert its data into a
standard DOM tree, it integrates nicely with any other XML tool. JDOM can also utilize whatever
XML parser you specify and can write out XML to any Java output stream or file. It even features
a class called SAXCut put t er that allows the JDOM data to be integrated with any tool that
expects a series of SAX events.

B! sun has accepted JDOM as Java Specification Request (JSR) 000102; see
http://java.sun.com/aboutJava/communityprocess/.

The code in Example 1-5 shows how much easier JDOM is than DOM,; it does the same thing
as the DOM example, but is about fifty lines shorter. This difference would be greater for more
complex applications.

Example 1-5. XML generation using JDOM
package comoreilly.javaxslt.chapl;

i mport java.io.?*;

i mport java.util.*;

i mport org.jdom DocType;

i mport org.jdom Docunent;

i mport org.jdom El enent;

i mport org.jdom out put. XM_Qut putter;

/**

* An exanple from Chapter 1. Creates the library XM file.
*/
public class LibraryJDOVCreator {

publ i c Docunent createDocunent(Library library) {
El ement root = new Elenent("library");
/1 JDOM supports the <!DOCTYPE. ..>
DocType dt = new DocType("library", "library.dtd");
Docunent doc = new Docunent (root, dt);

/1 add <publisher> children to the <library> el enent
Iterator publisherliter = library.getPublishers().iterator();
while (publisherlter.hasNext()) {

Publ i sher pub = (Publisher) publisherlter.next();

El ement pubEl em = creat ePubl i sher El emrent (pub) ;

r oot . addCont ent (pubEl en) ;

}

/1 now add <book> children to the <library> el enent
Iterator booklter = library.getBooks().iterator();
whil e (booklter.hasNext()) {

Book book = (Book) booklter.next();

El ement bookEl em = creat eBookEl enent (book) ;

r oot . addCont ent (bookEl em ;

}

return doc;

}

private El enment createPublisherEl ement (Publisher pub) {

)));
)));
)));
)));
)));

}

El enent pubEl em = new El ement (" publ i sher");

pubEl em addAttribute("id", pub.getld());
pubEl em addCont ent (new El erent (" name") . set Text (pub. get Name(

pubEl em addCont ent (new El ement ("street"). set Text (pub. get Street (
pubEl em addCont ent (new El enent ("city"). set Text (pub. get City(
pubEl em addCont ent (new El ement ("state") . set Text (pub. get St at e(

pubEl em addCont ent (new El enent (" postal ") . set Text (pub. get Post al (

return pubEl em

private El enment createBookEl enent (Book book) {

))

)))s

El enent bookEl em = new El enent (" book");

/1 add publisher="oreilly" and isbn="1234567" attri butes
/1 to the <book> el ement
bookEl em addAttri but e("publisher", book.getPublisher().getld(

.addAttribute("isbn", book.getl SBN());

/1 now add an <edition> el ement to <book>
bookEl em addCont ent (new El enent ("edi ti on") . set Text (
I nteger.toString(book.getEdition())));

El enent pubDate = new El enent (" publicationDate");
pubDat e. addAttri bute(" nmi',

I nteger.toString(book. getPublicationMonth()));
pubDat e. addAttri bute("yy",

I nt eger.toString(book. getPublicationYear()));
bookEl em addCont ent (pubDat e) ;

bookEl em addCont ent (new El enent ("title"). set Text (book.getTitl e(

bookEl em addCont ent (new

El ement ("aut hor") . set Text (book. get Author()));

}

return bookEl em

public static void nmain(String[] args) throws | OException {

Library lib = new Library();
Li braryJDOMCreator |jc = new Li braryJDOMCreator();
Document doc = |jc.createDocunent (Iib);

/1 Wite the XML to System out, indent two spaces, include
/1 newl ines after each el enent
new XM_.CQut putter(" ", true, "UTF-8").output(doc, System out);

}

The JDOM example is structured just like the DOM example, beginning with a method that
converts a Li br ary object into a JDOM Docunent :

publ i ¢ Docurment createDocunent(Library library) {

The most striking difference in this particular method is the way in which the Docunent and its
El enent s are created. In JDOM, you simply create Java objects to represent items in your XML
data. This contrasts with the DOM approach, which relies on interfaces and factory methods.
Creating the Docunent is also easy in JDOM:

El enent root = new Elenent("library");

/1 JDOM supports the <! DOCTYPE. .. >

DocType dt = new DocType("library", "library.dtd");
Docunent doc = new Docunent (root, dt);

As this comment indicates, JDOM allows you to refer to a DTD, while DOM does not. This is just
another odd limitation of DOM that forces you to include implementation-specific code in your
Java applications. Another area where JDOM shines is in its ability to create new elements.
Unlike DOM, text is set directly on the El enent objects, which is more intuitive to Java
programmers:

private El ement createPublisherEl enent (Publisher pub) {
El enent pubEl em = new El ement (" publ i sher");

pubEl em addAttri bute("id", pub.getlid());
pubEl em addCont ent (new El enent (" nane"). set Text (pub. getNane()));
pubEl em addCont ent (new El enent ("street"). set Text (pub. get Street (

)));
pubEl em addCont ent (new El ement ("city").set Text (pub.getCity()));
pubEl em addCont ent (new El enent ("state"). set Text (pub.getState()));
pubEl em addCont ent (new El enent (" postal ") . set Text (pub. get Post al (
)));
return pubEl em
}

Since methods such as addCont ent () and addAttri bute() return areference to the
El enent instance, the code shown here could have been written as one long line. This is similar
to St ringBuffer.append(),which can also be "chained" together:

buf . append("a").append("b").append("c");
In an effort to keep the JDOM code more readable, however, our example adds one element per
line.

The final piece of this pie is the ability to print out the contents of JDOM as an XML file. JDOM
includes a class called X\VL.Cut put t er , which allows us to generate the XML for a Docunent
object in a single line of code:

new XMLQut putter(™ ", true, "UTF-8").output(doc, Systemout);

The three arguments to XM_Cut put t er indicate that it should use two spaces for indentation,
include linefeeds, and encode its output using UTF-8.

1.2.4.4 JDOM and DOM interoperability

Current XSLT processors are very flexible, generally supporting any of the following sources for
XML or XSLT input:

a DOM tree or output from a SAX parser

any Java | nput St r eamor Reader
a URI, file name, orj ava. i 0. Fi | e object

JDOM is not directly supported by some XSLT processors, although this is changing fast.! For
this reason, it is typical to convert a JDOM Docunent instance to some other format so it can be
fed into an XSLT processor for transformation. Fortunately, the JDOM package provides a class
called DOVOut put t er that can easily make the transformation:

1 As this book went to press, Version 6.4 of SAXON was released with beta support for transforming JDOM
trees. Additionally, JDOM beta 7 introduces two new classes, JDOVSour ce and JDOVResul t, that
interoperate with any JAXP-compliant XSLT processor.
org.jdom out put. DOMOut putter outputter =
new org.j dom out put. DOMOut putter();
org. w3c. dom Docunent donDoc = out putter. out put (j donDoc);

The DOM Docunent object can then be used with any of the XSLT processors or a whole host of
other XML libraries and tools. JDOM also includes a class that can convert a Docunent into a
series of SAX events and another that can send XML data to an OQut put St reamor Witer.In
time, it seems likely that tools will begin offering native support for JDOM, making extra
conversions unnecessary. The details of all these techniques are covered in Chapter 5.

1.3 Beyond Dynamic Web Pages

You probably know a little bit about servlets already. Essentially, they are Java classes that run
on the web tier, offering a high-performance, portable alternative to CGlI scripts. Java servlets are
great for extracting data from a database and then generating XHTML for the browser. They are
also good for validating HTTP POST or GET requests from browsers, allowing people to fill out
job applications or order books online. But more powerful techniques are required when you
create web applications instead of simple web sites.

1.3.1 Web Development Challenges

When compared to GUI applications based on Swing or AWT, developing for the Web can be
much more difficult. Most of the difficulties you will encounter can be traced to one of the
following:

Hypertext Transfer Protocol (HTTP)
HTML limitations

browser compatibility problems
concurrency issues

HTTP is a fairly simple protocol that enables a client to communicate with a server. Web
browsers almost always use HTTP to communicate with web servers, although they may use
other protocols such as HTTPS for secure connections or even FTP for file downloads. HTTP is a
request/response protocol, and the browser must initiate the request. Each time you click on a
hyperlink, your browser issues a new request to a web server. The server processes the request
and sends a response, thus finishing the exchange.

This request/response cycle is easy to understand but makes it tedious to develop an application
that maintains state information as the user moves through a complex web application. For
example, as a user adds items to a shopping cart, a servlet must store that data somewhere
while waiting for the client to make another request. When that request arrives, the servlet has to
associate the cart with that particular client, since the servlet could be dealing with hundreds or

thousands of concurrent clients. Other than establishing a timeout period, the servlet has no idea
when the client abandons the cart, deciding to shop on a competitor's site instead. The HTTP
protocol makes it impossible for the server to initiate a conversation with the client, so the servlet
cannot periodically ping the client as it can with a "normal” client/server application.

HTML itself can be another hindrance to web application development. It was not designed to
compete with feature-rich GUI toolkits, yet customers are increasingly demanding that
applications of all sorts become "web enabled." This presents a significant challenge because
HTML offers only a small set of primitive GUI components. Sophisticated HTML generation is not
the subject of this book, but we will see how to use XSLT to separate complex HTML generation
code from underlying programming logic and servlet code. As HTML grows ever more complex,
the benefits of a clean separation become increasingly obvious.

As you probably well know, browsers are not entirely compatible with one another. As a web
application developer, this generally means that you have to test on a wide variety of platforms.
XSLT offers support in this area because you can write reusable stylesheets for the consistent
parts of HTML and import or include browser-specific stylesheet fragments to work around
browser incompatibilities. Of course, the underlying XML data and programming logic is shared
across all browsers, even though you may have multiple stylesheets.

Finally, we have the issue of concurrency. In the servlet model, a single servlet instance must
handle multiple concurrent requests. Although you can explicitly synchronize access to a servlet,
this often results in performance degradation as individual client requests queue up, waiting for
their turn. Processing requests in parallel will be an important part of our XSLT-based servlet
designs in later chapters.

1.3.2 Web Applications

The difference between a "web site" and a "web application” is subjective. Although some of the
technologies are the same, web applications tend to be far more interactive and more difficult to
create than typical web sites. For example, a web site is mostly read-only, with occasional forms
for submitting information. For this, simple technologies such as HTML combined with JavaServer
Pages (JSPs) can do the job. A web application, on the other hand, is typically a custom
application intended to perform a specific business or technical function. They are often written as
replacements for existing systems in an effort to enable browser-based access. When replacing
existing systems, developers are typically asked to duplicate all of the existing functionality, using
a web browser and HTML. This is difficult at best because of HTML's limited support for
sophisticated GUI components. Most of the screens in a web application are dynamically
generated and customized on a per-user basis, while many pages on a typical web site are static.

Java, XML, and XSLT are suitable for web applications because of the high degree of modularity
they offer. While one programmer develops the back-end data access code, a graphic designer
can be working on the HTML user interface. Yet another servlet expert can be working on the
web tier, while someone else is defining and creating the XML data. Programmers and graphic
designers will typically work together to define the XSLT stylesheets, although the current lack of
interactive tools may make this more of a programming task.

Another reason XML is suitable for web applications is its unique ability to interoperate with back-
end business systems and databases. Once an XML layer has been added to your data tier, the
web tier can extract that data in XML form regardless of which operating system or hardware
platform is used. XSLT can then convert that XML into HTML without a great deal of custom
coding, resulting in less work for your development team.

1.3.3 Nonbrowser Clients

While web sites typically deliver HTML to browsers, web applications may be asked to
interoperate with applications other than browsers. It is typical to provide feature-rich Swing GUI

clients for use within a company, while remote workers access the system via an XHTML
interface through a web browser. An XML approach is key in this environment because the raw
XML can be sent to the Swing client, while XSLT can be used to generate the XHTML views from
the same XML data.

If your XML is not in the correct format, XSLT can also be used to transform it into another variant
of XML. For example, a client application may expect to see:

<nane>Eri ¢ Bur ke</ nane>

But the XML data on the web tier deals with the data as:
<firstNane>Eric</firstNane><| ast Name>Bur ke</ | ast Nane>

In this case, XSLT can be used to transform the XML into the simplified format that the client
expects.

1.3.3.1 SOAP

Sending raw XML data to clients is a good approach because it interoperates with any operating
system, hardware platform, or programming language. Allowing Visual Basic clients to extract
XML data from a web application allows existing client software to be salvaged while enabling
remote access to enterprise data using a more portable solution such as Java. But defining a
custom XML format is tedious because it requires you to manually write code that encodes and
decodes messages between the client and the web application.

Simple Object Access Protocol (SOAP) is a standardized protocol for exchanging data using XML
messages. SOAP was originally introduced by Microsoft but has been submitted to the W3C for
standardization and is endorsed by many companies. SOAP is fairly simple, allowing vendors to
quickly create tools that simplify data exchange between web applications and any type of client.

Since SOAP messages are implemented using XML, they can be created and updated using
XSLT stylesheets. This means that data can be extracted from a relational database as XML,
transformed with XSLT into a standard SOAP message, and then delivered to a client application
written in any language. For more information on SOAP standardization efforts, visit
http://www.w3.0rg/TR/SOAP.

1.3.4 Wireless

Cell phones, personal digital assistants (PDAs), and other handheld devices seem to be the next
big thing. From a marketing perspective, it is not entirely clear how the business model of the
Web will translate to the world of wireless. It is also unclear which technologies will be used for
this new generation of devices. One currently popular technology is Wireless Application Protocol
(WAP), which uses an XML markup language called Wireless Markup Language (WML) to render
pages. Other languages have been proposed, such as Compact HTML (CHTML), but perhaps
the most promising prospect is XHTML Basic. XHTML Basic is backed by the W3C and is
primarily based on several XHTML modules. Its designers had the luxury of coming after WML,
so they could incorporate many WML concepts and build on that experience.

Because of the uncertainties in the wireless arena, an XML and XSLT approach is the safest
available today. Encoding your data in XML enables flexibility to support any markup language or
protocol on the client, hopefully without rewriting major pieces of Java code. Instead, new XSLT
stylesheets are written to support new devices and protocols. An added benefit of XSLT is its
ability to support both traditional browser clients and newer wireless clients from the same
underlying XML data and Java business logic.

1.4 Getting Started

The best way to get started with new technologies is to experiment. For example, if you do not
know XSLT, you should experiment with plenty of stylesheets as you work through the next two
chapters. Aside from trying out the examples that appear in this book, you may want to invent a
simple XML data file that represents something of interest to you, such as your personal music
collection or family tree. Using XSLT stylesheets, try to create web pages that show your data in
many different formats.

Once the basics of XSLT are out of the way, servlets will be your next big challenge. Although the
servlet API is not particularly difficult to learn, configuration and deployment issues can make it
difficult to debug and test your applications. The best advice is to start small, writing a very basic
application that proves your environment is configured correctly before moving on to more
sophisticated examples. Apache's Tomcat is probably the best servlet container for beginners
because it is free, easy to configure, and is the official reference implementation for Sun's servlet
API. A servlet container is the server that runs servlets. Chapter 6 covers the essentials of the
servlet API, but for all the details you will want to pick up a copy of Java Servlet Programming by
Jason Hunter (O'Reilly). You definitely want to get the second edition because it covers the
dramatic changes that were introduced in Version 2.2 of the servlet API.

1.4.1 Java XSLT Processor Choices

Although this book uses primarily Sun's JAXP and Apache's Xalan, many other XSLT processors
are available. Processors based on other languages may offer much higher performance when
invoked from the command line, primarily because they do not incur the overhead of a Java
Virtual Machine (JVM) at application startup time. When using XSLT from a servlet, however, the
JVM is already running, so startup time is no longer an issue. Pure Java processors are great for
servlets because of the ease with which they can be embedded into the web application. Simply
adding a JAR file to the CLASSPATH is generally all that must be done.

Putting an up-to-date list of XSLT processors into a book is futile because the market is maturing
too fast. Some of the currently popular Java-based processors are listed here, but a quick web
search for "XSLT Processors" would be prudent before you decide to standardize on a particular
tool, as new processors are constantly appearing. We will see how to use Xalan in the next
chapter; a few other choices are listed here.

1.41.1 XT

XT was one of the earliest XSLT processors, written by James Clark. If you read the XSLT
specification, you may recognize him as the editor of the XSLT specification. As the XSLT
specification evolved, XT followed a parallel path of evolution, making it a leader in terms of
standards compliance. At the time of this writing, however, XT had not been updated as recently
as some of the other Java- based processors. Version 19991105 of XT implements the W3C's
proposed-recommendation (PR-xslt-19991008) version of XSLT and is available at
http://www.jclark.com/xml/xt.html. Like the other processors listed here, XT is free.

1.4.1.2 LotusXSL

LotusXSL is a Java XSLT processor from IBM Alphaworks available at
http://www.alphaworks.ibm.com. In November 1999 IBM donated LotusXSL to Apache,
forming the basis for Xalan. LotusXSL continued to exist as a separate product. However, it is
currently a thin wrapper around the Xalan processor. Future versions of LotusXSL may add
features above and beyond those offered by Xalan, but there doesn't seem to be a compelling
reason to choose LotusXSL unless you are already using it.

1.4.1.3 SAXON

The SAXON XSLT processor from Michael Kay is available at http://saxon.sourceforge.net.
SAXON is open source software in accordance with the Mozilla Public License and is a very

popular alternative to Xalan. SAXON provides full support for the current XSLT specification and
is very well documented. It also provides several value-added features such as the ability to
output multiple result trees from the same transformation and update the values of variables
within stylesheets.

To transform a document using SAXON, first include saxon.jar in your CLASSPATH. Then type
java comicl.saxon. Styl eSheet - ? to list all available options. The basic syntax for

transforming a stylesheet is as follows:

java comicl.saxon. Styl eSheet [options] source-doc style-doc |
par ans. . .]

To transform the presidents.xml file and send the results to standard output, type the following:
java comicl.saxon. Styl eSheet presidents.xnl presidents. xslt
1.4.1.4 JAXP

Version 1.1 of Sun's Java API for XML Processing (JAXP) contains support for XSLT
transformations, a notable omission from earlier versions of JAXP. It can be downloaded from
http://java.sun.com/xml. Parsing XML and transforming XSLT are not the primary focus of
JAXP. Instead, the key goal is to provide a standard Java interface to a wide variety of XML
parsers and XSLT processors. Although JAXP does include reference implementations of XML
parsers and an XSLT processor, its key benefit is the choice of tools afforded to Java developers.
Vendor lock-in should be much less of an issue thanks to JAXP.

Since JAXP is primarily a Java-based API, we will cover its programmatic interfaces in depth as
we talk about XSLT programming techniques in Chapter 5. JAXP currently includes Apache's
Xalan as its default XSLT processor, so the Xalan instructions presented in Chapter 2 will also
apply to JAXP.

1.5 Web Browser Support for XSLT

In a web application environment, performing XSLT transformations on the client instead of the
server is valuable for a number of reasons. Most importantly, it reduces the workload on the
server machine, allowing a greater number of clients to be served. Once a stylesheet is
downloaded to the client, subsequent requests will presumably use a cached copy, therefore only
the raw XML data will need to be transmitted with each request. This has the potential to greatly
reduce bandwidth requirements.

Even more interesting tricks are possible when JavaScript is introduced into the equation. You
can programmatically modify either the XML data or the XSLT stylesheet on the client side,
reapply the stylesheet, and see the results immediately without requesting a new document from
the server.

Microsoft introduced XSLT support into Version 5.0 of Internet Explorer, but the XSLT
specification was not finalized at the time. Unfortunately, significant changes were made to XSLT
before it was finally promoted to a W3C Recommendation, but IE had already shipped using the
older version of the specification. Although Microsoft has done a good job updating its MSXML
parser with full support for the final XSLT Recommendation, millions of users will probably stick to
IE 5.0 or 5.5 for quite some time, making it very difficult to perform portable XSLT transformations
on the client. For IE 5.0 or 5.5 users, the MSXML parser is available as a separate download from
Microsoft. Once downloaded, installed, and configured using a separate program called xmlinst,
the browser will be compliant with Version 1.0 of the XSLT recommendation. This is something
that developers will want to do, but probably very few end users will have the technical skills to go
through these steps.

At the time of this writing, Netscape had not introduced support for XSLT into its browsers. We
hope this changes by the time this book is published. Although their implementation will be

released much later than Microsoft's, it should be compliant with the latest XSLT
Recommendation.

Yet another alternative is to utilize a browser plug-in that supports XSLT, although this approach
is probably most effective within the confines of a corporation. In this environment, the browser
can be controlled to a certain extent, allowing client-side transformations much sooner than
possible on public web sites.

Because XSLT transformation on the client will likely be mired in browser compatibility issues for
several years, the role of Java with respect to XSLT will continue to be important. One use will be
to detect the browser using a Java servlet, and then deliver the appropriate stylesheet to the
client only if a compliant browser is in use. Otherwise, the servlet will drive the transformation
process by invoking the XSLT processor on the web server. Once we finish with XSLT syntax in
the next two chapters, the role of Java and XSLT will be covered throughout the remainder of this
book.

Chapter 2. XSLT Part 1 -- The Basics

Extensible Stylesheet Language (XSL) is a specification from the World Wide Web Consortium
(W3C) and is broken down into two complementary technologies: XSL Formatting Objects and
XSL Transformations (XSLT). XSL Formatting Objects, a language for defining formatting such as
fonts and page layout, is not covered in this book. XSLT, on the other hand, was primarily
designed to transform a well-formed XML document into XSL Formatting Objects.

Even though XSLT was designed to support XSL Formatting Objects, it has emerged as the
preferred technology for all sorts of transformations. Transformation from XML to HTML is the
most common, but XSLT can also be used to transform well-formed XML into just about any text
file format. This will give XML- and XSLT-based web sites a major leg up as wireless devices
become more prevalent because XSLT can also be used to transform XML into Wireless Markup
Language or some other stripped-down format that wireless devices will require.

2.1 XSLT Introduction

Why is transformation so important? XML provides a simple syntax for defining markup, but it is
up to individuals and organizations to define specific markup languages. There is no guarantee
that two organizations will use the exact same markup; in fact, you may struggle to agree on
consistent formats within the same group or company. One group may use <enpl oyee>, while
others may use <wor ker > or <associ at e>. In order to share data, the XML data has to be
transformed into a common format. This is where XSLT shines -- it eliminates the need to write
custom computer programs to transform data. Instead, you simply create one or more XSLT
stylesheets.

An XSLT processor is an application that applies an XSLT stylesheet to an XML data source.
Instead of modifying the original XML data, the result of the transformation is copied into
something called a result tree, which can be directed to a static file, sent directly to an output
stream, or even piped into another XSLT processor for further transformations. Figure 2-1
illustrates the transformation process, showing how the XML input, XSLT stylesheet, XSLT
processor, and result tree relate to one another.

Figure 2-1. XSLT transformation

Result Tree

XSLT Stylesheel |
Fru“.i“ HTML, XML, Text.
XML Input | Ssor
d

frarnsformed info

The XML input and XSLT stylesheet are normally two separate entities.!*! For the examples in this
chapter, the XML will always reside in a text file. In future chapters, however, we will see how to
improve performance by dealing with the XML as an in-memory object tree. This makes sense
from a Java/XSLT perspective because most web applications will generate XML dynamically
rather than deal with a series of static files. Since the XML data and XSLT stylesheet are clearly
separated, it is very plausible to write several different stylesheets that convert the same XML into
radically different formats.

1 section 2.7 of the XSLT specification covers embedded stylesheets.

XSLT transformation can occur on either the client or server, although server-side
transformations are currently dominant. Since a vast majority of Internet users do not use XSLT-
compliant browsers (at the time of this writing), the typical model is to transform XML into HTML
on the web server so the browser sees only the resulting HTML. In a closed corporate
environment where the browser feature set can be controlled, moving the XSLT transformation
process to the browser can improve scalability and reduce network traffic.

It should be noted that XSLT stylesheets do not perform the same function as Cascading Style
Sheets (CSS), which you may be familiar with. In the CSS model, style elements are applied to
HTML or XML on the web browser, affecting formatting such as fonts and colors. CSS do not
produce a separate result tree and cannot be applied in advance using a standalone processor
as XSLT can. The CSS processing model operates on the underlying data in a top down fashion
in a single pass, while XSLT can iterate and perform conditional logic on the XML data. Athough
XSLT can produce style instructions, its true role is that of a transformation language rather than
a style language. XSL Formatting Objects, on the other hand, is a style language that is much
more comparable to CSS.

For wireless applications, HTML is not typically generated. Instead, Wireless Markup Language
(WML) is the current standard for cell phones and other wireless devices. In the future, new
standards such as XHTML Basic may be used. When using an XSLT approach, the same XML
data can be transformed into many forms, all via different stylesheets. Regardless of how many
stylesheets are used, the XML data will remain unchanged. A typical web site might have the
following stylesheets for a single XML home page:

homeBasic.xslt

For older web browsers
homelE5.xslt

Takes advantage of newer Internet Explorer features
homeMozilla.xslt

Takes advantage of newer Netscape features
homeWML.xslt

Transforms into Wireless Markup Language
homeB2B.xslt

Transforms the XML into another XML format, suitable for "B2B-style" XML data feeds to
customers

Schema evolution implies an upgrade to an existing data source where the structure of the data
must be modified. When the data is stored in XML format, XSLT can be used to support schema
evolution. For example, Version 1.0 of your application may store all of its files in XML format, but
Version 2.0 might add new features that cannot be supported by the old 1.0 file format. A perfect
solution is to write a single stylesheet to transform all of the old 1.0 XML files to the new 2.0 file
format.

2.1.1 An XSLT Example

You need three components to perform XSLT transformations: an XML data source, an XSLT
stylesheet, and an XSLT processor. The XSLT stylesheet is actually a well-formed XML
document, so the XSLT processor will also include or use an XML parser. Apache's Xalan is used
for most of the examples in this book; the previous chapter listed several other processors that
you may want to investigate. You can download Xalan from http://xml.apache.org. It uses and
includes Apache's Xerces parser, but can be configured to use other parsers. The ability to swap
out parsers is important because this gives you the flexibility to use the latest innovations as
competing (and perhaps faster) parsers are released.

Example 2-1 represents an early prototype of a discussion forum home page. The complete
discussion forum application will be developed in Chapter 7. This is the raw XML data, without
any formatting instructions or HTML. As you can see, the home page simply lists the message
boards that the user can choose to view.

Example 2-1. discussionForumHome.xml

<?xm version="1.0" encodi ng="UTF-8"?>

<di scussi onFor unHone>
<nessageBoard id="1" nane="Java Progranm ng"/>
<nessageBoard i d="2" nane="XM. Progranmm ng"/>
<nessageBoard i d="3" nane="XSLT Questions"/>

</ di scussi onFor umHone>

It is assumed that this data will be generated dynamically as the result of a database query,
rather than hardcoded as a static XML file. Regardless of its origin, the XML data says nothing
about how to actually display the web page. For clarity, we will keep the XSLT stylesheet fairly
simple at this point. The beauty of an XML/XSLT approach is that you can beef up the stylesheet
later on without compromising any of the underlying XML data structures. Even more importantly,
the Java code that will generate the XML data does not have to be cluttered up with HTML and
user interface logic; it just produces the basic XML data. Once the format of the data has been
defined, a Java programmer can begin working on the database logic and XML generation code,
while another team member begins writing the XSLT stylesheets.

Example 2-2 lists the XSLT stylesheet that produces the home page. Don't worry if not
everything in this first example makes sense. XSLT is, after all, a completely new language. We
will cover everything in detail throughout the remainder of this and the next chapter.

Example 2-2. discussionForumHome.xslt

<?xm version="1.0" encodi ng="UTF-8""?>
<xsl : styl esheet
version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="htm "/ >

<l-- match the docunent root -->
<xsl:tenplate match="/">
<ht i >

<head>

<titl e>Di scussi on Forum Honme Page</title>

</ head>

<body>
<h1>Di scussi on Forum Home Page</ hl>
<h3>Pl ease sel ect a nessage board to view </ h3>

<xsl : appl y-tenpl at es
sel ect =" di scussi onFor unmHone/ nessageBoar d"/ >

</ ul >
</ body>
</htn >
</ xsl:tenpl at e>
<l-- match a <nmessageBoard> el enent -->
<xsl:tenpl ate mat ch="nessageBoar d" >

<xsl : val ue- of sel ect =" @ane"/>
</ a>
</[li>
</ xsl:tenpl at e>
</ xsl : styl esheet >

The filename extension for XSLT stylesheets is irrelevant. In
Pkl ‘. this book,. xs! t is used. Many stylesheet authors prefer
. xsl.

The first thing that should jump out immediately is the fact that the XSLT stylesheet is also a well-
formed XML document. Do not let the xs| : namespace prefix fool you -- everything in this
document adheres to the same basic rules that every other XML document must follow. Like
other XML files, the first line of the stylesheet is an XML declaration:

<?xm version="1.0" encodi ng="UTF-8""?>

Unless you are dealing with internationalization issues, this will remain unchanged for every
stylesheet you write. This line is immediately followed by the document root element, which
contains the remainder of the stylesheet:

<xsl : styl esheet
versi on="1.0"
xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

The <xsl : st yl esheet > element has two attributes in this case. The first, ver si on="1. 0",
specifies the version of the XSLT specification. Although this is the current version at the time of
this writing, the next version of the XSLT specification is well underway and may be finished by
the time you read this. You can stay abreast of the latest XSLT developments by visiting the W3C
home page at http://www.w3.0rg.

The next attribute declares the XML namespace, defining the meaning of the xs| : prefix you see
on all of the XSLT elements. The prefix xs| is conventional, but could be anything you choose.
This is useful if your document already uses the xs| prefix for other elements, and you do not
want to introduce a naming conflict. This is really the entire point of namespaces: they help to
avoid name conflicts. In XML, <a: book> and <b: book> can be discerned from one another
because each book has a different namespace prefix. Since you pick the namespace prefix, this
avoids the possibility that two vendors will use conflicting prefixes.

In the case of XSLT, the namespace prefix does not have to be xs| , but the value does have to
be http://www.w3.0rg/1999/XSL/Transform. The value of a namespace is not necessarily a
real web site, but the syntax is convenient because it helps ensure uniqueness. In the case of
XSLT, 1999 represents the year that the URL was allocated for this purpose, and is not related to
the version number. It is almost certain that future versions of XSLT will continue to use this same
URL.

= Even the slightest typo in the namespace will render the
stylesheet useless for most processors. The text must match
http://www.w3.0rg/1999/XSL/Transform exactly, or
your stylesheet will not be processed. Spelling or
capitalization errors are a common mistake and should be the
first thing you check when things are not working as you
expect.

The next line of the stylesheet simply indicates that the result tree should be treated as an HTML
document instead of an XML document:

<xsl : out put met hod="htm "/ >

In Version 1.0 of XSLT, processors are not required to fully support this element. Xalan does,
however, so we will include this in all of our stylesheets. Since the XSLT stylesheet itself must be
written as well-formed XML, some HTML tags are difficult to include. Instead of writing <hr >, you
must write <hr / > in your stylesheet. When the output method is html, processors such as Xalan
will remove the slash (/) character from the result tree, which produces HTML that typical web
browsers expect.

The remainder of our stylesheet consists of two templates . Each matches some pattern in the
XML input document and is responsible for producing output to the result tree. The first template
is repeated as follows:

<xsl:tenplate match="/">
<htm >
<head>
<titl e>Di scussi on Forum Honme Page</title>
</ head>
<body>
<h1>Di scussi on Forum Honme Page</ hl>
<h3>Pl ease sel ect a nessage board to view </ h3>

<xsl :apply-tenpl at es sel ect ="di scussi onFor unHone/ nessageBoar d"/ >
</ ul >
</ body>
</htm >
</ xsl:tenpl at e>

When the XSLT processor begins its transformation process, it looks in your stylesheet for a
template that matches the "/" pattern. This pattern matches the source XML document that is
being transformed. You may recall from Chapter 1 that DOM uses the Document interface to
represent the document, which is what we are matching here. This is always the starting point for
processing, so nearly every stylesheet you write will contain a template similar to this one. Since
this is the first template to be instantiated, it is also where we create the framework for the
resulting HTML document. The second template, which matches the "messageBoard" pattern, is
currently ignored. This is because the processor is only looking at the root of the XML document,
and the <messageBoard> element is nested beneath the <discussionForumHome> element.

Most of the tags in this template do not start with <xsl:, so they are simply copied to the result
tree. In fact, the only dynamic content in this particular template is the following line, which tells
the processor to continue the transformation process:

<xsl : appl y-tenpl at es sel ect ="di scussi onFor unHone/ nessageBoar d"/ >

Without this line, the transformation process would be complete because the "/ " pattern was
already located and a corresponding template was instantiated. The <xsl| : appl y-t enpl at es>
element tells the XSLT processor to begin a new search for elements in the source XML
document that match the " di scussi onFor unHone/ nessageBoar d" pattern and to instantiate
an additional template that matches. As we will see shortly, the transformation process is
recursive and must be driven by XSLT elements such as <xsl : appl y-t enpl at es>. Simply
including one or more <xsl : t enpl at e> elements in a stylesheet does not mean that they will
be instantiated.

In this example, the <xsl| : appl y-t enpl at es> element tells the XSLT processor to first select
all <di scussi onFor untHone> elements of the current node. The current node is "/ " , or the top
of the document, so it only selects the <di scussi onFor untHone> element that occurs at the
document's root level. If another <di scussi onFor untHone> element is deeply nested within the
XML document, it will not be selected by this pattern. Assuming that the processor locates the

<di scussi onFor unHonme> element, it then searches for all of its <nessageBoar d> children.

The sel ect attribute in <xs| : appl y-t enpl at es> does
not have to be the same as the nat ch attribute in

<xsl :tenpl at e>. Although the stylesheet presented in
Example 2-2 could have specified <xsl : t enpl at e

mat ch="di scussi onFor unHone/ nessageBoar d" > for
the second template, this would limit the reusability of the
template. Specifically, it could only be applied to
<nmessageBoar d> elements that occur as direct children of
<di scussi onForuntHone> elements. Since our template
matches only "nessageBoar d", it can be reused for
<messageBoar d> elements that appear anywhere in the
XML document.

=
LT

For each <nessageBoar d> child, the processor looks for the template in your stylesheet that
provides the best match. Since our stylesheet contains a template that matches the
"nmessageBoar d" pattern exactly, it is instantiated for each of the <nessageBoar d> elements.
The job of this template is to produce a single HTML list item tag for each <nessageBoar d>
element:

<xsl :tenpl ate mat ch="nessageBoard" >

<xsl :val ue-of sel ect="@ane"/>
</ a>

</ xsl:tenpl at e>

As you can see, the list item must be properly terminated; HTML-style standalone <| | > tags are

not allowed because they break the requirement that XSLT stylesheets be well-formed XML.
Terminating the element with </ | i > also works with HTML, so this is the approach you must

take. The hyperlink is a best guess at this point in the design process because the servlet has not
been defined yet. Later, when we develop a servlet to actually process this web page, we will
update the link to point to the correct servlet.

In the stylesheet, @is used to select the values of attributes. Curly braces ({}) are known as an

attribute value template and will be discussed in Chapter 3. If you look back at Example 2-1,
you will see that each message board has two attributes, | d and nane:

<nessageBoard i d="1" nane="Java Progranm ng"/>

When the stylesheet processor is executed and the result tree generated, we end up with the
HTML shown in Example 2-3. The HTML is minimal at this point, which is exactly what you
want. Fancy changes to the page layout can be added later; the important concept is that
programmers can get started right away with the underlying application logic because of the clean
separation between data and presentation that XML and XSLT provide.

Example 2-3. discussionForumHome.html

<htm >
<head>
<titl e>Di scussi on Forum Honme Page</title>
</ head>
<body>
<h1>Di scussi on Forum Hone Page</ hl>
<h3>Pl| ease sel ect a nmessage board to view </ h3>

Java Progranm ng</ a>
</[li>
<|li>
XM. Programi ng</ a>

<|li>
XSLT Questions

</ ul >
</ body>
</htm >

2.1.2 Trying It Out

To try things out, download the examples for this book and locate discussionForumHome.xml and
discussionForumHome.xslt. They can be found in the chapl directory. If you would rather type in
the examples, you can use any text editor or a dedicated XML editor such as Altova's XML Spy
(http://www.xmlspy.com). After downloading and unzipping the Xalan distribution from
Apache, simply add xalan.jar and erces.jar to your CLASSPATH. The transformation can then be
initiated with the following command:

java org. apache. xal an. xslt. Process -1N di scussi onForunHone. xm - XSL
di scussi onFor unmHorne. xsl t

This will apply the stylesheet, sending the resulting HTML content to standard output. Adding -
QUTT I | enane to the command will cause Xalan to send the result tree directly to a file. To see
the complete list of Xalan options, just type | ava or g. apache. xal an. xsl t. Process. For
example, the - TT option allows you to see (trace) which templates are being called.

Xalan's - | Nand - XSL parameters accept URLs as

« 4. arguments rather than as file names. A simple filename will
work if the files are in the current working directory, but you
may need to use a full URL syntax, such as file:///path/file.ext,
when the file is located elsewhere.

= iy

In Chapter 5, we will show how to invoke Xalan and other XSLT processors from Java code,
which is far more efficient because a separate Java Virtual Machine (JVM) does not have to be
invoked for each transformation. Although it can take several seconds to start the JVM, the actual
XSLT transformations will usually occur in milliseconds.

Another option is to find a web browser that supports XSLT, which allows you to edit your
stylesheet and hit the "Reload" button to view the transformation.

2.2 Transformation Process

Now that we have seen an example, let's back up and talk about some basics. In particular, it is
important to understand the relationship between <xs! : t enpl at e mat ch=. . . > and

<xsl :apply-tenpl ates sel ect=...>.This should help to solidify your understanding of the
previous example and lay the groundwork for more sophisticated processing. Although XSLT is a
language, it is not intended to be a general-purpose programming language. Because of its
specialized mission as a transformation language,® the design of XSLT works in the way that
XML is structured, which is fundamentally a tree data structure.

[21 XSLT is declarative in nature, while mainstream programming languages tend to be more procedural.

2.2.1 XML Tree Data Structure

Every well-formed XML document forms a tree data structure. The document itself is always the
root of the tree, and every element within the document has exactly one parent. Since the
document itself is the root, it has no parent. As you learn XSLT, it can be helpful to draw pictures
of your XML data that show its tree structure. Figure 2-2 illustrates the tree structure for
discussionForumHome.xml.

Figure 2-2. Tree structure for discussionForumHome.xml
matched by the '™ pattem

discussionForumHomexml -

discussionForemHome

//ll\

messageBoard messagedoard messapeBoard

The document itself is the root of the tree and may contain processing instructions, the document
root element, and even comments. XSLT has the ability to select any of these items, although
you will probably want to select elements and attributes when transforming to HTML. As
mentioned earlier, the "/ " pattern matches the document itself, which is the root node of the
entire tree.

A tree data structure is fundamentally recursive because it consists of leaf nodes and smaller
trees. Each of these smaller trees, in turn, also consist of leaf nodes and still smaller trees.
Algorithms that deal with tree structures can almost always be expressed recursively, and XSLT
is no exception. The processing model adopted by XSLT is explicitly designed to take advantage
of the recursive nature of every well-formed XML document. This means that most stylesheets
can be broken down into highly modular, easily understandable pieces, each of which processes
a subset of the overall tree (i.e., a subtree).

Two important concepts in XSLT are the current node and current node list. The current node is
comparable to the current working directory on a file system. The <xs| : val ue- of

sel ect =". "/ > element is similar to printing the name of the current working directory. The
current node list is similar to the list of subdirectories. The key difference is that in XSLT, the
current node appears in your source XML document. The current node list is a collection of
nodes. As processing proceeds, the current node and current node list are constantly changing
as you traverse the source tree, looking for patterns in the data.

2.2.2 Recursive Processing with Templates

Most transformation in XSLT is driven by two elements: <xs| : t enpl at e> and <xs! : appl y-
tenpl at es> . In XSLT lingo, a node can represent anything that appears within your XML data.
Nodes are typically elements such as <nessage> or element attributes such as i d="123".
Nodes can also be XML processing instructions, text, or even comments. XSLT transformation
begins with a current node list that contains a single entry: the root node. This is the XML
document and is represented by the "/ " pattern. Processing proceeds as follows:

For each node "X" in the current node list, the processor searches for all
<xsl:tenplate mat ch="pattern"> elements in your stylesheet that potentially
match that node. From this list of templates, the one with the best match®! is selected.

[¥1 see section 5.5 of the XSLT specification for conflict -resolution rules.

The selected <xsl : t enpl at e nmat ch="pat t er n" > is instantiated using node "X" as
its current node. This template typically copies data from the source document to the
result tree or produces brand new content in combination with data from the source.

If the template contains <xsl| : appl y-tenpl at es sel ect =" newPatt ern”/ >, anew
current node list is created and the process repeats recursively. The sel ect pattern is
relative to node "X", rather than the document root.

As the XSLT transformation process continues, the current node and current node list are
constantly changing. This is a good thing, since you do not want to constantly search for patterns
beginning from the document root element. You are not limited to traversing down the tree,
however; you can iterate over portions of the XML data many times or navigate back up through
the document tree structure. This gives XSLT a huge advantage over CSS because CSS is
limited to displaying the XML in the order in which it appears in the document.

Comparing <xsl:template>to <xsl:apply-
templates>

One way to understand the difference between <xs! : t enpl at e> and
<xsl rappl y-tenpl at es>is to think about the difference between a
Java method and the code that invokes the method. For example, a
method in Java is declared as follows:

public void printMessageBoard(MessageBoard board) {
/1 print information about the nessage board
}

In XSLT, the template plays a similar role:

<xsl :tenpl ate mat ch="nessageBoard">
<I-- print informati on about the nmessage board
</ xsl :tenpl at e>

In order to invoke the Java method, use the following Java code:
sonmebj ect . pri nt MessageBoar d(current Board) ;

And in XSLT, use:

<xsl : apply-tenpl ates select="..."/>

to instantiate the template using the current <nessageBoar d> node.

While this is a good comparison to help illustrate the difference between
<xsl:tenplate>and <xsl :appl y-tenpl at es>, itis important to
remember that the XSLT model is not really a method call. Instead,

<xsl appl y-tenpl at es> instructs the processor to scan through the
XML document again, looking for nodes that match a pattern. If matching
nodes are found, the best matching template is instantiated.

In the next chapter, we will see that XSLT also has <xs! : cal | -
tenpl at e>, which works similarly to a Java method call.

Let's suppose that your source document contains the following XML.:

<school >
<nane>S| UC</ nane>
<ci ty>Car bondal e</city>
<state>l|1linoi s</state>
</ school >

The following template could be used to match the <school > element and output its contents:

<xsl:tenpl ate mat ch="school ">

<xsl : val ue-of select="name"/> is |ocated in

<xsl:val ue-of select="city"/> <xsl:value-of select="state"/>.
</ xsl:tenpl at e>

The result will be something like:
SIUC is | ocated in Carbondale, Illinois.

As you can see, elements that do not start with xs| : are simply copied to the result tree, as is
plain text such as "is located in."! We do not show this here, but if you try the example you will
see that whitespace characters (spaces, tabs, and linefeeds) are also copied to the result tree.
When the destination is HTML, it is usually safe to ignore this issue because the browser will
collapse that whitespace. If you view the actual source code of the generated HTML, it can look
pretty ugly. An alternative to simply including "is located in" is to use:

[Technically, elements that do not belong to the XSLT namespace are simply copied to the result tree; the
namespace prefix might not be xsl : .

<xsl:text> is located in </xsl:text>.

This provides explicit control over how whitespace and linefeeds are treated.

<xsl :val ue- of > copies the value of something in the XML source tree to the result tree. In this
case, the current node is <school >, so <xsl : val ue- of sel ect =" nane"/ > selects the text
content of the <nane> element contained within <school >. This is the simplest usage of XPath,
which will be introduced shortly. XPath is not limited to the current node, so it can also be used to
locate elements in other parts of the source document. It can even select attributes, processing
instructions, or anything else that can occur in XML.

2.2.3 Built-in Template Rules

All XSLT processors must include four built-in template rules that have lower precedence than
any other rules, so they can be overridden by simply writing a new template rule that matches the
same pattern. The best way to think about built-in rules is to assume they are always in the
background, ready to be applied if no other rule is found that matches a node.

The first rule allows recursive processing to continue in case an explicit rule does not match the
current node or the root node:

<xsl:tenplate match="*|/">
<xsl : appl y-tenpl at es/ >
</ xsl:tenpl at e>

This template matches all elements (*) and the root node (/), i.e., the document itself. It will not
match processing instructions, comments, attributes, or text. The <xsl : appl y-t enpl at es/ >
causes all children that are not attribute nodes or processing instruction nodes to be processed.

The second built-in rule is identical to the first, except it applies to each mode used in the
stylesheet:

<xsl:tenplate match="*|/" node="ni>
<xsl : appl y-tenpl at es node="nt/ >
</ xsl :tenpl at e>

Template modes are discussed in the next chapter, so we will not go into details here. The third
built-in rule simply copies all text and attribute nodes to the result tree:

<xsl:tenplate match="text()|l @">
<xsl :val ue-of select="."/>
</ xsl:tenpl at e>

And finally, the built-in rule for processing instructions and comments does nothing. This is why
comments and processing instructions in the input XML data do not automatically show up in the
result tree:

<xsl :tenpl ate match="processi ng-instruction()|coment()"/>

2.2.4 A Skeleton Stylesheet

As your XML documents get more complex, you will most likely want to break up your stylesheets
into several templates. The starting point is a template that matches the "/ " pattern:

<xsl:tenplate match="/">
.. content
</ xsl:tenpl at e>

This template matches the document itself and is usually where you output the basic <ht i >,
<head>, and <body> elements. Somewhere within this template, you must tell the processor to
continue searching for additional patterns, thus beginning the recursive transformation process. In
a typical stylesheet, <xsl : appl y-t enpl at es> is used for this purpose, instructing the
processor to search for additional content in the XML data.

It should be stressed that this is not the only way to write a stylesheet, but it is a very natural way
to handle the recursive nature of XML. Example 2-4 contains a skeleton XSLT stylesheet that
you can use as a starting point for most of your projects.

Example 2-4. Skeleton stylesheet

<?xm version="1.0" encodi ng="UTF-8""?>
<xsl : styl esheet
version="1.0"
xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="htm "/>

<|__******~k********~k~k********~k~k********~k~k***************************
** "[" tenplate matches the docunent and is the starting point
*~k~k********~k~k*********~k~k********~k~k***************************__>

<xsl:tenplate match="/">
<htm >
<head>
<title>[title goes here]</title>
</ head>
<body>
<xsl :apply-tenpl ates sel ect="[sone XPath expression]"/>
</ body>
</htm >
</ xsl:tenpl at e>

<l ook kxxkkkdhhhhhhhdbhhhhrrdddddhdddhbdbdbbrrrrrdddddbdddhbhbdbbrrrrrrdds &

*r U[2??]" tenpl ate
***__>
<xsl :tenpl ate match="?2??">
[continue the process...]
<xsl :apply-tenpl ates sel ect="[anot her XPat h expression]"/>
[you can al so include nore content here...or even include
mul tiple apply-tenplates...]
</ xsl:tenpl at e>
</ xsl : styl esheet >

Deciding how to modularize the stylesheet is a subjective process. One suggestion is to look for
moderately sized chunks of XML data repeated numerous times throughout a document. For
example, a <cust oner > element may contain a name, address, and phone number. Creating a
template that matches " cust oner " is probably a good idea. You may even want to create
another template for the <nane> element, particularly if the name is broken down into
subelements, or if the name is reused in other contexts such as <enpl oyee> and <manager >.

When you need to produce HTML tables or unordered lists in the result tree, two templates
(instead of one) can make the job very easy. The first template will produce the <t abl e> or
 element, and the second will produce each table row or list item. The following fragment
illustrates this basic pattern:

<l-- the outer tenplate produces the unordered list -->
<l-- (note: plural 'custoners') -->
<xsl :tenpl ate mat ch="cust oners" >

<xsl : appl y-tenpl at es sel ect="custoner"/>
</ ul >
</ xsl:tenpl at e>

<I-- the inner tenplate is repeated for each custoner -->
<xsl:tenpl ate mat ch="custoner">
<l i ><xsl :val ue-of sel ect="nanme"/></I1i>

</ xsl:tenpl at e>

2.3 Another XSLT Example, Using XHTML

Example 2-5 contains XML data from an imaginary scheduling program. A schedule has an
owner followed by a list of appointments. Each appointment has a date, start time, end time,
subject, location, and optional notes. Needless to say, a true scheduling application probably has
a lot more data, such as repeating appointments, alarms, categories, and many other bells and
whistles. Assuming that the scheduler stores its data in XML files, we can easily add features
later by writing a stylesheet to convert the existing XML files to some new format.

Example 2-5. schedule.xml

<?xm version="1.0" encodi ng="UTF-8"7?>
<?xm -styl esheet type="text/xsl" href="schedul e. xslt"?>
<schedul e>
<owner >
<nane>
<first>Eric</first>
<l ast >Bur ke</| ast >
</ nane>
</ owner >
<appoi nt nent >
<when>
<dat e nmont h="03" day="15" year="2001"/>
<startTi nme hour="09" m nute="30"/>
<endTi me hour="10" m nute="30"/>
</ when>
<subj ect>I ntervi ew potential new hire</subject>
<l ocat i on>Rm 103</| ocat i on>
<not e>Ask Bob for an updated resune. </ note>
</ appoi nt nent >
<appoi nt nent >
<when>
<dat e nmont h="03" day="15" year="2001"/>
<startTi me hour="15" m nute="30"/>
<endTi me hour="16" m nute="30"/>
</ when>
<subj ect >Dr. Appoi nt nent </ subj ect >
<l ocati on>1532 Main Street</l|ocation>
</ appoi nt nent >
<appoi nt nent >
<when>
<date nmont h="03" day="16" year="2001"/>
<startTi me hour="11" m nute="30"/>
<endTi me hour="12" m nute="30"/>
</ when>
<subj ect >Lunch w/ Boss</ subj ect >
<l ocati on>Pi zza Pl ace on First Capitol Drive</location>
</ appoi nt nent >
</ schedul e>

As you can see, the XML document uses both attributes (nont h="03") and child elements to
represent its data. XSLT has the ability to search for and transform both types of data, as well as
comments, processing instructions, and text. In our current document, the appointments are
stored in chronological order. Later, we will see how to change the sort order using <xsl : sort >.

Unlike the earlier example, the second line of Example 2-5 contains a reference to the XSLT
stylesheet:

<?xm -styl esheet type="text/xsl" href="schedul e. xslt"?>

This processing instruction is entirely optional. When viewing the XML document in a web
browser that supports XSLT, this is the stylesheet that is used. If you apply the stylesheet from
the command line or from a server-side process, however, you normally specify both the XML
document and the XSLT document as parameters to the processor. Because of this capability,
the processing instruction shown does not force that particular stylesheet to be used. From a
development perspective, including this line quickly displays your work because you simply load
the XML document into a compatible web browser, and the stylesheet is loaded automatically.

In this book, the xil - st yl esheet processing instruction
a-?":- uses t ype="text/xsl".However, some processors use
type="text/xm ", which does not work with Microsoft
Internet Explorer. The XSLT specification contains one
example, which uses "t ext / xm ".

L.

Figure 2-3 shows the XHTML output from an XSLT transformation of schedule.xml. As you can

see, the stylesheet is capable of producing content that does not appear in the original XML data,
such as " Subj ect : " . It can also selectively copy element content and attribute values from the

XML source to the result tree; nothing requires every piece of data to be copied.

Figure 2-3. XHTML output

File Edit Wew Favorkes Tools Help n

FEric Burke's Schedule

Appointiment
031572007 from 0930 unkl 10-30

subject Interwew potental new hre
Locatien: Em 103
Mote: Ask Bob for an updated resume.

Appointment

03152007 from 1530 uwnel 1630

Subject Dr. Appointment
Location: 1532 Mamn Street
Hate

2] bore k=, My Compuber

The XSLT stylesheet that produces this output is shown in Example 2-6. As mentioned
previously, XSLT stylesheets must be well-formed XML documents. Once again, we use .xslt as
the filename extension, but .xsl is also common. This stylesheet is based on the skeleton
document presented in Example 2-4. However, it produces XHTML instead of HTML.

Example 2-6. schedule.xslt

<?xm version="1.0" encodi ng="UTF-8""?>
<xsl : styl esheet
version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :out put method="xm"
doct ype-public="-//WBC//DTD XHTM. 1.0 Transitional //EN'
doctype-systens"http://ww. w3. org/ TR/ xht m 1/ DTD/ xht mi 1-
transitional.dtd"/>

IR R R R R R R R R

** """ tenplate
EE IR R S I I I b I R R R I I I R S S - >
<xsl:tenplate match="/">
<htm xm ns="http://ww. w3. org/ 1999/ xht i ">
<head>
<title>Schedul e</title>
</ head>
<body>
<h2 align="center">
<xsl : val ue- of sel ect="schedul e/ owner/ nanme/first"/>
<xsl:text disabl e-output-escapi ng="yes">&anp; nbsp; </ xsl : t ext >
<xsl :val ue-of sel ect="schedul e/ owner/nane/last"/>"s
Schedul e</ h2>
<xsl :apply-tenpl ates sel ect ="schedul e/ appoi nt nent "/ >

</ body>
</htm >
</ xsl :tenpl at e>
<| __kkkkkkkkhkhkhkhkkhkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhhkkhkh ik hkhkhkhkhkhkhkhkhkhkhkhkAhk ik ik hkhkhkhkhkhkhkhkhkkhkkhkkhk
** "appointment" tenplate
R S S S S R R kR S S S Sk kR R S S S I *************__>

<xsl:tenpl ate mat ch="appoi nt ment ">
<hr/>
<h3>Appoi nt ment </ h3>
<xsl :apply-tenpl ates sel ect ="when"/>
<t abl e>
<tr>
<t d>Subj ect: </t d>
<t d>
<xsl :val ue- of sel ect="subject"/>
</td>
</tr>
<tr>
<t d>Location: </td>
<td>
<xsl :val ue-of select="location"/>
</td>
</[tr>
<tr>
<td>Note: </td>
<td>
<xsl :val ue-of select="note"/>

</td>

</tr>
</t abl e>
</ xsl:tenpl at e>
<|__**
** "when" tenpl ate
***__>
<xsl :tenpl ate mat ch="when">
<p>

<xsl : val ue- of sel ect="date/ @onth"/>
<xsl:text>/</xsl:text>
<xsl :val ue- of sel ect ="dat e/ @lay"/>
<xsl :text>/</xsl:text>
<xsl :val ue-of sel ect="date/ @ear"/>
from
<xsl : val ue-of select="startTi ne/ @our"/>
<xsl :text>: </ xsl:text>
<xsl : val ue-of select="startTi ne/ @1 nute"/>
unti
<xsl : val ue- of sel ect="endTi ne/ @our"/>
<xsl:text>: </ xsl:text>
<xsl : val ue-of sel ect="endTi ne/ @n nute"/>
</ p>
</ xsl:tenpl at e>
</ xsl : styl esheet >

The first part of this stylesheet should look familiar. The first four lines are typical of just about any
stylesheet you will write. Next, the output method is specified as xni because this stylesheet is
producing XHTML instead of HTML:

<xsl : out put rnet hod="xnl "
doct ype-public="-//WBC//DID XHTM. 1.0 Transitional//EN'
doctype-systen="http://ww. w3. org/ TR/ xht ml 1/ DTD/ xht ni 1-
transitional.dtd"/>

The <xsl : out put > element produces the following XHTML content:

<?xm version="1.0" encodi ng="UTF- 16" ?>
<! DOCTYPE htm PUBLIC
"-//WBC//DTD XHTML 1.0 Transitional//EN'
"http://ww. w3. org/ TR/ xht ml 1/ DTD/ xhtml 1-transiti onal . dtd">

Moving on, the first template in the stylesheet matches "/ " and outputs the skeleton for the
XHTML document. Another requirement for XHTML is the namespace attribute on the <ht ni >
element:

<htm xm ns="http://ww. w3. org/ 1999/ xhtm ">

The remainder of schedule.xslt consists of additional templates, each of which matches a
particular pattern in the XML input.

Because of its XML syntax, XSLT stylesheets can be hard to
W read. If you prefix each template with a distinctive comment
block as shown in Example 2-6, it is fairly easy to see the
overall structure of the stylesheet. Without consistent
indentation and comments, the markup tends to run together,
making the stylesheet much harder to understand and
maintain.

= [y
Ty

The <xsl : t ext > element is used to insert additional text into the result tree. Although plain text
is allowed in XSLT stylesheets, the <xsl : t ext > element allows more explicit control over
whitespace handling. As shown here, a nonbreaking space is inserted into the result tree:

<xsl :text disabl e-out put -escapi ng="yes" >&anp; nbsp; </ xsl : t ext >

Unfortunately, the following syntax does not work:

<l-- does not work... -->
<xsl : t ext > </ xsl : t ext >

This is because is not one of the five built-in entities supported by XML. Since XSLT
stylesheets are always well-formed XML, the parser complains when is found in the
stylesheet. Replacing the first ampersand character with &anp; allows the XML parser to read the
stylesheet into memory. The XML parser interprets this entity and sends the following markup to
the XSLT processor:

<l-- this is what the XSLT processor sees, after the XM. parser
interprets the &anp; entity -->
<xsl :text disabl e-out put - escapi ng="yes" > </ xsl : t ext >

The second piece of this solution is the di sabl e- out put - escapi ng="yes" attribute. Without
this attribute the XSLT processor may attempt to escape the nonbreaking space by converting it
into an actual character. This causes many web browsers to display question marks because
they cannot interpret the character. Disabling output escaping tells the XSLT processor to pass
 to the result tree. Web browsers then interpret and display the nonbreaking space

properly.

In the final template shown in Example 2-6, you may notice the element <xs| : val ue- of
sel ect ="dat e/ @ont h"/ >. The @character represents an attribute, so in this case the
stylesheet is outputting the value of the month attribute on the date element. For this element:

<dat e nont h="03" day="15" year="2001"/>,

the value " 03" is copied to the result tree.

2.4 XPath Basics

XPath is another recommendation from the W3C and is designed for use by XSLT and another
technology called XPointer. The primary goal of XPath is to define a mechanism for addressing
portions of an XML document, which means it is used for locating element nodes, attribute nodes,
text nodes, and anything else that can occur in an XML document. XPath treats these nodes as
part of a tree structure rather than dealing with XML as a text string. XSLT also relies on the tree
structure that XPath defines. In addition to addressing, XPath contains a set of functions to format
text, convert to and from numbers, and deal with booleans.

Unlike XSLT, XPath itself is not expressed using XML syntax. A simplified syntax makes sense
when you consider that XPath is most commonly used inside of attribute values within other XML
documents. XPath includes both a verbose syntax and a set of abbreviations, which end up
looking a lot like path names on a file system or web site.

2.4.1 How XSLT Uses XPath
XSLT uses XPath in three basic ways:

To select and match patterns in the original XML data. Using XPath in this manner is the
focus of this chapter. You see this most often in <xsl : t enpl ate match="pattern">
and <xsl : appl y-tenpl at es sel ect ="node- set - expressi on"/ >. In either case,
XPath syntax is used to locate various types of nodes.

To support conditional processing. We will see the exact syntax of <xs| : i f > and
<xsl : choose> in the next chapter, both of which rely on XPath's ability to represent
boolean values of t r ue and f al se.

To generate text. A number of string formatting instructions are provided, giving you the
ability to concatenate strings, manipulate substrings, and convert from other data types to
strings. Again, this will be covered in the next chapter.

2.4.2 Axes

Whenever XSLT uses XPath, something in the XML data is considered to be the current context
node. XPath defines seven different types of nodes, each representing a different part of the XML
data. These are the document root, elements, text, attributes, processing instructions, comments,
and nodes representing namespaces. An axis represents a relationship to the current context
node, which may be any one of the preceding seven items.

A few examples should clear things up. One axis is chi | d, representing all imnmediate children of
the context node. From our earlier schedule.xml example, the chi | d axis of <nane> includes the
<first>and<l| ast > elements. Another axis is par ent , which represents the immediate parent
of the context node. In many cases the axis is empty. For example, the document root node has
no par ent axis. Figure 2-4 illustrates some of the other axes.

Figure 2-4. XPath axes

company

",

parent axis
division

-
angestor axis depariment

employee

BIplyes

i“ﬁU

Separtment - context node, self axis

chifd axis

team

employes - . - descendant axis

employes

department -
fallowing sitiling axis

department

L]

As you can see, the second <depar t ment > element is the context node. The diagram illustrates
how some of the more common axes relate to this node. Although the names are singular, in
most cases the axes represent node sets rather than individual nodes. The code:

<xsl:apply-templ ates sel ect="child::teant/>

selects all <t ean® children, not just the first one. Table 2-1 lists the available axes in
alphabetical order, along with a brief description of each.

Table 2-1. Axes summary

AXis name

Description

ancest or

The parent of the context node, its parent, and so on until the root node is
reached. The ancestor of the root is an empty node set.

ancestor -or -
sel f

The same as ancest or , with the addition of the context node. The root node
is always included.

attribute All attributes of the context node.
child All immediate children of the context node. Attributes and namespace nodes
are not included.
All children, grandchildren, and so forth. Attribute and namespace nodes are
descendant .
not considered descendants of element nodes.
descendant -

or-self

Same as descendant , with the addition of the context node.

- All elements in the document that occur after the context node. Descendants
fol |l owi ng)
of the context node are not included.
fol |l ow ng- All following nodes in the document that have the same parent as the context
si bling node.
nanespace The namespace nodes of the context node.
par ent The immediate parent of the context node, if a parent exists.
- All nodes in the document that occur before the context node, except for
precedi ng)
ancestors, attribute nodes, and hamespace nodes.
- All nodes in the document that occur before the context node and have the
precedi ng- . .) . ;
si bl i ng same parent. This axis is empty if the context node is an attribute node or a
namespace node.
sel f The context node itself.

2.4.3 Location Steps

As you may have guessed, an axis alone is only a piece of the puzzle. Alocation step is a more
complex construct used by XPath and XSLT to select a hode set from the XML data. Location
steps have the following syntax:

axi s::node-test[predicate-1]...[predicate-n]

The axis and node-test are separated by double colons and are followed by zero or more
predicates. As mentioned, the job of the axis is to specify the relationship between the context
node and the node-test. The node-test allows you to specify the type of node that will be selected,
and the predicates filter the resulting node set.

Once again, discussion of XSLT and XPath tends to sound overly technical until you see a few
basic examples. Let's start with a basic fragment of XML.:

<message>
<header> <! -- the context node -->
<subj ect >Hel | o, Worl d</ subj ect >
<date mme"03" dd="01" yy="2002"/>
<sender >pr es@hi t ehouse. gov</ sender >
<r eci pi ent >bur ke_e@ci web. conx/ r eci pi ent >
<reci pi ent >bur ke_e@ahoo. conx/ r eci pi ent >
<reci pi ent >ai dan@ur ke. conx/ r eci pi ent >
</ header >
<body>
</ body>
</ message>
If the <header > is the context node, then chi | d: : subj ect will select the <subj ect > node,
chil d::recipient will select the set of all <r eci pi ent > nodes, and chi | d: : * will select all
children of <header >. The asterisk (*) character is a wildcard that represents all nodes of the
principal node type. Each axis has a principal node type, which is always el enent unless the
axisisat tri but e or nanespace. If <dat e> is the context node, then at t ri but e: : yy will
select the yy attribute, and at t ri but e: : * will select all attributes of the <dat e> element.

Without any predicates, a location step can result in zero or more nodes. Adding a predicate
simply filters the resulting node set, generally reducing the size of the resulting node set. Adding
additional predicates applies additional filters. For example, chi | d: : reci pi ent [position(

) =1] will initially select all <r eci pi ent > elements from the previous example then filter (reduce)
the list down to the first one: bur ke _e@ci web. com Positions start at 1, rather than 0. As
Example 2-8 will show, predicates can contain any XPath expression and can become quite
sophisticated.

2.4.4 Location Paths

Location paths consist of one or more location steps, separated by slash (/) characters. An
absolute location path begins with the slash (/) character and is relative to the document root. All
other types of location paths are relative to the context node. Paths are evaluated from left to
right, just like a path in a file system or a web site. The XML shown in Example 2-7 is a portion
of a larger file containing basic information about U.S. presidents. This is used to demonstrate a
few more XSLT and XPath examples.

Example 2-7. presidents.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<?xm -styl esheet type="text/xsl" href="xpat hExanpl es. xslt"?>
<pr esi dent s>
<pr esi dent >
<termfrom="1789" to="1797"/>
<name>
<first>CGeorge</first>
<| ast >Washi ngt on</ | ast >
</ nanme>
<party>Federal i st</party>
<vi cePresi dent >
<nane>
<first>John</first>
<| ast >Adans</ | ast >
</ nanme>
</ vi cePresi dent >
</ presi dent >
<pr esi dent >
<term fronm="1797" to="1801"/>
<name>
<first>John</first>
<| ast >Adans</| ast >
</ nanme>
<party>Federal i st</party>
<vi cePresi dent >
<nane>
<first>Thomas</first>
<l ast >Jef f erson</| ast >
</ nanme>
</ vi cePresi dent >
</ presi dent >
/**
* remai ning presidents omtted
*/

The complete file is too long to list here but is included with the downloadable files for this book.
The <vi cePresi dent > element can occur many times or not at all because some presidents

did not have vice presidents. Names can also contain optional < ddl e> elements. Using this
XML data, the XSLT stylesheet in Example 2-8 shows several location paths.

Example 2-8. Location paths

<?xm version="1.0" encodi ng="UTF-8""?>
<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or mi' >
<xsl :out put nethod="htm" />
<xsl:tenplate match="/">
<htm >
<body>
<h1>XPat h Exanpl es</ hl>

The third president was:

<xsl:apply-tenpl ates sel ect ="presi dents/president[position() =
3]/ nanme"/ >
</ ul >

Presi dents wi thout vice presidents were:

<xsl :appl y-tenpl at es
sel ect =" presi dent s/ presi dent[count (vi cePresident) = 0]/nane"/>
</ ul >

Presidents el ected before 1800 were:

<xsl :appl y-tenpl at es
sel ect="presidents/president[terml @rom & t; 1800]/nane"/>
</ ul >

Presidents with nore than one vice president were:

<xsl : appl y-tenpl at es
sel ect ="descendant : : presi dent [count (vi cePresi dent) >
1]/ nane"/ >
</ ul >

Presi dents naned John were:

<xsl : appl y-tenpl at es
sel ect ="presi dents/president/nane[child::first="John"]"/>
</ ul >

Presidents el ected between 1800 and 1850 were:

<xsl :appl y-tenpl at es
sel ect="presidents/president[(term @rom > 1800) and
(term @rom & t; 1850)]/nane"/>
</ ul >

</ body>
</htm >
</ xsl :tenpl at e>

<xsl:tenpl ate mat ch="nane">

<xsl
<xsl
<xsl
<xsl
<xsl

</ xsl:tenpl at e>
</ xsl : styl esheet >

:val ue-of select="first"/>
ctext> </ xsl:text>

:val ue-of select="mddle"/>
text> </ xsl:text>

:val ue-of select="last"/>

In the first <xsl| : appl y-t enpl at es> element, the location path is as follows:

presi dents/president[position() = 3]/nane

This path consists of three location steps separated by slash (/) characters, but the final step is
what we want to select. This path is read from left to right, so it first selects the <pr esi dent s>
children of the current context. The next step is relative to the <pr esi dent s> context and
selects all <pr esi dent > children. It then filters the list according to the predicate. The third
<presi dent > element is now the context, and its <nane> children are selected. Since each
president has only one <nane>, the template that matches " nane" is instantiated only once.

This location path shows how to perform basic numeric comparisons:

presidents/president[terni @rom & t; 1800]/ nane

Since the less-than (<) character cannot appear in an XML attribute value, the &l t ; entity must
be substituted. In this particular example, we use the @abbreviated syntax to represent the

attribute axis.

2.4.5 Abbreviated Syntax

Using descendant : :, chi |l d::, parent::, and other axes is very verbose, requiring a lot of
typing. Fortunately, XPath supports an abbreviated syntax for many of these axes that requires a
lot less effort. The abbreviated syntax has the added advantage in that it looks like you are
navigating the file system, so it tends to be somewhat more intuitive. Table 2-2 compares the
abbreviated syntax to the verbose syntax. The abbreviated syntax is almost always used and will
be used throughout the remainder of this book.

Table 2-2. Abbreviated syntax

Abbreviation AXis
Il descendant
sel f
. par ent
@ attribute
| child

In the last row, the abbreviation for the child axis is blank, indicating thatchi | d: : is an implicit
part of a location step. This means that vi cePr esi dent / nane is equivalent to
child::vicePresident/child::nanme. Additional explanations follow:

vi cePresi dent selects the vi cePr esi dent children of the context node.

vi cePresi dent / nane selects all nane children of vi cePr esi dent children of the
context node.

/I nane selects all nane descendants of the context node.
. selects the context node.

../ term @ r omselects the f r omattribute of t er mchildren of the context node's
parent.

2.5 Looping and Sorting

As shown throughout this chapter, you can use <xs!| : appl y-tenpl ates ... > to search for
patterns in an XML document. This type of processing is sometimes referred to as a " data
driven" approach because the data of the XML file drives the selection process. Another style of
XSLT programming is called "template driven,"” which means that the template's code tends to
drive the selection process.

2.5.1 Looping with <xsl:for-each>

Sometimes it is convenient to explicitly drive the selection process with an <xsl : f or - each>
element, which is reminiscent of traditional programming techniques. In this approach, you
explicitly loop over a collection of nodes without instantiating a separate template as

<xsl :appl y-tenpl at es> does. The syntax for <xs| : f or - each> is as follows:

<xsl :for-each sel ect="president">
...content for each president el enment
</ xsl : for-each>

The sel ect attribute can contain any XPath location path, and the loop will iterate over each
element in the resulting node set. In this example, the context is <pr esi dent > for all content
within the loop. Nested loops are possible and could be used to loop over the list of

<vi cePresi dent > elements.

2.5.2 Sorting

Sorting can be applied in either a data-driven or template-driven approach. In either case,
<xsl:sort > is added as a child element to something else. By adding several consecutive
<xsl :sort > elements, you can accomplish multifield sorting. Each sort can be in ascending or
descending order, and the data type for sorting is either " nunber " or "t ext " . The sort order
defaults to ascending. Some examples of <xsl| : sort > include:

<xsl:sort select="first"/>

<xsl:sort select="last" order="descendi ng"/>

<xsl:sort select="terml @roni' order="descendi ng" data-type="nunber"/>
<xsl:sort select="name/first" data-type="text" case-order="upper-
first"/>

In the last line, the case- or der attribute specifies that uppercase letters should be alphabetized
before lowercase letters. The other accepted value for this attribute is | ower - fi r st . According
to the specification, the default behavior is "language dependent.”

2.5.3 Looping and Sorting Examples

The easiest way to learn about looping and sorting is to play around with a lot of small examples.
The code in Example 2-9 applies numerous different looping and sorting strategies to our list of
presidents. Comments in the code indicate what is happening at each step.

Example 2-9. Looping and sorting

<?xm version="1.0" encodi ng="UTF-8"?>

<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="htm "/>
<xsl :tenplate match="/">
<htm >
<body>
<h1>Sorting Exanpl es</hil>
<xsl :apply-tenpl ates sel ect ="presi dents"/>
</ body>
</htm >
</ xsl :tenpl at e>
<I--

R b I S R R I bk S R Ik kR A b S S R R o

** presidents tenplate
R S S S I S S S S S S O S S S R S S S
->
<xsl:tenpl ate mat ch="presi dents">
<I--

EE R R R R R R I I I I R I R I R R R R R R R O R

** Sorting using xsl:for-each

EE R I R I I R R I R I I R R I R R I I R R

<h2>All presidents sorted by first name using xsl:for-each</h2>
<xsl:for-each sel ect="president">
<xsl:sort select="nane/first"/>
<xsl : appl y-tenpl at es sel ect ="nane"/ >
</ xsl : for-each>
<I--

EE R R R R R R I I I I I R R I R R I R S R R I R R

** Sorting using xsl:apply-tenplates

SRR S S R R IR S S S Rk S R Rk S S S S SR

>
<h2>All presidents sorted by first name using xsl:apply-
t enpl at es</ h2>
<xsl :apply-tenpl ates sel ect ="presi dent/ nane" >
<xsl:sort select="first"/>
</ xsl : appl y-tenpl at es>
<h2>Al'l presidents sorted by date using xsl:apply-tenpl ates</h2>
<xsl :apply-tenpl ates sel ect ="presi dent/ nane" >
<xsl:sort select="../terni @ront data-type="nunber"
order ="descendi ng"/ >
</ xsl : appl y-tenpl at es>
<l--

R R R R R R I R R I R S R R I R R

** Multi-field sorting

R I R IR R S b b R R Rk S R Rk Sk b S O R O

<h2>Mul ti-field sorting exanpl e</ h2>
<xsl :apply-tenpl ates sel ect ="presi dent/ nane" >
<xsl:sort select="last"/>
<xsl:sort select="first" order="descendi ng"/>
</ xsl : appl y-tenpl at es>
<l--

LR R R R R I I I I I R I R I I R R R S R R I R R

** Nested xsl:for-each | oops

khkhkkhhkhkkhkhkhhhhhhhdhhhhhhhdhhhdhhhhhhhhhhdhhdhhhkhhhdrhdrhhrkk dxkdx*x _ _

<h2>Al | presidents and vice presidents using xsl:for-each</h2>

<xsl:for-each sel ect="president">
<xsl:sort select="nanme/first" order="descendi ng"/>

<xsl :appl y-tenpl ates sel ect ="nane"/ >

<xsl:for-each sel ect="vi cePresident">
<xsl:sort select="nane/first"/>

<xsl :apply-tenpl ates sel ect ="nane"/ >

</ xsl : for-each>
</ ul >
</ xsl:for-each>
</ ul >
<I--

R R R I R I I R I I R I I R R I R R R I O

** Same as previous, only using xsl:apply-tenplates

EE R I R I I R R I R I I R R I R R I I R R

>
<h2>Al'l presidents and vice presidents using xsl:apply-
tenpl at es</ h2>

<xsl : appl y-tenpl ates sel ect ="presi dent">
<xsl:sort select="nanme/first" order="descendi ng"/>
</ xsl :apply-tenpl at es>

</ ul >
</ xsl :tenpl at e>
<! IS 2 3 kR S kI I
** 'president' tenplate, outputs the president's name and vice
*x president's nane.
R S S S S S R S S I I S - >
<xsl:tenplate mat ch="presi dent">

<xsl :apply-tenpl ates sel ect ="nane"/ >

<xsl :for-each sel ect="vi cePresident">
<xsl :sort select="nanme/first"/>

<xsl :appl y-tenpl ates sel ect ="nane"/ >

</ xsl: for-each>

</ xsl :tenpl at e>
<| __kkkkkkkhkhkhkhkhkhkhkkhkhkkhhkhkhkhkhkhkhkhkhkhkhkhkhkEhkhk ik hkhkhkhkkkk
** name tenplate, outputs first, mddle, and | ast nane
EE IR I R I I S R I I I R R I S I S R I b R I S I b I S I I - >

<xsl:tenpl ate mat ch="nane" >
<xsl : text disabl e-out put-escapi ng="yes" >&anp; nbsp; </ xsl : t ext >
<xsl:val ue-of select="first"/>
<xsl:text disabl e-output-escapi ng="yes">&anp; nbsp; </ xsl : t ext >
<xsl :val ue-of select="mddle"/>
<xsl :text disabl e-out put-escapi ng="yes">&anp; nbsp; </ xsl : t ext >
<xsl :val ue-of select="last"/>

</ xsl:tenpl at e>
</ xsl :styl esheet >

Notice that when applying a sort to <xs| : appl y-t enpl at es>, that element can no longer be
an empty element. Instead, one or more <xsl : sort > elements are added as children of

<xsl :appl y-tenpl at es>. You should also note that sorting cannot occur in the
<xsl:tenplate mat ch="nane" > element. The reason for this is simple: at the <xsl : appl y-
t enpl at es> end, you have a list of nodes to sort. By the time the processing reaches
<xsl:tenplate nat ch="nane" >, the search has narrowed down to a single <nane>, so
there is no node list left to sort.

2.6 Outputting Dynamic Attributes

Let's assume we have an XML document that lists books in a personal library, and we want to
create an HTML document with links to these books on Amazon.com. In order to generate the
hyperlink, the hr ef attribute must contain the ISBN of the book, which can be found in our
original XML data. An example of the URL we would like to generate is as follows:

Java and
XM.</ a>

One thought is to include <xsl : val ue- of sel ect ="i sbn"/ > directly inside of the attribute.
However, XML does not allow you to insert the less-than (<) character inside of an attribute value:

<l-- won't work... -->
<a href="<xsl:val ue-of select="isbn"/>">Java and XM.</ a>

We also need to consider that the attribute value is dynamic rather than static. XSLT does not
automatically recognize content of the hr ef =", . . " attribute as an XPath expression, since the
<a> tag is not part of XSLT. There are two possible solutions to this problem.

2.6.1 <xsl:attribute>

In the first approach, <xsl| : at t ri but e> is used to add one or more attributes to elements. In
the following template, an hr ef attribute is added to an <a> element:

<xsl :tenpl ate mat ch="book" >

<a> <!-- the href attribute is generated bel ow -->
<xsl:attribute name="href">
<xsl :text>http://ww. anazon. conil exec/ obi dos/ ASI N/ </ xsl : t ext >
<xsl : val ue-of sel ect="@sbn"/>
</xsl:attribute>
<xsl :val ue-of select="title"/>
</ a>

</ xsl:tenpl at e>

The <I | > tag is used because this is part of a larger stylesheet that presents a bulleted list of
links to each book. The <a> tag, as you can see, is missing its hr ef attribute. The
<xsl:attribute> element adds the missing hr ef . Any child content of <xs| : attri but e> is
added to the attribute value. Because we do not want to introduce any unnecessary whitespace,
<xsl:text>isused. Finally, <xsl : val ue- of > is used to select the i shn attribute.

2.6.2 Attribute Value Templates

Using <xsl : att ri but e> can be quite complex for a simple attribute value. Fortunately, XSLT
provides a much simpler syntax called attribute value templates (AVT). The next example uses
an AVT to achieve the identical result:

<xsl :tenpl at e mat ch="book" >

<xsl :val ue-of select="title"/>
</ a>

</ xsl:tenpl at e>

The curly braces ({ }) inside of the attribute value cause the magic to happen. Normally, when
the stylesheet encounters attribute values for HTML elements, it treats them as static text. The
braces tell the processor to treat a portion of the attribute dynamically.

In the case of { @ sbn}, the contents of the curly braces is treated exactly as <xsl : val ue- of
sel ect =" @ sbn"/ > in the previous approach. This is obviously much simpler. The text inside of
the { } characters can be any location path, so you are not limited to selecting attributes. For
example, to select the title of the book, simply change the valueto{tit!| e}.

So where do you use AVTs and where don't you? Well, whenever you need to treat an attribute
value as an XPath expression rather than static text, you may need to use an AVT. But for
standard XSLT elements, such as <xsl : t enpl at e mat ch="pat t er n" >, you don't need to use
the AVT syntax. For nonXSLT elements, such as any HTML tag, AVT syntax is required.

2.6.3 <xsl:attribute-set>

There are times when you may want to define a group of attributes that can be reused. For this
task, XSLT provides the <xsl| : attri but e- set > element. Using this element allows you to
define a named group of attributes that can be referenced from other points in a stylesheet. The
following stylesheet fragment shows how to define an attribute set:

<xsl:attribute-set nanme="body-style">
<xsl:attribute name="bgcol or">yel | ow</ xsl :attri bute>
<xsl:attribute nane="text">green</xsl:attribute>
<xsl:attribute nanme="1ink">navy</xsl:attribute>
<xsl:attribute name="vlink">red</xsl:attribute>

</ xsl :attribute-set>

This is a " top level element,” which means that it can occur as a direct child of the

<xsl : styl esheet > element. The definition of an attribute set does not have to come before
templates that use it. The attribute set can be referenced from another <xsl| : att ri but e- set >,
from <xsl| : el enent >, or from <xsl| : copy> elements. We will talk about <xsl| : copy> in the
next chapter, but here is how <xsl : el enent > is used:

<xsl:tenplate match="/">
<htm >
<head>
<title>Deno of attribute-set</title>
</ head>
<xsl : el ement nane="body" use-attribute-sets="body-style">
<h1>Books in ny library...</hl>

<xsl :apply-tenpl ates sel ect="Iibrary/ book"/>
</ ul >
</ xsl : el ement >
</htm >

</ xsl:tenpl at e>

As you can probably guess, the code shown here will output an HTML body tag that looks like
this:

<body bgcol or="yel | ow' text="green" |ink="navy" vlink="red">
... body content
</ body>

In this particular example, the <xsl| : att ri but e- set > was used only once, so its value is
minimal. It is possible for one stylesheet to include another, however, as we will see in the next
chapter. In this way, you can define the <xsl : att ri but e- set > in a fragment of XSLT included
in many other stylesheets. Changes to the shared fragment are immediately reflected in all of
your other stylesheets.

Chapter 3. XSLT Part 2 -- Beyond the Basics

As you may have guessed, this chapter is a continuation of the material presented in the previous
chapter. The basic syntax of XSLT should make sense by now. If not, it is probably a good idea to
sit down and write a few stylesheets to gain some basic familiarity with the technology. What we
have seen so far covers the basic mechanics of XSLT but does not take full advantage of the
programming capabilities this language has to offer. In particular, this chapter will show how to
write more reusable, modular code through features such as named templates, parameters, and
variables.

The chapter concludes with a real-world example that uses XSLT to produce HTML
documentation for Ant build files. Ant is a Java build tool that uses XML files instead of Makefiles
to drive the compilation process. Since XML is used, XSLT is a natural choice for producing
documentation about the build process.

3.1 Conditional Processing

In the previous chapter, we saw a template that output the name of a president or vice president.
Its basic job was to display the first name, middle name, and last name. A nonbreaking space
was printed between each piece of data so the fields did not run into each other. What we did not
see was that many presidents do not have middle names, so our template ended up printing the
first name, followed by two spaces, followed by the last name. To fix this, we need to check for
the existence of a middle name before simply outputting its content and a space. This requires
conditional logic, a feature found in just about every programming language in existence.

XSLT provides two mechanisms that support conditional logic: <xsl : i f > and <xsl| : choose>.
These allow a stylesheet to produce different output depending on the results of a boolean
expression, which must yield t r ue or f al se as defined by the XPath specification.

3.1.1 <xsl:if>

The behavior of the <xsl| : | f > element is comparable to the following Java code:

i f (bool ean-expression) {
/'l do sonet hi ng

}
In XSLT, the syntax is as follows:

<xsl:if test="bool ean-expression">
<I-- Content: tenplate -->
</xsl:if>

The t est attribute is required and must contain a boolean expression. If the resultist r ue, the
content of this element is instantiated; otherwise, it is skipped. The code in Example 3-1
illustrates several uses of <xsl : | f > and related XPath expressions. Code that is highlighted will
be discussed in the next several paragraphs.

Example 3-1. <xsl:if> examples

<?xm version="1.0" encodi ng="UTF-8"7?>

<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="htm "/>

<| __kkkkkkkkhkhkhkhkkhkhkkhkkhkkhk ik hkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkkhkkhkkhkkhkhkk kk*k
** """ tenplate
***__>
<xsl:tenplate match="/">
<htm >
<body>

<h1>Condi tional Processing Exanpl es</hl>
<xsl :apply-tenpl ates sel ect ="presi dents"/>

</ body>
</htm >
</ xsl :tenpl at e>
<| P I Ik I I kR R R I S Sk R R S S S I S kR Rk
** "presidents" tenplate
EE I S I I S S - >
<xsl :tenpl ate mat ch="presidents">
<h3>
Li st of

<xsl :val ue- of sel ect="count (president)"/>
Presi dents

</ h3>

<xsl:for-each sel ect="president">

<!-- display every other rowin bold -->

<xsl:if test="(position() nod 2) = 0">
<xsl:attribute name="style">
<xsl :text >f ont -wei ght: bol d; </ xsl : t ext >
</ xsl:attribute>

</xsl:if>
<xsl : appl y-tenpl ates sel ect="nane"/>
<l-- display sone text after the last element -->
<xsl:if test="position() =last()">
<xsl:text> (current president)</xsl:text>
</xsl:if>

</ xsl : for-each>
</ ul >
</ xsl :tenpl at e>
<! __kkkkkkkhkhkhkhkhkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkkhkhkhkhkhkhkAhkhkhkhk ik ik hkhkhkhkhkhkk
** "npnane" tenplate
***__>

<xsl :tenpl ate mat ch="nane" >
<xsl :val ue-of select="last"/>
<xsl:text>, </xsl:text>
<xsl :val ue-of select="first"/>
<xsl:if test="m ddl e">

<xsl :text > di sabl e- out put - escapi ng="yes" >&anp; nbsp; </ xsl : t ext >
<xsl :val ue-of select="mddle"/>
</xsl:if>
</ xsl:tenpl at e>
</ xsl : styl esheet >

The first thing the nmat ch="pr esi dent s" template outputs is a heading that displays the
number of presidents:

Li st of
<xsl : val ue- of sel ect ="count(president)"/>
Presi dents

The count () function is an XPath node set function and returns the number of elements in a
node set. In this case, the node set is the list of <pr esi dent > elements that are direct children
of the <pr esi dent s> element, so the number of presidents in the XML file is displayed. The
next block of code does the bulk of the work in this stylesheet, outputting each president as a list
item using a loop:
<xsl:for-each sel ect="president">

<l-- display every other rowin bold -->
<xsl:if test="(position() mod 2) = 0">
<xsl:attribute nane="style">
<xsl : text >f ont - wei ght: bol d; </ xsl : t ext >
</xsl:attribute>
</xsl:if>

In this example, the <xsl:for-each> loop first selects all <president> elements that are immediate
children of the <presidents> element. As the loop iterates over this node set, the position()
function returns an integer representing the current node position within the current node list,
beginning with index 1. The mod operator computes the remainder following a truncating division,
just as Java and ECMAScript do for their % operator. The XPath expression (position() mod 2) =
0 will return true for even numbers; therefore the style attribute will be added to the tag for
every other president, making that list item bold.

