

Managing the Windows 2000 Registry

Copyright © 2000 O'Reilly & Associates, Inc. All rights
reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street,
Sebastopol, CA 95472.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly
logo are registered trademarks of O'Reilly & Associates, Inc. The
association between the image of an orangutan and the topic of the
Windows 2000 Registry is a trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book,
the publisher assumes no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

Managing the Windows 2000 Registry

Preface
 Keys and Values and Classes, Oh My!
 Who's This Book For?
 How This Book Is Organized
 Conventions Used in This Book
 Comments and Questions
 Acknowledgments

1. A Gentle Introduction to the Registry
 1.1 A Brief History of the Registry
 1.2 What Does the Registry Do?
 1.3 Advantages Offered by the Registry
 1.4 Registry Zen

2. Registry Nuts and Bolts
 2.1 How the Registry Is Structured
 2.2 What Goes in the Registry
 2.3 Getting Data In and Out

3. In Case of Emergency
 3.1 Don't Panic!
 3.2 Safety Strategies
 3.3 All About Emergency Repair Disks
 3.4 Backing Up the Registry
 3.5 Restoring a Backed-up Registry

4. Using RegEdit
 4.1 Know Your Limitations
 4.2 Learning the RegEdit Interface
 4.3 "Just Browsing, Thanks"
 4.4 Connecting to Other Machines' Registries
 4.5 Searching for Keys and Values
 4.6 Printing Registry Contents
 4.7 Working with Keys and Values
 4.8 Exporting and Importing Data
 4.9 RegEdit Command-Line Options

5. Using RegEdt32
 5.1 How RegEdt32 and RegEdit Differ
 5.2 Learning the RegEdt32 Interface
 5.3 Browsing with RegEdt32
 5.4 Remote Registry Editing
 5.5 Searching for Keys
 5.6 Saving and Loading Registry Keys
 5.7 Printing Registry Contents
 5.8 Editing Keys and Values
 5.9 Registry Security Fundamentals
 5.10 Securing Registry Keys in Windows 2000
 5.11 Securing Registry Keys in Windows NT

6. Using the System Policy Editor
 6.1 All About System Policies
 6.2 Introducing the System Policy Editor
 6.3 Managing Policies with POLEDIT
 6.4 Distributing Policies
 6.5 What's in the Standard Policy Templates
 6.6 Picking the Right Policies

7. Using Group Policies
 7.1 What Are Group Policies?
 7.2 Introducing the Group Policy Snap-in
 7.3 Managing Policies
 7.4 Distributing Policies
 7.5 What's in the Standard Policy Templates?

8. Programming with the Registry
 8.1 The Registry API
 8.2 The Shell Utility API Routines
 8.3 Programming with C/C++
 8.4 Programming with Perl
 8.5 Programming with Visual Basic

9. Administering the Registry
 9.1 Setting Defaults for New User Accounts
 9.2 Using Initialization File Mapping
 9.3 Limiting Remote Registry Access
 9.4 Fixing Registry Security ACLs in Windows NT
 9.5 Adding Registry ACLs to Group Policy Objects
 9.6 Encrypting HKLM\SAM with SYSKEY
 9.7 Miscellaneous Good Stuff
 9.8 Using the Resource Kit Registry Utilities
 9.9 reg: The One-Size-Fits-All Registry Tool
 9.10 Spying on the Registry with RegMon

10. Registry Tweaks
 10.1 User Interface Tweaks
 10.2 Filesystem Tweaks
 10.3 Security Tweaks
 10.4 Performance Tweaks
 10.5 Network Tweaks
 10.6 Printing Tweaks

11. The Registry Documented
 11.1 What's Here and What's Not
 11.2 HKLM\HARDWARE
 11.3 HKLM\SOFTWARE
 11.4 HKLM\SYSTEM
 11.5 HKU
 11.6 HKCR
 11.7 HKCU
 11.8 HKCC
 11.9 HKDD

A. User Configuration Group Policy Objects
 A.1 Administrative Templates

B. Computer Configuration Group Policy Objects
 B.1 Windows Settings
 B.2 Administrative Templates

Colophon

Preface

Keys and Values and Classes, Oh My!

Who's This Book For?

How This Book Is Organized

Conventions Used in This Book

Comments and Questions

Acknowledgments

Keys and Values and Classes, Oh My!

The Registry scares people. Practically every Windows NT user or administrator has
some horror story of the damage done to a machine by careless Registry editing.
Microsoft doesn't try to discourage this perception, either; the articles in their
Knowledge Base, as well as documentation in the various resource kits, is liberally
peppered with warnings about the dire consequences of screwing up something vital if
you make a mistake while editing the Registry.

While making a mistaken Registry edit can indeed send your machine to Blue Screen
of Death territory quick as a wink, there's no reason to be afraid of the Registry any
more than you'd be afraid of a chainsaw, your car, or a high-speed lathe. If you know
how to safely handle any of those inanimate objects, you can do much more work
with them than you can manually.

This book teaches you how to safely use the Registry; how to administer, back up,
and recover Registry data on computers running Windows 2000, both locally and over
the network; and how to use the Registry editing tools Microsoft supplies, and when
you should--and should not--do so. Much of the material also applies to Windows NT,
since there are more similarities than differences between the two.

Who's This Book For?

This book is for anyone running Windows 2000, particularly people responsible for
administering networks of Windows 2000 computers or providing technical or help
desk support. It's also for programmers who are familiar with the Win9x Registry and
its workings but are making the move to the similar-looking but internally different
Windows NT/2000 world.

To get the most out of this book, you should be familiar with the Windows 2000 user
interface; you should know how to right-click, run programs, and so on. Some
background as a Windows NT or Windows 2000 administrator would be useful, but
it's not required.

How This Book Is Organized

The book is organized into 11 chapters:

Chapter 1, locates the Registry in the evolution of Windows systems. After a
historical discussion of INI files and their traditional role as the repositories of
configuration information, the chapter offers an apologia for the Registry, its
philosophy, and its advantages.

Chapter 2, discusses the keys, subkeys, values, and hives that comprise the Registry
structure.

Chapter 3, provides the compendium of caution. The major topics of discussion
include the creation of emergency repair disks and strategies for effectively backing
up and restoring the Registry.

Chapter 4, is a complete guide to the original Registry editor.

Chapter 5, is a similar guide to Microsoft's 32-bit Registry editor.

Chapter 6, explains the roles of system policies and the management of them with
POLEDIT.

Chapter 7, describes Windows 2000's group policy object (GPO) mechanism and
explains how to use it to apply policy settings.

Chapter 8, presents the Registry API and follows up with sections on how to
administer the Registry with programs implemented in C++, Perl, and Visual Basic.

Chapter 9, covers a number of vital topics, including user accounts, INI file mapping,
remote access, security, and a number of Resource Kit utilities.

Chapter 10, is a collection of tips and tricks you can use to bring your own system's
Registry under control.

Chapter 11, is a snapshot of the Registry keys created by the Windows 2000 and NT
systems.

Appendix A, describes the group policy settings applicable to user accounts. These
include desktop lockdown and security policies.

Appendix B, describes the group policy settings that can be applied to computers,
including the security and software installation policy components.

Conventions Used in This Book

This book uses the following typographic conventions:

Constant width

Indicates a language construct such as a data type, a data structure, or a code
example.

Constant width italic

In syntax statements, indicates placeholder elements for which the user must
provide actual parameters.

Italic

Indicates filenames, URLs, commands, variable names, utilities, and function
names. Italic is also used to highlight the first mention of key terms.

Registry pathnames can get long and unwieldy. To save space, they are set in roman
text, and the top-level keys are abbreviated as follows:

HKCR HKEY_CLASSES_ROOT
HKCU HKEY_CURRENT_USER
HKLM HKEY_LOCAL_MACHINE

HKU HKEY_USERS
HKCC HKEY_CURRENT_CONFIG
HKDD HKEY_DYN_DATA

This icon marks text describing NT4-specific features that still have relevance in a
a Windows 2000 context

This icon designates a note, which is an important aside to the
nearby text.

This icon designates a warning relating to the nearby text.

Comments and Questions

The information in this book has been tested and verified, but you may find that
features have changed (or you may even find mistakes!). You can send any errors you
find, as well as suggestions for future editions, to:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, where examples, errata, and any plans for future
editions are listed. The page also includes a link to a forum where you can discuss the
book with the author and other readers. You can access this page at:

http://www.oreilly.com/catalog/mwin2reg/

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and
the O'Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments

When I first approached Robert Denn at O'Reilly & Associates about revising
Managing the Windows NT Registry to cover Windows 2000, neither of us realized
what we were getting into. The devil is always in the details, and Windows NT and
Windows 2000 are superficially similar in lots of ways--but then the details rear their
ugly heads.

As with my other O'Reilly books, I was fortunate to work with a team of true
professionals at O'Reilly's Cambridge office, led by the tireless (and very patient)
Robert Denn. Steven Abrams was the editorial assistant for this book.

This book benefited from the technical knowledge and writing skill of two other
writers. Tom Fronckowiak, cryptographer to the stars, wrote Chapter 7 and revised
Chapter 10 and Chapter 11 when my schedule began to oppress me. Likewise, Greg
Bacon applied his considerable Perl talents to revising the Perl coverage in Chapter 8
so that it was more in keeping with an O'Reilly book; something my own meager Perl
skills would have prevented. Tye McQueen, author of the Win32::TieRegistry
module, generously allowed me to use his documentation as a base for the Perl
discussion.