This template continues as follows:
<xsl : appl y-tenpl at es sel ect =" nane"/>

<l-- display sone text after the |ast elenent -->
<xsl:if test="position() = last(">

<xsl:text> (current president)</xsl:text>
</xsl:if>

</ xsl : for-each>

The | ast () function returns an integer indicating the size of the current context; in this case, it
returns the number of presidents. When the position is equal to this count, the additional text
(current president) isappended to the result tree. Java programmers should note that
XPath uses a single = character for comparisons instead of ==, as Java does. A portion of the
HTML for our list ends up looking like this:

<l i >Washi ngt on, George

<li style="font-weight: bold;">Adans, John</Ili >
Jefferson, Thomas

<li style="font-weight: bold;">Madi son, Janes</|i>

<l i >Monr oe, James</I|i>

<li style="font-weight: bold;">Adans, John Qui ncy</Ili >
Jackson, Andrew

...remaining HTML omtted

<l i >Bush, Ceorge (current president)</Ili>

The name output has been improved from the previous chapter and now uses <xsl : i f > to
determine if the middle name is present:

<xsl :tenpl ate mat ch="nane" >
<xsl : val ue-of select="last"/>
<xsl:text>, </xsl:text>
<xsl :val ue-of select="first"/>
<xsl:if test="m ddle">
<xsl :text > di sabl e- out put - escapi ng="yes" >&anp; nbsp; </ xsl : t ext >
<xsl : val ue-of sel ect="m ddle"/>
</xsl:if>
</ xsl:tenpl at e>

In this case, <xs| : i f test="m ddl e"> checks for the existence of a node set rather than for
a boolean value. If any <m dd| e> elements are found, the content of <xs| : | f > is instantiated.
The test does not have to be this simplistic; any of the XPath location paths from the previous
chapter would work here as well.

As written here, if any <m dd| e> elements are found, the first one is printed. Later, in Example
3-7, <xsl : f or - each> will be used to print all middle names for presidents, such as George
Herbert Walker Bush.

Checking for the existence of an attribute is very similar to checking for the existence of an
element. For example:
<xsl:if test="@oneAttribute">

...execute this code if "someAttribute” is present
</xsl:if>

Unlike most programming languages, <xsl : i f > does not have a corresponding el se or
ot herw se clause. This is only a minor inconvenience™ because the <xs| : choose> element
provides this functionality.

[<xs|: choose> requires a lot of typing.
3.1.2 <xsl:choose>, <xsl:when>, and <xsl:otherwise>

The XSLT equivalent of Java's swi t ch statement is <xs| : choose>, which is virtually
identical™ in terms of functionality. <xs| : choose> must contain one or more <xs| : when=>
elements followed by an optional <xs| : ot her wi se> element. Example 3-2 illustrates how to
use this feature. This example also uses <xs! : var i abl e>, which will be covered in the next
section.

[21 java's swi t ch statement only works with char, byte, short,orint.

Example 3-2. <xsl:choose>

<xsl :tenpl ate match="presi dents">
<h3>Col or Coded by Political Party</h3>

<xsl :for-each sel ect="president">
<xsl :vari abl e nane="col or">

<!-- define the color value based on political party -->
<xsl : choose>
<xsl :when test="party = 'Denocratic' ">

<xsl : text >bl ue</ xsl : t ext >
</ xsl : when>
<xsl :when test="party = 'Republican' ">

<xsl:text>green</xsl:text>
</ xsl : when>
<xsl :when test="party = 'Denocratic Republican' ">
<xsl : text >purpl e</ xsl : text>
</ xsl : when>
<xsl :when test="party = 'Federalist'">
<xsl : t ext >br own</ xsl : t ext >
</ xsl : when>
<xsl :when test="party = "Wig ">
<xsl : text >bl ack</ xsl : t ext >
</ xsl : when>
<l-- never executed in this exanple -->
<xsl : ot herw se>
<xsl : text>red</xsl:text>
</ xsl:otherw se>
</ xsl : choose>
</ xsl :vari abl e>

<l-- show the party nane -->
<xsl :apply-tenpl ates sel ect ="nane"/>
<xsl:text> - </xsl:text>
<xsl : val ue-of select="party"/>

</ font>
</[li>
</ xsl :for-each>
</ ul >

</ xsl:tenpl ate>

In this example, the list of presidents is displayed in order along with the political party of each
president. The <xs| : when> elements test for each possible party, setting the value of a variable.
This variable, col or, is then used in a font tag to set the current color to something different for
each party. The <xsl| : ot her wi se> element is never executed because all of the political parties
are listed in the <xs| : when> elements. If a new president affiliated with some other political
party is ever elected, then none of the <xs| : when> conditions would be t r ue, and the font color
would be red.

One difference between the XSLT approach and a pure Java approach is that XSLT does not
require br eak statements between <xs| : when> elements. In XSLT, the <xs| : when> elements
are evaluated in the order in which they appear, and the first one with a test expression resulting
int r ue is evaluated. All others are skipped. If no <xsl : when> elements match, then
<xsl:otherw se>, if present, is evaluated.

Since <xsl : i f > has no corresponding <xs! : el se>, <xs| : choose> can be used to mimic the
desired functionality as shown here:

<xsl : choose>
<xsl :when test="condition">
<l-- if condition -->
</ xsl : when>
<xsl| : ot herwi se>
<l-- else condition -->
</ xsl : ot herw se>
</ xsl : choose>

As with other parts of XSLT, the XML syntax forces a lot more typing than Java programmers are
accustomed to, but the mechanics of | f /el se are faithfully preserved.

3.2 Parameters and Variables

As in other programming languages, it is often desirable to set up a variable whose value is
reused in several places throughout a stylesheet. If the title of a book is displayed repeatedly,
then it makes sense to store that title in a variable rather than scan through the XML data and
locate the title repeatedly. It can also be beneficial to set up a variable once and pass it as a
parameter to one or more templates. These templates often use <xsl| : i f > or <xsl : choose> to
produce different content depending on the value of the parameter that was passed.

3.2.1 <xsl:variable>

Variables in XSLT are defined with the <xs| : var i abl e> element and can be global or local. A
global variable is defined at the "top-level" of a stylesheet, which means that it is defined outside
of any templates as a direct child of the <xs| : st yl esheet > element. Top-level variables are
visible throughout the entire stylesheet, even in templates that occur before the variable
declaration.

The other place to define a variable is inside of a template. These variables are visible only to
elements that follow the <xs| : vari abl e> declaration within that template and to their

descendants. The code in Example 3-2 showed this form of <xs| : vari abl e> asa
mechanism to define the font color.

3.2.1.1 Defining variables

Variables can be defined in one of three ways:

<xsl : vari abl e nanme="honePage" >i ndex. ht m </ xsl : vari abl e>

<xsl :vari abl e name="1ast Presi dent "sel ect ="presi dent[position() = last(
)]/ name"/ >

<xsl :vari abl e name="enpty"/>

In the first example, the content of <xsl| : var i abl e> specifies the variable value. In the simple
example listed here, the text i ndex. ht nl is assigned to the honePage variable. More complex
content is certainly possible, as shown earlier in Example 3-2.

The second way to define a variable relies on the sel ect attribute. The value is an XPath
expression, so in this case we are selecting the name of the last president in the list.

Finally, a variable without a sel ect attribute or content is bound to an empty string. The example
shown in item 3 is equivalent to:

<xsl :variabl e nane="enpty" select=""""/>

3.2.1.2 Using variables

To use a variable, refer to the variable name with a $ character. In the following example, an

XPath location path is used to select the name of the last president. This text is then stored in the
| ast Presi dent variable:

<xsl :variabl e name="1ast Presi dent” sel ect="president[position() = | ast(
)]/ name"/ >

Later in the same stylesheet, the | ast Pr esi dent variable can be displayed using the following
fragment of code:

<xsl : val ue- of sel ect ="$Il ast Presi dent"/ >

Since the select attribute of <xsl:value-of> expects to see an XPath expression, $lastPresident is
treated as something dynamic, rather than as static text. To use a variable within an HTML

attribute value, however, you must use the attribute value template (AVT) syntax, placing braces
around the variable reference:

Click here to return to the hone page...

Without the braces, the variable would be misinterpreted as literal text rather than treated
dynamically.

The primary limitation of variables is that they cannot be changed. It is impossible, for example, to
use a variable as a counter in an <xs| : f or - each> loop. This can be frustrating to programmers
accustomed to variables that can be changed, but can often be overcome with some ingenuity. It
usually comes down to passing a parameter to a template instead of using a global variable and
then recursively calling the template again with an incremented parameter value. An example of
this technique will be presented shortly.

Another XSLT trick involves combining the variable initialization with <xs| : choose>. Since
variables cannot be changed, you cannot first declare a variable and then assign its value later
on. The workaround is to place the variable definition as a child of <xsl : vari abl e>, perhaps
using <xsl : choose> as follows:

<xsl : vari abl e nane="m dNane" >
<xsl : choose>
<xsl :when test="m ddl eNange" >
<xsl : val ue- of sel ect ="m ddl eNane"/ >
</ xsl : when>
<xsl : ot herw se>
<xsl:text> </ xsl:text>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>

This code defines a variable called midName. If the <middleName> element is present, its value
is assigned to midName. Otherwise, a blank space is assigned.

3.2.2 <xsl:call-template> and Named Templates

Up until this point, all of the templates have been tightly coupled to the actual data in the XML
source. For example, the following template matches an <employee> element; therefore,
<employee> must be contained within your XML data:

<xsl:tenpl ate mat ch="enpl oyee" >
..content, perhaps display the name and SSN for the enpl oyee
</ xsl:tenpl at e>

But in many cases, you may wish to use this template for types of elements other than
<enpl oyee>. In addition to <enpl oyee> elements, you may want to use this same code to
output information for a <pr ogr anmer > or <manager > element. In these circumstances,
<xsl:cal | -tenpl at e> can be used to explicitly invoke a template by name, rather than
matching a pattern in the XML data. The template will have the following form:

<xsl :tenpl at e name="f or nat SSN" >

..content
</ xsl:tenpl at e>

This template will be used to support the following XML data, in which both <nanager > and
<progr amrer > elements have ssn attributes. Using a single named template avoids the
necessity to write one template for <nanager > and another for <pr ogr anmer >. We will see an
example XSLT stylesheet when we discuss parameters.

<?xm version="1.0" encodi ng="UTF-8""?>

<t eane
<manager ssn="230568737">
<nane>Ai dan Bur ke</ nane>
</ manager >
<progranmer ssn="393776766" >
<nane>Jenni f er Bur ke</ nanme>
</ pr ogr ammer >
<pr ogranmer ssn="993885777">
<nane>Bi || Tel | ank/ nane>
</ pr ogr anmer >
</teanp

3.2.3 <xsl:param>and <xsl:with-param>

It is difficult to use named templates without parameters, and parameters can also be used for
regular templates. Parameters allow the same template to take on different behavior depending
on data the caller provides, resulting in more reusable code fragments. In the case of a named
template, parameters allow data such as a social security number to be passed into the template.
Example 3-3 contains a complete stylesheet that demonstrates how to pass the ssn parameter
into a named template.

Example 3-3. namedTemplate.xslt

<?xm version="1.0" encodi ng="UTF-8""?>
<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="htm "/ >
<xsl:tenplate match="/">
<htm >
<body>
<h3>Team Menber s</ h3>

<xsl:for-each sel ect ="t eam manager |t eani pr ogr anmer " >
<xsl:sort sel ect="name"/>

<xsl :val ue-of sel ect="nane"/>
<xsl:text> ssn = </xsl:text>
<xsl:cal |l -tenpl ate nanme="for mat SSN' >
<xsl :wi t h- param nane="ssn" sel ect ="@sn"/>
</xsl:call -tenpl ate>
</[li>
</ xsl : for-each>
</ ul >
</ body>
</htm >
</ xsl:tenpl at e>

<l-- a naned tenplate that formats a 9 digit SSN
by inserting '-' characters -->

<xsl:tenpl ate nanme="f or mat SSN' >
<xsl : param nane="ssn"/ >
<xsl : val ue- of sel ect="substring($ssn, 1, 3)"/>
<xsl:text>-</xsl:text>
<xsl :val ue-of sel ect="substring($ssn, 4, 2)"/>
<xsl:text>-</xsl:text>
<xsl : val ue- of sel ect ="substring($ssn, 6)"/>

</ xsl:tenpl at e>

</ xsl : styl esheet >

This stylesheet displays the managers and programmers in a list, sorted by name. The

<xsl : for - each> element selects the union of t ean! nanager and t eant progr anmer, so all
of the managers and programmers are listed. The pipe operator (|) computes the union of its two
operands:

<xsl :for-each sel ect ="t eanf nanager |t eam pr ogr amrer ">

For each manager or programmer, the content of the <nane> element is printed, followed by the
value of the ssn attribute, which is passed as a parameter to the f or nat SSN template. Passing
one or more parameters is accomplished by adding <xsl : wi t h- par an® as a child of
<xsl:cal |l -tenpl at e>. To pass additional parameters, simply list additional <xs| : wi t h-
par ane> elements, all as children of <xsl| : cal | -t enpl at e>.

At the receiving end, <xsl : par an® is used as follows:

<xsl:tenpl ate nanme="f or mat SSN' >
<xsl : param nane="ssn"/ >

In this case, the value of the ssn parameter defaults to an empty string if it is not passed. In order
to specify a default value for a parameter, use the select attribute. In the following example, the
zeros are in apostrophes in order to treat the default value as a string rather than as an XPath
expression:

<xsl| : param nane="ssn" sel ect ="' 000000000 "/ >

Within the formatSSN template, you can see that the substring() function selects portions of the
social security number string. More details on substring() and other string-formatting functions
are discussed later in this chapter.

3.2.4 Incrementing Variables

Unfortunately, there is no standard way to increment a variable in XSLT. Once a variable has
been defined, it cannot be changed. This is comparable to a final field in Java. In some
circumstances, however, recursion combined with template parameters can achieve similar
results. The XML shown in Example 3-4 will be used to illustrate one such approach.

Example 3-4. familyTree.xml

<?xm version="1.0" encodi ng="UTF-8""?>
<?xm -styl esheet type="text/xsl" href="fam|yTree.xslt"?>
<person name="CQto">
<per son name="Sandra" >
<person nane="Jereny">
<per son nanme="Eliana"/>
</ per son>
<person name="Eric">
<per son nane="Ai dan"/>
</ per son>
<person nane="Philip">
<per son name="Al ex"/>
<per son name="Andy"/>
</ person>
</ person>
</ per son>

As you can see, the XML is structured recursively. Each <per son> element can contain any
number of <per son> children, which in turn can contain additional <per son> children. This is

certainly a simplified family tree, but this recursive pattern does occur in many XML documents.
When displaying this family tree, it is desirable to indent the text according to the ancestry. Otto
would be at the root, Sandra would be indented by one space, and her children would be
indented by an additional space. This gives a visual indication of the relationships between the
people. For example:

ato
Sandr a

Jer eny
El i ana

Eric
Al dan

Philip
Al ex
Andy

The XSLT stylesheet that produces this output is shown in Example 3-5.

Example 3-5. familyTree.xslt

<?xm version="1.0" encodi ng="UTF-8""?>

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m' >
<xsl :output nethod="htm"/>

<l -- processing begins here -->
<xsl:tenplate match="/">
<htnml >
<body>
<l-- select the top |evel person -->
<xsl : appl y-tenpl at es sel ect =" person" >
<xsl :w t h- param nane="| evel " select=""0""/>
</ xsl :apply-tenpl at es>

</ body>
</htm >
</ xsl:tenpl at e>
<l-- Qutput information for a person and recursively sel ect
all children. -->

<xsl :tenpl ate mat ch="person">
<xsl : param nane="1| evel "/ >

<l-- indent according to the |level -->

<div style="text-indent:{$l evel }eni>
<xsl :val ue- of sel ect =" @ane"/>

</ div>

<l-- recursively select children, increnmenting the |level -->
<xsl : apply-tenpl at es sel ect =" person">
<xsl:wi t h-param nane="1evel " sel ect="$%$l evel + 1"/>
</ xsl : appl y-tenpl at es>
</ xsl:tenpl at e>
</ xsl : styl esheet >

As usual, this stylesheet begins by matching the document root and outputting a basic HTML
document. It then selects the root <per son> element, passing | evel =0 as the parameter to the
template that matches per son:

<xsl : apply-tenpl at es sel ect =" person">

<xsl:w t h-param nane="1evel " select=""0""/>
</ xsl : appl y-tenpl at es>

The per son template uses an HTML <di v> tag to display each person's name on a new line
and specifies a text indent in ens. In Cascading Style Sheets, one emis supposed to be equal to
the width of the lowercase letter min the current font. Finally, the per son template is invoked
recursively, passing in $| evel + 1 as the parameter. Although this does not increment an
existing variable, it does pass a new local variable to the template with a larger value than before.
Other than tricks with recursive processing, there is really no way to increment the values of
variables in XSLT.

3.2.5 Template Modes

The final variation on templates is that of the node. This feature is similar to parameters but a
little simpler, sometimes resulting in cleaner code. Modes make it possible for multiple templates
to match the same pattern, each using a different mode of operation. One template may display
data in verbose mode, while another may display the same data in abbreviated mode. There are
no predefined modes; you make them up. The node attribute looks like this:

<xsl:tenpl ate mat ch="nane" node="verbose">
...display the full nane
</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="nane" node="abbrevi at ed" >
...omt the mddl e name
</ xsl:tenpl at e>

In order to instantiate the appropriate template, a node attribute must be added to <xsl : appl y-
tenpl at es> as follows:

<xsl :apply-tenpl ates sel ect ="presi dent/ name" node="verbose"/>

If the node attribute is omitted, then the processor searches for a matching template that does
not have a mode. In the code shown here, both templates have modes, so you must include a
mode on <xsl : appl y-t enpl at es> in order for one of your templates to be instantiated.

A complete stylesheet is shown in Example 3-6. In this example, the name of a president may
occur inside either a table or a list. Instead of passing a parameter to the pr esi dent template,

two modes of operation are defined. Int abl e mode, the template displays the name as a row in
atable. In| i st mode, the name is displayed as an HTML list item.

Example 3-6. Template modes

<?xm version="1.0" encodi ng="UTF-8""?>

<xsl:styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m' >
<xsl : out put nethod="htm "/>

<I--
** Denpnstrates how to use tenpl ate nodes
-->
<xsl:tenplate match="/">
<htm >
<body>

<h2>Presidents in an HTM. Tabl e</ h2>
<t abl e border="1">
<tr>
<t h>Last Nane</th>

<t h>Fi rst Nane</th>
</[tr>
<xsl :apply-tenpl ates sel ect="//president" node="table"/>
</t abl e>

<h2>Presidents in an Unordered List</h2>

<xsl :apply-tenpl ates sel ect="//president" node="list"/>
</ ul >
</ body>
</htm >
</ xsl:tenpl at e>

<l--
** Display a president's nanme as a table row
-->
<xsl :tenpl ate match="presi dent" node="tabl e">
<tr>
<t d>
<xsl :val ue-of sel ect="nane/last"/>
</td>
<td>
<xsl :val ue-of select="nane/first"/>
</td>
</[tr>
</ xsl:tenpl at e>

<I--
** Display a president's nane as a list item
- >

<xsl:tenplate match="president" node="Ilist">

<xsl : val ue-of select="nane/last"/>
<xsl:text>, </xsl:text>
<xsl : val ue-of select="nane/first"/>

</ xsl:tenpl at e>

</ xsl :styl esheet >

3.2.6 <xsl:template> Syntax Summary

Sorting through all of the possible variations of <xsl| : t enpl at e> is a seemingly difficult task,
but we have really only covered three attributes:

match

Specifies the node in the XML data that a template applies to
name

Defines an arbitrary name for a template, independent of specific XML data
mode

Similar to method overloading in Java, allowing multiple versions of atemplate that match
the same pattern

The only attribute we have not discussed in detail ispri ori ty, which is used to resolve conflicts
when more than one template matches. The XSLT specification defines a very specific set of

steps for processors to follow when more than one template rule matches.! From a code
maintenance perspective, it is a good idea to avoid conflicting template rules within a stylesheet.
When combining multiple stylesheets, however, you may find yourself with conflicting template
rules. In these cases, specifying a higher numeric priority for one of the conflicting templates can
resolve the problem. Table 3-1 provides a few summarized examples of the various forms of
<xsl : tenpl at e>.

31 see section 5.5 of the XSLT specification at http://www.w3.0rg/TR/xslt.

Table 3-1. Summary of common template syntax

Template example Notes

<xsl:tenpl ate

=" i "> . .
mat ch="presi dent Matches pr esi dent nodes in the source XML document

</ xsl:tenpl at e>

<xsl :tenpl ate

nanme="f or mat Nane" >
<xsl : param Defines a named template; used in conjunction with

name="styl e"/ > <xsl : cal | -tenpl at e> and <xsl : wi t h- par an>

</ xsl:tenpl at e>

<xsl:tenpl ate
mat ch="cust oner "

nmode="y MbdeNane" > Matches cust oner nodes when <xsl : appl y-tenpl at es>

also uses node="nmyModeNane"

</ xsl:tenpl at e>

3.3 Combining Multiple Stylesheets

Through template parameters, named templates, and template modes, we have seen how to
create more reusable fragments of code that begin to resemble function calls. By combining
multiple stylesheets, one can begin to develop libraries of reusable XSLT templates that can
dramatically increase productivity.

Productivity gains occur because programmers are not writing the same code over and over for
each stylesheet. Reusable code is placed into a single stylesheet and imported or included into
other stylesheets. Another advantage of this technique is maintainability. XSLT syntax can get
ugly, and modularizing code into small fragments can greatly enhance readability. For example,
we have seen several examples related to the list of presidents so far. Since we almost always
want to display the name of a president or vice president, name-formatting templates should be
broken out into a separate stylesheet. Example 3-7 shows a stylesheet designed for reuse by
other stylesheets.

Example 3-7. nameFormatting.xslt

<?xm version="1.0" encodi ng="UTF-8""?>
<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :out put nethod="htm"/>
<l--
** Show a nane formatted |ike: "Burke, Eric Matthew'
-->
<xsl:tenpl ate mat ch="nanme" node="|astFirstM ddl e">
<xsl :val ue-of select="last"/>
<xsl:text> </xsl:text>

<xsl :val ue-of select="first"/>
<xsl :for-each select="mddl e">
<xsl :text > di sabl e- out put - escapi ng="yes" >&anp; nbsp; </ xsl : t ext >
<xsl :val ue-of select="."/>
</ xsl :for-each>
</ xsl:tenpl at e>

<I--
** Show a nanme formatted |ike: "Eric Matthew Burke"
-->
<xsl:tenpl ate mat ch="nane" node="firstM ddl eLast">
<xsl : val ue-of select="first"/>
<xsl :for-each select="m ddl e">
<xsl : text > di sabl e- out put - escapi ng="yes" >&anp; nbsp; </ xsl : t ext >
<xsl :val ue-of select="."/>
</ xsl :for-each>
<xsl :text > di sabl e- out put - escapi ng="yes" >&anp; nbsp; </ xsl : t ext >
<xsl : val ue-of select="last"/>
</ xsl:tenpl at e>
</ xsl : styl esheet >

The code in Example 3-7 uses template modes to determine which template is instantiated.
Adding additional templates would be simple, and those changes would be available to any
stylesheet that included or imported this one. This stylesheet was designed to be reused by other
stylesheets, so it does not include a template that matches the root node.

For large web sites, the ability to import or include stylesheets is crucial. It almost goes without
saying that every web page on a large site will contain the same navigation bar, footer, and
perhaps a common heading region. Standalone stylesheet fragments included by other
stylesheets should generate all of these reusable elements. This allows you to modify something
like the copyright notice on your page footer in one place, and those changes are reflected across
the entire web site without any programming changes.

3.3.1 <xsl:include>

The <xsl : i ncl ude> element allows one stylesheet to include another. It is only allowed as a
top-level element, meaning that <xsl : i ncl ude> elements are siblings to <xsl| : t enpl at e>
elements in the stylesheet structure. The syntax of <xsl : i ncl ude> is:

<xsl:include href="uri-reference"/>

When a stylesheet includes another, the included stylesheet is effectively inserted in place of the
<xsl :incl ude> element. Actually, the children of its <xsl| : st yl esheet > element are inserted
into the including document. It is possible to include many other stylesheets and for those
stylesheets to include others.

Inclusion is a relatively simple mechanism because the resulting stylesheet behaves exactly as if
you had typed all included elements into the including stylesheet. This can result in problems
when two conflicting template rules are included, so you must be careful to plan ahead to avoid
any conflicts. When a conflict occurs, the XSLT processor should report an error and halt.

3.3.2 <xsl:import>

Importing (rather than including) a stylesheet adds some intelligence to the process. When
conflicts occur, the importing stylesheet takes precedence over any imported stylesheets. Unlike
<xsl:include>, <xsl:inport> elements must occur before any other element children of
<xsl : styl esheet >, as shown here:

<?xm version="1.0" encodi ng="UTF-8""?>
<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m' >
<l-- xsl:inmport nmust occur before any other top-level elenents -->
<xsl:inmport href="pageEl ements. xslt"/>
<xsl :inmport href="gl obal Constants.xslt"/>
<xsl : out put nethod="htm "/ >
<xsl:tenplate match="/">

<htm >
</htn >
</ xsl:tenpl at e>
<l-- but xsl:include can occur anywhere, provided it is a top-I|evel
el ement -->

<xsl :include href="naneFormatting.xslt"/>
</ xsl : styl esheet >

For the purposes of most web sites, the most common usage pattern is for each page to import or
include common stylesheet fragments, such as templates to produce page headers, footers, and
other reusable elements on a web site. Once a stylesheet has been included or imported, its
templates can be used as if they were in the current stylesheet.

The key reason to use <xsl : i npor t > instead of <xs| : i ncl ude> is to avoid conflicts. If your
stylesheet already has a template that matches pageHeader , you will not be able to include
pageElements.xslt if it also has that template. On the other hand, you can use <xsl : i nport >,
In this case, your own pageHeader template will take priority over the imported pageHeader .

Changing all <xsl : i nport > elements to <xsl : i ncl ude>
WA will help identify any naming conflicts you did not know about.

3.4 Formatting Text and Numbers

XSLT and XPath define a small set of functions to manipulate text and numbers. These allow you
to concatenate strings, extract substrings, determine the length of a string, and perform other
similar tasks. While these features do not approach the capabilities offered by a programming
language like Java, they do allow for some of the most common string manipulation tasks.

3.4.1 Number Formatting

The f or mat - nunber () function is provided by XSLT to convert numbers such as 123 into
formatted numbers such as $123. 00. The function takes the following form:

string format-nunber(nunber, string, string?)

The first parameter is the number to format, the second is a format string, and the third (optional)
is the name of an <xs| : deci nal - f or mat > element. We will cover only the first two parameters
in this book. Interestingly enough, the behavior of the f or nat - nunber () function is defined by
the JDK 1.1.x version of the | ava. t ext . Deci nmal For nat class. For complete information on
the syntax of the second argument, refer to the JavaDocs for JDK 1.1.x.

Outputting currencies is a common use for the f or mat - nunber () function. The pattern
$#, ##0. 00 can properly format a number into just about any U.S. currency. Table 3-2
demonstrates several possible inputs and results for this pattern.

Table 3-2. Formatting currencies using $#,##0.00

Number Result
0 $0.00
0.9 $0.90
0.919 $0.92
10 $10.00
1000 $1,000.00
12345.12345 $12,345.12

The XSLT code to utilize this function may look something like this:
<xsl : val ue- of sel ect ="fornmat - nunber (ant, ' $#, ##0. 00")"/ >

It is assumed that ant is some element in the XML data, such as <ant >1000</ ant >. The #
and 0 characters are placeholders for digits and behave exactly as

j ava. text . Deci mal For mat specifies. Basically, O is a placeholder for any digit, while # is a
placeholder that is absent when the input value is 0.

1 The XSLT specification does not define what happens if the XML data does not contain a valid number.

Besides currencies, another common format is percentages. To output a percentage, end the
format pattern with a %character. The following XSLT code shows a few examples:

<l-- outputs 0%-->
<xsl : val ue-of sel ect="format-nunber (0, 0%)"/ >

<l-- outputs 10% -->
<xsl : val ue-of sel ect="format-nunber(0.1,'0%)"/>

<l-- outputs 100% -->
<xsl : val ue-of sel ect="format-nunmber(1,'0%)"/>

As before, the first parameter to the f or nat - nunber () function is the actual number to be
formatted, and the second parameter is the pattern. The 0 in the pattern indicates that at least
one digit should always be displayed. The %character also has the side effect of multiplying the
value by 100 so it is displayed as a percentage. Consequently, 0.15 is displayed as 15%, and 1 is
displayed as 100%.

To test more patterns, the XML data shown in Example 3-8 can be used. This works in
conjunction with numberFormatting.xslt to display every combination of format and number listed
in the XML data.

Example 3-8. numberFormatting.xml

<?xm version="1.0" encodi ng="UTF-8"7?>
<?xm -styl esheet type="text/xsl" href="nunberFormatting. xslt"?>
<numnber For matti ng>
<f or mat Sanpl es>
<l-- add nore <fornat> elenents to test nore conbi nati ons-->
<f or mat >$#, ##0. 00</ f or mat >
<f or mat >#. #</ f or mat >
<f or mat >0. #</ f or mat >
<f or mat >0. 0</ f or mat >

<f or mat >0%/ f or mat >
<f or mat >0. O#</ f or mat >

</ f or mat Sanpl es>

<nunber Sanpl es>
<!-- add nore <nunber> el enents to test nore conbi nati ons -->
<nunber >- 10</ nunber >
<nunber >- 1</ nunber >
<nunber >0</ nunber >
<nunber >0. 000123</ nunber >
<nunber >0. 1</ nunber >
<nunber >0. 9</ nunber >
<nunber >0. 91</ nunber >
<nunber >0. 919</ nunber >
<nunber >1</ nunber >
<nunber >10</ nunber >
<nunber >100</ nunber >
<nunber >1000</ nunber >
<nunber >10000</ nunber >
<nunber >12345. 12345</ nunber >
<nunber >55555. 55555</ nunber >

</ nunber Sanpl es>

</ nunber For mat ti ng>

The stylesheet, numberFormatting.xslt, is shown in Example 3-9. Comments in the code explain
what happens at each step. To test new patterns and numbers, just edit the XML data and apply
the transformation again. Since the XML file references the stylesheet with <?xni -

styl esheet ?>, you can simply load the XML into an XSLT compliant web browser and click on
the Reload button to see changes as they are made.

Example 3-9. numberFormatting.xslt

<?xm version="1.0" encodi ng="UTF-8""?>

<xsl :styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :out put nethod="htm "/>
<xsl:tenplate match="/">

<htm >
<body>
<!-- | oop over each of the sanple formats -->
<xsl:for-each sel ect ="nunber Formatti ng/f or mat Sanpl es/ f or mat " >
<h2>
<! -- show the format as a heading -->
<xsl :val ue-of select="."/>
</ h2>
<tabl e border="1" cel |l paddi ng="2" cel |l spaci ng="0">
<tr>

<t h>Nunber </ t h>
<t h>Resul t </t h>
</[tr>

<l-- pass the format as a paraneter to the tenplate that
shows each number -->
<xsl :apply-tenpl ates
sel ect ="/ nunber For mat t i ng/ nunber Sanpl es/ nunber " >

<xsl:wi th-param name="fnt" select="."/>
</ xsl : appl y-tenpl at es>
</tabl e>

</ xsl : for-each>

</ body>
</ htn >
</ xsl:tenpl at e>

<l-- output the nunber followed by the result of the format-nunber
function -->
<xsl :tenpl ate mat ch="nunber">
<xsl : param nane="fm"/ >

<tr>
<td align="right">
<xsl :val ue-of select="."/>
</td>
<td align="right">
<l-- the first paramis a dot, representing the text content

of the <nunmber> el enent -->
<xsl : val ue- of sel ect="format-nunber(.,$fnt)"/>
</td>
</tr>
</ xsl:tenpl at e>
</ xsl : styl esheet >

This stylesheet first loops over the list of <f or mat > elements:
<xsl :for-each sel ect =" nunber Fornmatti ng/f or mat Sanpl es/ f or mat " >

Within the loop, all of the <nunber > elements are selected. This means that every format is
applied to every number:

<xsl : apply-tenpl at es sel ect ="/ nunber For mat t i ng/ nunber Sanpl es/ nunber " >
3.4.2 Text Formatting

Several text-formatting functions are defined by the XPath specification, allowing code in an
XSLT stylesheet to perform such operations as concatenating two or more strings, extracting a
substring, and computing the length of a string. Unlike strings in Java, all strings in XSLT and
XPath are indexed from position 1 instead of position 0.

Let's suppose that a stylesheet defines the following variables:

<xsl:variabl e nane="first Nane" select=""Eric'"/>
<xsl :vari abl e nane="1 ast Nane" sel ect=""' Burke'"/>
<xsl :vari abl e nane="m ddl eNane" sel ect="' Matthew "/ >
<xsl : vari abl e nane="ful | Nane"
sel ect="concat ($firstNane, ' ', $m ddleNane, ' ', $lastNane)"/>

In the first three variables, apostrophes are used to indicate that the values are strings. Without
the apostrophes, the XSLT processor would treat these as XPath expressions and attempt to
select nodes from the XML input data. The third variable, f ul | Nane, demonstrates how the
concat () function is used to concatenate two or more strings together. The function simply
takes a comma-separated list of strings as arguments and returns the concatenated results. In
this case, the value for f ul | Nane is "Eric Matthew Burke."

Table 3-3 provides additional examples of string functions. The variables in this table are the
same ones from the previous example. In the first column, the return type of the function is listed
first, followed by the function name and the list of parameters. The second and third columns
provide an example usage and the output from that example.

Table 3-3. String function examples

Function syntax Example Output
stri ng concat _ concat ($fi rst Nane, ' ', Eric Burke
(string, string,string*) $l ast Nane)

?gﬂ?ﬁggiﬂtﬂ;wth starts-w th($firstName, 'Er') true
ggglt Z?Es(stri ng, string) contai ns($full Name, 'Smith") false
?tS[irng’sgtbfitLig?g—before substring-before($full Name, ' ') |Eric
?tS[irng’sgtbfitLg;]g—after substring-after($full Nare, ") gﬂjlrtligew
?tS[Ir ngsﬁgﬁ); ,ngun”oer?) substri ng($m ddl eNane, 1, 1) M
nggﬂ](Z: H 239) string-1engt h($ful | Nanme) 18
2;;'02?5,[”?[El,;) zes nornal i ze- space(' testing ') testing
?;[Ir Inggt g?pflngt gt ri ng) translate('test', ' aeiou',' AEIQU) [tEst

All string comparisons, such as st art s-wi t h() and cont ai ns(), are case-sensitive. There
is no concept of case-insensitive comparison in XSLT. One potential workaround is to convert
both strings to upper- or lowercase, and then perform the comparison. Converting a string to
upper- or lowercase is not directly supported by a function in the current implementation of XSLT,
butthetransl ate() function can be used to perform the task. The following XSLT snippet
converts a string from lower- to uppercase:

transl at e($t ext,
"abcdef ghi j kl mopqr st uvwxyz',
" ABCDEFGHI JKLIMNOPQRSTUVWKYZ')

Inthe substring-before() andsubstring-after() functions, the second argument

contains a delimiter string. This delimiter does not have to be a single character, and an empty
string is returned if the delimiter is not found. These functions could be used to parse formatted
data such as dates:

<dat e>06/ 25/ 1999</ dat e>

The XSLT used to extract the month, day, and year looks like this:

<xsl :variabl e nane="dateStr" select="//date"/>

<xsl:vari abl e nane="dayYear" sel ect="substring-after($dateStr, '/')"/>
Mont h: <xsl:val ue-of sel ect="substring-before($dateStr, '/')"/>

Day: <xsl:val ue-of sel ect="substring-before($dayYear, '/')"/>

Year: <xsl:val ue-of select="substring-after($dayYear, '/')"/>

In the first line of code, the dat eSt r variable is initialized to contain the full date. The next line
then creates the day Year variable, which contains everything after the first/ character -- at this
point, dat eSt r =06/ 25/ 1999 and day Year =25/ 1999. In Java, this is slightly easier because
you simply create an instance of the St ri ngTokeni zer class and iterate through the tokens or
use the | ast | ndexOr () method of j ava. | ang. St ri ng to locate the second / . With XSLT,
the options are somewhat more limited. The remaining lines continue chopping up the variables
into subst ri ngs, again delimiting on the / character. The output is as follows:

Mont h: 06
Day: 25

Year: 1999

Another form of the subst ri ng() function takes one or two number arguments, indicating the
starting index and the optional length of the subst ri ng. If the second number is omitted, the
subst ri ng continues until the end of the input string. The starting index always begins at
position 1, so substring("abcde", 2, 3) returns bcd, and substring("abcde", 2) returns
bcde.

3.5 Schema Evolution

Looking beyond HTML generation, a key use for XSLT is transforming one form of XML into
another form. In many cases, these are not radical transformations, but minor enhancements
such as adding new attributes, changing the order of elements, or removing unused data. If you
have only a handful of XML files to transform, it is a lot easier to simply edit the XML directly
rather than going through the trouble of writing a stylesheet. But in cases where a large collection
of XML documents exist, a single XSLT stylesheet can perform transformations on an entire
library of XML files in a single pass. For B2B applications, schema evolution is useful when
different customers require the same data, but in different formats

3.5.1 An Example XML File

Let's suppose that you wrote a logging API for your Java programs. Log files are written in XML
and are formatted as shown in Example 3-10.

Example 3-10. Log file before transformation

<?xm version="1.0" encodi ng="UTF-8"?>
<l og>
<nessage text="input paraneter was null ">
<t ype>ERROR</ t ype>
<when>
<year >2000</ year >
<rmont h>01</ nont h>
<day>15</ day>
<hour >03</ hour >
<m nut e>12</ m nut e>
<second>18</ second>
</ when>
<wher e>
<cl ass>com foobar.util.StringUtil</class>
<net hod>r everse(String) </ net hod>
</ wher e>
</ message>
<nessage text="cannot read config file">
<t ype>WARNI NG/ t ype>
<when>
<year >2000</ year >
<nmont h>01</ nont h>
<day>15</ day>
<hour >06</ hour >
<m nut e>35</ m nut e>
<second>44</ second>
</ when>
<wher e>
<cl ass>com f oobar. servl et. Mai nSer vl et </ cl ass>
<met hod>init()</nethod>
</ wher e>

</ message>
<I-- nore nessages ... -->
</l og>

As you can see from this example, the file format is quite verbose. Of particular concern is how
the date and time are written. Since log files can be quite large, it would be a good idea to select
a more concise format for this information. Additionally, the text is stored as an attribute on the
<message> element, and the type is stored as a child element. It would make more sense to list
the type as an attribute and the message as an element. For example:

<nmessage type="WARNI NG' >
<text>This is the text of a nessage.
Mul ti-1ine nmessages are easier when an
el enment is used instead of an attribute.</text>
...remai nder omtted

3.5.2 The Identity Transformation

Whenever writing a schema evolution stylesheet, it is a good idea to start with an identity
transformation . This is a very simple template that simply takes the original XML document and
"transforms" it into a new document with the same elements and attributes as the original
document. Example 3-11 shows a stylesheet that contains an identity transformation template.

Example 3-11. identityTransformation.xslt

<?xm version="1.0" encodi ng="UTF-8""?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put met hod="xm " version="1.0" encodi ng="UTF-8" indent="yes"/>

<xsl:tenplate match="@| node()">
<xsl : copy>
<xsl :apply-tenpl ates select="@| node()"/>
</ xsl : copy>
</ xsl:tenpl at e>
</ xsl : styl esheet >

Amazingly, it takes only a single template to perform the identity transformation, regardless of the
complexity of the XML data. Our stylesheet encodes the result using UTF-8 and indents lines,
regardless of the original XML format. In XPath, node() is a node test that matches all child
nodes of the current context. This is fine, but it omits the attributes of the current context. For this
reason, @ must be unioned with node() as follows:

<xsl:tenplate match="@ | node()">

Translated into English, this means that the template will match any attribute or any child node of
the current context. Since node() includes elements, comments, processing instructions, and
even text, this template will match anything that can occur in the XML document.

Inside of our template, we use <xsl : copy> . As you can probably guess, this instructs the XSLT
processor to simply copy the current node to the result tree. To continue processing,

<xsl :appl y-tenpl at es> then selects all attributes or children of the current context using the
following code:

<xsl:apply-tenpl ates select="@| node()"/>
3.5.3 Transforming Elements and Attributes

Once you have typed in the identity transformation and tested it, it is time to begin adding
additional templates that actually perform the schema evolution. In XSLT, it is possible for two or
more templates to match a pattern in the XML data. In these cases, the more specific template is

instantiated. Without going into a great deal of technical detail, an explicit match such as
<xsl:tenplate mat ch="when" > takes precedence over the identity transformation template,
which is essentially a wildcard pattern that matches any attribute or node. To modify specific
elements and attributes, simply add more specific templates to the existing identity transformation
stylesheet.

In the log file example, a key problem is the quantity of XML data written for each <when>
element. Instead of representing the date and time using a series of child elements, it would be
much more concise to use the following syntax:

<timestanp tinme="06:35:44" day="15" nmont h="01" year="2000"/>
The following template will perform the necessary transformation:

<xsl:tenpl ate mat ch="when">
<I-- change 'when' into 'tinmestanp', and change its
child elenments into attributes -->
<tinmestanp tinme="{hour}:{m nute}:{second}"
year="{year}" nonth="{nonth}" day="{day}"/>
</ xsl:tenpl at e>

This template can be added to the identity transformation stylesheet and will take precedence
whenever a <when> element is encountered. Instead of using <xsl| : copy >, this template
produces a new <t | nest anp> element AVTs are then used to specify attributes for this element,
effectively converting element values into attribute values. The AVT syntax{ hour } is equivalent
to selecting the <hour > child of the <when> element. You may notice that XSLT processors do
not necessarily preserve the order of attributes. This is not important because the relative
ordering of attributes is meaningless in XML, and you cannot force the order of XML attributes.

The next thing to tackle is the <nessage> element. As mentioned earlier, we would like to
convert the t ext attribute to an element, and the <t ype> element to an attribute. Just like
before, add a new template that matches the <nessage> element, which will take precedence
over the identity transformation. Comments in the code explain what happens at each step.

<l-- |ocate <nessage> el enents -->
<xsl :tenpl ate mat ch="nessage" >
<l-- copy the current node, but not its attributes -->
<xsl: copy>
<! -- change the <type> elenent to an attribute -->

<xsl:attribute nane="t ype">
<xsl :val ue-of select="type"/>
</xsl:attribute>

<l-- change the text attribute to a child node -->
<xsl : el ement nanme="text">

<xsl :val ue-of select="@ext"/>
</ xsl : el emrent >

<l-- since the select attribute is not present,
xsl :apply-tenpl at es processes all children
of the current node. (not attributes or processing
instructions!) -->
<xsl :apply-tenpl ates/ >

</ xsl: copy>
</ xsl:tenpl at e>

This almost completes the stylesheet. <xsl| : copy> simply copies the <nessage> element to the
result tree but does not copy any of its attributes or children. We can explicitly add new attributes

using <xsl : at t ri but e> and explicitly create new child elements using <xsl : el enent >.
<xsl :appl y-tenpl at es> then tells the processor to continue the transformation process for
the children of <nessage>. One problem right now is that the <t ype> element has been
converted into an attribute but has not been removed from the document. The identity
transformation still copies the <t ype> element to the result tree without modification. To fix this,
simply add an empty template as follows:

<xsl :tenplate match="type"/>

The complete schema evolution stylesheet simply contains the previous templates. Without
duplicating all of the code, here is its overall structure:

<?xm version="1.0" encodi ng="UTF-8""?>
<xsl:styl esheet
versi on="1.0"
xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="xm " version="1.0" encodi ng="UTF-8" indent="yes"/>

<l-- the identity transformation -->
<xsl :tenpl ate mat ch="@ | node(">

</ xsl:tenpl at e>

<l-- | ocate <nessage> el enents -->
<xsl:tenpl ate mat ch="nessage" >

</ xsl:tenpl at e>

<l-- |ocate <when> el enents -->
<xsl :tenpl ate mat ch="when" >

</ xsl:tenpl at e>

<I-- suppress the <type> el ement
<xsl :tenplate match="type"/>
</ xsl : styl esheet >

3.5.4 The Result File

Now that the stylesheet is complete, it can be applied to all of the existing XML log files using a
simple shell script or batch file. The resulting XML file is shown in Example 3-12.

Example 3-12. Result of the transformation

<?xm version="1.0" encodi ng="UTF-8""?>
<?xm -styl esheet type="text/xsl" href="schemaChange. xslt"?>
<l og>
<nmessage type="ERROR">
<t ext >i nput paraneter was null </text>

<tinestanp tine="03:12:18" day="15" nont h="01" year="2000"/>
<wher e>
<cl ass>com foobar.util.StringUtil</class>
<nmet hod>reverse(String) </ net hod>
</ wher e>
</ message>
<message type="WARNI NG' >
<t ext >cannot read config file</text>

<tinmestanp tine="06:35: 44" day="15" nonth="01" year="2000"/>
<wher e>
<cl ass>com f oobar. servl et. Mai nSer vl et </ cl ass >
<nmet hod>i nit()</nethod>
</ wher e>
</ message>
<nmessage type="ERROR">
<t ext >negative duration is not allowed</text>

<tinestanp tine="10:01:49" day="17" nonth="01" year="2000"/>

<wher e>
<cl ass>com foobar. util.DateUt il </ cl ass>
<nmet hod>get Week(i nt) </ net hod>
</ wher e>
</ message>
</l og>

3.6 Ant Documentation Stylesheet

Apache's Ant has taken the Java development community by storm, supplementing traditional
Java IDEs and outright replacing Makefiles on most Java development projects. Ant is a build
tool, similar to the make utility, only it uses XML files instead of Makefiles. In addition to a portable
build file based on XML, Ant itself is written in Java and has few platform-specific dependencies.
Finally, since Ant can reuse the same running instance of the Java Virtual Machine for nearly
every step of the build process, it is blazingly fast. Ant can be downloaded from
http://jakarta.apache.org and is open source software.

3.6.1 Ant Basics

Ant is driven by an XML build file, which consists of one project. This project contains one or
more targets, and targets can have dependencies on one another. The project and targets are
represented as <pr o] ect > and <t ar get > in the XML build file; <pr o] ect > must be the
document root element. It is common to have a "prepare" target that builds the output directories
and a "compile" target that depends on the "prepare" target. If you tell Ant to execute the
"compile” target, it first checks to see that the "prepare" target has created the necessary
directories. The structure of an Ant build file looks like this:

<?xm version="1.0"?>
<proj ect nane="Sanpl eProj ect" default="conpile" basedir=".">

<l-- global properties -->
<property name="srcdir" val ue="src"/>
<property name="builddir" val ue="build"/>

<target nane="prepare" description="Creates the output directories">
...tasks
</target>

<target name="conpil e" depends="prepare">
...tasks
</target>

<target nanme="distribute" depends="conpile">
...tasks
</target>
</ proj ect >

For each target, Ant is smart enough to know if files have been modified and if it needs to do any
work. For compilation, the timestamps of .class files are compared to timestamps of .java files.
Through these dependencies, Ant can avoid unnecessary compilation and perform quite well.
Although the targets shown here contain only single dependencies, it is possible for a target to
depend on several other targets:

<target name="X" depends="A B, C'>

Although Ant build files are much simpler than corresponding Makefiles, complex projects can
introduce many dependencies that are difficult to visualize. It can be helpful to view the complete
list of targets with dependencies displayed visually, such as in a hierarchical tree view. XSLT can
be used to generate this sort of report.

3.6.2 Stylesheet Functionality

Since the build file is XML, XSLT makes it easy to generate HTML web pages that summarize the
targets and dependencies. Our stylesheet also shows a list of global properties and can easily be
extended to display anything else contained in the build file.

Although this stylesheet creates several useful HTML tables in its report, its most interesting
feature is the ability to display a complete dependency graph of all Ant build targets. The output
for this graph is shown in Example 3-13.

Example 3-13. Target dependencies

cl ean
all (depends on clean, dist)
pr epare
tontat (depends on prepare)
j 2ee (depends on tontat)
j 2ee-di st (depends on j 2ee)
mai n (depends on tontat, webapps)
di st (depends on nain, webapps)
di st-zip (depends on dist)
all (depends on clean, dist)
webapps (depends on prepare)
di st (depends on main, webapps)
di st-zip (depends on dist)
all (depends on cl ean, dist)
mai n (depends on tontat, webapps)
di st (depends on nmin, webapps)
di st-zip (depends on dist)
all (depends on cl ean, dist)
targets

This is actually the output from the Ant build file included with Apache's Tomcat. The list of top-
level targets is shown at the root level, and dependent targets are indented and listed next. The
targets shown in parentheses list what each target depends on. This tree view is created by
recursively analyzing the dependencies, which appear in the Ant build file as follows:

<target name="all" depends="cl ean, di st">

Figure 3-1 shows a portion of the output in a web browser. A table listing all targets follows the
dependency graph. The output concludes with a table of all global properties defined in the Ant
build file.

Figure 3-1. Antdoc sample output

'!MPrnjctl"Eumrmrr - Tomcat - Microsoft Inkernet Explorer Il |
e et Yew Fgvoites loos Heb o ks ™ | agvess [

: o ; o =]
cnst-np (Gepends oft k)

all :-:]|:E:--_:r|:]:
farzers

Lizt of Targers

Name | Dependencies | Desciption

all clean, dist -
clran - -
dist AN, Webapps
fiel ki izt
jlee tomcat
jeme-clist | j2ee -
main tomncat, webapps | -
prepare
targst
tomEat [rEpare -
webapps | prepare
lahal P opernes

Nawe Valne PR
ant. home . Aakarta-ant
busld. compder | classic
debug o =

& Done b, My Compiiter

The comma-separated list of dependencies presents a challenge that is best handled through
recursion. For each target in the build file, it is necessary to print a list of targets that depend on
that target. It is possible to have many dependencies, so an Ant build file may contain a

<t ar get > that looks like this:

<target name="docs" depends="cl ean, prepare.docs, conpile">

In the first prototype of the Antdoc stylesheet, the algorithm to print the dependency graph uses
simple substring operations to determine if another target depends on the current target. This
turns out to be a problem because two unrelated targets might have similar names, so some Ant
build files cause infinite recursion in the stylesheet. In the preceding example, the original
prototype of Antdoc says that " docs” depends on itself because its list of dependencies contains
the text pr epar e. docs.

In the finished version of Antdoc, the list of target dependencies is cleaned up to remove spaces
and commas. For example, "cl ean, prepare.docs, conpile" isconverted into

"| cl ean| prepare. docs| conpi | e| " . By placing the pipe (|) character before and after every
dependency, it becomes much easier to locate dependencies by searching for strings.

3.6.3 The Complete Example

The complete XSLT stylesheet is listed in Example 3-14. Comments within the code explain
what happens in each step. To use this stylesheet, simply invoke your favorite XSLT processor at

the command line, passing antdoc.xslt and your Ant build file as parameters.

Example 3-14. antdoc.xslt

<?xm version="1.0" encodi ng="UTF-8"?>
<I--
kkhkkkhkhkkhkhhkhkkhkhkdhkhkhkhhkhhkhdhkhdhkhhkhhkhhkhhkhdhkhhkhhkhhkhdhkhdhkhdkrhkhhkhhkihkihkhkkhhkhkk*x

** Antdoc v1.0

* %

** Witten by Eric Burke (burke_e@ciweb.com
* %
** Uses XSLT to generate HTML sunmary reports of Ant build
** files.
***__>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :out put method="xm"
doct ype-public="-//WBC//DID XHTML 1.0 Strict//EN'

doctype-systens"http://ww. w3. or g/ TR/ xht ml 1/ DTDY xht ml 1-strict.

i ndent ="yes" encodi ng="UTF-8"/>

<!-- gl obal variable: the project nanme -->
<xsl :vari abl e nane="proj ect Nane" sel ect="/project/ @ane"/>
<xsl:tenplate match="/">
<htm xm ns="http://ww.w3. org/ 1999/ xhtm ">
<head>
<title>Ant Project Sunmary -
<xsl :val ue-of sel ect="%$projectNane"/></title>
</ head>
<body>
<hl>Ant Project Sunmmary</hl>
<xsl :apply-tenpl ates sel ect="project"/>
</ body>
</htm >
</ xsl :tenpl at e>

<l--
EE R R Ik S S S S S I R R S I R R S

** "project" tenplate
kkhkkkhkhkkhkhkhkhkkhkhkhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhk hkk kk kk kk kkk khkk kk kk k%% -a>
<xsl :tenpl ate mat ch="proj ect">
<!-- show the project sunmary table, listing basic info
such as nane, default target, and base directory -->
<tabl e border="1" cel | paddi ng="4" cel | spaci ng="0">
<tr><th col span="2">Proj ect Summary</th></tr>
<tr>
<t d>Proj ect Name:</td>
<t d><xsl : val ue-of sel ect ="$proj ect Nane"/></td>
</tr>
<tr>
<td>Default Target:</td>
<t d><xsl : val ue-of select="@lefault"/></td>
</tr>
<tr>
<td>Base Directory: </td>

dtd"

</

<!

<t d><xsl : val ue- of sel ect =" @asedi r"/></td>
</[tr>
</ tabl e>

<!-- show all target dependencies as a tree -->

<h3>Tar get Dependency Tree</ h3>

<xsl :apply-tenpl ates sel ect ="t arget[not (@epends)]
<xsl :sort sel ect="@ane"/>

</ xsl : appl y-tenpl at es>

<p/ >

<l-- Show a table of all targets -->
<t abl e border="1" cel |l paddi ng="4" cel |l spaci ng="0">
<tr><th col span="3">Li st of Targets</th></tr>
<tr>
<t h>Nane</t h>
<t h>Dependenci es</t h>
<t h>Descri ption</th>
</[tr>

node="tree" >

<xsl: appl y-tenpl ates select="target" nobde="t abl eRow'>
<xsl:sort sel ect="count(@escription)" order="descendi ng"/>

<xsl :sort sel ect="@ane"/>
</ xsl : apply-tenpl at es>
</tabl e>
<p/ >
<xsl:call-tenpl ate name="gl obal Properties"/>
xsl : tenpl at e>

R I I R I R I R R R R R I R R R I R I R

* %

Create a table of all global properties.

R R S I S R S I Rk I S R R I S b R o - >

<xsl :tenpl at e nane="gl obal Properties">

</

<!

<xsl:if test="property">

<tabl e border="1" cel |l paddi ng="4" cel | spaci ng="0">

<tr><th col span="2">d obal Properties</th></tr>
<tr>

<t h>Nane</t h>

<t h>Val ue</t h>
</tr>

<xsl :apply-tenpl ates sel ect ="property" node="tabl eRow'>

<xsl:sort sel ect="@ane"/>
</ xsl : appl y-t enpl at es>
</tabl e>
</xsl:if>
xsl :tenpl at e>

EE R R I R I I I R I I R I R I R I I R I R

* %

Show an i ndividual property in a table row

khkkkhkhhkhhkhkkhkhhhhhhkhhhdhhhhhhhkhhhdhhdhhhdhhhdrhdhhhkrhhdrhdrrhrxx% - >

<xsl:tenpl ate mat ch="property[@ane]"

<tr>
<t d><xsl : val ue-of sel ect="@ane"/></td>
<t d>
<xsl : choose>
<xsl : when test="not (@al ue)">

node="t abl eRow' >

<xsl :text disabl e-out put -
escapi ng="yes" >&anp; nbsp; </ xsl : t ext >
</ xsl : when>
<xsl : ot her wi se>
<xsl :val ue- of sel ect="@al ue"/>
</ xsl : ot herwi se>
</ xsl : choose>
</td>
</[tr>
</ xsl :tenpl at e>

<l - -
*;\—***
** "target" tenplate, node=tabl eRow
** Print a target nane and its |list of dependencies in a
** table row
EIR IR R R S I R R R I I I I I I R R R R R R IR R R I R R R R R R I R I I I I R O R R R - >
<xsl:tenplate match="target" node="t abl eRow'>
<tr valign="top">
<t d><xsl : val ue-of sel ect =" @ane"/></td>
<t d>
<xsl : choose>
<xsl :when test="@lepends" >
<xsl:call -tenpl ate nane="par seDepends" >
<xsl :wi t h- param nanme="depends" sel ect =" @epends"/ >
</ xsl:call -tenpl at e>
</ xsl : when>
<xsl : ot her wi se>- </ xsl : ot herw se>
</ xsl : choose>
</td>
<t d>
<xsl:if test="@lescription">
<xsl :val ue-of sel ect="@escription"/>
</xsl:if>
<xsl:if test="not(@escription)">
<xsl:text>-</xsl:text>
</xsl:if>
</td>
</[tr>
</ xsl :tenpl at e>

<l--

EE R R Ik S S S S S I I I R R R S I R R S
** "parseDepends" tenplate

** Tokeni zes and prints a commma separated |ist of dependenci es.
** The first token is printed, and the remaining tokens are

** recursively passed to this tenplate.

EIE R R I b I b I R R I I S R S I I I R R I I b S I - >
<xsl:tenpl at e nane="par seDepends" >
<l-- this paraneter contains the |list of dependencies -->

<xsl : par am nane="depends"/ >

<l-- grab everything before the first comm,
or the entire string if there are no conmas -->
<xsl:variabl e nane="first Token">
<xsl : choose>
<xsl : when test="contai ns($depends, ',')">

<xsl : val ue- of
sel ect="nornal i ze- space(substring- before($depends, ','))"/>
</ xsl : when>
<xsl : ot herwi se>
<xsl : val ue-of sel ect="nornali ze-space($depends)"/>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>

<xsl :vari abl e nane="renmai ni ngTokens"
sel ect ="normal i ze- space(substring-after($depends, ',"'))"/>

<!-- output the first dependency -->
<xsl : val ue-of select="%firstToken"/>

<l-- recursively invoke this tenplate with the renai nder
of the comma separated list -->

<xsl:if test="$rennini ngTokens">

<xsl:text>, </xsl:text>

<xsl:call -tenpl ate nane="par seDepends" >

<xsl :w t h- param nane="depends" sel ect =" $r emai ni ngTokens"/ >

</ xsl:call-tenpl ate>

</xsl:if>

</ xsl :tenpl at e>

<l--
R R S S S S I I S R R S S S I S I kI I S S
** This tenplate will begin a recursive process that forns a
** dependency graph of all targets.
EE R R Ik I S I S I I S S I I I R e S R Rk kS - >
<xsl:tenplate match="target" node="tree">

<xsl : param nane="i ndent Level " select="'0""/>

<xsl :vari abl e name="cur Nane" sel ect="@ane"/>

<div style="text-indent: {$indentlLevel}em">

<xsl : val ue- of sel ect =" $cur Nane"/ >

<I-- if the 'depends' attribute is present, show the
list of dependencies -->

<xsl:if test="@lepends">
<xsl:text> (depends on </xsl:text>
<xsl:call -tenpl ate nanme="par seDepends" >

<xsl:w t h-param nanme="depends" sel ect =" @lepends"/ >

</ xsl :call -tenpl at e>
<xsl:text>)</xsl:text>

</xsl:if>

</ div>

<!-- set up the indentation -->
<xsl :vari abl e name="next Level " sel ect ="$i ndent Level +1"/ >

<!-- search all other <target> elenents that have "depends"
attributes -->
<xsl:for-each select="../target[@epends]">
<l-- Take the comma-separated |list of dependencies and

“clean it up". See the comments for the "fixDependency"

tenplate -->
<xsl :vari abl e name="correct edDependency" >
<xsl:call -tenpl ate name="fi xDependency" >
<xsl:w t h- param nane="depends" sel ect =" @epends"/ >
</ xsl:call -tenpl at e>
</ xsl :vari abl e>

<I'-- Now the dependency list is pipe (|) delimted, making
it easier to reliably search for substrings. Recursively
instantiate this tenplate for all targets that depend
on the current target -->

<xsl:if
t est ="cont ai ns($correct edDependency, concat (' |', $curName,'|"))">
<xsl:apply-tenpl ates select="." node="tree">

<xsl:w t h-param nanme="i ndent Level " sel ect =" $next Level "/ >
</ xsl : appl y-t enpl at es>
</ xsl:if>
</ xsl :for-each>
</ xsl : tenpl at e>

<l--

R R Sk S I S R S I kI kI Sk S
** This tenplate takes a comma-separated |ist of dependencies
** and converts all conmas to pipe (|) characters. It also

** renoves all spaces. For instance:

* %

** | nput: depends="a, b,c
** Quput: |alb]c

* %

** The resulting text is nmuch easier to parse with XSLT.
EIR IR R R S I S R R I I I I I I R R R R R R R R I I S S R R I R R R I R I I I I S R R R - >

<xsl:tenpl ate nane="fi xDependency" >
<xsl : par am nane="depends"/ >

<l-- grab everything before the first conmm,
or the entire string if there are no commas -->
<xsl :vari abl e nane="fir st Token">
<xsl : choose>

<xsl :when test="contains($depends, ',')">
<xsl : val ue- of
sel ect ="nornual i ze- space(substring-before($depends, ','))"/>

</ xsl : when>
<xsl : ot herw se>
<xsl : val ue-of sel ect="nornali ze-space($depends)"/>
</ xsl : ot herwi se>
</ xsl : choose>
</ xsl :vari abl e>

<!-- define a variable that contains everything after the
first comm -->
<xsl :vari abl e nanme="r emai ni ngTokens"
sel ect ="nornal i ze- space(substring-after($depends, ',"'))"/>

<xsl:text>|</xsl:text>
<xsl : val ue- of sel ect="%first Token"/>
<xsl : choose>

<xsl : when test="%remi ni ngTokens" >

<xsl:cal |l -tenpl ate name="fi xDependency" >
<xsl :w t h- param nane="depends" sel ect =" $remai ni ngTokens"/ >
</ xsl:call-tenpl at e>
</ xsl : when>
<xsl : ot herw se>
<xsl:text>| </ xsl:text>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl:tenpl at e>

</ xsl : styl esheet >
3.6.3.1 Specifying XHTML output

One of the first things this stylesheet does is set the output method to " xni " because the
resulting page will be XHTML instead of HTML. The doct ype- publ i ¢ and doct ype-system
are required for valid XHTML and indicate the strict DTD in this case:

<xsl : out put et hod="xnl "
doctype-public="-//WBC//DID XHTML 1.0 Strict//EN
doctype-systen="http://ww. w3. org/ TR xht ml 1/ DTD/ xhtml 1-strict. dtd"
i ndent ="yes" encodi ng="UTF-8"/>

The remaining XHTML requirement is to declare the namespace of the <ht ni > element:
<xsl:tenplate match="/">

<htm xm ns="http://ww.w3. org/ 1999/ xhtm ">

</htm >
</ xsl:tenpl ate>

Because of these XSLT elements, the result tree will contain the following XHTML:

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE htm PUBLIC

"-//WBC//DTD XHTM. 1.0 Strict//EN

"http://ww. w3. org/ TR/ xht m 1/ DTD/ xhtm 1-strict.dtd">
<htm xm ns="http://ww. w3. org/ 1999/ xhtm ">

</htm >
3.6.3.2 Creating the dependency graph

The most interesting and difficult aspect of this stylesheet is its ability to display the complete
dependency graph for all Ant build targets. The first step is to locate all of the targets that do not
have any dependencies. As shown in Example 3-13, these targets are named c| ean,
prepare,andt arget s for the Tomcat build file. They are selected by looking for <t ar get >
elements that do not have an attribute named depends:

<l-- show all target dependencies as a tree -->

<h3>Tar get Dependency Tree</ h3>

<xsl :apply-tenpl ates sel ect="target[not (@epends)]" node="tree">
<xsl:sort sel ect="@ane"/>

</ xsl:appl y-tenpl at es>

The [not (@epends) | predicate will refine the list of <t ar get > elements to include only those
that do not have an attribute named depends. The <xsl| : appl y- t enpl at es> will instantiate
the following template without any parameters:

<xsl:tenplate match="target" node="tree">
<xsl : param nane="i ndent Level " select=""0""/>
<xsl| : vari abl e nane="cur Nane" sel ect =" @ane"/ >

If you refer to Example 3-14, you will see that this is the second-to-last template in the
stylesheet. Since it is broken up into many pieces here, you may find it easier to refer to the
original code as this description progresses. Since the i ndent Level parameter is not specified,
it defaults to * 0" , which makes sense for the top-level targets. As this template is instantiated
recursively, the level of indentation increases. The cur Nane variable is local to this template and
contains the current Ant target name. Lines of text are indented using a st y| e attribute:

<div style="text-indent: {$indentlLevel}em">

CSS is used to indent everything contained within the <di v> tag by the specified number of
emns.’l The value of the current target name is then printed using the appropriate indentation:

51 An emis approximately equal to the width of a lowercase letter "m" in the current font.

<xsl : val ue- of sel ect =" $cur Nane"/ >

If the current <t ar get > element in the Ant build file has a depends attribute, its dependencies
are printed next to the target name as part of the report. The par seDepends template handles
this task. This template, also part of Example 3-14, is instantiated using <xs| : cal | -

tenpl at e>, as shown here:

<xsl:if test="@epends">
<xsl :text> (depends on </xsl:text>
<xsl :cal |l -tenpl ate nane="par seDepends" >
<xsl : wi t h- param nane="depends" sel ect =" @lepends”/ >
</xsl:call-tenpl at e>
<xsl :text>)</xsl:text>
</xsl:if>

To continue with the dependency graph, the t ar get template must instantiate itself recursively.
Before doing this, the indentation must be increased. Since XSLT does not allow variables to be
modified, a new variable is created:

<xsl : vari abl e nane="next Level " sel ect ="$i ndent Level +1"/ >

When the template is recursively instantiated, next Level will be passed as the value for the
i ndent Level parameter:

<xsl:apply-tenpl ates select="." node="tree">
<xsl :w t h- param name="i ndent Level " sel ect =" $next Level "/ >
</ xsl:appl y-tenpl at es>

The remainder of the template is not duplicated here, but is emphasized in Example 3-14. The
basic algorithm is as follows:

Use <xsl : f or - each> to select all targets that have dependencies.
Instantiate the "fixDependency" template to replace commas with | characters.

Recursively instantiate the "target" template for all targets that depend on the current
target.

3.6.3.3 Cleaning up dependency lists
The final template in the Antdoc stylesheet is responsible for tokenizing a comma-separated list

of dependencies, inserting pipe (|) characters between each dependency:

<xsl :tenpl at e nanme="fi xDependency" >
<xsl| : param nane="depends"/ >

The depends parameter may contain text such as "a, b, c." The template tokenizes this text,
producing the following output:

| al b] c

Since XSLT does not have an equivalent to Java's St r i ngTokeni zer class, recursion is
required once again. The technique is to process the text before the first comma then recursively
process everything after the comma. The following code assigns everything before the first
commato the f i r st Token variable:

<xsl :vari abl e nane="first Token">
<xsl : choose>

<xsl : when test="contai ns($depends, ',"')">
<xsl : val ue- of
sel ect =" nornal i ze- space(substri ng-before($depends, ',"))"/>

</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of sel ect="nornal i ze-space($depends)"/>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>

If the depends parameter contains a comma, the substri ng- bef ore() function locates the
text before the comma, and nor nal i ze- space() trims whitespace. If no commas are found,
there must be only one dependency.

Next, any text after the first comma is assigned to the r enai ni ngTokens variable. If there are
no commas, the r errei ni ngTokens variable will contain an empty string:

<xsl : vari abl e name="r enai ni ngTokens"
sel ect ="normal i ze- space(substring-after($depends, ','))"/>

The template then outputs a pipe character followed by the value of the first token:

<xsl :text>| </ xsl:text>
<xsl :val ue-of sel ect="%first Token"/>

Next, if the r enai ni ngTokens variable is nonempty, the f i xDependency template is
instantiated recursively. Otherwise, another pipe character is output at the end:

<xsl : choose>
<xsl :when test="%renai ni ngTokens" >
<xsl :call -tenpl ate nanme="fi xDependency" >
<xsl :wi t h- par am nanme="depends" sel ect ="$r emai ni ngTokens"/ >
</xsl:call-tenpl at e>
</ xsl : when>
<xsl : ot herw se>
<xsl:text>| </ xsl:text>
</ xsl:otherw se>
</ xsl : choose>

Ideally, these descriptions will help clarify some of the more complex aspects of this stylesheet.
The only way to really learn how this all works is to experiment, changing parts of the XSLT
stylesheet and then viewing the results in a web browser. You should also make use of a
command-line XSLT processor and view the results in a text editor. This is important because
browsers may skip over tags they do not understand, so you might not see mistakes until you
view the source.

Chapter 4. Java-Based Web Technologies

In a perfect world, a single web development technology would be inexpensive, easy to maintain,
offer rapid response time, and be highly scalable. It would also be portable to any operating
system or hardware platform and would adapt well to future requirement changes. It would

support access from wireless devices, standalone client applications, and web browsers, all with
minimal changes to code.

No perfect solution exists, nor is one likely to exist anytime soon. If it did, many of us would be out
of work. A big part of software engineering is recognizing that tradeoffs are inevitable and
knowing when to sacrifice one set of goals in order to deliver the maximum value to your
customer or business. For example, far too many programmers focus on raw performance
metrics without any consideration for ease of development or maintainability by nonexperts.
These decisions are hard and are often subjective, based on individual experience and
preferences.

The goal of this chapter is to look at the highlights of several popular technologies for web
application development using Java and see how each measures up to an XSLT-based
approach. The focus is on architecture, which implies a high-level viewpoint without emphasis on
specific implementation details. Although XSLT offers a good balance between performance,
maintainability, and flexibility, it is not the right solution for all applications. It is hoped that the
comparisons made here will help you decide if XSLT is the right choice for your web applications.

4.1 Traditional Approaches

Before delving into more sophisticated options, let's step back and look at a few basic
approaches to web development using Java. For small web applications or moderately dynamic
web sites, these approaches may be sufficient. As you might suspect, however, none of these
approaches hold up as well as XML and XSLT when your sites get more complex.

4.1.1 CGlI

Common Gateway Interface (CGl) is a protocol for interfacing external applications, which can be
written in just about any language, with web servers. The most common language choices for
CGl are C and Perl. This interface is accomplished in a number of ways, depending on the type
of request. For example, parameters associated with an HTTP GET request are passed to the
CGl script via the QUERY STRI NG environment variable. HTTP POST data, on the other hand, is
piped to the standard input stream of the CGlI script. CGI always sends results back to the web
server via its standard output.

Ordinary CGI programs are invoked from the web server as external programs, which is the most
notable difference when compared with servlets. With each request from the browser, the web
server spawns a new process to run the CGI program. Aside from the obvious performance
penalty, this also makes it difficult to maintain state information between requests. A web-based
shopping cart is a perfect example of state information that must be preserved between requests.
Figure 4-1 illustrates the CGI process.

Figure 4-1. CGI process

Browsar Wah Servar

Y =

& D'“E"L_FL.. request J.

CGl
Program

1
response p 100]

FastCGl is an alternative to CGI with two notable differences.
w 4. First, FastCGI processes do not exit with each

“ request/response cycle. Second, the environment variable
and pipe I/0O mechanism of CGI has been eschewed in favor
of TCP connections, allowing FastCGI programs to be
distributed to different servers. The net result is that FastCGil
eliminates the most vexing problems of CGI while making it
easy to salvage existing CGI programs.

Although technically possible, using Java for CGI programming is not generally a good idea. In
fact, it is an awful idea! The Java Virtual Machine (JVM) would have to be launched with each
and every request, which would be painfully slow. Any Java programmer knows that application
startup time has never been one of the strengths of Java. Servlets had to address this issue first.
What was needed was a new approach in which the JVM was loaded a single time and left
running even when no requests came in. The term servlet engine referred to the JVM that hosted
the servlets, often serving a dual role as an HTTP web server.

4.1.2 Servlets as CGl Replacements

Sun's Java servlet APl was originally released way back in 1997 when Java was mostly a client-
side development language. Servlets were originally marketed and used as replacements for CGI
programs. Developers were quick to adopt servlets because of their advantages over CGl.

Since the servlet engine can run for as long as the web server runs, servlets can be loaded into
memory once and kept around for subsequent requests. This is easy to accomplish in Java
because servlets are really nothing more than Java classes. The JVM simply loads the servlet
objects into memory, hanging on to the references for as long as the web application runs.

The persistent nature of servlets results in two additional benefits, both of which push servlets
well beyond the capabilities of basic CGlI. First, state information can be preserved in memory for
long periods of time. Even though the browser loses its connection to the web server after each
request/response cycle, servlets can store objects in memory until the browser reconnects for the
next page. Secondly, since Java has built-in threading capability, it is possible for numerous
clients to share the same servlet instance. Creating additional threads is far more efficient than
spawning additional external processes, making servlets very good performers.

Early versions of the Java servlet API did not specify the mechanism for deployment (i.e.,
installation) onto servers. Although the servlet APl was consistent, deployment onto different
servlet engines was completely vendor specific. With Version 2.2 of the servlet API, however,
proprietary servlet engines were dropped in favor of a generic servlet container specification. The
idea of a container is to formalize the relationship between a servlet and the environment in which
it resides. This made it possible to deploy the same servlet on any vendor's container without any
changes.

Along with the servlet container came the concept of a web application. A web application
consists of a collection of servlets, static web pages, images, or any other resources that may be
needed. The standard unit of deployment for web applications is the Web Application Archive
(WAR) file, which is actually just a Java Application Archive (JAR) file that uses a standard
directory structure and has a .war file extension. In fact, you use the jar command to create WAR
files. Along with the WAR file comes a deployment descriptor, which is an XML configuration file
that specifies all configuration aspects of a web application. The important details of WAR files
and deployment descriptors will be outlined in Chapter 6.

Servlets are simple to implement, portable, can be deployed to any servlet container in a
consistent way, and offer high performance. Because of these advantages, servlets are the
underlying technology for every other approach discussed in this chapter. When used in isolation,
however, servlets do have limitations. These limitations manifest themselves as web applications
grow increasingly complex and web pages become more sophisticated.

The screen shot shown in Figure 4-2 shows a simple web page that lists television shows for
the current day. In this first implementation, a servlet is used. It will be followed with a JavaServer
Pages (JSP) implementation presented later in this chapter.

Figure 4-2. ScheduleServlet output

I Today's Shows - Netscape & =13
.|Ei|n Bdit View Search Go Bookmarks Tasks Help

i
L fy Home s My Netace

Today's Shows

Chanmel From T Tatle
{06:00 AM | 0B:00 AM | Weather

06:00 AM| 0730 AM)| Soap Cpera
DE00 AW 0620 AN Olymgpic Coverage
06:00 AW 0700 AW Pad Programming
|06:20 AM | 07:30 AM | Advanced Comguting
000 AR 0500 AN Baseball

0730 AM | 0930 AWM Stand ug Comedy
|07:30 AM | 0800 AM | Game Show
DE:00 AW 1000 AN Intemational Mewrs
0800 AN 0530 AM Stand uwp Comedy
{0800 AN 11:00 AM | Auto Bacme

=
[- P | R f | sl n £ | Wed | D

el

0530 AM 1130 AM | Entertaniment INews

| = eeeeeeeem— Doecunnant: Dond

AT

["Businass & Tech= Funa Interacts

The Schedul e Java class has a method called get TodaysShows(), that returns an array of
Show objects. The array is already sorted, which reduces the amount of work that the servlet has
to do to generate this page. The Schedul e and Show classes are used for all of the remaining
examples in this chapter. Ideally, this will help demonstrate that no matter which approach you
take, keeping business logic and database access code out of the servlet makes it easier to move
to new technologies without rewriting all of your code. The code for ScheduleServlet.java is
shown in Example 4-1. This is typical of a first-generation servlet, generating its output using a
series of printl n() statements.

Example 4-1. ScheduleServlet.java
package chap4;

i mport java.io.?*;

i mport java.text.Sinpl eDat eFormat;

i mport javax.servlet.*;
i nport javax.servlet.http.*;

public class Schedul eServl et extends HitpServlet {

public void doGet (Htt pServl et Request request,
Ht t pSer vl et Response response) throws | OExcepti on,
Servl et Exception {

Si mpl eDat eFor mat dat eFmt = new Si npl eDat eFor mat (" hh: rm a") ;
Show[] shows = Schedul e. get | nstance(). get TodaysShows();

response. set Content Type("text/htm ") ;
PrintWiter pw = response.getWiter();
pw. println("<htm ><head><titl e>Today's

Shows</titl e></ head><body>");
pw. println("<hl>Today's Shows</hl>");
pw.println("<table border=\"1\" cell paddi ng=\"3\"");
pw. println(" cellspacing=\"0\">");

pw. printl n("<tr><t h>Channel </t h><t h>Fronx/th>");
pw. println("<th>To</th><th>Title</th></tr>");

for (int i=0; i<shows.length; i++) {
pw. println("<tr>");
pw. print("<td>");
pw. print (shows[i].get Channel ());
pw. println("</td>");
pw. print("<td>");
pw. print(dateFnt.format (shows[i].getStartTime()));
pw.println("</td>");
pw. print("<td>");
pw. print(dateFnt.format (shows[i].getEndTime()));
pw. println("</td>");
pw. print("<td>");
pw. print(shows[i].getTitle());
pw.println("</td>");
pw. println("</tr>");
}
pw. println("</table>");
pw. println("</body>");
pw. println("</htm >");

}

If you are interested in the details of servlet coding, be sure to read Chapter 6. For now, focus
on how the HTML is generated. All of those pri nt | n() statements look innocuous enough in
this short example, but a "real" web page will have thousands of pri nt| n() statements,
resulting in code that is quite difficult to maintain over the years. Generally, you will want to factor
that code out into a series of methods or objects that generate fragments of the HTML. However,
this approach is still tedious and error prone.

The main problems are development scalability and future maintainability. The code becomes
increasingly difficult to write as your pages get more complex, and it becomes very difficult to
make changes to the HTML when new requirements arrive. Web content authors and graphic
designers are all but locked out of the process since it takes a programmer to create and modify
the code. Each minor change requires your programming staff to recompile, test, and deploy to
the servlet container.

Beyond the tedious nature of HTML generation, first-generation servlets tend to do too much. It is
not clear where error handling, form processing, business logic, and HTML generation are

supposed to reside. Although we are able to leverage two helper classes to generate the list of
shows, a more rigorous approach will be required for complex web applications. All of the
remaining technologies presented in this chapter are designed to address one or more of these
issues, which become increasingly important as web applications get more sophisticated.

4.1.3JSP

You have no doubt heard about JSP. This is a hot area in web development right now with some
pretty hefty claims about productivity improvements. The argument is simple: instead of
embedding HTML code into Java servlets, which requires a Java programmer, why not start out
with static HTML? Then add special tags to this HTML that are dynamically expanded by the JSP
engine, thus producing a dynamic web page. Example 4-2 contains a very simple example of
JSP that produces exactly the same output as Schedul eSer vl et .

Example 4-2. schedule.jsp

<%@ page i nmport="chap4.*,java.text.*" %
<% Si npl eDat eFor mat dat eFnt = new Si npl eDat eFor mat (" hh: m a"); %
<htm >

<head>

<title>Today's Shows</title>

</ head>
<body>
<h1>Today's Shows</ hl>
<% Show{] shows = Schedul e. get | nstance(). get TodaysShows(); %
<t abl e border="1" cell paddi ng="3" cel | spaci ng="0">

<t r ><t h>Channel </t h><t h>Fronx/t h><t h>To</t h><th>Titl e</th></tr>

<% for (int i=0; i<shows.length; i++) { %
<tr>
<td><% shows[i].get Channel () %</td>
<td><% dateFnt.format (shows[i].getStartTinme()) %</td>
<td><% dateFnt.format(shows[i].getEndTine()) %</td>
<td><% shows[i].getTitle() %</td>
</tr>
<%} %
</t abl e>
</ body>
</htm >

As schedule.jsp shows, most of the JSP is static HTML with dynamic content sprinkled in here
and there using special JSP tags. When a client first requests a JSP, the entire page is translated
into source code for a servlet. This generated servlet code is then compiled and loaded into
memory for use by subsequent requests. During the translation process, JSP tags are replaced
with dynamic content, so the end user only sees the HTML output as if the entire page was static.

Runtime performance of JSP is comparable to hand-coded servlets because the static content in
the JSP is generally replaced with a series of pri nt | n() statements in the generated servlet
code. The only major performance hit occurs for the first person to visit the JSP, because it will
have to be translated and compiled. Most JSP containers provide options to precompile the JSP,
so even this hit can be avoided.

Debugging in JSP can be somewhat challenging. Since JSP pages are machine translated into
Java classes, method signatures and class names are not always intuitive. When a programming
error occurs, you are often faced with ugly stack traces that show up directly in the browser. You
do have the option of specifying an error page to be displayed whenever an unexpected condition
occurs. This gives the end user a more friendly error message, but does little to help you
diagnose the problem.

Here is a portion of what Apache's Tomcat shows in the web browser when the closing curly
brace (}) is accidentally omitted from the loop shown in the JSP example:

A Servl et Exception Has Cccurred
or g. apache. j asper. Jasper Exception: Unable to conpile class for
JSP. . \wor k\ | ocal host\ chap4\ 0002f schedul e _0002ej spschedul e jsp_2.java: 10
4:
"catch' without "try'.
} catch (Throwable t) {
N

..\wor k\ | ocal host\ chap4\ _0002f schedul e_0002¢ej spschedul e_j sp_2.java: 112:
"try' without 'catch' or 'finally".

}

AN

..\wor k\ | ocal host\ chap4\ 0002f schedul e_0002ej spschedul e_jsp_2.java: 112:
"}' expected.

}

AN

3 errors

at org. apache. jasper.conpil er. Compil er.conpil e(Conpiler.java: 294)
at org.apache.jasper.servlet.JspServl et.doLoadJSP(JspServl et.java: 478)
...remai nder of stack trace omtted

The remainder of the stack trace is not very helpful because it simply lists methods that are
internal to Tomcat. 0002f schedul e 0002e] spschedul e | sp_ 2 is the name of the Java
servlet class that was generated. The line numbers refer to positions in this generated code,
rather than in the JSP itself.

Embedding HTML directly into servlets is not appealing because it requires a programmer to
maintain. With JSP, you often embed Java code into HTML. Although the embedding is reversed,
you still have not cleanly separated HTML generation and programming logic. Think about the
problems you encounter when the validation logic in a JSP goes beyond a simple one-page
example. Do you really want hundreds of lines of Java code sprinkled throughout your HTML,
surrounded by those pretty <% %> tags? Unfortunately, far too many JSP pages have a
substantial amount of Java code embedded directly in the HTML.

The first few iterations of JSP did not offer bulletproof approaches for separating Java code from
the HTML. Although JavaBeans tags were offered in an attempt to remove some Java code, the
level of sophistication was quite limited. These tags allow JSPs to interact with helper classes
written according to Sun's JavaBeans API (http://java.sun.com/products/javabeans).
Recent trends in the JSP specification have made substantial improvements. The big push right
now is for custom tags,™ which finally allow you to remove the Java code from your pages. A web
page with custom tags may look like Example 4-3.

1 Technically, programmers create custom actions, which are invoked u sing custom JSP tags.

Example 4-3. JSP with custom tags

<v@taglib uri="/ny_taglib" prefix="abc" %
<htm >
<head>
<title>JSP Tag Library Denonstration</title>
</ head>
<body>

<abc: st andar dHeader/ >

<abc: conpanylLogo/ >

<hl>Recent Announcenents</hl>
<abc: announcenents filter="recent"/>

<h1>Job Openi ngs</ hl>
<abc:j obOpeni ngs departnent="hr"/>
<abc: st andar dFoot er/ >

</ body>

</htm >

As you can see, custom tags look like normal XML tags with a namespace prefix . Namespace
prefixes are used to give XML tags uniqgue names. Because you select the prefix for each tag
library, you can use libraries from many different vendors without fear of naming conflicts. These
tags are mapped to Java classes called tag handlers that are responsible for the actual work. In
fact, the JSP specification does not limit the underlying implementation to Java, so other
languages can be used if the JSP container supports it. Using the custom tag approach,
programmers in your company can produce a set of approved tags for creating corporate logos,
search boxes, navigation bars, and page footers. Nonprogrammers can focus on HTML layout,
oblivious to the underlying tag handler code. The main drawback to this approach is the current
lack of standard tags. Although several open source projects are underway to develop custom tag
libraries, it is unlikely that you will be able to find an existing custom tag for every requirement.