The technical review process for this book took longer than usual, in large part
because of the volume, and quality, of technical review comments I got back. I'd like
to thank my friend Glenn Fincher for taking time out of his busy schedule to review
the book; in addition, my thanks go to the other reviewers, Jon Forrest, Cory L. Scott,
David White, and Adam Wood.

I would be remiss if I didn't mention that this book was entirely written on a variety of
Apple Power Macintosh and PowerBook computers. In fact, I even wrote the code in
Chapter 8 on the Mac using Metrowerks CodeWarrior, then tested and debugged it on
a "real" PC running Windows 2000. I use and manage Windows NT and 2000 every
day, but I'm a more productive writer with the Mac--go figure.

I am indebted to David Rogelberg and the staff of StudioB Productions, the literary
agency that represents me. David makes the easy tasks happen invisibly and handles
the hard tasks without ever breaking a sweat, raising his voice, or appearing rattled in
the least. I appreciate his negotiating skills, his extensive web of industry contacts,
and his role as the voice of reason.

Lastly, I could not have even considered this project without the love, support, and
help of my wife Arlene and my two sons, David and Thomas. I am truly blessed to
have such a loving and supportive family.

Chapter 1. A Gentle Introduction to the Registry

The Windows 2000 Registry plays a key role in making Windows 2000 work. It
serves as a central data repository, and it's involved in everything you do with
Windows 2000 computers, from the initial boot sequence to logging in and running
applications and services. For such an important component, though, there is
surprisingly little documentation that explains how the Registry works, what's in it,
and what it's good for. Even seasoned Windows NT administrators who are making
the leap to Windows 2000 admit to being a little unsure of the Registry's inner
workings.

Part of the Registry's mystery comes from the fact that its data is stored in a special
format that can be read only with the tools and programming interfaces routines
Microsoft provides; part comes from the strict warnings against Registry tampering
plastered on page after page of Microsoft (and third-party) documentation, books, and
web pages. However, since the Registry's an integral part of Windows 2000, you
should be comfortable using, repairing, and modifying it if you want to administer
Windows 2000 systems. The overall goal of this book is to demystify the Registry's
workings and help you understand when, how, and why Windows 2000 services,
applications, and operating-system components use it so you'll be better able to
administer the machines under your care.

1.1 A Brief History of the Registry

Before I plunge into the nuts and bolts of working with the Registry, let me set the
stage by explaining how the Registry gained its starring role in Windows 2000.
Besides being good preparation for amazing your friends with computer-industry
trivia, the Registry's path to fame illustrates some of its strengths and weaknesses.

In the beginning, of course, there was no Registry. MS-DOS applications were
responsible for storing their own persistent settings in configuration files. The
operating system had its own set of configuration files; the most famous of these files
are config.sys andautoexec.bat, which control hardware and operating system settings.

At first blush, this approach may seem reasonable. After all, applications' settings are
generally private, and they don't usually affect other programs. Most components of
MS-DOS itself weren't configurable anyway, so there was little need (or demand) for
a better configuration mechanism. If the configuration data for a single application
was lost or corrupted, restoring it was reasonably simple and could be done without
affecting anything else on the computer.

1.1.1 Windows 3.0

Windows 3.0 improved on the MS-DOS approach by introducing the idea of a single,
systemwide set of operating-system preference and settings data. In addition to DOS'
configuration files, Windows 3.0 itself added four initialization files (progman.ini,
control.ini, win.ini, and system.ini) that contained information about the system's
hardware configuration, device drivers, and application settings. These files quickly
became known as INI files, after their extension.

Microsoft chose a simple, human-readable ASCII format for INI files; not only did
this ease the task of writing programs to use these files, but it also made it possible for
end users to inspect and change their contents. One of the important features
Microsoft wanted to deliver in Windows 3.0 was Macintosh-like customization; users
wanted to be able to set their own color schemes, fonts, desktop backgrounds, and so
on. By default, the Windows File Manager included a file mapping so that double-
clicking an INI file would open it in the Notepad text editor, as shown in Figure 1.1.

Figure 1.1. Simple INI file

In addition to storing Windows' settings in INI files, Microsoft provided a set of API
routines (often called the private profile API) that gave programmers a way to create
their own initialization files. The theory was that application programmers could use
INI files to store private settings that were specific to their applications. Settings that
could be useful to several applications--for example, lists of which fonts were
installed on a computer--lived in the system's INI files, while application-specific
settings were in the application's private INI files. Application programmers
enthusiastically embraced this idea, and before long most applications used INI files
for their private settings.

However, INI files weren't perfect; in fact, they suffered from some fairly serious
weaknesses:

They were easily editable

An old quote from the Unix fortune program says that you can make software
foolproof, but you can't make it damn-fool proof. INI files quickly provided a
concrete example of this old saw; because INI files were editable, users felt
free to edit them. This flexibility did make it easy for users to customize their
environments or make necessary changes; it also made it much easier for a
user to break a single application, an entire service (such as printing or file
sharing), or Windows itself by making an accidental or ill-informed change to
an INI file.

They were easy to break

INI files provided a one-time link between a program and its settings; they
weren't dynamic enough to reflect changes in the machine's configuration or
environment. For example, many presentation graphics programs built a list of
available fonts during their installation process. If you later added—or, worse,
remov—fonts, the presentation package might or might not notice the changes,
meaning either that you couldn't use newly installed fonts or the package
could crash while trying to use fonts the application thought were still
available. This lack of flexibility was partly due to the fact that Windows
didn't have any way to be notified when something on the computer was
changed; without these alerts, there was no way to tell when INI file data
needed to be updated.

They led to Balkanization

Microsoft didn't provide any explicit guidelines as to where INI files should be
stored or what should go in them; in the absence of these rules, application
programmers felt free to put INI files in various locations. Some used the
Windows directory itself, while others stored their INI files in the same
directory as the application or in some other seemingly logical location. To
compound the problem, some applications put their private data directly into
win.ini, while others kept their own private copies of such things as font lists
and printer settings that were explicitly supposed to be shared between
applications.

They had implementation limits

INI files had to be smaller than 64 KB in length; in addition, the Windows
profile API calls blissfully ignores all but the first instance of settings with the
same name within one section of the file. An even more serious limit was that
INI files were inseparably bound to the original PC concept of "one user, one
machine"; there was no way to easily move settings around so that users who
needed to use different computers could keep their preferred settings.

1.1.2 The First Registry: Windows 3.1

Windows 3.1 added several new features that improved interapplication integration
and ease of use. Chief among them were two new technologies, Object Linking and
Embedding (OLE) and drag and drop. Both features required an up-to-date, correct
database of program locations and capabilities. For example, object embedding could
only work if the source and destination applications had some way to communicate
exactly what type of data was being embedded, and the File Manager required access
to a database of mappings to associate files with the applications that created them.

To provide this information, Windows 3.1 included the first Windows registration
database, which quickly became known as the Registry. This Registry offered
solutions to several of the problems posed by INI files:

The Registry provided a single place to store data

Instead of segregating data into separate INI files, both system and
application-specific configuration data could be stored in the Registry. In the
original Windows 3.1 implementation, all Registry data was stored in a single
file named reg.dat. Keeping system and application settings in one place
reduced both the number and complexity of INI files; in addition, having a
one-stop system for storing preferences and setting data made it possible to
better share information such as font lists between different applications.

The Registry wasn't as easy to edit

INI files were plain text, so it was easy to edit them. This was both a blessing
and a curse; users could make changes when necessary, but they were often
prone to making unnecessary or instability-causing changes. The data in
reg.dat was stored using an undocumented binary format, and the only way
users could edit it was with the Windows 3.1 Registry editor. Windows 3.1
also introduced the first version of the Registry access API, thus making it
possible for programmers to read and write Registry data directly from their
programs.

The Registry had a clearly defined hierarchical structure

The structure of INI files was haphazard at best: sections could appear in any
order within the file, and values could appear anywhere in the section. There
was no good way to group related settings, especially when they might appear
in different files!

However, the Windows 3.1 Registry still wasn't perfect. It supported only a single
hierarchy for storing all system and application settings, and the reg.dat file was still
subject to the 64-KB size limitation that hampered INI files. In addition, Windows 3.1
itself didn't improve on the problem of synchronizing the Registry's contents with the
state of software, fonts, and other items actually loaded on the computer, so there was
no guarantee that the Registry, the INI files, and the actual software loaded on the
computer would stay in synch. Finally, the Windows 3.1 Registry didn't offer any
solution to the problem of allowing users' settings to move with them to different
computers on a network, or even allowing more than one user to keep settings on a
single machine.

Despite these shortcomings, the Windows 3.1 Registry introduced several features
that carried over to its successors. First and foremost is the concept of the Registry's
hierarchy, which looks much like the structure of a Windows directory tree. In a
filesystem, the topmost item is a root directory, which can contain any number of files
and folders. Each folder can in turn contain nested subfolders or files, and you can
uniquely identify any object on the disk by constructing a full pathname that points to
it; for example, c:\users\paul\proposal.doc and c:\program
files\eudora\attach\proposal.doc are different files, even though they share the same
name. The topmost item in the Registry's structure (corresponding to a root directory
in a filesystem) is a root key . All other keys in the Registry are children of one of the
root keys (although Windows 3.1 supported only one root key, named
HKEY_CLASSES_ROOT). Each key can contain either values (the Registry

equivalent of a data file) or nestedsubkeys , equivalent to nested folders. Just as with
files and folders, you can uniquely identify a Registry key by building a full path to it.