One persistent problem with a pure JSP approach is that of complex validation. Although JSP
with custom tags can be an ideal approach for displaying pages, the approach falls apart when a
JSP is used to validate the input from a complex HTML form. In this situation, it is almost
inevitable that Java code -- perhaps a lot of it -- will creep into the page. This is where a hybrid
approach (JSP and servlets), which will be covered in the next section, is desirable.

Compared with an XML/XSLT approach, JSP requires a lot more effort to cleanly separate
presentation from the underlying data and programming logic. For web sites that are mostly
static, JSP can be easy for nonprogrammers to create, since they work directly in HTML. When
dynamic content becomes more prevalent, your options are to embed lots of Java code into the
JSP, create custom tags, or perhaps write Java beans that output fragments of HTML.
Embedding code into the JSP is not desirable because of the ugly syntax and maintenance
difficulties. The other approaches do hide code from the JSP author, but some part of your web
application (to be consistent) is still cranking out HTML from Java code, either in custom tags or
JavaBeans components. This still raises serious questions about the ability to make quick
changes to your HTML without recompiling and deploying your Java code.

Another weakness of JSPs in comparison with XML and XSLT becomes obvious when you try to
test your web application. With JSP, it is virtually impossible to test your code outside the bounds
of a web browser and servlet container. In order to write a simple automated unit test against a
JSP, you have to start a web server and invoke your JSPs via HTTP requests. With XML and
XSLT, on the other hand, you can programmatically generate the XML data without a web
browser or server. This XML can then be validated against a DTD or schema. You can also test
the XSLT stylesheets using command-line tools without deploying to a servlet container or
starting a web server. The result of the transformation can even be validated again with a DTD if
you use XHTML instead of HTML.

4.1.4 Template Engines

Before moving on, let's discuss template engines. A quick search on the Internet reveals that
template engines are abundant, each claiming to be better than JSP for various reasons. For the
most part, template engines have a lot in common with JSP, particularly if you restrict yourself to
custom tags. There are some differences, however:

Template engines typically forbid you from embedding Java code into pages. Although
JSP allows Java code along with HTML, it is not considered good form.

Most template engines are not compiled, so they do not have the same problems that
JSP has with error messages. They also start up faster on the first invocation, which can
make development easier. The effect on end users is minimal. From a deployment
perspective, you do not need a Java compiler on the web server as you do with JSP.

Template engines come with an existing library of tags or simple scripting languages.
JSP does not provide any standard tags, although numerous libraries are available from
other vendors and open source projects. The JSP API is open, so you can create your
own custom tags with a fair amount of effort. Template engines have their own unique
mechanisms for integrating with underlying Java code.

JSP has the backing of Sun and is pretty much available out of the box on any servlet
container. The main benefit of a "standard" is the wide availability of documentation,
knowledgeable people, and examples. There are many implementations of JSP to
choose from.

4.1.5 The Hybrid Approach

Since JSP now has custom tags, you can remove (hide, actually) all of the Java code when
“rendering," or generating a page to send to the browser. When a complex HTML form is posted
to the JSP, however, you still have problems. You must verify that all fields are present, verify that
the data is within bounds, and clean up the data by checking for null values and trimming all
strings. Validation is not particularly difficult, but it can be tedious and requires a lot of custom
code. You do not want to embed that code directly into a JSP because of the debugging and
maintenance issues.

The solution is a hybrid approach, in which a servlet works in conjunction with a JSP. The servlet
API has a nice class called Request Di spat cher that allows server-side forwarding and
including. This is the normal mechanism for interaction between the servlet and JSP. Figure 4-3
illustrates this design at a high level.

Figure 4-3. Hybrid JSP/servlet approach
validates request

Browser el Tier
R = : -

£ ORELLY _ Serviet —l

RequestDispatcher

JSP 4—'

TEMIErS resmonss

This approach combines the best features of servlets with the best features of JSPs. The arrows
indicate the flow of control whenever the browser issues a request. The job of the servlet is to
intercept the request, validate that the form data is correct, and delegate control to an appropriate
JSP. Delegation occurs via | avax. ser vl et . Request Di spat cher , which is a standard part of
the servlet API. The JSP simply renders the page, ideally using custom tags and no Java code
mixed with the HTML.

The main issue with this approach becomes evident when your web site begins to grow beyond a
few pages. You must make a decision between one large servlet that intercepts all requests, a

separate servlet per page, or helper classes responsible for processing individual pages. This is
not a difficult technological challenge, but rather a problem of organization and consistency. This
is where web frameworks can lend a helping hand.

4.2 The Universal Design

Despite the proliferation of APIs, frameworks, and template engines, most web application
approaches seem to be consolidating around the idea of model-view-controller (MVC). Clean
separation between data, presentation, and programming logic is a key goal of this design. Most
web frameworks implement this pattern, and the hybrid approach of JSP and servlets follows it.
XSLT implementations also use this pattern, which leads to the conclusion that model-view-
controller is truly a universal approach to development on the web tier.

4.2.1 Web Frameworks

A framework is a value-added class library that makes it easier to develop certain types of
applications. For example, an imaging framework may contain APIs for reading, writing, and
displaying several image formats. This makes it much easier to build applications because
someone else already figured out how to structure your application.

Servlet frameworks are no different. Now that servlets, JSP, and hybrid approaches have been
available for a few years, common architectural patterns are emerging as "best practices." These
include separation of Java code and HTML generation, using servlets in conjunction with JSP,
and other variations. Once basic patterns and themes are understood, it becomes desirable to
write common frameworks that automate the mundane tasks of building web applications.

The most important tradeoff you make when selecting a framework is vendor lock-in versus open
standards. At this time, there are no open standards for frameworks. Although there are
numerous open source frameworks, none is backed by a standards organization or even Sun's
Java Community Process. The low-level servlet and JSP APIs are very well defined and widely
implemented Java standard extensions. But a framework can offer much more sophisticated
features such as enhanced error checking, database connection pooling, custom tag libraries,
and other value-added features. As you add more framework-specific features, however, your
flexibility to choose another framework or vendor quickly diminishes.

One typical framework is Turbine, which is one of many different frameworks supported by
Apache. Turbine is a large framework with many value-added features including:

Database connection pooling, integration with object to relational mapping tools, and
relational database abstractions

Integration with numerous template engines
Role-based security and access control lists
Web browser detection

Integration with JavaMalil

This is only a short list of Turbine's features. At its core, however, the compelling reason to use a
framework like Turbine is the underlying object model. The fundamental approach of Turbine is to
cleanly separate validation logic, the servlet itself, and page rendering into distinctly different
modules. In fact, Turbine uses a single servlet, so your validation and rendering logic have to go
elsewhere. The approach is to define helper classes called actions, which are responsible for
validation of incoming requests. Once an action has validated the inbound request, other classes
such as Layout , Page, and Navi gat i on are responsible for rendering a view back to the
browser.

When compared to a pure XML/XSLT approach, frameworks have the advantage of value-added
features. If you remove all of the non-web features, such as database connection pooling and
object-to-relational mapping tools, you will see that the underlying modelview-controller
architecture is very easy to implement. You should be wary of any framework that provides too
much non-web-related functionality because many of these features should be placed on the
application server instead of the web server anyway. The remainder of this chapter is devoted to
showing you how to structure a complex web application without committing yourself to a specific
framework.

4.2.2 Model-View-Controller

Cleanly separating data and presentation logic is important. What exactly are the benefits? First
and foremost, when data is completely isolated from the user interface, changes can be made to
the visual appearance of an application without affecting the underlying data. This is particularly
important in web applications that have to support multiple incompatible browsers or even WML,
XHTML Basic, or HTML. It is much harder to adapt to new user interface requirements when data
and presentation are mixed.

Programming logic should also be separated from data and presentation logic. To a certain
extent, programming logic must depend in part on both data and presentation. But you can
generally isolate business logic, which depends on the data, and presentation logic, which
depends on the user interface. Figure 4-4 illustrates these dependencies.

Figure 4-4. Dependencies

User Interface

I

Presentation Logic

Y

Business Logic

Data

The arrows indicate dependencies. For example, if your underlying data changes, then the
business logic will probably have to change. However, that does not always flow up and break
your presentation logic. In general, if changes are sweeping, it is hard to avoid affecting upper
layers, but minor changes can almost always be encapsulated. If the implementation of your
business logic changes, however, there is no reason to change the underlying data. Likewise,
you should be able to make changes to the presentation logic without breaking the business
logic. Later in this chapter, we will see how Java, XML, and XSLT can be utilized to satisfy these
dependencies.

The dominant pattern in scalable web sites is model-view-controller. The MVC pattern originated
with Smalltalk-80 as a way to develop graphical user interfaces in an object-oriented way. The
basics are simple. GUI components represent the view and are responsible for displaying visual
information to the user. The model contains application data. The controller is responsible for
coordinating between the model and the view. It intercepts events from the view components,
gueries the model for its current state, makes modifications to the model, and notifies the view of
changes to the model. Figure 4-5 illustrates the interaction between these three components.

Figure 4-5. Model-view-controller

View “ Model
Confrolier
ConcreteView | ConcreteController ———=+| ConcrefeModel
M

As shown, the Model , Vi ew, and Cont r ol | er are either abstract classes or interfaces. The
concrete classes are application-specific, and the open arrows indicate the direction of
association between the various classes. For example, the abstract Model sends notifications
only to the abstract Vi ew, but Concr et eVi ew knows about its Concr et eVbdel . This makes
sense when you consider how hard it would be to create a specific view, such as a customer
editor panel, without knowledge of a specific data model like Cust oner . Since the Model only
knows about Vi ew instances in an abstract way, however, it can send generic notifications when
it changes, allowing new views to be attached later.

It is important to remember that this is just a pattern; specific implementations may vary
somewhat and use different class names. One variation is to eliminate the explicit references
from Concr et eVi ewto Concr et eModel and from Model to Vi ew. In this approach, the
Cont r ol | er would take a more prevalent role. A common theme in Java is to remove the
explicit controller using data models and view components that send notifications to event
listeners. Although typically thought of in terms of GUI applications, the MVC architecture is not
limited to this domain. For web applications, it is commonly used in:

The hybrid servlet + JSP approach
Most servlet frameworks
The XSLT approach

In the hybrid approach, the servlet is the controller and the JSP is the view. It is assumed that the
data will be retrieved from a database or Enterprise JavaBeans (EJB) components, which act as
the model. A good framework may make the distinction between model, view, and controller more
explicit. Instead of using the servlet as a controller, a common pattern is to use a single servlet
that delegates work to helper classes that act as controllers. Each of these classes is equivalent
to ConcreteControl | er in Figure 4-5 and has knowledge of specific web pages and data.

Although originally intended for Smalltalk GUIs, MVC has always been one of the most frequently
used patterns in all sorts of GUIs, from Motif to Java. On the web, MVC is also prevalent,
although a few mechanics are slightly different. In a web environment, we are restricted to the
HTTP protocol, which is stateless . With each click of a hyperlink, the browser must establish a
new connection to the web server. Once the page has been delivered, the connection is broken.
It is impossible for the server to initiate a conversation with the client, so the server merely waits
until the next request arrives.

Implementing MVC in this stateless architecture results in looser coupling between the controller
and the view. In a GUI environment, the controller immediately notifies the view of any changes to
the underlying model. In a web environment, the controller must maintain state information as it
waits for the browser to make another request. As each browser request arrives, it is the
controller's job to validate the request and forward commands on to the model. The controller
then sends the results back to the view.

This may all sound academic and vague at this point. The next few sections will present much
more detailed diagrams that show exactly how MVC is implemented for an XSLT-driven web site.

4.2.3 XSLT Implementation

All of the approaches presented up to this point are, of course, building up to the XSLT approach.
In many respects, the XSLT approach is simultaneously the most powerful and the easiest to
understand. For a single web page, the XSLT approach is probably harder than a servlet or JSP
to configure. Configuration of the XML parser and XSLT processor can be quite difficult, mostly
due to CLASSPATH issues.?! But as the complexity of a web application increases, the benefits
of using XSLT become obvious. Figuring out how to tackle these complex web applications is the
real goal of this chapter.

[21 This can be a frustrating experience when the servlet container comes with an older XML parser that
uses DOM or SAX Version 1. Most XSLT processors require Version 2 parsers.

The XSLT approach maps fairly directly to the MVC pattern. The XML represents the model, the
servlet represents the controller, and the XSLT produces HTML, which represents the view. The
XSLT stylesheets may contain a minimal amount of logic, potentially blurring the line between
view and controller. Figure 4-6 represents a conceptual view of how the XSLT approach maps
to MVC.

Figure 4-6. XSLT conceptual model

request Serviel
| {Controller)
HTML response XML
{view) pmlﬁLT {Model) 7
Fessgy
T— XSLT Stylesheels
(View) ol

One weakness common to every approach other than XSLT is the HTML-centric viewpoint. In
every example presented thus far, it was assumed that we generated HTML. What happens
when the requirement to support cellular phones arises? It is very likely that these devices will not
use HTML. Instead, they will use WML, XHTML Basic, or some other technology that has not
been invented yet. For now, consider that you would have to write brand new servlets or JSPs to
support these devices when using traditional approaches. Any programming logic embedded into
JSP pages would be duplicated or would have to be factored out into common helper classes. In
a pure servlet approach, the hardcoded HTML generation logic would have to be completely
rewritten.

XSLT offers an elegant solution -- simply create a second stylesheet. Instead of transforming
XML into HTML, this new stylesheet transforms XML into WML. You can even support different
web browsers with the XSLT approach. Again, just write different stylesheets for browser-specific
functions. Since XSLT stylesheets can import and include functionality from other stylesheets,
much of the code can be shared and reused across a project.

Regardless of what your XSLT will produce, start by producing the XML. For the schedule web
application, the XML is dynamic and must be programmatically generated. JDOM code is shown
in Example 4-4, which produces the XML necessary to create the schedule web page.
Example 4-4. ScheduleJDOM.java

package chap4;

i mport java.text.Sinpl eDat eFor nmat ;
i mport org.jdom*;
i mport org.jdom output.*;

/**
* Produces a JDOM Docunent for a tv schedul e.
*/
public class Schedul eJDOM {
private SinpleDateFornmat dateFnt = new Sinpl eDat eFormat ("hh: mm a");

/7\'*
* Sinple main() nmethod for printing the XM_ docunent to
System out,
* useful for testing.
*/
public static void main(String[] args) throws Exception {
Docunment doc = new Schedul eJDOV) . get TodaysShows();

new XM.CQut putter(" ", true, "UTF-8").output(doc, System out);
}
/7\'*
* @eturn a new JDOM Docunent for all TV shows schedul ed for today.
*/

publ i c Docunment get TodaysShows() {
Schedul e sched = Schedul e. getlnstance();
Show{] shows = sched. get TodaysShows();

El enent root El em = new El enent ("schedul e");

for (int i=0; i<shows.length; i++) {
root El em addCont ent (cr eat eShowEl enent (shows[i]));

}
return new Docunent (r oot El en;
}
/7\'*
* A hel per nmethod to convert a Show object into a JDOM El enent .
*/

public El ement createShowEl ement (Show show) {
El enent e = new El enent ("show');
e. addCont ent (new El emrent (" channel ") . set Text (
I nteger.toString(show get Channel ())));
e. addCont ent (new El enent ("fronm'). set Text (
this.dateFnt.format (show getStartTime())));
e. addCont ent (new El emrent ("t 0") . set Text (
this.dateFnt.format (show getEndTime())));
e.addContent (new El enent ("title").set Text(show.getTitle()));
return e;

}

You might be wondering why this JDOM code is that much better than the servlet code, which
also used Java to programmatically produce output. The difference is fundamental and important.
With this JDOM example, pri nt| n() statements are not used. Instead, a data structure
representing the television schedule is created. By virtue of the JDOM API, the data structure is

guaranteed to produce well-formed XML. We could very easily add a DTD, writing a unit test that
validates the integrity of the generated data structure.

In addition to ensuring the integrity of the data, the JDOM code will typically be much smaller than
the servlet or JSP code. In this basic web page, the servlet and JSP were quite small because
the HTML did not contain any significant formatting or layout. In a real-world web page, however,
the servlet and JSP will continue to grow in complexity as the HTML layout gets more
sophisticated, while the JDOM code remains exactly the same.

Although the XSLT stylesheet will get larger as the HTML gets more complex, this is arguably
less of a problem because the presentation logic is completely separated from the underlying
XML data. Once fully tested, the XSLT can be deployed to the web server without recompiling the
Java code or restarting the servlet. The XML data produced by JDOM is shown in Example 4-5.

Example 4-5. XML for schedule web page

<?xm version="1.0" encodi ng="UTF-8""?>
<?xm -styl esheet type="text/xsl" href="schedul e. xslt"?>
<schedul e>
<show>
<channel >2</ channel >
<fromr06: 00 ANK/fronp
<t 0>06: 30 AMKk/t 0>
<title>Basebal | </title>
</ show>
<show>
<channel >3</ channel >
<fronp06: 00 ANK/ fromp
<t 0>08: 00 AMK/t 0>
<title>Stand up Conmedy</title>
</ show>
...remaining XML om tted
</ schedul e>

The stylesheet that produces the exact same output as the JSP and servlet is listed in Example
4-6.

Example 4-6. schedule.xslt

<?xm version="1.0" encodi ng="UTF-8""?>

<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="htm "/ >

<l -- ========== Produce the HTM. Docunent ========== -->
<xsl:tenplate match="/">
<htm >
<head><titl e>Today's Shows</titl e></head>
<body>

<hl1l>Today's Shows</hl>
<tabl e cel | paddi ng="3" border="1" cel |l spaci ng="0">
<tr>
<t h>Channel </t h>
<t h>Fronx/t h>
<t h>To</t h>
<th>Titl e</th>
</[tr>

<l-- ===== select the shows ===== -->
<xsl : appl y-tenpl at es sel ect ="schedul e/ show'/ >

</ tabl e>
</ body>
</htnl >
</ xsl:tenpl at e>
<l-- ======== Display each show as a rowin the tabl e ======== -->
<xsl :tenpl ate mat ch="show'>
<tr>

<t d><xsl : val ue-of sel ect ="channel "/ ></td>
<t d><xsl : val ue-of select="fronl/></td>
<t d><xsl : val ue-of select="to"/></td>
<t d><xsl : val ue-of select="title"/></td>
</[tr>
</ xsl:tenpl at e>
</ xsl : styl esheet >

The remaining piece of the puzzle is to write a servlet that combines all of these pieces and
delivers the result of the XSLT transformation to the client (see Chapter 6). In a nutshell, the
servlet acts as a controller between the various components, doing very little of the actual work.
The client request is intercepted by the servlet, which tells Schedul eJDOVIto produce the XML
data. This XML is then fed into an XSLT processor such as Xalan, along with schedule.xslt.
Finally, the output is sent to the browser as HTML, XHTML, WML, or some other format.

Another interesting option made possible by this architecture
phy . is allowing the client to request raw XML without any kind of

XSLT transformation. This allows your web site to support
nonbrowser clients that wish to extract meaningful business
data in a portable way.

We examined the weaknesses of other approaches, so it is only fair to take a critical look at the
XSLT approach. First, XSLT is a new language that developers or web content authors have to
learn. Although the syntax is strange, it can be argued that XSLT is easier to learn than a
sophisticated programming language like Java. There is resistance on this front, however, which
is typical of a new technology that is unfamiliar.

The second potential weakness of the XSLT approach is runtime performance. There is a
performance penalty associated with XSLT transformation. Fortunately, there are numerous
optimizations that can be applied. The most common involves the caching of stylesheets so they
do not have to be parsed with each request. This and other techniques for optimization will be
covered in later chapters.

Since XSLT stylesheets are actually XML documents, any available XML editor will work for
XSLT. But eventually we should see more and more specialized XSLT editors that hide some of
the implementation details for nonprogrammers. As with first-generation Java GUI builders, these
early tools may not generate stylesheets as cleanly as a handcoded effort.

4.2.4 Development and Maintenance Benefits of XSLT
As mentioned earlier, testing JSPs can be difficult. Since they can be executed only within a JSP

container, automated unit tests must start a web server and invoke the JSP via HTTP requests in
order to test their output. The XSLT-based web approach does not suffer from this problem.

Referring back to Figure 4-6, you can see that the data model in an XSLT web application is
represented as XML. This XML is generated independently of the servlet container, so a unit test
can simply create the XML and validate it against a DTD or XML Schema. Tools such as XML
Spy make it easy to create XSLT stylesheets and test them interactively against sample XML files
long before they are ever deployed to a servlet container. XML Spy is available from
http://www.xmlspy.com. If you are looking for alternatives, a directory of XML tools can be
found at http://www.xmlsoftware.com.

The XSLT processor is another piece of the puzzle that is not tied to the servlet in any way.
Because the processor is an independent component, additional unit tests can perform
transformations by applying the XSLT stylesheets to the XML data, again without any interference
from a web server or servlet container. If your stylesheets produce XHTML instead of HTML, the
output can be easily validated against one of the W3C DTDs for XHTML. JUnit, an open source
unit-testing tool, can be used for all of these tests. It can be downloaded from
http://www.junit.org.

4.3 XSLT and EJB

Now that the options for web tier development have been examined, let's look at how the web tier
interacts with other tiers in large enterprise class systems. A typical EJB architecture involves a
thin browser client, a servlet-driven web tier, and EJB on an application server tier. Figure 4-7
expands upon the conceptual XSLT model presented earlier.

Figure 4-7. XSLT and EJB architecture

Presentation logic

—»| Serviet —» | RequestHandier > H"“"Eﬁ;;'““ic
clisnt
Husingss data
| Data .
-+ Object
_F“LT XML
rl]t“'u
F , L
Praspmiation dala
XSLT Oata

This diagram is much closer to the true physical model of a multitier web application that uses
XSLT. The arrows indicate the overall flow of a single request, originating with the client. This
client is typically a web browser, but it could be a cell phone or some other device. The client
request goes to a single servlet and is handed off to something called Request Handl er . In the
pattern outlined here, you create numerous subclasses of Request Handl er . Each subclass is
responsible for validation and presentation logic for a small set of related functions. One
manageable strategy is to design one subclass of Request Handl er for each web page in the
application. Another approach is to create fine-grained request handlers that handle one specific
task, which can be beneficial if the same piece of functionality is invoked from many different
screens in your application.

The request handler interacts with the application server via EJB components. The normal
pattern is to execute commands on session beans, which in turn get their data from entity beans.
The internal behavior of the EJB layer is irrelevant to the web tier, however. Once the EJB

method call is complete, one or more "data objects" are returned to the web tier. From this point,
the data object must be converted to XML.

The conversion to XML can be handled in a few different ways. One common approach is to write
methods in the data objects themselves that know how to generate a fragment of XML, or
perhaps an entire document. Another approach is to write an XML adapter class for each data
object. Instead of embedding the XML generation code into the data object, the adapter class
generates the XML. This approach has the advantage of keeping the data objects lightweight and
clean, but it does result in additional classes to write. In either approach, it is preferable to return
XML as a DOM or JDOM tree, rather than raw XML text. If the XML is returned as raw text, it will
have to be parsed right back into memory by the XSLT processor. Returning the XML as a data
structure allows the tree to be passed directly to the XSLT processor without the additional
parsing step.

Yet another approach is to return XML directly from the EJB components, thus eliminating the
intermediate data objects. Chapter 9 will examine this in detail, primarily from a performance
perspective. The main drawback to consider is that XML tends to be very verbose. Sending large-
text XML files from the application server to the web server may be less efficient than sending
serialized Java objects. You could compress the data, but that would add processor overhead for
compression and decompression.

Regardless of how the XML is generated, the final step shown in Figure 4-7 is to pass the XML
and stylesheet to the XSLT processor for transformation. The result tree is sent directly to the
client, thus fulfilling the request. If the client is a browser, the XSLT stylesheet will probably
transform the XML into HTML or XHTML. For a nonbrowser client, however, it is conceivable that
the XML data is delivered directly without any XSLT transformation.

4.3.1 Tradeoffs

Scalability is a key motivation for a multitier EJB architecture. In such an architecture, each tier
can execute on a different machine. Additional performance gains are possible when multiple
servers are clustered on each tier. Another motivating factor is reliability. If one machine fails, a
redundant machine can continue processing. When updates are made, new versions of software
can be deployed to one machine at a time, preventing long outages. Security is improved by
strictly regulating access to the data tier via EJB components.

Yet another motivation for a distributed system is simplicity, although a basic EJB application is
far more complex than a simple two-tier application. Yes, distributed systems are complex, but for
highly complex applications this approach simplifies your work by dividing independent tasks
across tiers. One group of programmers can work on the EJB components, while another works
on the request handler classes on the web tier. Yet another group of designers can work on XML
and XSLT, while your database expert focuses on the database.

For simple applications, a multitier EJB approach is overkill and will likely harm performance. If
your web site serves only a few hundred visitors per day, then eliminating EJB could be much
faster because there is no additional application tier to hop through.=!

[31 Keep in mind that other benefits of EJB, such as security, will be lost.

4.4 Summary of Key Approaches

If separation of HTML from Java code is a goal, then neither a pure servlet nor a pure JSP
approach is desirable. Although a hybrid approach does allow a clean separation, you may have
to create custom JSP tags to take full advantage of this capability. This approach does not
support WML output unless you duplicate all of the HTML generation code. Even though the
custom JSP tags hide the Java code from the page author, you still end up with Java code
somewhere producing HTML programmatically.

Web frameworks typically build on the hybrid approach, including proprietary value-added
features and conveniences. Frameworks have the advantage of defining a consistent way to
structure the overall application, which is probably more important in terms of software
maintenance than any value-added features. The primary disadvantage of frameworks is that you
could be locked into a particular approach and vendor.

The XSLT approach achieves the maximum attainable separation of presentation from underlying
data. It also supports multiple browsers and even WML targets. XSLT transformation does incur
additional processing load on the web tier. This must be carefully weighed against benefits
gained from the modular, clean design that XSLT offers.

Table 4-1 summarizes the strengths and weaknesses of different approaches to Web
application development.

Table 4-1. Different web technologies

Technology

Strengths

Weaknesses

Pure servlet

Fastest runtime performance.

Changes to HTML require Java
code changes. Hard to maintain
complex pages. No separation of
data, logic, and presentation.

Best for pages that are mostly display-only,

Does not enforce separation of
Java code and HTML. Not good for

Pure JSP static HTML with small amounts of dynamic |validation of incoming requests.
content. Fast runtime performance. Requires deployment to web server
for development and testing.
Allows greater separation between Java code Still requires o!eployment to web
N " server for testing and development.
. and HTML than "pure" servlet or JSP
Hybrid LU . Does not force programmers to
approaches. More modular design is easier to
servlet/JSP e . . keep code out of JSPs. Cannot
maintain for large projects. Fast runtime ltiole client devi
erformance target multiple client device types
P ' as effectively as XSLT.
Maximum separation between data,
programming logic, and presentation. XML Slowest runtime performance.™ For
and XSLT can be developed and tested pages that are mostly static HTML,
XSLT outside of the web server. Maximum XSLT might be harder to write than

modularity improves maintainability. Easy to
target multiple client devices and languages
via different XSLT stylesheets.

JSP. Requires an extra step to
generate XML.

1 Once more browsers support XSLT transformation, the server load wil | be greatly reduced.

Chapter 5. XSLT Processingwith Java

Since many of the XSLT processors are written in Java, they can be directly invoked from a Java
application or servlet. Embedding the processor into a Java application is generally a matter of
including one or two JAR files on the CLASSPATH and then invoking the appropriate methods.
This chapter shows how to do this, along with a whole host of other programming techniques.

When invoked from the command line, an XSLT processor such as Xalan expects the location of
an XML file and an XSLT stylesheet to be passed as parameters. The two files are then parsed

into memory using an XML parser such as Xerces or Crimson, and the transformation is
performed. But when the XSLT processor is invoked programmatically, you are not limited to
using static files. Instead, you can send a precompiled stylesheet and a dynamically generated
DOM tree directly to the processor, or even fire SAX events as processor input. A major goal is to
eliminate the overhead of parsing, which can dramatically improve performance.

This chapter is devoted to Java and XSLT programming techniques that work for both standalone
applications as well as servlets, with a particular emphasis on Sun's Java API for XML
Processing (JAXP) API. In Chapter 6, we will apply these techniques to servlets, taking into
account issues such as concurrency, deployment, and performance.

5.1 A Simple Example

Let's start with perhaps the simplest program that can be written. For this task, we will write a
simple Java program that transforms a static XML data file into HTML using an XSLT stylesheet.
The key benefit of beginning with a simple program is that it isolates problems with your
development environment, particularly CLASSPATH issues, before you move on to more
complex tasks.

Two versions of our Java program will be written, one for Xalan and another for SAXON. A JAXP
implementation will follow in the next section, showing how the same code can be utilized for
many different processors.

CLASSPATH Problems

CLASSPATH problems are a common culprit when your code is not
working, particularly with XML-related APIs. Since so many tools now
use XML, it is very likely that a few different DOM and SAX
implementations reside on your system. Before trying any of the
examples in this chapter, you may want to verify that older parsers are
not listed on your CLASSPATH.

More subtle problems can occur if an older library resides in the Java 2
optional packages directory. Any JAR file found in the jre/lib/ext directory
is automatically available to the JVM without being added to the
CLASSPATH. You should look for files such as jaxp.jar and parser.jar,
which could contain older, incompatible XML APIs. If you experience
problems, remove all JAR files from the optional packages directory.

Unfortunately, you will have to do some detective work to figure out
where the JAR files came from. Although Java 2 Version 1.3 introduced
enhanced JAR features that included versioning information, most of the
JAR files you encounter probably will not utilize this capability.

5.1.1 The Design

The design of this application is pretty simple. A single class contains anai n() method that
performs the transformation. The application requires two arguments: the XML file name followed
by the XSLT file name. The results of the transformation are simply written to Syst em out . We
will use the following XML data for our example:

<?xm version="1.0" encodi ng="UTF-8""?>
<nmessage>Yep, it worked! </ nessage>

The following XSLT stylesheet will be used. It's output method ist ext , and it simply prints out
the contents of the <nessage> element. In this case, the text will be Yep, it worked!.

<?xm version="1.0" encodi ng="UTF-8"?>
<xsl :styl esheet
version="1.0"
xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :output nethod="text" encodi ng="UTF-8"/>

<l-- sinply copy the nessage to the result tree -->
<xsl:tenplate match="/">
<xsl : val ue- of sel ect ="nessage"/>
</ xsl:tenpl at e>
</ xsl : styl esheet >

Since the filenames are passed as command-line parameters, the application can be used with
other XML and XSLT files. You might want to try this out with one of the president examples from

Chapter 2 and 3.
5.1.2 Xalan 1 Implementation

The complete code for the Xalan implementation is listed in Example 5-1. As comments in the
code indicate, this code was developed and tested using Xalan 1.2.2, which is not the most
recent XSLT processor from Apache. Fully qualified Java class names, such as

org. apache. xal an. xsl t. XSLTProcessor , are used for all Xalan-specific code.

Py} . .
oy A Xalan 2 example is not shown here because Xalan 2 is

" 4. compatible with Sun's JAXP. The JAXP version of this
" program works with Xalan 2, as well as any other JAXP
compatible processor.

o
L1

™
= I

Example 5-1. SimpleXalanl.java
package chapb5;

i mport java.io.?*;

i mport java. net. Mal f ornredURLExcepti on;
i mport java. net. URL;

i mport org.xm .sax. SAXExcepti on;

/**

* A sinple denb of Xalan 1. This code was originally witten using
* Xalan 1.2.2. It will not work with Xalan 2.

*/

public class SinpleXalanl {

/**

* Accept two conmand |ine argunents: the nane of an XM. file, and
* the nanme of an XSLT stylesheet. The result of the transformation
* is witten to stdout.

*/

public static void main(String[] args)

t hrows Mal f or mredURLExcepti on, SAXException {
if (args.length !'= 2) {

Systemerr.println("Usage:");
Systemerr.println(" java " + SinpleXalanl. cl ass. get Namg(

+ " xml Fi |l eNane xsltFileNane");
Systemexit(1l);
}

String xm Fil eNanme = args[0];

String xsltFileName = args[1];
String xm System d = new

File(xm Fil eNane).toURL().toExternal Forn();
String xsltSystemd = new

File(xsltFileNane).toURL().toExternal Forn();

or g. apache. xal an. xsl t. XSLTProcessor processor =
org. apache. xal an. xslt. XSLTPr ocessor Fact ory. get Processor (

or g. apache. xal an. xsl t. XSLTI nput Sour ce xml | nput Source =
new or g. apache. xal an. xsl t. XSLTI nput Sour ce(xm System d);

or g. apache. xal an. xsl t. XSLTI nput Sour ce xslt| nput Source =
new or g. apache. xal an. xsl t. XSLTI nput Sour ce(xsl t System d) ;

org. apache. xal an. xslt. XSLTResul t Target resultTree =
new or g. apache. xal an. xsl t. XSLTResul t Tar get (Syst em out) ;

processor. process(xm | nput Source, xsltlnputSource, resultTree);

}

The code begins with the usual list of imports and the class declaration, followed by a simple
check to ensure that two command line arguments are provided. If all is OK, then the XML file
name and XSLT file name are converted into system identifier values:

String xm Systemd = new File(xm Fi |l eNane).toURL().toExternal Forn();
String xsltSystemd = new File(xsltFileNane).toURL().toExternal Form);

System identifiers are part of the XML specification and really mean the same thing as a Uniform
Resource Identifier (URI). A Uniform Resource Locator (URL) is a specific type of URI and can be
used for methods that require system identifiers as parameters. From a Java programming
perspective, this means that a platform-specific filename such as C:/data/simple.xml needs to be
converted to file:///C:/data/simple.xml before it can be used by most XML APIs. The code shown
here does the conversion and will work on Unix, Windows, and other platforms supported by
Java. Although you could try to manually prepend the filename with the literal stringf il e:///,
that may not result in portable code. The documentation for j ava. i 0. Fi | e clearly states that its
t oURL() method generates a system-dependent URL, so the results will vary when the same
code is executed on a non-Windows platform. In fact, on Windows the code actually produces a
nonstandard URL (with a single slash), although it does work within Java programs:
file:/C:/data/simple.xml.

Now that we have system identifiers for our two input files, an instance of the XSLT processor is
created:

or g. apache. xal an. xsl t. XSLTProcessor processor =
org. apache. xal an. xsl t. XSLTPr ocessor Fact ory. get Processor();

XSLTProcessor is an interface, and XSLTPr ocessor Fact ory is a factory for creating new
instances of classes that implement it. Because Xalan is open source software, it is easy enough
to determine that XSLTEngi nel npl is the class that implements the XSLTPr ocessor interface,
although you should try to avoid code that depends on the specific implementation.

The next few lines of code create XSLTI nput Sour ce objects, one for the XML file and another
for the XSLT file:

or g. apache. xal an. xsl t. XSLTI nput Sour ce xm | nput Source =
new or g. apache. xal an. xsl t. XSLTI nput Sour ce(xm System d);

or g. apache. xal an. xsl t. XSLTI nput Sour ce xsltl nput Source =
new or g. apache. xal an. xsl t. XSLTI nput Sour ce(xsltSystem d);

XSLTI nput Sour ce is a subclass of or g. xnm . sax. | nput Sour ce, adding the ability to read
directly from a DOM Node. XSLTI nput Sour ce has the ability to read XML or XSLT data from a
system ID, j ava. i 0. | nput St ream | ava. i 0. Reader, or g. w3c. dom Node, or an existing
I nput Sour ce. As shown in the code, the source of the data is specified in the constructor.
XSLTI nput Sour ce also has a no- ar g constructor, along with get/set methods for each of the
supported data source types.

An instance of XSLTResul t Tar get is created next, sending the result of the transformation to
System out :

org. apache. xal an. xslt. XSLTResul t Target resultTree =
new or g. apache. xal an. xslt. XSLTResul t Tar get (Syst em out) ;

In a manner similar to XSLTI nput Sour ce, the XSLTResul t Tar get can also be wrapped
around an instance of or g. w3c. dom Node, an Qut put St reamor Wi t er, a filename (not a
system ID!), or an instance of or g. xn . sax. Docunent Handl er .

The final line of code simply instructs the processor to perform the transformation:
processor. process(xm | nput Source, xsltlnput Source, resultTree);

5.1.3 SAXON Implementation

For comparison, a SAXON 5.5.1 implementation is presented in Example 5-2. As you scan
through the code, you will notice the word "trax" appearing in the Java packages. This is an
indication that Version 5.5.1 of SAXON was moving towards something called Transformation
API for XML (TrAX). More information on TrAX is coming up in the JAXP discussion. In a nutshell,
TrAX provides a uniform API that should work with any XSLT processor.

Example 5-2. SimpleSaxon.java
package chapb;

i mport java.io.?*;

i mport java. net. Mal f ormredURLExcepti on;
i mport java. net. URL;

i mport org.xm .sax. SAXException;

/**

* A sinple denb of SAXON. This code was originally witten using
* SAXON 5. 5. 1.

*/

public class SinpleSaxon {

/**

* Accept two conmand |ine argunents: the nane of an XM. file, and

* the name of an XSLT styl esheet. The result of the transfornmation
*is witten to stdout.
*/
public static void main(String[] args)
t hrows Mal f or redURLExcepti on, | OException, SAXException {
if (args.length I'= 2) {
Systemerr.println("Usage:");
Systemerr.println(" java " + SinpleSaxon.class.getNane()
+ " xm Fil eNane xsltFil eNanme");
Systemexit(1);
}

String xm Fil eName = args[O0];
String xsltFileNanme = args[1];

String xm Systemd = new
File(xm FileNanme).toURL().toExternal Forn();
String xsltSystemd = new
File(xsltFileNane).toURL().toExternal Form();

comicl.saxon. trax. Processor processor =
comicl.saxon.trax. Processor. new nstance("xslt");

/1 unlike Xal an, SAXON uses the SAX I nput Source. Xal an
/1 uses its own class, XSLTI nput Source
org. xm . sax. | nput Source xn | nput Source =
new org. xm . sax. | nput Sour ce(xm Syst enl d) ;
org. xm . sax. | nput Source xsltlnputSource =
new org. xnm . sax. | nput Sour ce(xsl t Systeni d);

comicl.saxon.trax. Result result =
new com i cl.saxon.trax. Resul t (System out);

/'l create a new conpil ed styl esheet
comicl.saxon.trax. Tenpl ates tenplates =
processor. process(xsltlnput Source);

/'l create a transforner that can be used for a single
transformation

comicl.saxon.trax. Transforner trans = tenpl ates. newlr ansf or ner (
)

trans. transformxm | nput Source, result);

}

The SAXON implementation starts exactly as the Xalan implementation does. Following the class
declaration, the command-line parameters are validated and then converted to system IDs. The
XML and XSLT system IDs are then wrapped in or g. xii . sax. | nput Sour ce objects as
follows:

org. xm . sax. | nput Source xml | nput Source =

new org. xm . sax. | nput Sour ce(xm Syst enl d) ;
org. xm . sax. | nput Sour ce xsltlnputSource =

new org. xm . sax. | nput Sour ce(xsl t Systeni d);

This code is virtually indistinguishable from the Xalan code, except Xalan uses
XSLTI nput Sour ce instead of | nput Sour ce. As mentioned before, XSLTI nput Sour ce is

merely a subclass of | nput Sour ce that adds support for reading from a DOM Node. SAXON
also has the ability to read from a DOM node, although its approach is slightly different.

Creating a Resul t object sets up the destination for the XSLT result tree, which is directed to
Syst em out in this example:

comicl.saxon.trax.Result result =
new com i cl.saxon. trax. Result (System out);

The XSLT stylesheet is then compiled, resulting in an object that can be used repeatedly from
many concurrent threads:

comicl.saxon.trax. Tenpl ates tenpl ates =
processor. process(xsltlnput Source);

In a typical XML and XSLT web site, the XML data is generated dynamically, but the same
stylesheets are used repeatedly. For instance, stylesheets generating common headers, footers,
and navigation bars will be used by many pages. To maximize performance, you will want to
process the stylesheets once and reuse the instances for many clients at the same time. For this
reason, the thread safety that Tenpl at es offers is critical.

An instance of the Tr ansf or ner class is then created to perform the actual transformation.
Unlike the stylesheet itself, the transformer cannot be shared by many clients and is not thread-
safe. If this was a servlet implementation, the Tr ansf or ner instance would have to be created
with each invocation of doGet or doPost . In our example, the code is as follows:

comicl.saxon.trax. Transfornmer trans = tenpl ates. newlransforner();
trans. transfornm(xm I nput Source, result);

5.1.4 SAXON, Xalan, or TrAX?

As the previous examples show, SAXON and Xalan have many similarities. While similarities
make learning the various APIs easy, they do not result in portable code. If you write code directly
against either of these interfaces, you lock yourself into that particular implementation unless you
want to rewrite your application.

The other option is to write a facade around both processors, presenting a consistent interface
that works with either processor behind the scenes. The only problem with this approach is that
as new processors are introduced, you must update the implementation of your facade. It would
be very difficult for one individual or organization to keep up with the rapidly changing world of
XSLT processors.

But if the facade was an open standard and supported by a large enough user base, the people
and organizations that write the XSLT processors would feel pressure to adhere to the common
API, rather than the other way around. TrAX was initiated in early 2000 as an effort to define a
consistent API to any XSLT processor. Since some of the key people behind TrAX were also
responsible for implementing some of the major XSLT processors, it was quickly accepted that
TrAX would be a de facto standard, much in the way that SAX is.

5.2 Introduction to JAXP 1.1

TrAX was a great idea, and the original work and concepts behind it were absorbed into JAXP
Version 1.1. If you search for TrAX on the Web and get the feeling that the effort is waning, this is
only because focus has shifted from TrAX to JAXP. Although the name has changed, the concept
has not: JAXP provides a standard Java interface to many XSLT processors, allowing you to
choose your favorite underlying implementation while retaining portability.

First released in March 2000, Sun's JAXP 1.0 utilized XML 1.0, XML Namespaces 1.0, SAX 1.0,
and DOM Level 1. JAXP is a standard extension to Java, meaning that Sun provides a

specification through its Java Community Process (JCP) as well as a reference implementation.
JAXP 1.1 follows the same basic design philosophies of JAXP 1.0, adding support for DOM Level
2, SAX 2, and XSLT 1.0. A tool like JAXP is necessary because the XSLT specification defines
only a transformation language; it says nothing about how to write a Java XSLT processor.
Although they all perform the same basic tasks, every processor uses a different APl and has its
own set of programming conventions.

JAXP is not an XML parser, nor is it an XSLT processor. Instead, it provides a common Java
interface that masks differences between various implementations of the supported standards.
When using JAXP, your code can avoid dependencies on specific vendor tools, allowing flexibility
to upgrade to newer tools when they become available.

The key to JAXP's design is the concept of plugability layers. These layers provide consistent
Java interfaces to the underlying SAX, DOM, and XSLT implementations. In order to utilize one of
these APIs, you must obtain a factory class without hardcoding Xalan or SAXON code into your
application. This is accomplished via a lookup mechanism that relies on Java system properties.
Since three separate plugability layers are used, you can use a DOM parser from one vendor, a
SAX parser from another vendor, and yet another XSLT processor from someone else. In reality,
you will probably need to use a DOM parser compatible with your XSLT processor if you try to
transform the DOM tree directly. Figure 5-1 illustrates the high-level architecture of JAXP 1.1.

Figure 5-1. JAXP 1.1 architecture

Application Gode
f 3
JAXP
LI ¥ ¥ L J
DocumentBuilder SAXFarser Transformer
O0mM AP S Parser XELT Processor
Imiplermantation Implamentation Implemigntation

As shown, application code does not deal directly with specific parser or processor
implementations, such as SAXON or Xalan. Instead, you write code against abstract classes that
JAXP provides. This level of indirection allows you to pick and choose among different
implementations without even recompiling your application.

The main drawback to an API such as JAXP is the "least common denominator" effect, which is
all too familiar to AWT programmers. In order to maximize portability, JAXP mostly provides
functionality that all XSLT processors support. This means, for instance, that Xalan's custom
XPath APls are not included in JAXP. In order to use value-added features of a particular
processor, you must revert to nonportable code, negating the benefits of a plugability layer.
Fortunately, most common tasks are supported by JAXP, so reverting to implementation-specific
code is the exception, not the rule.

Although the JAXP specification does not define an XML parser or XSLT processor, reference
implementations do include these tools. These reference implementations are open source
Apache XML tools,™! so complete source code is available.

1 Crimson and Xalan.

5.2.1 JAXP 1.1 Implementation

You guessed it -- we will now reimplement the simple example using Sun's JAXP 1.1. Behind the
scenes, this could use any JAXP 1.1-compliant XSLT processor; this code was developed and
tested using Apache's Xalan 2 processor. Example 5-3 contains the complete source code.

Example 5-3. SimpleJaxp.java
package chapb;

i mport java.io.?*;

/**

* A sinple denp of JAXP 1.1
*/

public class Sinpledaxp {

/**
* Accept two command |ine argunents: the name of an XML file, and
* the nane of an XSLT styl esheet. The result of the transformation
* is witten to stdout.
*/
public static void main(String[] args)
throws javax.xml .transform Transformer Exception {
if (args.length = 2) {
Systemerr.println("Usage:");
Systemerr.println(" java " + SinpleJdaxp.class.getNane()
+ " xm Fi | eNane xsltFileNane");
Systemexit(1l);
}

File xmMFile = new File(args[0]);
File xsltFile = new File(args[1]);

javax. xm . transform Source xm Source =

new javax. xm .transform stream StreanSource(xm File);
javax. xm .transform Source xsltSource =

new j avax. xm .transform stream StreanSource(xsltFile);
javax.xm .transform Result result =

new j avax. xm .transform stream StreanResul t (System out);

/'l create an instance of TransformerFactory
javax. xm .transform Transf orner Factory transFact =
javax. xm . transform Transf orner Fact ory. newl nstance();

javax.xm .transform Transformer trans =
transFact . newTr ansf or mer (xsl t Sour ce) ;

trans. transform(xm Source, result);

}

As in the earlier examples, explicit package names are used in the code to point out which
classes are parts of JAXP. In future examples, | mpor t statements will be favored because they
result in less typing and more readable code. Our new program begins by declaring that it may
throw Tr ansf or mer Excepti on:

public static void main(String[] args)

throws javax.xm .transform Transfornmer Exception {

This is a general-purpose exception representing anything that might go wrong during the
transformation process. In other processors, SAX-specific exceptions are typically propagated to
the caller. In JAXP, Tr ansf or mer Except i on can be wrapped around any type of Except i on
object that various XSLT processors may throw.

Next, the command-line arguments are converted into Fi | e objects. In the SAXON and Xalan
examples, we created a system ID for each of these files. Since JAXP can read directly from a
Fi | e object, the extra conversion to a URI is not needed:

File xmMFile = new File(args[0]);

File xsltFile = new File(args[1]);

javax. xm . transform Source xnl Source =

new j avax. xm . transform stream StreanSource(xm File);
javax. xm . transform Source xsltSource =

new j avax. xm .transform stream StreanSource(xsltFile);

The Sour ce interface is used to read both the XML file and the XSLT file. Unlike the SAX

| nput Sour ce class or Xalan's XSLTI nput Sour ce class, Sour ce is an interface that can have
many implementations. In this simple example we are using St r eanSour ce, which has the
ability to read from a Fi | e object, an | nput St r eam a Reader , or a system ID. Later we will
examine additional Sour ce implementations that use SAX and DOM as input. Just like Sour ce,
Resul t is an interface that can have several implementations. In this example, a

StreanResul t sends the output of the transformations to Syst em out :

javax.xm .transform Result result =
new javax. xm .transform stream StreanResul t (System out);

Next, an instance of Tr ansf or ner Fact or vy is created:

javax. xm . transform TransfornerFactory transFact =
j avax. xm . transf orm Transf or ner Fact ory. newl nst ance();

The Transf or mer Fact or y is responsible for creating Tr ansf or ner and Tenpl at e objects.
In our simple example, we create a Tr ansf or ner object:

javax.xm .transform Transforner trans =
transFact . newTr ansf or ner (xsl t Sour ce) ;

Transf or mer objects are not thread-safe, although they can be used multiple times. For a
simple example like this, we will not encounter any problems. In a threaded servlet environment,
however, multiple users cannot concurrently access the same Tr ansf or ner instance. JAXP
also provides a Tenpl at es interface, which represents a stylesheet that can be accessed by
many concurrent threads.

The transformer instance is then used to perform the actual transformation:
trans. transform xm Source, result);

This applies the XSLT stylesheet to the XML data, sending the result to Syst em out .

5.2.2 XSLT Plugability Layer

JAXP 1.1 defines a specific lookup procedure to locate an appropriate XSLT processor. This
must be accomplished without hardcoding vendor-specific code into applications, so Java system
properties and JAR file service providers are used. Within your code, first locate an instance of
the Tr ansf or mer Fact ory class as follows:

javax. xm . transform TransfornerFactory transFact =
j avax. xml . transf orm Transf or ner Fact ory. newl nst ance();

Since Tr ansf or mer Fact or y is abstract, its newi nst ance() factory method is used to
instantiate an instance of a specific subclass. The algorithm for locating this subclass begins by
looking at the | avax. xm . transform Transf or ner Fact ory system property. Let us
suppose that com f oobar . AcneTr ansf or mer is a new XSLT processor compliant with JAXP
1.1. To utilize this processor instead of JAXP's default processor, you can specify the system
property on the command line'? when you start your Java application:

[21 system properties can also be specified in Ant build files.
java - D avax. xm . transform Transf or mer Fact ory=com f oobar . AcneTr ansf or ner
MyApp
Provided that JAXP is able to instantiate an instance of Acrre Tr ansf or ner , this is the XSLT

processor that will be used. Of course, AcneTr ansf or mer must be a subclass of
Transf ormer Fact ory for this to work, so it is up to vendors to offer support for JAXP.

If the system property is not specified, JAXP next looks for a property file named
lib/jaxp.properties in the JRE directory. A property file consists of nane=val ue pairs, and JAXP
looks for a line like this:

javax. xm . transform Transf or ner Fact ory=com f oobar . AcneTr ansf or mer
You can obtain the location of the JRE with the following code:
String javaHoneDir = System get Property("java. hone");

o

Some popular development tools change the value of
phy s java.home when they are installed, which could prevent JAXP

from locating jaxp.properties. JBuilder, for instance, installs its
own version of Java 2 that it uses by default.

The advantage of creating jaxp.properties in this directory is that you can use your preferred
processor for all of your applications that use JAXP without having to specify the system property
on the command line. You can still override this file with the - D command-line syntax, however.

If jaxp.properties is not found, JAXP uses the JAR file service provider mechanism to locate an
appropriate subclass of Tr ansf or mer Fact or y. The service provider mechanism is outlined in
the JAR file specification from Sun and simply means that you must create a file in the META-
INF/services directory of a JAR file. In JAXP, this file is called
javax.xml.transform.TransformerFactory. It contains a single line that specifies the
implementation of Tr ansf or mer Fact ory: com f oobar . AcneTr ansf or ner in our fictitious
example. If you look inside of xalan.jar in JAXP 1.1, you will find this file. In order to utilize a
different parser that follows the JAXP 1.1 convention, simply make sure its JAR file is located first
on your CLASSPATH.

Finally, if JAXP cannot find an implementation class from any of the three locations, it uses its
default implementation of Tr ansf or nmer Fact or y. To summarize, here are the steps that JAXP
performs when attempting to locate a factory:

1. Use the value of the j avax. xnl . t ransf orm Transf or ner Fact ory system property
if it exists.

2. If JRE/lib/jaxp.properties exists, then look for a
j avax. xm . transform Transf or mer Fact or y=I npl enent ati onCl ass entryin
that file.

3. Use a JAR file service provider to look for a file called META-
INF/services/javax.xml.transform.TransformerFactory in any JAR file on the
CLASSPATH.

4. Use the default Tr ansf or ner Fact or y instance.

The JAXP 1.1 plugability layers for SAX and DOM follow the exact same process as the XSLT
layer, only they use the | avax. xmi . par sers. SAXPar ser Fact ory and

j avax. xm . parsers. Docunent Bui | der Fact ory system properties respectively. It should
be noted that JAXP 1.0 uses a much simpler algorithm where it checks only for the existence of
the system property. If that property is not set, the default implementation is used.

5.2.3 The Transformer Class

As shown in Example 5-3, a Tr ansf or ner object can be obtained from the
Transf ornmer Fact ory as follows:

javax. xm . transform TransfornmerFactory transFact =

javax. xm . transform Transf or ner Fact ory. newl nst ance();
javax. xm .transform Transforner trans =

transFact . newTr ansf or mer (xsl t Sour ce) ;

The Tr ansf or ner instance is wrapped around an XSLT stylesheet and allows you to perform as
many transformations as you wish. The main caveat is thread safety, because many threads
cannot use a single Tr ansf or ner instance concurrently. For each transformation, invoke the
transf or mmethod:

abstract void transform Source xm Source, Result outputTarget)
t hrows Transforner Exception

This method is abstract because the Tr ansf or ner Fact or y returns a subclass of

Transf or mer that does the actual work. The Sour ce interface defines where the XML data
comes from and the Resul t interface specifies where the transformation result is sent. The
Transf or mer Except i on will be thrown if anything goes wrong during the transformation
process and may contain the location of the error and a reference to the original exception. The
ability to properly report the location of the error is entirely dependent upon the quality of the
underlying XSLT transformer implementation's error reporting. We will talk about specific classes
that implement the Sour ce and Resul t interfaces later in this chapter.

Aside from actually performing the transformation, the Tr ansf or ner implementation allows you
to set output properties and stylesheet parameters. In XSLT, a stylesheet parameter is declared
and used as follows:

<?xm version="1.0" encodi ng="UTF-8""?>

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m' >
<xsl :out put nethod="htm"/>
<xsl : param nane="i mage_dir" sel ect="

i mges' "/ >

<xsl:tenplate match="/">
<htm >
<body>
<h1>Styl esheet Paraneter Exanpl e</hil>
<inmg src="{$image _dir}/sanple.gif"/>
</ body>
</htm >
</ xsl:tenpl at e>
</ xsl : styl esheet >

The <xsl : par an> element declares the parameter name and an optional sel ect attribute. This
attribute specifies the default value if the stylesheet parameter is not provided. In this case, the
string ' | nages' is the default value and is enclosed in apostrophes so it is treated as a string
instead of an XPath expression. Later, the i mage _di r variable is referred to with the attribute
value template syntax: { $i nage dir}.

Passing a variable for the location of your images is a common technique because your
development environment might use a different directory name than your production web server.
Another common use for a stylesheet parameter is to pass in data that a servlet generates
dynamically, such as a unique ID for session tracking.

From JAXP, pass this parameter via the Tr ansf or ner instance. The code is simple enough:

javax. xm .transform Transforner trans =
transFact . newTr ansf or mer (xsl t Sour ce) ;
trans. set Paranmeter ("image_dir", "graphics");

You can set as many parameters as you like, and these parameters will be saved and reused for
every transformation you make with this Transformer instance. If you wish to remove a
parameter, you must call clearParameters(), which clears all parameters for this Transformer
instance. Parameters work similarly to a java.util.Map; if you set the same parameter twice, the
second value overwrites the first value.

Another use for the Transformer class is to get and set output properties through one of the
following methods:

voi d set Qut put Properties(java.util.Properties props)
voi d set Qut put Property(String nane, String val ue)
java.util.Properties getQutputProperties()

String getQutputProperty(String namne)

As you can see, properties are specified as name/value pairs of Strings and can be set and
retrieved individually or as a group. Unlike stylesheet parameters, you can un-set an individual
property by simply passing in nul | for the value. The permitted property names are defined in
the j avax. xnl . transf orm Qut put Keys class and are explained in Table 5-1.

Table 5-1. Constants defined in javax.xml.transform.OutputKeys

Constant Meaning

Specifies a whitespace-separated list of element names whose
CDATA_SECTI ON_ELENENTS |content should be output as CDATA sections. See the XSLT
specification from the W3C for examples.

Only used if DOCTYPE SYSTEM s also used, this instructs the
processor to output a PUBLIC document type declaration. For
example: <! DOCTYPE r oot El em PUBLI C" public id"
"systemid">.

DOCTYPE_PUBLI C

Instructs the processor to output a document-type declaration. For

DOCTYPE_SYSTEM example: <! DOCTYPE r oot El em SYSTEM"system i d">.

ENCODI NG Specifies the character encoding of the result tree, such as UTF-8
or UTF-16.
| NDENT Specifies whether or not whitespace may be added to the result

tree, making the output more readable. Acceptable values are yes

and no. Although indentation makes the output more readable, it
does make the file size larger, thus harming performance.

MEDI A_TYPE The MIME type of the result tree.

The output method, either xi , ht nl , or t ext . Although other
VETHOD values are possible, such as xht nl , these are implementation-
defined and may be rejected by your processor.

Acceptable values are yes and no, specifying whether or not to

T XM. DECLARATI
VT JbEC N include the XML declaration on the first line of the result tree.

Acceptable values are yes and no, specifying whether or not the
XML declaration indicates that the document is standalone. For
example: <?xm versi on="1. 0" encodi ng="UTF- 8"

st andal one="yes" ?>.

STANDALONE

Specifies the version of the output method, typically 1. O for XML
VERSI ON output. This shows up in the XML declaration as follows: <?x i
versi on="1. 0" encodi ng="UTF- 8" ?>.

It is no coincidence that these output properties are the same as the properties you can set on
the <xsl : out put > element in your stylesheets. For example:

<xsl : out put method="xm " i ndent="yes" encodi ng="UTF-8"/>
Using JAXP, you can either specify additional output properties or override those set in the
stylesheet. To change the encoding, write this code:

/1 this will take precedence over any encodi ng specified in the
styl esheet
trans. set Qut put Propert y(Qut put Keys. ENCODI NG " UTF-16");

Keep in mind that this will, in addition to adding encodi ng="UTF- 16" to the XML declaration,
actually cause the processor to use that encoding in the result tree. For a value of UTF- 16, this
means that 16-bit Unicode characters will be generated, so you may have trouble viewing the
result tree in many ASCII-only text editors.

5.2.4 JAXP XSLT Design

Now that we have seen some example code and have begun our exploration of the
Transfornmer class, let's step back and look at the overall design of the XSLT plugability layer.
JAXP support for XSLT is broken down into the packages listed in Table 5-2.

Table 5-2. JAXP transformation packages

Package Description

Defines a general-purpose API for XML transformations
without any dependencies on SAX or DOM. The

j avax. xm . transform Transf orner class is obtained from the

Transf ormer Fact ory class. The Tr ansf or mer
transforms from a Sour ce toa Resul t.

j avax. xm . transform dom Defines how transformations can be performed usina DOM.

Provides implementations of Sour ce and Resul t :
DOVBour ce and DOVResul t .

Supports SAX2 transformations. Defines SAX versions of
Sour ce and Resul t: SAXSour ce and SAXResul t . Also
defines a subclass of Tr ansf or ner Fact or y that allows
SAX2 events to be fed into an XSLT processor.

j avax. xm . transform sax

Defines I/O stream implementations of Sour ce and Resul t :

j avax. xnl . transform stream
J St r eanSour ce and St r eanResul t .

The heart of JAXP XSLT support lies in the | avax. xmi . t r ansf or mpackage, which lays out
the mechanics and overall process for any transformation that is performed. This package mostly
consists of interfaces and abstract classes, except for Cut put Keys and a few exception and

error classes. Figure 5-2 presents a UML class diagram that shows all of the pieces in this
important package.

Figure 5-2. javax.xml.transform class diagram

creale Templates a compiled
aid Transforms stylesheet
=<oreates> | ccinterfaces= | ! <<BXCEplon=>
. “1 Templates TransfarmearException
<«absiract:
TransformFactory
xCigdbiss
ceinterfaces= ¥
b Result .
P 5 e w | <<absiractss E‘:;I::II'Itrl}rlf.ﬁ.vl;ﬂ:l:-:.\
= Transtormer urceLacator
T ccinterfacess :
! Source '
performs : line and
transfarmations column of error
o | mwinterfacess |- <cltility== <R CRplitns=
- URIResolver | Outputkeys TransformConfiguraionExcaption
o | =cinterfacess | - <BITOr=
| ErrorListensr |~ TransformerFactoryConfigurationError

As you can see, this is a small package, indicative of the fact that JAXP is merely a wrapper
around the tools that actually perform transformations. The entry point is

Transf or nmer Fact or y, which creates instances of Tr ansf or ner , as we have already seen, as
well as instances of the Tenpl at es abstract class. A Tenpl at es object represents a compiled
stylesheet and will be covered in detail later in this chapter.k®! The advantage of compilation is
performance: the same Tenpl at es object can be used over and over by many threads without
reparsing the XSLT file.

B! The exact definition of a "compiled” stylesheet is vague. XSLT processors are free to optimize cached
stylesheets however they see fit.

The URI Resol ver is responsible for resolving URIs found within stylesheets and is generally
something you will not need to deal with directly. It is used when a stylesheet imports or includes

another document, and the processor needs to figure out where to look for that document. For
example:

<xsl :inmport href="comonFooter.xslt"/>

ErrorLi stener, asyou may guess, is an interface that allows your code to register as a
listener for error conditions. This interface defines the following three methods:

voi d error(Transforner Exception ex)
voi d fatal Error(Transfornmer Exception ex)
voi d war ni ng(Tr ansf or ner Excepti on ex)

The Tr ansf or mer Except i on has the ability to wrap around another Except i on or

Thr owabl e object and may return an instance of the Sour ceLocat or class. If the underlying
XSLT implementation does not provide a Sour ceLocat or, nul | is returned. The

Sour ceLocat or interface defines methods to locate where a Tr ansf or mer Excepti on
originated. In the case of er r or () and war ni ng(), the XSLT processor is required to continue
processing the document until the end. For f at al Error (), on the other hand, the XSLT
processor is not required to continue. If you do not register an Er r or Li st ener object, then all
errors, fatal errors, and warnings are normally written to Syst em err.

Transf or mer Fact or yConfi gurati onError and

Transformer Configurati onExcepti on round out the error-handling APIs for JAXP,
indicating problems configuring the underlying XSLT processor implementation. The
Transformer Fact oryConf i gurationError class is generally used when the
implementation class cannot be found on the CLASSPATH or cannot be instantiated at all.
Transforner Configurati onExcepti on simply indicates a "serious configuration error"
according to its documentation.

5.3 Input and Output

XSLT processors, like other XML tools, can read their input data from many different sources. In
the most basic scenario, you will load a static stylesheet and XML document using the

j ava. i o. Fi | e class. More commonly, the XSLT stylesheet will come from a file, but the XML
data will be generated dynamically as the result of a database query. In this case, it does not
make sense to write the database query results to an XML file and then parse it into the XSLT
processor. Instead, it is desirable to pipe the XML data directly into the processor using SAX or
DOM. In fact, we will even see how to read nonXML data and transform it using XSLT.

5.3.1 System Identifiers, Files, and URLS

The simple examples presented earlier in this chapter introduced the concept of a system
identifier. As mentioned before, system identifiers are nothing more than URIs and are used
frequently by XML tools. For example, | avax. xmi . transf or m Sour ce, one of the key
interfaces in JAXP, has the following API:

public interface Source {

String getSystemd();
voi d set Systenml d(String system d);

}

The second method, set Syst end d(), is crucial. By providing a URI to the Sour ce, the XSLT
processor can resolve URIs encountered in XSLT stylesheets. This allows XSLT code like this to
work:

<xsl :inmport href="comonFooter.xslt"/>

When it comes to XSLT programming, you will use methods inj ava. i o. Fi | e and
j ava. net . URL to convert platform-specific file names into system IDs. These can then be used

as parameters to any methods that expect a system ID as a parameter. For example, you would
write the following code to convert a platform-specific flename into a system ID:

public static void main(String[] args) {
/1l assume that the first command-line arg contains a file nane
/1l - on Wndows, sonething like "C: \hone\index.xmn"
/[l - on Unix, sonething |ike "/usr/hone/index.xmn"
String fileNane = args[O0];
File fileCbject = new File(fil eNane);
URL fileURL = fileChject.toURL();
String system D = fil eURL.toExternal Forn();

This code was written on several lines for clarity; it can be consolidated as follows:
String system D = new File(fileNane).toURL().toExternal Form);

Converting from a system identifier back to a filename or a Fi | e object can be accomplished with
this code:

URL url = new URL(systenl D);
String fil eNane url.getFile();
File fil e(hject new Fil e(fil eNane);

And once again, this code can be condensed into a single line as follows:
File filebhject = new File((new URL(system D)).getFile());

5.3.2 JAXP I/O Design

The Sour ce and Resul t interfaces in | avax. xi . t ransf or mprovide the basis for all
transformation input and output in JAXP 1.1. Regardless of whether a stylesheet is obtained via a
URI, filename, or | nput St r eam its data is fed into JAXP via an implementation of the Sour ce
interface. The output is then sent to an implementation of the Resul t interface. The
implementations provided by JAXP are shown in Figure 5-3.

Figure 5-3. Source and Result interfaces

ceinterface>> <einterfacg=-
Source Result
getSystemid() : String natSystemid() ; String
selSystemiddsystemld - String) ; vodd setSystemldisystemid ; String) © void

PN A
I | I |

ShxSource DOMSource | [StreamSource DOMResult || StreamBesult] | SAXResult

java.io. Fila —1 java.io.File

seinterface=x
org.wac.dom. Mode

java.io.nputStream

: — javaio.InputStream
zcinferfaces-
| orgaml.sax, XMLReader
2 Java.lo.Reader L java.io Reader
—1 org.xml.sax. InputSource
<ainterfacess <zintarfacess

org. wac.dom . Node| [org.xml.sax ContentHandler

As you can see, JAXP is not particular about where it gets its data or sends its results.
Remember that two instances of Sour ce are always specified: one for the XML data and another
for the XSLT stylesheet.

5.3.3 JAXP Stream I/O

As shown in Figure 5-3, St r eanfSour ce is one of the implementations of the Sour ce interface.
In addition to the system identifiers that Sour ce provides, St r eanSour ce allows input to be
obtained from a Fi | e, an | nput St r eam or a Reader . The Si npl eJaxp class in Example 5-3
showed how to use St r eanSour ce to read from a Fi | e object. There are also four constructors
that allow you to construct a St r eanfSour ce from either an | nput St r eamor Reader . The
complete list of constructors is shown here:

public StreanSource()

public StreanSource(File f)

public StreanSource(String systenld)

public StreanSource(l nput Stream byt eStream

public StreanSource(lnput Stream byteStream String systenld)
publ i c StreanSource(Reader characterStream

public StreanSource(Reader characterStream String systenld)

For the constructors that take | nput St r eamand Reader as arguments, the first argument
provides either the XML data or the XSLT stylesheet. The second argument, if present, is used to
resolve relative URI references in the document. As mentioned before, your XSLT stylesheet may
include the following code:

<xsl :inmport href="comonFooter.xslt"/>

By providing a system identifier as a parameter to the St r eanfSour ce, you are telling the XSLT
processor where to look for commonFooter.xslt. Without this parameter, you may encounter an
error when the processor cannot resolve this URI. The simple fix is to call the set Syst em d()
method as follows:

/'l construct a Source that reads from an | nputStream

Source nySrc = new StreanSour ce(anl nput Strean;

/'l specify a systemID (a String) so the Source can resolve relative
URLs

/1 that are encountered in XSLT styl esheets

mySrc. set Syst enl d(aSyst enl d) ;

The documentation for St r eanfSour ce also advises that | nput St r eamis preferred to Reader
because this allows the processor to properly handle the character encoding as specified in the
XML declaration.

St reanResul t is similar in functionality to St r eanfSour ce, although it is not necessary to
resolve relative URIs. The available constructors are as follows:

public StreanResult()

public StreanResult(File f)

public StreanResult(String systenid)

public StreanResul t (Qut put Stream byteStream
public StreanResult (Witer characterStream

Let's look at some of the other options for St r eanfSour ce and St r eanResul t . Example 5-4 is
a modification of the Si npl eJaxp program that was presented earlier. It downloads the XML
specification from the W3C web site and stores it in a temporary file on your local disk. To
download the file, construct a St r eanfSour ce with a system identifier as a parameter. The
stylesheet is a simple one that merely performs an identity transformation, copying the

unmodified XML data to the result tree. The result is then sent to a St r eanResul t using its

Fi | e constructor.

Example 5-4. Streams.java
package chapb;

i mport java.io.*;
i mport javax.xn.transform*;
i mport javax.xnl.transform stream *;

/**

* A sinple demp of JAXP 1.1 StreantSource and StreanResult. This

* program downl oads the XM specification fromthe WBC and prints
* it to a tenporary file.

*/

public class Streans {

/1 an identity copy styl esheet
private static final String |IDENTITY_XSLT =
"<xsl : styl esheet
xm ns: xsl =" http://ww. w3. org/ 1999/ XSL/ Transform "
+ " version='"1.0">"
+ "<xsl:tenplate match='/"'><xsl:copy-of select="."/>"
+ "</ xsl:tenpl at e></ xsl : styl esheet >";

/1 the XML spec in XM fornat
/1 (using an HTTP URL rather than a file URL)
private static String xm System d =
“http://ww.w3. org/ TR/ 2000/ REC- xm - 20001006. xm ";

public static void main(String[] args) throws | OException,
Tr ansf or mer Excepti on {

/1 show how to read froma systemidentifier and a Reader
Sour ce xm Source = new StreanSource(xm Systeni d);
Sour ce xsltSource = new StreanSour ce(

new StringReader (1 DENTI TY_XSLT));

/1 send the result to a file
File resultFile = File.createTenpFile("Streans", ".xm");
Result result = new StreanResult(resultFile);

Systemout.printin("Results will go to:
+ resultFile. getAbsolutePath());

/1 get the factory
Transf ornmer Factory transFact = Transformer Fact ory. newl nst ance(

)
/1 get a transforner for this particular stylesheet
Transformer trans = transFact.newlransforner(xsltSource);
/1 do the transformation
trans. transform xm Source, result);
}
}
The "identity copy" stylesheet simply matches "/ ", which is the document itself. It then uses
<xsl:copy-of select="."/>toselectthe document and copy it to the result tree. In this

case, we coded our own stylesheet. You can also omit the XSLT stylesheet altogether as follows:

/1 construct a Transfornmer without any XSLT styl esheet
Transformer trans = transFact.newlransformer();

In this case, the processor will provide its own stylesheet and do the same thing that our example
does. This is useful when you need to use JAXP to convert a DOM tree to XML text for
debugging purposes because the default Tr ansf or mer will simply copy the XML data without
any transformation.

5.3.4 JAXP DOM I/O

In many cases, the fastest form of transformation available is to feed an instance of

org. w3c. dom Docunent directly into JAXP. Although the transformation is fast, it does take
time to generate the DOM; DOM is also memory intensive, and may not be the best choice for
large documents. In most cases, the DOM data will be generated dynamically as the result of a
database query or some other operation (see Chapter 1). Once the DOM is generated, simply
wrap the Docunent object in a DOVEour ce as follows:

org. w3c. dom Docunent donDoc = creat eDomDocunent ();
Source xm Source = new javax.xnl .transform dom DOVSour ce(donDoc) ;

The remainder of the transformation looks identical to the file-based transformation shown in
Example 5-4. JAXP needs only the alternate input Source object shown here to read from
DOM.

5.3.5 JAXP SAX /O

XSLT is designed to transform well-formed XML data into another format, typically HTML. But
wouldn't it be nice if we could also use XSLT stylesheets to transform nonXML data into HTML?
For example, most spreadsheets have the ability to export their data into Comma Separated
Values (CSV) format, as shown here:

Bur ke, Eric, M
Bur ke, Jenni fer, L
Bur ke, Al dan, G

One approach is parsing the file into memory, using DOM to create an XML representation of the
data, and then feeding that information into JAXP for transformation. This approach works but
requires an intermediate programming step to convert the CSV file into a DOM tree. A better
option is to write a custom SAX parser, feeding its output directly into JAXP. This avoids the
overhead of constructing the DOM tree, offering better memory utilization and performance.

5.3.5.1 The approach

It turns out that writing a SAX parser is quite easy.! All a SAX parser does is read an XML file
top to bottom and fire event natifications as various elements are encountered. In our custom
parser, we will read the CSV file top to bottom, firing SAX events as we read the file. A program
listening to those SAX events will not realize that the data file is CSV rather than XML; it sees
only the events. Figure 5-4 illustrates the conceptual model.

1 Our examples use SAX 2.

Figure 5-4. Custom SAX parser

CSV File SAYE
Burke, Eric, M L wanis Result
Burke, Jennifer, L |7 % “%‘gm Say s P#ELT e ™
Burke, Aidan, G Fegy E3ngy

4

XSLT Stylesheel

In this model, the XSLT processor interprets the SAX events as XML data and uses a normal
stylesheet to perform the transformation. The interesting aspect of this model is that we can
easily write custom SAX parsers for other file formats, making XSLT a useful transformation
language for just about any legacy application data.

In SAX, or g. xm . sax. XM_Reader is a standard interface that parsers must implement. It
works in conjunction with or g. xil . sax. Cont ent Handl er , which is the interface that listens to
SAX events. For this model to work, your XSLT processor must implement the

Cont ent Handl er interface so it can listen to the SAX events that the XM_Reader generates. In
the case of JAXP, | avax. xml . transform sax. Transf or mer Handl er is used for this
purpose.

Obtaining an instance of Tr ansf or mer Hand| er requires a few extra programming steps. First,
create a Tr ansf or ner Fact ory as usual:

Transfornmer Factory transFact = TransfornerFactory. new nstance();

As before, the Tr ansf or mer Fact or y is the JAXP abstraction to some underlying XSLT
processor. This underlying processor may not support SAX features, so you have to query it to
determine if you can proceed:

i f (transFact. get Feat ur e(SAXTr ansf or mer Fact ory. FEATURE)) {

If this returns f al se, you are out of luck. Otherwise, you can safely downcast to a
SAXTr ansf or mer Fact ory and construct the Tr ansf or ner Handl er instance:

SAXTr ansf or ner Fact ory saxTransFact =
(SAXTr ansf or ner Fact ory) transFact;
/'l create a ContentHandler, don't specify a stylesheet. Wthout
/'l a stylesheet, raw XML is sent to the output.
Transf ormer Handl er transHand = saxTransFact. newlransfornerHandl er();

In the code shown here, a stylesheet was not specified. JAXP defaults to the identity
transformation stylesheet, which means that the SAX events will be "transformed" into raw XML
output. To specify a stylesheet that performs an actual transformation, pass a Sour ce to the
method as follows:

Source xsltSource = new StreanSource(nyXsltSystemd);
Transf ormer Handl er transHand = saxTransFact. newTr ansf or ner Handl er (
xsl t Source);

5.3.5.2 Detailed CSV to SAX design

Before delving into the complete example program, let's step back and look at a more detailed
design diagram. The conceptual model is straightforward, but quite a few classes and interfaces
come into play. Figure 5-5 shows the pieces necessary for SAX-based transformations.

Figure 5-5. SAX and XSLT transformations

cinlerfaces:

orgxmisax
XMLReader
AF The SAX event listenar
PET——— <<intarfacgss czabstractss
com.oreilly javaxst.util OFg. Xl 5&x javax sl transform
AbstractXML Reader ContentHandlar TransformerFactony
setContentHandler{GontentHandier)
] A‘P - <<interfacess <eabstract=x
mn&gﬁ'ﬁﬂ"ﬂiﬁ”'“m java mil transform.sax | <<Creates: java xmil transform sax
B Lsl TransformHandier e SAxTransformFactory
parse(InputSource) setResult{ Result) newTransformerHandier{Source)
: - TransformerHandler

This class parses GV files

and emits SAX events. The W W
InputSource providas the
Ineation of the C2V Hie. cxifierfacess cinterfacess
jax el transform =»| javax xml transtorm
Transform Result

This diagram certainly appears to be more complex than previous approaches, but is similar in
many ways. In previous approaches, we used the Tr ansf or ner Fact or y to create instances of
Transf or mer ; in the SAX approach, we start with a subclass of Tr ansf or ner Fact or y. Before
any work can be done, you must verify that your particular implementation supports SAX-based
transformations. The reference implementation of JAXP does support this, although other
implementations are not required to do so. In the following code fragment, the get Feat ur e
method of Tr ansf or mer Fact ory will return t r ue if you can safely downcast to a

SAXTransf or mer Fact or y instance:

Transfornmer Factory transFact = TransfornerFactory. new nstance();
i f (transFact. get Feat ur e(SAXTr ansf or ner Fact ory. FEATURE)) {

/1 downcast is allowed

SAXTr ansf or ner Fact ory saxTransFact = (SAXTransfornmer Fact ory)
t ransFact;

If get Feat ur e returns f al se, your only option is to look for an implementation that does
support SAX-based transformations. Otherwise, you can proceed to create an instance of
Tr ansf or mer Handl er :

Transf or ner Handl er transHand =
saxTransFact . newTr ansf or mer Handl er (nyXsl t Sour ce) ;

This object now represents your XSLT stylesheet. As Figure 5-5 shows,

Transf ormer Handl er extends or g. xm . sax. Cont ent Handl er , so it knows how to listen to
events from a SAX parser. The series of SAX events will provide the "fake XML" data, so the only
remaining piece of the puzzle is to set the Resul t and tell the SAX parser to begin parsing. The
Transf or mer Handl er also provides a reference to a Tr ansf or mer , which allows you to set
output properties such as the character encoding, whether to indent the output or any other
attributes of <xsl : out put >.

5.3.5.3 Writing the custom parser

Writing the actual SAX parser sounds harder than it really is. The process basically involves
implementing the or g. xil . sax. XM_Reader interface, which provides numerous methods you
can safely ignore for most applications. For example, when parsing a CSV file, it is probably not

necessary to deal with namespaces or validation. The code for Abst r act XM_Reader . | ava is
shown in Example 5-5. This is an abstract class that provides basic implementations of every
method in the XMLReader interface except for the par se() method. This means that all you
need to do to write a parser is create a subclass and override this single method.

Example 5-5. AbstractXMLReader.java
package comoreilly.javaxslt.util;

i mport java.io.|OException;
i mport java.util.*;
i mport org.xmnl .sax.*;

/**
* An abstract class that inplements the SAX2 XM_Reader interface. The
* intent of this class is to nake it easy for subclasses to act as
* SAX2 XM_Reader inplenmentations. This makes it possible, for exanple,
for
* themto enmit SAX2 events that can be fed into an XSLT processor for
* transformation.
*/
public abstract class Abstract XM_.Reader inplenents org.xnl.sax. XM_Reader
{
private Map featureMap = new HashMap();
private Map propertyMap = new HashMap();
private EntityResol ver entityResol ver;
private DTDHandl er dtdHandl er;
privat e Content Handl er cont ent Handl er;
private ErrorHandl er errorHandl er;

/**

* The only abstract nethod in this class. Derived classes can parse

* any source of data and emit SAX2 events to the ContentHandl er.

*/

public abstract void parse(lnputSource input) throws | COException,
SAXExcept i on;

public bool ean get Feature(String nane)
t hrows SAXNot Recogni zedExcepti on, SAXNot Support edException {
Bool ean featureVal ue = (Bool ean) this.featureMp. get(nane);
return (featurevValue == null) ? false
f eat ur eVal ue. bool eanVval ue();

}

public void setFeature(String nanme, bool ean val ue)
t hrows SAXNot Recogni zedExcepti on, SAXNot Support edException {
t hi s. f eatureMap. put (name, new Bool ean(val ue));

}

public Object getProperty(String nane)
t hrows SAXNot Recogni zedExcepti on, SAXNot Support edException {
return this.propertyMap. get(nane);
}

public void setProperty(String nane, Object val ue)
t hrows SAXNot Recogni zedExcepti on, SAXNot Support edException {
t hi s. propertyMap. put (nane, val ue);

}

public void setEntityResol ver(EntityResolver entityResolver) {
this.entityResolver = entityResol ver;
}

public EntityResol ver getEntityResolver() {
return this.entityResol ver;
}

public void set DTDHandl er (DTDHandl er dt dHandl er) {
t hi s. dt dHandl er = dt dHandl er;
}

publ i ¢ DTDHandl er get DTDHandl er() {
return this.dtdHandl er;
}

public void set Cont ent Handl er (Cont ent Handl er content Handl er) {
t hi s. cont ent Handl er = cont ent Handl er;
}

publ i c Content Handl er get ContentHandler() {
return this.contentHandl er;
}

public void setErrorHandl er (ErrorHandl er errorHandl er) {
this.errorHandl er = errorHandl er;
}

public ErrorHandl er getErrorHandler() {
return this.errorHandl er;

}

public void parse(String systemid) throws | OException, SAXException
{ par se(new | nput Sour ce(system d));
} }

Creating the subclass, CSVXM_Reader , involves overriding the par se() method and actually
scanning through the CSV file, emitting SAX events as elements in the file are encountered.
While the SAX portion is very easy, parsing the CSV file is a little more challenging. To make this
class as flexible as possible, it was designed to parse through any CSV file that a spreadsheet
such as Microsoft Excel can export. For simple data, your CSV file might look like this:

Burke, Eric, M
Bur ke, Jenni fer, L
Bur ke, Ai dan, G

The XML representation of this file is shown in Example 5-6. The only real drawback here is
that CSV files are strictly positional, meaning that names are not assigned to each column of
data. This means that the XML output merely contains a sequence of three <val ue> elements
for each line, so your stylesheet will have to select items based on position.

Example 5-6. Example XML output from CSV parser

<?xm version="1.0" encodi ng="UTF-8""?>
<csvFi |l e>

<line>
<val ue>Bur ke</ val ue>
<val ue>Eri c</val ue>
<val ue>M/ val ue>

</line>

<line>
<val ue>Bur ke</ val ue>
<val ue>Jenni f er </ val ue>
<val ue>L</ val ue>

</line>

<line>
<val ue>Bur ke</ val ue>
<val ue>Ai dan</ val ue>
<val ue>&/ val ue>

</line>

</ csvFil e>

One enhancement would be to design the CSV parser so it could accept a list of meaningful
column names as parameters, and these could be used in the XML that is generated. Another
option would be to write an XSLT stylesheet that transformed this initial output into another form
of XML that used meaningful column names. To keep the code example relatively manageable,
these features were omitted from this implementation. But there are some complexities to the
CSV file format that have to be considered. For example, fields that contain commas must be
surrounded with quotes:

"Consul t ant, Aut hor, Teacher", Burke, Eric, M
Teacher, Bur ke, Jenni fer, L
None, Bur ke, Ai dan, G

To further complicate matters, fields may also contain quotes (). In this case, they are doubled
up, much in the same way you use double backslash characters (\\) in Java to represent a single
backslash. In the following example, the first column contains a single quote, so the entire field is
guoted, and the single quote is doubled up:

"test""quote", Teacher, Burke, Jenni fer, L
This would be interpreted as:
t est "quot e, Teacher, Bur ke, Jenni fer, L

The code in Example 5-7 shows the complete implementation of the CSV parser.

Example 5-7. CSVXMLReader.java
package comoreilly.javaxslt.util;

i mport java.io.*;
i mport java. net. URL;

i mport org.xn.sax.*;
i mport org.xn . sax. hel pers. *;

/**

* Autility class that parses a Comma Separated Values (CSV) file
* and outputs its contents using SAX2 events. The format of CSV that

* this class reads is identical to the export format for M crosoft
* Excel. For sinple values, the CSV file may | ook |ike this:

* <pre>

* a,b,c

* d, e, f

</ pre>

* Quotes are used as delinters when the val ues contain conmas:
* <pre>

* a,"b,c",d

* e "f,g","hi"

* </ pre>

*

And doubl e quotes are used when the val ues contain quotes. This
par ser

* is smart enough to trim spaces around commas, as well.