In addition to providing a hierarchy for keys, the Windows 3.1 Registry introduced
the idea that keys have names and values. The key's name (for example,
DisableServerThread) can be combined with the full path to the key to identify it (as
in
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Print\DisableServer
Thread). The value of the key holds whatever data belongs to the key; the actual
contents vary from key to key.

1.1.3 Windows NT 3.1, 3.5, and 3.51

Windows NT was introduced in 1993 as Microsoft's industrial-strength operating
system. It was expressly designed to compete with Unix workstations and servers;
since these machines easily supported multiple users who could take turns using a
single computer, shared workspaces, and networkwide configuration sharing,
Microsoft decided that NT needed to do all these as well. To accomplish these goals,
NT required a more flexible and capable Registry than that in Windows 3.1, so they
kept the basic concepts but changed both the implementation and capabilities to match
NT's requirements.

As noted before, the NT Registry is key to everything NT does: from the time the
machine boots until you shut it down, applications, drivers, and services depend on
the data they get from the Registry to do their jobs. Since the Registry was going to be
ubiquitous, some implementation changes were needed. First to go was the old 64-KB
limit; NT Registry files can grow as large as needed. Instead of using a single file,
NT's Registry data is split into a number of files, but they all appear as a single set of
keys. To handle the wider variety of data required to support the new system
components and features, Microsoft split the single hierarchy of the Windows 3.1
Registry into several root keys (see Chapter 2, for details on these keys). In addition, a
great deal of effort went into optimizing the Registry-handling code to keep Registry
performance from being a systemwide bottleneck.

The operating system's underlying security model could easily take up a book on its
own, but I'll boil it down to its bare essence: every object in a Windows 2000 machine
has a unique security ID, is owned by someone, and can have its own access control
list (ACL) that determines who can read, modify, and remove the object. Most system
resources--files, devices, the Win32 subsystem, and Registry keys, for example--are
objects that have unique identifiers; this identifier may have a security identifier
attached to it or not, depending on the type of object. The Registry itself is an object,
as are all its keys; this means that each root key or subkey can have an ACL
associated with it, so it's possible to grant very fine-grained control over which users
and system components can read and modify keys. This security model continues in
Windows 2000, by the way.

Another key feature of Windows NT was its ability to allow multiple users to share a
single computer, with complete security partitioning between files and objects
belonging to different users. The Security Reference Monitor, which is charged with

enforcing that partitioning, depends on the presence of object-specific security access
tokens bound to these objects.

NT also provided tools that could remotely access the Registry on one computer from
another; for example, a system administrator could use his machine to view and
modify the Registry on any machine to which he had administrator access. This made
it easier for administrators to troubleshoot and fix Registry-related problems, since
they could often make an initial diagnosis without leaving their desks.

Microsoft encouraged developers writing NT software to use the Registry instead of
INI files. They set a fairly good example by making most NT system components and
applications use the Registry themselves; as an added incentive, they provided a
special facility that lets older Windows 3.x programs use the Registry instead of an
INI file automatically by creating a copy of the INI file in the Registry.

To top off these changes, the original version of NT included a brand-new, 32-bit
Registry editor, RegEdt32 (see Figure 1.2). Each root key appears in its own child
window; in addition to showing keys in a familiar tree format, RegEdt32 adds
commands for connecting to remote computers' registries, viewing and changing
access controls on keys, and exporting and importing Registry entries. (All these
commands are explained in Chapter 5.)

Figure 1.2. RegEdt32, the NT Registry editor

NT 3.5 and 3.51 didn't make any fundamental changes to the Registry's
implementation or behavior; they did, however, add new keys to the Registry to
support new features. Different versions of NT have different sets of Registry keys;
for example, some keys that were part of the 3.51 Registry aren't in 4.0; conversely,
4.0 adds a number of new keys that weren't present (and won't be recognized by) NT
3.51.

1.1.4 Windows 95 and 98

Windows 95 introduced a new interface to the Windows world; as it turns out, many
of these interface changes, and the underlying Registry keys, made it into Windows

NT 4.0. There are a number of architectural similarities between the Windows NT
3.51 and Windows 95/98 Registries. Both support multiple root keys, and both store
their data in several different files instead of Windows 3.1's single file. The Win9x
Registry is also tightly integrated with--and heavily used by--all components of the
OS. However, the underlying implementation is very different between the two; in
fact, there's no Microsoft-supported way to migrate data between the two operating
systems' Registries or share data between them. The basic ideas remain the same,
though. Win95 has the same set of root keys from NT 3.51, plus two new ones:
HKEY_CURRENT_CONFIG and HKEY_DYN_DATA. The overall organization of
the two Registries is similar. The Win95 Registry doesn't support NT-style security
(though you can enable remote access), but it does support hardware and user profiles
in much the same way. See Inside the Windows 95 Registry, by Ron Petrusha
(O'Reilly & Associates) for a complete dissertation on the guts of Win95's Registry
implementation.

1.1.5 Windows NT 4.0

NT 4.0 combined the underpinnings of NT 3.51 with the Win95 user interface; given
this heritage, it's not surprising that NT 4.0 has a large number of Registry keys with
names identical to Win95 keys. The primary Registry-related change between NT 4.0
and its predecessors was the addition of two new root Registry keys. In NT 4.0, a
single machine may have several hardware profiles that reflect different
configurations; for example, a laptop computer running NT might have one profile
that includes drivers for devices in a docking station (for use when it's docked) and
another, with different drivers, for when it's on the road.
HKEY_CURRENT_CONFIG provides access to the current hardware and driver
configuration, but what's in that configuration depends on which hardware profile the
user chooses during the boot process. HKEY_CURRENT_CONFIG was included in
NT 4.0 so that Win95 applications that use it would be able to run under NT 4.0.
HKEY_PERFORMANCE_DATA provides a root key for information that's
generated on demand, such as Performance Monitor counter data. This dynamic data
isn't stored in the Registry, but applications can access it locally or remotely by using
the standard Registry API calls.

In addition to these changes, NT 4.0 fully integrated the Win95 concept of system
policies. These policies control what users may and may not do on their machines; for
example, a policy can specify that users can't use the Run command in the Start menu
and that they can't move icons around on the desktop. These policies can apply to
individual users or computers, members of defined groups, or all machines or users in
an NT domain, and they can be applied against the user's settings or against the
machine's settings in HKEY_LOCAL_MACHINE. In Windows NT, policies are
actually implemented as Registry settings; the System Policy Editor (shown in Figure
1.3) provides a friendlier (and safer!) alternative to the Registry editor for building
and distributing system policies to one or many computers in a domain or workgroup.

Figure 1.3. SPE for managing small- or large-scale policies

1.1.6 Windows 2000

Windows 2000 was originally called Windows NT 5.0. Given that fact (which
Microsoft is trying hard to obscure), perhaps it's not surprising that not much in the
Registry is different between NT 4.0 and Windows 2000. Early rumors said that the
metabase, used by the Internet Information Server (IIS) product family, would
supplant the Registry in Windows 2000, but neither the metabase nor the Active
Directory have completely replaced the Registry. The Windows NT Registry editors
survive virtually unchanged, as do the application programming interfaces programs
use to read and write Registry data (though there are some new additions and
extensions). There are a number of internal changes to the
HKEY_LOCAL_MACHINE and HKEY_CLASSES_ROOT hives, and a number of
Windows NT 4.0 keys have been moved or superseded.

The system facilities that use the Registry, however, are another matter. The NT 4.0
System Policy Editor is still present, but it's been largely replaced by Windows 2000's
support for group policy objects (GPOs; discussed in more detail in Chapter 7). GPOs
store their settings in the Active Directory, though settings in a policy may actually be
applied to the user or computer portions of the target computer's Registry.

1.2 What Does the Registry Do?

The concept of a central repository that holds all the system's configuration data may
strike you as a boon (since it keeps applications and services from scattering their
settings in hundreds of small files buried in odd locations) or a danger (since it
provides a single point of failure). The truth is somewhere in between these extremes.
The Registry provides a neat, tidy way for applications, device drivers, and kernel
services to record configuration data. That data can be used by, and easily shared
between, the original owner or by other system components. At the same time, if the
Registry is damaged, the effects can range from not being able to use a single
application to not being able to boot Windows 2000 at all. (Chapter 3, details the
backup and recovery tools you can use to keep this single point of failure from
causing trouble.)

1.2.1 It Holds Lots of Important Stuff

The chief role of the Registry in Windows 2000 is as a repository for configuration
data. In this role, it acts as a sort of super-librarian; system components can look for
their own configuration information in the Registry, then use what they find to control
how they interact with other system components. The "important stuff" stored in the
Registry falls into six separate categories; each category's data is gathered during a
particular stage of the boot process, as shown in Figure 1.4.