*

* @uthor Eric M Burke

*/

public class CSVXM_Reader extends Abstract XM_Reader {

/1 an enmpty attribute for use with SAX
private static final Attributes EMPTY ATTR = new Attributeslinmpl ();

/**

* Parse a CSV file. SAX events are delivered to the ContentHandl er
* that was regi stered via <code>set Cont ent Handl er </ code>.
*
* @araminput the comma separated values file to parse.
*/
public void parse(lnputSource input) throws | OException,
SAXException {
/1 if no handler is registered to receive events, don't bother
/1l to parse the CSV file
Cont ent Handl er ch = get ContentHandler();
if (ch == null) {
return;
}

/1 convert the InputSource into a BufferedReader
Buf f eredReader br = null;
if (input.getCharacterStreanm() != null) {

br = new BufferedReader (i nput.getCharacterStrean());
} else if (input.getByteStrean() != null) {

br = new BufferedReader (new | nput St r eanReader (

i nput.getByteStream)));

} else if (input.getSystemd() !'= null) {

java.net.URL url = new URL(input.getSystemd());

br = new BufferedReader (new

I nput St r eanReader (url . openStrean()));

} else {

t hr ow new SAXException("Ilnvalid | nputSource object");
}

ch.start Docunent ();

/1 emt <csvFile>
ch.startEl ement("","","csvFile", EMPTY_ATTR);

/1 read each line of the file until EOF is reached
String curLine = null;
while ((curLine = br.readLine()) !'= null) {
curLine = curlLine.trim);
if (curLine.length() > 0) {
/]l create the <line> el enent

ch.startElement("","","line", EMPTY_ATTR);
/1 output data fromthis line

par seLi ne(curLine, ch);

/1l close the </line> el enent

ch.endEl ement ("","","line");
}

}

/]l emt </csvFile>

ch.endEl ement ("","","csvFile");

ch. endDocunent ();
}
// Break an individual line into tokens. This is a recursive

function

)

/'l that extracts the first token, then recursively parses the

11

remai nder of the |ine.

private void parseLine(String curlLine, ContentHandler ch)

}

11

t hrows | CException, SAXException {

String firstToken = null
String remai nderOfLine = null;
i nt commal ndex = | ocateFirstDelimter(curlLine);
if (commal ndex > -1) {
firstToken = curlLine.substring(0, commualndex).trinm);
remai nder Of Li ne = curLine. substring(comual ndex+1).trim);
} else {
/1 no commas, so the entire line is the token
firstToken = curline;

}

/1 remove redundant quotes
first Token = cl eanupQuot es(firstToken);

/1 emt the <val ue> el enent
ch.startElement("","", "val ue", EMPTY_ATTR)
ch.characters(firstToken.toCharArray(), 0, firstToken. | ength(

ch. endEl enent ("","", "val ue");

/1 recursively process the remainder of the line
if (remainderOfLine '= null) {

par seLi ne(remai nder O Li ne, ch);
}

| ocate the position of the comma, taking into account that

/'l a quoted token may contain ignorable comas.
private int locateFirstDelimter(String curlLine) {

if (curLine.startsWth("\"")) {
bool ean i nQuote = true;
int nunChars = curlLine.length();
for (int i=1; i<nunChars; i++) {
char curChar = curlLine.charAt(i);
if (curChar ==""") {
i nQuote = !inQuote,;
} else if (curChar =="'," & & !inQuote) {

return i;
}
}
return -1;

} else {
return curline.indexOf(',");
}

}

/'l renmove quotes around a token, as well as pairs of quotes
/1 within a token.
private String cleanupQuotes(String token) {

StringBuffer buf = new StringBuffer();

int length = token.length();

int curlndex = 0;

if (token.startsWth("\"") && token.endsWth("\"")) {
curl ndex = 1;
l engt h--;

}

bool ean oneQuot eFound = fal se;
bool ean twoQuot esFound = fal se;

while (curlndex < length) {

char cur Char = token. char At (curl ndex);

if (curChar ==""")
t woQuot esFound = (oneQuot eFound) ? true : fal se;
oneQuot eFound = true;

} else {
oneQuot eFound = fal se;
t woQuot esFound = fal se;

}

i f (twoQuotesFound) {
t woQuot esFound = fal se;
oneQuot eFound = fal se;
cur |l ndex++;
conti nue;

}

buf . append(cur Char);
cur | ndex++;

}

return buf.toString();

}

CSVXM_Reader is a subclass of Abst ract XM_Reader , so it must provide an implementation of
the abstract par se method:

public void parse(lnputSource input) throws | OException
SAXException {
/1 if no handler is registered to receive events, don't bother
/1l to parse the CSV file
Cont ent Handl er ch = get ContentHandler();
if (ch == null) {

return,

}

The first thing this method does is check for the existence of a SAX Cont ent Handl er . The base
class, Abstract XM_Reader , provides access to this object, which is responsible for listening to
the SAX events. In our example, an instance of JAXP's Tr ansf or ner Handl er is used as the
SAX Cont ent Handl er implementation. If this handler is not registered, our par se method
simply returns because nobody is registered to listen to the events. In a real SAX parser, the XML
would be parsed anyway, which provides an opportunity to check for errors in the XML data.
Choosing to return immediately was merely a performance optimization selected for this class.

The SAX | nput Sour ce parameter allows our custom parser to locate the CSV file. Since an
I nput Sour ce has many options for reading its data, parsers must check each potential source
in the order shown here:

/'l convert the |InputSource into a BufferedReader
Buf f eredReader br = null;
if (input.getCharacterStream() != null) {

br = new Buff eredReader (i nput. getCharacterStream));
} else if (input.getByteStrean() !'= null) {

br = new BufferedReader (new I nput St r eanReader (

i nput.getByteStrean()));

} else if (input.getSystemd() != null) {

java.net.URL url = new URL(input.getSystemd());

br = new BufferedReader (new I nput St reanReader (url . openStream)));
} else {

t hrow new SAXException("lnvalid |InputSource object");
}

Assuming that our | nput Sour ce was valid, we can now begin parsing the CSV file and emitting
SAX events. The first step is to notify the Cont ent Hand| er that a new document has begun:

ch. start Docunent ();

/] emt <csvFile>
ch.startEl ement("","","csvFile", EMPTY_ATTR);

The XSLT processor interprets this to mean the following:

<?xm version="1.0" encodi ng="UTF-8""?>
<csvFi |l e>

Our parser simply ignores many SAX 2 features, particularly XML namespaces. This is why many
values passed as parameters to the various Cont ent Handl er methods simply contain empty
strings. The EMPTY _ATTR constant indicates that this XML element does not have any attributes.

The CSV file itself is very straightforward, so we merely loop over every line in the file, emitting
SAX events as we read each line. The par seLi ne method is a private helper method that does
the actual CSV parsing:

/'l read each Iine of the file until EOF is reached
String curLine = null;
while ((curLine = br.readLine()) !'= null) {
curLine = curLine.trinm();
if (curLine.length() > 0) {
/'l create the <line> el enment

ch.startEl enent("","","line", EMPTY_ATTR);
par seLi ne(curLine, ch);
ch. endEl enent ("","", "l i ne");

}
And finally, we must indicate that the parsing is complete:
/'l emt </csvFile>

ch. endEl enent ("","","csvFile");
ch. endDocunent () ;

The remaining methods in CSVXMLReader are not discussed in detail here because they are
really just responsible for breaking down each line in the CSV file and checking for commas,

guotes, and other mundane parsing tasks. One thing worth noting is the code that emits text,
such as the following:

<val ue>Sone Text Here</val ue>

SAX parsers use the char act er s method on Cont ent Handl er to represent text, which has
this signature:

public void characters(char[] ch, int start, int |ength)

Although this method could have been designed to take a St r i ng, using an array allows SAX
parsers to preallocate a large character array and then reuse that buffer repeatedly. This is why
an implementation of Cont ent Handl er cannot simply assume that the entire ch array contains
meaningful data. Instead, it must read only the specified number of characters beginning at the
start position.

Our parser uses a relatively straightforward approach, simply converting a St r i ng to a character
array and passing that as a parameter to the char act er s method:

Il emt the <val ue>text</val ue> el enent

ch.startEl enent("","", "val ue", EMPTY_ATTR) ;
ch.characters(firstToken.toCharArray(), 0, firstToken.length());
ch. endEl enent ("","", "val ue");

5.3.5.4 Using the parser

To wrap things up, let's look at how you will actually use this CSV parser with an XSLT
stylesheet. The code shown in Example 5-8 is a standalone Java application that allows you to
perform XSLT transformations on CSV files. As the comments indicate, it requires the name of a
CSV file as its first parameter and can optionally take the name of an XSLT stylesheet as its
second parameter. All output is sent to Syst em out .

Example 5-8. SimpleCSVProcessor.java
package comoreilly.javaxslt.util;

i mport java.io.*;

i mport javax.xm .transform*;

i mport javax.xnl.transform sax. *;

i mport javax.xm .transform stream *;
i mport org.xm .sax.*;

/**

* Shows how to use the CSVXM_Reader class. This is a command-|ine
*utility that takes a CSV file and optionally an XSLT file as

* conmand |ine paranmeters. A transformation is applied and the

* output is sent to System out.

*/

public class SinpleCSVProcessor {

public static void main(String[] args) throws Exception {
if (args.length == 0) {

Systemerr.println("Usage: java
+ Si npl eCSVProcessor. cl ass. get Nane()
+ " <csvFile> [xsltFile]");
Systemerr.println(" - csvFile is required");
Systemerr.printin(" - xsltFile is optional");
Systemexit(1);
}

String csvFileNanme = args[O0];
String xsltFileName = (args.length > 1) ? args[1] : null

Transf ornmer Factory transFact = Transfornmer Fact ory. newl nst ance(

i f (transFact. get Feat ure(SAXTransf or ner Fact ory. FEATURE)) {
SAXTr ansf or ner Factory saxTransFact =
(SAXTr ansf or ner Fact ory) transFact;

Tr ansf or mer Handl er transHand = nul | ;
if (xsltFileNane == null) {

transHand = saxTransFact. newTransfornerHandler();
} else {

transHand = saxTransFact. newTr ansf or mer Handl er (

new St reanSource(new File(xsltFileNane)));

}

/1 set the destination for the XSLT transfornmation
transHand. set Resul t (new StreanResul t (System out));

/1 hook the CSVXMLReader to the CSV file

CSVXMLReader csvReader = new CSVXM_Reader();

I nput Source csvlnput Src = new | nput Sour ce(
new Fi | eReader (csvFil eNane));

/] attach the XSLT processor to the CSVXM_Reader
csvReader . set Cont ent Handl er (t r ansHand) ;
csvReader . parse(csvl nput Src);

} else {
System err.println("SAXTransformerFactory i s not

supported.");

Systemexit(1);

}

}

As mentioned earlier in this chapter, the Tr ansf or ner Handl er is provided by JAXP and is an
implementation of the or g. xi . sax. Cont ent Handl er interface. It is constructed by the
SAXTr ansf or mer Fact ory as follows:

Transf or mer Handl er transHand = nul | ;
if (xsltFileName == null) {
transHand = saxTransFact. newlr ansformerHandler();
} else {
transHand = saxTransFact. newTr ansf or ner Handl er (
new St reanSource(new Fil e(xsltFileNane)));

}

When the XSLT stylesheet is not specified, the transformer performs an identity transformation.
This is useful when you just want to see the raw XML output without applying a stylesheet. You

will probably want to do this first to see how your XSLT will need to be written. If a stylesheet is
provided, however, it is used for the transformation.

The custom parser is then constructed as follows:
CSVXMLReader csvReader = new CSVXM_Reader();

The location of the CSV file is then converted into a SAX | nput Sour ce:

| nput Source csvlnput Src = new | nput Sour ce(
new Fi | eReader (csvFi |l eNane));

And finally, the XSLT processor is attached to our custom parser. This is accomplished by
registering the Tr ansf or ner Handl er as the Cont ent Handl er on csvReader . A single call to
the par se method causes the parsing and transformation to occur:

/1l attach the XSLT processor to the CSVXM.Reader
csvReader . set Cont ent Handl er (t ransHand) ;
csvReader. parse(csvl nput Src);

For a simple test, assume that a list of presidents is available in CSV format:

Washi ngt on, Geor ge, ,
Adans, John, ,
Jef ferson, Thonas, ,
Madi son, Janes, ,
etc...
Bush, Geor ge, Her bert, Wl ker
Cinton, WIIliamJefferson,
Bush, George, W

To see what the XML looks like, invoke the program as follows:
java comoreilly.javaxslt.util.Sinpl eCSVProcessor presidents.csv

This will parse the CSV file and apply the identity transformation stylesheet, sending the following
output to the console:

<?xm version="1.0" encodi ng="UTF-8""?>
<csvFi | e>
<line>
<val ue>Washi ngt on</ val ue>
<val ue>Ceor ge</ val ue>
<val ue/ >
<val ue/ >
</line>
<line>
etc...
</csvFil e>

Actually, the output is crammed onto a single long line, but it is broken up here to make it more
readable. Any good XML editor application should provide a feature to pretty-print the XML as
shown. In order to transform this into something useful, a stylesheet is required. The XSLT
stylesheet shown in Example 5-9 takes any output from this program and converts it into an
HTML table.

Example 5-9. csvToHTMLTable.xslt

<?xm version="1.0" encodi ng="UTF-8""?>
<xsl :styl esheet
version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put met hod="htm "/ >

<xsl:tenplate match="/">
<tabl e border="1">
<xsl :apply-tenpl ates sel ect="csvFile/line"/>
</t abl e>
</ xsl:tenpl at e>

<xsl:tenplate match="1ine">
<tr>
<xsl :apply-tenpl at es sel ect="val ue"/ >
</[tr>

</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="val ue">

<td>
<l-- If avalue is enpty, print a non-breaking space
so the HTML table | ooks OK -->
<xsl:if test=".=""">
<xsl : text > di sabl e- out put - escapi ng="yes" >&anp; nbsp; </ xsl : t ext >
</xsl:if>
<xsl :val ue-of select="."/>
</td>

</ xsl:tenpl at e>
</ xsl : styl esheet >

In order to apply this stylesheet, type the following command:

java comoreilly.javaxslt.util.Sinpl eCSVProcessor presidents.csv
csvToHTM.Tabl e. xsl t

As before, the results are sent to Syst em out and contain code for an HTML table. This
stylesheet will work with any CSV file parsed with Si npl eCSVPr ocessor , not just
presidents.xml. Now that the concept has been proved, you can add fancy formatting and custom
output to the resulting HTML without altering any Java code -- just edit the stylesheet or write a
new one.

5.3.5.5 Conclusion

Although writing a SAX parser and connecting it to JAXP does involve quite a few interrelated
classes, the resulting application requires only two command-line arguments and will work with
any CSV or XSLT file. What makes this example interesting is that the same approach will work
with essentially any data source. The steps are broken down as follows:

1. Create a custom SAX parser by implementing or g. xni . sax. XM_Reader or extending
comoreilly.javaxslt.util.Abstract XM_Reader .

2. Inyour parser, emit the appropriate SAX events as you read your data.
3. Modify Si npl eCSVPr ocessor to utilize your custom parser instead of CSVXM_Reader .

For example, you might want to write a custom parser that accepts a SQL statement as input
rather than a CSV file. Your parser could then connect to a database, issue the query, and fire
SAX events for each row in the Resul t Set . This makes it very easy to extract data from any
relational database without writing a lot of custom code. This also eliminates the intermediate
step of JDOM or DOM production because the SAX events are fed directly into JAXP for
transformation.

5.3.6 Feeding JDOM Output into JAXP

The DOM API is tedious to use, so many Java programmers opt for JDOM instead. The typical
usage pattern is to generate XML dynamically using JDOM and then somehow transform that into
a web page using XSLT. This presents a problem because JAXP does not provide any direct
implementation of the | avax. xnl . Sour ce interface that integrates with JDOM.! There are at
least three available options:

51 As this is being written, members of the JDOM community are writing a JDOM implementation of
javax. xm . Sour ce that will directly integrate with JAXP.

Use or g.] dom out put . SAXQut put t er to pipe SAX 2 events from JDOM to JAXP.

Use or g.] dom out put . DOMQOut put t er to convert the JDOM tree to a DOM tree, and
thenuse j avax. xm .t ransf orm dom DOVSour ce to read the data into JAXP.

Use or g. j dom out put . XMLCQut put t er to serialize the JDOM tree to XML text, and
thenuse | ava. xm . transform stream StreanSour ce to parse the XML back into
JAXP.

5.3.6.1 JDOM to SAX approach

The SAX approach is generally preferable to other approaches. Its primary advantage is that it
does not require an intermediate transformation to convert the JDOM tree into a DOM tree or text.
This offers the lowest memory utilization and potentially the fastest performance.

In support of SAX, JDOM offers the or g.] dom out put . SAXQut put t er class. The following
code fragment demonstrates its usage:

Transfornmer Factory transFact = TransfornerFactory. new nstance();
if (transFact. get Feat ure(SAXTr ansf or mer Fact ory. FEATURE)) {
SAXTr ansf orner Factory stf = (SAXTransfornerFactory) transFact;
/1l the 'stylesheet' paraneter is an instance of JAXP s
/1l javax.xm .transform Tenpl ates interface
Transf or mer Handl er transHand =
st f. newlransf or ner Handl er (styl esheet);

/1 result is a Result instance

transHand. set Resul t (result);

SAXQut put ter saxQut = new SAXCQut putter(tr ansHand);

/'l the "jdonDoc' parameter is an instance of JDOM s

/1l org.jdom Docunent class. In contains the XM. data

saxQut . out put (j donDoc) ;
} else {

Systemerr. println("SAXTransfornerFactory is not supported");
}

5.3.6.2 JDOM to DOM approach

The DOM approach is generally a little slower and will not work if JDOM uses a different DOM
implementation than JAXP. JDOM, like JAXP, can utilize different DOM implementations behind
the scenes. If JDOM refers to a different version of DOM than JAXP, you will encounter
exceptions when you try to perform the transformation. Since JAXP uses Apache's Crimson
parser by default, you can configure JDOM to use Crimson with the

org. | dom adapt ers. Cri nsonDOVAdapt er class. The following code shows how to convert a
JDOM Document into a DOM Document:

org.j dom Docunent jdonDoc = createJDOVDocunent();
/1 add data to the JDOM Docunent

/'l convert the JDOM Docunent into a DOM Docunent

org.j dom out put. DOMQut putter donQut = new org.j dom out put. DOMQut put t er (
"org.jdom adapt ers. Cri nsonDOVAdapt er") ;

or g. w3c. dom Docunent donDoc = domQut. out put (j donDoc) ;

The second line is highlighted because it is likely to give you the most problems. When JDOM
converts its internal object tree into a DOM object tree, it must use some underlying DOM
implementation. In many respects, JDOM is similar to JAXP because it delegates many tasks to
underlying implementation classes. The DOVOut put t er constructors are overloaded as follows:

/'l use the default adapter class
public DOVQut putter()

/'l use the specified adapter class
public DOMQut putter(String adapterd ass)

The first constructor shown here will use JDOM's default DOM parser, which is not necessarily
the same DOM parser that JAXP uses. The second method allows you to specify the name of an
adapter class, which must implement the or g. | dom adapt er s. DOVAdapt er interface. JDOM
includes standard adapters for all of the widely used DOM implementations, or you could write
your own adapter class.

5.3.6.3 JDOM to text approach

In the final approach listed earlier, you can utilize] ava. i o. Stri ngWiter and
java.io. StringReader . First create the JDOM data as usual, then use
org. | dom out put. XM_Qut put t er to convert the data into a St ri ng of XML:

StringWiter sw = new StringWiter();
org.j dom out put. XM_Qut putter xm Qut

= new org.jdom out put. XM_Qut putter("", false);
xm Qut . out put (j donDoc, sw);

The parameters for XMLOut put t er allow you to specify the amount of indentation for the output
along with a bool ean flag indicating whether or not linefeeds should be included in the output. In
the code example, no spaces or linefeeds are specified in order to minimize the size of the XML
that is produced. Now that the St ri ng\W i t er contains your XML, you can use a
StringReader along with j avax. xm .t ransform st ream StreanSour ce to read the data
into JAXP:

StringReader sr = new StringReader(sw.toString());
Source xm Source = new javax. xm .transform stream StreanSource(sr);

The transformation can then proceed just as it did in Example 5-4. The main drawback to this
approach is that the XML, once converted to text form, must then be parsed back in by JAXP
before the transformation can be applied.

5.4 Stylesheet Compilation

XSLT is a programming language, expressed using XML syntax. This is not for the benefit of the
computer, but rather for human interpretation. Before the stylesheet can be processed, it must be
converted into some internal machine-readable format. This process should sound familiar,
because it is the same process used for every high-level programming language. You, the
programmer, work in terms of the high-level language, and an interpreter or compiler converts
this language into some machine format that can be executed by the computer.

Interpreters analyze source code and translate it into machine code with each execution. In this
case of XSLT, this requires that the stylesheet be read into memory using an XML parser,
translated into machine format, and then applied to your XML data. Performance is the obvious
problem, particularly when you consider that stylesheets rarely change. Typically, the stylesheets

are defined early on in the development process and remain static, while XML data is generated
dynamically with each client request.

A better approach is to parse the XSLT stylesheet into memory once, compile it to machine-
format, and then preserve that machine representation in memory for repeated use. This is called
stylesheet compilation and is no different in concept than the compilation of any programming
language.

5.4.1 Templates API

Different XSLT processors implement stylesheet compilation differently, so JAXP includes the
javax. xm . transform Tenpl at es interface to provide consistency. This is a relatively
simple interface with the following API:

public interface Tenplates {
java.util.Properties getQutputProperties();
javax. xm . transform Transforner newlransformer()
t hrows Transforner Configurati onExcepti on;

}

The get Qut put Properties() method returns a clone of the properties associated with the
<xsl : out put > element, such as net hod="xnl ", i ndent ="yes", and encodi ng="UTF- 8".
You might recall that| ava. uti| . Properties (asubclassof | ava. uti| . Hasht abl e)
provides key/value mappings from property names to property values. Since a clone, or deep
copy, is returned, you can safely modify the Pr oper ti es instance and apply it to a future
transformation without affecting the compiled stylesheet that the instance of Tenpl at es
represents.

The newTr ansfornmer () method is more commonly used and allows you to obtain a new
instance of a class that implements the Tr ansf or ner interface. It is this Tr ansf or ner object
that actually allows you to perform XSLT transformations. Since the implementation of the
Tenpl at es interface is hidden by JAXP, it must be created by the following method on
javax. xm . transform Transforner Factory:

public Tenpl at es newTenpl at es(Source sour ce)
throws Transformer Configurati onException

As in earlier examples, the Sour ce may obtain the XSLT stylesheet from one of many locations,
including a filename, a system identifier, or even a DOM tree. Regardless of the original location,
the XSLT processor is supposed to compile the stylesheet into an optimized internal
representation.

Whether the stylesheet is actually compiled is up to the implementation, but a safe bet is that
performance will continually improve over the next several years as these tools stabilize and
vendors have time to apply optimizations.

Figure 5-6 illustrates the relationship between Tenpl at es and Tr ansf or ner instances.

Figure 5-6. Relationship between Templates and Transformer

One Transformer inglance per
concurrent user. Inslances can be reused
for fulure transformations.

Each Template inslance represents
a singled compiled stylesheet.

_ + == 2 Transiormer —m-
compilad : . |

I . o Crgatess |
home.xsit Templates [-------%2a

= == Transformer f—m r

XSLT
Styleshepts

== =3 - Transformer f—u |r

ED-":'?,IG'.']'E(? Create
NI : == e
producis. xsit Templates |-------%-

=Bl TraANSIIMEr fe '\

pmrmesssse gt sssmnany

Many users/threadscan share
Templates inslances.

=3 Transformer f—p- r.

Thread safety is an important issue in any Java application, particularly in a web context where
many users share the same stylesheet. As Figure 5-6 illustrates, an instance of Tenpl at es is
thread-safe and represents a single stylesheet. During the transformation process, however, the
XSLT processor must maintain state information and output properties specific to the current
client. For this reason, a separate Tr ansf or ner instance must be used for each concurrent
transformation.

Transf or mer is an abstract class in JAXP, and implementations should be lightweight. This is
an important goal because you will typically create many copies of Tr ansf or ner , while the
number of Tenpl at es is relatively small. Tr ansf or mer instances are not thread-safe, primarily
because they hold state information about the current transformation. Once the transformation is
complete, however, these objects can be reused.

5.4.2 A Stylesheet Cache

XSLT transformations commonly occur on a shared web server with a large number of concurrent
users, so it makes sense to use Tenpl at es whenever possible to optimize performance. Since
each instance of Tenpl at es is thread-safe, it is desirable to maintain a single copy shared by
many clients. This reduces the number of times your stylesheets have to be parsed into memory
and compiled, as well as the overall memory footprint of your application.

The code shown in Example 5-10 illustrates a custom XSLT stylesheet cache that automates
the mundane tasks associated with creating Tenpl at es instances and storing them in memory.
This cache has the added benefit of checking the | ast Modi i ed flag on the underlying file, so it
will reload itself whenever the XSLT stylesheet is modified. This is highly useful in a web-
application development environment because you can make changes to the stylesheet and
simply click on Reload on your web browser to see the results of the latest edits.

Example 5-10. StylesheetCache.java
package comoreilly.javaxslt.util;

i mport java.io.?*;

i mport java.util.*;
i mport javax.xnl.transform *;
i mport javax.xnl.transform stream *

/**

* Autility class that caches XSLT stylesheets in nenory.
*
*/
public class Styl esheet Cache {
/1 map xslt file names to MapEntry instances
[l (MapEntry is defined bel ow)
private static Map cache = new HashMap();

/**

* Flush all cached styl esheets fromnmenory, enptying the cache.
*/
public static synchronized void flushAll () {
cache.clear();
}

/**

* Flush a specific cached stylesheet fromnmenory.
*
* @aram xsltFileNane the file name of the styl esheet to renove
*/
public static synchronized void flush(String xsltFileNane) {
cache. renmove(xsl t Fi | eNane) ;
}

/**

* (pbtain a new Transforner instance for the specified XSLT file
nane.

* Anewentry will be added to the cache if this is the first
request

* for the specified file nane.

*

* @aram xsltFileNanme the file name of an XSLT styl esheet.

* @eturn a transformation context for the gi ven styl esheet.

*/

public static synchronized Transfornmer newlransforner(String
xsl t Fi | eNane)

throws Transforner Configurati onException {
File xsltFile = new Fil e(xsltFileNane);

/1 determ ne when the file was |ast nodified on disk
I ong xsl LastModified = xsltFile.lastMdified();
MapEntry entry = (MapEntry) cache. get (xsltFil eNane);

if (entry !'= null) {
/1 if the file has been nodified nore recently than the
/'l cached styl esheet, renpve the entry reference
if (xslLastMdified > entry.|astMdified) {
entry = null;
}

}

/1l create a new entry in the cache if necessary

if (entry == null) {
Sour ce xsl Source = new StreanSource(xsltFile);

TransfornmerFactory transFact =
Transf or mer Fact ory. newl nst ance();
Tenpl ates tenpl ates = transFact. newlenpl at es(xsl Source);

entry = new MapEntry(xsl Last Modi fied, tenplates);
cache. put (xsl tFi | eNanme, entry);

}

return entry.tenpl ates. newlransforner();

}

[l prevent instantiation of this class
private Styl esheetCache() {

}

/**

* This class represents a value in the cache Map.
*/

static class MapEntry {

long lastModified; // when the file was nodified
Tenpl ates tenpl at es;

MapEntry(long | ast Modi fied, Tenplates tenpl ates) ({
this.lastMdified = | astMdified;
this.tenplates = tenpl at es;

}

Because this class is a singleton, it has a private constructor and uses only static methods.
Furthermore, each method is declared as synchr oni zed in an effort to avoid potential threading
problems.

The heart of this class is the cache itself, which is implemented using j ava. uti | . Map:
private static Map cache = new HashMap();

Although HashMap is not thread-safe, the fact that all of our methods are synchr oni zed
basically eliminates any concurrency issues. Each entry in the map contains a key/value pair,
mapping from an XSLT stylesheet filename to an instance of the VapEnt ry class. MapEnt ry is
a nested class that keeps track of the compiled stylesheet along with when its file was last
modified:

static class MapEntry {
long lastModified;, // when the file was nodified
Tenpl ates tenpl at es;

MapEntry(long | ast Modi fi ed, Tenplates tenplates) {
this.lastMdified = | ast Mdified,
this.tenpl ates = tenpl at es;

}
Removing entries from the cache is accomplished by one of two methods:

public static synchronized void flushAll() {
cache.clear();

}

public static synchronized void flush(String xsltFileNane) {
cache. renmove(xsltFil eNane) ;
}

The first method merely removes everything from the Map, while the second removes a single
stylesheet. Whether you use these methods is up to you. The f | ushAl | method, for instance,
should probably be called from a servlet's dest r oy() method to ensure proper cleanup. If you
have many servlets in a web application, each servlet may wish to flush specific stylesheets it
usesviathef| ush(...) method. If the xs| t Fi | eNanme parameter is not found, the Map
implementation silently ignores this request.

The majority of interaction with this class occurs via the newTr ansf or ner method, which has
the following signature:

public static synchronized Transfornmer newlransforner(String
xsl t Fi | eNane)
throws Transforner Configurati onException {

The parameter, an XSLT stylesheet filename, was chosen to facilitate the "last accessed" feature.
We use the | ava. i 0. Fi | e class to determine when the file was last modified, which allows the
cache to automatically reload itself as edits are made to the stylesheets. Had we used a system
identifier or | nput St r eaminstead of a filename, the auto-reload feature could not have been
implemented. Next, the Fi | e object is created and its | ast Modi f i ed flag is checked:

File xsltFile = new File(xsltFileName);

/1 determ ne when the file was | ast nodified on disk
| ong xsl LastModified = xsltFile.lastMdi fied();

The compiled stylesheet, represented by an instance of VapEnt r y, is then retrieved from the
Map. If the entry is found, its timestamp is compared against the current file's timestamp, thus
allowing auto-reload:

MapEntry entry = (MapEntry) cache. get(xsltFil eNane);

if (entry I'= null) {
/1 if the file has been nodified nore recently than the
/'l cached styl esheet, renove the entry reference
if (xslLastMdified > entry.|astMdified) {
entry = null;
}

}

Next, we create a new entry in the cache if the entry object reference is still nul | . This is
accomplished by wrapping a St r eanSour ce around the Fi | e object, instantiating a

Transf or nmer Fact or y instance, and using that factory to create our Tenpl at es object. The
Tenpl at es object is then stored in the cache so it can be reused by the next client of the cache:

/'l create a new entry in the cache if necessary
if (entry == null) {
Sour ce xsl Source = new StreantSource(xsltFile);

Transfornmer Factory transFact = TransfornerFactory. newl nstance();
Tenpl ates tenpl ates = transFact. newTenpl at es(xsl Source);

entry = new MapEntry(xsl Last Modified, tenplates);
cache. put (xsl tFi | eName, entry);

Finally, a brand new Tr ansf or ner is created and returned to the caller:
return entry. tenpl ates. newlransformer();

Returning a new Tr ansf or ner is critical because, although the Tenpl at es object is thread-
safe, the Tr ansf or mer implementation is not. Each caller gets its own copy of Tr ansf or mer
so multiple clients do not collide with one another.

One potential improvement on this design could be to add a| ast Accessed timestamp to each
MapEnt ry object. Another thread could then execute every couple of hours to flush map entries
from memory if they have not been accessed for a period of time. In most web applications, this
will not be an issue, but if you have a large number of pages and some are seldom accessed, this
could be a way to reduce the memory usage of the cache.

Another potential modification is to allow | avax. xnl . t ransf or m Sour ce objects to be passed
as a parameter to the newTr ansf or ner method instead of as a filename. However, this would
make the auto-reload feature impossible to implement for all Sour ce types.

Chapter 6. Servlet Basics and XSLT

XSLT and servlets are a natural fit. Java is a cross-platform programming language, XML
provides portable data, and XSLT provides a way to transform that data without cluttering up your
servlet code with HTML. Because your data can be transformed into many different formats, you
can also achieve portability across a variety of browsers and other devices. Best of all, a clean
separation between data, presentation, and programming logic allow changes to be made to the
look and feel of a web site without digging in to Java code. This makes it possible, for example, to
sell highly customizable web applications. You can encourage your customers to modify the
XSLT stylesheets to create custom page layouts and corporate logos, while preventing access to
your internal Java business logic.

As discussed in previous chapters, an initial challenge faced with XSLT and servlets is the initial
configuration. Getting started with a web application is typically harder than client-only
applications because there are more pieces to assemble. With a Swing application, for instance,
you can start with a single class that has a mai n() method. But with a web application, you
must create an XML deployment descriptor in addition to the servlet, package everything up into
a WAR file, and properly deploy to a servlet container. When errors occur, you see something like
"HTTP 404 -- File not found," which is not particularly helpful.

The goal of this chapter is to introduce servlet syntax with particular emphasis on configuration
and deployment issues. Once servlet syntax has been covered, integration with XSLT stylesheets
and XML is covered, illustrated by the implementation of a basic web application. By the time you
have worked through this material, you should have confidence to move on to the more
complicated examples found in the remainder of this book.

6.1 Servlet Syntax

Servlet architecture was covered in Chapter 4, along with comparisons to many other
approaches. The architecture of a system is a mile-high view, ignoring implementation details so
you can focus on the big picture. We now need to dig into the low-level syntax issues to proceed
with the really interesting examples in later chapters. For a complete discussion of servlets, check
out Jason Hunter's Java Servlet Programming (O'Reilly). Be sure to look for the second edition
because so much has changed in the servlet world since this book was first published.

6.1.1 Splash Screen Servlet Example

Ouir first servlet example will produce an application splash screen. The servlet will receive a
request from a browser and output a simple HTML web page. Figure 6-1 contains the class
diagram for Spl ashScr eenSer vl et , which extends from Hi t pSer vl et .

Figure 6-1. SplashScreenServlet class diagram

protocol | <<abstract=»
independent GanericServlat
HITR <<alislract--
specific HttpServist
SplashScreenSenviet
This is whal _____| S
you wrile getServiatinfol)
dolet)

When writing servlets, you almost always extend from Ht t pSer vI et . In our example, we
override the doCet () method, which is called every time the browser issues an HTTP GET
request to the server. GET requests occur whenever the user types in a URL, clicks on a
hyperlink, or submits an HTML form with GET as the net hod attribute. The other common type
of request is POST, which is used by HTML forms with POST as the net hod attribute. For
example:

<form action="soneServl et" nethod="POST" >
...formcontents
</forne

In the case of POST requests, your servlet simply overrides the doPost () method instead of
doCet (). Each of these methods takes two parameters: Ht t pSer vl et Request and

Ht t pSer vl et Response. The request contains information from the client to the servlet, and the
response allows the servlet to send data back to the client. This correlates directly to the
request/response nature of HTTP itself. Example 6-1 contains the complete source code for our
simple servlet.

Example 6-1. SplashScreenServlet.java
package chap6;

i mport java.io.*;
i mport javax.servlet.*;
i mport javax.servlet.http.*;

/**
* A sinple Servlet exanple that displays a "Splash Screen”
* for a web application.
*/
public class SplashScreenServl et extends HttpServlet {
public String getServlietlnfo() {
return "Shows an application splash screen.”;

}
protected void doGet (HttpServl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

/'l denmpnstrate how to get paraneters fromthe request

String nextURL = request.getParaneter("next URL");
if (nextURL == null) {

nextURL = "/";
}

response. set Cont ent Type("text/htm ") ;

PrintWiter pw = response.getWiter();

pw. println("<htm >");

pw. printl n("<head><title>Splash Screen</title></head>");
pw. printl n("<body>");

pw. println
pw. println

'<div align="center' style="border: 1px navy solid;"'>");
'<h1>Wel cone to Java and XSLT</h1>");

pw. println("<h3>0 Reilly and Associ at es</ h3>");

pw. println("<p>First Edition, 2001</p><hr>");

pw. println("Click here to
continue...");

pw. println("</div>");

pw. printl n(" </ body>");

pw. println("</htm >");

(
(
(
(

}
}

Beginning with the i npor t statements, note that the servlet APl is in the | avax. servl et and

j avax. servl et. http packages. These packages are not part of the Java 2 Standard Edition;
they are considered a required API of the Java 2 Platform Enterprise Edition. Although many
servlet implementations are available, Apache's Tomcat is the reference implementation officially
sanctioned by Sun. Every example in this book works with Version 4.0 of Tomcat and should also
work on any compliant servlet implementation. You can download Tomcat at
http://jakarta.apache.org.

As shown in Figure 6-1, Spl ashScreenSer vl et is a subclass of Ht t pSer vl et . The first
method we override is get Ser vl et | nf o() , which simply returns a brief description of this
servlet. Although optional, this text will show up in the administrative console of many servlet

containers.

The doCet () method is next, which is designed to handle each client request. It is important to
remember that this method needs to be thread-safe, because many clients could potentially share
this servlet instance and call doGet () concurrently. You may notice that doGet () isa

pr ot ect ed method. The call sequence is as follows:

1. The servlet container invokes the ser vi ce() method on Ht t pSer vl et .
2. HttpServl et figures out the type of request (GET, POST, ...).
3. HttpServl et invokes the corresponding method (doCGet (), doPost (), ...).

Since the doCGet () method is called from its parent class, it can be pr ot ect ed. If you do not
override the doCet () method, the default behavior in Ht t pSer vI et is to return an error page
back to the client. If you also want to support POST, you must override the doPost () method.
One common technique is to have the doCet () method call the doPost () method, or vice-
versa. This allows the same servlet to support both GET and POST without duplicating any code.

The doCet () implementation is very straightforward. The first thing it does is check for the
existence of a parameter called next URL. This is part of the request that the browser issues to

the servlet. For example, typing the following URL into your browser will include the next URL
parameter:

http://1 ocal host: 8080/ chap6/ spl ash?next URL=http://ww. oreilly.com

If the next URL parameter is not specified, its value will be nul | . For this reason, servlets must
always check for nul | when getting parameters from the request:

String next URL = request. get Paraneter (" next URL");
if (nextURL == null) {

nextURL = "/";
}

In our example, nul | causes an error, so we replace next URL with a forward slash character
(/). As you might guess, this is a relative URL that points to the root directory. In the case of a
servlet running on Tomcat, the root directory will point to Tomcat's home page. This is not the
same as the root directory on your file system. In Tomcat, the root directory can be found under
TOMCAT_HOME/webapps/ROOT, where TOMCAT_HOME points to the installation directory of
Tomcat.

The get Par anet er () method is also used for retrieving values from an HTML form. When an
HTML form is submitted, each component on the form should have a name associated with it,
suchas firstNane, | ast Nane, or ssn. The servlet retrieves the form values simply by calling
request. get Paranet er () for each form element. It is always a good idea to check for nul |
and trim whitespace before accepting any of these parameters. When the form element is
missing, the parameter value will be nul | . This could indicate an error in your HTML or perhaps
an intentional attack on your web site.

The Hi t pSer vl et Response class provides access to eithera Pri nt Wi ter oran

Qut put St r eam depending on whether you wish to send text or binary data to the client. For
HTML or XML data, use the Ht t pSer vl et Response. get Witer() method. Forimages or
other types of binary data, use the Hi t pSer vl et Response. get Qut put St rean{) method.
You may also note that we set the content type of the response prior to getting the writer:

response. set Cont ent Type("text/htm");
PrintWiter pw = response.getWiter();

This is important because the HTTP response consists of a header followed by the actual
content. The content type is one of the header values, so it must be sent prior to the actual data.
Without going into too many servlet details, it is a good practice to always set the content type
before getting the writer. In future examples, we will occasionally use t ext / xni as the content
type, but only when sending raw XML data to the client.

The remainder of Spl ashScr eenSer vl et simply prints out an HTML response:

pw. println("<htm >");
pw. println("<head><titl e>Splash Screen</title></head>");
pw. printl n("<body>");

pw.println("<div align="center' style=" border: 1px navy solid;"'>");
pw. println("<hl>Welcome to Java and XSLT</ hl>");

pw.println("<h3>0 Reilly and Associ at es</ h3>");

pw. println("<p>First Edition, 2001</p><hr>");

pw.println("Click here to continue...");
pw. println("</div>");

pw. println("</body>");

pw.println("</htn>");

As you can see, the next URL parameter is used to create a hyperlink to the next page. This is
why a value of nul | is unacceptable for this example.

This approach works fine for simple examples, but quickly gets out of hand for complex pages.
This is because all but the most basic web pages require hundreds, if not thousands, of lines of
HTML to create fancy tables, colors, and graphics. For reasons discussed in Chapter 5,
hardcoding that HTML into the servlet is simply unacceptable in a sophisticated web application.

6.2 WAR Files and Deployment

In the servlet model, Web Application Archive (WAR) files are the unit of deployment. WAR files
enable portability across a wide range of servlet containers regardless of the vendor. The good
news is that WAR files are very easy to create and require only that you carefully follow the
guidelines for file and directory names. If you are careful to avoid spelling errors and misplaced
files, you should not have any problem with WAR files.

6.2.1 WAR Files

Figure 6-2 shows the standard structure of a WAR file. Since a WAR file is really just a JAR file
with a .war extension, you can utilize the jar command to create your WAR files.

Figure 6-2. WAR file structure

WEB-INF and all sub-direciories
{‘%ﬁ ApIaLe Wl ar not dirgctly wisible to clients
- {ie., wab browsers), but can be
indlex bl accessed from your cogeg,
The document roof directony s
publicly accessible and may contain cﬁ WEB-IN];—I
directarias, just ike & normal web site
fndex.html is the “home page" for this — web ximl —— The deployment descriptor

WA Fig.
T "\'_j classes classes directory is added
to the CLASSPATH for this
&= com

particular wab app.

KELT shyleshests If o0 want 1o
prevent direct access by clignfs.

Thiz is a good place 1o put Jour
— b

L foobar jar
— ﬁ other dwrectones

ANl JAR filgs in the i directory
dre added fo the CLASSPATH.

To create a WAR file, simply arrange your files into the directory structure shown in Figure 6-2
and issue the following command from the directory that contains index.html:x!

[index.html is the "home page" for a web application.

jar -cviM ../ appname. war
This command assumes that the WAR file will be placed in the parent of your current working
directory; the forward slash (/) works on Windows as well as Unix clients. Once the WAR file has

been created, you can view its contents by changing to its directory and issuing the following
command:

jar -tvf appnane. war

This shows the table of contents for the WAR file, which must match the structure shown in
Figure 6-2.

The topmost directory in the WAR file is publicly accessible to web browsers and should contain
your JSP and HTML files. You can also create subdirectories, which will also be visible to the
client. A common practice is to create an images directory for storing your graphic files.

The WEB-INF directory is always hidden from clients that access your web application. The
deployment descriptor, web.xml, is located here, as are the classes and lib directories. As Figure
6-2 indicates, the classes directory becomes available to your application's Cl assLoader . Any
JAR files contained in the lib directory are also available to your code, making it very easy to
deploy third-party libraries along with a web application. The folder other_directories can be
anything you want and will also be hidden from clients since it resides under the WEB-INF
directory. Although clients cannot see any of these directories and files directly, your servlet can
access these resources programmatically and then deliver that content.

6.2.2 Deployment Descriptor

The deployment descriptor is always called web.xml and must be placed directly in the WEB-INF
directory of your web application. The job of the deployment descriptor is to provide the servlet
container with complete configuration information about a web application. This may include
security attributes, aliases for servlets and other resources, initialization parameters, and even
graphical icons for Integrated Development Environments (IDES) to utilize. For our needs, a very
small subset of this functionality will be sufficient. For Spl ashScr eenSer vl et , we need to list
the Java class of the servlet, an alias for that servlet, and a URL mapping. The complete
deployment descriptor for Spl ashScreenSer vl et is listed in Example 6-2.

Example 6-2. web.xml for SplashScreenServlet.java

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE web- app
PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.2//EN
“http://java. sun. conij2ee/ dtds/web-app_2.2.dtd">
<web- app>
<servl et >
<l-- define an alias for the Servlet -->
<servl et - name>spl ashScr een</ ser vl et - name>
<servl et -cl ass>chap6. Spl ashScr eenSer vl et </ servl et -cl ass>
</servlet>

<servl et - mappi ng>
<l-- associate the Servliet with a URL pattern -->
<servl et - nane>spl ashScr een</ servl et - nanme>
<url -pattern>/splash/*</url -pattern>
</ servl et - mappi ng>
</ web- app>

The DOCTYPE is a required element of a deployment descriptor and must match what is shown in
Example 6-2. The only caveat is that newer versions of the servlet specification, such as
Version 2.3, use a different version number in the deployment descriptor. Unless you are using
2.3 features, however, you should stick with 2.2 to remain compatible with as many servlet
containers as possible.

A servlet definition lists the fully qualified package and class name of the servlet class, as well a
name for that servlet. Whenever another section in the deployment descriptor wishes to reference
this particular servlet, it uses the name specified here:

<servl et>

<servl et - nane>spl ashScr een</ servl et - nanme>

<servl et -cl ass>chap6. Spl ashScr eenSer vl et </ servl et -cl ass>
</servlet>

As you can see in Example 6-2, the servlet mapping uses this name in order to associate a
URL pattern with this particular servlet. This pattern will show up in the address that users type
into their web browsers when they access this servlet. In this case, the URL to

Spl ashScreenSer vl et is:

http://hostname:port/chap6/splash
This is the form that Tomcat defaults to, having the following components:
hostname:port

Typically | ocal host : 8080, although Tomcat can be configured to run on any port
number

chap6

The name of your web application, which is deployed in chap6.war for this example
splash

Part of the URL pattern for the servlet

Wildcards in the URL pattern indicate that any text will match. Since the deployment descriptor
listed / spl ash/ * as the pattern, any of the following URLs also invoke
Spl ashScr eenSer vl et :

http://localhost:8080/chap6/splash/
http://localhost:8080/chap6/splash/whatever.html
http://localhost:8080/chap6/splash/a/b/c

6.2.3 Deploying SplashScreenServlet to Tomcat

The simple steps for getting Spl ashScr eenSer vl et up and running are to compile the code,
create the deployment descriptor listed in Example 6-2, and create the WAR file using the jar
utility. The WAR file contents for this servlet are shown in Figure 6-3.

Figure 6-3. SplashScreenServlet WAR file

[on]
@ chap6 war
|:nd-::~: Ikl
| WEB-INF

|;we b xmld
ﬂ classes
I—ﬁ chap6

L5 plashScreenServlet class

Once you have created chap6.war, be sure to execute j ar -tvf chap6. war to confirm that
the contents are structured properly. The final step is to simply copy the entire JAR file to
Tomcat's webapps directory.

If a WAR file is copied into the webapps directory while
« 4. Tomcat IS running, it will not be recognized. Simply restart
Tomcat to begin using the web application.

=

Once the WAR file has been copied, you can execute startup.bat or startup.sh in Tomcat's bin
directory and then enter http://localhost:8080/chap6/splash into your favorite web browser. If you
see error messages, check to see that the JAVA_ HOME and TOMCAT_HOME environment
variables are properly set. You can also look in Tomcat's webapps directory to see if the WAR file
is properly expanded. When a web application is first invoked, Tomcat expands the WAR file into
its actual directory structure. When you look in the webapps directory, you should see chap6.war
as well as the chap6 directory.

If all else fails, check the documentation for Tomcat, double check your deployment descriptor,
and try the example servlets that come with Tomcat. To see the Tomcat home page, start Tomcat
and visit http://localhost:8080. If this does not work, then something more fundamental is wrong
with your Tomcat installation.

6.2.4 Servlet API Highlights

We will see more complex servlets throughout this book, but a recurring theme is to minimize
dependence on obscure servlet tricks and focus instead on using XML and XSLT to generate a
majority of the content in your web application. To make this happen, it is necessary to look at a
few of the commonly used classes that are part of the servlet package.

The | avax. servl et. Servl et Confi g class provides initialization parameters to a servlet at
startup time. Each servlet has the following method, which is called once when the servlet is first
initialized:

public void init(ServletConfig config) throws Servl et Exception

The Ser vl et Confi g object provides name/value St r i ng pairs used to configure servlets
without hardcoding values into the application code. For example, you might write code that looks
like this:

String xm Location = config.getlnitParaneter("xm Location");

Since xni Locat i on is an initialization parameter that is part of the XML deployment descriptor,
its value does not have to be hardcoded into your application. For additional examples, see
Section 6.3.6 later in this chapter.

Another important class is | avax. servl et . Ser vl et Cont ext . This class does a lot more
than Ser vl et Confi g, and its instance is shared among a group of servlets. Use
Ser vl et Confi g to obtain a reference to the Ser vl et Cont ext :

/'l config is an instance of ServletConfig
Servl et Context ctx = config.getServletContext();

Later in this book, we will focus on Ser vl et Cont ext 's ability to locate resources in a portable
way. You may be familiar with the get Resour ce() and get Resour ceAsStrean() methods
onj ava. | ang. C ass. These methods allow you to locate files and directories based on the
system CLASSPATH.

Ser vl et Cont ext provides its own get Resour ce() and get Resour ceAsStrean()
methods, but they are not based on CLASSPATH. Instead, the directory locations are based on
the location of the current web application. For example, you can write something such as:

cont ext . get Resour ce("/WEB- | NF/ styl esheet s/ home. xslt")

to load a stylesheet from the current WAR file. Regardless of where Tomcat was installed, this
approach will always locate the stylesheet without hardcoding a path name such as C:\path\....

6.3 Another Servlet Example

In our next example, the servlet will utilize DOM and XSLT to create its web pages. This achieves
our goal of separation between data and presentation, making it possible to fully customize the
HTML output without making any changes to the Java code. Although an XML approach makes
the code more complex for a small example program such as this, the benefits quickly outweigh
the costs as web applications get more sophisticated. The same is true for an Enterprise
JavaBeans approach. For a trivial program, the configuration requirements seem very complex;
but as the application complexity increases, the benefits of a sophisticated architecture become
obvious.

Our program will consist of two web pages, allowing visitors to enter personal information. The
first page will prompt for their name, phone, and email, and the second page will display a
summary of the data that was entered. The first page does validation, forcing the user to enter all
of the required fields.

6.3.1 Design

The primary goal of this small application is to demonstrate how to use XSLT from a servlet.
Specifically, JAXP will be used with DOM to create some dynamic XML data, then XSLT
stylesheets will be used to transform that data into HTML. The design is presented in Figure 6-
4,

Figure 6-4. Personal data design

PersonalData
HitpServlet - cehicaless firstheama
(111117151111 OSSR > lasthame
daytimePhona
"ﬁ' eveningFone
i amail
PersonalDataServiet | <<usé>> : A
it ssgomert>> |
doGet...) !
dﬂpﬂﬁn. :l W
ParsonalDataX ML converls PersonalDala
§ i === into DOM tree
i produceDOMDocument...)
N
Transformer i
st editPersonalData xsit bl
transform...)

confirmPersonalData. xsit BI

As Figure 6-4 shows, Per sonal Dat aSer vl et is a subclass of Ht t pSer vl et . This servlet
overrides both doCGet () and doPost (). When the visitor first visits this web site, an HTTP
GET request causes the doCGet () method to be called, which shows a form that allows the user
to enter his or her information. When they hit the submit button on the web page, the doPost ()
method validates all form fields and shows the confirmation page if everything is valid. If one or
more fields are missing, the form is redisplayed with an error message.

The Per sonal Dat a class simply holds data that the user has entered, and is located via the
Ht t pSessi on. Each visitor gets his or her own copy of Hi t pSessi on, therefore they get their

own copy of Per sonal Dat a. In order to convert this data to XML, a separate helper class called
Per sonal Dat aXVL was created.

The decision to use a separate helper class for XML generation was not arbitrary. Many people
like to put code directly into classes like Per sonal Dat a, such as a get XML() method, that
performs this task. By placing the XML generation logic into a totally separate class, however, it
will be easier to migrate to a technology like JDOM without breaking current clients in any way. A
new class called Per sonal Dat aJDOM could be added to the system while preserving all of the
existing code. This approach also keeps the Per sonal Dat a class smaller, since all it has to do
is hang on to the data.

The first web page is shown in Figure 6-5. As you can see, required fields are marked with an
asterisk (*). This screen is rendered using editPersonalData.xslt.

Figure 6-5. Blank personal information form

Z} http:/ /localhost:B080, chapb,/ personalData - Microsoft

File Edt View Favorkes Toole Help E3
deBack = = - 2d (8] ¥ LhSearch [4)Favaribes | #Hiskbory i
Address | 2] hitp: {flocaihost:2080/chaé jpersanalData x| PG nks ®

=l

Personal Information

Fields marked with %) are reguired.

First Mame: | *
Last Mame: | *
Diaytane Phone: | *
Evening Phone: |

Email | .

Submit |

& Dore | Local intranet

=

Figure 6-6 shows how this same screen looks after the user clicks on the Submit button. If data
is missing, an error message is displayed in red and required fields are marked in bold. Any other
error messages are also displayed in red. This view is also rendered using

edi t Per sonal Dat a. xsl t.

Figure 6-6. Personal information form with errors

T hitp:/ Mlocalhost:B080 chapb/personallata - Microse =10 x|

Fle Edt Wew Favortes Teok Help | |
ek + o - G [A Disearch [EiFevorites . HHitory it
Agdress Iﬂ http: | locahost:3080/ chanéioersanallata j 6o i Links **

=l

Personal Informmation

Fialds marked with ™) are reguirad,

First Mame: [Eric *

Last Mame: IEIurkE x
|

Evening Phone: I

|

& Done 15 Local intranst

- |

Once all of the data has been entered properly, the screen shown in Figure 6-7 is displayed.
Unlike the previous examples, this screen is rendered using confirmPersonalData.xslt. To make
changes to any of these screens, one needs to edit only the appropriate stylesheet.

Figure 6-7. Confirmation page

§ http:/ flocalhost:8080,/chapb/personalData - Microso S [=] S
Fle Edt Vew Favores Todk belp | |
iBack oo o) [1] A DhSearch [ijFavorites . #Hitory "
nﬁd-m|ﬂ_] hittp: {llocahost:A080) chapé personalDat s _:_| e ' Links *
=l

Thank You!

Youwr Information...

Frrst Mame: Fnae

Last Mame: Buwlke
Daytime Phone 636-123-4567

Evenng Phone:
Email: bmke_efdvalioo.com
ke here to edit thie information
i =
£] Done gﬂ Local intranet

6.3.2 XML and Stylesheets

Deciding how to structure your XML can have significant impact on your ability to customize the
output of a web application. In our current example, the same XML file is used for all web pages.
This XML is shown in Example 6-3.

Example 6-3. Example XML output

<?xm version="1.0" encodi ng="UTF-8""?>

<page>
<l-- the next elenent is optional: -->
<l-- <requiredFieldsMssing/> -->

<per sonal Dat a>
<firstName required="true">Eric</firstNanme>
<l ast Nane requi red="true" >Bur ke</| ast Nane>
<dayti mePhone required="true">636-123-4567</ dayti nePhone>
<eveni ngPhone/ >
<emai | required="true">burke_e@ahoo. conk/ enail >

</ per sonal Dat a>

</ page>

As you can see, the XML is very minimal. None of the captions, such as " Fi r st Nane: ", are
included, because they are all specified in the XSLT stylesheets. Even the asterisk character (*)
is omitted, giving the XSLT author complete control over how things are rendered. The XML is
used only for data, so you can use the stylesheets to include graphics, render the output in a
foreign language, or combine page fragments from other sources, such as headers and footers,
into your web pages.

The <requi redFi el dsM ssi ng/ > element is optional. If omitted, the XSLT stylesheet will not
display error messages about missing fields. This is useful when the data is generated the first
time because all fields will be blank, and you probably don't want to show a bunch of error
messages. In our servlet, the doCGet () method is called when the user first requests this web
page, so it is here where we disable this element.

It is important to mention that this XML is used only for documentation purposes and for testing
the XSLT stylesheets. Once you move into a production environment, the XML will be generated
dynamically using the Per sonal Dat a and Per sonal Dat aXML classes, so this static file will not
be required. You will probably want to hang on to your static XML, however, as this will make it
easier to experiment with changes to the XSLT.

The XSLT stylesheet that creates the HTML form is shown in Example 6-4. The stylesheets are
substantially longer than the XML data, which is typical. In a more simplistic approach to servlet
development, all of this logic would be hardcoded into the source code as a series of pri nt | n(

) statements, making the servlet much larger and less flexible.

Example 6-4. editPersonalData.xslt

<?xm version="1.0" encodi ng="UTF-8""?>
<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nt
xm ns="http://ww. w3. org/ 1999/ xht nl " >
<xsl : out put net hod="xnml " indent="yes" encodi ng="UTF- 8"
doct ype- public="-//WBC//DTD XHTM. 1.0 Transitional//EN
doctype-systenm="http://ww. w3. org/ TR xht ml 1/ DTD/ xhtm 1-
transitional.dtd"/>
<l--

EE R R R R R R R I I I I R I I I R R R R I I R I R

** Top level tenplate. Creates the framework for the XHTM. page

EIE I b S b S b S b I b b I b b b S b I b I b b b b S b I b I b b b b b b S b I b I b I b b S b S b b b I b I S b S b __>
<xsl:tenplate match="/">
<htm >
<head><titl e>Edit Personal Information</title></head>
<body>

<xsl : appl y-tenpl at es sel ect =" page/ per sonal Data"/ >

</ body>
</htm >
</ xsl :tenpl at e>
<l--

EE R R I R R I I R R R I R I R I R R I R I R

** Match the <personal Dat a> el enent.
EE R S S S S S I S I S R S I S I R I ****************__>
<xsl:tenpl ate mat ch="per sonal Dat a" >
<h3>Per sonal | nfornmation</h3>
<xsl:if test="../requiredFiel dsM ssing">
<div style="color: red; font-size: larger;">
Error: one or nore required fields are m ssing.
</div>
</xsl:if>
<i>Fields marked with (*) are required.</i>
<f orm acti on="/ chap6/ per sonal Dat a" net hod="post" >
<tabl e border="0" cell paddi ng="2" cel |l spaci ng="0">

<l-- Select all inmrediate children, such as firstNane,
| ast Nane, dayti nePhone, etc... -->

<xsl : appl y-tenpl at es/ >

</tabl e>

<div align="center">
<hr/>
<i nput type="submt" nanme="subm tBtn" val ue="Submt"/>

</ di v>

</fornp
</ xsl :tenpl at e>

<l --

khkkkhkhkhhhkhhhhkhhhhhhhdhdhhhhdhhhhhhhdhhddhdhddhddhddhddddrhhdrhdxx%

** Qutput a newrowin the table for each field.
EE R R Ik I I I S I I S I I R S Rk kI - >
<xsl:tenplate
mat ch="fi r st Nane| | ast Nane| dayti nePhone| eveni ngPhone| enai | " >
<tr>
<xsl:if test="@equired="true'
and ../../requiredFiel dsM ssing
and .=""">
<xsl:attribute nane="style">
<xsl:text>col or:red; font-weight:bold; </xsl:text>
</xsl:attribute>
</xsl:if>
<t d>
<xsl : choose>
<xsl :when test="name()='firstNane'">
First Nane: </ xsl:when>
<xsl:when test="nane()='lastNane'">
Last Nane: </ xsl : when>
<xsl :when test="nane()='daytinePhone'">
Dayt i ne Phone: </ xsl : when>
<xsl :when test="nane()='eveningPhone' ">
Eveni ng Phone: </ xsl : when>
<xsl:when test="nane()="enail'">
Emai | : </ xsl : when>
</ xsl : choose>
</td>

<td>
<i nput type="text" name="{nane()}" value="{.}"/>
</td>
<td>
<xsl:if test="@equired="true ">*</xsl:if>
</td>
</tr>
</ xsl:tenpl at e>
</ xsl : styl esheet >

The first seven lines of editPersonalData.xslt contain boilerplate code that configures the XSLT
processor to produce XHTML 1.0 using the transitional DTD. In particular, our result tree uses the
<i >...</i >tag, so we cannot use the XHTML strict DTD. The top level template matches the
"/ " pattern as usual, outputting the framework for the XHTML document.

The next template matches the <per sonal Dat a> element, producing a heading followed by an
optional error message. The error message is displayed if the XML data contains the
<requi redFi el dsM ssi ng/ > element, which is easily determined via the <xsl : i f > element:

<xsl :tenpl at e mat ch="personal Dat a" >
<h3>Per sonal | nformation</h3>
<xsl:if test="../requiredFieldsM ssing">
<div style="color: red; font-size: l|larger;">
Error: one or nore required fields are m ssing.
</ div>
</xsl:if>

This template then produces the <f or > element, which specifies that HTTP POST should be
used to submit the information. The act i on attribute indicates that this form will send its data to
our servlet. As you will see, the form action® matches the URL pattern that we will set up in the
deployment descriptor later in this chapter:

[21 To avoid hardcoding the form action in the XSLT stylesheet, pass it as a stylesheet parameter.

<i>Fields marked with (*) are required.</i>
<form acti on="/chap6/ per sonal Dat a" net hod="post">

The template finally produces a table so that all of the headings and text fields are properly
aligned. As in earlier stylesheet examples, this template creates the table, while another template
creates each row in the table:

<t abl e border="0" cel |l paddi ng="2" cel | spaci ng="0">

<l-- Select all inmediate children, such as firstNane,
| ast Nanme, dayti nePhone, etc... -->
<xsl : appl y-tenpl at es/ >
</tabl e>
<div align="center">
<hr/>

<i nput type="subnmit" nane="subm tBtn" val ue="Submt"/>
</ div>
</ fornp
</ xsl:tenpl at e>

Since this particular instance of <xs| : appl y-t enpl at es/ > does not utilize the sel ect
attribute, all child elements will be selected. The next template is designed to match each of the
possible types of elements that can appear and will be instantiated once for each occurrence of
<firstNane>, <l ast Nane>, etc.:

<xsl :tenpl ate
mat ch="fir st Nane| | ast Nane| dayt i nrePhone| eveni ngPhone| emai | " >

This template first produces a <t r > element. If this particular element has ar equi red="t rue"
attribute, the XML data contains <r equi r edFi el dsM ssi ng/ >. The value of this element is an
empty string, the font is changed to bold and red. This indicates to the user that a required field
was missing. The font weight and color are inserted as the st y| e attribute on the <t r > element
as follows:

<tr>
<xsl:if test="@equired='true'
and ../../requiredFi el dsM ssing
and .=""">
<xsl:attribute name="style">
<xsl :text>col or:red; font-weight:bold;</xsl:text>
</ xsl:attribute>
</xsl:if>

The template then produces its first <t d> tag, which contains the caption for the current field. It
would be nice if XSLT offered a lookup table mechanism for situations such as this, but
<xsl : choose> does get the job done:

<t d>
<xsl : choose>
<xsl :when test="name()="firstNane ">
Fi rst Nane: </ xsl: when>
<xsl :when test="nanme()='IlastNane'">
Last Nane: </ xsl : when>
<xsl :when test="name()='daytinmePhone' ">
Dayti me Phone: </ xsl : when>
<xsl : when test="nanme()='eveni ngPhone'">
Eveni ng Phone: </ xsl : when>
<xsl :when test="name()="emil'">
Emai | : </ xsl : when>
</ xsl : choose>
</td>

This is still better than hardcoding the captions into the XML or servlet because we can make
changes to the stylesheet without recompiling anything. You can even change the captions to a
foreign language without affecting any of the Java code, offering remarkable flexibility to web
page designers.

Design Choices

The two stylesheets, editPersonalData.xslt and
confirmPersonalData.xslt, had a lot in common. To keep things simple,
they were written as two independent stylesheets. This is not the only
way to implement this code, however. For instance, we could have
searched for common functionality and included that functionality from
both stylesheets using <xs! : i nport > or <xsl : i ncl ude>. This
approach did not work here because, although the stylesheets were
structured similarly, each template produced different output. As the web
site gets more sophisticated, however, you will begin to encounter
common page elements such as navigation bars that should not be
duplicated in multiple places.

Another approach would be to combine both stylesheets into a single
stvlesheet and pass a top-level parameter indicatina whether to use

"edit” mode or "confirm" mode. In this approach, the servlet would pass
the parameter to the stylesheet via JAXP's Tr ansf or ner class and the
<xs| : par an> element. Inside of the stylesheet, we would write lots of
<xsl :choose>or <xsl : 1 f > elements to control the output based on
the value of the parameter. The JAXP code would look something like
this:

j avax. xm . transform Transforner trans = :

trans. set Par anet er (" per sonal Dat aMbde", "edit");

While this approach has its place, it did not make sense for this particular
example because every template produced different output. It would
have resulted in a more complex solution than simply writing two
separate stylesheets. On the other hand, if you encounter a situation
where several web pages are almost identical except for a small section
that changes, passing a stylesheet parameter is probably the way to go,
because you only have to write the conditional logic around the section
that changes.

The next column in the table contains the input field:

<t d>
<i nput type="text" nanme="{name()}" value="{.}"/>
</td>

In the XHTML output, this yields a cell containing <i nput type="text" name="first Nane"
val ue="Eri c"/ >. Finally, the last column in the table contains an asterisk if the field has the
requi red="true" attribute:

<t d>
<xsl:if test="@equired="true' ">*</xsl:if>
</td>
</[tr>
</ xsl:tenpl at e>

The next stylesheet, confirmPersonalData.xslt, is listed in Example 6-5. This stylesheet is
shorter because it shows only a summary of what the user entered on the previous page. It does
not have to display any error messages or show an HTML form. The overall structure of the
stylesheet is identical to editPersonalData.xslt, however, so a line-by-line description is not
necessary.

Example 6-5. confirmPersonalData.xslt

<?xm version="1.0" encodi ng="UTF-8"?>
<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nt'
xm ns="http://ww. w3. org/ 1999/ xht nl " >
<xsl : out put method="xm " indent="yes" encodi ng="UTF- 8"
doctype-public="-//WBC//DID XHTML 1.0 Strict//EN
doctype-systenm="http://ww. w3. org/ TR xht ml 1/ DTD/ xhtm 1-
strict.dtd"/>
<l--

R I I R I R I R R I R I R R R I R R R I R R

** Top level tenplate. Creates the framework for the XHTM. page

kkhkkkhkhkhkhkhkhkhkhkhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhhhk hkk hk kk kk khkk khkk kk kkk**%x - >

<xsl:tenplate match="/">
<htm >
<head>
<title>Personal Data Sunmary</title>
</ head>
<body>
<xsl :apply-tenpl ates sel ect ="page/ per sonal Data"/ >
</ body>
</htm >
</ xsl :tenpl at e>
<l--

KR b S R Rk b Sk S I Rk I S b Sk S R S R S o b O

** NMatch the <personal Dat a> el enent.

LR S R S S R R S S S

<xsl :tenpl ate mat ch="personal Dat a" >
<h2>Thank You! </ h2>
<h3>Your Information...</h3>

<t abl e border="0" cell paddi ng="2" cel |l spaci ng="0">

<I-- Select all inmediate children, such as firstNang,
| ast Nanme, dayti nmePhone, etc... -->
<xsl : appl y-tenpl at es/ >
</t abl e>

<p>Cl i ck here
to edit this information...</p>

</ xsl :tenpl at e>
<l--

R b S S R Sk R S S R I S Rk b S S I R R

** Qutput a newrow in the table for each field.
IR R Rk S S S S S I S S R R S I S S R - >
<xsl:tenplate

mat ch="fi r st Nane| | ast Nane| dayt i mrePhone| eveni ngPhone| emai | " >

<tr>
<t d>
<xsl : choose>
<xsl:when test="name()='firstNane'">
First Nane: </ xsl:when>
<xsl:when test="nane()='lastNane'">
Last Nane: </ xsl : when>
<xsl :when test="nane()='daytinePhone' ">
Dayt i ne Phone: </ xsl : when>
<xsl :when test="nane()='eveningPhone' ">
Eveni ng Phone: </ xsl : when>
<xsl:when test="nane()="enail'">
Emai | : </ xsl : when>
</ xsl : choose>
</td>
<td>
<xsl : val ue- of select="."/>
</td>
</[tr>
</ xsl :tenpl at e>

</ xsl :styl esheet >
6.3.3 Source Code

The first piece of source code to examine is shown in Example 6-6. The Per sonal Dat a class
is simply a data holder and does not contain any XML code or database code. By keeping
classes like this simple, you can easily write standalone unit tests that verify if your code is written
properly. If this code were written as part of the servlet instead of a standalone class, it would be
very difficult to test outside of the web browser environment.

Example 6-6. PersonalData.java
package chap6

/**

* A hel per class that stores personal information. XM. generation
* is intentionally left out of this class. This class ensures

* that its data cannot be null, nor can it contain extra
* whit espace.
*/

public class Personal Data {
private String firstNane;
private String | astNane;
private String dayti nePhone;
private String eveni ngPhone;
private String enuail;

public Personal Data() {
thiS("", uu, |||l’ uu7 ||||);
}

public Personal Data(String firstName, String |astNane,
String dayti nePhone, String eveni ngPhone, String email) {
this.firstNane = cl eanup(firstNane);
this.lastName = cl eanup(| ast Nane);
t hi s. dayti mePhone = cl eanup(dayti mePhone);
t hi s. eveni ngPhone = cl eanup(eveni ngPhone);
this.emai|l = cleanup(enuil);

}

/**

* <code>eveni ngPhone</code> is the only optional field.
* @eturn true if all required fields are present.
*/
public boolean isValid() {
return this.firstNane.length() >0
&% this.lastNane.length() >0
&& this.dayti nePhone.length() > 0
&% this.email.length() > 0;

}

public void setFirstNane(String firstNanme) {
this.firstNane = cl eanup(firstNane);
}

public void setlLastNane(String |astNanme) {
this.lastName = cl eanup(| ast Nane);

}

public void setDayti nePhone(String dayti nePhone) {
t hi s. dayti nePhone = cl eanup(dayti nePhone);
}

public void set Eveni ngPhone(String eveni ngPhone) {
t hi s. eveni ngPhone = cl eanup(eveni ngPhone) ;

}

public void setEmail (String email) {
this.emai|l = cleanup(emil);

}

public String getFirstNane() { return this.firstNane; }
public String getLastNanme() { return this.|astNane; }

public String getDayti nePhone() { return this.daytinePhone; }
public String get Eveni ngPhone() { return this.eveningPhone; }
public String getEmail() { return this.email; }

/**
* Cleanup the String paraneter by replacing null with an
* enpty String, and by trinm ng whitespace fromnon-null Strings.
*/
private static String cleanup(String str) {
return (str !'=null) ? str.trin() @ "";
}

}

Although the Per sonal Dat a class is merely a data holder, it can include simple validation logic.
For example, the default constructor initializes all fields to non-null values:

public Personal Data() {
this("", "", """, """, "");

}
Additionally, all of the set methods make use of the private cl eanup() method:

private static String cleanup(String str) {
return (str !'= null) 2 str.trinm() : "";
}

As a result, instances of this class will avoid null references and whitespace, eliminating the need
to perform constant error checking in the servlet and XML generation classes. Trimming
whitespace is particularly helpful because a user may simply press the spacebar in one of the
required fields, potentially bypassing your validation rules. The Per sonal Dat a class also
contains an explicit validation method that checks for all required fields:

public boolean isvValid() {
return this.firstNanme.length() > 0
&% this.lastNanme.length() >0
&& this.dayti nePhone.length() >0
&% this.email.length() > 0;

}

The only field that is not required is eveni ngPhone, so it is not checked here. By putting this
method into this class, we further reduce the work required of the servlet.

The next class, Per sonal Dat aXVL, is presented in Example 6-7. It is responsible for
converting Per sonal Dat a objects into DOM Docunent objects. By converting to DOM instead

of a text XML file, we avoid having to parse the XML as it is fed into an XSLT processor. Instead,
we will use the | avax. xnl . t ransf or m DOVSour ce class to pass the DOM tree directly.

Example 6-7. PersonalDataXML.java
package chap6;

i mport javax.xmnl .parsers.*;
i mport org.w3c.dom *;

/**
* Responsi ble for converting a Personal Data object into an XM
* representation using DOM
*/

public class Personal Dat aXM. {

/**
* @aram personal Data the data to convert to XM.
* @aramincludeErrors if true, an extra field will be included in

* the XM., indicating that the browser should warn the user about
* required fields that are m ssing.
* @eturn a DOM Docunent that contains the web page.
*/
publ i c Docunent produceDOVDocunent (Personal Data per sonal Dat a,
bool ean i ncludeErrors) throws ParserConfigurati onException {

/1 use Sun's JAXP to create the DOM Docunent
Document Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newl nst ance(

Docunent Bui | der docBui | der = dbf. newDocunent Bui | der () ;
Docunent doc = docBuil der. newDocurent();

/'l create <page>, the root of the docunent
El enent pageEl em = doc. creat eEl enent (" page") ;
doc. appendChi | d(pageEl em ;

/1 if needed, append <requiredFiel dsM ssing/>
if (includeErrors && !personal Data.isValid()) {
pageEl em appendChi | d(doc. creat eEl enent (
"requiredFi el dsM ssing"));
}

El enent per sonal Dat aEl em = doc. cr eat eEl enent (" per sonal Dat a") ;
pageEl em appendChi | d(per sonal Dat aEl en) ;

/1 use a private hel per function to avoid some of DOM s
/] tedious code
addEl em(doc, personal DataEl em "firstName",
personal Dat a. get First Nane(), true);
addEl em(doc, personal Dat aEl em "l ast Nane",
per sonal Dat a. get Last Nane(), true);
addEl em(doc, personal Dat akEl em "dayti mePhone",
per sonal Dat a. get Dayt i nePhone(), true);
addEl em(doc, personal Dat aEl em "eveni ngPhone",
per sonal Dat a. get Eveni ngPhone(), fal se);
addEl em(doc, personal Dat aElem "email",
personal Data. getEmail (), true);

return doc;

}
/**

* A hel per nethod that sinplifies this class.
* @aram doc the DOM Docunent, used as a factory for
* creating El enents.
* @aram parent the DOM El enent to add the child to.
* @aram el emNane the nanme of the XM. el enent to create.
* @aram el enval ue the text content of the new XM el enent.
* @aramrequired if true, insert 'required="true"' attribute.
*/
private void addEl em Docunent doc, Elenent parent, String el enNane,
String el emval ue, bool ean required) {
El ement el em = doc. creat eEl enent (el enNane) ;
el em appendChi | d(doc. creat eText Node(el enVal ue)) ;
if (required) {
elemsetAttribute("required", "true");
}

par ent . appendChi | d(el en);
}

The following code begins with its two i npor t statements. The | avax. xni . par ser s package
contains the JAXP interfaces, and the or g. w3c. dompackage contains the standard DOM
interfaces and classes:

i mport javax.xml .parsers.*;
i mport org.w3c.dom *;

The key to this class is its public API, which allows a Per sonal Dat a object to be converted into
a DOM Docunent object:

publ i ¢ Docunent produceDOVDocunent (Personal Dat a per sonal Dat a,
bool ean i ncludeErrors) throws ParserConfigurati onException {

The includeErrors parameter indicates whether or not to include the <requiredFieldsMissing/>
element in the result. If this method throws a ParserConfigurationException, the most likely cause
is a CLASSPATH problem. This frequently occurs when an older version of JAXP is present.

When using JAXP, it takes a few lines of code to obtain the appropriate implementation of the
DocumentBuilder abstract class. By using the factory pattern, our code is safely insulated from
vendor-specific DOM implementations:

/1 use Sun's JAXP to create the DOM Docunent

Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newl nstance();
Docunent Bui | der docBui | der = dbf.newDocunent Bui |l der();

Docunment doc = docBuil der. newDocunment();

Once the doc object has been created, we use it to create all remaining elements in the XML
data. For example, the <page> element is created first:

/'l create <page>, the root of the docunent
El ement pageEl em = doc. creat eEl enent (" page");
doc. appendChi | d(pageEl en) ;

Since <page> is the root element, it is the only thing added directly to our document. All
remaining elements will be added as children or descendents of <page>. Even though we are not

adding anything else directly to the doc object, we must continue using it as the factory for
creating the remaining elements:

/1 if needed, append <requiredFiel dsM ssing/>
if (includeErrors && !personalData.isValid()) {
pageEl em appendChi | d(doc. creat eEl enent (
"requiredFi el dsM ssing"));
}

Since DOM can be tedious, the children of <per sonal Dat a> are created in a helper method
called addEl en() :

El ement personal Dat aEl em = doc. creat eEl enent (" per sonal Data") ;
pageEl em appendChi | d(per sonal Dat aEl en) ;

/1l use a private hel per function to avoid sonme of DOM s
/'l tedious code
addEl em(doc, personal Dat aEl em "firstNane",

personal Dat a. get First Name(), true);

You can refer back to Example 6-7 for the complete implementation of the addEl en{)
method. A sample of its output is:

<firstNanme required="true">Eric</firstName>

The final piece of code, PersonalDataServlet.java, is presented in Example 6-8. This is a basic
approach to servlet development that works for smaller programs such as this, but has a few
scalability problems that we will discuss later in this chapter. Although we have removed all of the
HTML and XML generation from this servlet, it is still responsible for handling incoming requests
from the browser. As your web application grows to more and more screens, the code gets
correspondingly larger.

Example 6-8. PersonalDataServlet.java
package chap6;

i mport java.io.?*;

i nport java.net.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport javax.xm .transform*;

i mport javax.xm .transform dom *;

i mport javax.xm .transform stream *;

/**

* A denonstration servlet that produces two pages. In the first page,
* the user is pronpted to enter "personal information", including
nane, phone nunber, and Email. In the second page, a summary of this
information is displayed. XSLT is used for all HTM. rendering,
so this servlet does not enforce any particular | ook and feel.
/
public class Personal Dat aServl et extends HttpServlet {
private Personal Dat aXM. personal Dat aXM. = new Personal Dat aXM_();
private Tenpl ates edit Tenpl at es;
private Tenpl ates thanksTenpl at es;

* % %

/**

* One-tinme initialization of this Servlet.
*/

public void init() throws Unavail abl eException {
Transforner Factory transFact = Transforner Fact ory. newl nst ance(

String curName = null;
try {
curName = "/WEB-| NF/ xsl t/editPersonal Data. xslt";
URL xsltURL = getServletContext().getResource(curNane);
String xsltSystem D = xsltURL.toExternal Fornm();
this.editTenplates = transFact. newTenpl at es(
new StreanSource(xsltSystenl D));

cur Nane "/ VEB- | NF/ xsl t/ confirnmPersonal Data. xslt";
xsl t URL get Servl et Context (). get Resour ce(cur Nane) ;
xsltSystem D = xslt URL. t oExt ernal Form();
this.thanksTenpl ates = transFact. newTenpl at es(
new StreanBSource(xsltSysten D)) ;

} catch (TransfornmerConfigurati onException tce) {
l og("Unable to conpile stylesheet", tce);
t hrow new Unavai | abl eException("Unable to conpile

styl esheet");

} catch (Ml fornedURLExcepti on nue) {
l og("Unable to locate XSLT file: " + curNane);
t hrow new Unavai | abl eExcepti on(
"Unable to | ocate XSLT file: " + curNane);

}

/**

* Handl es HTTP GET requests, such as when the user types in
* a URL into his or her browser or clicks on a hyperlink.
*/
protected void doGet (HttpServl et Request request,
Ht t pSer vl et Response response) throws | OException
Servl et Exception {
Per sonal Dat a personal Data = get Personal Dat a(request);
/1 the third paraneter, 'false', indicates that error
/1 messages shoul d not be di splayed when show ng the page.
showPage(response, personal Data, false, this.editTenpl ates);

}

/**

* Handl es HTTP POST requests, such as when the user clicks on
* a Submt button to update his or her personal data.
*/
protected voi d doPost (HttpServl et Request request,
Ht t pSer vl et Response response) throws | OException
Servl et Exception {

/'l locate the personal data object and update it with

/1 the information the user just submitted.

Per sonal Data pd = get Personal Dat a(request);

pd. set Fi r st Nane(request . get Paranet er ("firstName"));

pd. set Last Nane(request . get Paraneter ("l ast Nane")) ;

pd. set Dayti nePhone(request. get Par anet er (" dayti nePhone"));
pd. set Eveni ngPhone(request . get Par anmet er (" eveni ngPhone"));
pd. set Emai | (request. get Paraneter ("email"));

if (!'pd.isvalid()) {
/1 show the "Edit' page with an error nessage
showPage(response, pd, true, this.editTenplates);
} else {
/1 show a confirmation page
showPage(response, pd, false, this.thanksTenpl ates);

}
/**

* A hel per nethod that sends the personal data to the client
* browser as HTM.. It does this by applying an XSLT styl esheet
* to the DOM tree.
*/
private void showPage(HttpServl et Response response,
Per sonal Dat a personal Data, bool ean i ncl udeErrors,
Tenpl ates styl esheet) throws | OException, ServletException {
try {
org. w3c. dom Docunent donDoc =
t hi s. per sonal Dat aXM.. pr oduceDOVDocunent (
per sonal Data, includeErrors);

Transformer trans = styl esheet. newlransformer();

response. set Content Type("text/htm ") ;
PrintWiter witer = response.getWiter();

trans. transf or m new DOVSour ce(donDoc), new
StreanResult(witer));
} catch (Exception ex) {
showEr r or Page(response, ex);
}

}
/**

* | f any exceptions occur, this nethod can be called to display
* the stack trace in the browser w ndow.
*/
private void showErrorPage(HttpServl et Response response,
Thr owabl e t hrowabl e) throws | OException {
PrintWiter pw = response.getWiter();
pw. println("<htm ><body><h1>An Error Has Cccurred</hl><pre>");
t hr owabl e. pri nt St ackTrace(pw) ;
pw. println("</pre></body></htm >");
}

/**

* A hel per nethod that retrieves the Personal Data object from
* the HttpSession.
*/
private Personal Dat a get Personal Dat a(Ht t pSer vl et Request request) {
Ht t pSessi on session = request. get Session(true);
Personal Data pd = (Personal Data) session.getAttribute(
"chap6. Per sonal Data") ;
if (pd == null) {
pd = new Personal Data();
session.setAttribute("chap6. Personal Data", pd);

}

return pd;

}

Our servlet begins with a long list of i npor t statements, indicating dependencies on the servlet
API as well as the JAXP package. The servlet itself is a subclass of Ht t pSer vl et , as usual, and
has three private fields:

public class Personal Dat aServl et extends HttpServlet {
private Personal Dat aXM. personal Dat aXM. = new Personal DataXM.() ;
private Tenpl ates edit Tenpl at es;
private Tenpl ates t hanksTenpl at es;

It is important to ensure that each of these fields is thread-safe. Because many clients share the
same servlet instance, it is highly probable that these fields will be accessed concurrently.
Instances of Per sonal Dat aXVL are thread-safe because they are stateless, meaning they
contain no data that can be concurrently modified. The Tenpl at es instances are compiled
representations of the two stylesheets this servlet uses and are also designed to be thread-safe.

As the comments indicate, the i ni t () method performs a one-time initialization of the servlet.
A servlet container will invoke this method before this servlet is asked to handle any client
requests. The i ni t () method is further guaranteed to execute to completion before any other
threads can access this servlet, so concurrency is not an issue at this point. If anything fails
during initialization, an instance of Unavai | abl eExcept i on is thrown:

public void init() throws Unavail abl eException {
TransfornmerFactory transFact = TransfornerFactory. newl nstance();
String curNanme = nul | ;

This exception is provided in the | avax. ser vl et package and indicates that the servlet could
not be loaded successfully. In our case, the most common cause of this error is a configuration
problem. For example, your XSLT stylesheets may be installed in the wrong directory, or some
JAR file was not found.

The next thing the i ni t () method does is load the two stylesheets into memory. The XSLT
stylesheets are stored on the file system, so St r eanSour ce will be used to read them into
JAXP. But you definitely do not want to hardcode the absolute pathname of the stylesheets. If you
do this, your code will probably work on your personal machine but will fail once it is deployed
onto a production web server. For example, C:/java/tomcat/webapps/chap6/WEB-INF is a
Windows-specific absolute pathname. Using something so specific would cause the servlet to fail
on all non-Windows platforms, as well as other Windows machines that have Tomcat installed in
a different directory. The best approach is to use a relative pathname such as /WEB-INF, so the
stylesheets can be located regardless of where your web application is deployed.

A relative pathname has to be relative to some starting location, so we use the

Servl et Cont ext class. Ser vl et Cont ext has the ability to locate resources relative to the
deployed directory of the current web application, so you can avoid absolute pathnames in your
code. The details of mapping the relative pathname to the absolute pathname are taken care of
by the servlet container, thus making your code more portable.

In this example, chap6.war is deployed to Tomcat's webapps directory. Tomcat will expand it into
the webapps/chap6 directory, which contain subdirectories that match the directory structure of
the WAR file. We start by assigning the current XSLT filename to the cur Narne variable, using
the following pathname:

try {
curName = "/WEB-| NF/ xsl t/ edi t Personal Dat a. xsl t";

Two options are available at this point. The Ser vl et Cont ext can provide either an

I nput St r eamor a URL, both of which represent the XSLT stylesheet. If you use an

I nput St r eam however, the XSLT processor sees your stylesheet as a stream of bytes. It will
not know where this datastream originated, so it will not automatically know how to resolve URI
references. This becomes a problem if your stylesheet imports or includes another stylesheet
because this other stylesheet will not be located. To resolve this problem when using

I nput St ream the j avax. xnl . t ransf or m Sour ce interface provides the set System d()
method. This allows the XSLT processor to resolve URI references in the stylesheet (see

Chapter 5).

For this servlet, we avoid this issue by using a URL instead of an | nput St r eam The URL is
converted into a system identifier, which makes it possible to create a St r eanfSour ce instance.
That is, in turn, used to create a Tenpl at es instance for this stylesheet:

URL xsltURL = get ServletContext().getResource(curName);
String xsltSystem D = xsltURL. t oExternal Forn();
this.editTenpl ates = transFact. newTenpl at es(

new StreanSource(xsltSystenl D)) ;

The same process is repeated for the second stylesheet, followed by basic exception handling:

cur Nanme = "/WEB-| NF/ xsl t/confirnPersonal Dat a. xslt";
xslt URL = get Servl et Context().getResource(curNane);
xsltSysteml D = xsltURL. t oExternal Form();
thi s.thanksTenpl ates = transFact. newTenpl at es(
new StreanSour ce(xsltSystenm D)) ;
} catch (TransfornerConfigurati onException tce) {
| og("Unable to conmpile stylesheet", tce);
t hrow new Unavai | abl eException("Unable to conpile
styl esheet");
} catch (Mal formedURLException nue) {

l og("Unable to locate XSLT file: " + curNane);
t hrow new Unavai | abl eExcepti on(
"Unable to | ocate XSLT file: " + curNane);
}
}

The | og() method causes messages to be written to one of Tomcat's log files, found in the
TOMCAT_HOME/logs directory. The Unavai | abl eExcept i on simply indicates that this servlet
is unavailable, so it will not be loaded into memory. The user will see an error page in their
browser at this point.