Figure 1.4. Registry data exchange

1.2.1.1 Hardware configuration data

As part of the Windows 2000 boot loader's normal execution, it runs a program called
ntdetect; as its name implies, ntdetect figures out what hardware exists on the
computer. This configuration data is basically an inventory of five things:

• The number, kind, and type of system processors
• The amount of system physical RAM
• The types of I/O ports available
• The bus types (PCI, EISA, ISA, VLBus, etc.) the system contains
• The kinds of plug-and-play devices present
• The devices found on those system's buses

Once all this information has been gathered, ntdetect stores it in memory and maps it
to the Registry's HKEY_LOCAL_MACHINE\HARDWARE subtree so that the
Windows 2000 kernel and device drivers have access to it. No hardware configuration
information is written to disk, because at the time the kernel loads, it the needed

drivers won't have been loaded yet! (However, hardware profiles' configuration
information can be stored on disk; the profile tells the device loader what devices to
configure after it's finished detecting hardware.) Because knowing the low-level
details of the hardware is critical to the kernel, this detection phase has to happen first.
Unlike the Windows NT 4.0 version, the Windows 2000
HKEY_LOCAL_MACHINE\HARDWARE subtree can be dynamically modified
after the machine is booting; this facility supports the dynamic loading and unloading
of device drivers, which is required for proper support of Universal Serial Bus (USB)
and FireWire/IEEE-1394 devices.

1.2.1.2 Driver parameters and settings

After the hardware detection phase, the boot loader loads the Windows 2000 kernel,
which handles the difficult work of finding the right driver for each device installed in
the computer. The kernel can load device drivers in three different places. Drivers that
are set to load during the boot phase load immediately after the kernel. These drivers
are typically low-level drivers that provide basic services to other drivers, such as the
drivers required to support PCMCIA cards and SCSI disk drives. Once those drivers
have loaded, the spiffy new Windows 2000 loading screen (complete with a progress
bar at the bottom) appears; in addition to the other things happening during this boot
phase, the kernel also loads any drivers whose load state is set to "system." These
drivers, which are usually mid-level components such as the CD-ROM driver,
normally require the presence of one or more boot drivers such as the IDE, SCSI, or
ATAPI drivers. Once Windows 2000 has started its GUI, the logon dialog appears,
and the kernel begins loading all drivers marked as "automatic." Automatic drivers
can be loaded as a result of some system action or automatically as part of the GUI
startup. If the system has previously detected a new USB or IEEE-1394 device, it can
attempt to load the matching driver at this point. If no matching driver is found, the
Add New Hardware wizard can be run after a user logs on.

No matter where it loads in the boot process, each driver makes heavy use of the
Registry during its initialization. As each driver loads, the kernel uses the Registry for
three things. First, the kernel's driver loader walks through the hardware configuration
inventory to figure out which driver to load for each device. Second, once Windows
2000 identifies the right driver for a device, the driver starts; as part of its startup, the
driver claims the device it "owns" by marking it as owned in the Registry. Finally, the
driver reserves whatever machine resources it needs; for example, the generic
SoundBlaster16 driver provided as part of Windows 2000 attempts to reserve an IRQ,
port address, and DMA block to talk to the sound card. Which values it requests
depends on the hardware configuration information gathered by ntdetect. Once the
driver has staked out the device and resources it needs, the Registry reflects the
driver's reservations so other drivers that load later in the boot sequence won't try to
seize them. Each of these steps uses a separate subtree under
HKEY_LOCAL_MACHINE\HARDWARE; see the specific subkey mappings in
Chapter 2 for complete details on which subkeys correspond to each phase.

1.2.1.3 Dynamic data

Actually, no dynamic data is stored in the Registry at all! Instead, the kernel intercepts
requests for subkeys of the HKEY_PERFORMANCE_DATA key and returns the

requested data directly. Because the data for this key is assembled on demand and not
written to disk, HKEY_PERFORMANCE_DATA doesn't show up in the Registry
editor. This is less of a problem than it might seem, since that data isn't directly of use
to you anyway. The Windows 2000 performance monitoring tools (and, of course,
kernel components) can get to it when needed.

1.2.1.4 User profiles and user-specific settings

From its inception, Windows NT supported the idea that more than one person could
use a single computer. Each user on a Windows 2000 or NT machine (whether it's a
workstation or a server) has her own profile that controls when, how, and whether she
can log on; what scripts or programs are executed at logon time; and what she can do
once logged on. In addition, the user's profile stores the contents of her Start menu,
the appearance of the desktop, and other look-and-feel settings. The profile's actually
a composite of the data from several different subkeys in the Registry, including
security account manager (SAM) data for the user, plus a number of settings scattered
around in different places in the Registry. To users, however, it looks like it's all one
seamless collection of data; your workspace magically reappears when you log onto
any computer in your domain.