Iftheini t() method completes successfully, the servlet will be available to handle requests
from clients. In this servlet, the doCGet () and doPost () methods have been implemented;
therefore, both HTTP GET and POST protocols are supported. When the user first enters the
application, they will click on a hyperlink, type a URL into their browser, or visit a saved
bookmark. In all of these cases, the browser issues an HTTP GET request that ultimately causes
the doCGet () method to be invoked:

protected void doGet (HttpServl et Request request,
Ht t pSer vl et Response response) throws | OException,
Servl et Exception {
Per sonal Dat a personal Data = get Personal Dat a(r equest) ;
/1l the third parameter, 'false', indicates that error
/'l messages shoul d not be displayed when show ng t he page.
showPage(response, personal Data, false, this.editTenplates);

The first thing the doGet () method does is retrieve the instance of Per sonal Dat a associated
with this particular user. The appropriate code has been factored out into the

get Personal Dat a() helper method, since this same functionality is required by the doPost (
) method as well. You can refer back to Example 6-8 to see how get Per sonal Data() is
implemented. It basically uses Ht t pSessi on to locate the appropriate instance of

Per sonal Dat a. If the object is not found in the session, a new instance is created and stored.

The doCet () method then calls the showPage() method, which does the actual work of
sending the web page to the browser. The parameters to showPage() include:

The Ht t pSer vl et Response, which provides access to the Pri nt Wit er . The result
of the transformation will be sent to this writer.

The instance of Per sonal Dat a, so the showPage() method knows what data to
display.

A f al se parameter, indicating that error messages should not be shown. That makes
sense because doCet () is called when the page is first displayed, and users should
not be warned about invalid data before they type something.

A reference to the appropriate stylesheet. In this case, the stylesheet will show the HTML
form so the user can fill out his or her information.

Once the user fills out the form and submits it to the servlet, the doPost () method is invoked.
The code for doPost () is similarto doGet () (see Example 6-8). The only difference here is
that all incoming data is validated via the Per sonal Dat a class. If the request is valid, the "Thank
You" page is displayed. Otherwise, the current page is redisplayed with error messages enabled.
As you can see in the code, the only distinction between these two pages is that they use
different stylesheets.

The final piece to this puzzle resides in the showPage() method. This method begins by
creating a DOM Docunent instance by delegating to the Per sonal Dat aXM. helper class. As
you can see in the following code, the servlet stays quite small because the DOM generation is
factored out into the helper class:

private void showPage(H t pSer vl et Response response,
Per sonal Dat a personal Data, bool ean incl udeErrors,
Tenpl ates styl esheet) throws | CException, ServletException {

try {
org. w3c. dom Docunent donDoc =

t hi s. per sonal Dat aXM.. pr oduceDOVDocumnent (
personal Data, includeErrors);

This method then proceeds to create a new instance of Tr ansf or mer . You may recall from
Chapter 5 that Tr ansf or ner instances are very lightweight and merely hold state information
for the current transformation. Since Tr ansf or ner instances are not thread-safe, the instance is
a local variable in this method. With local variables, each thread gets its own copy:

Transfornmer trans = styl esheet.newlransfornmer();

Next, the content type is configured for the Hi t pSer vl et Response,aPrint Witer is
obtained, and the transformation is performed. The result tree is sent directly to the response's
PrintWiter:

response. set Content Type("text/htm ");
PrintWiter witer = response.getWiter();

trans. transfornm(new DOVSour ce(donDoc), new
StreanResult(witer));
} catch (Exception ex) {
showkr r or Page(r esponse, ex);
}

}

If any exception occurs, the showEr r or Page() method is invoked. Since an exception can
indicate that some XML library is unavailable, the showEr r or Page() does not attempt to use
XML or XSLT for its output. If it does, another similar exception would almost certainly occur.
Instead, it uses hardcoded pri nt| n() statements to generate its HTML (see Example 6-8).

6.3.4 Deployment

Figure 6-8 shows the complete contents of the WAR file used in this example. You may notice
that SplashScreenServlet.class is still listed in this WAR file. This example is merely an extension
of the example created earlier in this chapter. As in the earlier example, placing the . cl ass files
under the classes directory made them available to the Cl asslLoader used by this web
application.

Figure 6-8. WAR file for PersonalDataServlet

(]
‘3{ chapG.war
tnd gx.fitml
] WeB-INF

PersonalData.class
PersonalDataXML class
PersonalDataServiet.class
SplashScreenServiet.class

d xslt

|: confirmPersonalData.xsit
editPersonalData.xslt

The XSLT stylesheets are placed under the WEB-INF/xslt directory. Since anything under the
WEB-INF directory is hidden from clients, the XSLT stylesheets are not directly visible to anyone
visiting your web site. If you want to make these stylesheets publicly visible, move them out of the
WEB-INF directory. The index.html file, for example, is the publicly visible "home page" for this
web application. It merely contains a link that the user can click on to view the servlet. Although
the stylesheets are hidden from clients, they are accessible from your Java code. Referring back
to the code in Example 6-8, thei nit() method used the following to locate the stylesheets:

cur Name = "/WEB-| NF/ xsl t/ edit Personal Data. xslt";
URL xsltURL = get Servl et Context().getResource(curNane);

As this code illustrates, the locations of the stylesheets are entirely relative to their position in the
WAR file. Therefore, your servlet will still work as the web application is moved onto a production
web server.

The deployment descriptor, listed in Example 6-9, has been expanded to include the new
Per sonal Dat aSer vl et class. The lines that have changed from our first iteration are
emphasized.

Example 6-9. Expanded deployment descriptor

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE web- app
PUBLIC "-//Sun M crosystens, Inc.//DID Wb Application 2.2//EN
“http://java. sun. conlj2ee/ dtds/web-app_2.2.dtd">
<web- app>
<servl et>
<servl et - nane>per sonal Dat aSer vl et </ servl et - nane>
<servl et - cl ass>chap6. Per sonal Dat aSer vl et </ servl et -cl ass>
</servlet>
<servl et>
<servl et - nane>spl ashScr een</ servl et - nanme>
<servl et - cl ass>chap6. Spl ashScr eenSer vl et </ servl et -cl ass>
</servlet>
<servl et - mappi ng>
<ser vl et - nane>per sonal Dat aSer vl et </ servl et - nane>
<url -pattern>/personal Data/ *</url - pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - nanme>spl ashScr een</ servl et - nane>
<url -pattern>/splash/*</url -pattern>
</ servl et - mappi ng>
</ web-app>

6.3.5 How to Compile, Deploy, and Run
In Java, it often seems that half of the battle is devoted to figuring out CLASSPATH issues. In
order to compile this example, the following JAR files must be listed on the CLASSPATH:
jaxp.jar

Java API for XML Processing (JAXP) 1.1
xalan.jar

Xalan XSLT processor (use the one included with JAXP)
crimson.jar

Crimson XML parser (use the one included with JAXP)
servlet.jar

Included with the Tomcat servlet container
Of course, the directory containing your own source code must also be listed on the
CLASSPATH. Once everything is set up, you can compile PersonalData.java,

PersonalDataXML.java, and PersonalDataServlet.java by typing j avac *. | ava. Whether you
also wish to include SplashScreenServlet.java is entirely up to you.

As mentioned earlier in this chapter, use the jar command to create the WAR file. To create
chap6.war, simply arrange your files into the directory structure shown in Figure 6-8 and issue
the following command from the directory that contains index.html:

jar -cviM ../ chap6. war

This command places chap6.war in the parent of your current working directory; the forward slash
(/') works on Windows as well as Unix clients. Once the WAR file has been created, you can view
its contents by changing to its directory and issuing the following command:

jar -tvf chap6. war

This shows the table of contents for the WAR file, which must match the structure shown in
Figure 6-8.

Deployment to Tomcat is easy: just copy chap6.war to the TOMCAT_HOME/webapps directory
while Tomcat is not running. You can attempt to execute the servlet now, but it will probably not
work because jaxp.jar, xalan.jar, and crimson.jar must be installed in the TOMCAT_HOME/lib
directory before they can be available for your web application.

The most difficult aspect of this step is installing the correct versions of these JAR files.
Depending on which version of Tomcat you are running, older versions of jaxp.jar and crimson.jar
may already be found in the TOMCAT_HOME/lib directory. The safest approach is to download
JAXP 1.1, which includes all three of these JAR files, and copy them from the JAXP distribution to
the TOMCAT_HOME/lib directory.

Once these steps are complete, start Tomcat and access the following URL:
http://localhost:8080/chap6/personalData
This should bring up the personal information page with a blank form, ready for input.

6.3.6 Locating Stylesheets with Initialization Parameters

As you just saw, an easy way to locate stylesheets is simply to place them somewhere
underneath the WEB-INF directory of a WAR file. While this is an ideal solution for solitary web
applications, there are situations where the same stylesheets are shared across a whole group of
web apps. In this case, embedding the stylesheets into various WAR files is not viable.

Ideally, the stylesheets will be located in a shared directory somewhere, but that directory location
will not be hardcoded into any servlets. The simple way to accomplish this is via initialization
parameters. These are name/value pairs of strings specified in the deployment descriptor and
retrieved via the Ser vl et or Ser vl et Cont ext .

Servlet initialization parameters are tied to specific servlets, and context initialization parameters
are tied to an entire web application. For the purposes of specifying the XSLT stylesheet location,
it makes sense to use context parameters. These can be specified in the deployment descriptor
as follows:

<web- app>
<cont ext - par an»
<par am nane>xslt _directory</ param nanme>
<par am val ue>C: / dev/ xsl t </ param val ue>
</ cont ext - par anp
<servl et >

</servlet>
</ web- app>

And the values of these parameters can be retrieved using the following methods on the
j avax. servl et. Servl et Cont ext interface:

public interface ServletContext {
/1 if the paraneter nane does not exist, return null
String getlnitParanmeter(String nane);
Enuner ati on getlnitParaneterNanes();

..remaining nethods omtted

}

So in order to locate the stylesheet, one might write the following code in a servlet'si nit ()
method:

public class MyServlet extends HttpServlet {
private String xsltDirectory;

public void init(ServletConfig config) throws ServletException {

super.init(config);

this.xsltDirectory = config. get Servl et Cont ext (

) . getl nitParaneter(
"xslt_directory");
if (this.xsltDirectory == null) {
t hrow new Unavai | abl eExcepti on(
"xslt directory is a required context-parant);

}

...remni nder of code omtted

}

Now that the actual location of the stylesheets has been moved into the deployment descriptor,
changes can be made without any edits to the servlet.

6.4 Stylesheet Caching Revisited

We have seen two approaches that eliminate the need to hardcode the absolute pathname of
XSLT stylesheets in your servlet code. In the first approach, the Ser vl et Cont ext was used to
load resources from the web application using a relative pathname. In the second approach, the
location was specified as a context initialization parameter.

This takes care of compilation changes, but now we have the issue of dynamic loading. In the
Per sonal Dat aSer vl et class, the two XSLT stylesheets are located and "compiled” into
instances of the | avax. xnl . transform Tenpl at es interface. Although this offers high
performance for transformations, the two stylesheets are never flushed from memory. If changes
are made to the XSLT stylesheets on disk, the servlet must be stopped and started again.

6.4.1 Integration with the Stylesheet Cache

In Chapter 5, a stylesheet cache was implemented. In this next example,

Per sonal Dat aSer vl et is modified to use the cache instead of Tenpl at es directly. This will
offer virtually the same runtime performance. However, you will be able to modify the stylesheets
and immediately see those changes in your web browser. Each time a stylesheet is requested,
the cache will check its timestamp on the file system. If the file has been modified, a new

Tenpl at es instance is instantiated without bringing down the servlet.

Fortunately, integration with the cache actually makes the Per sonal Dat aSer vl et simpler to
implement. Example 6-10 contains the modified listing, and all modified lines are emphasized.

Example 6-10. Modified PersonalDataServlet.java with stylesheet cache
package chap6;
import comoreilly.javaxslt.util.Styl esheet Cache;

i mport java.io.*;
i mport java.net.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport javax.xn.transform*;

i mport javax.xnm .transform dom *;

i mport javax.xnl.transform stream *;

/**
* A nodification of Personal DataServlet that uses the
* comoreilly.javaxslt.util.Styl esheet Cache cl ass.
*/
public class Personal Dat aServl et extends HttpServlet {
privat e Personal Dat aXM. personal Dat aXM. = new Per sonal Dat aXM_() ;
private String editXSLTFi | eNane;
private String thanksXSLTFi | eNane;

/**
* One-tine initialization of this Servlet.
*/
public void init() throws Unavail abl eException {
this.edit XSLTFi | eNanme = get Servl et Context().getReal Pat h(
"/ WEB- | NF/ xsl t/ edi t Personal Data. xslt");
thi s.thanksXSLTFi | eNane = get Servl et Context().getReal Pat h(
"/ WEB- | NF/ xsl t/ confirnmPersonal Data. xslt");

}
/**
* Handl es HTTP GET requests, such as when the user types in
* a URL into his or her browser or clicks on a hyperlink.
*/
protected void doGet(Ht tpServl et Request request,
Ht t pSer vl et Response response) throws | OExcepti on,
Servl et Exception {
Per sonal Dat a personal Data = get Personal Dat a(request);
/1 the third paraneter, 'false', indicates that error
/1 nmessages should not be di splayed when show ng the page.
showPage(response, personal Data, false, this.editXSLTFil eNane);

}

/**

* Handl es HTTP POST requests, such as when the user clicks on
* a Submit button to update his or her personal data.

*/

protected voi d doPost (HttpServl et Request request,

Ht t pSer vl et Response response) throws | OException,
Servl et Exception {

/1l locate the personal data object and update it with

/1 the information the user just submtted.

Per sonal Data pd = get Personal Dat a(request);

pd. set Fi r st Nane(request. get Paraneter ("firstNanme"));

pd. set Last Name(r equest . get Par aneter ("1 ast Nanme")) ;

pd. set Dayt i nePhone(request . get Par anet er (" dayti mePhone"));
pd. set Eveni ngPhone(request . get Par anet er (" eveni ngPhone"));
pd. set Emai | (request. get Paraneter ("email"));

if (!'pd.isvalid()) {
/1 show the "Edit' page with an error nessage

showPage(response, pd, true, this.editXSLTFi | eNane);
} else {
/1 show a confirmation page
showPage(response, pd, false, this.thanksXSLTFil eNane);

}
/**

* A hel per nethod that sends the personal data to the client
* browser as HTM.. It does this by applying an XSLT styl esheet
* to the DOM tree.
*/
private void showPage(Ht t pServl et Response response,
Per sonal Dat a personal Data, bool ean incl udeErrors,
String xsltFileNane) throws | OException, ServletException {
try {
org. w3c. dom Docunent donmDoc =
t hi s. per sonal Dat aXM.. pr oduceDOVDocunent (
per sonal Data, includeErrors);

Transfornmer trans =
Styl esheet Cache. newTr ansf or ner (xsl t Fi | eNane) ;

response. set Content Type("text/htm");
PrintWiter witer = response.getWiter();

trans. transform new DOVBour ce(donDoc), new
StreanResult(witer));
} catch (Exception ex) {
showEr r or Page(r esponse, ex);
}

}
/**

* | f any exceptions occur, this nethod can be showed to display
* the stack trace in the browser w ndow.
*/
private void showEkrrorPage(HttpServl et Response response,
Thr owabl e t hrowabl e) throws | OException {
PrintWiter pw = response.getWiter();
pw. println("<htm ><body><h1>An Error Has Cccurred</hl><pre>");
t hr owabl e. pri nt St ackTr ace(pw) ;
pw. println("</pre></body></htm >");
}

/**

* A hel per nethod that retrieves the Personal Data object from
* the HttpSession.
*/
private Personal Data get Personal Dat a(Htt pSer vl et Request request) {
Ht t pSessi on session = request. get Session(true);
Per sonal Data pd = (Personal Data) session.getAttribute(
"chap6. Per sonal Data") ;
if (pd == null) {
pd = new Personal Data();
session.set Attri but e("chap6. Personal Data", pd);

return pd;

}

One key difference in this example is its reliance on the

comoreilly.javaxslt.util.Styl esheet Cache class. This will, of course, require that
you add StylesheetCache.class to your WAR file in the appropriate directory. Another option is to
place the stylesheet cache into a JAR file, and place that JAR file into the TOMCAT_HOME/lib
directory. This approach is taken when you download the example code for this book.

The biggest code savings occurinthe i ni t () method because the filenames for the
stylesheets are stored instead of Tenpl at es instances. This is because the stylesheet cache
requires filenames as inputs and will create its own instances of Tenpl at es, which accounts for
a majority of the simple changes throughout the servlet.

Once you get this example up and running, testing the stylesheet reloading capability is a snap.
As before, chap6.war is copied to the TOMCAT_HOME/webapps directory. After you run the
servlet the first time, you will notice that the WAR file is expanded into the
TOMCAT_HOME/webapps/chap6 directory. Simply go into the
TOMCAT_HOME/webapps/chap6/WEB-INF/xslt directory and edit one of the stylesheets. Then
click on the Refresh button on your web browser, and you should see the results of the edits that
were just made.

If you don't see the changes, there might be some leftover files from earlier examples in this
chapter. Be sure to shut down Tomcat and remove both chap6.war and the chap6 directory from
Tomcat's webapps directory. Then re-deploy and try again.

6.5 Servlet Threading Issues

Like it or not, a servlet must be capable of serving more than one client at a time. Built-in
threading capability is one of the key reasons why Java is so well-suited to server applications,
particularly when compared to a traditional CGI model. As usual, however, tradeoffs are involved.
In particular, writing code that can handle many concurrent tasks without corrupting data can be
quite challenging at times. Ideally, this material can alert you to the most common causes of
threading problems found in a servlet environment.

6.5.1 Servlet Threading Model

In the standard servlet model, a client makes a request via the servlet'sser vi ce() method. In
the Ht t pSer vl et class, the servi ce() method determines the type of HTTP request and
delegates to methods such as doGet () or doPost (). If several clients issue requests at the
same time, these methods will serve each client in a different thread. Since most servlets are
subclasses of Ht t pSer vl et , your main concern is insuring that ser vi ce(), doCGet(), and
doPost () can handle many concurrent clients.

Before handling any requests, a servlet'si ni t () method is invoked. According to the servlet
API specification, this method must be invoked by only a single thread and must complete
successfully before subsequent threads are allowed to enter the ser vi ce() method. For this
reason, you do not have to worry about threading problems inside of thei ni t () method. From
there, however, all bets are off.

One simplistic approach to thread safety is to declare a method as synchronized. In this
approach, your doGet () method would be declared as follows:

protected synchroni zed void doGet (Htt pServl et Request request,
Ht t pSer vl et Response response) throws | OException,
Servl et Exception {

}

The synchr oni zed keyword will require that any thread wishing to invoke this method first
obtain a lock on the servlet object. Once the first client obtains the lock and begins to execute the
method, all others must wait their turn. If the doCGet () method takes 0.5 seconds to execute,
then a load of a mere 100 users will result in nearly a minute-long wait for many visitors to your
site, since each waits in a queue for access to the lock.

This is almost never a viable option, so another choice is to declare that your servlet implements
the | avax. servl et. Si ngl eThreadMbdel interface as follows:

public class MyServlet extends HttpServlet inplenents SingleThreadvbdel
{

The Si ngl eThreadModel interface is a marker interface, meaning that it does not declare any
methods. It merely indicates to the servlet container that your servlet is not thread-safe, and can
handle only one request at a time initsser vi ce() method. A typical servlet container will
maintain a pool of servlet instances in this case, allowing each instance to handle a single
request at a time.

This is somewhat better than merely synchronizing the doGet () or doPost () method.
However, it does mean that multiple copies of the servlet will be instantiated. This results in
higher memory overhead and still does not ensure that all threading issues will be resolved. For
example, concurrent modifications to a shared resource such as a file or a static field are not
prevented in any way.

6.5.2 Thread Safety Tips

Most servlet threading problems occur when two or more threads make changes to the same
resource. This might mean that two threads try to modify a file, or perhaps several threads all
update the value of a shared variable at the same instant. This causes unpredictable behavior
and can be very hard to diagnose. Another type of thread problem is deadlock, where two threads
are in contention for the same resource, each holding a lock that the other thread needs. Yet
another problem is performance. As mentioned earlier, synchronizing access to a method can
introduce significant performance penalties.

The best overall approach to servlet thread safety is to avoid the Si ngl eThr eadVbdel interface
and synchronizing access to the ser vi ce() method. This way, your servlet can handle
multiple client requests at the same time. This also means that you must avoid situations where
more than one thread can modify a shared resource concurrently. The following tips should offer
some guidance.

6.5.2.1 Tip 1: Local variables are thread-safe

Obiject fields in a servlet are often bad news. Consider the following code:

public class HoneServl et extends HttpServlet {
private Customer currentCust;

protected void doCGet(HttpServl et Request request,
Ht t pSer vl et Response response) throws | OExcepti on,
Servl et Exception {
Ht t pSessi on session = request. get Sessi on(true);
current Cust = (Customer) session.getAttribute("cust");
current Cust. set Last AccessedTi ne(new Date());

}

In this code, the cur rent Cust field is obtained from the Ht t pSessi on whenever a client enters
the doCet () method. Unfortunately, if another thread invokes this method an instant later, the
current Cust field will be overwritten before the first thread is complete. In fact, dozens of
threads could enter the doCGet () method at roughly the same time, repeatedly replacing the
current Cust reference. This would lead to complete failure of this servlet.

The easy fix is to make cur r ent Cust a local variable as follows:

public class HoneServl et extends HttpServlet {
protected void doGet (HttpServl et Request request,
Ht t pSer vl et Response response) throws | OExcepti on,
Servl et Exception {
Ht t pSessi on session = request. get Sessi on(true);
Custoner currentCust = (Customer) session.getAttribute(" cust");
current Cust. set Last AccessedTi ne(new Date());

}

This fixes our problem because each thread gets its own copy of local variables in Java. By
simply removing the object field and replacing it with a local variable, this particular threading
problem is resolved.

6.5.2.2 Tip 2: Immutable objects are thread-safe

Whenever two or more threads make changes to the same object at the same time, a race
condition can occur. Consider the following code:

public class Person {
private String firstNane;
private String |astNane;

public void setNane(String firstNane, String |astNane) {
this.firstName = firstName;
this.lastNane = | ast Nane;

}

...getter nmethods omtted

}

If two threads invoke the set Nane() method at roughly the same time, the following scenario
can occur:

1. Thread "A" sets the first name to "Bill," but is interrupted by thread "B".
2. Thread "B" sets the first and last names to "George" and "Bush."
3. Thread "A" regains control, and sets the last name to "Clinton."

At this point, the person's name is George Clinton, which is clearly not what was intended.
Although you could make the set Nane() method synchr oni zed, you would also have to
make any get methods synchroni zed as well.

Another option is to make this an immutable object. An immutable object cannot be modified, so
multiple threads cannot concurrently alter it. The Per son class can be modified as follows:

public class Person {
private String firstNane;
private String | astNane;

public Person(String firstNane, String |astNane) {
this.firstNanme = firstNanme;
this.lastNane = | ast Naneg;

}

public String getFirstName() { return this.firstNane; }
public String getLastName() { return this.|astNane; }

}

Since instances of the Per son class cannot be modified, its methods do not have to be
synchroni zed. This makes the objects fast and allows them to be read by many threads
concurrently. The only drawback is that you cannot make changes to these objects once they are
constructed. The simple fix is to create a brand new Per son object whenever a change needs to
be made. This is essentially the approach that| ava. | ang. St ri ng takes.

Immutable objects are not always an option but can be a useful technique for many smaller "data
helper" classes that seem to pop up in every application.

6.5.2.3 Tip 3: Provide a single point of entry

When dealing with a single instance of a shared resource, such as a file that needs to be
modified, you should consider creating a facade around that resource. This is a single class that
provides controlled access to that resource, thus providing a single point in your code for proper
synchronization. The following code snippet illustrates how you can essentially create a facade
around a data source that holds Cust oner objects. It is assumed that the Cust oner class is
immutable, making it impossible to change a Cust oner instance without going through this well-
defined API:

public class Custoner Source {
public static synchronized Custoner getCustoner(String id) {
/1l read the custonmer froma file, or perhaps
/1 from a dat abase. ..

}

public static synchroni zed Custoner createCustomer() {
/|l create a new custonmer in the file or database
// and return it...

}

public static synchronized void del eteCustonmer(String id) {
/11

}

This is just one simple approach that works best on smaller applications. A servlet's doGet () or
doPost () method should utilize the Cust oner Sour ce class without any data corruption. If the
methods in Cust oner Sour ce are slow, however, they will hinder scalability as more and more
clients wait for their turn to access the underlying data source.

6.5.2.4 Tip 4: Understand the Templates interface

Multiple threads can share implementations of | avax. xnl . t ransf orm Tenpl at es.
Therefore, instances can be stored as object fields on a servlet:

public class MyServlet extends HttpServlet {
private Tenpl at es honePageSt yl esheet ;

}

But instances of | avax. xnl . t ransf orm Transf or mer are not thread-safe; they should be
declared as local variables within the doGet () or doPost () method:

public class MyServlet extends HitpServlet {
private Tenpl at es honePageSt yl esheet ;

public void init() throws Unavail abl eException {
create the Tenpl ates instance
}

protected void doGet() {
Transfornmer trans = honePageStyl esheet. newlransforner();
use this Transformer instance, a |ocal variable

}
Chapter 7. Discussion Forum

Up until now, the examples in this book have been short and to the point. The goal of this chapter
is to show how a much more sophisticated web application is designed and implemented from the
ground up. This is the culmination of everything covered so far, combining XML, servlets, XSLT,
JDBC, JAXP, and JDOM into a fully functioning web-based discussion forum. As with the other
examples in this book, the full source code is available from the companion web site.

Walking the line between "textbook quality" and "real-world" examples is difficult. First and
foremost, the goal of this chapter is to demonstrate how to design and implement a nontrivial web
application using XSLT and Java. The second goal is to produce a decent application that can
actually be used in the real world. Hopefully this has been achieved. Although making an
example of this size fit into a single chapter involves a few tradeoffs, the design is flexible enough
to allow new features, such as user authentication, to be implemented without too much
additional effort.

The discussion forum requires the following Java packages:
Java 2 Standard Edition v1.2 or later
JDOM beta 6
Any JAXP 1.1 compatible XML parser and XSLT processor
Any servlet container that supports Version 2.2 or later of the servlet specification

Either MySQL or Microsoft Access

7.1 Overall Process

Developing a web application using Java and XSLT can be broken down into several key steps.
As in any software development project, a modular approach that can be dispatched to several
developers simultaneously is highly desirable. This speeds the overall process and allows
developers of different skill levels to participate.

Our process consists of the following high-level steps:

Define the requirements.

Create prototype XHTML web pages.

Create prototype XML datafiles.

Create XSLT stylesheets.

Design and implement the Java domain classes.
Design and implement the database and related code.
Create "XML producer" objects.

Implement the servlets and related code.

Although the list shown here approximates the order in which these steps will be performed, in
larger applications it is typical to implement a vertical slice of the system first. This slice will
implement one or two key screens and will require the development team to follow all of the
previous steps. As more screens are added to the system, the process is followed again for each
piece of functionality that is added. This is very typical of most lightweight software development
processes in which the system is developed in iterative steps rather than trying to implement the
entire system in one pass.

The remainder of this chapter will present the implementation of the discussion forum. The
requirements, design, and code will be presented in roughly the same order as the list shown in
this section.

7.1.1 Requirements

An online discussion forum will be developed using Java and XSLT. For the reference
implementation, all features will be accessible via a web browser using XHTML, and no client-
side Java or JavaScript will be required. The target for deployment is a web-hosting provider that
supports Java 2, servlet 2.2, and access to a relational database such as MySQL. It is assumed
that any additional Java JAR files, such as those required for JAXP and JDOM, can be installed
along with the web application.

The discussion forum will be divided into message boards, each of which covers a different topic
such as "Dog Lovers" or "Cat Lovers." Each message belongs to one of these boards and may
be a response to a previous message. This is known as a threaded discussion forum. Each
message will also contain a subject, create date, author email, and the actual message text.

When visiting the web site, users can read existing messages, post new messages, or reply to
existing messages. Only administrators can create new message boards. Although XHTML is
specified for the reference implementation, every effort will be made to facilitate alternatives, such
as XHTML Basic or WML. Other than practical limitations such as bandwidth and database
capacity, no artificial constraints shall be placed on the number of boards or messages.

A few features will be omitted to keep this example reasonably sized. These include a web-based
administrative interface, user authentication and security, and the ability to search the archive.
Suggestions for implementing these features are mentioned at the end of this chapter.

7.1.2 Screen Flow
The forum user interface consists of four primary screens, as shown in Figure 7-1. Each box

represents a different web page that visitors encounter, and lines indicate screen-to-screen flow
as the user clicks on links.

Figure 7-1. Discussion forum screens

refurn hame

return hoime
L}
Discussion Forum | . o0 View Monlh select message
Home ; showallmessage [% View Messate
e —— .
show alf boards and subjects for the return essag
manihs with messages specified month
DOst mew
¥
5T W
- *| Posl New or reply to
ETa s Reply To -+ d
cance! Eply -
Message

Creating a graphical layout of the web pages as shown here is sometimes called storyboarding, a
common user interface design technique that has its roots in the animation, television, and motion
picture industries. Such high-level diagrams typically start as hand-drawn sketches on paper, with
the intent of capturing the overall application flow. This is a good place to start because it shows
how everything fits together without delving too deeply into technical design details.

The "Discussion Forum Home" page is the starting point and displays the list of all message
boards. For each message board, a list of months with messages is displayed. From this screen,
the user can either click on a month to view a list of message subjects, or click on a link to post a
new message. The user can always return to the home page from any other page in the
application.

The "View Month" page shows message subjects for a particular month in a given board. These
messages are displayed in a tree that shows the message subject, author, and create date. The
structure of the tree represents threads of discussion, with replies indented underneath the
original messages. From this page, the user can either select a message to view or click on a link
to visit the "Post New Message" page.

The "View Message" screen shows details for an individual message. From this page, visitors can
either return to the month view or click on a link to reply to this message.

The final page allows users to either post a new message or reply to an existing message. Since
posting and replying are quite similar, much of the Java and XSLT stylesheet code is reused.
Although using the same code for multiple web pages reduces the size of the application, it can
add complexity because the code must be capable of two modes of operation.

7.2 Prototyping the XML

Once the requirements and screen flow are well understood, it is possible to move on to a more
rigorous design process. Web sites based on XSLT are highly modular, facilitating a design and
implementation process that can be farmed out to several members of a development team. Each
piece can be developed and tested independently before finally bringing everything together into
the completed web application.

7.2.1 XHTML Prototypes

Creating user interface prototypes is an early task that can be handed off to less experienced
programmers or perhaps to a dedicated web page designer. At this stage in the game, an overly
complex and graphical web interface is not required. The bells and whistles can be added later by
merely updating XSLT stylesheets. In fact, too much effort at this early stage can make it more
difficult to figure out what the XML and XSLT should look like.

Since the front end will be created using XHTML Strict, a separate cascading style sheet (CSS)
will be required to make the pages look presentable.’! The strict variant of XHTML does not allow
most of the HTML 4.0 formatting tags, but instead encourages the use of CSS. Example 7-1
contains the complete CSS file used by the discussion forum.

[see http://www.w3.org/TR/xhtml1 for more information on XHTML Strict.

Example 7-1. forum.css

body {
font-famly : Verdana, Geneva, Arial, Helvetica, sans-serif;

}

.box1 {
border: 3px solid Navy;
text-align: center
paddi ng: 4px;
margin : 2px
background- col or: #c0c0cO

}

. box2 {
border: 1px solid Navy;
paddi ng: 4px;

mar gi n: 2px
background- col or: #FFFFCC,
}

hl {
font-size: 22pt;
font-wei ght: nornal
mar gi n: Opx Opx Opx Opx;
}

h2 {
font-size: 18pt;
font-wei ght: nornal
mar gi n: Opx Opx Opx Opx;
}

h3 {
font-size: 1l4pt;
font -wei ght: nornal
mar gi n: Opx Opx Opx Opx;

}
ul {

mar gi n-top: O0px;
}

. msgSunmar yLi ne {
font-size: smaller;
font -wei ght: nornal

}

a: hover {
background- col or: yel | ow,

}

.error {
font -wei ght: bold;
color: red;

}
Each of the XHTML web pages refers to this CSS file using the following syntax:
<link type="text/css" rel="styl esheet" href="/forunm forumcss" />

This is a great technique because it keeps the size of the XSLT stylesheets and each XHTML
page much smaller. Changes to fonts and colors can be made in the single CSS file and are
immediately reflected throughout the web application. The primary obstacle at this time is
noncompliant web browsers. Although support for CSS is gradually improving, web pages must
be tested on a variety of browsers to identify formatting problems.

A common theme presented throughout this book is the
separation of data and presentation that XSLT supports. CSS
expands upon this theme by separating XHTML content from
many aspects of its visual presentation. CSS and XSLT are
very different technologies that complement one another
nicely.

=0

Most of the code in a CSS file is fairly self-explanatory. For example, the h2 style applies to <h2>
elements in the XHTML. One style element that many programmers may not be familiar with is:

. box2 {
border: 1px solid Navy;
paddi ng: 4px;

mar gi n: 2px;
background- col or: #FFFFCC;
}

The dotin . box2 indicates a style class definition. Here is how the box?2 style class is used in the
XHTML:

<di v class="hox2">Messages for March, 2001</div>
The advantage of a style class is that it can be applied to any element in the XHTML. In this case,
a thin border and yellow background are applied to any element that has the box 2 class.

The web page designers should create basic representations of every page in the application at
this point. The home page is shown in Figure 7-2.

Figure 7-2. Home page prototype

| ok e = - Q[0 3| Qeah (siemotes Frwy L+ b]
iﬂﬂiﬂl EC:'Lc\rgdata'l,jauaxslt'|examphi;’l,:iscu55lm1|:r:t:ty|:e\,l‘mB.rﬁ:ml j G0
]Lm@cu:tmmu FlFreeHctmal £1Windows ElwindowsMeda

Discussion Forum Home

Java Programming
General programming guestions about Java.

Fost Message to Java Programming
Feb, 2001 | Mar, 2001 | Apr, 2001

XSLT Basics
Writing effective XSLT styleshests,

Post Megssage to XSLT Basics

Feb, 2001 | Mar, 2001 | Apr, 2001

Sample empty board

This board has no messages.

Post Message to Sample empty board

=
&) bore | My Computer v

The complete XHTML source code for the home page is shown in Example 7-2. As shown, the
actual hyperlinks are not valid because the design for the servlets has not been completed, and
the final URLs are probably unknown at this point. At any rate, this is only prototype code,
because the actual XHTML web pages are dynamic and will be produced as the result of an
XSLT transformation from XML data.

Example 7-2. Home page XHTML source

<?xm version="1.0" encodi ng="UTF-8""?>

<! DOCTYPE htm PUBLIC "-//WBC//DTD XHTML 1.0 Strict//EN'
"http://ww. w3. org/ TR/ xht m 1/ DTD/ xhtm 1-strict.dtd">

<htm xm ns="http://ww.w3. org/ 1999/ xhtm ">

<head>
<title>Di scussi on Forum Home</title>
<link href="../docroot/forumcss" rel ="styl esheet"” type="text/css"
/>
</ head>
<body>

<di v class="box1">
<h1>Di scussi on Forum Honme</ hl>
</ di v>
<di v class="box2">
<h2>Java Programm ng</ h2>
<di v>Ceneral programm ng questions about Java.</div>

<div style="margin-left: 2em">

<p>
Post Message

to Java Progranmm ng</ p>

Feb, 2001

Mar, 2001

Apr, 2001

</ div>
</ div>

<di v cl ass="box2">
<h2>XSLT Basi cs</ h2>
<div>Witing effective XSLT styl esheets. </div>
<div style="margin-left: 2em">

<p>

Post Message to XSLT
Basi cs</ p>

Feb, 2001 |

Mar, 2001 |

Apr, 2001

</ div>
</ di v>

<di v cl ass="box2">
<h2>Sampl e enpty boar d</ h2>
<di v>Thi s board has no nessages. </ di v>
<div style="margin-left: 2em">

<p>
Post Message
to Sanpl e enpty boar d</ p>
</ div>
</ div>
</ body>

</htm >

<di v> and tags may be unfamiliar because they were ignored by many HTML authors
until CSS became more prevalent. Basically, a <di v> tag is wrapped around any number of
other elements, turning them into a block-level element group. The tag is similar, but it is
an inline element. This means that tags will be embedded into the current line, while

<di v> tags will wrap to a new line much like <p> or <h1> tags do. The ability to define style
classes make <di v> and particularly useful for XHTML Strict, which disallows
deprecated HTML 4.0 elements such as <f ont >. Although is not used in this particular
example, <di v> is used frequently to introduce line breaks and to apply styles using CSS.

The next prototype, shown in Figure 7-3, shows what a message board looks like. XHTML
source code for the remaining screens is not listed here.

Figure 7-3. View Month prototype

ﬁ XSLT Basics - Microsolt Internet Explorer EEE
| Bl Bl Mew Favoctes [ook e | |
| spadk = = - (D [| Dimeanh [sfFavontes | AHeory Y- 8 W - 5]
| Adoress |1 heeo-jocalost: B0EC Forumimaniviestorthi boardiD=Cmanth=ztsar=2001 2 o
|lnks @]customizeLirks @]Freabotmal @]Widows E]wWindows Meda
=
XSLT Basics
|Meaﬁage5 for March, 2001
Quick Actions
. L a new massage. ..
« Return to the home page...
First messane posted posted by burke e@ociweb. com on 11 Mar 2001
Fe: First message posted posted by burke e@vahoo. com on 11 Mar 2001
R Pes First meszage posted posted by anoniwhatever on
13 Mar 2001
Second message posted by burke e@ociweb . com on 11 Mar 2001
How do [select processing instructions? posted by anon@whatever. com on
13 Mar 2001
Pl
] (5 Localintranst 2

Messages that are replies to other messages are indented a few spaces. Later, a simple change
to the XSLT stylesheet can be employed to show graphical folders or other icons in front of each

message. The next screen, shown in Figure 7-4, shows how users can post new messages to
the discussion forum.

Figure 7-4. Post Message prototype

'EF'nll:HEur‘tu-aqe-l‘ﬁun:oﬂ Internet Explorer e i =
| Bl Bt yew Fyemss Lo ep | = |
[hoak - o - @ J G} Otwwh ifwoter ey (IR
| gl e =pesttintteqabos D=0
|
Post New Message
¥ELT Baslcs
Subject: |
Your Emall: |
Message: 1]
]
Siubma | Cancel
=l
&] Do [% Localintranet i

This page is also used to reply to an existing message. Although not shown here, the title
changes to "Reply to Message," and the subject and message text are pre-filled with text from the

original message. If the user submits this form without filling in all values, the web page is
redisplayed with an error message.

The final screen prototype is shown in Figure 7-5. This screen allows users to view existing
messages.

Figure 7-5. View Message prototype

Z§ ¥iew Message - Microsoft Intermet Explorer
Bl Edt (ew Favortss Jooe Hep [|
sk » =0 - 3 A Y Psemch Fmvites | AHsey | D4 b - 5
.ﬂdﬂus&lﬂ_'lI'ttp:,l,'bcal'l::t:mBD.lfcrunﬁTﬂrJ'mvﬂk;hrsgtj-? j o
Links @] Customize Links & Free Hotmall @] 'Windows &7 ¥indows Media
=
View Message
#SLT Basics
Quick Actions
« Retum to March, 2001 messages for ¥SLT Basics
o Returm to the home paos
« Feply to this message
Message
Re: First message posted
posted by burke edvahoo com on Mar 11, 2001
First reEsponss
W ——— Original Message-----
» Thig 18 line one
> line two
* third and final lins
=
—_— - _I
£] bone (% Local intranet :

7.2.2 XML Samples

While page designers are hard at work on the XHTML prototype screens, someone else can be
working on sample XML data for each web page. Although different people may work on these
tasks, a certain degree of coordination is critical at this point. The prototype XHTML pages may
look great, but the XML must provide the data to enable those pages to be created. The XML
designer will also have to work with the people who are designing the back-end data sources to
determine if the desired data is even available.

When designing XML, the focus should be on data rather than presentation. All of the fonts and
colors that are part of the CSS should have absolutely zero impact on the design of the XML. The
XML will contain additional data that is not displayed, however. For example, creating hyperlinks
requires some sort of identifier for each object. This allows the servlet to figure out which
message the user clicked on. The XML data contains the identifier for the message, but the
actual XHTML markup for the hyperlink comes from an XSLT stylesheet.

The XML data for the home page is shown in Example 7-3. Because the XML does not contain
presentation information, it is smaller than the XHTML markup.

Example 7-3. home.xml
<?xm version="1.0" encodi ng="UTF-8""?>

<?xm -styl esheet type="text/xsl" href="../xslt/hone.xslt"?>
<home>
<board id="0">
<nane>Java Programm ng</ nane>
<descri pti on>CGeneral programm ng questions about Java. </ description>
<nmessages nont h="1" year="2001"/>
<nessages nont h="2" year="2001"/>
<nessages nont h="3" year="2001"/>
</ boar d>
<board id="1">
<name>XSLT Basi cs</ nane>
<description>Witing effective XSLT styl esheets</description>
<nessages nont h="1" year="2001"/>
<nessages nont h="2" year="2001"/>
<nmessages nont h="3" year="2001"/>
</ boar d>
<board id="3">
<nane>Sanpl e enpty boar d</ nane>
<descri ption>This board has no nessages. </ descri pti on>
</ boar d>
</ hone>

Do not forget that this is still just a prototype XML file. The actual XML data will be dynamically
generated by JDOM once the application is finished; this XML prototype code is used only for
testing and development purposes.

In this XML data, each message board is represented by a <boar d> element that has ani d
attribute. When the user clicks on the "Post Message" web page hyperlink, this id is used to figure
out which message board he or she wants to post to. The list of <nressages> elements indicates
months that have messages in them. These do not need | d attributes because the month and
year are used in the hyperlink.

The second line of the XML links to the XSLT stylesheet:
<?xm -styl esheet type="text/xsl" href="../xslt/hone.xslt"?>
This is not used in the final application but is very useful during the prototyping and development

process. By linking to the stylesheet, the transformation can be quickly viewed in an XSLT-
compatible web browser by simply loading the XML page.

Iterative Design

The examples shown in this chapter are the result of several attempts to
get the design "right." As in other areas of software design, figuring out
what to place in the XHTML, XML, and XSLT is an iterative process that
requires several attempts before the design can be finalized.

In a nutshell, the process works something like this:
Prototype the web pages using HTML or XHTML.
Create the XML datafile prototypes and optionally create DTDs.
Create XSLT stylesheets that transform the XML into XHTML.

Desian and create back-end data sources and classes that know

how to produce the required XML data.
Create servlets that tie everything together.

As each piece of the application is implemented, missing or redundant
features will manifest themselves in other areas. This is where the
iterative process comes into effect. If some features are not right the first
time, simply refine the prototypes and repeat various steps in the
process until all the pieces fit together.

The next XML file, shown in Example 7-4, contains data for the "View Month" page.

Example 7-4. viewMonth.xml

<?xm version="1.0" encodi ng="UTF-8""?>
<?xm -styl esheet type="text/xsl" href="../xslt/viewbnth.xslt"?>
<vi ewMont h nmont h="1" year="2001">
<board id="1">
<nane>Java Programm ng</ nane>
<descri pti on>General programm ng questions about Java. </description>
</ boar d>
<nessage id="1" day="1">
<subj ect >Fi rst test nmessage</subject>
<aut hor Emai | >bur ke_e@ahoo. conx/ aut hor Emai | >
<nessage id="2" day="2">
<subj ect >Re: First test nessage</subject>
<aut hor Emai | >ai dan@owher e. conx/ aut hor Emai | >
</ message>
</ message>
<nessage id="3" day="4">
<subj ect >Anot her test nessage</subject>
<aut hor Emai | >bur ke_e@ahoo. conk/ aut hor Enai | >
</ message>
</ vi ewont h>

Moving on to Example 7-5, we have the XML for the "Post/Reply Message" page.

Example 7-5. postMsg.xml

<?xm version="1.0" encodi ng="UTF-8""?>
<?xm -styl esheet type="text/xsl" href="../xslt/postMg.xslt"?>
<post Msg>
<board id="1">
<nane>Java Programm ng</ nane>
<descri ption>The board description...</description>
</ boar d>
<i nResponseTo i d="4">
<subj ect >Test Subj ect </ subj ect >
</ i nResponseTo>
<error code="ALL FI ELDS REQUI RED'/ >
<prefill>
<subj ect >Test Subj ect </ subj ect >
<aut hor Emai | ></ aut hor Enai | >
<nessage>My Message</ nessage>
</prefill>
</ post Msg>

This XML is used for both posting new messages and replying to existing messages because the
web pages are virtually identical, and the data is the same in both cases. The <er r or > and
<prefill > elements were not part of the original prototype, but it was quickly determined that
these were needed if the user did not provide information for all required fields. When the "Post
New Message" page is first displayed, these XML elements are not present. After the user clicks
on the Submit button, however, these elements are inserted into the XML if a field is missing and
the page needs to be redisplayed.

And finally, the XML for the "View Message" page is shown in Example 7-6.

Example 7-6. viewMsg.xml

<?xm version="1.0" encodi ng="UTF-8""?>
<?xm -styl esheet type="text/xsl" href="../xslt/viewvsg. xslt"?>
<nessage id="5" nonth="1" day="4" year="2001">
<board id="1">
<nane>Java Programm ng</ nane>
</ boar d>
<i nResponseTo i d="4">
<subj ect >Test Subj ect </ subj ect >
</'i nResponseTo>
<subj ect >Re: Test Subj ect </ subj ect >
<aut hor Emai | >bur ke_e@ahoo. conx/ aut hor Emai | >
<text>This is a test of the nessage
text.</text>
</ message>

A quick study of this data reveals that postMsg.xml and viewMsg.xml have many similarities. A
few modifications to either XML file will enable us to reuse the same JDOM code later when
producing these pages. The alternative is to keep these pages separate, which results in at least
one additional Java class later on. The advantage of keeping these files separate is so that the
XML generation code does not have to be cluttered up with a lot of i f /el se statements to figure
out the mode of operation it is in.

7.2.3 XSLT Stylesheets

Yet another member of the development team can be assigned to the task of creating XSLT
stylesheets, although he or she will have to wait until the XML and XHTML prototypes are
complete. More often than not, the person designing the XML will be the one creating the initial
XSLT stylesheets.

At this point in the process, a tool such as XML Spy can be invaluable.’ The ability to edit the
XSLT stylesheet and click on the Refresh button in an IDE makes development a snap.
Alternately, an XSLT-compatible web browser can quickly display changes as stylesheets are
edited. As explained in Chapter 1, Microsoft's Internet Explorer 5.x supports XSLT, provided that
the updated msxml parser is installed using the xmlinst utility.!

[21 XML Spy is a commercial XML editor that works nicely for XSLT development. It is available at
http://www.xmlspy.com.

31 As this is written, IE 6.0 is in beta testing. It supports the latest XSLT specification. The Mozilla browser
will also support XSLT at some point.

Example 7-7 shows the XSLT for the discussion forum home page.

Example 7-7. XSLT for the home page

<?xm version="1.0" encodi ng="UTF-8"7?>
<l--

LR R R I R I R R R R R R I

** hone. xsl t
* %

** Transfornms the hone page into XHTM

IR R S S I S S S I S R S S I I I
-->
<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:inmport href="utils.xslt"/>
<xsl :param nane="rootDir" select=""'../docroot/"'"/>
<xsl :out put nethod="xm" version="1.0" encodi ng="UTF- 8"
i ndent ="yes"
doct ype-public="-//WBC//DID XHTML 1.0 Strict//EN'
doctype-system="http://ww. w3. org/ TR/ xht m 1/ DTD/ xht ml 1-stri ct

<l --
EIR R R I b b S R I R IR R IR I I R b R b A b R b I b I I R R R R I b I b I I b R I I I I I b I I I I I I

** Create the XHTML web page
***__>
<xsl:tenplate match="/">
<htm xm ns="http://ww. w3. org/ 1999/ xhtm ">
<head>
<title>Di scussion Forum Honme</title>
<link href="{$rootDir}forumcss"
rel ="styl esheet" type="text/css"/>
</ head>
<body>
<di v class="hox1">
<h1>Di scussi on Forum Hone</ h1>
</ di v>
<xsl :appl y-tenpl ates sel ect ="hone/ board"/ >
</ body>
</htm >
</ xsl :tenpl at e>

<l--
EE R R I S I S S I R S I I kR Sk kI O I kI

** Qutput a box for each board in the discussion forum

IR R I I b S S I I I I I I b I b I I I I S S I I I S I I I I I I b b I I S I I I I I I I Ik kb
S

<xsl:tenpl ate mat ch="board">
<xsl : vari abl e nane="boardl D' select="@d"/>

<di v cl ass="box2">
<h2><xsl : val ue- of sel ect ="nanme"/></h2>
<di v><xsl : val ue- of sel ect="description"/></div>
<div style="margin-left: 2em">
<l-- create a link so the user can post a new nessage
to this board -->
<p>
Post
Message</ a>
to <xsl:val ue-of select="name"/>
</ p>

<l-- For each nmonth that has nessages, show the

Ldtd"/ >

nmont h nane and year nunber as a link -->
<xsl :for-each sel ect ="nessages">

<ahr ef ="f or uml mai n/ vi ewmvbnt h?boar dl D={ $boar dI D} &anp; nont h={ @mont h} &np; y
ear =
{@ear}">
<xsl:call-tenplate nane="utils. print Short Mont hNane" >
<xsl : wi t h- param nane="nont hNunber" sel ect =" @wont h"/ >

</xsl:call -tenpl ate>

<xsl:text> </xsl:text>

<xsl : val ue-of select="@ear"/>

</ a>

<l-- put a pipe character after
all but the last nonth -->

<xsl:if test="position() !=last()">

<xsl:text> | </xsl:text>
</xsl:if>
</ xsl:for-each>
</ div>
</ di v>

</ xsl:tenpl at e>
</ xsl : styl esheet >

This stylesheet opens with the usual <xsl : st yl esheet > tag and then proceeds to import
utils.xslt. This is a stylesheet that contains common templates for formatting dates. Since these
utilities are needed on just about every page, they are defined a common file that is imported, as
shown here. This stylesheet also takes a parameter named r oot Di r, allowing the web
application to specify the location of the document root directory:

<xsl :param nane="rootDir" select=""../docroot/"'"/>

The sel ect attribute defines a default value for this parameter if none was specified. During the
stylesheet development process, the XSLT is tested using a static XML file. This is done outside
of a web application, so the parameter is not specified and the root directory defaults to

../ docroot /. This makes it possible to locate the CSS file during development, when
developers are working from a static directory structure on their file systems. Later, when the
XSLT stylesheet is deployed to a web application and the servlet is running, the servlet can
specify a different value for this parameter that indicates a directory relative to the web application
context. This is a useful technique whenever a stylesheet has to reference external resources
such as CSS files, JavaScript files, or images.

Next, the <xsl : out put > element is used to set up XHTML output. The XHTML 1.0 Strict DTD is
used, which eliminates many deprecated HTML 4.0 features. Because the strict DTD does away
with many formatting tags, a CSS file is required to make the pages look presentable. All the
XSLT needs to do is produce HTML code that references the external stylesheet, as shown here:

<htm xm ns="http://ww.w3. org/ 1999/ xhtm ">
<head>
<title>Di scussi on Forum Home</titl e>
<link href="{$rootDir}forumcss"
rel ="styl esheet" type="text/css"/>
</ head>

The XSLT processor does not actually deal with the CSS file. From the perspective of XSLT, the
<l i nk> tag is just text that is copied to the result tree during the transformation process. Later,
when the web browser displays the XHTML page, the actual CSS file is loaded. This technique is
great because styles can be shared across all web pages without complicating the XSLT
stylesheets.

The remainder of the stylesheet is pretty basic -- just matching patterns in the XML and producing
XHTML content to the result tree. One important thing to point out here is the way that hyperlinks
are created:

Post
Message</ a>

Since the ampersand character (&) is not allowed in an XML attribute value, it must be written
using the &anp; built-in entity. As it turns out, browsers deal with this just fine, and the hyperlink
works anyway.“!

41 we will see this again when dealing with WML in Chapter 10.

What Is the URL?

You may be wondering how you are supposed to know what each
hyperlink is actually supposed to be. At this stage of the game, you
probably will not know, and your links will actually look something like
this:

Post
Message</ a>

This is fine for now, because you really won't know what to put there until
the servlets are fully designed. Part of the servlet design process
involves figuring out what parameters are required and what the legal
values are. Until this work has been completed, however, an educated
guess or "TODO" comment is fine.

Another key piece of this stylesheet shows how to call a utility template:

<xsl:call-tenplate nanme="utils. print Short Mont hNane" >
<xsl : wi t h- param nanme="nont hNunber" sel ect =" @mont h"/>
</xsl:call-tenpl at e>

The utils.printShortMonthName template is part of utils.xslt and is invoked just like a local
template. The only difference is that the current stylesheet must import utils.xslt or the code will
fail. Prefixing the template name with utils. has nothing to do with the actual filename; it is a
convention adopted only for this application that makes the code a little easier to read, reducing
the chances for naming conflicts.

The reusable XSLT stylesheet, utils.xslt, is shown next in Example 7-8.

Example 7-8. Reusable XSLT code

<?xm version="1.0" encodi ng="UTF-8"7?>
<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl :tenpl ate nanme="util s. pri nt Short Mont hNane" >
<xsl : par am nanme="nont hNunber "/ >
<xsl : choose>
<xsl : when test="$nont hNunmber =' 0' " >Jan</ xsl : when>
<xsl : when test="$nont hNunber ="' 1' " >Feb</ xsl| : when>
<xsl : when test="$nont hNunber ="' 2' " >Mar </ xsl : when>
<xsl : when test="$nont hNurmber =' 3" " >Apr </ xsl| : when>

<xsl :when test="$nont hNunmber =" 4' " >May</ xsl : when>
<xsl :when test="%nont hNunber="5"">Jun</ xsl : when>
<xsl :when test="$nmont hNunber =' 6' " >Jul </ xsl : when>
<xsl : when test="$nont hNurmber ="' 7' " >Aug</ xsl : when>
<xsl :when test="3%nont hNunber =' 8' " >Sep</ xsl : when>
<xsl :when test="$nmont hNunber ="' 9' " >Cct </ xsl : when>
<xsl :when test="$nmont hNunber ="' 10' ">Nov</ xsl : when>
<xsl : when test="%$nmont hNunber =' 11' " >Dec</ xsl : when>

</ xsl : choose>

</ xsl :tenpl at e>

<xsl:tenplate nane="utils. pri nt Longhont hNane" >
<xsl : par am nane="nont hNunber"/ >
<xsl : choose>
<xsl :when test="3%nmont hNunber ="' 0' ">Januar y</ xsl : when>
<xsl :when test="$nont hNunber =" 1" ">Febr uar y</ xsl : when>
<xsl : when test ="$nmont hNunber ="' 2' " >Mar ch</ xsl : when>
<xsl : when test="$nont hNurmber =" 3' ">Apri | </ xsl : when>
<xsl :when test="$nont hNunber="4"">May</ xsl : when>
<xsl :when test="$nont hNunber ="5"">June</ xsl : when>
<xsl :when test="$nont hNunber =" 6" ">Jul y</ xsl : when>
<xsl : when test="$nont hNunber =' 7' " >August </ xsl : when>
<xsl : when test="$nont hNurmber ="' 8' " >Sept enber </ xsl : when>
<xsl :when test="$nont hNurmber =" 9' " >Cct ober </ xsl : when>
<xsl : when test="$nont hNunber =" 10' ">Novenber </ xsl : when>
<xsl :when test="$nont hNunber =" 11' ">Decenber </ xsl : when>
</ xsl : choose>
</ xsl :tenpl at e>
</ xsl : styl esheet >

Month numbers are indexed from position 0 to be consistent with the | ava. ut i | . Cal endar
class, which also uses 0 to represent January. The templates convert the month number into an
English month name.

viewMonth.xslt is shown in Example 7-9. It generates an XHTML page that shows all messages
in a month for a particular board.

Example 7-9. XSLT for the View Month page

<?xm version="1.0" encodi ng="UTF-8"7?>
<I--
kkhkkkhkkhhkkhkhkhkhkhkhkkhkhkkhkhhkhhkhkhkhkhkhhkhkdhkhhkhhkhhkhdhkhdhkhhkhhkhhkhhkhhkihkhhkihkhhkkhx*%x

** yvi ewMont h. xsl t

* %

** Shows a nonth-view of nmessages in a given board
ER R R Ik e b S S S S I R R Rk e e S S I R Rk kb e S S SR R R Ik kb b S R S S I
-->
<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni' >
<xsl:inmport href="utils.xslt"/>
<xsl : param nane="rootDir" select=""'../docroot/"'"/>
<xsl :out put method="xm" version="1.0" encodi ng="UTF-8"
i ndent ="yes"
doctype-public="-//WBC//DID XHTM. 1.0 Strict//EN
doctype-systens"http://ww. w3. or g/ TR/ xht Ml 1/ DTD/ xht ml 1-strict.dtd"/>
<l -- =Z================= J obal Vari abl es ================= -_.>
<xsl :vari abl e nane="gl obal . boar dNane" sel ect="/vi ewont h/ boar d/ nane"/ >
<xsl :vari abl e nane="gl obal . boardl D' sel ect ="/vi ewMont h/ board/ @d"/ >

<xsl :vari abl e name="gl obal . ront hNun' sel ect ="/ vi ewMont h/ @ont h"/ >
<xsl:vari abl e nane="gl obal . year Nunt' sel ect ="/vi ew\bnt h/ @ear"/ >

<l--
EE R R R b S S I I S O R R R S S S S S S S S I S O

** Create the XHTML web page

***__>

<xsl :tenplate match="/">
<htm xm ns="http://ww. w3. org/ 1999/ xhtm ">

<head>
<title>
<xsl : val ue- of sel ect ="$gl obal . boar dNane"/ >
</title>
<l-- reference an external CSS file to keep this

XSLT styl esheet smaller -->
<link href="{$rootDir}forum css"
rel ="styl esheet" type="text/css"/>

</ head>
<body>
<div cl ass="box1">
<hl>
<xsl :val ue- of sel ect="$gl obal . boar dNane"/ >
</ h1>
</ div>

<div cl ass="box2">
<xsl:text >Messages for </xsl:text>
<xsl:call-tenplate name="utils. print LongMont hNane" >
<xsl :wi t h- par am nanme="nont hNunber"
sel ect =" $gl obal . nont hNuni'/ >
</ xsl:call-tenpl ate>
<xsl:text> </xsl:text>
<xsl :val ue- of sel ect ="$gl obal . year Nuni'/ >

</ di v>
<l-- ===== Quick Actions ====== --
<h3>Qui ck Actions</h3>

<a

hr ef =" post Msg?node=post Newsg&anp; boar dl D={ $gl obal . boardl D} " >
Post </ a> a new nessage...
Return to the honme page...

<l-- ===== Recursively show the nessage tree ===== --
<xsl : appl y-tenpl at es sel ect ="vi ewMont h/ nessage"/ >
</ body>
</htm >

</ xsl :tenpl at e>

<l --
IR R S I b b I I I I I I I b I b I I I I S I S S I I I I I I I I b b I I S I I I I I I I I Ik kb

** Display a one-line sutmmary for each nessage.
ER R R I S S S S S R Ik R R Ik Sk S I - >

<xsl :tenpl ate nmat ch="nessage" >
<xsl : param nane="i ndent" select="0"/>

<!-- indent according to the 'indent' paraneter -->
<div style="margin-left: {$indent}em">

<xsl :val ue- of sel ect ="subject"/>
</ a>
<xsl :text> posted by </xsl:text>
<xsl :apply-tenpl ates sel ect ="aut horEmail "/ >
<xsl:text> on </xsl:text>
<xsl : val ue- of sel ect =" @ay"/ >
<xsl :text disabl e-out put - escapi ng="yes" >&anp; nbsp
<xsl:call-tenplate nane="util s. print Short Mont hNane" >
<xsl : wi t h- par am nane="nont hNunber" sel ect =" $gl obal . nont hNuni'/ >
</xsl:call-tenpl at e>
<xsl :text disabl e-out put - escapi ng="yes" >&anp; nbsp
<xsl : val ue- of sel ect="%$gl obal . year Nuni'/ >

<l-- recursively select all nessages that are
responses to this one. Increnent the indentation
with each call -->

<xsl : appl y-tenpl at es sel ect =" nessage" >
<xsl:wi t h- param nane="i ndent" sel ect ="%i ndent + 1"/>
</ xsl : appl y-tenpl at es>
</ di v>
</ xsl:tenpl at e>

<I--
EE IR Rk S S S S S R R R S S S S S S S R S I S S

** Show the author's emmil address.
***__>
<xsl :tenpl ate nmat ch="aut hor Enai | " >

<xsl : val ue-of select="."/>

</ a>

</ xsl:tenpl at e>
</ xsl : styl esheet >

Because viewMonth.xslt shows a summary view of a large number of messages, the actual text
content for each message is not included in the output. Instead, the message subject, author, and
create date are displayed. These lines are grouped and indented according to replies, making
threads of discussion immediately visible.

This stylesheet declares a series of global variables. These can be referenced throughout the
stylesheet and are designed to make the code more maintainable. Since each variable is prefixed
with gl obal . , the code is easy to understand when using the variables:

<xsl : val ue- of sel ect ="$gl obal . boar dNane"/ >

.2,

The gl obal . naming convention is not a standard part of
s XSLT. Itis just a convention used here to make the XSLT
more self-documenting.

]

-
el

The interesting part of this stylesheet involves construction of the tree of messages. Since
messages in the XML are hierarchical, the XSLT must recursively process the data to properly
show threads of discussion. Here is another look at a portion of the viewMonth.xml file presented
earlier in this chapter:

<vi ewvbnt h nont h="1" year="2001">
<board id="1">

<nane>Java Programm ng</ nane>
<descri pti on>CGeneral programm ng questions about Java. </description>
</ boar d>
<nessage id="1" day="1">
<subj ect >Fi rst test nmessage</subject>
<aut hor Emai | >bur ke_e@ahoo. conx/ aut hor Enai | >
<nessage id="2" day="2">
<subj ect >Re: First test nessage</subject>
<aut hor Emai | >ai dan@owher e. conx/ aut hor Emai | >
</ message>
</ message>
<nessage id="3" day="4">
<subj ect >Anot her test nessage</subject>
<aut hor Emai | >bur ke_e@ahoo. conk/ aut hor Enai | >
</ message>
</ vi ewMont h>

In the XSLT stylesheet, the first part of the recursive process selects all <nessage> elements
occurring immediately below the <vi ewivbnt h> element:

<xsl :apply-tenpl ates sel ect ="vi ewbnt h/ nessage"/ >
This selects messages with ids 1 and 3, causing the following template to be instantiated:

<xsl :tenpl ate mat ch="nessage" >
<xsl : param nane="i ndent" select="0"/>

This template takes a parameter for the level of indentation. If the parameter is not specified, as
in this first usage, it defaults to 0. This code is followed by very basic XSLT code to produce a
one-line summary of the current message, and then the template recursively instantiates itself:

<xsl :apply-tenpl ates sel ect ="nessage">
<xsl :w t h- param nane="i ndent" sel ect ="$i ndent + 1"/>
</ xsl:appl y-tenpl at es>

This efficiently selects all <nessage> elements that occur immediately within the current
message and increments the indentation by 1. This allows the stylesheet to indent replies
appropriately. The recursive process continues until no messages remain.

Another stylesheet, viewMsg.xslt, is responsible for displaying a single message. This is a simple
XSLT stylesheet and can be found in Appendix A. The only remaining stylesheet, postMsg.xsilt,
is shown in Example 7-10. This stylesheet supports two modes of operation. Therefore, it is
more complicated than the previous examples.

Example 7-10. XSLT for the Post/Reply message page

<?xm version="1.0" encodi ng="UTF-8""?>
<I--
kkhkkkhkkhhkkhhkhkhkkhkhkkhkhkkhkhhkhhkhhkhkdhkhkhkhhkhhkhhkhdhkhhkhhkhhkhhkhhkihkihkhhkhhkhhrkikkix*

** post Msg. xsl t
* %
** Creates the "Post New Message" XHTM. page and the
** "Reply to Message" XHTM. page.
kkhkkkhkkhhkkhhkhkhkkhkhkkhkhkkhkhhkhhkhhkhkdhkhkhkhkhkhhkhdhkhdhkhhkhhkhhkhhkhhkihkihkhhkhhkihrkikxkix*
-->
<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:inmport href="utils.xslt"/>

<l-- pass the root directory as a paraneter, thus
allowing this stylesheet to refer to the CSS file -->

<xsl:param nane="rootDir" select=""'../docroot/"'"/>

<xsl :out put method="xm" version="1.0" encodi ng="UTF-8"
i ndent ="yes"
doctype-public="-//WC//DID XHTM. 1.0 Strict//EN'
doctype-systens"http://ww. w3. org/ TR/ xhtml 1/ DTDY xhtml 1-strict.dtd"/>

<l-- ===== d obal Variables ===== --
<xsl :vari abl e nane="gl obal . subj ect"
sel ect ="/ post Msg/ prefill/subject"/>
<xsl :vari abl e nane="gl obal . emai | "
sel ect ="/ post Msg/ prefill/authorEmail "/ >
<xsl :vari abl e nane="gl obal . nessage"
sel ect ="/ post Msg/ prefill/ message"/>

<xsl:variabl e nane="global .title">
<xsl : choose>
<xsl :when test="/post Msg/i nResponseTo" >
<xsl:text>Reply to Message</xsl:text>
</ xsl : when>
<xsl : ot herwi se>
<xsl:text >Post New Message</xsl :text>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>

<l--
EE R R S S S S S S R R R I kR Sk kS

** Create the XHTM. web page
***__>
<xsl :tenplate match="/">
<htm xm ns="http://ww. w3. org/ 1999/ xhtm ">
<head>
<title><xsl:value-of select="$global.title"/></title>
<link href="{$rootDir}forum css"
rel ="styl esheet" type="text/css"/>
</ head>
<body>
<l-- show the page title and board nane -->
<div class="box1">
<hl><xsl :val ue-of select="%global.title"/></hl>
<di v>
<xsl :val ue-of sel ect="post Msg/ boar d/ nane"/ >
</ div>
</ div>
<xsl :apply-tenpl at es sel ect ="post Msg/i nResponseTo"/ >

<di v cl ass="box2">
<l-- optionally display error nessage -->
<xsl:if test="postMsg/error/ @ode="ALL_FI ELDS REQUI RED ">
<p class="error">All fields are required...</p>

</xsl:if>

<l-- Create an XHTM. form The user w || provide
the subject, and Email address, and
the nmessage text -->

<f orm nmet hod="post" action="post Msg" >

<di v>
<i nput type="hi dden" nanme="boardl D"
val ue="{post Msg/ board/ @d}"/ >

<l-- Deternine the node of operation -->
<xsl : choose>
<xsl :when test="/post Msg/i nResponseTo" >
<i nput type="hi dden" nane="orighMsgl D'
val ue="{post Msg/ i nResponseTo/ @d}"/ >
<i nput type="hi dden" nanme="node" val ue="repl yToMsg"/>
</ xsl : when>
<xsl : ot herw se>
<i nput type="hi dden" name="node" val ue="post New\Vsg"/ >
</ xsl : ot herw se>
</ xsl : choose>
</ div>

<l-- Show the input fields in a table to
keep things aligned properly -->
<t abl e>
<tr>
<t d>Subj ect: </td>
<t d>
<i nput type="text" nane="nsgSubject"”
val ue="{$gl obal . subj ect}" size="60"
max| engt h="70"/ >
</td>
</[tr>
<tr>
<td now ap="now ap">Your Enmmil:</td>
<t d>
<i nput type="text" nane="aut horEmail"
val ue="{%$gl obal . emai |l }" size="60" naxl ength="70"/>
</td>
</[tr>
<tr valign="top">
<t d>Message: </ t d>
<t d>
<l-- xsl:text prevents the XSLT processor from
col lapsing to
<textareal/ >, which caused problens with many
browsers. -->
<t extarea name="nsgText" w ap="hard" rows="12"
col s="60"><xsl : val ue- of
sel ect =" $gl obal . nessage"/ ><xsl : t ext >
</ xsl : text ></t ext ar ea>

</td>
</tr>
<I-- The last table row contains a submnit
and cancel button -->
<tr>
<td> </td>
<t d>

<i nput type="submt" nanme="subm tBtn" value="Submt"/>
<i nput type="subnmit" nanme="cancel Btn" val ue="Cancel "/ >
</td>
</tr>

</t abl e>
</fornp
</ di v>
</ body>
</htn >
</ xsl:tenpl at e>

<l--

R R I S S S S S S I I I I S S S I I S S S S S S S I I I I I I S S S S S S
** Show the text: 'In Response to: Msg Subject’
***~k~k**__>
<xsl :tenpl ate mat ch="i nResponseTo" >

<di v>
I n Response to:

<xsl :val ue- of sel ect ="subject"/>
</ span>
</ div>
</ xsl:tenpl at e>
</ xsl : styl esheet >

Since this stylesheet must work for posting new messages as well as for replying to messages, it
must determine the appropriate mode of operation. This can be accomplished by checking for the
existence of elements that occur only in one mode or the other. For example, the

<i nResponseTo> XML element occurs only when the user replies to an existing message.
Therefore, the XSLT stylesheet can define a variable for the page title as follows:

<xsl:variabl e nane="global .title">
<xsl : choose>
<xsl : when test="/post Msg/i nResponseTo" >
<xsl:text>Reply to Message</xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl : t ext >Post New Message</ xsl :text>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl:vari abl e>

<xsl:when test="/post Msg/i nResponseTo" > returns t r ue when the <i nResponseTo>
element exists in the original XML data. In this case, the gl obal . ti t| e variable is set to "Reply
to Message." Otherwise, the title defaults to "Post New Message."

This stylesheet optionally displays an error message when the user partially fills out the XHTML
form and submits the data. The servlet redisplays the page with an error message, allowing the
user to fix the problem. It does this by inserting the following XML element into the data:

<error code="ALL FIELDS REQUI RED'/ >

The XSLT stylesheet tests for the existence of this element as follows:

<xsl:if test="postMsg/error/ @ode="ALL_FI ELDS REQUI RED " >
<p class="error">All fields are required...</p>
</xsl:if>

An additional trick used in this stylesheet involves its interaction with a servlet. When the user
submits the XHTML form data, the servlet must determine which mode of operation the user was
in. For this task, the servlet looks for a request parameter called node. Legal values for this
parameter are r epl yToMsg and post NewiVsg. Since the user is submitting an XHTML form, the
easiest way to pass this data is via a hidden form field named node. Here is the code that does
the work:

<xsl : choose>
<xsl : when test="/post Msg/i nResponseTo" >
<i nput type="hi dden" nanme="orighMsgl D"
val ue="{post Msg/ i nResponseTo/ @d}"/ >
<i nput type="hi dden" nane="node" val ue="repl yToMsg"/ >
</ xsl : when>
<xsl : ot herw se>
<i nput type="hi dden" nane="node" val ue="post New\sg"/ >
</ xsl : ot herw se>
</ xsl : choose>

The stylesheet also inserts a hidden form field that contains the original message ID whenever
the mode is r epl yToMsg. On the servlet side, the code looks something like this:

public void doGet (H t pServl et Request request, HttpServl et Response
response) ... {
String node = request. get Paraneter("node");
if ("replyToMsg". equal s(node)) {
String origMsgl D = request. get Paraneter("origMsglD");

7.3 Making the XML Dynamic

At this point in the process, we have specified what each web page looks like, the XML data for
each page, and the XSLT stylesheets to perform the necessary transformations. The next step is
to figure out where the XML actually comes from. During the design and prototyping process, all
XML data is created as a collection of static text files. This makes development of the XSLT
stylesheets much easier, because the stylesheet authors can see results immediately without
waiting for the back-end business logic and database access code to be created.

In the real system, static XML will not meet our requirements. We need the ability to extract data
from a relational database and convert it into XML on the fly, as each page is requested. This
makes the application "live," making updates to the database immediately visible to users. To the
XSLT stylesheet developer, this is a moot point. The XSLT transformations work the same,
regardless of whether the XML data came from a flat file, a relational database, or any other
source.

7.3.1 Domain Classes

A domain class is a Java class that represents something in the problem domain. That's a fancy
way to describe a class that represents the underlying problem you are trying to solve. In this
example, we need to model the discussion forum as a series of Java classes to provide a buffer
between the XML and the underlying relational database. In addition to representing data about
the discussion forum, these Java classes can contain business logic.

Figure 7-6 contains a UML diagram of the classes found in the com orei | | y. f orum domai n
package. These classes do not contain any database access code, nor do they have any XML
capability. Instead, they are simply data structures with a few key pieces of functionality. This
makes it possible, for example, to rip out the relational database and replace it with some other
back-end data source without changing to the XML generation logic.

Figure 7-6. Key domain classes

monthsWithiessages

*
inReplyTo W
01 MonthYear
W
<<interfaces:= z<interface==
BoardSummary MessagaSummary Z?.‘.
EE— _. board EEEEE—
getiD(} - long o~ [IE“Dl::I : long DavMonthyea
gethlamal) - String getsubjact()y : String m A r
getDescription{) : String geAlthorEmail() : Siring
| BoardSummaryimpl | ceinterfacess :
Massane |Message$um marylmpl
<eitility== ir | O
MessageTres gerText() : String —
. I\ <<lfility=
' Danelil
sorts a collection of | Wessagelmpl |

messages into a hierarchy

Boar dSunmary, MessageSunmmar vy, and Vessage are the key interfaces that describe the basic
discussion forum capabilities. For each interface, an associated | npl class provides a basic
implementation that contains get and set methods, which are not shown here. The Mont hYear ,
DayMont hYear , and Dat eUt i | classes are designed to represent and manipulate dates in an
easy way and are listed in Appendix B. Finally, the VessageTr ee class encapsulates some
business logic to sort a collection of messages into a hierarchical tree based on message replies
and creation dates.

The Boar dSunmmar y interface, shown in Example 7-11, contains data that will eventually be
used to build the discussion forum home page.

Example 7-11. BoardSummary.java
package comoreilly. forum donain;

import java.util.lterator;
/**
* I nformation about a nessage board.
*/
public interface BoardSummary ({
/**
* @eturn a unique ID for this board.
*/
long getID();
/**
* @eturn a nane for this board.
*/
String getName();
/**
* @eturn a description for this board.
*/

String getDescription();

/**
* @eturn an iterator of <code>MonthYear </ code> objects.
*/
|terator getMonthsWthMessages();
}

By design, the Boar dSunmar y interface is read-only. This is an important feature because it
means that once an instance of this class is extracted from the back-end data source, a
programmer cannot accidentally call a set method only to discover later that the updates were not
saved in the database. Technically, the client of this class could retrieve an | t er at or of months
with messages and then call the r enove() method onthe | t er at or instance. Although we
could take steps to make instances of this interface truly immutable, such efforts are probably
overkill.

An early decision made in the design of the discussion forum was to assign a unique | ong
identifier to each domain object. These identifiers have absolutely no meaning other than to
identify objects uniquely, which will make the SQL queries much simpler later on. This
technique also makes it easy to reference objects from hyperlinks in the XHTML, because a
simple identifier can be easily converted to and from a string representation.

51 The code to actually generate these unique IDs is found in the DBUt i | class, shown in Example 7-18.
The next interface, shown in Example 7-12, provides a summary for an individual message.

Example 7-12. MessageSummary.java
package comoreilly. forum donain;

i mport java.util.*;

/**
* Basic information about a nmessage, not including the nessage text.
*
/
public interface MessageSunmary extends Conparable {

/**

* @eturn the ID of the nessage that this one is a reply to, or
* -1 if none.
*/

| ong getlnReplyTo();

/**

* @eturn the unique ID of this nessage.
*/

long getID();

/**

* @eturn when this nessage was created.
*/
DayMont hYear get CreateDate();

/**

* @eturn the board that this nessage belongs to.
*/

BoardSumary get Board();

/**

* @eturn the subject of this nessage.

*/
String getSubject();
/**

* The author Enmail can be 80 characters.
*/
String getAuthorEmail ();
}

The only thing missing from the VessageSunmmar y interface is the actual message text. The
Message interface, which extends from MessageSunmar v, adds the get Text () method. This
interface is shown in Example 7-13.

Example 7-13. Message.java

package comoreilly.forum donain;

/ * %

* Represent a nessage, including the text.

*/
public interface Message extends MessageSunmary {
/**
* @eturn the text of this nessage.
*/
String getText();
}

The decision to keep the message text in a separate interface was driven by a prediction that
performance could be dramatically improved. Consider a web page that shows a hierarchical
view of all messages for a given month. This page may contain hundreds of messages,
displaying key information found in the MessageSunmar y interface. But the text of each
message could contain thousands of words, so it was decided that the text should be retrieved
later when a message is displayed in its entirety. For this page, an instance of a class that
implements Message can be created.

These are the sorts of design decisions that cannot be made in complete isolation. Regardless of
how cleanly XSLT and XML separate the presentation from the underlying data model, heavily
used web pages should have some influence on design decisions made on the back end. The
trick is to avoid falling into the trap of focusing too hard on early optimization at the expense of a
clean design. In this case, the potential for large numbers of very long messages was significant
enough to warrant a separate interface for Message.

The three reference implementation classes are Messagel npl , Message- Sunmar vyl npl , and
Boar dSunmar yl npl . These are basic Java classes that hold data and are listed in Appendix B.

The JDBC data adapter layer (see Section 7.3.2) will create and return new instances of these
classes, which implement the interfaces in this package. If creating a new back-end data source
in the future, it is possible to reuse these classes or write brand new classes that implement the
appropriate interfaces.

The final class in this package, VessageTr ee , is listed in Example 7-14.

Example 7-14. MessageTree.java
package comoreilly.forum donain;

i mport java.util.*;

/**

* Arranges a collection of MessageSummary objects into a tree.

*/
publ

Thi s

nNess

this

ic class MessageTree {
private List topLevel Msgs = new ArrayList();

/1 map ids to MessageSunmary objects
private Map idToMsgMap = new HashMap();

/1l map reply-to ids to lists of MessageSummary objects
private Map replyl DToMsgLi st Map = new HashMap();

/**

* Construct a new nessage tree froman iterator of MessageSunmary

* objects.

*/

public MessageTree(lterator nmessages) {

whi |l e (nmessages. hasNext()) {

/] store each nessage in a map for fast retrieval by ID
MessageSummary cur Msg = (MessageSunmary) nessages. next();
this.idToMsgMap. put (new Long(curMsg.getID()), curMsQ);

/1 build the inverted map that maps reply-to IDs to
/1 lists of nessages
Long curReplyl D = new Long(curMsg. getlnReplyTo());
Li st replyTolList =
(List) this.replylDToMsgLi st Map. get (cur Repl yl D);

if (replyToList == null) {

repl yToLi st = new ArrayList();

this.replyl DToMsgLi st Map. put (cur Repl yI D, replyToList);

repl yTolLi st. add(cur Msg) ;
}

/1 build the list of top-level nessages. A top-level nessage
/1l fits one of the following two criteria:

/1 - its reply-toIDis -1
/1 - its reply-to ID was not found in the list of nessages.
/1 occurs when a nessage is a reply to a previous nonth's

age
Iterator iter = this.replyl DToMsgLi st Map. keySet ().iterator();
while (iter.hasNext()) {
Long curReplyTol D = (Long) iter.next();
if (curReplyTolD. longValue() == -
|| !this.idToMsgMap. contai nsKey(curReplyTol D)) {
Li st msgsToAdd =
(List)
.replyl DToMsgLi st Map. get (cur Repl yTol D) ;
this.topLevel Msgs. addAl | (nmsgsToAdd) ;
}
}

Col l ections.sort(this.topLevel Msgs);
}

public Iterator getTopLevel Messages() {
return this.topLevel Msgs.iterator();
}

/**
* @eturn an iterator of MessageSummary objects that are replies
* to the specified nessage.
*/
public Iterator getReplies(MessageSunmary nsg) {
List replies = (List) this.replyl DToMsgLi st Map. get (
new Long(nmsg.getID()));
if (replies !'= null) {
Col | ections.sort(replies);
return replies.iterator();
} else {
return Collections. EMPTY LIST.iterator();
}

}

The MessageTr ee class helps organize a list of messages according to threads of discussion. If
you look back at the code for VessageSunmar v, you will see that each message keeps track of
the message that it is in reply to:

public interface MessageSunmary extends Conparable {
i bﬁg getl nRepl yTo();
}

If the message is a top-level message, then the reply-to id is -1. Otherwise, it always refers to
some other message. Since a message does not have a corresponding method to retrieve a list
of replies, the VessageTr ee class must build this list for each message. This leads to the three
data structures found in the MessageTr ee class:

private List topLevel Msgs = new ArrayList();
private Map i dToMsgMap = new HashMap();
private Map replyl DToMsgLi st Map = new HashMap();

When the MessageTr ee is constructed, it is given an | t er at or of all messages in a month.
From this | t er at or, the i dToMsgMap data structure is built. All messages are stored in

i dToMsgMap, which is used for rapid retrieval based on message ids. While building the

i dToMsgMap, the constructor also builds the r epl yI DToMsgLi st Map. The keys in this map are
reply-to ids, and the values are lists of message ids. In other words, each key maps to a list of
replies.

After the first two data structures are built, the list of top-level messages is built. This is
accomplished by looping over all keys in the i dToMsgVap and then looking for messages that
have a reply-to id of -1. In addition, messages whose reply-to id could not be located are also
considered to be top-level messages. This occurs when a message is in reply to a previous
month's message. All of this code can be seen in the VessageTr ee constructor.

7.3.2 Data Adapter Layer

Bridging the gap between an object-oriented class library and a physical database is often quite
difficult. Enterprise JavaBeans (EJB) can be used for this purpose. However, this makes it
extremely hard to deploy the discussion forum at a typical web hosting service. By limiting the
application to servlets and a relational database, it is possible to choose from several ISPs that
support both servlets and JDBC access to databases such as MySQL.

In addition to the software constraints found at most web hosting providers, design flexibility is
another consideration. Today, direct access to a MySQL database may be the preferred

approach. In the future, a full EJB solution with some other database may be desired. Or, we may
choose to store messages in flat files instead of any database at all. All of these capabilities are

achieved by using an abstract class called Dat aAdapt er . This class is shown in Figure 7-7
along with several related classes.

Figure 7-7. Data adapter design

lfility ==
coahstractss ForumConfig
Datafdapter
MAY_BOARD_MAME_LEN
patinstanced) : Dataddaptar heAx_BOARD_DESG_LEN
ccprceplions> | . <<throws= getiMessager) < |5Em MAX_MMSG_SUBJECT_LEN
DataException e e et replyToMessage(y [MAX_EMAIL_LEN
posthlawhassage)
nathliMessanas]) sefValues()
getAliBoards|) petJDBCDriverClassiama)
petBoardSurmmary() petDatabaseURL)
nethdapterClassMame])
<atility ==
DELHil
close()
FakeDatahdapter | |JdbcDataAdapter ‘flgtg,ﬁg;fg"} petConnection()
closeAlonnections])
satLongStringl)
getLongStringd)
gethiexting

The Dat aAdapt er class defines an interface to some back-end data source. As shown in the
class diagram, FakeDat aAdapt er and JdbcDat aAdapt er are subclasses. These implement
the data tier using flat files and relational databases, respectively. It is easy to imagine someone
creating an EJBDat aAdapt er at some point in the future. For unConf i g is used to determine
which subclass of Dat aAdapt er to instantiate, and the DBUt i | class encapsulates a few
commonly used JDBC functions.

The source code for For unConf i g is shown in Example 7-15. This is a simple class that
places configurable application settings in a single place. As shown later in this chapter, all
configurable settings are stored in the servlet's deployment descriptor, so they do not have to be
hardcoded. The first thing the servlet does is read the values and store them in For untConf i g.t

[81 JNDI could also be used for this purpose. However, JNDI requires more configuration and may make it
harder to deploy to some ISPs.

Example 7-15. ForumConfig.java
package comoreilly.forum

/**

* Define application-wi de configuration information. The Servl et
* must call the setValues() nethod before any of the get
* methods in this class can be used.
*/
public class ForunmConfig {
/1 maxi mum si zes of various fields in the database

public static final int MAX BOARD NAVE LEN = 80;
public static final int MAX BOARD DESC LEN = 255;
public static final int MAX MSG SUBJECT LEN = 80;
public static final int MAX EMAIL LEN = 80;

private static String jdbcDriverd assNane;
private static String databaseURL;
private static String adapterC assNaneg;

public static void setVal ues(
String jdbcDriverd assNane,
String dat abaseURL,
String adapterd assNane) {
ForuntConfi g.j dbcDri verC assNane = jdbcDriver C assNane;
ForuntConf i g. dat abaseURL = dat abaseURL;
ForuntConf i g. adapt er G assNane = adapt er O assNane;

}
/**
* @eturn the JDBC driver class nane.
*/
public static String getJDBCDriverd assNanme() {
return ForuntConfig.jdbcDriverC assNane;
}

/**

* @eturn the JDBC dat abase URL.

*/

public static String getDatabaseURL() {
return ForunConfig. dat abaseURL;

}

/**
* @eturn the data adapter inplenmentation class nane.
*/
public static String getAdapterd assNane() {
return ForunConfi g. adapt er Cl assNane;
}

private ForunConfig() {

}
}

The Dat aExcept i on class is a very basic exception that indicates a problem with the back-end
data source. It hides database-specific exceptions from the client, leaving the door open for
nondatabase implementations in the future. For example, an EJB tier could be added, but the
EJBs would throw Renot eExcept i on and EJBExcept | on instead of SOLExcept i on.
Therefore, whenever a specific exception is thrown, it is wrapped in an instance of

Dat aExcept i on before being propogated to the caller. The source code for Dat aExcepti on is

found in Appendix B.

The code for Dat aAdapt er, shown in Example 7-16, demonstrates how each method throws
Dat aExcept i on. This class is the centerpiece of the "data abstraction” layer, insulating the
domain classes from the underlying database implementation.

Example 7-16. DataAdapter.java
package comoreilly.forum adapter;
import comoreilly.forum?*;

i mport comoreilly.forum domain. *;
i mport java.util.*;

/**

* Defines an interface to a data source.

*/

public abstract class DataAdapter {
private static DataAdapter instance;

/**

* @eturn the singleton instance of this class.
*/
public static synchroni zed Dat aAdapter getlnstance()
t hrows Dat aException {
if (instance == null) {
String adapterC assNane = ForuntConfi g. get Adapt er Cl assNane(

try {
Cl ass adapterC ass = d ass. for Nane(adapt er C assNane) ;

i nstance = (Dat aAdapter) adapterd ass. new nstance();
} catch (Exception ex) {
t hr ow new Dat aException("Unable to instantiate
+ adapt er Cl assNane) ;

}
} .
return instance;

}

/**

* @aram nsgl D nust be a valid nessage identifier.

* @eturn the nessage with the specified id.

* @hrows DataException if nsglD does not exist or a database

* error occurs.

*/

public abstract Message get Message(long nsgl D) throws Dat aExcepti on;

/**

* Add a reply to an existing nessage.

*

* @hrows DataException if a database error occurs, or if any

* paraneter is illegal.

*/

public abstract Message repl yToMessage(l ong origMsgl D, String
nmsgSubj ect ,

String authorEmail, String nsgText) throws DataException;

/**

* Post a new nessage.

*

* @eturn the newy created nessage.

* @hrows DataException if a database error occurs, or if any
* paraneter is illegal.

*

/

public abstract Message post NewMessage(l ong boardl D, String
nsgSubj ect,
String authorEmail, String nsgText) throws DataException;

/**

* | f no nmessages exist for the specified board and nonth, return

* an enpty iterator.
* @eturn an iterator of <code>MessageSummary</code> objects.
* @hrows DataException if the boardiIDis illegal or a database
* error occurs.
*/

public abstract Iterator getAl |l Messages(long boardl D, MonthYear
nont h)

t hrows Dat aExcepti on;

/**

* @eturn an iterator of all <code>BoardSunmmary</code> obj ects.
*/

public abstract Iterator getAll Boards() throws DataException;
/**

* @eturn a board summary for the given id.

* @hrows DataException if boardlIDis illegal or a database

* error occurs.

*/

public abstract BoardSunmary get Boar dSummary(| ong boar dl D)
t hrows Dat aExcepti on;

}

Dat aAdapt er consists of abstract methods and one static method called get | nst ance().
This implements a singleton design pattern, returning an instance of a Dat aAdapt er subclass.t?
The actual return type is specified in the For untConf i g class, and Java reflection APIs are used
to instantiate the object:

[l see Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley,
1994).
String adapterd assNane = ForunConfi g. get Adapterd assNanme();

try {
Cl ass adapterd ass = O ass. for Nane(adapt er Cl assNane) ;
i nstance = (DataAdapter) adapterd ass. newl nstance();
} catch (Exception ex) {
t hrow new Dat aException("Unable to instantiate '
+ adapt er d assNane) ;

}

All remaining methods are abstract and are written in terms of interfaces defined in the
comoreilly.forum donmai n package. For example, a message can be retrieved by its ID:

public abstract Message get Message(long nsgl D) throws DataException;

By writing this code in terms of the Vessage interface, a future programmer could easily write a
new class that implements MVessage in a different way. Throughout the Dat aAdapt er class, a
Dat aExcept i on occurs when an id is invalid, or when the underlying database fails.

The downloadable discussion forum implementation comes with a "fake" implementation of
Dat aAdapt er as well as a JDBC-based implementation. The fake implementation is listed in
Appendix B. The database implementation has been tested on Microsoft Access as well as
MySQL and should work on just about any relational database that includes a JDBC driver.
Figure 7-8 shows the physical database design that the JdbcDat aAdapt er class uses.

Figure 7-8. Database design

Board Message

id(PK) id(PK

name —— =1 inReplyTolD

description createMonth
createDay
createYear
boardID (FK)
subject
authorEmail
msgTexi

The database is quite simple. Each table has an i d column that defines a unique identifier and
primary key for each row of data. Message. i nRepl yTol D contains a reference to another
message that this one is in reply to, or -1 if this is a top-level message. The create date for each
message is broken down into month, day, and year. Although the application could store the date
and time in some other format, this approach makes it really easy to issue queries such as:

SELECT subj ect
FROM Message
VWHERE cr eat eMont h=3 AND creat eYear =2001

The Message. boar dl D column is a foreign key that identifies which board a message belongs
to. The Message. nsgText column can contain an unlimited amount of text, while the remaining
fields all contain fixed-length text.

If you are using MySQL, Example 7-17 shows a "dump" file that can be used to easily recreate
the database using the import utility that comes with the database.

Example 7-17. MySQL dump
MySQ dunp 8.8

#

Host: | ocal host Dat abase: forum

__
Server version 3.23. 23-beta

#
Table structure for table 'board
#

CREATE TABLE board (

id bigint(20) DEFAULT '0' NOT NULL,

nane char (80) DEFAULT '' NOT NULL,
description char(255) DEFAULT "' NOT NULL,
PRI MARY KEY (i d)

);

#
Dunping data for table 'board
#

| NSERT | NTO board VALUES (0,' XSLT Basics',
"How to create and use XSLT styl esheets and processors');

| NSERT | NTO board VALUES (1,'JAXP Programi ng Techni ques',' How to use
JAXP 1.1');

#
Table structure for table 'nessage'
#

CREATE TABLE nessage (
i d bigint(20) DEFAULT '0' NOT NULL,
i nRepl yTol D bi gi nt (20) DEFAULT ' 0" NOT NULL,
createMonth int(11) DEFAULT 'O NOT NULL,
createDay int(11) DEFAULT '0" NOT NULL,
createYear int(11) DEFAULT '0' NOT NULL,
boar dI D bi gi nt (20) DEFAULT ' 0' NOT NULL,
subj ect varchar(80) DEFAULT '' NOT NULL,
aut hor Emai | var char (80) DEFAULT '' NOT NULL,
msgText text DEFAULT '' NOT NULL,
PRI MARY KEY (id),
KEY i nRepl yTol D (i nRepl yTol D),
KEY createhMonth (createMnth),
KEY createDay (createDay),
KEY boardl D (boardl D)

)

The DBUL i | class, shown in Example 7-18, consists of utility functions that make it a little
easier to work with relational databases from Java code.

Example 7-18. DBUtil.java
package comoreilly.forumjdbcinpl;

i mport java.io.*;
i mport java.sql.*;
i mport java.util.*;

/**

* Hel per nmethods for relational database access using JDBC.
*/
public class DBU il {

/1 a map of table nanes to maxi num | D nunbers
private static Map tabl eToMaxl DMap = new HashMap();

/**
* Close a statenent and connecti on.
*/
public static void close(Statenent stnt, Connection con) {
if (stmt !'=null) {
try {
stnt.close();
} catch (Exception ignoredl) {
}
if (con !'=null) {
try {

con.close();
} catch (Exception ignored2) ({

was

}

/**

* @eturn a new Connection to the database.

*/

public static Connection getConnection(String dbURL)
throws SQLException {

/1 NOTE:
/1

i mpl enenting a connection poo
enhancenent

woul d be a worthy

return Driver Manager. get Connecti on(dbURL) ;

}

/**

* Cl ose any connections that are stil
* call this nethod fromits destroy(

*/

public stati
/1 NOTE:
/1

}

/**

* Store a |
* text will

*/

c void closeAll Connections() {
i f connection pooling is ever i
t he connections here.

ong text field in the database.

open. The Servlet wll
) net hod.

npl emrent ed, cl ose

For exanple, a nessage's

be quite |l ong and cannot be stored using JDBC s
* setString() nethod.

public static void setlLongString(PreparedStatenment stnt
col uml ndex, String data) throws SQLException {
if (data.length() > 0) {

i nt

stnt

} else {
It

// discovered that the

.set Ascii Strean{ col uml ndex,
new Byt eArrayl nput St r eam(dat
data.length());

a.getBytes()),

his '"else' condition was introduced as a bug fix. It

"set Ascii Streami code shown above

/'l caused M5 Access throws a "function sequence error"
/1 when the string was zero | ength.

stnt

}

/**

.set String(col uml ndex, "");

This code now wor ks.

* @eturn a long text field fromthe database

*/
public stati

c String getlLongString(Result Set

throws SQLException {

try {

rs, int columlndex)

I nput Streamin = rs. getAscii Strean(col uml ndex);

if(
}

in == null) {

return ;

byte[] arr = new byt e[250];

Stri
i nt

ngBuf fer buf = new StringBuffer(
nunRead = in.read(arr);

)

while (nunRead !'= -1) {
buf . append(new String(arr, 0, nunRead));
nunmRead = in.read(arr);

}
return buf.toString();

} catch (1 OException ioe) {
i oe. printStackTrace();
t hrow new SQLException(i oe. get Message());

}

/**

* Conpute a new unique ID. It is assuned that the specified table

* has a colum nanmed 'id" of type 'long'. It is assuned that

* that all parts of the programw |l use this nethod to conpute
* new | Ds.

* @eturn the next available unique ID for a table.

*

/

public static synchronized | ong getNextI D(String tabl eNane,
Connection con) throws SQLException {

Statement stmt = null;

try {
/1 if a max has already been retrieved fromthis table,

/'l conmpute the next id without hitting the database
i f (tabl eToMaxl DVap. cont ai nsKey(t abl eNane)) {
Long curMax = (Long) tabl eToMaxl DMap. get (t abl eNane) ;
Long newivax = new Long(cur Max.longValue() + 1L);
t abl eToMax| DVap. put (t abl eNanme, newivax) ;
return newMax. | ongValue();

}

stm = con.createStatenent();
ResultSet rs = stnt.executeQuery(
"SELECT MAX(id) FROM " + tabl eNane);
| ong max = 0O;
if (rs.next()) {
max = rs.getlLong(1l);
}

max++;
t abl eToMax| DVvap. put (t abl eNane, new Long(max));
return max;

} finally {
/'l just close the statenent

close(stnt, null);

}

DBUL i | has a private class field called t abl eTolVax| DVap that keeps track of the largest unique
id found in each table. This works in conjunction with the get Next | D{) method, which returns
the next available unique id for a given table name. By keeping the unique ids cached in the Vap,
the application reduces the required database hits. It should be noted that this approach is likely
to fail if anyone manually adds a new id to the database without consulting this method.

The cl ose() method is useful because nearly everything done with JDBC requires the
programmer to close a St at enent and Connect i on. This method should always be called from

afinal |y block, which is guaranteed to be called regardless of whether or not an exception
was thrown. For example:

Connecti on con
St at ement st nt

try {
// code to create the Connection and Statenent

nul | ;
nul | ;

/'l code to access the database

} finally {
DBUti | .cl ose(stnmt, con);
}

If IDBC resources are not released inside of a finally block, it is possible to accidentally leave
Connections open for long periods of time. This is problematic because database performance
can suffer, and some databases limit the number of concurrent connections.

Although connection pooling is not supported in this version of the application, DBULtil does
include the following method:

public static Connection getConnection(String dbURL)

In a future version of the class, it will be very easy to have this method return a Connect i on
instance from pool, rather than creating a new instance with each call. Additionally, the

DBUL I | . cl ose() method could return the Connect i on back to the pool instead of actually
closing it. These are left as future considerations to keep things reasonably sized for the book.

The set LongString() andget LongString() methods are used for setting and retrieving
text for messages. Since this text may be extremely long, it cannot be stored in the same way
that shorter strings are stored. In some databases, these are referred to as CLOB columns. MS
Access uses the MEMO type, while MySQL uses the TEXT data type. Since this is an area where
databases can be implemented differently, the code is placed into the DBUL i | class for
consistency. If a special concession has to be made for a particular database, it can be made in
one place rather than in every SQL statement throughout the application.

Finally, the JdbcDat aAdapt er class is presented in Example 7-19. This is the relational
database implementation of the Dat aAdapt er class and should work with just about any
relational database.

Example 7-19. JdbcDataAdapter.java
package comoreilly.forumjdbcinpl;

i mport comoreilly.forum*;

import comoreilly.forum adapter.*;
i mport comoreilly.forum domain. *;
i mport java.sql.*;

i mport java.util.*;

/**

* An inplenmentation of the DataAdapter that uses JDBC.
*/
public class JdbcDat aAdapt er extends DataAdapter {

private static String dbURL = ForunConfig. get Dat abaseURL();

/**

* Construct the data adapter and | oad the JDBC driver.

*/
public JdbcDat aAdapter() throws DataException {
try {
Cl ass. f or Name(For unConfi g. get JDBCDri ver Cl assNane());
} catch (Exception ex) {
ex. printStackTrace();
t hrow new Dat aException("Unable to | oad JDBC driver: "
+ ForunConfi g. get JDBCDri verCl assNanme());

}

/**

* @aram nsgl D nust be a valid nessage identifier.
* @eturn the nessage with the specified id.
* @hrows DataException if nsglD does not exist or a database
* error occurs.
*/
public Message get Message(long nmsgl D) throws DataException {
Connection con nul | ;
St at enent stnt nul | ;
try {
con = DBUt il .getConnection(dbURL);
stmt = con.createStatenment();
Resul t Set rs = stnt.executeQuery(
"SELECT i nRepl yTol D, createDay, createhbnth,

creat eYear,

+ "boardl D, subject, authorEmail, nmsgText "
+ "FROM Message WHERE i d="
+ nsgl D);

if (rs.next()) {
I ong i nRepl yTol D = rs. getlLong(1);
int createDay = rs.getlnt(2);
int createMonth = rs.getlnt(3);
int createYear = rs.getlnt(4);
| ong boardl D = rs. getLong(5);
String subject = rs.getString(6);
String authorEmail = rs.getString(7);
String nsgText = DBUtil.getLongString(rs, 8);

Boar dSunmary boardSunmary =
t hi s. get Boar dSunmar y(boardl D, stnt);

return new Messagel npl (nsgl D,
new DayMont hYear (creat eDay, createMonth,
createYear),

boar dSummary, subject, authorEnmail, nsgText,
i nRepl yTol D) ;
} else {
t hrow new Dat aException("Illegal nsglD");
}

} catch (SQ.Exception sqge) {

sqge. printStackTrace();

t hrow new Dat aExcepti on(sqe. get Message());
} finally {

DBUti | . cl ose(stnt, con);
}

/**

* Add a reply to an existing nessage.
*
* @hrows DataException if a database error occurs, or if any
* paraneter is illegal.
*/
public Message repl yToMessage(l ong ori gvsgl D,
String nsgSubject, String authorEmail, String nsgText)
throws Dat aException {
Message i nRepl yToMsg = this. get Message(ori gMsgl D);
return insertMessage(i nRepl yToMsg. get Board(), origMsgl D,
nmsgSubj ect, aut horEmail, nsgText);

*

~

L T T

Post a new nessage.

@eturn the newly created nmessage.
@hrows DataException if a database error occurs, or if any
paraneter is illegal.
/
public Message post NewMessage(l ong boardl D, String nsgSubject,
String authorEmail, String nsgText) throws DataException {

Boar dSummary board = this. get Boar dSunmmar y(boardl D) ;
return insertMessage(board, -1, msgSubject, authorEmail,
nsgText);
}

/ *
If no nessages exist for the specified board and nonth, return
an enpty iterator.
@eturn an iterator of <code>MessageSunmary</code> obj ects.
@hrows DataException if the boardiDis illegal or a database
error occurs.

/

public Iterator getAll Messages(l ong boardl D, MonthYear nonth)

throws Dat aException {
List allMsgs = new ArrayList();

L I T

nul | ;
nul | ;

Connection con
St atenent stnt
try {
con = DBUt il .getConnection(dbURL);
stmt = con.createStatement();

Boar dSummary boardSum = t hi s. get Boar dSunmary(boardl D, stnt);

Resul t Set rs = stnt.executeQuery(
"SELECT id, inReplyTol D, createDay, "
+ "subject, authorEmail "
"FROM Message VWHERE cr eat eMont h="
nont h. get Mont h()
" AND createYear ="
nont h. get Year ()

+ 4+ + +

+ " AND boardl D="
+ boardI D);

while (rs.next()) {
I ong nsgl D = rs. getlLong(1);
| ong inReplyTo = rs.getlLong(2);
int createDay = rs.getlnt(3);
String subject = rs.getString(4);
String authorEmail = rs.getString(5);

DayMont hYear createDMY = new DayMont hYear (
creat eDay, nonth. get Month(), nonth. get Year (

al | Msgs. add(new MessageSummaryl npl (nsgl D, creat eDWY,
boar dSum
subj ect, authorEnmil, inReplyTo));
}

return all Msgs.iterator();

} catch (SQ.Exception sqge) {

}ofi

}
}

/**

sqge. printStackTrace();

t hrow new Dat aException(sqe);
nal ly {

DBUti | .close(stnt, con);

* @eturn an iterator of all <code>BoardSummary</code> objects.

*/
public |

Li st al | Boards

Connecti on con

terator getAllBoards() throws DataException {
new ArraylList();

nul | ;

Statement stm = null;
Statement stnmt2 = null;

try

descri ption,

{
con = DBUt il .getConnection(dbURL);

stmt = con.createStatenment();

stnm2 = con.createStatenent();

Resul tSet rs = stnt.executeQuery(
"SELECT id, name, description FROM Board "
+ "ORDER BY nane");

while (rs.next()) {
long id = rs.getlLong(1);
String name = rs.getString(2);
String description = rs.getString(3);

/'l get the nonths with nessages. Use a different
/1 Statenent object because we are in the mddle of
/'l traversing a ResultSet that was created with the
/1 first Statenent.
Li st nont hsWthMessages =

this. get Mont hsWthMessages(id, stnt2);

al | Boar ds. add(new BoardSummaryl npl (i d, nane,

)

nont hsW t hMessages)) ;
}
return all Boards.iterator();
} catch (SQ.Exception sqge) {
sqge. printStackTrace();
t hrow new Dat aException(sqe);

} finally {
if (stnmt2 !'=null) {
try {

stnm2.close();
} catch (SQ.Exception ignored) {

}

DBUti | . cl ose(stnt, con);

}
}
/**
* @eturn a board summary for the given id.
* @hrows DataException if boardliDis illegal or a database
* error occurs.
*/

publ i c BoardSummary get Boar dSummary(| ong boar dl D)
throws Dat aException {
Connection con nul | ;
St at enent stnt nul | ;
try {
con = DBUtil.get Connection(dbURL) ;
stnmt = con.createStatenent();
return get BoardSunmary(boardl D, stnt);
} catch (SQ.Exception sqge) {
sqge. printStackTrace();
t hrow new Dat aExcepti on(sqe);
} finally {
DBUti|.close(stnt, con);
}

}

private BoardSummary get BoardSunmmary(l ong boardl D, Statenment stnt)
t hrows Dat aException, SQ.Exception {
Resul t Set rs = stnt.executeQuery(
"SELECT nane, description FROM Board WHERE id=" +

boardl D) ;
if (rs.next()) {
String name = rs.getString(1l);
String description = rs.getString(2);
Li st nont hsWthMessages = get Mont hsWt hMessages(boar dl D,
stnt);
return new BoardSummaryl npl (boar dl D, nane, description,
nont hsW t hMessages) ;
} else {
t hrow new Dat aExcepti on(" Unknown boardl D");
}

/**

* @eturn a list of MnthYear objects

*/

private List getMonthsWthMessages(long boardl D, Statenent stnt)
throws SQLException {

Li st nmont hsWthMessages = new ArraylList();
Resul t Set rs = stnt.executeQuery(
"SELECT DI STI NCT createMnth, createYear "
+ "FROM Message "
+ "WHERE boardl D=" + boardlD);
while (rs.next()) {
nont hsW t hMessages. add(new Mont hYear (
rs.getlnt(1), rs.getlnt(2)));
}

return nmont hsWt hMessages;

}

private Message insertMessage(BoardSummary board, |ong inReplyTol D,
String nsgSubject, String authorEnail,
String nsgText) throws DataException {
/1 avoid overflow ng the nmax dat abase col um | engt hs
if (msgSubject.length() > ForumConfig. MAX MSG SUBJECT LEN) {
nsgSubj ect = nsgSubj ect. substring(O0,
For unConfi g. MAX_MSG SUBJECT LEN);

}
if (authorEmail.length() > ForunConfig. MAX EMAIL_LEN) {
aut hor Emai | = aut hor Emai | . substring(O0,
For unConfi g. MAX_ EMAI L_LEN) ;

}
DayMont hYear createDate = new DayMont hYear();

Connection con = null;
PreparedStatement stnt = null;
try {
con = DBUt il .getConnection(dbURL);
 ong newisgl D = DBUti | . get Next | D("Message", con);
stnt = con. prepareStat enent ("1 NSERT | NTO Message "
+ "(id, inReplyTol D, createMnth, createDay,
createYear, "
+ "boardl D, subject, authorEnmmil, nsgText) "
+ "VALUES (?,?,?,?2,2,?2,2,2,?2)");
stnt.setString(l, Long.toString(new\sglD));
stnt.setString(2, Long.toString(inReplyTolD));
stnt.setlnt(3, createDate.getMnth());
stnt.setlnt(4, createDate.getDay());
stnt.setlnt(5, createDate.getYear());
stnt.setString(6, Long.toString(board.getID()));
stmt.setString(7, nsgSubject);
stmt.setString(8, authorEmail);
DBUti | . setlLongString(stnt, 9, msgText);

stnt. executeUpdate();

return new Messagel npl (newMsgl D, creat eDat e,

board, nmsgSubject, authorEnail,
nsgText, inReplyTol D);

} catch (SQLException sge) {
sge. pri ntStackTrace();
t hr ow new Dat aExcepti on(sqe);

} finally {
DBUti | .close(stnt, con);
}

}

Since this is not a book about relational database access using Java, we will not focus on the
low-level JDBC details found in this class. The SQL code is intentionally simple to make this class
portable to several different relational databases. The database URL and JDBC driver class
name are retrieved from the For untConf i g class instead of hardcoded into the class:

private static String dbURL = ForuntConfi g. get Dat abaseURL();

/**
* Construct the data adapter and | oad the JDBC driver.
*/
publ i c JdbcDat aAdapter() throws DataException {
try {
O ass. f or Name(For untConfi g. get JDBCDri ver Gl assNane());
} catch (Exception ex) {
ex. printStackTrace();
t hr ow new Dat aExcepti on("Unable to | oad JDBC driver:
+ ForumConfi g. get JDBCDri ver C assName());
}
}

Creating connections with the DBUt i | class is another common pattern:

Connection con = null;

try {
con = DBUti | . get Connection(dbURL);

As mentioned earlier, this approach leaves the door open for connection pooling in a future
implementation. When the pool is written, it only needs to be added to the DBUt i | class in a
single place. When connections and statements are no longer needed, they should always be
closedinafinal | y block:

} finally {
DBUti | . cl ose(stnt, con);
}

As mentioned earlier, this ensures that they will be closed because f i nal | v blocks are executed
regardless of whether an exception occurs.

7.3.3 JDOM XML Production

The discussion forum code presented up to this point can extract data from a relational database
and create instances of Java domain classes. The next step is to convert the domain objects into
XML that can be transformed using XSLT. For this task, we use the JDOM class library. As
mentioned in earlier chapters, JDOM is available at http://www.jdom.org and is open source
software. Although the DOM API can also be used, JDOM is somewhat easier to work with, which
results in cleaner code.!

8] For a DOM example, see the Li br ar yDOVCr eat or class shown in Example 1-4.

The basic pattern relies on various JDOM "producer” classes, each of which knows how to
convert one or more domain objects into XML. This approach capitalizes on the recursive nature
of XML by having each class produce a JDOM El enent instance. Some of these El enent
instances represent entire documents, while others represent a small fragment of XML. These
fragments can be recursively embedded into other El enent instances to build up more complex
structures.

Keeping XML production outside of domain objects is useful for several reasons:
JDOM producer classes can be replaced with DOM producers or some other technology.

Additional producers can be written to generate new forms of XML without modifying the
domain objects or existing XML producers.

Domain objects may be represented as Java interfaces with several different
implementation classes. By keeping XML production separate, the same producer works
with all implementations of the domain interfaces.

The HoneJDOViclass, shown in Example 7-20, is quite simple. It merely produces a <hone>
element containing a list of <boar d> elements. Since a separate JDOM producer class creates
the <boar d> elements, the HoneJ DOViclass merely assembles those XML fragments into a
larger structure.

Example 7-20. HomeJDOM .java
package comoreilly.forum xmni;

i mport comoreilly.forum domain. *;
i mport java.util.*;
i mport org.jdom *;

/**

* Produce JDOM data for the hone page.
*/

public class HomeJDOM {

/**
* @aram boards an iterator of <code>BoardSunmmary</code> objects.
*/
public static Elenment produceEl enent(lterator boards) {
El enent honeEl em = new El enent (" hone");
whil e (boards. hasNext()) {
Boar dSummary curBoard = (BoardSumrary) boards.next();

homeEl em addCont ent (Boar dSumrar yJDOM pr oduceEl enent (cur Board)) ;
}

return honmeEl em

}

private HoneJDOM) {

}
}

As shown in the HoneJDOViclass, the constructor is private. This prevents instantiation of the
class, another decision made in the name of efficiency. Since each of the JDOM producer
classes for the discussion forum are stateless and thread-safe, the pr oduceEl enent ()

method can be static. This means that there is no reason to create instances of the JDOM
producers, because the same method is shared by many concurrent threads. Additionally, there
is no common base class because each of the pr oduceEl enent () methods accept different
types of objects as parameters.

Other JDOM Options

The static-method technique shown in this chapter is certainly not the
only way to produce JDOM data. You may prefer to create custom
subclasses of JDOM's El enent class. In your subclass, the constructor
can take a domain object as a parameter. So instead of calling a static
method to produce XML, you end up writing something like:

|terator boards = :
El enent honmeEl em = new HoneEl enent (boar ds) ;

Yet another option is to embed the JDOM production code into the
domain objects. In this approach, your code would resembile this:

BoardSummary board = ...
El enent el em = board. convert ToJDOM);

This approach is probably not the best, because it tightly couples the
JDOM code with the domain classes. It also will not work for cases
where the XML data is produced from a group of domain objects instead
of from a single object.

Regardless of the technique followed, consistency is the most important
goal. If every class follows the same basic pattern, then the development
team only has to understand one example to be familiar with the entire
system.

The code for Vi ewivbnt hJDOVIis shown in Example 7-21. This class creates XML data for an
entire month's worth of messages.

Example 7-21. ViewMonthJDOM .java
package comoreilly.forum xm;

i mport java.util.*;

import comoreilly.forum?*;

import comoreilly.forum adapter.*;
i mport comoreilly.forum donain. *;
i mport org.jdom *;

/**

* Creates the JDOM for the nonth view of a board.
*/

public class Vi ewbnt hJDOM {

/**

* @aram board the nessage board to generate JDOM for.
* @aramnonth the nonth and year to view.
*/

public static El ement produceEl enent (BoardSunmmary board,
Mont hYear nmonth) throws DataException {
El enent vi ewMont hEl em = new El enent ("vi ewbnt h") ;
vi ewWbont hEl em addAttri but e(" mont h",
I nteger.toString(nonth.getMnth()));
vi ewMont hEl em addAttri bute("year",
Integer.toString(nonth.getYear()));

/1l create the <board> el enent...
El emrent boar dEl em =

Boar dSumar yJDOM pr oduceNanel DEl enent (boar d) ;
vi ewbnt hEl em addCont ent (boar dEl em) ;

Dat aAdapt er adapter = DataAdapter.getlnstance();

MessageTree nsgTree new MessageTr ee(adapt er. get Al | Messages(
board.getI D(), month));

/1 get an iterator of MessageSunmary objects
Iterator nsgs = negTree. get TopLevel Messages() ;

whil e (nmsgs. hasNext()) {
MessageSummary cur Msg = (MessageSunmary) msgs. next();
El enent el em = produceMessageEl enent (cur Msg, nsgTree);
vi ewMont hEl em addCont ent (el em) ;

}

return vi ewont hEl em
}

/**
* Produce a fragnment of XM for an individual nmessage. This
* is a recursive function.
*/
private static El enment produceMessageEl enent (MessageSumary nsg,
MessageTree nmsgTree) {
El enent nsgEl em = new El enent (" nessage");
msgEl em addAttribute("id", Long.toString(nsg.getlD()));
nsgEl em addAttri bute("day",
I nteger.toString(nsg. getCreateDate().getDay()));

nmsgEl em addCont ent (new El ement (" subj ect™)
.set Text (nsg. get Subject()));

nsgEl em addCont ent (new El enent (" aut hor Emai | ")
.set Text (nsg. get AuthorEmail ()));

Iterator iter = nsgTree. get Replies(nsQ);
while (iter.hasNext()) {
MessageSunmary curReply = (MessageSummary) iter.next();

[l recursively build the XML for all replies
nmsgEl em addCont ent (pr oduceMessageEl enent (cur Repl vy,
negTree));

}

return nmsgEl em

private Viewbnt hJDOM) {

}
}

The recursive method that produces <nessage> elements is the only difficult code in

Vi ewivbnt hJDOM Since <nessage> elements are nested according to replies, the XML forms a
recursive tree structure that could be arbitrarily deep. JDOM supports this nicely, because a
JDOM El enent can contain other nested El enent s. The produceMessageEl enent ()
method is designed to create the required XML data.

The next JDOM producer class, shown in Example 7-22, is quite simple. It merely creates an
XML view of an individual message.

Example 7-22. ViewMessageJDOM .java
package comoreilly.forumxnl;

i mport comoreilly.forumdonain.*;
i mport java.util.Date;

i mport org.jdom *;

i mport org.jdom output.*;

/**
* CGenerate JDOM for the View Message page.
*/

public class Vi ewMessageJDOM {

/**

* @aram nessage the nmessage to view.
* @aram i nResponseTo the nessage this one is in response to, or
* perhaps null.
*/
public static Element produceEl enent (Message nmessage,
MessageSummary i nResponseTo) {
El enent nessageEl em = new El enent (" nmessage");
nessageEl em addAttribute("id", Long.toString(message. getl X
)));
DayMont hYear d = nessage. get CreateDate();
nmessageEl em addAttri but e(" nmont h",
Integer.toString(d.getMonth()));
nmessageEl em addAttri but e("day",
Integer.toString(d.getDay()));
nmessageEl em addAttri bute("year",
Integer.toString(d.getYear()));

El ement boar dEl em = Boar dSumrar yJDOM pr oduceNanel DEl ement (
nmessage. get Board());
nmessageEl em addCont ent (boar dEl em) ;

if (inResponseTo !'= null) {
El ement i nRespToEl em = new El enent ("i nResponseTo")
.addAttribute("id",
Long.toString(i nResponseTo.getID()));
i NRespToEl em addCont ent (new El enent ("subj ect")
. set Text (i nResponseTo. get Subject()));
nmessageEl em addCont ent (i nRespToEl en) ;

nmessageEl em addCont ent (new El enent (" subj ect™)
. set Text (nmessage. get Subject()));
nessageEl em addCont ent (new El enent (" aut hor Emai | ")
. set Text (nessage. get AuthorEmai l ()));
nmessageEl em addCont ent (new El enent ("text")
. set Text (nessage. getText()));
return nessageEl em

}

private Vi ewMessageJDOM) {
}
}

The JDOM producer shown in Example 7-23 is also quite simple. Its job is to create XML for a
Boar dSunmar y object. This class is unique because it is not designed to create an entire XML
document. Instead, the elements produced by Boar dSumrar yJDOViare embedded into other
XML pages in the application. For example, the home page shows a list of all <boar d> elements
found in the system, each of which is generated by Boar dSurmmar yJ DOV As you design your
own systems, you will certainly find common fragments of XML that are reused by several pages.
When this occurs, write a common helper class rather than duplicate code.

Example 7-23. BoardSummaryJDOM.java
package comoreilly.forum xmni;

i mport comoreilly.forum domain. *;
i mport java.util.*;
i mport org.jdom *;

/**
* Produces JDOM for a BoardSunmary object.
*/
public class BoardSummaryJDOM {
public static El enent produceNanel DEl ement (Boar dSunmary board) {
/'l produce the follow ng:
/'l <board id="123">
11 <nanme>t he board nane</ name>
11 <descri pti on>board descri ption</description>
/'l <l board>
El ement boar dEl em = new El enent ("board");
boar dEl em addAttri bute("id", Long.toString(board.getID()));
boar dEl em addCont ent (new El enent (" nane")
. set Text (board. getNane()));
boar dEIl em addCont ent (new El enent ("descri ption")
. set Text (board. get Description()));
return boardEl em

public static El enent produceEl enment (BoardSunmary board) {
El emrent boar dEl em = produceNanel DEl enent (board) ;

/1 add the Iist of nessages
Iterator iter = board. get Mont hsWthMessages();
while (iter.hasNext()) {
Mont hYear curMonth = (MonthYear) iter.next();
El emrent el em = new El enent (" nessages") ;

el em addAttri bute("nmonth",
I nteger.toString(curMnth.getMonth()));

el em addAttribute("year", Integer.toString(curMnth.get Year (
)));
boar dEl em addCont ent (el em) ;
}
return boardEl em
}
private BoardSumaryJDOM) {
}
}

The final JIDOM producer, Post MessageJ DOV, is shown in Example 7-24. The

produceEl enent () method takes numerous arguments that allow the method to produce
XML for posting a new message or replying to an existing message. Also, values for the message
subject, author email, and message text may be pre-filled in the XML. The application takes
advantage of this capability whenever it must redisplay an HTML form to a user with its values
filled in.

Example 7-24. PostMessageJDOM.java
package comoreilly.forumxnl;

i mport comoreilly.forumdonmain.*;
i mport org.jdom*;

/**

* Produce JDOM for the "Post Message" page.
*/
public class Post MessageJDOM {

public static El ement produceEl enent (
Boar dSumary board,
MessageSummary i nResponseTolMsg,
bool ean showkrror,
String subject,
String author Email,
String nmegText) {
El enent nessageEl em = new El enent (" post Msg") ;

/'l reuse the BoardSunmmaryJDOM cl ass to produce a
/1 fragment of the XM

nessageEl em addCont ent (Boar dSummar yJDOM pr oduceNanel DEl enent (board));

if (inResponseToMsg != null) {
El enent i nRespTo = new El enent ("i nResponseTo")
.addAttribute("id",
Long. toString(i nResponseToMsg. getID()));
i nRespTo. addCont ent (new El ement (" subj ect™)
. set Text (i nResponseToMsg. get Subject()));
nessageEl em addCont ent (i nRespTo) ;

}

if (showkrror) {
nmessageEl em addCont ent (new El emrent ("error")

.addAttribut e("code", "ALL_FIELDS REQUI RED"));

}
El emrent prefill = new Elenment("prefill");
prefill.addContent (new El emrent ("subject™)
. set Text (subject));
prefill.addCont ent(new El enent ("aut horEmail")
.set Text (authorEmail));
prefill.addContent (new El enent (" nmessage")

. set Text (nsgText));
nmessageEl em addContent (prefill);

return nessageEl em

private Post MessageJDOM) {

}
}

7.4 Servlet Implementation

We are almost finished! The remaining piece of the puzzle is to coordinate activity between the
web browser, database, domain objects, JDOM producers, and XSLT stylesheets. This task lies
in the servlet implementation and related classes. In an XSLT-driven web application, the servlet
itself really does not do all that much. Instead, it acts as a mediator between all of the other
actions taking place in the application.

Figure 7-9 shows the UML class diagram for the com orei | | y. f orum servl et package.
This design consists of a few key classes along with numerous subclasses of Render er and
RegHandl er . These subclasses are very repetitive in nature, which is indicative of the highly
structured application design that XML and XSLT facilitate.

Figure 7-9. Servlet design

HitpServiat

[l‘—\ RagHandlerReqistry
- -

- rendar)
ForumSerylel getHandier()
coahstractss — :
Renderar el inity) i
. destrov} : celopatpss
rer"jErﬂ, UGGEIH IE
doPost() —a
ﬂ - czahstracts»
Gl | REGHaNdY
—~ ErrorRenderar dolet])
. doPosi()
~ HomeRenderer {”} N
b
] | eliSge <eliilifys
PostMsgRenderer B ¥SLTRenderHelper HomeReaHandlar
- SR -
— vigwhonthRendarer --i'-:y""ff-} FENEEr() FostisgReqHandler
X 5 A
— ViewMsgRenderar |reeesoseasmmmmed =1 ViewMonth ReqHandler

ViewMsgReqHandler

A single-servlet design has been adopted for this application. In this approach, the

Forunter vl et intercepts all inbound requests from clients. The requests are then delegated to
subclasses of ReqHand! er, which handle requests for individual pages. Once the request has
been processed, a subclass of Render er selects the XML and XSLT stylesheet.

XSLTRender Hel per does the actual XSLT transformation, sending the resulting XHTML back to
the browser.

This is not designed to be a heavyweight web application framework. Instead, it is just a simple
set of coding conventions and patterns that help keep the application highly modular. It is easy to
eliminate the ReqHand| er classes and use several servlets instead. The main advantage of
explicit request handlers and renderers is that the design is clearly modularized, which may
promote more consistency across a team of developers.

The overall flow of control may be the hardest part to understand. Once this flow is clear, the
implementation is a matter of creating additional request handlers and renderers. Figure 7-10 is
a UML sequence diagram that shows how a single web browser request is intercepted and
processed.

Figure 7-10. Sequence diagram

request JO domain data
browsér serviel andier Lendersr | oo duger nbject adapter

] I I 1 I I I
— 1 I 1 1 | I
raquast ! I 1 ! I I
. _requesti} ! ! ! ! !
—» 4 | createData() or getDataf) | !

] 1 |

1 1
1 1 D
1 1

1 1 1
createdly, 1 | |
] | |
1 | |
1 | |
s T 1 1 1
1 pmﬂumElemEn[(] : :
I petvaluas) I
I I
| |
| |
| | |
i rermmmerasermne $- 1 1 1
1 i] 1 1
Jrsnonset] | i i i |
1 I 1 1 | I
- 1 1 1 1 1 1
1 | 1 1 I |

When a browser issues a request, it is always directed to the single servlet. This servlet then
locates the appropriate request handler based on information found in the requested URL. The
request handler is responsible for interacting with the data adapter layer to create and update
domain objects and for creating the appropriate renderer.

Once the renderer is created, the servlet asks itto r ender () its content. The renderer then
asks the appropriate JDOM producer to create the XML data and performs the transformation
using an XSLT stylesheet. The result of the transformation is sent back to the client browser.

One request handler might map to several renderers. For example, suppose the user is trying to
post a new message and submits this information to the Post MsgReqHand| er class. If the
request handler determines that some required fields are missing, it can return an instance of the
Post MsgRender er class. This allows the user to fill in the remaining fields. On the other hand, if
a database error occurs, an instance of Er r or Render er can be returned. Otherwise,

Vi ewsgRender er is returned when the message is successfully posted. Because request
handlers and renderers are cleanly separated, renderers can be invoked from any request
handler.

The code for For untSer vl et is shown in Example 7-25. As already mentioned, this is the only
servlet in the application.

Example 7-25. ForumServlet.java
package comoreilly.forum servlet;

import comoreilly.forum ForunmConfi g;

i mport comoreilly.forumjdbcinpl.DBUtIl;
i mport java.io.*;

i mport java.util.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

/**
* The single servlet in the discussion forum
*/
public class ForuntServlet extends HtpServlet {
private ReqHandl er Regi stry registry;

/**

* Registers all request handlers and sets up the
* ForuntConfi g object.
*/
public void init(ServletConfig sc) throws ServletException {
super.init(sc);

/1 get initialization paraneters fromthe depl oynent
/1 descriptor (web.xnl)
String jdbcDriverd assNane = sc. getlnitParaneter(
"j dbcDriverd assNane");
String databaseURL = sc.getlnitParaneter(
"dat abaseURL") ;
String adapterC assNane = sc. getlnitParaneter(
"adapt er Cl assNane") ;
For unmConfi g. set Val ues(j dbcDri ver Cl assNane,
dat abaseURL, adapter Cl assNane);

try {
/1 load all request handlers

this.registry = new RegHandl er Regi st ry(new HoneRegHandl er (
));

this.registry.register(new Post MsgReqHandl er());

this.registry.register(new Vi ewvbnt hRegHandl er());

this.registry.register(new Vi ewMsgReqgHandl er());

} catch (Exception ex) {
| og(ex. get Message(), ex);
t hrow new Unavai | abl eExcepti on(ex. get Message(), 10);

}
/**

* (C oses all database connections. This net hod is invoked
* when the Servlet is unloaded.
*/
public void destroy() {
super.destroy();
DBUti | . cl oseAl | Connections();

}

protected void doPost (HttpServl et Request request,
Ht t pSer vl et Response response) throws | OException,
Servl et Exception {
RegqHandl er rh = this.registry. getHandl er (request);
Renderer rend = rh. doPost(this, request, response);
rend. render (this, request, response);

}

protected void doGet (HttpServl et Request request,
Ht t pSer vl et Response response) throws | OExcepti on,
Servl et Exception {

RegHandl er rh = this.registry. getHandl er(request);
Renderer rend = rh.doCGet(this, request, response);
rend. render(t his, request, response);

}

Forunter vl et overridesthe i ni t () method to perform one-time initialization before any
client requests are handled. This is where context initialization parameters are read from the
deployment descriptor and stored in the For untConf i g instance:

String jdbcDriverC assName = sc.getlnitParaneter("jdbcDriverC assNane");
String databaseURL = sc.getlnitParaneter("databaseURL");

String adapterC assNane = sc. getlnitParaneter("adapterC assNane");
ForuntConfi g. set Val ues(j dbcDri ver O assNane, dat abaseURL,

adapt er Cl assNane) ;

Theinit() method then sets up instances of each type of request handler. These are
registered with the ReqHand| er Regi st ry class, which has the ability to locate request handlers
later on.

Inthe dest roy() method, which is called when the servlet is unloaded, any outstanding
database connections are closed:

public void destroy() {
super.destroy();
DBUti | . cl oseAl | Connections();

}

While this currently has no real effect, the code was put in place because a future version of the
software may use database connection pooling. This allows the application to close all
connections in the pool just before exiting.

The only remaining methods in the servlet are doGet () and doPost (), which are virtually
identical. All these methods do is locate the appropriate request handler instance, ask the handler
to perform a GET or POST, and then use the renderer to send a response to the client.

The code for RegHandler.java is shown in Example 7-26. This is an abstract class that provides
doCet () and doPost () methods. By default, each method returns an error message back to
the client, so a derived class must override one or both methods to enable HTTP GET and/or
POST. Once the method is complete, the derived class must return an instance of Render er ,
which produces the next page to display.

Example 7-26. ReqHandler.java
package comoreilly.forum servlet;

i mport java.io.?*;
i mport javax.servlet.*;
i mport javax.servlet.http.*;

/**
* Al request handlers nust extend fromthis class.
*/
public abstract class ReqgHandl er {
protected abstract String getPathlinfo();

protected Renderer doCGet(HttpServlet servlet, HttpServl et Request
request,
Ht t pSer vl et Response response)
t hrows | CException, ServletException {

return new ErrorRenderer("GET not allowed");

}

protect ed Renderer doPost(HttpServlet servlet, HtpServletRequest
request,
Ht t pSer vl et Response response)
throws | CException, ServletException {
return new ErrorRenderer("POST not allowed");

}

The Render er class is shown in Example 7-27. This class, like RegHandl er , is abstract.
Derived classes are responsible for nothing more than producing content to the

Ht t pSer vl et Response. Basically, each page in the discussion forum application is created
using a subclass of Render er .

Example 7-27. Renderer.java
package comoreilly.forum servlet;

i mport java.io.*;
i mport javax.servlet.*;
i nport javax.servlet.http.*;

/**
* Al page renderers nust extend fromthis class.
*
/
public abstract class Renderer {
public abstract void render(HttpServlet servlet,
Ht t pSer vl et Request request, HttpServl et Response response)
t hrows | OException, ServletException;

}

The most basic renderer is Er r or Render er , which is shown in Example 7-28. This class
displays an error message in a web browser using simple pri nt | n() statements that generate
HTML. Unlike all other parts of this application, the Er r or Render er class does not use XML
and XSLT. The reason for this is that a large percentage of errors occurs because an XML parser
is not properly configured on the CLASSPATH.! If this sort of error occurs, this renderer will not
be affected.

91 CLASSPATH issues are discussed in great detail in Chapter 9.

o Error Render er can be written to use XML and XSLT,

« provided that a t r y/cat ch block catches any transformation
errors and reverts to pri nt | n() statements for error
reporting.

B

Ty

Example 7-28. ErrorRenderer.java
package comoreilly.forum servlet;
i mport java.io.?*;

i mport javax.servlet.*;
i mport javax.servlet.http.*;

/**

* Shows an error page. Since errors are frequently caused by inproperly
* configured JAR files, XML And XSLT are not used by this class.

* | f XML and XSLT were used, then the sane CLASSPATH issue that caused
* the original exception to occur would probably cause this page

* to fail as well.

*/

public class ErrorRenderer extends Renderer {
private String nmessage;
private Throwabl e throwabl e;

public ErrorRenderer(Throwabl e throwabl e) {

}

thi s(throwabl e, throwabl e. get Message());

public ErrorRenderer(String nmessage) {

}

this(null, nessage);

public ErrorRenderer(Throwabl e throwabl e, String nessage) {

}

this.throwabl e = throwabl e;
thi s. ressage = nessage;

public void render(HttpServlet servlet, HttpServletRequest request,

}

Ht t pSer vl et Response response)
throws | OException, ServletException {
response. set Content Type("text/htm ");
PrintWiter pw = response.getWiter();
/1 just show a sinple error page for now.
pw. println("<htm >");
pw. println("<body>");
pw. println("<p>");
pw. println(this. message);
pw. println("</p>");
if (this.throwable !'= null) {
pw. println("<pre>");
this.throwabl e. printStackTrace(pw);
pw. println("</pre>");
}
pw. println("</body></htm >");

XSLTRender Hel per, shown in Example 7-29, is a utility class used by all remaining renderers.
This class does the low-level XSLT transformations, eliminating a lot of duplicated code in each of
the renderers. XSLTRender Hel per also maintains a cache of stylesheet filenames so they do
not have to be repeatedly located using the Ser vI et Cont ext . get Real Pat h() method.

Example 7-29. XSLTRenderHelper.java

package comoreilly.forumservlet;

i mport
i mport
i mport
i mport
i mport

comoreilly.javaxslt.util.Styl esheet Cache;
java.io.*;

j ava. net . URL;

java.util.*;

j avax. servl et. *;

i mport javax.servlet.http.*;

i mport javax.xnl.transform*;

i mport javax.xnl.transform stream *;
i mport org.jdom*;

i mport org.jdom output.*;

/**

* A hel per class that nmakes rendering of XSLT easier. This
* elimnates the need to duplicate a |ot of code for each
* of the web pages in this app.

*/

public class XSLTRender Hel per {
private static Map fil enanmeCache = new HashMap();

*

/

L T T

Perform an XSLT transformation.

@ar am servl et provides access to the Servl et Context so

the XSLT directory can be deterni ned.

@ar am xm JDOVDat a JDOM data for the XML Docunent.

* @aram xsl t BaseNane the nane of the stylesheet wthout a

directory.

* @aramresponse the Servlet response to wite output to.

*/

public static void render(HttpServlet servlet, Docunent xm JDOVDat a,

String xsltBaseNane, HttpServl et Response response)
throws Servl et Exception, | OException {

String xsltFileNane = null;
try {

/1 figure out the conplete XSLT styl esheet file nane
synchroni zed (fil enameCache) {
xsltFileName = (String) filenaneCache. get (xsltBaseNane);
if (xsltFileNanme == null) {
Servl et Context ctx = servlet.getServletContext();
xsl tFil eNane = ct x. get Real Pat h(
"/ WEB- | NF/ xslt/" + xsltBaseNane);
fil enaneCache. put (xsl t BaseNane, xsltFil eNane);

}

/1 wite the JDOM data to a StringWiter

StringWiter sw = new StringWiter();

XM.CQut putter xm Qut = new XM.Qutputter("", false, "UTF-8");
xm Qut . out put (xm JDOVDat a, sw);

response. set Content Type("text/htm ");
Transforner trans =

St yl esheet Cache. newTr ansf or ner (xsl t Fi | eNan®) ;

/1l pass a paraneter to the XSLT styl esheet
trans. set Paraneter("rootDir", "/forum");

trans. transfornm(new StreanSour ce(new

StringReader(sw.toString())),

new StreanmResult(response.getWiter()));

} catch (I OException ioe) {

throw i oe;
} catch (Exception ex) {
t hrow new Servl et Excepti on(ex);

}
}
private XSLTRenderHel per() {
}

}

XSLTRender Hel per performs the XSLT transformation by first converting the JDOM Docunent
into a St r i ng of XML and then reading that St r i ng back into a JAXP-compliant XSLT
processor. This is not necessarily the most efficient way to integrate JDOM with JAXP, but it
works reliably with some beta versions of JDOM. By the time you read this, JDOM will have more
standardized APIs for integrating with JAXP.

Another utility class, ReqHandl er Regi st ry, is shown in Example 7-30. This class is
responsible for locating instances of ReqHand!| er based on path information found in the request
URL. Basically, path information is any text that occurs after a slash character (/) following the
servlet mapping. Ht t pSer vl et Request includes a method called get Pat hi nf o() that
returns any path information that is present.

Example 7-30. RegHandlerRegistry.java
package comoreilly.forum servlet;

i mport java.util.*;
i nport javax.servlet.http.*;

/**
* Autility class that |ocates request handl er instances based
* on extra path information.
*/
public class ReqHandl er Registry {
private ReqHandl er defaul t Handl er;
private Map handl er Map = new HashMap();

publ i ¢ RegHandl er Regi st ry(ReqHandl er defaul t Handl er) {
t hi s. defaul t Handl er = def aul t Handl er;
}

public void regi ster(RegHandl er handl er) {
t hi s. handl er Map. put (handl er . get Pat hi nfo(), handler);
}

publ i ¢ ReqgHandl er get Handl er (Htt pSer vl et Request request) {
ReqgHandl er rh = nul|;
String pathlnfo = request.getPathlnfo();
if (pathlnfo !'= null) {
int firstSl ashPos = pathlnfo.indexO('/");
i nt secondSl ashPos = (firstSlashPos > -1) ?
pat hi nfo.indexOr("/', firstSlashPos+1) : -1;

String key = null;
if (firstSlashPos > -1) {
if (secondSl ashPos > -1) {

key = pathlnfo.substring(firstSlashPos+1,
secondS| ashPos) ;
} else {
key = pat hl nfo.substring(firstSlashPos+1);

} else {
key = pat hl nf o;

}
if (key '= null && key.length() > 0) {
rh = (ReqHandl er) this. handl er Map. get (key);
}
}

return (rh !'= null) ? rh : this.defaultHandler;

}
Throughout the discussion forum application, URLSs take on the following form:
http://host nanme: port/forum mai n/ hone

In this URL, f or umrepresents the web application and is the name of the WAR file. The next part
of the URL, nai n, is a mapping to For untser vl et . Since the WAR file and servlet will not
change, this part of the URL remains constant. The remaining data, / hone, is path information.
This is the portion of the URL that ReqHand| er Regi st ry uses to locate instances of

RegHandl er . If the path information is nul | or does not map to any request handlers, the
default request handler is returned. This simply returns the user to the home page.

The first real request handler, HoneReqHandl er , is shown in Example 7-31. This class is quite
simple and merely returns an instance of HoneRender er . The code is simple because the home
page does not have any modes of operation other than to display all message boards. Other
request handlers are more complex because they must process Ht t pSer vl et Request
parameters.

Example 7-31. HomeReqgHandler.java
package comoreilly.forum servlet;

i mport java.io.?*;
i mport javax.servlet.*;
i mport javax.servlet.http.*;

/**

* This is the '"default' request handler in the app. The
* first inbound request generally goes to an instance
* of this class, which returns the hone page renderer.
*/

public class HonmeReqHandl er ext ends ReqHandl er {

protected String getPathlnfo() {
return "home";
}

protected Renderer doCGet(HttpServlet servlet, HttpServl et Request
request,
Ht t pSer vl et Response response)
t hrows | CException, ServletException {
return new HomeRenderer();

}

All of the request handlers must override the get Pat hl nf o() method. This determines the
path info portion of the URL, so each request handler must return a unique string.

The renderer for the home page, shown in Example 7-32, is also quite simple. As with the home
request handler, this renderer is simple because it has only one mode of operation. Like other
renderers, this class gets some data from the database using the Dat aAdapt er class, asks a
JDOM producer to convert the data into XML, and then tells XSLTRender Hel per which XSLT
stylesheet to use when performing the transformation.

Example 7-32. HomeRenderer.java
package comoreilly.forum servlet;

import comoreilly.forum?*;

import comoreilly.forum adapter.*;
i mport comoreilly.forum domain. *;
import comoreilly.forumxm.*;

i mport java.io.?*;

i mport java.util.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport org.jdom *;

/**

* Shows the hone page.

*/

public class HomeRenderer extends Renderer {

public void render(HttpServlet servlet, HtpServl et Request request,
Ht t pSer vl et Response response)
throws | CException, ServletException {
try {
/1l get the data for the hone page
Dat aAdapt er adapter = DataAdapter.getlnstance();

/1 an iterator of BoardSumrary objects
Iterator boards = adapter.getAllBoards();

/'l convert the data into XM. (a JDOM Docunent)
Docurent doc = new
Docunent (HomeJDOM pr oduceEl enent (boards)) ;

/'l apply the appropri ate styl esheet
XSLTRender Hel per. render (servl et, doc, "hone.xslt",
response);
} catch (DataException de) {
new ErrorRenderer(de).render(servlet, request, response);
}

}

Vi ewivont hRegHandl er , shown in Example 7-33, is slightly more complex than the home
page request handler. Since this request handler requires the board id, month number, and year
number as parameters, it must perform validation before it can handle the request properly.

Example 7-33. ViewMonthRegHandler.java
package comoreilly.forumservlet;

i mport comoreilly.forum*;

i mport comoreilly.forum adapter. *;
i mport comoreilly.forum donmain.*;
i mport java.io.*;

i mport javax.servlet.*;

i nport javax.servlet.http.*;

/**

* Handle a request to view a nonth for a nmessage board.
*/

public class Vi ewMont hReqHandl er extends ReqHandl er {

protected String getPathlnfo() {
return "viewlont h";
}

protected Renderer doGet(HttpServlet servlet, HttpServl et Request
request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

try {
Dat aAdapt er adapter = DataAdapter.getlnstance();

/'l these are all required paraneters
| ong boardl D = OL;
int nmonth = 0;

int year = 0;
try {
boardl D =
Long. par seLong(request. get Paraneter ("boardl D"));
mont h = I nteger. parsel nt(request.getParaneter("nonth"));
year = Integer.parselnt(request.getParaneter("year"));

} catch (Exception ex) {
return new ErrorRenderer("lnvalid request");
}

Boar dSummary board = adapt er. get Boar dSunmar y(boar dl D) ;
if (board == null) {
return new ErrorRenderer("lnvalid request");

}
return new Vi ewont hRender er (board, new Mont hYear (nont h,
year));
} catch (DataException de) {
return new ErrorRenderer(de);
}
}
}

Throughout this application, a seemingly harsh approach to error handling is followed. If any
"impossible" requests are detected, the user is presented with a terse error message:

try {
boardl D = Long. par seLong(request . get Paraneter ("boardl D"));

mont h = I nteger. parsel nt(request. getParaneter("nonth"));

year = |Integer.parselnt(request.getParaneter("year"));
} catch (Exception ex) {

return new ErrorRenderer("Invalid request");
}

When considering error-handling approaches, the primary concern should be break-in attempts
by hackers. It is far too easy for a user to determine which parameters are passed to a web
application and then try to wreak havoc by manually keying in various permutations of those
parameters. By checking for illegal parameters and simply rejecting them as invalid, a web
application gains a big security advantage.

Web Application Security

In the Vi ewVbnt hRegHandl er class, a Nunber For mat Except i on is
thrown if any of these parameters are nonnumeric or nul | . Basically,
there are only two possible causes for this sort of error. First, one of the
XSLT stylesheets may have a bug, making it forget to pass one of these
required parameters. If this is the case, a developer should theoretically
catch this error during development and testing. The second possibility is
that someone is manually keying in parameters without using the
standard XHTML user interface. This could be a hacker attacking the site
by probing for an application error, so we simply deny the request.

Standalone GUI applications do not have to contend with such issues
because the user interface can prevent illegal user input. But web
applications are essentially wide open for the entire world to see, so
developers must adopt a highly defensive style of programming. If
suppressing hack attempts is not a priority, the code could simply
redirect the user to the home page when an illegal request occurs. It
might be a good idea to write a log file entry that contains the requesting
user's IP address and any other relevant information when errors occur.
Log entries can be very useful when diagnosing application bugs as well.

Vi ewvbnt hRender er is shown in Example 7-34. This is another simple class that displays an
entire month's worth of messages in a given board. Although the XHTML display can be quite
complex for this page, the JDOM producer and XSLT stylesheet handle the real work, keeping
the Java code to a minimum.

Example 7-34. ViewMonthRenderer.java
package comoreilly.forum servlet;

import comoreilly.forum?*;

import comoreilly.forum adapter.*;
import comoreilly.forumdomain. *;
import comoreilly.forumxn .*;

i mport java.io.?*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport org.jdom *;

/**

* Renders a page that shows all nessages in a given nonth.

*/
public class Viewlbnt hRenderer extends Renderer {

private BoardSumary boar d;
private MonthYear nonth;

public Vi ewont hRender er (Boar dSunmary board, MonthYear nonth) {
thi s. board = board;
this.month = nont h;

}

public void render(HttpServl et servlet, HtpServletRequest request,
Ht t pSer vl et Response response)
throws | CException, ServletException {
try {
/1 convert the data into XML (a JDOM Docunent)
Docurent doc = new Docunent (Vi ewmvbnt hJDOM pr oduceEl enent (
this. board, this.nonth));

/'l apply the appropriate styl esheet
XSLTRender Hel per. render (servl et, doc,
"vi ewWont h. xslt", response);
} catch (DataException de) {
t hrow new Servl et Excepti on(de);
}

}

Vi ewiVsgRegHand| er, shown in Example 7-35, requires a parameter named nsgl D. As
before, if this parameter is invalid, an error page is displayed to the user. Otherwise, an instance
of Vi ewisgRender er is returned to the servlet.

Example 7-35. ViewMsgReqHandler.java
package comoreilly.forumservlet;

i mport comoreilly.forum*;

i mport comoreilly.forum adapter. *;
i mport comoreilly.forum donmain.*;
i mport java.io.*;

i nport javax.servlet.*;

i mport javax.servlet.http.*;

/**

* Handl e a request to view a nessage.
*/
public class ViewsgRegHandl er extends ReqHandl er {

protected String getPathlnfo() {
return "vi ewsg";
}

protected Renderer doGet(HttpServlet servlet, HttpServletRequest
request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

try {
Dat aAdapt er adapter = DataAdapter.getlnstance();

/1 nmeglDis a required paraneter and nust be valid
String negl DStr = request. get Paraneter("nsglD");

if (neglDStr == null) {
servlet.log("Required paraneter 'nsglD was m ssing");
return new ErrorRenderer("lnvalid request");

}

Message nsg = adapter. get Message(Long. parseLong(nsgl DStr));
MessageSummary i nResponseTo = nul | ;
if (msg.getlnReplyTo() > -1) {

i nResponseTo = adapt er. get Message(nsg. get |l nRepl yTo());
}

return new Vi ewmsgRenderer (nsg, inResponseTo);
} catch (Number For nat Exception nfe) {
servliet.log("' msgl D paraneter was not a nunber");
return new ErrorRenderer("lnvalid request");
} catch (DataException de) {
return new ErrorRenderer(de);
}

}

The corresponding renderer, Vi ewiVsgRender er , is shown in Example 7-36. This class follows
the same basic approach as other renderers: it produces a JDOM Docunent and uses
XSLTRender Hel per to perform the XSLT transformation.

Example 7-36. ViewMsgRenderer.java
package comoreilly.forumservlet;

i mport comoreilly.forum*;

i mport comoreilly.forumdonain.*;
i mport comoreilly.forumxm .*;

i mport java.io.*;

i mport javax.servlet.*;

i nport javax.servlet.http.*;

i mport org.jdom*;

/**
* Show t he "vi ew nessage" page.
*/
public class ViewMsgRenderer extends Renderer {

private Message nessage;
private MessageSunmary i nResponseTo;

public Vi ewMsgRender er (Message nessage, MessageSunmary i nResponseTo)

thi s. nessage = nessage;
thi s.i nResponseTo = i nResponseTo;

}

public void render(HttpServl et servlet, HtpServletRequest request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

/1 convert the data into XML (a JDOM Docunent)
Docunment doc = new Docunent (Vi ewMessageJDOM pr oduceEl enment (
this. message, this.inResponseTo));

/'l apply the appropriate styl esheet
XSLTRender Hel per. render (servlet, doc, "viewlsg.xslt", response);

}

The next class, Post MsgRegHand! er , is shown in Example 7-37. In the doGet () method,
the node parameter indicates whether the user is trying to post a new message or reply to an
existing message. The doGet () method is invoked as a result of an HTTP GET request, such
as the user clicking on a hyperlink or typing in a URL.

Example 7-37. PostMsgRegHandler.java
package comoreilly.forumservlet;

i mport comoreilly.forum*;

i mport comoreilly.forum adapter. *;
i mport comoreilly.forum donain.*;
i mport java.io.*;

i mport javax.servlet.*;

i nport javax.servlet.http.*;

/**

* Handl es GET and POST requests for the page that all ows users
* to post or reply to a nessage.

*/

public class Post MsgReqHandl er extends ReqHandl er {

protected String getPathlnfo() {
return "postMg";
}

/**

* When an HTTP GET is issued, show the web page for the
* first tine.
*/
protected Renderer doGet(HttpServlet servlet, HttpServletRequest
request,
Ht t pSer vl et Response response)
throws | OException, ServletException {
try {
/1 node must be "post NewMsg" or "replyToMsg"
String node = request. get Paraneter("node");

Dat aAdapt er adapter = DataAdapter.getlnstance();
if ("replyToMsg". equal s(node)) {
I ong origMsgl D = Long. par seLong(
request. get Paraneter ("ori gMsgl D"));
Message i nResponseToMsg = adapt er. get Message(ori gMsgl D) ;
if (inResponseToMsg != null) {
return new Post MsgRender er (i nResponseToMsQ) ;

}
} else if ("postNewMsg".equal s(nmode)) ({
| ong boardl D = Long. par seLong(
request. get Paranet er ("boardl D"));

Boar dSummary board = adapt er. get Boar dSummar y(boar dl D) ;
if (board !'= null) {

return new Post MsgRender er (board) ;
}

}

return new ErrorRenderer("lnvalid request");
} catch (Number For mat Exception nfe) {

return new ErrorRenderer(nfe);
} catch (DataException de) {

return new ErrorRenderer(de);
}

}
/**

* Handl es HTTP POST requests, indicating that the user has
* filled in the formand pressed the Subnit button.
*/
protected Renderer doPost(HttpServlet servlet, HttpServletRequest
request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

/1 if the user hit the Cancel button, return to the hone page
if (request.getParaneter("cancelBtn") !'= null) {
return new HoneRenderer();

}

/1l lots of error checking follows...

if (request.getParaneter("submtBtn") == null) {
servlet.l og("Expected 'subm tBtn' paranmeter to be present");
return new ErrorRenderer("lnvalid request");

}

/1 a null paraneter indicates either a hack attenpt, or a
/1l syntax error in the HTM.

String node = request. get Paraneter("node");

String nsgSubj ect = request. getParameter (" nmsgSubject");

String authorEnmail = request. getParaneter("authorEmail");

String nsgText = request.getParaneter("nsgText");

if (mode == null || msgSubject == null || authorEmail == null
|| nmsgText == null) {

return new ErrorRenderer("lnvalid request");

}

/1 one of these may be null

String origMsgl DStr = request.getParaneter("orighMsglD");

String boardl DStr = request. get Paraneter("boardl D");

if (origwsglDStr == null && boardIDStr == null) {
return new ErrorRenderer("lInvalid request");

}

I ong origMsgl D = O;
| ong boardI D = 0;
try {
origMsgl D = (origMsglDStr !'= null) ?
Long. par seLong(ori gMsgl DStr) : O;

boardl D = (boardIDStr != null) ? Long. parseLong(boardl DStr)

0;
} catch (Number For mat Exception nfe) {
return new ErrorRenderer("lnvalid request");
}
/'l renmove extra whitespace then verify that the user filled
/1 in all required fields
nmsgSubj ect = nmsgSubject.trinm();
authorEmail = authorEmail .trinm();
nsgText = nsgText.trinm();
try {
Dat aAdapt er adapter = DataAdapter.getlnstance();
if (nmsgSubject.length() ==
|| authorEmmil.length() ==
|| nmsgText.length() == 0) {
Boar dSummary board = (boardI DStr == null) ? null
adapt er . get Boar dSummar y(boar dl D) ;
MessageSunmmary i nResponseToMsg = (origMsgl DStr == null)
? null
adapt er. get Message(ori gMsgl D) ;
return new Post MsgRender er (board, inResponseToMsg,
true, nsgSubject, authorEmail, nsgText);
}
11
/1 If this point is reached, no errors were detected so the
/1 new nessage can be posted, or a response can be created
11
Message nsg = nul | ;
if ("replyToMsg". equal s(node)) {
nsg = adapter.replyToMessage(ori gMsgl D, nmsgSubj ect,
aut hor Emai |, nsgText);
} else if ("postNewMsg".equal s(node)) {
nmsg = adapter. post NewMessage(boardl D, nmsgSubj ect,
aut hor Emai |, nsgText);
}
if (msg !'= null) {
MessageSunmary i nResponseTo = nul | ;
if (msg.getlnReplyTo() > -1) {
i nResponseTo = adapt er. get Message(nsg. get | nRepl yTo(
));
}
return new Vi emsgRenderer (nsg, inResponseTo);
}
return new ErrorRenderer("lInvalid request");
} catch (DataException dex) {
return new ErrorRenderer(dex);
}
}

Unlike other request handlers in this application, Post MsgRegHandl er also has a doPost ()
method. The doCGet () method is responsible for returning a renderer that displays the XHTML
form, while the doPost () method is responsible for processing the form submission. Because
the XHTML form contains several required fields and buttons, the doPost () method is far more
complex than doCGet (). As the code reveals, almost all of this complexity is introduced because
of error checking and validation logic.

The doPost () method checks for illegal/impossible parameters first, returning an error page if
any problems occur. Next, it checks to see what the user typed in. If the user left a required field
blank, the parameter value will be an empty string rather than nul | . Of course, leading and
trailing spaces must be trimmed in case the user hit the space bar:

nsgSubj ect = msgSubject.trim);
authorEnmail = authorEmail.trin();
nmegText = nmegText.trinm();

If any of these fields are empty, the Post MsgRender er is returned with form field values pre-
filled:

return new Post MsgRenderer (board, inResponseToMsg,
true, nsgSubject, authorEmmil, nsgText);

This gives the user an opportunity to fill in missing values and try to submit the form again. If all is
well, an instance of Vi ewiVsgRender er is returned. This allows the user to view the message
that was just submitted.

The source code for Post MsgRender er is shown in Example 7-38.

Example 7-38. PostMsgRenderer.java
package comoreilly.forum servlet;

import comoreilly.forum?*;

import comoreilly.forumdomain. *;
import comoreilly.forumxm .*;

i mport java.io.?*;

i mport java.util.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport org.jdom *;

/**
* Show the web page that allows a user to post or reply to
* a nmessage.
*/
public class Post MsgRenderer extends Renderer {
private MessageSumary i nResponseTolMsg;
private BoardSummary boar d,;
private String nsgSubject;
private String authorEnail;
private String nmsgText;
private bool ean showError;

/**
* This constructor indicates that the user is replying to an
* existing nessage.
*/
publ i ¢ Post MsgRender er (Message i nResponseToMsg) {
this. board = i nResponseToMsg. get Board();

thi s.i nResponseToMsg = i nResponseToMsg;

t his. showkError = fal se;

this. msgSubject = "Re: " + inResponseToMsg. get Subject();
this.authorEmail =""

StringTokeni zer st = new StringTokeni zer (
i nResponseToMsg. get Text(), "\n");

StringBuffer buf = new StringBuffer();
buf . append("\n");
buf . append("\n> ----- Original Message----- ");
buf . append("\ n> Posted by ");
buf . append(i nResponseToMsg. get Aut horEmail ());
buf . append(" on ");
buf . append(i nResponseToMsg. get CreateDate().toString());
buf . append("\n");
whi | e (st.hasMoreTokens()) {

String curlLine = st.nextToken();

buf . append("> ");

buf . append(curLi ne);

buf . append("\n");
}
buf . append("> ");
this.msgText = buf.toString();

}
/**

* This constructor indicates that the user is posting
* a new nessage.

*/
publ i ¢ Post MsgRender er (Boar dSummary board) {
thi s(board, null, false, R I
}
/**
* This constructor is used when the user submitted a form
* pbut did not fill out all required fields.
*/

publ i c Post MsgRender er (Boar dSumrmary board,

MessageSummary i nResponseToMsg,
bool ean showError,
String nsgSubj ect,
String aut horEmail,
String nmegText) {

this. board = board;

thi s.i nResponseToMsg = i nResponseToMs(;

t hi s. showkrror = showkrror;

t hi s. msgSubj ect = nsgSubj ect ;

t hi s. aut hor Emai | = aut hor Emai | ;

this. negText = nsgText;

}

public void render(HttpServl et servlet, HtpServletRequest request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

/1l convert the data into XM. (a JDOM Docunent)
Document doc = new Docunent (Post MessageJDOM pr oduceEl enment (

thi s. board,

this.i nResponseToMsg,
thi s.showError,

t hi s. negSubj ect,

t hi s. aut hor Emai |,
this.msgText));

/1 apply the appropriate styl esheet
XSLTRender Hel per.render (servl et, doc, "postMg.xslt", response);

}

As the code shows, this class has several constructors that support different modes of operation.
The first constructor does the most work, prefixing the original message with > characters as
many email clients do when creating replies to existing messages. Other than having several
constructors, however, the renderer works just like other renderers in the application. The JDOM
producer and XSLT stylesheet actually do most of the work, distinguishing between the various
modes of operation.

7.5 Finishing Touches

That about does it for the code walkthrough. Since this is a moderately large application,
downloading the code from this book's web site is much easier than typing everything in by hand.
Do not forget that several additional classes are listed in Appendix B.

7.5.1 Deployment

A deployment descriptor and WAR file are required to deploy and test the application. The
deployment descriptor, web.xml, is shown in Example 7-39.

Example 7-39. Deployment descriptor

<?xm version="1.0" encodi ng="1SO- 8859-1"7?>
<I DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application
2.2/ | EN'
“http://java. sun. conij2ee/ dtds/web-app_2.2.dtd">
<web- app>
<servl et>
<servl et - name>f or unter vl et </ ser vl et - nane>
<servl et-class>comoreilly.forumservlet. ForunServl et</servlet -
cl ass>
<init-paranp
<par am nane>j dbcDri ver C assNane</ par am nane>
<l-- MySQL version is comented out:
<param val ue>org. gjt.nm nysql . Dri ver </ param val ue>
-->
<par am val ue>sun. j dbc. odbc. JdbcQdbcDri ver </ par am- val ue>
</init-paranp
<init-paranp
<par am nane>dat abaseURL</ par am nane>
<l-- MySQL version is comented out:
<paramval ue>j dbc: nysql : / /1 ocal host : 3306/ f or unx/ par am- val ue>
-->
<par am val ue>j dbc: odbc: f or unx/ par am val ue>
</init-paranp
<init-paranp
<par am nane>adapt er Cl assNanme</ par am nanme>

<I'-- Rel ational database version is comented out:
<param val ue>comoreilly.forumjdbci npl.JdbcDat aAdapt er </ par am-
val ue>
-->
<param val ue>comoreilly. forum fakei npl . FakeDat aAdapt er </ par am-
val ue>
</init-paranp
</servlet>
<servl et - mappi ng>
<ser vl et - name>f or untSer vl et </ ser vl et - name>
<url -pattern>/main/*</url -pattern>
</ servl et - mappi ng>
</ web- app>

The deployment descriptor contains context initialization parameters for the data adapter layer.
The default settings utilize a "fake" data adapter, allowing the discussion forum to function without
creating any sort of database. Once this is up and running, you will want to create a relational
database and configure the appropriate parameter values as shown in web.xml.

7.5.2 ldeas for Enhancements

A few key features were omitted to keep this chapter reasonably sized (as you can see, this is
already far longer than any other chapter in the book). Some ideas for enhancements include:

Database connection pooling

Web-based administration tools

Authentication of users

The ability to search the entire archive

Alternate client user interfaces, such as XHTML Basic or WML

Any one of these features can be added without fundamentally changing the existing architecture.
User authentication is probably the biggest change, because new database tables may be
required to associate messages with users. For web-based administration tools, additional
request handlers and renderers need to be written. These tools also need to be integrated with
the security and authentication mechanism; otherwise, any user can run the administrative tools.

Searching is beyond the abilities of XML and XSLT and is best handled by a dedicated search
engine technology. This could be as simple as embedding a few lines of HTML into each page
that links to a search engine such as Google.*®? Another approach is to write custom search code
that integrates more directly with the underlying database. Finally, the whole issue of supporting
alternate client user interfaces will be discussed in the next chapter. In a nutshell, this will involve
detecting the client browser type and selecting an appropriate XSLT stylesheet.

[201 Even though all pages are generated dynamically, many web crawlers such as Google index every page
in the application.

Chapter 8. Additional Techniques

This chapter presents solutions to a few commonly encountered problems that were not covered
in previous chapters, such as implementing session tracking without browser cookies, detecting
the browser type, and using XSLT as a rudimentary code generator. None of these techniques
are remarkably difficult to implement or use. However, they all build upon the technologies

presented throughout this book and are important for programmers to understand. The chapter
concludes with advice for internationalization using XSLT and Java.

8.1 XSLT Page Layout Templates

In many cases, dynamically generated, highly interactive web applications are overkill. A small
company may need only a static web site that displays job openings, new product
announcements, and other basic information. Corporate intranets present another common
scenario. In a typical intranet, a large number of departments and individual project teams may be
responsible for various web sites within the corporation. Many of these groups are composed of
nonprogrammers who can create basic XHTML pages but are not technical enough to write XML,
XSLT, and servlets. In either scenario, consistent look and feel are essential.

XSLT is very effective for defining consistent page layout. In the approach outlined here, web
page authors create XHTML pages using whatever tools they are familiar with. These pages
should not use frames or include navigation areas. As Figure 8-1 shows, an XSLT stylesheet is
used to insert navigation areas on the top and left sides of input XHTML pages. This is why
individual pages should not attempt to insert their own navigation areas.

Figure 8-1. XSLT template layout

= [
Top Navigation

input XHTML
P page | XSLT stylesheel Left copy of input
Mavigation| XHTML page

output XHTML page

Since the top navigation area is dynamic, page authors must also include a <net a> tag in every
XHTML page that is published:

<net a nanme="navi gati onCat egory" content="hone"/>

This tag allows the top navigation area to visually highlight the category that the current page
belongs to.[* The XSLT stylesheet selects this tag and generates the appropriate XHTML for the
navigation area. As shown in Figure 8-2, the sample stylesheet uses hyperlinks for each of the
navigation categories. This same approach also works for fancy graphical navigation areas.

1 you can extend this technique by adding a second <net a> tag for subcategories.

Since a single stylesheet controls page layout, changes to this stylesheet are visible across the
entire web site. The code for the home page is listed in Example 8-1. The required elements are
emphasized.

Example 8-1. home.xml

<?xm version="1.0" encodi ng="UTF-8""?>
<htm >
<head>
<title>Hone Page</title>
<nmet a name="navi gati onCat egory"” content="hone"/>
</ head>
<body>
<h1>Wel cone to the Hone Page! </ hl>
<di v>

This is a nornmal XHTM. page that authors
create. The guidelines are as foll ows:

<l i >Each page must be valid XHTM.</Ii >
<l i >Each page nust have a neta tag that
i ndi cates the navigation category.
<l'i >The tenpl at ePage. xslt stylesheet will add
the top and side navigation bars.
</ ul >
Pages are published to the WEB-INF/ xm directory
of a web app. This forces clients to access pages
through a Servlet, because the Servlet container
prevents direct access to anything under VEB-I| NF
</ div>
</ body>
</htm >

Figure 8-2. XHTML output with navigation areas

FL Home Page - Nebscape
Bic Edit Yew Go Window Help
ééi-&vaﬁﬂ.ﬁldﬁ'ﬁ
A 4t 1 o BN . e AR 5o A S
© L "Bockmeks 4 Locstion: [hitp Aocalhost B0A0/chapBemplate/home s] 7 what's Related
" [B webMal [H Cortact | Peopie @ YelowPage: D) Downoad Y Charnsls
Heome | Company | Products | Jobs
Left IMamgation Area T
Welcome to the Home Page!
This iz a normal ZHTML page that authors create. The gudelmnes
are as fellows:
* Each page must be vahd JHTML
* Each page st have a meta tag that mdic ates the
navngation category.
* The termplatePage sl stylesheet vall add the top and side
nawmgation bars,
Pages are published to the WEB-INFlaml directory of a web app.
Thes forces clients to access pages through a Servlet, because the
Servlet contaner prevents <wect access to anything under
WEE-INF.
| bt flocahost-B080]chapt jtemelate /products. xmi 4

Since XSLT is used to insert the appropriate navigation areas, all pages must be well-formed
XML. This is a good practice, and anyone who knows HTML should be able to make the
transition to XHTML.2! Programmers can provide scripts for page authors to run that validate the
XML against one of the XHTML DTDs, reporting errors before pages are published to the web
site.

2 HTML TIDY is a free tool that converts HTML to XHTML. It is available at
http://www.w3.org/People/Raggett/tidy .

- Strictly adhering to XHTML DTDs makes it much easier for
w 4. programmers to write all sorts of programs that manage web
site content because page content is consistently structured
and can be easily parsed.

The XSLT stylesheet searches for the <net a> tag; therefore, <ht m >, <head>, and <net a> are
required elements. If the <net a> tag is not found, the navigation category defaults to "unknown,"
and none of the navigation links are highlighted. Any content found inside of <head> and
<body> is simply copied to the appropriate location within the result tree document. Example 8-
2 lists the XSLT stylesheet that inserts the navigation areas.

Example 8-2. templatePage.xslt

<?xm version="1.0" encodi ng="UTF-8""?>
<I--
kkhkkkhkkhhkkhhkhhkkhkhkkhkhkdhkhhkhhkhkhkhkkhkhkhkhhkhhkhdhkhdhkhkhkhhkhhkhdhkhdhkhhkhhkhhkhhkhdhkidkihkihkhhkihkki*xkh*x*
** A styl esheet used by every page on a web site. This styl esheet
** defines where the page header and navigation bar are placed
EE R I S I S I R I b b R A R I R b I R A I S I R S S I R I b S b I I - >
<xsl:styl esheet version="1.0"

xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<I--
EIR R R R S S S S S S S S S R S S I S S R R S S S S

** The result tree is XHTM
kkhkkhkkhkhkhkhkkhkhkkhkhkkhkhkhkhhkhhkhhkhdhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhdidkhhkhhkhhk hk kk kkhkk kk k%% - >
<xsl : out put net hod="xm "
doct ype-public="-//WBC//DITD XHTM. 1.0 Transitional//EN
doctype-systens"http://ww. w3. or g/ TR/ xht m 1/ DTD/ xht mi 1-
transitional.dtd"
encodi ng="UTF-8"/ >

<l - -
*;c***
** The navigation category is detern ned by the <neta> tag in the
** source XHTM. docunent. The top navigation bar uses this variable.
kkhkkkhkhkkhkhkkhkhkhkhkkhkhkhkhhkhhkhhkhdhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkidkhhkhhkhhk hkk kk kk kk kkik*,*%x - >
<xsl :vari abl e nane="gl obal . nav. cat egory" >
<xsl : choose>
<xsl : when test="/htmnl/head/ net a[@ane=' navi gati onCat egory']">
<xsl :val ue-of select="/htnl/head/ neta
[@ane="' navi gati onCategory']/ @ontent"/>
</ xsl : when>
<xsl : ot herw se>
<xsl : t ext >unknown</ xsl : t ext >
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>

<l--
R R I S S S S I I I I I I S S S I I I I I b b I I I I I I I S S S I I I I b b b b b I S

** This tenpl ate produces the XHTM. docunent.

LR R R S R S S

<xsl:tenplate match="/">
<htm xm ns="http://ww. w3. org/ 1999/ xht m ">
<l-- copy the <head> fromthe source docunent -->
<xsl : copy-of select="htm /head"/>

<body>
<l-- this table defines the overall l|ayout of the page -->
<tabl e wi dt h="100% cel |l paddi ng="4"
cel | spaci ng="0" border="0">
<tr bgcol or ="#f 0f Of 0" >
<td col span="2">
<xsl:call -tenpl ate nane="creat eTopNavbar"/ >
</td>
</[tr>
<tr valign="top">
<td bgcol or="#cccccc" wi dt h="150px" >
<xsl:call-tenpl ate nanme="creat eLeft Navbar"/>
</td>
<td bgcol or="white">
<l --
*;c***
** Copy all contents of the <body> fromthe source
** XHTML docunment to the result tree XHTM. document.

ERE R R I b I b I R I I b I I R I S I I R I R I R I I - >
<xsl :copy-of select="htm /body/* | htm/body/text()"/>
</td>
</[tr>
</tabl e>
</ body>
</htm >

</ xsl :tenpl at e>

<l--
EJR R R IR S S S S I S I R R S I S R R S

** This tenplate produces the top navigation bar
EE R R S I S S R S I S S I ************************__>
<xsl:tenpl at e nane="cr eat eTopNavbar" >
<xsl:call-tenpl ate nane="navButton">
<xsl:w t h-param nanme="cat egory" sel ect=""hone'"/>
<xsl :w t h- param nane="di spl ayNane" sel ect ="' Hone' "/ >
<xsl:wth-param name="url" sel ect=""'hone.xm"'"/>
</ xsl:call-tenpl ate>
I
<xsl:call-tenpl ate nane="navButton">
<xsl :w t h- param nane="cat egory" sel ect ="' conpany'"/>
<xsl :w t h- param nanme="di spl ayNane" sel ect ="' Conpany"' "/ >
<xsl:w th-param name="url" sel ect=""'conpany.xm"'"/>
</ xsl:call-tenpl ate>

<xsl:call-tenpl ate nane="navButton">
<xsl:w t h-param nanme="cat egory" sel ect ="' products'"/>
<xsl :w t h-param nanme="di spl ayNane" sel ect ="' Products'"/>
<xsl:w th-param name="url" sel ect=""products. xm"'"/>

</ xsl:call-tenpl ate>

I

<xsl:call-tenpl ate nane="navButton">
<xsl:w th-param nanme="cat egory" select=""jobs""/>

<xsl :wi t h- param nane="di spl ayNane" sel ect=""'Jobs"' "/ >
<xsl :wi t h- param name="url|" select=""jobs.xm""/>
</ xsl:call-tenpl at e>
</ xsl :tenpl at e>

<I--
ER R R Ik kb S S R S Sk kS b b R S S I S I kb b S I S S kb b e e S S R S Rk

** This tenplate produces a "button" in the top navigation bar.
R Rk Ik kb b b S R S I I I kR R S S R SR R Ik kb S R A S Sk b e S I S S - >
<xsl:tenpl ate nane="navButton">
<xsl : param nane="cat egory"/ >
<xsl : param nane="di spl ayNanme"/ >
<xsl : param nane="url "/ >
<xsl : choose>
<!-- The current category is displayed as text -->
<xsl :when test="%category = $gl obal . nav. category">
<xsl : val ue- of sel ect ="$di spl ayNane"/ >
</ xsl : when>

<l-- Al other categories are displayed as hyperlinks -->
<xsl : ot herw se>

<xsl :val ue- of sel ect ="$di spl ayNane"/ >
</ a>
</ xsl: ot herw se>
</ xsl : choose>
</ xsl :tenpl at e>

<I--
IR R R IR S S S S I S I R I S I R S

** This tenplate creates the | eft navigation area.
R Rk Ik kb b b S R S I I S kb S R S S I I kb R I S kR R I S S i -a>
<xsl:tenpl ate nanme="cr eat eLef t Navbar" >
Left Navigation Area
</ xsl :tenpl at e>
</ xsl : styl esheet >

This stylesheet is quite simple in concept. First, it sets up the gl obal . nav. cat egory variable.
The stylesheet uses XPath to check for the existence of a <net a> tag that contains a
navi gat i onCat egory attribute:

<xsl :vari abl e nane="gl obal . nav. cat egory" >
<xsl : choose>
<xsl :when test="/htnl/head/ neta] @ane=' navi gati onCat egory']">
<xsl : val ue-of select="/htm /head/ neta
[@ane=' navi gati onCat egory']/ @ontent"/ >
</ xsl : when>
<xsl : ot herw se>
<xsl : t ext >unknown</ xsl : t ext >
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>

The first part of the XPath expression used by <xs!| : when> locates any <net a> tags:
/ ht m / head/ net a

Next, a predicate is used to narrow down the list to the one <net a> tag that contains a
navi gat i onCat egory attribute:

[@ane=" navi gat i onCat egory"' |

If this is found, the value of the cont ent attribute is assigned to the gl obal . nav. cat egory
variable. Otherwise, the value is unknown.

The XSLT stylesheet then contains a template that matches the / pattern. This template defines
the overall XHTML page layout by creating a <t abl e>. The document <head>, however, is
simply copied from the input XHTML document:

<xsl : copy-of select="htm /head"/>

Because the original <head> is merely copied to the result tree, any styles or scripts that page
authors include in their own documents are preserved. The only drawback occurs when people
define CSS styles that change the look and feel of the navigation areas, such as changing the
fonts and colors used in a page. If this is a concern, you might want to include logic in the XSLT
stylesheet that ignores all <st y| e> tags and st y| e attributes in the original XHTML document.

Once the <head> is copied, the XSLT stylesheet creates the <body> for the result tree. An
XHTML <t abl e> controls the overall page layout, and named XSLT templates are used to
create the navigation areas:

<xsl :cal |l -tenpl ate nane="creat eTopNavbar"/ >

<xsl :cal |l -tenpl ate nane="creat eLeft Navbar"/>

The creat eTopNavbar template is somewhat more complicated because it contains logic to
display the current category differently. The cr eat eLef t Navbar template, on the other hand,
simply copies some static content to the result. Finally, the contents of the <body> tag are copied
from the original document to the result tree:

<xsl : copy-of select="htnml/body/* | htnl/body/text()"/>

Unlike the <head>, the <body> is not copied directly. Instead, all elements and text within the
<body> are copied. This prevents the following invalid XHTML from being produced:

<t r><t d><body>. .. </ body></td></tr>

The cr eat eTopNavbar named template is used to create the row of links in the top navigation
area. For each navigation category, it calls the navBut t on template:

<xsl :cal |l -tenpl ate nane="navButton">
<xsl : wi t h- param nane="cat egory" sel ect ="' hone' "/ >
<xsl : wi t h- param nanme="di spl ayNane" sel ect=""Hone'"/>
<xsl :wi t h-param nanme="ur|" select=""honme.xm"'"/>
</xsl:call-tenpl at e>

The cat egor y parameter allows the navBut t on template to determine if the di spl ayNane
parameter should be displayed as a hyperlink or text. The code to do this is emphasized in the
navBut t on template (in Example 8-2) and is not repeated here.

None of this works without a servlet driving the process. In this example, all XHTML pages are
stored in the web application's WEB-INF directory and saved with .xml filename extensions.
Remember that these are the original web pages and do not contain any navigation areas. They
are stored in the WEB-INF directory to ensure that clients cannot access them directly. Instead,
clients must use a servlet called Tenpl at eSer vl et to request all pages. This servlet locates the
XML file, performs the XSLT transformation using templatePage.xslt, and sends the result tree
back to the client browser. The entire process is transparent to clients because they see only the
results of the transformation.

Table 8-1 shows the complete structure of the WAR file that supports this example.

Table 8-1. WAR file contents

File Description
WEB-INF/web.xml The deployment descriptor (see Example 8-3)
WEB- The servlet that drives the XSLT transformation

INF/classes/chap8/TemplateServlet.class (see Example 8-4)

WEB-INF/lib/javaxslt.jar Contains the St yl esheet Cache class
WEB-INF/xml/company.xml An example web page
WEB-INF/xml/home.xml An example web page (see Example 8-1)
WEB-INF/xml/jobs.xml An example web page
WEB-INF/xml/products.xml An example web page
WEB-INF/xslt/templatePage.xslt The XSLT stylesheet (see Example 8-2)

The deployment descriptor, web.xml , is shown in Example 8-3.

Example 8-3. Deployment descriptor

<?xm version="1.0" encodi ng="1S0O-8859-1"7?>
<I DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application
2.2/ [EN'
"http://java. sun. conlj 2ee/ dtds/web-app_2. 2. dtd">
<web- app>
<servl et>
<servl et - nane>t enpl at e</ ser vl et - nane>
<servl et -cl ass>chap8. Tenpl at eSer vl et </ servl et -cl ass>
</servlet>
<servl et - mappi ng>
<servl et - nane>t enpl at e</ ser vl et - nane>
<url -pattern>/tenplate/ *</url -pattern>
</ servl et - mappi ng>
</ web- app>

Since all files are protected under the WEB-INF directory, the / t enpl at e/ * URL pattern
specified in the deployment descriptor is the only way for clients to access this application. The
URL users type into their browser is: http://localhost:8080/chap8/template/home.xml.

This displays the page shown earlier in Figure 8-2. In this URL, the word t enpl at e maps to the
servlet, and / hone. xi is the path information. This is retrieved by the servlet using the
get Pat hl nfo() method of Ht t pSer vl et Request . The source code for Tenpl at eSer vl et

is shown in Example 8-4.

Example 8-4. TemplateServlet.java
package chap8;
import comoreilly.javaxslt.util.Styl esheet Cache;

i mport java.io.?*;
i nport java.net.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport javax.xn.transform*;

i mport javax.xnl.transform stream *;

/**
* Applies a standard styl esheet to every XM. page on a site.
*/
public class Tenpl ateServl et extends HtpServlet {
private String xsltFileNang;

/**
* Locate the tenplate stylesheet during servliet initialization.
*/
public void init() throws Unavail abl eException {
Servl et Context ctx = getServletContext();
this.xsltFileNane = ctx. get Real Pat h(
"/ VEB- | NF/ xsl t/tenpl at ePage. xslt");
File f = new File(this.xsltFileNane);

if (!f.exists()) {
t hrow new Unavai | abl eExcepti on(
“Unable to | ocate XSLT styl esheet: "
+ this.xsltFileNane, 30);

}

public void doGet (HttpServl et Request req, HttpServletResponse res)
throws Servl et Exception, | OException {
try {
/1l use the ServletContext to locate the XML file
Servl et Context ctx = getServletContext();
String xm Fil eNane = ctx. get Real Pat h("/WEB- | NF/ xm "
+ req.getPathinfo());

[l verify that the file exists
if (!'new File(xm FileNanme).exists()) {
res.sendError (Htt pServl et Response. SC_NOT_FOUND,
xm Fi | eNan®) ;
} else {
res. set Content Type("text/htm");

/1 load the XML file
Source xml Source = new StreanSour ce(new Buf f er edReader (
new Fi | eReader (xm Fi |l eNange)));

/'l use a cached version of the XSLT
Transformer trans =
St yl esheet Cache. newTr ansf or ner (xsl t Fi | eNang) ;
trans. transform xm Source, new
StreanResult(res.getWiter()));

} catch (TransfornerConfigurati onException tce) {
throw new Servl et Exception(tce);

} catch (TransfornmerException te) {
t hrow new Servl et Exception(te);

}

}

This is a fairly basic servlet whose sole purpose is to locate XML files and perform XSLT
transformations. The i ni t () method is used to locate templatePage.xslt from the WEB-
INF/xslt directory:

Servl et Context ctx = getServletContext();
this.xsltFileNanme = ctx. get Real Pat h(
"/ WEB- | NF/ xsl t/tenpl at ePage. xslt");

As discussed in earlier chapters, the get Real Pat h() method converts the path into a system-
specific pathname. This allows the St y| esheet Cache class to locate the XSLT stylesheet
properly. Later, in the doGet () method of the servlet, the same method is used to locate the
requested XML file:

Servl et Context ctx = getServletContext();
String xm Fil eName = ct x. get Real Pat h("/WEB- | NF/ xm "
+ reqg.getPathinfo());

As shown back in the source for Tenpl at eSer vl et , it then checks for the existence of this file
and sends an error if necessary. Otherwise, it uses JAXP to perform the XSLT transformation.
This is where the navigation areas get added to the document.

More on Caching

Inthe Tenpl at eSer vl et class, the XSLT stylesheets are cached using
thecomorel |l ly.javaxslt.util. Styl esheet Cache class. In this
particular example, however, the XML data and XSLT stylesheets are all
static files. Because these files are not dynamically generated, it
becomes possible to cache the transformation result, yielding the highest
possible performance. The next chapter discusses a class called

Resul t Cache that makes this possible.

Using XSLT stylesheets for page layout templates is a useful technique because individual page
authors do not have to duplicate headers, footers, and navigation areas into every page they
create. By centralizing page layout in one or more standard XSLT stylesheets, fewer changes are
required to update the look of an entire web site.

8.2 Session Tracking Without Cookies

Session tracking is an essential part of most web applications. By nature, the HTTP protocol is
connectionless. This means that each time users click on a hyperlink or submit an XHTML form,
the browser establishes a new connection to the web server. Once the request is sent and the
response is received, the connection between browser and server is broken.

This presents a problem for servlet authors. Although the browser and web server do not
maintain a persistent connection between page views, applications must maintain state
information for each user. Stateful applications make technologies like shopping carts possible,
for instance. With each request from the browser, the servlet must reestablish the identity of the
user and locate his session information.

8.2.1 Servlet Session-Tracking API

The traditional servlet approach to session tracking utilizes the
javax. servlet. http. H t pSessi on interface. This interface allows a web application to

store information about a user that persists across page requests. The interface is easy to use,
mapping attribute names to attribute values. The code shown here is part of a servlet that uses
Ht t pSessi on:

public void doGet (Ht pServl et Request req, HttpServl et Response res)
throws Servl et Exception, | Oexception {
/'l retrieve an instance of HtpSession for this user. The "true"
par anet er
/1l indicates that the object should be created if it does not exist.
Ht t pSessi on session = req. get Session(true);

/'l retrieve the cart for this user
Cart cart = (Cart) session.getAttribute("shoppingCart");

if (cart == null) {
cart = new Cart();
session.setAttribute("shoppingCart"”, cart);

}

The first line of the doGet () method locates the Ht t pSessi on instance associated with the
current user. The t r ue parameter indicates that a new session should be created if one does not
already exist. Once the session is created, a Car t object can be retrieved using Ht t pSessi on's
get Attribute() method.

Browser cookies provide the standard method of implementing Hi t pSessi on. A cookie is a
small piece of information stored on the client machine and generally contains a randomly
generated sequence of characters that uniquely identifies a user. When the browser issues a
request to the servlet, the servlet looks for a cookie named | sessi oni d and uses its value to

locate an instance of Ht t pSessi on. Figure 8-3 illustrates the normal session-tracking model.

Figure 8-3. Session tracking

.Ffﬁ'l:]']LMEB TlEH HImSESSiGﬂ
Instancs ;
Other ysers
2039856 | e pr—— session data
i paession
| Serviet '—|+ 3949576 [e—) e
703622 | a4
|
Clignt isessionidis used
|]fo?um:eu;njinstance L Hllu:lStesslcln Fred's session
i nstancea data
isessionit= of HitpSassion
TAn3622

f

jesessionid is stored
i a cookie on Fred's
machine

Cookies are a mixed blessing. Although they make session tracking very easy to implement, this
leads to security concerns because people do not want their browsing habits monitored.
Therefore, quite a few people set their browsers to disable all cookies. When users disable
cookies, servlets must use another technique to enable session tracking.

The standard servlet API has a fallback mechanism when cookies are disabled. It reverts to a
technique called URL rewriting. If cookies are disabled, the session identifier is appended to the
URL. This way, whenever a user clicks on a hyperlink or submits an XHTML form, the session

identifier is transmitted along with the request. This cannot happen without some level of
programmer intervention, however. Imagine a scenario where a servlet is requested, and it
returns an XHTML page with the following content:

Click on the Iink to nobve next:
Move Next </ a>

This causes session tracking to fail, because the session identifier is lost whenever the user
clicks on the hyperlink. We really want the HTML to look like this:

Click on the link to nove next:
Nbve
Next </ a>

Now, when the user clicks on the hyperlink, the session identifier (| sessi oni d) is transmitted to
the servlet as part of the requested URL.

The value for | sessi oni d cannot be hardcoded. It must be dynamically generated for each
instance of Ht t pSessi on, making it much harder for hackers to obtain session identifiers to
impersonate users.®! This means that the XHTML cannot be entirely static; the session identifier
must be dynamically inserted into the XHTML whenever a link or form action is required.

Ht t pSer vl et Response has a method called encodeURL() that makes this possible:

[¥1 sessions and their associated identifiers typically expire after 30 minutes of inactivity and must be
regenerated.

String original URL = "/shoppi ng/ noveNext";

String encodedURL = response. encodeURL(ori gi nal URL) ;

Now, encodedURL will be encoded with the session id if the] sessi oni d cookie was not found.
For session tracking to work, this technique must be used consistently for every hyperlink and
form action on a web site.

8.2.2 Session Tracking with Java and XSLT
With XSLT, session tracking is a little harder because the stylesheet generates the URL rather
than the servlet. For instance, a stylesheet might contain the following code:
<xsl:tenplate match="cart">

Click on the link to nove next:

Move Next </ a>
</ xsl ‘tenpl at e>
Like before, the | sessi oni d needs to be concatenated to the URL. To make this happen, the
following steps must be performed:

1. Inthe servlet, determine if cookies are enabled or disabled.

2. If cookies are disabled, get the value of | sessi oni d.

3. Pass ;| sessioni d=XXXX as a parameter to the XSLT stylesheet, where XXXXis the
session identifier.

4. In the stylesheet, append the session id parameter to all URLs in hyperlinks and form
actions.

If cookies are enabled, there is no reason to manually implement session tracking. This is easy to
check because the | avax. servlet. http. Hi t pServl et Request interface provides the
I sRequest edSessi onl dFr onCooki e() method. When this method returns t r ue, cookies

are enabled, and the remaining steps can be ignored. The code in Example 8-5 shows what a
servlet's doCet () method looks like when implementing session tracking.

Example 8-5. Session-tracking code

public void doGet (Htt pServl et Request req, HttpServl et Response res)
t hrows Servl et Exception, | OException {
try {
/'l retrieve current settings fromthe session
Ht t pSessi on session = req. get Session(true);
Cart cart = (Cart) session.getAttribute("shoppingCart");

if (cart == null) {
cart = new Cart();
session. set Attri bute("shoppingCart", cart);

}

/'l produce the DOMtree
Docunent doc = Cart DOMProducer. creat eDocunent (cart);

/'l prepare the XSLT transfornmation
Transfornmer trans = Styl esheet Cache. newTr ansf or mer (
this.xsltFileNane);

/1 allow cookiel ess session tracking
if ('req.isRequestedSessionl dFronCookie()) {
String sessionlD = session.getld();
trans. set Par anet er (" gl obal . sessi onl D",
":jsessionid=" + sessionlD);

}

/'l send the web page back to the user

res. set Cont ent Type("text/htm");

trans. transfornm(new javax. xm . transf orm dom DOVBour ce(doc),
new StreanResult(res.getWiter()));

} catch (ParserConfigurati onException pce) {
t hrow new Servl et Excepti on(pce);

} catch (TransformerConfigurati onException tce) {
t hrow new Servl et Exception(tce);

} catch (TransformerException te) {
t hrow new Servl et Exception(te);

}

}

The critical lines of code are emphasized. The first of these checks to see if the session was not
obtained using a cookie:

if ('req.isRequestedSessionl dFronCookie()) {

For the very first request, the cookie will not be present because the servlet has not had a chance
to create it. For all subsequent requests, the cookie will be missing if the user has disabled
cookies in the browser. Under either scenario, the session identifier is obtained from the

Ht t pSessi on instance:

String sessionlD = session.getld();

The servlet API takes care of generating a random session identifier; you are responsible for
preserving this identifier by passing it as a parameter to the stylesheet. This is done as follows:

trans. set Paranet er (" gl obal . sessi onl D',
";jsessionid=" + sessionlD);

This servlet also takes the liberty of prefixing the session identifier with " ; j essi oni d=". This
makes the XSLT stylesheet simpler, because it does not have to check if the session ID is an
empty string or not. As implemented here, the value of gl obal . sessi onl D can be appended to
all URLs:

cl i ck here

The end result is that if cookies are enabled, the URL will be unaffected. Otherwise, it will be
properly encoded to use session tracking. A larger XSLT example follows in Example 8-6.

Example 8-6. Session-tracking XSLT stylesheet
<?xm version="1.0" encodi ng="UTF-8"?>

<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or mi' >

<I--

ER R R Ik kb S S R S I kR R e S S S R R S S S A I R R R Ik ke S R Rk ko
** gl obal .sessionlD: Used for URL-rewiting to inplenment

*E session tracking w thout cookies.

L R R S R R S

<xsl : param name="gl obal . sessionl D'/ >

<l-- This styl esheet produces XHTM. -->

<xsl:output nethod="xm" indent="yes" encodi ng="UTF-8"

doct ype-public="-//WBC//DTD XHTM. 1.0 Transitional//EN

doct ype-system="http://ww. w3. org/ TR/ xht m 1/ DTD/ xht m 1-
transitional.dtd"/>

<I--
EIE R R R S b S S I I S S S R S S S S R S I I I S S S S S S S S

** This tenpl ate produces the skeletal XHTM. docunent.

LR R R S R R R o T S S

<xsl:tenplate match="/">
<htm xm ns="http://ww. w3. org/ 1999/ xhtm ">

<head>
<title>Shoppi ng Exanple</title>
</ head>
<body>
<l-- Create a formfor this page -->

<f orm net hod="post" action="/chap8/ shoppi ng{$gl obal . sessi onl D} " >
<h1>Shoppi ng Exanpl e</ h1>
...remai nder of page omtted
</ fornm
</ body>
</htm >
</ xsl :tenpl at e>

<xsl :tenplate match="cart">
Click on the Iink to nove next:
Move
Next </ a>

</ xsl :tenpl at e>

</ xsl : styl esheet >

This stylesheet fully illustrates the three key components that make session tracking with XSLT
possible. First, the session identifier is passed to the stylesheet as a parameter:

<xsl : param nane="gl obal . sessi onl D'/ >

Next, this session identifier is used for the form action:

<f orm net hod="post" acti on="/chap8/ shoppi ng{ $gl obal . sessi onl D} ">
And finally, it is used for all hyperlinks:

NMove
Next </ a>

The ?par am=val ue string was added here to illustrate that request parameters are appended
after the session identifier. Therefore, the full URL will look similar to the following when the user
clicks on the hyperlink:

http://1 ocal host: 8080/ shoppi ng/ noveNext ; j sessi oni d=298ul kj 2348734 kj 43?p
ar anrval ue

Tracking sessions is essential, and the technique shown in this section works when browser
cookies are disabled. You should always test your web applications by disabling all browser
cookies to see if every URL is properly encoded with the session identifier.

8.3 Identifying the Browser

A strength of XSLT is its ability to help keep data and presentation separate. As you know,
supporting different transformations is a matter of writing different XSLT stylesheets. Figuring out
which stylesheet to apply is the only missing piece. For web applications, the User - Agent HTTP
header offers the solution.

HTTP requests consist of a header followed by content; the header contains name/value pairs of
data, allowing the client and server to exchange additional information with each other. The text
shown in Example 8-7 contains the complete HTTP request issued by Netscape 6.0 when
running on Windows 2000.

Example 8-7. Netscape 6 HTTP request

GET / HITP/ 1.1

Host: | ocal host: 80

User-Agent: Modzilla/5.0 (Wndows; U, Wndows NT 5.0; en-US; ml8)
CGecko/ 20001108

Net scape6/ 6.0

Accept: */*

Accept - Language: en

Accept - Encodi ng: gzi p, defl ate, conpress,identity

Keep- Al'ive: 300

Connection: keep-alive

For the purposes of browser detection, the value of User - Agent must be parsed to determine
what kind of browser is requesting information from the servlet. Based on this information, the
servlet can select an appropriate XSLT stylesheet that supports the particular strengths and
weaknesses of the browser in question.

Unfortunately, there are hundreds of variations of User - Agent , and browser vendors do not
rigorously adhere to any standard format. The common browsers can be identified, however, with
a small amount of parsing logic. Table 8-2 lists some of the more common browsers you might
encounter.

Table 8-2. Common User-Agent values

User-Agent Browser

Lynx/2.8rel.3 libwww-FM/2.14 Lynx 2.8rel3

Internet Explorer

Mozilla/4.0 (compatible; MSIE 4.0; Windows NT) 4.0

Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0) Internet Explorer

5.5
Mozilla/4.08 [en] (WinNT; U ;Nav) Netscape 4.08
Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; m18) Gecko/20001108 N
etscape 6
Netscape 6/6.0
Mozilla/3.0 (compatible; Opera/3.0; Windows 95/NT4) v3.1 Opera 3.0

The first browser, Lynx, is listed because it is the most common text-only browser. Whenever the
User - Agent begins with Lynx, your web application can select an XSLT stylesheet that omits
all graphics from the web page.

The three most popular browsers are clearly Microsoft Internet Explorer, Netscape Navigator, and
Opera Software's Opera. Of these three browsers, Navigator was available first, and its User -
Agent always begins with Vbzi | | a. In the early days of web development, many sites checked
for this and only provided fancy versions of their web sites to Netscape browsers.

When Microsoft Internet Explorer became available, it had to begin its User - Agent string with
Mbzi | | a to maintain compatibility with many existing web sites. Therefore, you cannot simply
check for Mbzi | | a to determine the browser type. As you can see in Table 8-2, Microsoft
browsers include the text V&I E followed by the version number, making them easily identifiable.

A more recent entry, Opera, also begins with Mbzi | | a. The User - Agent for Opera browsers
always contains Oper a/ [ver si on] ; , where [ver si on] is something like 2. 0 or 3. 0. With
these rules in mind, the algorithm for detecting a browser might look something like this:
if (begins-with "Lynx") {

browser is only capable of displaying text

else if (contains "MSIE") {
browser is Internet Explorer

else if (contains "Opera") {
browser is Opera

}
else if (begins-with "Mzilla") {
browser is Netscape-conpatible

}

el se {
browser is unknown

}
In a servlet, the following code is used to obtain the value of User - Agent :
protected void doGet(HttpServl et Request req, H tpServl et Response res)

throws | CException, ServletException {
String userAgent = req.getHeader (" User - Agent");
String xslt = null;
if (userAgent.startsWth("Lynx")) {

xslt = "text HonmePage. xslt";
} else {
xslt = "htm HomePage. xslt";

}

For more sophisticated applications, it is desirable to use a utility class that can identify the
browser, its version number, and possibly even its platform. Although you can certainly write your
own class using basic | ava. | ang. St ri ng operations, a better option is to use an existing API
that someone else has written. The screen capture shown in Figure 8-4 illustrates the output
from a simple servlet that identifies various pieces of information about the browser.

Figure 8-4. Browser detection

[i# setscape & H=1 E3
‘lEih Edit Wisw Ssarch Go o Boolmarks Tasks Help

L betpeocalho stiE0AG serv et BrowseriD

:' Megme-kgent @ MHoesillasS.0 (Windows: U; Sindows NT S5.0; en-02; milf] Gecko/20001108 Hetacaped/ .0
| supporzs C29: crue

:: JayvaSoript 1 TEus

Erowvaesr Ham=: Hozilla

Platfogm s Wandowa

Teraion = 5.0

(TElsinetc & Teth & Fun® Irterscct= |

This servlet utilizes the or g. apache. turbi ne. uti| . Browser Det ect or class, which is part
of Apache's Turbine web application framework.™! This class actually has only one dependency
on anything else in Turbine, so you can either comment out its reference to Turbine's RunDat a
class or simply include the Turbine JAR files in your CLASSPATH.™! Turbine can be obtained
from http://jakarta.apache.org. The code for the servlet is shown in Example 8-8.

[This example is based on Version 2.1 of Turbine.

[51 Be sure to read and follow the Apache licensing agreement if you extract this cl ass from Turbine.

Example 8-8. BrowserlD.java

i mport java.io.*;
i mport javax.servlet.*;
i mport javax.servlet.http.*;

i mport org.apache.turbine.util.BrowserDetector;
public class Browserl D extends HttpServlet {
protected void doGet (HttpServl et Request req, HttpServl et Response
res)
throws | OException, ServletException {
Browser Det ect or bd = new Browser Det ect or (req. get Header (
"User - Agent"));
res. set Content Type("text/plain");

PrintWiter pw = res.getWiter();

pw. println("User - Agent
pw. println("Supports CSS: "
pw. println("JavaScri pt
pw. println("Browser Nane:
pw. println("Platform

pw. println("Version

bd. get User Agent String());
bd. i sCssOK());
bd.isJavascriptK());

bd. get Browser Nane());

bd. get BrowserPlatfornm());
bd. get Browser Version());

+ + 4+ + + +

}
8.4 Servlet Filters

Version 2.3 of the Java servlet specification adds a new feature called filters. A filter is an object
that intercepts requests to a servlet, JSP, or static file in a web application. The filter has the
opportunity to modify the request before passing it along to the underlying resource and can
capture and modify the response before sending it back to the client. Since filters can be
specified declaratively using the web application deployment descriptor, they can be inserted into
existing web applications without altering any of the existing code.

8.4.1 Filter Overview
Servlet filters are useful for many purposes, including logging, user authentication, data
compression, encryption, and XSLT transformation. Many filters can be chained together, each

performing one specific task. For the purposes of this book, XSLT transformations are the most
interesting use of filters. Figure 8-5 illustrates the general filter architecture.

Figure 8-5. Servlet filters

Serviet Container

A
\ reqguest request
Serviet

response response

| Clignf

. could also be a
Filter stafic file or JSP

j avax. servl et. Filter isan interface that all custom filters must implement. It defines the
following three methods:

void init(FilterConfig config)

voi d destroy()

voi d doFilter(Servl et Request req, ServletResponse res, FilterChain
chai n)

Theinit() anddestroy() methods are virtually identical to the i ni t () and destroy(

) methods found in any servlet. i ni t () is called when the filter is first loaded, and the

Fi | ter Confi g parameter provides access to the Ser vl et Cont ext and to a list of initialization
parameters. The code in Example 8-11 demonstrates each of these features. destroy(), as
expected, is called once when the filter is unloaded. This gives the filter a chance to release
resources.

The doFi | ter () method is called whenever a client request is received. The filter participates
inaFi | t er Chai n set up by the servlet container, which allows multiple filters to be attached to

one another. If this filter wishes to block the request, it can simply do nothing. Otherwise, it must

pass control to the next resource in the chain:

chain.doFilter(req, res);

Although the next entry in the chain might be another filter, it is probably a servlet or a JSP. Either
way, the filter does not have to know this.

Simply calling doFi | ter (req, res) merely passes control to the next entry in the chain. To
modify the request or response, the filter must modify the Ser vl et Request and/or

Ser vl et Response object. Unfortunately, these are both interfaces, and their implementation
classes are specific to each servlet container. Furthermore, the interfaces do not allow values to
be modified.

To facilitate this capability, Version 2.3 of the servliet API also adds wrapper classes that allow the
request and response to be modified. The following new classes are now available:

j avax. servl et. Servl et Request W apper

j avax. servl et . Servl et ResponseW apper

javax. servlet. http. H t pServl et Request W apper
javax. servlet.http. HtpServl et ResponseW apper

Each of these classes merely wraps around another request or response, and all methods merely
delegate to the wrapped object. To modify behavior, programmers must extend from one of these
classes and override one or more methods. Here is how a custom filter might look:

public class MyFilter inplenents Filter {
public void doFilter (ServletRequest req, ServletResponse res,
FilterChain chain) throws | OException, ServletException {
/1 wap around the original request and response
MyRequest W apper regWap = new MyRequest W apper (req);
MyResponseW apper resWap = new MyResponseW apper (res);

/'l pass the wappers on to the next entry
chai n. doFilter(reqWap, resWap);

}

In this case, M\yRequest W apper and MyResponseW apper are doing the actual work of
modifying the request and response. This works fine for many types of simple filters but is more
complex when modifying the response content. To illustrate this point, consider the

get Qut put St ream() method inj avax. servl et. Servl et Response:

public interface ServletResponse {
Servl et Qut put Stream get Qut put Stream() throws | OExcepti on;
...additional nethods

}

Here is how | avax. servl et . Servl et ResponseW apper defines the same method:

public class Servl et ResponseW apper inplenents Servl et Response {
private Servl et Response response;

public Servl et ResponseW apper (Servl et Response response) {
thi s.response = response;
}

/1l default inplenentation delegates to the wapped response
public ServletQutputStream getQut putStreanm() throws | CException {
return this.response. get Qut putStrean();

}

...additional nethods behave the sane way

}

To modify the response sent to the client browser, the custom wrapper subclass must override
the get Cut put St rean() method as follows:

public class MyResponseW apper extends Servl et ResponseW apper {

public ServletQutputStream getQutputStream() throws | CException {
/'l cannot return the ServletQutputStreamfromthe supercl ass,
because
/1l that object does not allow us to capture its output.
Therefore,
/1l return a custom subcl ass of Servl et Qutput Stream
return new MyServl et Qut put Streanm();

}

Servl et Qut put St r eamis an abstract class and does not provide methods that allow it to be
modified. Instead, programmers must create custom subclasses of Ser vl et Qut put St r eamthat
allow them to capture the output and make any necessary modifications. This is what makes
modification of the servlet response so difficult.

8.4.2 XSLT Transformation Filter

The previous discussion introduced a lot of concepts about servlet filters without a lot of details.
Next, a complete example for performing XSLT transformations using a filter is presented.
Hopefully this will illustrate some of the issues mentioned so far.

The basic goal is to create a servlet filter that performs XSLT transformations. A servlet, JSP, or
static XML file will provide the raw XML data. The filter will intercept this XML before it is sent to
the client browser and apply an XSLT transformation. The result tree is then sent back to the
browser.

Example 8-9 is the first of three classes that comprise this example. This is a custom subclass
of Ser vl et Qut put St r eamthat captures its output in a byte array buffer. The XML data is
gueued up in this buffer as a first step before it is transformed.

Example 8-9. BufferedServletOutputStream.java
package comoreilly.javaxslt.util;

i mport java.io.?*;
i mport javax.servlet.*;

/**

* A custom servlet output streamthat stores its data in a buffer,

* rather than sending it directly to the client.

*

* @uthor Eric M Burke

*/

public class BufferedServl et Qut put Stream extends Servl et Qut put Stream {
/'l the actual buffer
private ByteArrayQutput Stream bos = new ByteArrayQut put Strean();

/**

* @eturn the contents of the buffer.

*/

public byte[] getBuffer() {
return this.bos.toByteArray();

}

/**
* This method nmust be defined for custom servl et output streans.
*/
public void wite(int data) {
this.bos.wite(data);
}

/1 BufferedHtt pResponseW apper calls this nethod
public void reset() {

this.bos.reset();
}

/1 BufferedHtt pResponseW apper calls this nethod

public void setBufferSize(int size) {
/1 no way to resize an existing ByteArrayCQutputStream
this. bos = new Byt eArrayQut put Strean(si ze);

}

The Buf f er edSer vl et Qut put St r eamclass extends directly from Ser v| et - Qut put St ream
The only abstract method in Ser vl et Qut put St reamiswr i t e() ; therefore, our class must
define that method. Instead of writing the data to the client, however, our class writes the data to
a Byt eArrayQut put - St r eam. The remaining methods, reset () and set Buf fer Si ze(),
are required by the class shown in Example 8-10.

Example 8-10. BufferedHttpResponseWrapper.java
package comoreilly.javaxslt.util;

i mport java.io.*;
i mport javax.servlet.*;
i mport javax.servlet.http.*;

/**
* A custom response w apper that captures all output in a buffer.
*/
public class BufferedHttpResponseW apper extends
Ht t pSer vl et ResponseW apper {
privat e BufferedServl et Qut put St ream buf f er edSer vl et Qut
= new BufferedServl et QutputStrean();

private PrintWiter printWiter = null;
private Servl et Qutput Stream out put Stream = nul | ;

publ i c BufferedHtt pResponseW apper (Htt pServl et Response ori gResponse)
super (ori gResponse) ;

public byte[] getBuffer() {
return this.bufferedServletQut.getBuffer();
}

public PrintWiter getWiter() throws | OException {
if (this.outputStream!= null) {
throw new |11 egal St at eExcepti on(
"The Servlet APl forbids calling getWiter()
after”
+ " getQutputStream() has been called");

}

if (this.printWiter == null) {
this.printWiter = new PrintWiter(this.bufferedServletQut);
}

return this.printWiter;

}

public Servl et Qutput Stream get QutputStrean{) throws | OException {
if (this.printWiter !'=null) {
throw new |1l egal St at eExcepti on(
"The Servlet APl forbids calling getQutputStream)
after”
+ " getWiter() has been called");

}

if (this.outputStream== null) {
this.outputStream = this. bufferedServl et Qut;
}

return this.outputStream

}
/'l override nethods that deal with the response buffer

public void flushBuffer() throws | OException {
if (this.outputStream!= null) {
this.outputStream flush();
} else if (this.printWiter !'= null) {
this.printWiter.flush();
}

}

public int getBufferSize() {
return this.bufferedServletQut.getBuffer().I|ength;
}

public void reset() {
this.bufferedServletQut.reset();
}

public void resetBuffer() {
this.bufferedServletQut.reset();
}

public void setBufferSize(int size) {
thi s. bufferedServl et Qut. set BufferSize(size);
}

Buf f eredHt t pResponseW apper is an extension of Ht t pSer vl et -ResponseW apper and
overrides all methods that affect the W i t er or Qut put St r eamback to the client. This allows us
to fully capture and control the response before anything is sent back to the client browser.

According to the servlet API, eitherget Witer() orget Cut put St rean() can be called,
but not both. This custom response wrapper class cannot know which is needed, so it must
support both. This is definitely an area where the servlet filtering APl can make things a lot easier
for programmers.

é Very little of this is currently documented in the servlet

specification. Perhaps this will improve by the time this book
is published. However, there are currently very few examples
that show how to capture and modify the response. Hopefully
this will improve as more containers are upgraded to support
the servlet 2.3 specification.

The primary class in this example is shown in Example 8-11. This is the actual filter that
performs XSLT transformations.

Example 8-11. Servlet filter for XSLT transformations
package comoreilly.javaxslt.util;

i mport java.io.*;

i mport javax.servlet.*;

i nport javax.servlet.http.*;

i mport javax.xm .transform*;

i mport javax.xm .transform stream *;

/**

* Autility class that uses the Servlet 2.3 Filtering APl to apply
* an XSLT stylesheet to a servlet response.
*
* @uthor Eric M Burke
*/
public class StylesheetFilter inplenents Filter {
private FilterConfig filterConfig;
private String xsltFileNane;

/**

* This method is called once when the filter is first |oaded.

*/

public void init(FilterConfig filterConfig) throws ServletException

this.filterConfig = filterConfig;

/'l xsltPath should be sonething like "/WEB-INF/ xslt/a.xslt"
String xsltPath = filterConfig.getlnitParameter("xsltPath");
if (xsltPath == null) {
t hrow new Unavai | abl eExcepti on(
"xsltPath is a required paraneter. Please "
+ "check the deploynent descriptor.");

}

/1l convert the context-relative path to a physical path nane

30);

publ

HTTP") ;

res);

happen.
t he

t he

client

this.xsltFileNane = filterConfig.getServletContext()
. get Real Pat h(xsl t Pat h) ;

/1 verify that the file exists
if (this.xsltFileNane == null ||
Inew File(this.xsltFileNane).exists()) {
t hrow new Unavai | abl eExcepti on(
“Unable to |l ocate stylesheet: " + this.xsltFileNane,

ic void doFilter (ServletRequest req, ServletResponse res,
FilterChain chain) throws | OException, ServletException {

if (!(res instanceof HttpServletResponse)) {
throw new Servl et Exception("This filter only supports

}

Buf f er edHt t pResponseW apper responseW apper =
new Buff eredHt t pResponseW apper ((Ht t pSer vl et Response)

chain.doFilter(req, responseWapper);

/1 Tontat 4.0 reuses instances of its HttpServl et Response
/1 inmplenentation class in sonme scenarios. For instance, hitting
/1l reload() repeatedly on a web browser will cause this to

/1 Unfortunately, when this occurs, output is never witten to
/1 BufferedHtt pResponseW apper's QutputStream This neans that

/1 XML output array is enpty when this happens. The following
/1 code is a workaround:
byte[] origXM. = responseW apper.getBuffer();
if (origXM. == null || origXM..length == 0) {
/1 just let Tontat deliver its cached data back to the

chain.doFilter(req, res);
return;

}

try {
/1 do the XSLT transformation

Transformer trans = Styl esheet Cache. newTr ansf or mer (
this. xsltFil eNane);

Byt eArrayl nput Stream ori gXM.I n = new

Byt eArrayl nput Strean(ori gXM.) ;

Sour ce xm Source = new StreanSource(ori gXMV.In);
Byt eArrayQut put Stream resul t Buf = new Byt eArrayCQut put St rean
trans. transform xm Source, new StreanResul t(resultBuf));

res. set Content Lengt h(resul t Buf.size());

res.set Content Type("text/htm ");
res.getQutputStreanm().wite(resultBuf.toByteArray());
res.flushBuffer();

} catch (TransfornerException te) {
t hrow new Servl et Exception(te);

}

}
/**
* The counterpart to the init() method.
*/
public void destroy() {
this.filterConfig = null;
}

}

This filter requires the deployment descriptor to provide the name of the XSLT stylesheet as an
initialization parameter. The following line of code retrieves the parameter:

String xsltPath = filterConfig.getlnitParanmeter("xsltPath");

By passing the stylesheet as a parameter, the filter can be configured to work with any XSLT.
Since the filter can be applied to a servlet, JSP, or static file, the XML data is also completely
configurable.

The doFi | ter () method illustrates another weakness of the current filtering API:

if (!(res instanceof HttpServletResponse)) {
t hrow new Servl et Exception("This filter only supports HTTP");
}

Since there is no HTTP-specific filter interface, custom filters must use i nst anceof and
downcasts to ensure that only HTTP requests are filtered.

Next, the filter creates the buffered response wrapper and delegates to the next entry in the
chain:

Buf f er edHt t pResponseW apper responseW apper =
new BufferedH t pResponseW apper ((Ht t pSer vl et Response) res);
chai n. doFi Il ter(req, responseW apper);

This effectively captures the XML output from the chain, making the XSLT transformation
possible. Before doing the transformation, however, one "hack" is required to work with Tomcat
4.0:

byte[] origXM. = responseW apper.getBuffer();

if (origXM. == null || origXM..length == 0) {
/1l just let Tontat deliver its cached data back to t he client
chain.doFilter(req, res);
return;

}

The complete explanation is captured in the source code comments in Example 8-11. Basically,
Tomcat seems to cache its response when the user tries to reload the same static file
consecutive times. Without this check, the code fails because the or i gXIVL byte array is empty.t!

[81 This was quite difficult to figure out. Because the servlet specification is not specific on this topic, different
servlet containers may behave slightly differently.

Finally, the filter uses JAXP to perform the XSLT transformation, sending the result tree to the
original servlet response.

The deployment descriptor is listed in Example 8-12.

Example 8-12. Filter deployment descriptor

<?xm version="1.0" encodi ng="1S0O-8859-1"7?>

<! DOCTYPE web-app PUBLIC
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. conlj 2ee/ dtds/ web-app_2. 3. dtd">

<web- app>
<filter>
<filter-name>xsltFilter</filter-name>
<filter-class>comoreilly.javaxslt.util.StylesheetFilter</filter-
cl ass>
<init-paranp
<par am nane>xsl t Pat h</ par am nane>
<par am val ue>/ V\EB- | NF/ xsl t / t enpl at ePage. xsl t </ param-val ue>
</init-paranp
</filter>

<filter-mppi ng>
<filter-name>xsltFilter</filter-name>
<url -pattern>/home. xm </ url -pattern>

</filter-mappi ng>

<filter-mppi ng>
<filter-name>xsltFilter</filter-name>
<url - pattern>/conmpany. xnm </ url - pattern>

</filter-mppi ng>

<filter-mappi ng>
<filter-name>xsltFilter</filter-name>
<url -pattern>/jobs.xm </url -pattern>

</filter-mappi ng>

<filter-mappi ng>
<filter-name>xsltFilter</filter-nane>
<url - pattern>/products. xm </url -pattern>

</filter-nmappi ng>

</ web- app>

As the first few lines of the deployment descriptor indicate, filters require Version 2.3 of the web
application DTD.

The filter initialization parameter is specified next, inside of the <f i | t er > element. This provides
the name of the XSLT stylesheet for this particular filter instance. It is also possible to specify
multiple <f i | t er > elements using the same filter class but different filter names. This allows the
same web application to utilize a single filter with many different configurations.

Finally, the deployment descriptor lists several explicit mappings for this filter. In the examples
shown, the filter is applied to static XML files. It can just as easily be applied to a servlet or JSP,
however.

8.4.3 Closing Thoughts on Filters

Using filters for XSLT transformations is an interesting concept, primarily because it allows
different stylesheets to be applied to XML from many different sources using the web application
deployment descriptor. To use a different stylesheet, merely change the deployment descriptor.
One interesting approach is using JSP to generate pure XML, then applying a filter to transform
that XML into XHTML for the client.

Filters do suffer drawbacks and probably are not the best solution for most applications. First and
foremost, the filter APl is available only in Version 2.3 of the servlet specification; many existing
servlet containers do not support filters at all. In the case of XSLT transformations, a custom
Servl et Qut put St r eammust be written to capture the response output, and downcasts are
required because there is no HTTP-specific filter class. Because some servlet containers may
cache the response for performance reasons, workarounds must be implemented to function
reliably.

Finally, this approach is slower than others. The XML must be converted into text and buffered in
memory before the XSLT transformation can be performed, which is generally slower than
sending SAX events or a DOM tree directly to the XSLT processor. Generating XML and
performing the XSLT transformation in a servlet can avoid the extra conversions to and from text
that filters require.

8.5 XSLT as a Code Generator

For performance reasons, EJB components typically return dependent objects rather than many
individual fields. These are implemented as read-only classes that encapsulate a group of related
fields. Borrowing an example from Enterprise JavaBeans by Richard Monson-Haefel (O'Reilly),
Example 8-13 shows a typical dependent object.

Example 8-13. Address.java
public class Address inplenments java.io.Serializable {

private String street;
private String city;
private String state;
private String zip;

/**

* Construct a new dependent object instance.

*/

public Address(String street, String city, String state, String zip)

this.street = street;
this.city = city;

this.state = state;
this.zip = zip;

public String getStreet() {
return this.street;

public String getGity() {
return this.city;

public String getState() {
return this.state;

public String getZip() {
return this. zip;

}

Now, rather than containing numerous fine-grained methods, an entity bean can provide a single
method to retrieve an instance of Addr ess. This reduces load on the network and database and
makes the code somewhat easier to understand. As you can see, the Addr ess class is very
straightforward. It has a constructor that initializes all fields and a series of get methods.

Although Addr ess is small, some dependent objects may have dozens of fields. These are
tedious to write at best, resulting in a typing exercise rather than programming creativity. XSLT
can help by acting as a simple code generator, minimizing the tedious part of the programmer's
job. AddressDO.xml, shown in Example 8-14, contains the data that will feed into our code
generator.

Example 8-14. AddressDO.xml

<?xm version="1.0" encodi ng="UTF-8""?>

<dependent Cbj ect cl ass="Address">
<property nanme="street" type="String" getter="getStreet"/>
<property name="city" type="String" getter="getCity"/>
<property nane="state" type="String" getter="getState"/>
<property nanme="zip" type="String" getter="getZp"/>

</ dependent Obj ect >

The XML data is obviously much shorter than the generated code, and the difference is magnified
for larger dependent objects with many fields. The <dependent Cbj ect > element contains a list
of <pr opert y> elements, each of which defines the field name, datatype, and get method name.
Now that the data is captured in a well-defined XML format, a DTD or Schema can be used to
perform validation. A really ambitious programmer might want to create a simple GUI front-end
that allows graphical editing of the <dependent Obj ect > structure.

An XSLT stylesheet performs the actual code generation. The output method should be set to

t ext, and particular attention must be given to whitespace. With HTML or XHTML output,
whitespace is largely irrelevant. Since browsers collapse multiple spaces and linefeeds into a
single space, the XSLT stylesheet can be indented and spaced however you like. But with a code
generator, formatting is a much higher priority. This can lead to stylesheets that are much harder
to read, which is the main drawback of using XSLT as a code generator. Example 8-15 shows
the dependent object code generator stylesheet.

Example 8-15. dependentObject.xslt
<?xm version="1.0" encodi ng="UTF-8"7?>

<xsl : styl esheet version="1.0"
xm ns: xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or m' >
<xsl : out put nethod="text"/>
<xsl :vari abl e name="cl assNane" sel ect ="/ dependent Cbj ect/ @l ass"/ >
<l--

kkhkkhkkhkkhkhkhkhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhk hhhk khkk kkk kkk khkk kk kkk kkk kk kk k%%

** Generate the class skeleton. Oher tenplates will generate
** portions of the class.
*~k*********~k***__>

<xsl :tenpl ate mat ch="/dependent Cbj ect ">publ i c class <xsl:val ue- of
sel ect =" $cl assNane"/ >
<xsl:text> inplenments java.io. Serializable {
</ xsl:text>
<xsl :apply-tenpl ates sel ect ="property" node="generateField"/>
<xsl :text>

/**
* Construct a new dependent object instance.
*/
public </xsl:text>
<xsl :val ue-of sel ect="%cl assNanme"/>(<xsl:apply-tenpl ates
sel ect ="property" node="gener at eConstruct or Parant'/ >
<xsl:text>) {
</ xsl :text>
<xsl :apply-tenpl ates sel ect ="property"
node="generatelnitializers"/>

}

<xsl :apply-tenpl ates sel ect ="property" node="generateCetter"/>

</ xsl :tenpl at e>

<I--
RSk S I R I R I I I I S R S Sk S I I R R Sk I I

** (CGenerate a private field declaration

R b b I b R R I I I S R R R I b I R R I R S R R I I I R O - >
<xsl:tenplate match="property" node="generateFiel d">

private <xsl:value-of select="@ype"/>

<xsl:text> </ xsl:text>

<xsl :val ue-of sel ect="@ane"/>; </ xsl:tenpl at e>

<l --
BRI I I I R IR R R R I I I S R I R R b b b I I I I S R I I I I I I R I S b b b I I I R b I b b b A b I R I b I b I 3

** Cenerate a "get" nethod for a property.
R R I S S S S S S R R S S I I S S S S R Rk **__>
<xsl:tenplate match="property" node="generateGetter">
public <xsl:val ue-of select="@ype"/>
<xsl :text> </xsl:text>
<xsl:val ue-of select="@etter"/>() {
return this.<xsl:val ue-of select="@anme"/>;
}

</ xsl :tenpl at e>

<I--
EE R R Ik Sk S S S S I I I R S S S I I I R S S S I I I

** Generate one of the constructor paraneters.
EIE R S S R S I S S S I R R S Sk S R S I S S I S I - >
<xsl:tenplate match="property" node="generateConstructor Parani >
<xsl:text xmnl:space="preserve"/>
<xsl :val ue-of select="@ype"/>
<xsl:text> </xsl:text>
<xsl : val ue-of sel ect =" @ane"/>
<xsl:if test="position() !'=last()"> </xsl:if>
</ xsl :tenpl at e>

<l --
BRI I I I R R R R R I A I R R I R R b b b I I I I S R I I I b I R R I S I b I b I R R I b I b b b b I R I b I b I 3

** (Cenerate the initialization code inside of the constructor.

R R b I b R R I I I S I R R R I I I I R R S R I R I R I I b S R O - >
<xsl:tenplate match="property" node="generatelnitializers">
<xsl:text xnl:space="preserve"> this.</xsl:text>

<xsl : val ue-of sel ect =" @ane"/>
<xsl:text> = </ xsl:text>

<xsl : val ue- of sel ect =" @ane"/ >;
</ xsl:tenpl at e>
</ xsl :styl esheet >

This stylesheet produces the code for Addr ess. | ava. It starts by setting the output method to
t ext and creating a variable for the class name. The variable allows us to avoid typing

<xsl :val ue- of sel ect="/dependent Cbj ect/ @/ ass"/ > whenever the class name is
needed.

The <xsl : t ext > element is used frequently in code-generator stylesheets because it allows for
more control over whitespace. In several places, this element is used to introduce linefeeds in the
output. For instance:

<xsl:text> inplenments java.io. Serializable {
</ xsl :text>

Because the closing tag is on the next line, the linefeed character will be preserved faithfully.
<xsl :text > is also used to introduce individual spaces:

private <xsl:val ue-of select="@ype"/>
<xsl:text> </ xsl:text>
<xsl : val ue- of sel ect =" @ane"/ >; </ xsl : tenpl at e>

By default, XSLT processors ignore whitespace between two XSLT elements unless some
nonwhitespace characters are also present. The pri vat e text shown just before <xsl : val ue-
of select="@ype"/ >, for example, contains nonwhitespace text followed by a space. In this
case, the space after the word pr i vat e will be preserved. But the space between the two

<xsl :val ue- of > elements will be ignored unless it is explicitly preserved with <xs| : t ext >
</ xsl : text>.

Getting everything to indent and line up is challenging but is not an insurmountable problem. It
usually boils down to a lot of XSLT tweaking until everything looks just right. Using a code
beautifier is another option. Products such as Jindent (http://www.jindent.com) can
automatically clean up Java code by wrapping long lines, inserting spaces, and putting braces at
the correct locations. If you are fortunate enough to have access to a tool like this, you can ignore
most whitespace issues in the XSLT and rely on Jindent to fix formatting problems later on.

8.6 Internationalization with XSLT

In this section, we explore the key techniques for internationalization (i18n) using XSLT. Although
both Java and XSLT offer excellent support for i18n, pulling everything together into a working
application is quite challenging. Hopefully this material will help to minimize some of the common
obstacles.

8.6.1 XSLT Stylesheet Design

In its simplest form, i18n is accomplished by providing a separate XSLT stylesheet for each
supported language. While this is easy to visualize, it results in far too much duplication of effort.
This is because XSLT stylesheets typically contain some degree of programming logic in addition
to pure display information. To illustrate this point, directory.xml is presented in Example 8-16.
This is a very basic XML datafile that will be transformed using either English or Spanish XSLT
stylesheets.

Example 8-16. directory.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<di rectory>
<enpl oyee cat egor y="nanager" >
<nane>Joe Snith</nanme>

<phone>4-0192</ phone>

</ enpl oyee>

<enpl oyee cat egory="progranmer" >
<nane>Sal | y Jones</ nane>
<phone>4-2831</ phone>

</ enpl oyee>

<enpl oyee cat egory="progranmer" >
<nane>Roger d ar k</ nane>
<phone>4- 3345</ phone>

</ enpl oyee>

</directory>

The screen shot shown in Figure 8-6 shows how an XSLT stylesheet transforms this XML into
HTML.

And finally, Example 8-17 lists the XSLT stylesheet that produces this output.
Figure 8-6. English XSLT output

%} Employee Directory - Microzoft Internat Explorer

| Ele Edt Yiew Favoies Took Hep -

|4‘v"*-5£|ﬁ‘ﬂ'ﬂ@ 2

- Back o Fowerd o Shep el Fome || Ssweh Faviiles - Hision)

| Agdress |] C:\cvsdataljavamsiiensmples\chaplessichepdhi Bhdiectopam =] @G0
[~

Employee Directory

Name Category Phone
JoeSnoth Manager <0152
Sally Jomes | Prograstaner | 42831
Foger Clark Programaner 43345

|EDEI’1! I__lq;HyCmnh i

Example 8-17. directory_basic.xslt

<?xm version="1.0" encodi ng="UTF-8""?>

<xsl:styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nmethod="htm " encodi ng="UTF-8"/>
<xsl:tenplate match="/">

<htm >
<head>
<title>Enpl oyee Directory</title>
</ head>
<body>
<h1>Enpl oyee Directory</hl>
<tabl e cel | paddi ng="4" cel | spaci ng="0" border="1">
<tr>
<t h>Nane</t h>
<t h>Cat egory</t h>
<t h>Phone</t h>
</tr>
<xsl :for-each sel ect="directory/ enpl oyee">
<tr>

<td>
<xsl : val ue-of sel ect="nane"/>
</td>
<td>
<xsl : choose>
<xsl : when test="@at egory=' nanager' ">
<xsl : t ext >Manager </ xsl : t ext >
</ xsl : when>
<xsl : when test="@ategory=' progranmer'">
<xsl :text>Progranmer </ xsl :text>
</ xsl : when>
<xsl : ot herw se>
<xsl :text>Q her </ xsl : t ext >
</ xsl : ot herwi se>
</ xsl : choose>
</td>
<td>
<xsl : val ue-of sel ect="phone"/>
</td>
</[tr>
</ xsl:for-each>
</tabl e>
</ body>
</htm >
</ xsl:tenpl at e>
</ xsl : styl esheet >

In this stylesheet, all locale-specific content is highlighted. This is information that must be
changed to support a different language. As you can see, only a small portion of the XSLT is
specific to the English language and is embedded directly within the stylesheet logic. The entire
stylesheet must be rewritten to support another language.

Fortunately, there is an easy solution to this problem. XSLT stylesheets can import other
stylesheets; templates and variables in the importing stylesheet take precedence over conflicting
items in the imported stylesheet. By isolating locale-specific content, we can use <xsl! : | nport >
to support multiple languages while reusing all of the stylesheet logic. Example 8-18 shows a
revised version of our XSLT stylesheet.

Example 8-18. directory_en.xslt

<?xm version="1.0" encodi ng="UTF-8""?>

<xsl:styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m' >
<xsl : out put nethod="htm " encodi ng="UTF-8"/>

<l-- Isolate |ocal e-specific content -->

<xsl :vari abl e nanme="1 ang. pageTitl e" sel ect=""'Enpl oyee Directory'"/>
<xsl :vari abl e nanme="1 ang. naneHeadi ng" sel ect=""' Nane'"/>

<xsl :vari abl e nanme="I| ang. cat egor yHeadi ng" sel ect=""' Category'"/>
<xsl :vari abl e nane="1ang. phoneHeadi ng" sel ect ="' Phone' "/ >

<xsl :vari abl e name="1 ang. manager" sel ect="" Manager' "/ >

<xsl :vari abl e nane="1 ang. programrer" sel ect=""' Programer"'"/>

<xsl :vari abl e nanme="1 ang. other" select=""CQher"'"/>

<xsl:tenplate match="/">
<htm >
<head>
<titl e><xsl:val ue-of select="%lang.pageTitle"/></title>

</ head>
<body>
<hl><xsl : val ue-of sel ect="$l ang. pageTitle"/></hl>
<t abl e cel | paddi ng="4" cel | spaci ng="0" border="1">
<tr>
<t h><xsl : val ue- of sel ect =" $l ang. naneHeadi ng"/ ></t h>
<t h><xsl : val ue- of sel ect =" $l ang. cat egor yHeadi ng"/ ></t h>
<t h><xsl : val ue- of sel ect =" $l ang. phoneHeadi ng"/ ></t h>

</[tr>
<xsl :for-each sel ect="directory/ enpl oyee">
<tr>
<t d>
<xsl : val ue-of sel ect="nane"/>
</td>
<t d>

<xsl : choose>
<xsl : when test="@at egory=' nanager' ">
<xsl : val ue- of sel ect =" $l ang. manager"/ >
</ xsl : when>
<xsl : when test="@ategory='progranmer' ">
<xsl : val ue- of sel ect="3%l ang. programer"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue- of sel ect="%l ang. ot her"/ >
</ xsl:otherw se>
</ xsl : choose>
</td>
<td>
<xsl : val ue-of sel ect="phone"/>
</td>
</[tr>
</ xsl:for-each>
</tabl e>
</ body>
</htm >
</ xsl:tenpl at e>
</ xsl : styl esheet >

The XSLT stylesheet is now much more amenable to i18n. All locale-specific content is declared
as a series of variables. Therefore, importing stylesheets can override them. The | ang. naming
convention makes the stylesheet more maintainable; it is not a requirement or part of the XSLT
specification. Other than isolating this content, the remainder of the stylesheet is exactly the same
as it was before.

The Spanish version of the stylesheet is shown in Example 8-19.

Example 8-19. directory_es.xslt

<?xm version="1.0" encodi ng="UTF-8""?>

<xsl:styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:inmport href="directory_en.xslt"/>
<xsl : out put nethod="htm " encodi ng="UTF-8"/>

<l-- Isolate |ocal e-specific content -->

<xsl :vari abl e name="1 ang. pageTi tl e" sel ect=""Enpl eado guia
tel ef 6nica' "/ >

<xsl :vari abl e nane="1 ang. naneHeadi ng" sel ect="' Nonbre' "/ >

<xsl :vari abl e name="1 ang. cat egor yHeadi ng" sel ect ="' Categor ia' "/ >
<xsl :vari abl e nane="1ang. phoneHeadi ng" sel ect=""Tel éfono' "/ >
<xsl :vari abl e nanme="| ang. manager" sel ect="'CGerente'"/>

<xsl :vari abl e nanme="I| ang. pr ogramrer" sel ect ="' Progranador' "/ >
<xsl :variabl e nanme="1ang. other” select=""CQro "/>

</ xsl : styl esheet >

The Spanish stylesheet is much shorter because it merely overrides each of the locale-specific
variables. The <xsl : i npor t > is key:

<xsl:inmport href="directory_en.xslt"/>

Because of XSLT conflict-resolution rules, the variables defined in directory _es.xslt take
precedence over those defined in directory_en.xslt. The same logic can be applied to templates,
as well. This is useful in scenarios where the importing stylesheet needs to change behavior in
addition to simply defining text translations.

The following line is optional:
<xsl : out put nethod="htm " encodi ng="UTF-8"/>

In this example, the output method and encoding are identical to the English version of the
stylesheet, so this line has no effect. However, the importing stylesheet may specify a different
output method and encoding if desired.

To perform the Spanish transformation using Xalan, issue the following command:

$ java org. apache. xal an. xslt.Process -IN directory.xm -XSL
directory_es. xslt

Figure 8-7 shows the result of this transformation when displayed in a web browser.

Figure 8-7. Spanish output

§ Empleado guia telsfdnica - Microzoft Internet Explorer

Eile Edt View Favorte: Tool: Help n
1 ; - b3
- g N O
Back Stop Refesh Home Search

Agidress | 2] Chcvsdatshjavasilersreles\chaplersichapiilBridi = | 6o

(g

Empleado guia telefénica

Nombhre Categoria Telefono
Joe Smdth Gerente 40193
Sally Jomes Programador 42831

Foger Clark Programadeor | 4-3345

E
&] Dane 58 My Compuber
A
In the i18n example stylesheets presented in this chapter,
ok 4. common functionality is placed into one stylesheet. Importing

stylesheets then replace locale-specific text. This same
technique can be applied to any stylesheet and is particularly
important when writing custom XSLT for a specific browser.

Most of your code should be portable across a variety of

browsers and should be placed into reusable stylesheets. The
parts that change should be placed into browser-specific
stylesheets that import the common stylesheets.

8.6.2 Encodings

A character encoding is a numeric representation of a particular character.'2 The US-ASCII
encoding for the A character, for example, is 65. When computers read and write files using US-
ASCII encoding, each character is stored as one byte of data. Of this byte, only seven bits are
actually used to represent characters. The first (most significant) bit must always be 0. Therefore,
US-ASCII can represent only 128 different characters. Of course, this presents a problem for
languages that require more than 128 characters. For these languages, another character
encoding must be used.

[7] Refer to Java Internationalization by Andy Deitsch and David Czarnecki (O'Reilly) for more detailed
information on character encodings.

The most comprehensive character encoding is called ISO/IEC 10646. This is also known as the
Universal Character Set (UCS) and allocates a 32-bit number for each character. Although this
allows UCS to uniquely identify every character in every language, it is not directly compatible
with most computer software. Also, using 32 bits to represent each character results in a lot of
wasted memory.

Unicode is the official implementation of ISO/IEC 10646 and currently uses 16-bit characters. You
can learn more about Unicode at http://www.unicode.org. UCS Transformation Formats
(UTFs) are designed to support the UCS encoding while maintaining compatibility with existing
computer software and encodings. UTF-8 and UTF-16 are the most common transformation
formats, and all XML parsers and XSLT processors are required to support both.

If you deal mostly with English text, UTF-8 is the most efficient and easiest to use. Because the
first 128 UTF-8 characters are the same as the US-ASCII characters, existing applications can
utilize many UTF-8 files transparently. When additional characters are required, however, UTF-8
encoding will use up to three bytes per character.

UTF-16 is more efficient than UTF-8 for Chinese, Japanese, and Korean (CJK) ideographs.
When using UTF-16, each character requires two bytes, while many will require three bytes under
UTF-8 encoding. Either UTF-8 or UTF-16 should work. However, it is wise to test actual
transformations with both encodings to determine which results in the smallest file for your
particular data. On a pragmatic note, many applications and operating systems, particularly Unix
and Linux variants, offer better support for UTF-8 encoding.

As nearly every XSLT example in this book has shown, the <xs| : out put > element determines
the encoding of the XSLT result tree:

<xsl : out put net hod="htm " encodi ng="UTF- 16"/ >

If this element is missing from the stylesheet, the XSLT processor is supposed to default to either
UTF-8 or UTF-16 encoding.t

[8] The XSLT specification does not say how the processor is supposed to select between UTF -8 and UTF-
16.

8.6.2.1 Creating the XML and XSLT

The XML input data, XSLT stylesheet, and result tree do not have to use the same character
encodings or language. For example, an XSLT stylesheet may be encoded in UTF-16, but may
specify UTF-8 as its output method:

<?xm version="1.0" encodi ng="UTF- 16" ?>

<xsl:styl esheet version="1.0"

xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nmethod="htm " encodi ng="UTF-8"/>

Even though the first line specifies UTF-16, it is important that the text editor used to create this
stylesheet actually uses UTF-16 encoding when saving the file. Otherwise, tools such as XML
Spy (http://www.xmlspy.com) may report errors as shown in Figure 8-8.

Figure 8-8. Error dialog

& empiloo. xml | x|

‘our He specifies an encoding="UTF-1E" thal do=s not match the acluel encoding of the fle. This e wilinstead be nbeipreted
accorchng bo the Urmcade UTF-B encadng that pou have selectad &5 the defaul n the s=lting: dislag

\wihsar pou save the file, i will be saved accondng to the encoding-specification in e XML-declaigtion

To further complicate matters, there are actually two variants of UTF-16. In UTF-16 Little Endian
(UTF-16LE) encoding, the low byte of each two-byte character precedes the high byte. As
expected, the high byte precedes the low byte in UTF-16 Big Endian (UTF-16BE) encoding.
Fortunately, XML parsers can determine the encoding of a file by looking for a byte order mark. In
UTF-16LE, the first byte of the file should start with OXFFFE. In UTF-16BE files, the byte order
mark is OXFEFF.

For the upcoming Chinese example, the NJStar Chinese word processor
(http://www.njstar.com) was used to input the Chinese characters. This is an example of an
editor that has the ability to input ideographs and store files in various encodings. The Windows
NT version of Notepad can save files in Unicode (UTF-16LE) format, and the Windows 2000
version of Notepad adds support for UTF-8 and UTF-16BE.

If all else fails, encoded text files can be created with Java using the
java.io. Qutput Streamiter class as follows:

Fil eQut put Stream fos = new Fil eQutput Strean("nyFile.xm");

/1 the QutputStreamWiter specifies the encoding of the file

PrintWiter pw = new PrintWiter(new QutputStreamWiter(fos, "UTF-16"));
..wite to pwjust like any other PrintWiter

pw. cl ose();

8.6.3 Putting It All Together

Getting all of the pieces to work together is often the trickiest aspect of i18n. To demonstrate the
concepts, we will now look at XML datafiles, XSLT stylesheets, and a servlet that work together to
support any combination of English, Chinese, and Spanish. A basic HTML form makes it possible
for users to select which XML file and XSLT stylesheet will be used to perform a transformation.
The screen shot in Figure 8-9 shows what this web page looks like.

Figure 8-9. XML and XSLT language selection

oft Internet ... I8 [n] 3
File Edit Wew Favortes Tools Help n
eroc @ QAR DS "

Address [@] hitp:fflocshost a0enjchapafitanbiml 7| 6o

Links &]Customze Links &7 Fres Hotmall &] windows .
=
AL Language English
C Spanish
= I:|| [25E
ST Languade © English
© Spanist
& (Chinese
_haracter Encoding: | © [S0.8553
& LTF-A
C LTE-168
i

£] Dore (%2 Local ntranet

As you can see, there are three versions of the XML data, one for each language. Other than the
language, the three files are identical. There are also three versions of the XSLT stylesheet, and
the user can select any combination of XML and XSLT language. The character encoding for the
resulting transformation is also configurable. UTF-8 and UTF-16 are compatible with Unicode and
can display the Spanish and Chinese characters directly. ISO-8859-1, however, can display only
extended character sets using entities such as 文 .

In this example, users explicitly specify their language preference. It is also possible to write a
servlet that uses the Accept - Language HTTP header, which may contain a list of preferred
languages:

en, es, ja

From this list, the application can attempt to select the appropriate language and character
encoding without prompting the user. Chapter 13 of Java Servlet Programming, Second Edition
by Jason Hunter (O'Reilly) presents a detailed discussion of this technique along with a class
called Local eNegot i at or that maps more than 30 language codes to their appropriate
character encodings.

In Figure 8-10, the results of three different transformations are displayed. In the first window, a
Chinese XSLT stylesheet is applied to a Chinese XML datafile. In the second window, the English
version of the XSLT stylesheet is applied to the Spanish XML data. Finally, the Spanish XSLT
stylesheet is applied to the Chinese XML data.

Figure 8-10. Several language combinations

e =00 = =101
T = B[B = 0 e [et e BE i = || e = B o S = i B B
sbdruis [21 tern dnecaret =] @ | A [21 hep oot soanichaat o] ea | A (2 neponecamest atenchasatanc s b
Links] Custormire Links = Lk 2 Customis Links] Fres Fobmed | Links @] Customize Links 2 Peea Hobmel T

X XSLT || XSLT in English [| XSLT en Espafiol |

e & i5 & fable of numbers Al B5bS N wechor de nimer

W i (Chinese) Englizh [Ezparicl (Spanish) Inglés hTT {Chinese)

- B —— -

] (8 Lol intranet i) Do (4 Lseal intranet il] Duare F Lecal intranet

The character encoding is generally transparent to the user. Switching to a different encoding
makes no difference to the output displayed in Figure 8-10. However, it does make a difference
when the page source is viewed. For example, when the output is UTF-8, the actual Chinese or
Spanish characters are displayed in the source of the HTML page. When using ISO-8859-A,
however, the source code looks something like this:

<htm >

<head>

<META http-equi v="Content - Type" content="text/htm; charset=I SO 8859-1">
<title>中 文 XSLT</titl e>

</ head>

<body>

<h1>中 文 XSLT</ h1>

...remai nder of page onmtted

As you can see, the Chinese characters are replaced by their corresponding character entities,
such as 中 . The XSLT processor creates these entities automatically when the output
encoding type cannot display the characters directly.

Browser Fonts

Recent versions of any major web browser can display UTF-8 and UTF-
16 encoded characters without problems. Font configuration is the
primary concern. If you are using Internet Explorer, be sure to select the
View =Encoding —?Auto Select menu option. Under Netscape 6, the
View —?Character Coding —>Auto Detect menu option is comparable. If
you run the examples and see question marks and garbled text, this is a
good indication that the proper fonts are not installed on your system.

For the Chinese examples shown in this chapter, the Windows 2000
SimHei and SimSun fonts were installed. These and many other fonts
are included with Windows 2000 but are not automatically installed
unless the appropriate language settings are selected under the regional
options window. This window can be found in the Windows 2000 Control

Panel. A good source for font information on other versions of Windows
is Fontboard at http://www.geocities.com/fontboard.

Sun Solaris users should start at the Sun Global Application Developer
Corner web site at http://www.sun.com/developers/gadc/. This
offers information on internationalization support in the latest versions of
the Solaris operating system. For other versions of Unix or Linux, a good
starting point is the Netscape 6 Help menu. The International Users
option brings up a web page that provides numerous sources of fonts for
various versions of Unix and Linux on which Netscape runs.

8.6.3.1 XML data

Each of the three XML datafiles used by this example follows the format shown in Example 8-
20. As you can see, the XML data merely lists translations from English to another language. All
three files follow the same naming convention: numbers_english.xml, numbers_spanish.xml, and
numbers_chinese.xml.

Example 8-20. numbers_spanish.xml

<?xm version="1.0" encodi ng="UTF-8""?>

<numnber s>
<l anguage>Esparol (Spani sh)</I|anguage>
<nunber english="one" >uno</ nunmber >
<nunber english="two" >dos</ nunber >
<nunber english="three">tres</ nunber>
<nunber engli sh="four">cuatr o</ nunber >
<nunber english="five">cinco</ nunber>
<nunber english="si x">sei s</ nunber >
<nunber english="seven">si et e</ nunber >
<nunber engli sh="ei ght">ocho</ nunber >
<nunber engl i sh="ni ne">nueve</ nunber >
<nunber english="ten">di ez</ nunber >

</ nunber s>

8.6.3.2 XSLT stylesheets

The numbers_english.xslt stylesheet is shown in Example 8-21 and follows the same pattern
that was introduced earlier in this chapter. Specifically, it isolates locale-specific data as a series
of variables.

Example 8-21. numbers_english.xslt

<?xm version="1.0" encodi ng="UTF-8"?>

<xsl:styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="htm " encodi ng="UTF-8"/>

<xsl :vari abl e nane="1ang. pageTitl e">XSLT i n English</xsl:variabl e>
<xsl :vari abl e nane="1ang. t abl eCapti on">
Here is a table of nunbers:
</ xsl :vari abl e>
<xsl :vari abl e nanme="I| ang. engl i shHeadi ng" >Engl i sh</ xsl : vari abl e>

<xsl:tenplate match="/">
<htm >

<head>
<title><xsl:val ue-of select="3%lang.pageTitle"/></title>
</ head>
<body>
<xsl :apply-tenpl ates sel ect ="nunbers"/>
</ body>
</htm >
</ xsl:tenpl at e>
<xsl :tenpl ate mat ch="nunbers" >
<hl><xsl : val ue- of sel ect ="$l ang. pageTitle"/></hl>
<xsl : val ue-of sel ect="%l ang. t abl eCapti on"/>
<t abl e border="1">
<tr>
<t h><xsl : val ue- of sel ect =" $l ang. engl i shHeadi ng"/ ></t h>
<t h>
<xsl : val ue-of sel ect="1 anguage"/ >
</th>
</tr>
<xsl : apply-tenpl ates sel ect =" nunber"/>
</tabl e>
</ xsl:tenpl at e>
<xsl :tenpl ate mat ch="nunber" >
<tr>
<t d>
<xsl :val ue-of sel ect="@nglish"/>
</td>
<td>
<xsl :val ue-of select="."/>
</td>
</[tr>
</ xsl:tenpl at e>
</ xsl : styl esheet >

As you can see, the default output encoding of this stylesheet is UTF-8. This can (and will) be
overridden by the servlet, however. The Spanish stylesheet, numbers_spanish.xslt, is shown in

Example 8-22.

Example 8-22. numbers_spanish.xslt

<?xm version="1.0" encodi ng="UTF-8""?>

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :inmport href="nunbers_english.xslt"/>

<xsl : variabl e name="1 ang. pageTi tl e">XSLT en Espa#ol </ xsl :vari abl e>
<xsl :vari abl e nanme="I1 ang. t abl eCapti on">
Aqui esta un vector de naneros
</ xsl :vari abl e>
<xsl :vari abl e nanme="1 ang. engl i shHeadi ng" >l ngl és</ xsl : vari abl e>

</ xsl : styl esheet >

The Chinese stylesheet, numbers_chinese.xslt, is not listed here because it is structured exactly
like the Spanish stylesheet. In both cases, numbers_english.xslt is imported, and the three
variables are overridden with language-specific text.

8.6.3.3 Web page and servlet

The user begins with the web page that was shown in Figure 8-9. The HTML source for this
page is listed in Example 8-23. The language and encoding selections are posted to a servlet
when the user clicks on the Submit button.

Example 8-23.i18n.html

<htm >
<head>
<title>Internationalization Deno</title>
</ head>
<body>
<f orm net hod="post" acti on="/chap8/| anguageDenp" >
<tabl e border="1">
<tr valign="top">
<t d>XM_ Language: </t d>
<t d>
<i nput type="radio" name="xmnl Language"
checked="checked" val ue="english"> English

<i nput type="radi 0" nane="xm Language" val ue="spani sh"> Spani sh

<i nput type="radi 0" nane="xm Language" val ue="chi nese"> Chi nese
</td>
</tr>

<tr valign="top">
<t d>XSLT Language: </t d>
<t d>
<input type="radio" name="xsltLanguage"
checked="checked" val ue="english"> English

<i nput type="radi 0" nane="xsltLanguage" val ue="spani sh">
Spani sh

<i nput type="radi 0" nane="xsltLanguage" val ue="chi nese"> Chi nese
</td>
</tr>

<tr valign="top">
<t d>Character Encoding: </td>
<t d>
<i nput type="radi 0" name="char Enc" val ue="1S0O-8859-1"> | SO 8859-
1

<i nput type="radi 0" nanme="char Enc" val ue="UTF- 8"
checked="checked"> UTF-8

<i nput type="radi 0" nane="charEnc" val ue="UTF-16"> UTF-16

</td>
</[tr>
</tabl e>

<p>
<i nput type="submt" nanme="subm tBtn" val ue="Submt">
</ p>

</formp

</ body>

</htm >

The servlet, LanguageDemo.java, is shown in Example 8-24. This servlet accepts input from
the i18n.html web page and then applies the XSLT transformation.

Example 8-24. LanguageDemo.java servlet

package chaps8;

i mport java.io.*;

i mport javax.servlet.*;

i nport javax.servlet.http.*;

i mport javax.xm .transform *;

i mport javax.xnl.transform stream *;

/**

* Allows any conbi nation of English, Spanish, and Chi nese XM
* and XSLT.

*/

public class LanguageDeno extends H tpServlet {

public void doPost (HttpServl et Request req, HttpServl et Response res)
throws Servl et Exception, | OException {
Servl et Context ctx = getServletContext();

/1l these are all required paraneters fromthe HTM. form
String xm Lang = req. get Paranet er ("xm Language") ;

String xsltlLang = req. get Paranet er ("xsltLanguage");
String charEnc = req. get Paraneter("charEnc");

/1 convert to system dependent path nanmes
String xm Fil eNanme = ct x. get Real Pat h(

"/ WEB- | NF/ xml / nunbers_" + xm Lang + ".xnml");
String xsltFileNanme = ctx. get Real Pat h(

"/ WEB- | NF/ xsl t/nunbers_" + xsltLang + ".xslt");

/1 do this BEFORE calling HttpServl et Response.getWiter()
res. set Content Type("text/htm ; charset=" + charEnc);

try {
Source xm Source = new StreanSource(new Fil e(xm Fil eNange));

Sour ce xsltSource = new StreanSource(new
File(xsltFileNane));

TransformerFactory transFact =
Transf orner Fact ory. newl nstance();
Transfornmer trans = transFact.newTlransforner(xsltSource);

trans. set Qut put Propert y(Qut put Keys. ENCODI NG char Enc) ;

/1l note: res.getWiter() will use the encoding type that
was

/1 specified earlier in the call to
res. set Content Type()

trans. transfornm xm Source, new StreanResult(res.getWiter(
)));

} catch (TransfornmerConfigurati onException tce) {
throw new Servl et Exception(tce);

} catch (TransfornerException te) {
throw new Servl et Exception(te);

}

After getting the three request parameters for XML, XSLT, and encoding, the servlet converts the
XML and XSLT names to actual filenames:

String xm Fil eNanme = ct x. get Real Pat h(

"/ VEB- I NF/ xm / numbers_" + xm Lang + ".xm");
String xsltFileNanme = ctx. get Real Pat h(

"/ WEB- | NF/ xsl t/nunbers_" + xsltlLang + ".xslt");

Because the XML files and XSLT stylesheets are named consistently, it is easy to determine the
filenames. The next step is to set the content type of the response:

/1 do this BEFORE cal ling HttpServl et Response. getWiter()
res. set Content Type("text/htm; charset=" + charEnc);

This is a critical step that instructs the servlet container to send the response to the client using
the specified encoding type. This gets inserted into the Cont ent - Type HTTP response header,
allowing the browser to determine which encoding to expect. In our example, the three possible
character encodings result in the following possible content types:

Content - Type: text/htnl; charset=l SO 8869-1
Content - Type: text/htnl; charset=UTF-8
Content - Type: text/htm ; charset=UTF-16

Next, the servlet uses the | avax. xni . t ransf or m Sour ce interface and the
javax. xm . transform stream St reanSour ce class to read from the XML and XSLT files:

Source xm Source = new StreanSource(new File(xm Fil eNane));
Source xsltSource = new StreanSource(new Fil e(xsltFileNane));

By using j ava. i o. Fi | e, the St r eantour ce will correctly determine the encoding of the XML
and XSLT files by looking at the XML declaration within each of the files. The St r eanfSour ce
constructor also accepts | nput St r eamor Reader as parameters. Special precautions must be
taken with the Reader constructors, because Java Reader implementations use the default Java
character encoding, which is determined when the VM starts up. The | nput St r eanReader is
used to explicitly specify an encoding as follows:

Source xm Source = new StreantSource(new | nput St reanReader (
new Fil el nput St rean(xm Fi | eNane), "UTF-8"));

For more information on how Java uses encodings, see the JavaDoc package description for the
j ava. | ang package.

Our servlet then overrides the XSLT stylesheet's output encoding as follows:

trans. set Qut put Propert y(Qut put Keys. ENCODI NG, char Enc) ;

This takes precedence over the encoding that was specified in the <xs| : out put > element
shown earlier in Example 8-21.

Finally, the servlet performs the transformation, sending the result tree toa W i t er obtained
from Ht t pSer vl et Response:

/'l note: res.getWiter() will use the encoding type that was
I specified earlier in the call to res.setContentType()
trans. transform(xm Source, new StreanResult(res.getWiter()));

As the comment indicates, the servlet container should set up the Wi t er to use the correct
character encoding, as specified by the Cont ent - Type HTTP header.

91 YTF-16 works under Tomcat 3.2.x but fails under Tomcat 4.0 beta 5. Hopefully this will be addressed in
later versions of Tomcat.

8.6.4 118n Troubleshooting Checklist

Here are a few things to consider when problems occur. First, rule out obvious problems:

Visit a web site that uses the language you are trying to produce. For example,
http://www.chinadaily.com.cn/ has an option to view the site in Chinese. This will
confirm that your browser loads the correct fonts.

Test your application with English XML data and XSLT stylesheets to verify that the
transformations are performed correctly.

Perform the XSLT transformation on the command line. Save the result to a file and view
with a Unicode-compatible text editor. If all else fails, view with a binary editor to see how
the characters are being encoded.

Verify that your XML parser supports the encodings you are trying to parse.=2%

191 Encoding supported by Apache's Xerces parser are documented at
http://xml.apache.org/xerces-j/fag-general.html.

If these tests do not uncover the problem, try the following:

Stick with UTF-8 encoding until problems are resolved. This is the most compatible
encoding.

Verify that the servlet sets the Cont ent - Type header to:
Content - Type: text/htm ; charset=UTF-8

Verify that the XSLT stylesheet sets the appropriate encoding on the <xsl : out put >
element or override the encoding programmatically:

t ransf or ner. set Qut put Propert y(Qut put Keys. ENCODI NG " UTF-8");

Insert some code into the servlet that performs the transformation but sends the result to
a file instead of the Ht t pSer vl et Response's Wi t er . Inspect this file with a Unicode-
compatible text editor.

Usejava.io.Fileorjava.io. | nputStreaminstead of | ava. i 0. Reader when
reading XML and XSLT files.

Chapter 9. Development Environment, Testing,
and Performance

This chapter provides an overview of many different technologies that comprise a typical Java
and XSLT software development environment. Once the most commonly used tools are
introduced, strategies for testing XSLT and tuning performance are presented. Instead of
presenting specific performance benchmarks for various XSLT processors, this chapter's focus is
on effective programming techniques that should be applicable to a wide range of tools. XSLT is
a very young technology, and tools are improving all the time.

9.1 Development Environment

Specialized, lightweight development tools have never been more important to Java developers.
Commercial integrated development environments (IDEs) are now only one small piece of a
larger suite of essential tools used by a majority of Java development projects. These build tools
such as Ant, testing tools such as JUnit, and various XML parsers and XSLT processors. Figure
9-1 illustrates some of the tools found in a typical Java and XSLT development environment.

Figure 9-1. Common Java, XML, and XSLT tools

IDE JUnit
Java 2
\ [SDK
Ant
JiMeter
]

" Development

JAXP Environment
~.| EIB
Container
Serviet \
Container
XML
Processor

Although this is a typical development environment, it can be a large number of tools to keep
track of. Table 9-1 summarizes how each of these tools is used.

Table 9-1. Tool overview

Tool Description

Java 2 SDK |The Java 2 software development Kkit, i.e., the JDK.
Apache's A stress-testing tool, primarily used to test scalability and performance of servlets
JMeter and web sites.
E‘]B . Enterprise JavaBeans server, such as JBoss, Enhydra, WebLogic, or WebSphere.

ontainer
XML Parser |Xerces, Crimson, or another SAX and/or DOM parser.
XSLT Xalan, SAXON, or any other XSLT processor.
Processor
Servlet Apache's Tomcat or any other servlet host. Many application servers include both
Container servlet containers and EJB containers.
JAXP Provides a common API to XML parsers and XSLT processors.

. A Java replacement for make. Ant build files provide a consistent way for every
Apache's Ant :
member of the development team to compile and test code.

IDE An integrated development environment, such as Borland's JBuilder.
JUnit An open source unit testing framework.

Some individual tools are much more powerful when used in the context of an overall
development environment. JUnit is much more effective when used in combination with Ant,
because Ant ensures that every developer on the team is compiling and testing with the same
settings. This means that unit tests executed by one developer should work the same way for

everyone else. Without Ant, unit tests that succeed for one developer may fail for others, since
they may be using different versions of some tools.

9.1.1 CLASSPATH Issues

The migration from first generation XML parsers and XSLT processors has been a somewhat
painful experience for Java developers. Although the newer APIs are great, older JAR files linger
throughout many applications and directories, causing more than their fair share of configuration
difficulties. This section describes some of the most common problems and offers advice for
configuring several popular tools.

9.1.1.1 JAR hell?

A common complaint against Microsoft Windows systems is known as "DLL Hell." This refers to
problems that occur when two applications require different versions of the same DLL file.
Installing a new application may overwrite an older version of a DLL file that existing applications
depend on, causing erratic behavior or outright system crashes.*!

X1 commonly referred to as the blue screen of death.

More frequently than ever before, Java developers must contend with incompatible JAR file
versions. For instance, JAXP 1.0 and JAXP 1.1 both ship with a JAR file named jaxp.jar.
Applications that require JAXP 1.1 functionality will fail if the 1.0 version of jaxp.jar is listed on the
CLASSPATH earlier than the newer version. This happens more often than developers expect,
because many commercial and open source development tools ship with XML parsers and XSLT
processors. The installation routines for these tools may install JAR files without informing
developers or asking for their consent.

The simple fix is to locate and remove old versions of JAR files. This is easier said than done,
because in many cases (such as JAXP), the version number is not part of the JAR filename.
Since many tools ignore or modify the CLASSPATH when they are executed, simply removing
older JAR files from the CLASSPATH will not eradicate all problems. Instructions for fixing this
problem in Ant, Tomcat, and JBuilder are coming up.

Some JAR files are beginning to include version information inside of the META-
INF/MANIFEST.MF file. This is called the manifest and can be extracted with the following
command, where filename.jar is the name of the JAR file:

jar -xf filenane.jar META-INF/ MANI FEST. M-

Once extracted, the manifest can be viewed with any text editor. Example 9-1 shows the
content of the manifest from Version 1.0 of jaxp.jar:

Example 9-1. Version 1.0 jaxp.jar manifest contents

Mani f est-Version: 1.0

Specification-Title: Java APl for XM. Parsing Interfaces
Speci fication-Vendor: Sun M crosystens

Created-By: 1.2.2 (Sun Mcrosystens Inc.)

Speci fication-Version: 1.0.0

Nane: javax/xm/parsers

Package- Version: 1.0.0

Specification-Title: Java APl for XM Parsing
Speci fication-Vendor: Sun M crosystens

Seal ed: true

Speci fication-Version: 1.0.0

Package- Vendor: Sun M crosystens, Inc.
Package-Title: javax.xnl.parsers

This manifest makes it quite easy to identify the contents of this JAR file. Although Sun's products
tend to be very good about this, the manifest contents are entirely optional, and many other
products omit all manifest information.

9.1.1.2 Sealing violations

The dreaded "sealing violation" is one of the more cryptic exceptions encountered. Example 9-2
shows a stack trace that is displayed when a sealing violation occurs.

Example 9-2. Sealing violation stack trace

Exception in thread "main" java.lang. SecurityException: sealing
viol ation
at java. net. URLC assLoader. defi neCl ass(URLC assLoader. java: 234)
at java.net.URLC assLoader. access$100(URLCl assLoader. java: 56)
at java.net.URLC assLoader $1. run(URLCl assLoader . java: 195)
at java.security. AccessController.doPrivil eged(Native Method)
at java.net.URLC assLoader. fi ndCl ass(URLCl assLoader.java: 188)
at java.lang. d assLoader.| oadC ass(C assLoader.java: 297)
at sun. m sc. Launcher $Appd assLoader . | oadC ass(Launcher. j ava: 286)
at java.l ang. d assLoader.| oadC ass(C assLoader.java: 253)
at java.lang. C assLoader.| oadC asslnternal (Cl assLoader. java: 313)
at java.lang. d ass. forNaneO(Nati ve Met hod)
at java.lang. d ass. forNanme(d ass. java: 120)
at
javax. xm . transform Transf or mer Fact ory. newl nstance(Transf or nmer Factory. | a
va: 117)
at Test.mai n(Test.java: 17)

This exception is hard to diagnose because the error message is not very descriptive, and the
stack trace consists mostly of internal Java classes. According to the stack trace, line 17 of
Test.java caused the problem. Here it is:

Transfornmer Factory transFact = TransfornmerFactory. newl nstance();

Actually, this line of code is perfectly correct. The problem lies in the CLASSPATH instead. The
key to understanding this error is the sealing violation description. This indicates that one or more
sealed JAR files are on the CLASSPATH in the wrong order.

A sealed JAR file has a manifest entry Seal ed: true, as shown in Example 9-1."1 The
package sealing mechanism was introduced in Java Version 1.2 to enforce version consistency.
Whenever a package is sealed, all classes in that package must be loaded from the same JAR
file. If some of the classes are loaded from one JAR file and others from another, an instance of
java. |l ang. Securi t yExcepti on is thrown. Figure 9-2 illustrates the problem.

[21 1t is also possible to seal individual packages within a JAR file. Refer to the Java 2 Standard Edition
documentation for more information.

Figure 9-2. Sealing violation

o application loads a 9 application Iries lo load
SAX 1 class, such as a SAX 2 class, such as
org.xml.sax. SAXException org.xml.sax.ContentHandler

sealing violation!

DaArser. jar

Grimson, jar

{provided with JAXP 1.0} ' (provided with JAXP 1.1)
SAX 1 Dom 1 : SAX 1 DOM 1
teeaagm| SAXZ DOM 2

In this diagram, parser.jar is listed on the CLASSPATH before crimson.jar. This is a problem
because Java applications search JAR files in the order in which they appear on the
CLASSPATH. Once the or g. xnl . sax. SAXExcept i on class has been loaded by the JVM, any
additional classes or interfaces in the or g. xnl . sax package must be loaded from parser.jar
because it is sealed. When the application requests an instance of Cont ent Hand!l er , the class
loader attempts to load the requested class file from crimson.jar, which triggers the
SecurityExcepti on shown in Example 9-2. The simple fix to this problem is to remove
parser.jar from the CLASSPATH, which will load all classes in the or g. xi . sax package from
crimson.jar.

9.1.1.3 Other exceptions and errors

Other various "configuration" exceptions defined by JAXP are

javax. xm . transform Transf or mer Confi gurati onExcepti on and

j avax. xm . parsers. Fact ory -Confi gurationError.These may occur when an older
version of jaxp.jar is still listed on the CLASSPATH. Since JAXP 1.0 is not aware of SAX 2, DOM
2, or XSLT transformations, applications requesting any of these new features may see one of
these exceptions when JAXP 1.0 is installed instead of JAXP 1.1.

As mentioned earlier, the filename jaxp.jar is used with Versions 1.0 and 1.1 of JAXP. Therefore,
special care must be taken to ensure that the newer copy is present instead of the old one. Since
JAXP 1.1 is backwards-compatible with Version 1.0, the older version can be safely replaced
without breaking currently installed applications that depend on it.

The easiest exception to debug is | ava. | ang. Cl assNot FoundExcept i on . This may occur
when JAXP 1.1 is listed on the CLASSPATH. However, an XSLT processor or XML parser is not
listed. To remedy this situation, merely add a JAXP-compliant parser and XSLT processor to the
CLASSPATH.

9.1.1.4 Java optional packages

The Java VM does not simply load classes based on the CLASSPATH environment variable.
Before searching the CLASSPATH, the VM attempts to load classes from an optional package
directory. An installed optional package is a JAR file located in the Java 2 Runtime Environment's
lib/ext directory or in the jre/lib/ext directory of the Java 2 SDK.

If an installed optional package is not located, the VM then searches for download optional
packages. These are JAR files that are explicitly referenced by the Cl ass- Pat h manifest header
of another JAR file. For example, a manifest might contain the following line:

Class-Path: jaxp.jar

In this case, the VM would look for jaxp.jar in the same directory as the JAR file that contains the
manifest entry.

The best way to ensure that the correct version of XML parser, XSLT processor, and JAXP are
installed is to manually copy the required JAR files to the installed optional package directory.
Software developers should have the Java 2 SDK installed and should place JAR files in the
JAVA_HOME/jre/lib/ext directory. End users, however, will probably use the Java 2 Runtime
Environment instead of the entire SDK. For these users, the JAR files can be installed to the
lib/ext directory where the JRE is installed.

To uninstall a Java optional package, merely delete the JAR file from the appropriate directory.
9.1.1.5 Java IDEs

Many developers use tools such as Borland's JBuilder as Java development environments.
These tools can introduce problems because they typically include a copy of the Java 2 SDK.
When running and compiling within the IDE, the VM uses the tool's own Java directory rather
than the Sun Java 2 SDK that is probably already installed elsewhere on the system. Figure 9-3
is a typical directory structure that illustrates this potential problem.

Figure 9-3. Typical directory structure

|_ﬁ axt (e normal dava 2 SDK installed optional
package directory)

ﬁ jaxp.jar
ﬁ parser.jar

I—ﬂ et (JBuilders installed opfional package divectoryt

—ﬁ jaxp.jar
—ﬁ crimson. jar
—ﬂ xalan.jar

In this example, JBuilder is properly configured with JAXP 1.1, the Crimson XML parser, and the
Xalan 2.0 JAR file. This means that compilation, running, and debugging will all work properly
within the JBuilder IDE. But once the application is executed outside of JBuilder, it will probably
fail. This is because the Java 2 SDK contains the older JAXP 1.0 JAR file and its older XML
parser.

Merely adding the newer JAXP-related JAR files to the CLASSPATH will probably introduce a
sealing exception rather than fix the problem, because the VM will still load files from the installed

optional package directory before searching the CLASSPATH. One way to fix this problem is to
replace jaxp.jar and parser.jar with the same JAR files found in JBuilder's directory. Another
option is to update the JAVA_HOME environment variable and PATH to point to JBuilder's
version of Java.

9.1.2 Ant

Configuring JAR files and the CLASSPATH on a single developer's machine can be difficult;
keeping an entire team of developers in sync requires support from tools. For this reason, it is
critical that every team member use the same build process when testing and integrating code
changes. In this section, we take a brief look at Apache's Ant.

As discussed in Chapter 3, Apache's Ant is a Java-based build tool that is an excellent
alternative to make.2! Ant is good for numerous reasons, including:

¥l These notes apply to Ant 1.3. Newer versions of Ant may handle JAR files differently.
Its XML build files are easier to create than Makefiles.
It is written in Java and is quite portable.

Builds are extremely fast because the same VM instance is used for most steps in the
build process.

Ant can be acquired form http://jakarta.apache.org/ant.™

%1 The original author of Ant is working on a new Java build tool called Amber, available at
http://www.xiyo.org/Amber.

9.1.2.1 Installing Ant

To install Ant, simply download the binary distribution and uncompress to a convenient directory.
Then set the ANT_HOME environment variable to point to this directory and JAVA_HOME to
point to the Java installation directory. To test, type ant - ver si on. This should display
something similar to the following:

Ant version 1.3 conpiled on March 2 2001

Since Ant is written in Java, care must be taken to avoid conflicts with Ant's JAR files and JAR
files found in the system CLASSPATH. This is a particular concern when using Ant to drive the
XSLT transformation process because Ant ships with JAXP 1.0 JAR files that are not compatible
with newer JAXP 1.1 implementations.

Once Ant is installed, update ANT_HOME/lib/jaxp.jar and ANT_HOME/lib/parser.jar, which are
part of the older JAXP 1.0 reference implementation. Any JAR files added to the ANT_HOME/lib
directory are automatically added to Ant's CLASSPATH and will be seen by the various Ant tasks
during the build process. Simply adding JAXP 1.1-compatible JAR files to the ANT_HOME/lib
directory will prevent most conflicts with newer applications that require DOM 2, SAX 2, or
support for XSLT transformations.

9.1.2.2 A typical Ant build file

The best way to learn about Ant is to download it, read the first part of the user manual, and then
study several example build files. Example 9-3 presents one such build file, which can be used
to compile some of the example code in this chapter as well as perform an XSLT transformation.

Example 9-3. build.xml

<?xm version="1.0"7?>
<I--

EE R S R R I R R I I R I R I R R R R I R S R S R

** Exanple Ant build file as shown in Chapter 9.

* %

** Assunes the followi ng directory structure:
** exanpl es

*x +-chapters
*E | +-chap9
* %

bui I d.xm (this file)

|
*x | ai dan. xm (exanmple XM file)
*x | condensePerson. xslt (exanple XSLT file)
*x +- conmon
o | +-src
*E | +-comoreilly/javaxslt/sw ngtrans/..
* %
|
*x +-build (created by this build file)
* %

EIE R R S I S I I I S R I I S R Sk S I **__>
<proj ect name="chap9" default="hel p" basedir="../..">

<l--

EE R R I S S S I S I I I R Sk

** d obal properties.

LR R R S kS T T Y

<property nanme="builddir" val ue="build"/>

<path id="thirdparty.cl ass. path">

<pat hel enent path="Ilib/saxon_6.2.2.jar"/>
<pat hel enent path="lib/jaxp_1.1.jar"/>
<pat hel enent path="lib/servliet 2.3.jar"/>

<pat hel enent path="lib/junit_3.5.jar"/>
<pat hel enent path="lib/jdom beta6.jar"/>
</ pat h>

<l --
EIR IR R IR b I b I R R R R I b S I I R b R A R A b I I I b I R b I b S b I b I b I b I I b b b O I

** Create the output directory structure.
EIR R R I b I S R R R IR R IR I b I R b R I R I I R I R R I R b b S b I b I R I I b b b - >
<t arget nanme="prepare">
<nkdir dir="${builddir}"/>
</target>

<l--
EIE R R I b I b b R b b I R S R R I S S R R S I I I S R I I o I
** Show a brief usage nessage. This is the default

** target, and shows up when the user types "ant"
EE R I S I S S I I S S S I S kI S I ->

<target nane="hel p" description="Show a brief help nessage">
<echo nessage=Chapter 9 Exanple Ant Build File"/>

<echo message="Type 'ant -projecthelp' for nore assistance..

</target>

<l--
EIE IR IR I I S S I S S S I I I I I I I I I I I I I S I I b b I I b b b b b I S S S I I b S

** Renmove the entire build directory
SRR Sk S S S S I R S S R S S - >

<target nane="cl ean"

descri pti on="Renove all generated code">
<delete dir="${builddir}"/ >
</target>

<l--
EIE IR I I S S I I I I I I I R I I I I I I I b I I I I I I I b I I I I S I I I I I I

** Conpile the comoreilly.javaxslt.sw ngtrans package
EE R R I S S S S I S S I S S R I S kS S - >
<target nane="conpile" depends="prepare"
description="Conpile the Swi ngTransforner application">
<javac srcdir="common/src" destdir="${builddir}"
i ncl udes="conm oreilly/javaxslt/sw ngtrans/**">
<cl asspath refid="thirdparty.class. path"/>

</ javac>

</target>

<l--
EEE R Sk S I S S Rk R I S I I I I Sk I S I S R I I I

** Run comoreilly.javaxslt.sw ngtrans. Swi ngTransf or mer
***__>
<target nane="run" depends="conpil e"
description="Run the Sw ngTransformer applicati on">
<java fork="yes"
cl assnane="comoreilly.javaxslt.sw ngtrans. Swi ngTransf or ner" >
<cl asspat h>
<pat hel enment path="${builddir}"/>
</ cl asspat h>
<cl asspath refid="thirdparty.class. path"/>
</java>
</target>

<l--

R IR R R S I R R R I I I I R S R R R R R I S I R R I R R S R R R I I I 2 I S R R O R
** Performs an XSLT transformation. |If either the XM

** file or the XSLT styl esheet change, the transfornmation
** s perforned again.

* %

** pasedir - specifies the location of the XSLT

** destdir - a required attribute, however Ant 1.3 is

*x ignoring this. The nessages on the consol e
*E indicate that the destdir is being used,

*E however it was found that the "out"

*x attribute also has to specify the output

*x directory.
***__>

<target nane="transforni
description="Performan XSLT transformation">
<styl e processor="trax"
basedi r =" chapt er s/ chap9"
destdir="${builddir}"
styl e="condensePer son. xsl t"
i n="chapt er s/ chap9/ ai dan. xm "
out ="${bui | ddi r}/ ai dan_condensed. xm ">

<l-- pass a stylesheet paraneter -->
<par am nanme="i ncl udeM ddl e" expressi on="yes"/ >
</style>

</target>
</ proj ect >

All Ant build files are XML and have a <pr o] ect > root element. This specifies the default target,
as well as the base directory. Each of the targets is specified using <t ar get > elements, which
can have dependencies on each other. Targets, in turn, contain tasks, which are responsible for
performing individual units of work.

The CLASSPATH used by various tasks can be defined once and reused throughout the build
file. The <pat h> element is emphasized in Example 9-3, including several JAR files from the lib
directory. For instance:

<pat hel ement path="lib/servliet _2.3.jar"/>

This illustrates two key points about defining a consistent development environment. First, it is a
good idea to rename JAR files to include version numbers. This is a great way to avoid conflicts
and unexpected errors, because different versions of most tools use the same filenames for JAR
files. By renaming them, it is easier to keep track of what is installed on the system. The only
drawback to this approach is that build files must be manually updated whenever new versions of
JAR files are installed.

Second, this particular Ant build file defines its own CLASSPATH, rather than relying on the
developer's CLASSPATH. Relying on the CLASSPATH environment variable introduces
problems because each developer on a team may have a completely different set of JAR files
defined in his environment. By encoding everything in the Ant build file, everyone will compile and
test with the same setup.

The following target shows how the build file compiles the application:

<target name="conpil e" depends="prepare"”
description="Conpil e the Swi ngTransforner application">
<javac srcdir="common/src" destdir="${builddir}"
i ncl udes="conforeilly/javaxslt/sw ngtrans/**">
<cl asspath refid="thirdparty.class. path"/>
</javac>
</target>

So, to execute this target, simply type ant conpi | e from the command prompt. Since this
target depends on the pr epar e target, the build directory will be created before the code is
compiled. Fortunately, the <j avac> task is smart enough to compile only source code files that
have changes since the last build, making Ant much faster than manually typing| avac *.| ava.

The srcdi r and dest di r attributes are relative to the basedi r that was specified in the
<pr o] ect > element. Since Ant always uses forward slashes (/) as path separators, these
relative directories will work on Windows and Unix/Linux systems. As you might guess, the
i ncl udes attribute defines a filter that limits which files are included in the build.

The last target in this build file performs an XSLT transformation using Ant's <st y| e> task, which
is described next.

9.1.2.3 Transforming using Ant's style task

Of particular interest to XSLT developers is Ant's <st y| e> task. This is a core task that performs
one or more XSLT transformations. Ant's JAXP JAR files must be updated as described earlier
for this task to work. Here is a simple example of this task:

<style basedir="." destdir="." style="sanple.xslt" processor="trax"
i n="conpany. xm " out="report.txt"/>

This will look in the project's base directory for the specified XML and XSLT files, placing the
output into report.txt. The processor is t r ax, which means the same thing as JAXP 1.1. Ant will
use the first JAXP-compliant processor found on the CLASSPATH. Table 9-2 lists the complete
set of attributes for the st y| e task.

Table 9-2. Ant style attributes

Attribute Description Required?
basedi r The directory where XML files are located. yes
destdir The directory where the result tree should be placed. yes
ext ensi on The default_fllename extension for the result of the no

transformation(s).
style The XSLT stylesheet filename. yes
Specifies which XSLT processor is used. Legal values are "trax"
for a TrAX-compliant processor, "xslp" for the XSL:P processor,
processor and "xalan for Xalan Version 1.x. May also contain the nhame of no
a class that implements
org. apache. tool s. ant. t askdefs. XSLTLi ai son. When
omitted, defaults to "trax.”
i ncl udes The comma-separated list of file patterns to include. no
i ncludesfile The name of a file that contains include patterns. no
excl udes The comma-separated list of file patterns to exclude. no
excludesfile The name of a file that contains exclude patterns. no
defaul texcl udes|May be "yes" or "no," defaults to "yes." no
in A single XML file input. no
out A single output filename. no

The pattern attributes, such as i ncl udes and excl udes, work just like other patterns in Ant.
Basically, these allow the task to filter which files are included and excluded from the
transformations. When omitted, all files in the base directory are included. Here is how an entire
directory of XML files can be transformed:

<styl e basedir="xmfiles"

i ncludes="*,xm " destdir="buil d/ doc"

style="report.xslt"
extension="htm "/ >

As shown back in Example 9-3, parameters can be passed using nested <par an® elements.
This element has required nane and expr essi on attributes:

<style basedir="xmfil es"

i ncludes="*.xm " destdir="buil d/ doc"

style="report.xslt"
extension="htm ">

<par am nanme="report Type"

expression=""detailed "/>

</styl e>
9.1.3 Tomcat
Apache's Tomcat is a Servlet and JSP container and has been mentioned throughout this book. It

is available from http://jakarta.apache.org/tomcat. Tomcat is fairly easy to install and
configure:

Download the latest Tomcat release build for your operating system.
Uncompress the distribution to a directory.

Set the TOMCAT_HOME environment variable to point to this directory.

Set the JAVA_HOME environment variable to point to your Java distribution.

Since web applications are required to read configuration information from their XML deployment
descriptors (web.xml), all current versions of Tomcat ship with an XML parser.

9.1.3.1 Configuring Tomcat 3.2.x

Tomcat 3.2.x includes several JAR files in its STOMCAT_HOME/lib directory. Among these are
jaxp.jar and parser.jar, which support JAXP Version 1.0 along with a SAX 1.0 and DOM 1.0 XML
parser. Any JAR file added to the lib directory becomes available to every web application.
Tomcat uses a simple script to locate *.jar in the lib directory, adding each JAR file to the
CLASSPATH as it is encountered. The order of inclusion depends on how the operating system
lists files, which is generally alphabetically. The complete CLASSPATH used by Tomcat 3.2.x
includes the following:

$TOMCAT_HOME/classes
$TOMCAT_HOME/lib/*.jar
Any existing CLASSPATH
$JAVA_HOMEI/jrellib/tools.jar

Although the lib directory provides a convenient way to install utility code that all web applications
must use, conflicts arise when individual applications require different versions of SAX, DOM, or
JAXP. If Tomcat finds an older version of one of these tools before it finds a newer version,
exceptions typically occur. For instance, a sealing violation exception may occur if the existing
CLASSPATH contains the newer crimson.jar, but an older version of parser.jar is still present.

The best approach to fully configure Tomcat 3.2.x for XML support is as follows:
Remove jaxp.jar and parser.jar from the $TOMCAT_HOME/lib directory.

Install the following files from the JAXP 1.1 distribution into the $STOMCAT_HOME/lib
directory: jaxp.jar, crimson.jar, and xalan.jar.

Of course, JAXP 1.1 supports other tools besides Crimson and Xalan. If you prefer, simply
replace crimson.jar and xalan.jar with competing products that are JAXP 1.1-compatible.

9.1.3.2 Configuring Tomcat 4.0.x

Tomcat 4.0 improves upon Tomcat 3.2.x configuration issues in two key ways. First, the user's
existing CLASSPATH is no longer appended to Tomcat's CLASSPATH. This helps to avoid
situations where code works for one developer (who happens to have some critical file on her

CLASSPATH) but fails for other developers who have slightly different personal CLASSPATH
configurations.

Secondly, Tomcat 4.0 no longer places JAXP JAR files in a location visible to web applications.
This means that if XML support is required, you must install the proper XML JAR files before
anything will work. This is far better than the old Tomcat model, because it avoids unexpected
collisions with XML libraries used internally by Tomcat. Instead, if you forget to install XML
support, you simply see aj ava. | ang. NoCl assDef FoundError .

To install XML support into Tomcat 4.0, simply install the required JAR files into the
$TOMCAT_HOME/lib directory. These will then be available to all web applications. The other
option is to install JAR files into the WEB-INF/lib directory of individual web applications. With this
approach, each application can use different versions of various packages without fear of
conflicts.

9.2 Testing and Debugging

The software development community has shown a renewed interest in testing during the past
few years. Much of this has been driven by the eXtreme Programming methodology, which
emphasizes lightweight processes and constant unit testing to promote quality.”™ To demonstrate
how to test XSLT transformations, a few simple files will be used. The XML data is shown first in

Example 9-4.

51 see http://www.xprogramming.com for more information on eXtreme Programming.

Example 9-4. aidan.xml

<?xm version="1.0" encodi ng="UTF-8""?>
<per son>

<firstName>Ai dan</first Nane>

<m ddl eNane>Garrett</m ddl eNane>

<l ast Nane>Bur ke</ | ast Nane>

<bi rt hDate nonth="6" day="25" year="1999"/>
</ per son>

Although this data is trivial, the same concepts apply to larger, more realistic examples. The
sample XSLT stylesheet is shown in Example 9-5.

Example 9-5. condensePerson.xslt

<?xm version="1.0" encodi ng="UTF-8"?>
<I--
EE R S I b b I R S R S S R I b b S R A I R A S S O R S R
** Transforns an XML file representing a person into a
** nmore conci se format.
***************~k*********~k******************************__>
<xsl:styl esheet version="1.0"
xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m' >

<xsl : param nane="i ncl udeM ddl e" sel ect=""yes"'"/>

<xsl : out put met hod="xm " version="1.0" encodi ng="UTF-8" indent="yes"
doct ype-syst ens" condensed. dtd"/ >

<l-- match an existing <person> el enent -->
<xsl :tenpl ate nmat ch="person">
<l-- produce a new <person> elenent in a condensed form -->

<xsl : el enent nane="person">
<xsl : el enment nanme="nane" >
<xsl : val ue-of select="firstNane"/>

<xsl:text> </ xsl:text>
<xsl:if test="S$includeMddle = "yes"'">
<xsl : val ue- of sel ect="m ddl eNane"/ >
<xsl:text> </ xsl:text>
</ xsl:if>
<xsl : val ue- of sel ect="1ast Nane"/>
</ xsl : el enrent >

<xsl : el ement nanme="birt hDat e" >
<xsl :val ue-of sel ect="birthDate/ @onth"/>
<xsl :text>/</xsl:text>
<xsl :val ue-of sel ect ="birthDat e/ @ay"/ >
<xsl :text>/ </ xsl:text>
<xsl :val ue-of sel ect="hirthDate/ @ear"/>
</ xsl : el enent >
</ xsl : el enent >
</ xsl:tenpl at e>
</ xsl : styl esheet >

The job of this stylesheet is to transform XML data into a more concise format as shown in
Example 9-6.

Example 9-6. Expected output
<?xm version="1.0" encodi ng="UTF-8""?>

<I DOCTYPE per son
SYSTEM "condensed. dt d" >
<per son>
<nane>Ai dan Garrett Burke</name>
<bi r t hDat e>6/ 25/ 1999</ bi r t hDat e>
</ per son>

Finally, the DTD for the condensed XML file is shown in Example 9-7.

Example 9-7. condense.dtd

<! ELEMENT person (name, birthDate)>
<!l ELEMENT bi rt hDat e (#PCDATA) >
<! ELEMENT nane (#PCDATA) >

By providing a DTD for the expected XML output, a unit test can easily validate the result tree
after performing one or more transformations. Such a test simply writes the transformation results
to a file and then attempts to parse them using a validating XML parser.

9.2.1 JUnit

JUnit is an open source testing framework available from http://www.junit.org. Itis a
lightweight tool designed to be used by programmers specifically for unit tests. Other tools are
generally better for integration testing and functional testing, but these are not discussed here.

Since XSLT transformations can be performed independently of the remainder of an application,
they are a perfect candidate for automated unit testing. A technology such as JSP, however, is
quite difficult to test in an automated fashion because JSPs must be executed within the context
of a JSP container and web browser.

An automated test is one that reports "success" or "failure" after execution and does not require a
human being to interact as the test is running. For instance, requiring a user to type in specific
values into HTML form fields and then look at the resulting web page is clearly not automated.

Also, a test that merely displays a long text report is not automated because it requires a
knowledgeable person to read over the report and inspect it for errors.

By automating tests, every developer can run an entire suite of tests by executing a command-
line program. The test suite then reports exactly which tests failed and where, so the problems
can be fixed immediately.

A key philosophy behind a successful unit testing methodology is the idea that every test must
always run at 100 percent success. Now, when programmers change an XSLT stylesheet or XML
code and a test suddenly fails, they know that their changes were likely the source of the
problem. When "broken" tests are left in the project for long periods of time, developers will
probably stop running the testing suite because it becomes too difficult to manually filter through
all of the error reports caused by the broken tests.

ey It iS important to adopt a policy in which every developer runs
the suite of unit tests before checking any modified code into
a shared code repository such as CVS.

For XSLT transformations, performing a transformation and then validating against a DTD or
Schema is the easiest kind of testing. Once the structure of the result is validated, additional tests
can be performed to determine if the semantic content of the result is correct. For instance, a
DTD can report that a <f i r st Nane> element is present, but it takes additional testing to
determine if the content of <f i r st Nane> is actually the correct name.

9.2.1.1 An example unit test

Example 9-8 shows how to write a simple test fixture using the JUnit framework. JUnit
describes fixtures as a group of unit tests.

Example 9-8. Sample test fixture
package chap9;

i mport java.io.?*;
i mport java.net.*;
i mport java.util.*;

/1 JAXP used for XSLT transformtions
i mport javax.xm .transform*;
i mport javax.xm .transform stream *;

/1 JDOM used for XM. parsing and validation
i mport org.jdom *;
i mport org.jdominput.*;

/1 JUnit classes

i mport junit.framework. Test;

i mport junit.framework. Test Case;

i mport junit.framework. Test Suite;
i mport junit.textui.TestRunner;

/**

* An exanple JUnit test. This class perfornms an XSLT transformation
* and val i dates the result.

*/

public class Sanpl eUnitTest extends TestCase {

private String workingDir;

[l input XML files
private File ai danXM.Fil e;
private File johnXMFile;

/'l a stylesheet that condenses the XM data
private File condenseXSLTFil e;

/1 the transformation results
private File ai danCondensedXM.Fi | e;
private File johnCondensedXM.Fil e;

private TransfornerFactory transFact;

/**
* All JUnit tests have a constructor that takes the test nane.
* [
public SanpleUnitTest(String nane) ({
super (nane) ;
}

/**

* |nitialization before each test[...] nethod is call ed.

*/

public void setUp() {
/1 locate a file nanmed test.properties in the chap9 package
Resour ceBundl e rb = ResourceBundl e. get Bundl e("chap9.test");
this.workingDir = rb.getString("chap9.workingDir");

assert Not Nul I (wor ki ngDi r);
assert("Unable to locate " + this.workingDir,
new File(this.workingDir).exists());

this.aidanXM.File = new File(workingDir + File.separator
+ "aidan.xm ");

this.johnXM.File = new File(workingDir + File.separator
+ "john.xm");

this.condenseXSLTFile = new File(workingDir + File.separator
+ "condensePerson. xslt");

t hi s. ai danCondensedXM.File = new File(this.workingDr +
Fi | e. separat or
+ "ai danCondensed. xm ") ;
thi s.johnCondensedXM.File = new File(this.workingDir +
Fi |l e. separ at or
+ "johnCondensed. xm ") ;

this.transFact = TransfornerFactory. new nstance();

}

/**

* Clean up after each test[...] nethod

*/

public void tearDown() {
/1 the transformation results could be deleted here, but the
/1 cleanup code is intentionally conrented out so the

/'l devel oper can see the generated files:

/1 this.aidanCondensedXM.File.delete();
/1 this.johnCondensedXM.Fil e.delete();

}

/**
* An individual unit test.
*/
public void testTransformWthTenplates() throws Exception {
Tenpl ates tenplates = this.transFact. newTenpl at es(
new StreanSource(this.condenseXSLTFile));

Transformer trans = tenpl ates. newTransformer();

/1 do two transfornations using the sane Transforner

trans. transform new StreanSource(this.ai danXM.File),
new StreanResul t (this.ai danCondensedXM.File));

trans. transform new StreanSource(this.johnXMFile),
new StreanResul t(this.johnCondensedXM.File));

/1 validate both files
val i dat eCondensedFi | e(t hi s. ai danCondensedXM_Fi | e,
"Ai dan Garrett Burke", "6/25/1999");
val i dat eCondensedFi |l e(t hi s.j ohnCondensedXM.Fi | e,
"John Fitzgeral d Kennedy", "5/29/1917");
}
/**
* Anot her unit test.
*/
public void testTransforner() throws Exception {

Transfornmer trans = this.transFact.newlransforner (
new St reanSource(this.condenseXSLTFile));

trans. transform new StreanSource(this.ai danXM.File),
new StreanResul t (this.ai danCondensedXM.File));

val i dat eCondensedFi | e(thi s. ai danCondensedXM.Fi | e,
"Ai dan Garrett Burke", "6/25/1999");

}

/1 a hel per nethod used by each of the unit tests
private void validateCondensedFile(File file, String expectedNang,
String expectedBirthDate) {
try {
/1 first do a sinple validation against the DID
SAXBui | der buil der = new SAXBuil der(true); // validate
Docunent doc = builder.build(file);

/'l now perform sone additional checks
El ement nanmeEl em = doc. get Root El enent (). get Chi | d(" nane"
assert Equal s(" Nane was not correct",

expect edNanme, naneEl em get Text());

El ement birt hDat eEl em = doc. get Root El erment (
).getChild("birthDate");

assertEqual s("Birth date was not correct"”,
expectedBirthDate, birthDateEl em getText());

} catch (JDOVException jde) {
fail ("XM. was not valid:
}

+ j de. get Message());
}

/**

* @eturn a TestSuite, which is a conposite of Test objects.
*/

public static Test suite() {

/'l uses reflection to | ocate each nethod nanmed test[...]
return new Test Suite(Sanpl eUnit Test. cl ass);

}
/**
* Allow the unit tests to be invoked fromthe command |ine
* in text-only node.
*/
public static void main(String[] args) {
Test Runner.run(suite());
}

}

First, notice that Sanpl eUni t Test extends from j uni t . franewor k. Test Case. Each
subclass of Test Case defines a fixture and can contain multiple individual unit tests. Each
method that begins with the word "test" is a unit test. All of the private fields in Sanpl eUni t Test
are specific to our particular needs and are not part of the JUnit framework.

The constructor takes the name of a unit test as an argument:

public Sanpl eUnitTest(String nanme) {
super (nane) ;
}

The nane argument is the test method name, and JUnit uses the Java reflection API to locate
and instantiate the correct method. As we will see in a moment, this constructor is rarely called
directly.

The set Up() method is called before each unit test is executed. As expected, this method is
used to set up preconditions before a test is executed. Its counterpart is the t ear Down()
method, which is called just after each test is executed. If a fixture contains four unit test
methods, then set Up() and t ear Down() will each be called four times.

For our purposes, the set Up() method locates all of the files that will be used for XSLT
transformations. These include XML input files, the XSLT stylesheet, and the XSLT result targets.
It also performs some simple testing:

assert Not Nul | (wor ki ngDi r);
assert("Unable to |locate " + this.workingDir,
new File(this.workingDir).exists());

These assert () methods are part of the JUnit framework, causing test failures when the
tested condition is not true.”® These are the heart of what programmers write when creating unit
tests and can be used in any of the test methods or in the set Up() and t ear Down()
methods. When an assertion is not true, JUnit reports an error message and the line number
where the failure occurred. This is known as a test failure, which is different than a test error. An
error is reported when JUnit catches an exception that one of the unit tests throws.

[81 Junit 3.7 renamed the assert () method assert True() to avoid conflicts with the new JDK 1.4
assertion facility.

This first unit test in our example is the t est Tr ansf or MV t hTenpl at es() method. Because
this method name begins with "test,” JUnit can use reflection to locate it. The job of this test is to
merely perform an XSLT transformation using JAXP's Tenpl at es interface, delegating to the
val i dat eCondensedFi | e() method to do the actual testing. This approach is taken because
the same testing code can be shared among a group of individual unit tests.

The val i dat eCondensedFi | e() method performs two levels of testing. First, the result of the
transformation is validated against its DTD. If an exception is thrown, the test fails:

fail ("XM. was not valid: " + jde.getMessage());

JUnit will intercept this failure and display the error message to the programmer running the test.
If the validation succeeds, the unit test then uses the assert Equal s() method to test some of
the actual XML content:

assert Equal s("Nanme was not correct”,
expect edNanme, naneEl em get Text());

In this method, if the second two arguments are not equal, the provided error message is
displayed and the test fails.

One key additional method issui te():

public static Test suite() {
/1l uses reflection to locate each nmethod naned test[...]
return new Test Sui t e(Sanpl eUni t Test. cl ass);

}

This is useful because it automatically locates all methods whose names begin with "test" and
adds them to a test suite. Both Test Case and Test Sui t e implement the Test interface;

Test Sui t e is a composite of many individual Test objects. By organizing tests into suites,
entire families of tests can be executed by running the suite. As expected with a composite
pattern, test suites can also consist of other test suites. At some point, one top-level test suite can
directly or indirectly include every other test in the application. Therefore, all tests can be
executed with a single command.

9.2.1.2 Running the test

To run the test from the command line, type the following command:
j ava chap9. Sanpl eUni t Test

This works because the fixture contains the following nai n() method:

public static void main(String[] args) {
Test Runner.run(suite());
}

The Test Runner class is a command-line tool that reports the following output when all tests
succeed:

Tine: 1.081

K (2 tests)

The two dots in the first line of output represent each of the test methods. As each unit test
executes, a new dot appears. If a test fails, JUnit reports a stack trace, a (sometimes) descriptive
message, and the line number of the failure. At the end, the number of tests, failures, and errors
are reported.

JUnit also has a Swing GUI client that can be executed with the following command:
java junit.sw ngui. Test Runner chap9. Sanpl eUni t Test

Figure 9-4 shows the graphical output when errors occur.

Figure 9-4. JUnit output with errors

Test class name:
chapa s ampleliaTest [= | run
|| Redoad classes avery rn

Runs: Errowrs: Faillures:

2 o 2

iiresrrrans'rurml.l'l.li'.ﬁ'a mplakes{chapB SamplaliniTesnMame was rol comecl expecled <Aidan Carmall Burke= b E_f_ Rty
1l
|| EestTransformearichan9. SampleliniiTest Mams was nod cormact expectad:<Aldan Game? Burke= bulwas <Alde..

Hunltl‘ramewurk_ﬂ.ase tonF ailedErrar: Mame was not corred] expaced: <Aldsn Sarmet Burse= but was: <Alden Garma |
fal chapd.SarmplelnsTest validate CondensedF ile(Sample UnsTes? fawa:1 33)
&l chapd SarmplalindTest basiTransfornith Templates{SarmalalinifTe st java 103

Finished; 0.311 seconds Exit

The rectangular area to the left of "U" is a progress bar that expands as tests are executed. When
dozens or hundreds of tests are executed, the progress bar gives a good visual indication of how
many tests have executed. It also changes from green to red when errors or failures occur, so
programmers know exactly when something went wrong. The scrolling list in the middle of the
screen shows individual test errors and failures, and the text area near the bottom of the screen
shows details for the selected error.

The GUI interface is great for interactive testing, while the command-line interface is more
appropriate for batch-mode, automated tests. These are the sorts of tests that execute as part of
a nightly build process. We now move past unit testing software into the realm of custom
application error handling using JAXP error listeners.

9.2.2 JAXP 1.1 Error Listeners

When performing XSLT transformations using JAXP, errors are typically reported to

Syst em err. While this is sufficient for command-line transformations, some custom
applications require more control over the error-reporting process. For this class of applications,
the j avax. xnl . transform ErrorLi st ener interface is provided.

By implementing this interface, an application can capture and report detailed information about
where transformation errors occur and why. In Example 9-9, a custom Swing table model is
presented. This class implements the j avax. xnl . transform ErrorLi st ener interface and
is used by a JTabl e to display errors graphically. Later, in Example 9-11, we show how to
register this error listener with a Tr ansf or ner Fact ory and Tr ansf or ner .

Example 9-9. ErrorListenerModel
package comoreilly.javaxslt.sw ngtrans;

i mport java.io.*;

i mport java.util.*;
i mport javax.sw ng.table.*;

/1 XM_-rel ated inports

i mport javax.xm .transform ErrorlListener;

i mport javax.xm .transform SourcelLocat or;

i mport javax.xnl.transform Transfor mer Excepti on;

/**

* A JTabl e data nodel that provides detail information about a |ist
* of javax.xm .transform Transforner Excepti on obj ects.
*/
public class ErrorlListenerMdel extends Abstract Tabl eModel
i mpl enents ErrorlListener {

/1l columm positions in the table
private static final int LINE COL = O;

private static final int COLUMN COL = 1;
private static final int PUBLIC |ID COL 2;
private static final int SYSTEMI|D COL 3;

i
i ;
i =
i =
private static final int MESSAGE AND LOC COL = 4;
i
i
i

OO0 0O000O0

private static final int LOCATI OQ_OO: = 5;
private static final int EXCEPTION_COL = 6;
private static final int CAUSE COL = 7;

private static final String[] COLUWN NAMES = {

"Li ne",

" Col um",

“"Public ID",

"System | D',

"Message & Location",
"Location",
"Exception",

" Cause”

b

/1 the actual data
private List exceptionList = null;

/**

* @eturn a detailed text report of the exception at the specified
r ow.

*/
public String getDetail Report(int row {
if (this.exceptionList == null
|| row< O || row >= this.exceptionList.size()) {
return "";
}

Transf or mer Exception te = (Transformer Excepti on)
thi s. exceptionList.get(row);
Sour ceLocator loc = te.getLocator(); // may be null

/1l buffer the report
StringWiter sw = new StringWiter();
PrintWiter pw = new PrintWiter(sw);

)
)

))) A

}

/**

pw. println(te.getC ass().getNane());
PW. Printl N - - m e e e

if (loc == null)
pw. println("Li ne Nunber [null SourcelLocator]");
pw. println("Colum Nunber: [null SourcelLocator]");
pw. println("Public ID : [null SourcelLocator]");
pw. println("System|D [| SourceLocator]");
} else {

pw. println("Li ne Nunber + loc.getLineNunber());
pw. println("Col umm Nunber: + |l oc. get Col umNunber());
pw. println("Public ID : + loc.getPublicld());
pw. println("SystemI|D + loc.getSystemd());
}
pw. println("Message & Location : " + te.get MessageAndLocati on(
pw. println("Location " + te.getlLocationAsString(
pw. println("Exception . " + te.getException());

if (te.getException() != null) {
te.get Exception().printStackTrace(pw);
}

pw. printl n(" Cause . " + te.getCause());
if (te.getCause() !'= null && (te.getCause() != te.getException(

te.getCause().printStackTrace(pw);
}

return sw.toString();

* Part of the Tabl eModel interface.

*/

public Object getValueAt(int row, int colum) {

“NA;

if (this.exceptionList == null) {
return "No errors or warnings";
} else {

Transf ormer Exception te = (Transformer Excepti on)
t hi s. exceptionList. get(row);
Sour ceLocator loc = te.getlLocator();

switch (colum) ({
case LINE_COL:
return (loc '= null)
? String.valueO (Il oc.getLineNunber()) : "NA";
case COLUWVN COL:
return (loc '= null)
? String.valued (1 oc. get Col uimNunber())

case PUBLIC_ | D _COL:

return (loc '=null) ? loc.getPublicld() : "NA";
case SYSTEM | D COL:

return (loc '= null) ? loc.getSystemd() : "NA";

case NMESSAGE _AND LOC CCL

return te.get MessageAndLocation();
case LOCATI ON_COL:

return te.getlLocationAsString();
case EXCEPTI ON_COL:

return te.getException();
case CAUSE COL

return te.getCause();
defaul t:

return "[error]"; // shouldn't happen

}
}
}
/**
* Part of the Tabl eModel interface.
* [
public int getRowCount() {
return (this.exceptionList == null) ? 1
this. exceptionList.size();
}
/**
* Part of the Tabl eModel interface.
*
/
public int getColumCount() {
return (this.exceptionList == null) ? 1
COLUVN_NAMES. | engt h;
}
/**
* Part of the Tabl eModel interface.
*/
public String get Col umNane(int colum) {
return (this.exceptionList == null)
? "Transformati on Probl ens"
COLUWN_NAMES[col umm] ;
}
/**

* @eturn true if any errors occurred.

*/
public bool ean hasErrors() {
return this.exceptionList !'= null
}
/**

* This is part of the javax.xm .transform ErrorListener interface.
* | ndicates that a warning occurred. Transforners are required to
* continue processing after warnings, unless the applicati on
* throws Transfornmer Exception
*/
public void warning(TransformnmerException te) throws
Transf or mer Excepti on {
report(te);
}

/**

* This is part of the javax.xm .transform ErrorlListener interface.
* Indicates that a recoverable error occurred.
*/
public void error(TransfornerException te) throws
Transf or mer Excepti on {
report(te);
}

/**

* This is part of the javax.xm .transform ErrorlListener interface.
* Indicates that a non-recoverable error occurred.
*
/
public void fatal Error(Transfornmer Exception te) throws
Transf or mer Excepti on {
report(te);
}

/1 adds the exception to exceptionList and notifies the JTabl e that
/'l the content of the table has changed.
private void report(TransfornerException te) {
if (this.exceptionList == null) {
this.exceptionList = new ArrayList();
this. exceptionList.add(te);
fireTabl eStructureChanged();
} else {
this. exceptionList.add(te);
int row = this.exceptionList.size()-1;
super . fireTabl eRowsl nserted(row, row;

}

Code related to the Er r or Li st ener interface is emphasized; the remaining code is used to
present errors in a Swing table. The Swing JTabl e component displays rows and columns of
data, getting its information from an underlying] avax. swi ng. t abl e. Tabl eModel interface.
j avax. swi ng. tabl e. Abstract Tabl eModel is an abstract class that implements

Tabl eMbdel , serving as the base class for application-defined table models as shown here. As
you can see, Error Li st ener Mbdel extends from Abst ract Tabl eMVbdel .

Since our table model implements the Er r or Li st ener interface, it can be attached to a JAXP
Transf or mer . When transformation problems occur, war ni ng(), error(), or

fatal Error() is called. Since these methods have the same signature, they all delegate to
the report() method. Comments in the code indicate which types of problems are supposed
to call each method, although XSLT processors are not consistent in the way they report errors.

The report () method simply adds the Tr ansf or ner Except i on object to a private list of
exceptions and then triggers a Swing event to indicate that the JTabl e should redraw its
contents. When the JTable receives this event, it asks the Er r or Li st ener Mbdel for the row
count, column count, and values at individual cells within the table model. This functionality is
contained within the get RowCount (), get Col utmCount (), and get Val ueAt () methods,
all of which are defined in the Tabl eMbdel interface.

Our class also has an additional method called get Det ai | Report (), which is used to
produce a text report of a Tr ansf or ner Except i on object. This method is worth studying
because it shows which methods are available when dealing with transformation problems. As

the code in Example 9-9 shows, many of the fields may be nul | . Some XSLT processors may
provide a lot of detailed error reporting, while others may simply leave these fields nul | .

9.2.3 A Custom XSLT Transformer GUI

In this section, an XSLT transformer GUI is developed. This is a simple Swing application that
allows an XML file to be transformed using an XSLT stylesheet. The results of the transformation
are then shown in a text area, along with a JTabl e that shows all errors using the

ErrorLi stenerModel class shown in Example 9-9.

XML validation of the transformation result is also provided. Given that the stylesheet produces
XML, this tool will attempt to parse and validate the result tree. This is a great way to make sure
that your XSLT is producing valid XHTML, for example, because the result can be validated
against one of the XHTML DTDs as soon as each transformation is performed.

The Ant build file shown earlier in Example 9-3 contains a "run" target that can be used to
execute this application by typing ant r un.

9.2.3.1 Screen shots

The first window to appear is shown in Figure 9-5. This window is always displayed and allows
the user to select the XML and XSLT input files.l2

[These screen shots show the Macintosh OS/X Aqua look and feel using Java Swing.
Figure 9-5. SwingTransformer frame
awing XELT Transfarmer
XML File Users foci/Burke fjavaxslt/chapters/chap9/aidan. xml Select XML .
XELT File: cifBurke /javaxshfchapters fchap/condensePerson. xsh Select XSLT

Transform

When the Transform button is clicked, the window shown in Figure 9-6 appears. Subsequent
transformations can be performed, and each one will cause an additional window to appear.
Since the XML and XSLT files are parsed with each transformation, this application does not
have to be restarted to see changes to those files.

Figure 9-6. XML output panel

Lt ransformatior
VTR T
Text Output Transformation Problems | XML Dutput
HMAL a5 vl Foersed and wabid
<faml version="1.8" encoding="UTF=8"1> ¥
| | <!DOCTYPE person SYSTEM "file:/Usersfoci/Burke jovamslt/chopters/chop®/condensed. dtd"=
| | «persons
nameé=Aiden Garrett Burkeo/names
| <1 rthlates6bS 254 19090 /by rthDates
</ persons
|
| L

The first tab, Text Output, is actually the first one to be displayed. It is not shown here because it
merely shows the raw text contents of the XSLT result tree, which includes any whitespace
produced by the transformation. When the user clicks on the XML Output tab, the result tree is
parsed and validated against its DTD. The XML is then displayed in the GUI using JDOM's
XMLCQut put t er class, which removes ignorable whitespace and pretty-prints the XML.

If errors occur during the transformation process, the text and XML output panels are blank.
Instead, the user is presented with the display shown in Figure 9-7.

Figure 9-7. Transformation problems

XSLT Transformation
! Text Outpur T"I‘ﬁiiifufm."""'ili:iii Probl ':iri-';':" XML Qutput |

Line Column' Public 1D System iD Message & Location Location Exception Cause
=1 =1 “seelect” attribute is not albowed ... ; Line#: -
-1 -1 ushvalue-of requires attribute: s... | Line#: -...
MiA NA MiA Mis java.lang. MullPointer Exce pion jaialang.... javadung....
]

jowax , xml, transform. TransformerException

Line Mumber . -1
Column Number: -1

Public ID vorull

System ID vl

Messoge & Location @ xsl:value-of reguires gttribute: select; Line#: -1; Column#
Location 1o Limedt: -1; Columnd: -1

Exception ol

Couse omull

EE R T T TR e | [

This display shows how the Er r or Li st ener Model presented in Example 9-9 is used. The
JTabl e at the top of the screen shows a tabular view of all errors, and the text area at the bottom
of the screen shows the output from Er r or Li st ener Mbdel 's get Det ai | Report () method.
In the error shown, a sel ect attribute was intentionally misspelled in an XSLT stylesheet as
seel ect .

9.2.3.2 Source code

The source code for the main window is shown in Example 9-10. This is a subclass of JFr ane
that allows the user to select XML and XSLT filenames. This class is almost entirely GUI-related
code and is not discussed further.

Example 9-10. SwingTransformer.java
package comoreilly.javaxslt.sw ngtrans;

i mport java.aw.*;

i mport java.awt.event.*;
i mport java.io.?*;

i mport javax.sw ng. *;

/**

* The entry point into this application. This class displays the nmain
* wi ndow, allow ng the user to select an XML file and an XSLT file.
*/
public class Sw ngTransforner extends JFrane {
private JTextField xml FileFld = new JText Fi el d(30);
private JTextField xsltFileFld = new JTextFi el d(30);

[l file filters used with the JFil eChooser class
private XMLFileFilter xmFilter = new XM_LFileFilter();

private XSLTFileFilter xsltFilter = new XSLTFileFilter();
private JFil eChooser fileChooser = new JFil eChooser();

/] actions are hooked up to the JButtons
private Action | oadXM.Action =
new j avax. swi ng. Abstract Acti on("Sel ect XM.") {
public void actionPerformed(Acti onEvent evt) ({
sel ect XMLFile();
}

b

private Action | oadXSLTAction =
new j avax. swi ng. Abstract Acti on("Sel ect XSLT") {
public void actionPerformed(Acti onEvent evt) ({
sel ect XSLTFi le();
}

H

private Action transformAction =
new j avax. swi ng. Abstract Acti on("Transform') {
public void actionPerfornmed(Acti onEvent evt) {
File xmMFile = new File(xm FileFld.getText());
File xsltFile = new File(xsltFileFld.getText());

if (!'xmFile.exists() || !'xmMFile.canRead()) {
showkr ror Di al og("Unable to read XM. file");
return;

if (!'xsltFile.exists() || !'xsltFile.canRead()) {
showkr ror Di al og("Unable to read XSLT file");
return;

}

/1 show the results of the transformation in a new w ndow
new TransformerWndow().transfornmxmFile, xsltFile);

b
/**
* The entry point into the application; shows the main w ndow.
*/
public static void main(String[] args) {
new Swi ngTransforner().setVisible(true);
}

/**
* Construct the main wi ndow and | ayout the GU .
*/
public SwingTransformer() {
super ("Swi ng XSLT Transforner");

/1 note: this line requires Java 2 v1.3
set Defaul t G oseOperation(JFrane. EXI T_ON CLCSE);

Cont ai ner cp = get Content Pane();
cp. set Layout (new Gi dBagLayout ());

)

Gri dBagConstrai nts ghc = new Gi dBagConstraints();
gbc. anchor = Gri dBagConstrai nts. V\EST,;

gbc.fill = GidBagConstr ai nts. HORI ZONTAL;
gbc. gridx = GidBagConstraints. RELATI VE
gbc.gridy = 0O;

gbc.insets.top = 2;
gbc.insets.left = 2;
gbc.insets.right = 2;

cp. add(new JLabel ("XM. File:"), gbc);
gbc. wei ghtx = 1. 0;

cp.add(this.xm FileFl d, gbc);

gbc. wei ghtx = 0. 0;

cp. add(new JButton(this.loadXM.Action), gbc);

gbc. gri dy++;

cp. add(new JLabel ("XSLT File:"), gbc);
gbc. wei ghtx = 1. 0;

cp.add(this.xsltFileFld, gbc);

gbc. wei ghtx = 0. 0;

cp. add(new JButton(this.|oadXSLTAction), gbc);

gbc. gri dy++;

gbc.gridx = 0;

gbc. gridw dth = Gri dBagConstrai nts. REMAI NDER
gbc. anchor = Gri dBagConstrai nts. CENTER
gbc.fill = GidBagConstrai nts. NONE

cp. add(new JButton(this.transformAction), gbc);

pack();

/**
* Show the file chooser, listing all XM files.
*/
private void select XMFile() {
this.fil eChooser.setDialogTitle("Select XM_. File");
this.fileChooser.setFileFilter(this.xmFilter);
int retvVal = this.fileChooser.showOpenDi al og(this);
if (retVal == JFil eChooser. APPROVE_COPTI ON) {
this.xm Fil eFld. set Text (
this.fil eChooser. getSel ectedFile().get Absol utePat h(

}
/**
* Show the file chooser, listing all XSLT files.
*/
private void select XSLTFile() {
this.fileChooser.setDialogTitle("Select XSLT File");
this.fileChooser.setFileFilter(this.xsltFilter);
int retvVal = this.fileChooser.showOpenDi al og(this);
if (retVal == JFil eChooser. APPROVE_COPTI ON) {
this.xsltFileFld. setText(

this.fileChooser. get Sel ectedFil e().get Absol ut ePat h(

));
}
}
private void showerrorDial og(String nsg) {
JOpt i onPane. showessageDi al og(this, nmsg, "Error",
JOpt i onPane. ERROR_MESSAGE) ;
}
}
/**

* Used with JFil eChooser to only show files ending with .xm or .XM.
*/
class XMLFileFilter extends javax.sw ng.filechooser.FileFilter {
public bool ean accept(File f) {
String name = f.getNane();
return f.isDirectory() || nane.endsWth(".xnm")
|| nanme.endsWth(".XWM");

}

public String getDescription() {
return "XM. Files";
}

}
/**
* Used with JFil eChooser to only show files ending with .xslt or .XSLT.
*/
class XSLTFileFilter extends javax.sw ng.filechooser.FileFilter {
public bool ean accept(File f) {
String name = f.getName();
return f.isDirectory() || nane.endsWth(".xsl")
|| nane.endsWth(".xslt") || nane.endsWth(".XSL")
|| name.endsWth(".XSLT");

}

public String getDescription() {
return "XSLT Files";
}

}

The next class, shown in Example 9-11, creates the window shown in Figures 9-5 and 9-6.
Much of this code is responsible for arranging the JTabbedPane component, which contains the
three folder tabs that make up the window. This class also does the actual XSLT transformation;
these lines are emphasized.

Example 9-11. TransformerWindow.java
package comoreilly.javaxslt.sw ngtrans;

i mport java.aw.*;

i mport java.awt.event.*;

i mport java.io.*;

i mport javax.sw ng.*;

i mport javax.sw ng.table.*;
i mport javax.sw ng.event.*;

/1 XM.-rel ated inports

i mport javax.xnl .transform SourcelLocat or;

i mport javax.xnl.transform Transforner;

i mport javax.xnl .transform Transformer Confi gurati onExcepti on;
i mport javax.xnl.transform Transf or mer Excepti on;

i mport javax.xnl.transform Transformer Fact ory;

i mport javax.xnl.transform stream StreanResul t;

i mport javax.xnl.transform stream StreanSource;

/**

* A secondary JFrane that shows the result of a single XSLT
* transformation. This frane has a JTabbedPane interface, show ng
* the transformation result, error nessages, and the XM output.
*/
public class TransfornmerWndow extends JFrane {

/1 the result of the XSLT transformation as text

private String resultText;

private JTabbedPane tabPane = new JTabbedPane();

private JText Area textQutputArea = new JText Area(30, 70);

private XM.Qut put Panel xm Qut put Panel = new XM_Qut put Panel ();
private ErrorlListenerMdel errMdel = new ErrorlListenerMdel ();
private JTable errorTable = new JTabl e(this. errMdel);

private JTextArea errorDetail Area = new JText Area(10, 70);
private String xsltURL;

/**

* Construct a new instance and | ayout the GUI conponents.
*/
public TransformerWndow) {

super (" XSLT Transformation");

/1 add the tab pane to the frane
Cont ai ner cp = get Content Pane();
cp.add(this.tabPane, BorderlLayout.CENTER);

/1 add individual tabs
thi s.tabPane. add(" Text Qutput", new
JScrol | Pane(this.textQutputArea));
t hi s. tabPane. add(" Transf ormati on Probl ens",
createErrorPanel ());
thi s.tabPane. add("XM. Qut put”, this.xnm QutputPanel);

/1 listen to new tab selections
t hi s. t abPane. addChangelLi st ener (new Changeli stener() {
public void stateChanged(ChangeEvent evt) ({
tabChanged();
}

1)

thi s.text Qut put Area. set Edi t abl e(fal se);

/1 listen to selection changes on the table of errors
this.errorTabl e. get Sel ecti onMbdel (). addLi st Sel ecti onLi st ener (

new Li st Sel ectionListener() {
public void val ueChanged(Li st Sel ecti onEvent evt) {

if (!'evt.getValuelsAdjusting()) {
showErrorDetail s();

}
}
1)

pack();
}
/**
* Show details for the currently selected error.
*/

private void showerrorDetails() {
int sel Row = this.errorTabl e. get Sel ectedRow);

this.errorDetail Area. set Text (this.errMdel.getDetail Report (sel Row));
}

/**

* Performan XSLT transformation.
*/
public void transform File xmFile, File xsltFile) {
set Vi si bl e(true);
try {
/1 figure out the directory of the XSLT file. This will be
/1 used to | ocate the DID
if (xsltFile !'= null) {
File xsltDir = xsltFile.getParentFile();
if (xsltDir.isDirectory()) {
this.xsltURL = xsltDir.toURL().toExternal Fornm();
}

}

TransformerFactory transFact =
Transf orner Fact ory. newl nstance();

/] register the table nodel as an error |istener
transFact . set ErrorLi stener(this.errModel);

Transfornmer trans = transFact. newlransf ormer (
new StreanBSource(xsltFile));

/'l check for null, because the factory m ght not throw
/'l exceptions when the call to newlransforner() fails.
Thi s
/1 is because we registered an error |istener that does not
/1l throw exceptions.
if (trans !'= null) {
trans. set ErrorListener(this.errhdel);

/1l capture the result of the XSLT transfornmation
StringWiter sw = new StringWiter();
trans. transfornm new StreanSource(xm File),

new StreanResult(sw));

/1 show the results
this.resultText = sw.toString();
this.textQutput Area. set Text (this.resultText);

}

} catch (TransfornmerConfigurati onException tce) {
try {
this.errMdel.fatal Error(tce);
} catch (TransfornerException ignored) {

} catch (TransfornmerException te) {
try {
this.errMdel.fatal Error(te);
} catch (TransfornerException ignored) {

} catch (Exception unexpected) {
Systemerr.println(
"The XSLT processor threw an unexpected exception");
unexpect ed. print StackTrace();

}

/1 show the error tab

if (this.errMdel.hasErrors()) {
this. tabPane. set Sel ect edl ndex(1);

}

}

/'l the user clicked on a different tab
private void tabChanged() {
try {
set Cur sor (Cur sor. get Predefi nedCur sor (Cur sor. WAI T_CURSOR)) ;
int sellndex = this.tabPane. get Sel ect edl ndex();
String sel Tab = this.tabPane. getTitl eAt(sel | ndex);

/1 when the XML tab is selected, set the text on the XM
panel .

/1 Al though the text may not be XM., we won't know t hat
unti |

/1 it is parsed.

if ("XM. Qutput".equal s(sel Tab)) {

t hi s. xm Qut put Panel . set XM_(t hi s. result Text,
this.xsltURL);

}
} finally {

set Cursor (Cursor. get Predefi nedCur sor (Cur sor. DEFAULT_CURSOR)) ;
}
}
/1l a helper nethod to create the panel that displays errors
private JConponent createErrorPanel () {
JSplitPane splitPane = new
JSpl it Pane(JSplitPane. VERTI CAL_SPLIT);
this.errorTabl e. set Aut oResi zeMode(JTabl e. AUTO_RESI ZE OFF) ;
int size =this.errorDetail Area. getFont().getSize();
this.errorDetail Area. set Edi t abl e(fal se);

this.errorDetail Area. set Font (
new Font (" Monospaced", Font.PLAIN, size+2));

spl it Pane. set TopConponent (new JScrol | Pane(this.errorTable));

spl i t Pane. set Bot t omConponent (new
JScrol | Pane(this.errorDetail Area));
return splitPane;
}

}

As the emphasized code shows, the error listener table model is registered on the
Transformer Fact ory as well as the Tr ansf or ner instance. In addition to registering the
error listener, exceptions also have to be caught because XSLT processors may still throw
exceptions and errors even though an error listener is registered. Generally, errors on the
Transf or mer Fact ory indicate problems while parsing the XSLT stylesheet, while

Transf or mer error listeners are notified of problems with the actual transformation or in the
XML data.

The final class, XM_Cut put Panel , is shown in Example 9-12.

Example 9-12. XMLOutputPanel.java
package comoreilly.javaxslt.sw ngtrans;

i mport java.aw.*;
/linport java.aw.event.?*;
i mport java.io.?*;

i mport javax.sw ng. *;

/1 XM.-rel ated inports

i mport org.jdom Docunent;

i mport org.jdominput.SAXBuil der;

i mport org.jdom out put. XM_Qut putter;

/**

* Displays XML text in a scrolling text area. A status |abel indicates
* whether or not the XML is well fornmed and valid.
*/
public class XM.Qut put Panel extends JPanel {
/1 displays the XM
private JText Area xm Area = new JText Area(20, 70);
private String xm;

private JLabel statusLabel = new JLabel ();

/**

* Construct the panel and |ayout t he GU conponents.
*/

public XM.Qut put Panel () {
super (new Bor der Layout ());
add(new JScrol | Pane(this.xm Area), BorderLayout. CENTER);
add(thi s. statusLabel, BorderLayout. NORTH);

}
/**
* @aram xm the actual XM. data to display.
* @aramuri the location of the XM., thus allow ng the parser
* to | ocate the DTD.
*/
public void set XM_(String xm, String uri) {

/1 return quickly if the XML has al ready been set

if (xm == null || xm.equals(this.xm)) {

return,

}
this.xm = xml;

/1 use JDOMto parse the XM
Docunent xm Doc = nul | ;
try {
/] attenmpt to validate the XM
SAXBui | der saxBui | der = new SAXBui | der (true);
xm Doc = saxBuil der. buil d(new StringReader(this.xm), uri);
this.statusLabel.setText("XM. is well forned and valid");
} catch (Exception ignored) {
/1 the data is not valid, but we should parse it again
/]l to see if it is well fornmed

}
if (xmDoc == null) {
try {
/1 don't validate
SAXBuUI | der saxBuil der = new SAXBui | der (f al se);
xm Doc = saxBuil der. buil d(new StringReader (this.xm));
this.statusLabel.setText("XM. is well forned, but not
valid");
} catch (Exception ex) {
this.statusLabel.setText("Data is not well formed XM.");
/'l show the stack trace in the text area
StringWiter sw = new StringWiter();
ex. printStackTrace(new PrintWiter(sw));
this.xm Area. set Text(sw.toString());
}
}

/1 if the docunent was parsed, show it
if (xmDoc !'= null) {
try {
/1 pretty-print the XML by indenting two spaces
XMLCQut putter xm Qut = new XM_.Qut putter(" ", true);
StringWiter sw = new StringWiter();
xm Qut . out put (xml Doc, sw);
this.xm Area. set Text(sw.toString());
} catch (Exception ex) {
thi s. statusLabel . set Text ("Data coul d not be

di spl ayed. ") ;
/'l show the stack trace in the text area
StringWiter sw = new StringWiter();
ex. print StackTrace(new PrintWiter(sw));
this.xm Area. set Text(sw.toString());

}
}
}
}

XMLCut put Panel is responsible for parsing the result tree to determine if it is well-formed and
valid XML. It starts by parsing the text using a validating parser, simply ignoring errors. If no
errors occur, the document is well-formed, valid XML and can be displayed in the text area.

Otherwise, the document is parsed again, only without any validation. This allows the code to
determine if the XML is at least well-formed.

If the document is not well-formed or valid, the parser's stack trace is displayed in the GUI. For
many XSLT transformations, the result tree may not be XML, and this message can simply be
ignored. When errors do occur, however, this should make it much easier to locate the problems.

9.3 Performance Techniques

One common criticism of XSLT is its performance. The overhead of transformation from XML to
another format is the price paid for clean separation between data and programming logic, as well
as the ability to customize transformations for different clients. In this section, we look at
strategies for improving performance without giving up the benefits that XSLT offers.

The actual XSLT transformation is not always the root of performance problems. XML parsers
have a significant impact on performance, along with many other factors such as database
access time, time spent processing business logic, and network latency.

Obsessing over performance can be a dangerous trap to fall into. Focusing too heavily on
optimization techniques often results in code that is difficult or impossible to understand and
maintain. From a strictly technical viewpoint, the fastest technology sounds great. From a
business viewpoint, time to market and maintainability are often far more important than runtime
performance metrics. An application that meets performance requirements and is easy to
maintain over the years makes better business sense than a highly tuned, cryptic application that
runs fast but cannot be modified because the original author quit the company and nobody can
figure out the code.

9.3.1 Stress Testing with JMeter

One good way to measure overall application throughput is to simulate how real users use an
application. Apache's JMeter is designed to perform this task for web applications, measuring
response time as the number of concurrent users increases. JMeter is written in Java and can
display response time graphically as shown in Figure 9-8.

Figure 9-8. JMeter output

o] x|
Hesipn
© 2 festitan | Craph e st
§ - Theesatrme '
iy Pl
Graph Resus
3 ENLEOTE ¥ dsta 1
i Wizh Testing
75| Wrkench

L o

It should be noted that this is the output from Version 1.6 Alpha of JMeter, so later versions may
change significantly. The GUI interface has been completely rewritten for Version 1.6, and many
features are unfinished as this book is being written. On this display, the dots represent actual

response times, the top line represents the average response time, and the bottom line
represents the standard deviation from average.

Of the measurements shown on the graph, the average response time is the most useful. The
numbers to the right are in milliseconds, so we can see that the average response time for this
web application is 151 milliseconds. When using a tool such as JMeter, it is best to leave the
stress test running for several minutes until the average response time stabilizes. It generally
takes much longer for the first few tests to run because Java is loading classes, starting threads,
and allocating memory. Over time, performance will fluctuate as the garbage collector runs and
VMs such as HotSpot optimize code. Unless the application has memory leaks or simply cannot
keep up with demand, the response time should eventually level off.

Table 9-3 shows how the View Month page from the discussion forum example in Chapter 7
fared when tested with JMeter. In this table, worst case and best case scenarios are shown.
Other combinations of servlet container, XSLT processor, and database are not shown. The
number of threads in the fourth column indicates the number of simulated users. In the final
column, lower numbers are better.

Table 9-3. View month response time

Servletcontainer | XSLTprocessor | Database |Threads | Average responsetime (ms)

Tomcat 3.2.1 Xalan 2.0 Access 2000 |1 130

" " " 5 320

" " " 10 760

" " " 20 1600

Tomcat 4.0 SAXON 6.2.2 MySQL 1 18

" " " 5 150

" " " 10 320

" " " 20 610

This table does not paint the complete picture. However, it should illustrate the point that in many
cases, merely changing to different tools and libraries can dramatically improve performance. For
the measurements shown, JMeter was instructed to simulate up to 20 concurrent users with
absolutely zero delay between requests. JMeter can also be configured to insert fixed or random
delays between requests, which tends to be much more representative of real-world conditions.

The goal of this test was not to benchmark the performance of the discussion forum, but rather to
compare the relative performance when switching to different tools.’® Over a period of many
hours, the discussion forum was restarted with various combinations of servlet containers, XSLT
processors, and databases. Although Tomcat 4.0 and SAXON 6.2.2 tend to be slightly faster than
Tomcat 3.2.1 and Xalan 2.0, the most dramatic performance delta occurs when switching from
Microsoft Access to MySQL.

[8] Because XSLT processors and servlet containers are changing so fast, the actual tool names are not
listed here.

9.3.2 More Detailed Measurements

In the previous example, the overall performance of an application was measured with Apache's
JMeter. This is a great way to prove that an application scales well under stress, and it allows for
comparisons between different software, hardware, and database configurations. If you reach a
point where an application is simply not scaling as required, however, additional techniques must
be employed to isolate bottlenecks within Java code. Tools such as JMeter show performance
from an end user's perspective, rather than on a per-method basis within a Java application.

9.3.2.1 Commercial options

One approach is to purchase a commercial profiling tool such as Sitraka's JProbe, available from
http://www.sitraka.com, or VMGear's Optimizelt from http://www.vmgear.com. Among
other things, these tools can report how many times each method in an application is called, how
much time is spent in each method, and how much memory is allocated. The huge advantage of
tools such as these is their unique ability to tell you exactly where the hotspots are within Java
code. In general, a small fraction of methods consumes a vast majority of resources.®! Optimizing
these specific methods often yields the biggest performance gains with the least amount of effort.

1 Typically referred to as the 80/20 rule.
9.3.2.2 JVMPI

Sun's Java 2 SDK offers a set of command-line options that enable the Java Virtual Machine
Profiling Interface (JVMPI), which can write detailed profiling information to a log file as an
application runs. Example 9-13 shows the Help page reported by typing the command: | ava -
Xrunhpr of : hel p.

Example 9-13. JVMPI command-line options

C.\>java - Xrunhprof:help
Hpr of usage: - Xrunhprof[: hel p]|[<option>=<val ue>, ...]

Option Nane and Val ue Descri ption Def aul t
heap=dunp| sites| al | heap profiling al |

cpu=sanpl es|tines|old CPU usage of f

noni tor=y| n nonitor contention n

format=a| b ascii or binary output a

file=<file> wite data to file java. hprof (.txt for
ascii)

net =<host >: <port > send data over a socket wite to file
dept h=<si ze> stack trace depth 4

cut of f =<val ue> out put cutoff point 0. 0001

[i neno=y| n line nunber in traces? vy

t hread=y| n thread in traces? n

doe=y| n dunp on exit? y

Exanpl e: java - Xrunhprof: cpu=sanpl es, fil e=l og. t xt, dept h=3 Food ass

Although this is only an experimental feature of the JVM, it is useful when other tools are not
available. To locate processor bottlenecks, the cpu option should be set to sanpl es, which uses
statistical estimates based on periodic samples of performance. It defaults to of f because this
feature can significantly decrease performance.

Example 9-14 lists a very small portion of the output from a single run of a Java application
using the JVMPI feature. This section ranks the methods according to which consume the most
time. For instance, a method that takes 20 ms to execute but is called millions of times will
probably rank very high on this list, while a method that consumes one second but is only called
once will be much further down on the list.

Example 9-14. Partial JVMPI output
r ank self accum count trace nethod

1 13.70% 13. 70% 20 31 java. |l ang. C assLoader . def i neC assO
2 7.53%21.23% 11 19 java.util.zip.Zi pFile.getEntry
3 5.48% 26.71% 8 35
java.io. Wn32Fi | eSyst em get Bool eanAttri butes
4 4.11% 30. 82% 6 26 java.util.zip.Z pFile.read
5 3.42% 34. 25% 5 92 java.util.zip.Inflater.inflateBytes
6 3.42%37.67% 5 6
java.l ang. Cl assLoader . fi ndBoot strapC ass
7 2.74% 40. 41% 4 22 java. util.zip.ZipFile.getEntry
8 2.74%43. 15% 4 143 org. apache. xal an. tenpl at es
St yl esheet Root newTr ansf or ner
9 2.74% 45.89% 4 14 java. util.zip.Z pFile.open
10 1.37% 47. 26% 2 4 java. net.URLC assLoader. defi ned ass

The actual file will grow to many megabytes in size, depending on how large an application is and
how long the profiler runs. As expected, a difficult task is filtering through a file of this size to find
bottlenecks that are actually caused by an application's code rather than by the Java class
libraries.

A majority of the JVMPI output file consists of stack traces. A number identifies each trace, and
the dept h command-line option affects how many lines are displayed for each stack trace. The
fifth column of data in Example 9-14 contains the trace number, making it possible to search
through the file for the actual stack trace:

TRACE 31:

java. |l ang. Cl assLoader . defi neCl assO(Cl assLoader.java: Native
nmet hod)

java.l ang. Cl assLoader . defi neCl ass(Cl assLoader. j ava: 486)

java. security. Secur eCl assLoader . def i neCl ass(Secur eCl assLoader.ja
va: 111)

j ava. net . URLCl assLoader . defi neCl ass(URLCl assLoader. | ava: 248)

j ava. net. URLCl assLoader. access$100(URLClI assLoader. j ava: 56)

java. net. URLC assLoader $1. run(URLC assLoader. j ava: 195)

By making the stack trace depth larger, it is more likely that some of your code will show up
somewhere in the report. This makes the report much larger, however. These traces are useful
because they show which methods are called leading up to each hotspot.

Companies that have the budget to do so should definitely consider purchasing a tool such as
JProbe or Optimizelt. Although the JVMPI interface offers much of the same functionality that
these tools offer, JVMPI output is entirely textual, requiring quite a bit of manual detective work to
isolate problems. The commercial profiling tools also require some analysis but present the
results in a graphical format that is substantially easier to navigate.

9.3.2.3 Unit testing

The effectiveness of simpler approaches to measurement should not be dismissed. Often, the
easiest technique is to simply write a 15-line Java program that tests a specific piece of
functionality. For instance, you might want to start with a short Java program that performs an
XSLT transformation as shown in Chapter 5. Next, use Syst em current TinelnM | 1 s()
to measure the time immediately before and after each transformation. Then simply experiment
with different XSLT stylesheets to see which approaches offer the best performance.

Similar standalone tests can be written for various database access routines, key pieces of
business logic, and code that generates XML. Since JUnit reports the time spent in each unit test,
you may want to combine these performance metrics with meaningful unit tests.

Regardless of how these individual test routines are written, it is critical that the first runs are
ignored. This is because the results will be greatly skewed by Java class loading and initialization
time. A good approach is to execute the unit test once before recording the system time. Then
execute the test many thousands of times, recording the overall time at the end of the runs. The
average response time, calculated by dividing the total time by the number of runs, will be much
more accurate than taking a few isolated measurements.

Another point to consider is caching. In a real application, data may change with every single
request, making it difficult to cache the transformation result. Unit tests that repeatedly transform
the same file are not a good representation of real-world behavior because the processor may
cache the transformation result and report artificially high performance.

9.3.3 Using XSLT Processors Effectively

Measuring performance is the first step towards making Java and XSLT applications faster. Once
the bottlenecks have been located, it is time to fix the problems.

9.3.3.1 Stylesheet caching

As mentioned several times in this book, caching XSLT stylesheets is an essential performance
technique. JAXP includes the Tenpl at es interface for this purpose, and we already saw the
implementation of a stylesheet cache in Chapter 5. Table 9-4 illustrates the performance gains
seen when using the Tenpl at es interface to transform a small XML file repeatedly. For this test,
the same transformation is performed 100 times using various programming techniques.

Table 9-4. Benefits of caching

Processor No templates Templates Templates and cached XML
Xalan 2.0 71.8ms 45.9ms 39.2ms
SAXON 6.2.2 52.7ms 37.3ms 34.2ms

In the "No templates” column, the Tenpl at es interface was not used for transformations. As you
can see, this resulted in the slowest performance because the stylesheet had to be parsed from a
file with each transformation. In the next column, a Templates instance was created once and
reused for each transformation. As you can see, the performance increased substantially.

In the final column of the table, the XML data was read into memory and cached as a DOM
Document. Instead of reparsing the XML file with each request, the same DOM tree was cached
and reused for each of the transformations. This yielded a slight performance gain because the
XML file did not have to be read from the file system with each transformation.

Although these results seem to imply that SAXON is faster than Xalan, this may be a faulty
assumption. Performance can vary greatly depending on how large the input files are and which
features of XSLT are used. It is wise to test performance with your application before choosing
one set of tools over another.

9.3.3.2 Result caching

When the XML is highly dynamic and changes with each request, XSLT caching may be the best
one can hope for. But when the same data is requested repeatedly, such as on the home page
for your company, it makes sense to cache the result of the transformation rather than the XSLT
stylesheet. This way, the transformation is performed only when the XML or XSLT actually
change.

Example 9-15 presents a utility class that caches the results of XSLT transformations. In this
implementation, both the XML data and XSLT stylesheet must come from static files. If the
timestamp of either file changes, the transformation is performed again. Otherwise, a cached
copy of the transformation result is returned to the caller.

Example 9-15. ResultCache.java
package comoreilly.javaxslt.util;

i mport java.io.*;

i mport java.util.*;

i mport javax.xn.transform*;

i mport javax.xnl.transform stream *;

/**

* Autility class that caches XSLT transformation results in nenory.
*
* @uthor Eric M Burke
*/
public class ResultCache {
private static Map cache = new HashMap();

/**

* Flush all results fromnenory, enptying the cache.

*/

public static synchronized void flushAll () {
cache.clear();

}

/**
* Performa single XSLT transformation
*/
public static synchronized String transform String xm Fi |l eNaneg,
String xsltFileNanme) throws Transforner Exception {

MapKey key = new MapKey(xnl Fil eNane, xsltFileNane);

File xmMFile = new Fil e(xm Fi | eNane) ;
File xsltFile = new File(xsltFileNane);

MapVal ue val ue = (MapVal ue) cache. get (key);

if (value == null || value.isDirty(xmFile, xsltFile)) {
/1 this step perfornms the transfornation
val ue = new MapVal ue(xm File, xsltFile);
cache. put (key, val ue);

}

return val ue.resul t;

}

/1 prevent instantiation of this class
private ResultCache() {

}

FELELTIEEE i i rrrrrn
/'l a hel per class that represents a key in the cache map

FEEEEEEEEEr bbb bbby
static class MapKey ({
String xm Fi | eNane;
String xsltFileNang;

MapKey(String xm Fil eNane, String xsltFileNanme) {
this.xm Fil eNane = xml Fi | eNane;
this.xsltFileNane = xsltFil eNaneg;

}

public bool ean equal s(Obj ect obj) {
if (obj instanceof MapKey) {
MapKey rhs = (MapKey) obj;
return this.xm Fil eNane. equal s(rhs. xnm Fi | eNane)
&& this.xsltFileNane. equal s(rhs. xsltFileNane);
}

return fal se;

}

public int hashCode() {
return this.xnm Fil eNanme. hashCode() ~
t hi s. xsltFil eNane. hashCode();

}
}

NN NNy
/1l a helper class that represents a value in the cache nap

FEETTETEE bbb rrrrrngi
static class MapVal ue {
l ong xm Last Modified; // when the XM file was nodified
I ong xsltLastModdified; // when the XSLT file was nodified
String result;

MapVal ue(File xm File, File xsltFile) throws
Tr ansf or mer Excepti on {
this.xm Last Modified = xm File.lastMdified();
this.xsltLastMdified = xsltFile.lastMdified();

TransfornerFactory transFact =
Transf or ner Fact ory. newl nstance();
Transfornmer trans = transFact. newTransf ormer (
new StreanBSource(xsltFile));

StringWiter sw = new StringWiter();
trans. transfornmnew StreantSource(xm File), new
StreanResul t (sw));

this.result = swtoString();

}
/**

* @eturn true if either the XML or XSLT file has been
* modified nmore recently than this cache entry.
*/

boolean isDirty(File xmFile, File xsltFile) {
return this.xm LastModified < xm File.lastMdified()
|| this.xsltLastModified < xsltFile.lastMdified(

The key to this class isits t r ansf or m{) method. This method takes filenames of an XML file
and XSLT stylesheet as arguments and returns the transformation result as a St r i ng. If any
error occurs, a Transf or mer Except i on is thrown:

public static synchronized String transforn(String xm Fi | eNane,
String xsltFileNane) throws Transformer Exception {

The cache is implemented using a| ava. uti | . Map data structure, which requires key/value
pairs of data. The VapKey helper class is used as the key:

MapKey key = new MapKey(xm Fi | eName, xsltFileNane);

File xmMFile = new Fil e(xm Fil eNane) ;
File xsltFile = new Fil e(xsltFileName);

Next, the value is retrieved from the cache. Another helper class, VapVal ue, keeps track of the
transformation result and when each file was last modified. If this is the first request, the value will
be nul | . Otherwise, the i sDi rty() method determines if either file has been updated:

MapVal ue val ue = (MapVal ue) cache. get (key);

if (value == null || value.isDirty(xmFile, xsltFile)) {
/'l this step perforns the transformation
val ue = new MapVal ue(xm File, xsltFile);
cache. put (key, val ue);

}

return val ue.result;

}

As the comment indicates, constructing a new VapVal ue causes the XSLT transformation to
occur. Unless exceptions are thrown, the result of the transformation is returned to the caller.

When compared to the results shown earlier in Table 9-4, this approach to caching is much
faster. In fact, the average response time is less than a millisecond once the initial transformation
has been performed.

This approach is quite easy to implement for applications based on a collection of static files but
is significantly more difficult for database-driven applications. Since more dynamic applications
may generate new XML with each invocation, a generic utility class cannot simply cache the
result of the transformation. Stale data is the biggest problem with dynamic caching. When the
result of an XSLT transformation is stored in memory and the underlying database changes, the
cache must be refreshed for users to see the correct data.

Let's suppose that we want to add result caching to the discussion forum application presented in
Chapter 7. Since messages cannot be modified once they have been posted, this should be
fairly easy to implement for the View Message page. One easy approach is to keep a cache of a
fixed number of messages. Whenever a user views a message, the generated web page is
added to the cache. If the cache exceeds a specified number of messages, the oldest entries can
be flushed.

For more dynamic pages, such as the Month View page, the database must be queried to
determine when the most recent message was posted for that particular message board. If the

most recently posted message is newer than the cached web page, the transformation must be
performed again using the updated data. As you might guess, this sort of caching must be done
on a case-by-case basis, because it is very tightly coupled to the database design.

==~ Web applications relying on URL rewriting for session

— tracking may not be able to cache transformation results. This
is because, as outlined in Chapter 8, every URL must be
dynamically encoded with the | sessi oni d when cookies
are disabled.

As with any other type of optimization, the benefits of caching must be carefully weighed against
the costs of added complexity. The best approach is to analyze log files to see which pages are
requested most often and to focus optimization efforts there.

9.3.4 Writing Effective XSLT

A big performance hit can be incurred during the XSLT transformation process. For large XML
documents in particular, try to avoid situations where large portions of the tree must be processed
repeatedly. The / / operator can be particularly dangerous:

<xsl :apply-tenpl ates select="/.//nanme"/>

In this statement, the entire document is recursively searched for all <nane> elements, beginning
at the root. The XSLT processor has no way of knowing where <nane> might appear, so it must
check every node in the document. If the specific path is known, a more efficient approach is:

<xsl : appl y-tenpl at es sel ect ="/ conpany/ enpl oyee/ nane"/ >

Variables can also be used to improve performance. For example, key pieces of data may be
copied to the result tree several times. Do not do this each time the company owner's name must
be displayed:

<xsl : val ue- of sel ect ="/ conpany/ owner/ nane/ | ast"/>
<xsl:text> </xsl:text>
<xsl : val ue- of sel ect ="/ conpany/ owner/ nane/first"/>

Instead, assign the name to a variable once and reuse that variable throughout the stylesheet.
This has the added benefit of making the XSLT more readable:

<l-- output the value of the conpanyOwner variable -->
<xsl :val ue- of sel ect="$conpanyOmner"/>

Another common tip is to write inline code wherever possible. Instead of using <xs!| : appl y-
t enpl at es> to recursively process XML data, use <xsl| : val ue- of > to directly output the
current node. This approach may result in duplicate code, however; a key reason to use
templates is to modularize a stylesheet into reusable pieces of functionality. This is a good
example of the tradeoff between code maintenance and raw performance that developers are
often faced with.

Sorting within the XSLT may introduce performance problems, primarily because the entire node
set must be sorted before any content can be output to the result tree. If it is easy to pre-sort the
XML content using Java code, the XSLT processor may be able to transform the document using
less memory by outputting some of the result tree before the entire document is processed.

Finally, writing smaller XSLT stylesheets is a great way to improve performance. Cascading style
sheets (CSS) should be used whenever possible, because the CSS style instructions can be
stored in a separate file, thus keeping the XSLT and result tree much smaller. JavaScript

functions can also be placed in a separate file, eliminating the need to embed the JavaScript
code within the stylesheet.

CSS was used in this manner back in Chapter 7 for the discussion forum example. It is worth
mentioning again that CSS is used only for defining styles, such as font colors, indentation,
alignment, and colors. Many of these styles can also be defined directly in HTML, for instance:

<hl align="center">Sone Headi ng</hl>

By defining the alignment in a separate CSS file, however, the HTML is reduced to:
<h1>Sone Headi ng</ hl>

Because the HTML is now simplified, the XSLT stylesheet is also simplified. This is why CSS
complements XSLT so nicely and should be used whenever possible.

9.3.5 Interacting with EJB

Enterprise JavaBeans (EJB) objects are server-side components that encapsulate business logic
and access to data. Because EJBs execute inside of application servers, they are typically
accessed remotely using Java Remote Method Invocation (RMI) interfaces. This implies that
method calls to EJB components occur over a network connection; they are much slower than
local method calls within the same VM. For this reason, care must be taken when sending data to
and from the application server.

9.3.5.1 Sending XML from EJBs

From the perspective of Java and XSLT, the critical issue is determining where to produce XML.
There are basically two options available. The first is to produce the XML within the EJB
container, thus providing a pure XML interface to any client wishing to use the beans. For
instance, a bean may have the following additional methods that know how to produce XML:

public String getlLeader XM_() throws RenbteException;
public String get TeamvenbersXM.() throws RenoteException;
public String getProjectinformation() throws RenoteException;

Each of these methods simply returns a St r i ng that contains XML content.Figure 9-9
illustrates how this model works.

Figure 9-9. Generating XML in the EJB tier

EJB Conlainer Client

XML Text object serfalization XML Text

g ! |pomhb | st 1 ot XSLT
component, | APl [I [oor10101000111... cads3eids o ol

=/ Cust: <ot

Another variation on this theme is to use a helper class
whose sole responsibility