In earlier versions of NT, these profiles were only usable on one machine--you and
your officemate could share a PC in your office, but if you had to go down the hall to
use another machine, your profile wasn't available, and you'd be stuck with an
unfamiliar workspace. To solve this problem, NT 4.0 included support for two new
types of profiles: roaming and mandatory. In many environments (such as college
computing labs or workstation clusters in an engineering office), it makes sense for a
user's settings to be kept on a central server and downloaded to whatever machine the
user actually logs onto. This makes it possible for a user to sit down at any machine,
not just the one at her desk, and go right to work. Roaming profiles make this
possible; when you log onto a machine in a domain that uses roaming profiles, your
profile is fetched from the server and cached in the local machine's Registry.
Mandatory profiles work the same way, but with a twist: by renaming an ordinary
profile with a .man extension, the system applies the policy automatically and restricts
the end user's ability to change its settings. In practice, this means that administrators
can build profiles that configure users' workspaces a certain way and don't allow users
to change them--a great help for environments where lots of people need to share
machines.

1.2.1.5 System and group policies

Besides the user's profile, other Windows 2000 settings can find their way into the
Registry. For computers that are part of an Active Directory domain, GPOs largely
supersede the system policy mechanism that defines and distributes policies for
Windows NT 4.0 clients. You still use the native Windows NT 4.0 System Policy
Editor (SPE) to set policies for Windows NT 4.0 and 9x machines in your Windows
2000 domains; you also use it to create policies for Windows 2000 machines that
aren't part of an Active Directory domain.

GPOs are set using the group policy object editors (discussed more in Chapter 7)
instead of SPE. That's not the only difference: while system policy settings are

"sticky" (persistent and hard to remove, not unlike an old piece of bubble gum), GPO
settings are applied in special areas of the Registry dedicated for that use. This makes
them easy to reverse or remove, since reversing a setting in the policy automatically
applies that setting to whatever machines or user accounts it's targeted to. It's possible
to attach an SPE template file to a GPO, offering the best of both worlds by allowing
you to use the same template files (such as the ones included with Office 2000) for
Windows 9x/NT and Windows 2000 clients.

1.2.1.6 OLE, ActiveX, and COM

Windows 3.0 introduced the concept that a file's extension can be used to
automatically figure out which program created it. Adding these file associations to
the Windows File Manager meant that Windows users could double-click on a data
file to launch the application that created it and open the file.[1] In Windows 3.0, these
associations were kept in the win.ini file, but in Windows 3.1 and later, they're stored
in the Registry instead. Windows 95 and NT 4.0 extend the concept of associations to
include information about the kind of data stored in the file, too; this is especially
useful for figuring out what to do with data downloaded by a web browser.

[1] This is, of course, only one of the many Macintosh features Microsoft "adopted" as part of the Windows GUI.
While reading the rest of this book, see how many others you can spot.

Windows 3.1 also marked the debut of Object Linking and Embedding, or OLE. OLE
was designed to allow users to build compound documents that contained several
different types of data. For example, you could create a Word document and embed
an Excel chart and an Imagineer Technical[2] mechanical drawing in it, then edit either
of the embedded objects without leaving Word using what Microsoft called in-place
activation (IPA). IPA required a large amount of new information to work; to start
with, there had to be a list of all the types of data that could be embedded in a
document, plus some way to figure out which program to run when the user wanted to
create a particular kind of data object. The original Windows 3.1 Registry had only
one root key, HKEY_CLASSES_ROOT; its purpose in life was to store the data OLE
needed to function.

[2] Imagineer Technical is a little-known but very cool 2D drafting and technical illustration package from
Intergraph. I used to work on its OLE support code, so I still have a soft spot for it.

In 1993, Microsoft started touting the Component Object Model, or COM, as the
wave of the future. (The combination of COM and OLE has since been retitled
ActiveX; you've probably heard of that by now.) The basic idea behind COM is that
developers can break their software down into lots of little, independent objects that
communicate with each other via COM interfaces.[3] As with OLE, though, COM
requires still more new data to make it work. Each type of object has to have its own
unique ID so the system can tell them apart; in addition, the system has to somehow
keep track of which interface methods a particular object supports (especially since
COM objects can pass commands back and forth). ActiveX controls, which can be
embedded in web pages, Office documents, and other kinds of documents, have the
same requirements; the system has to be able to turn the unique class ID into the name
of the program it should run to create, draw, or edit the object. All this data (and more
besides) lives under the HKEY_CLASSES_ROOT subtree.

[3] If you really want more details, try Inside OLE, by Kraig Brockschmidt (Microsoft Press) or ActiveX Controls
Inside and Out, by Adam Denning (Microsoft Press). Neither are recommended for the faint of heart.

The primary change in Windows 2000 is that the settings in
HKEY_CLASSES_ROOT are now split into two categories. In the old-style scheme,
both file associations and MIME type mappings are stored in a single Registry file.
The default permission settings for HKEY_CLASSES_ROOT allow any user on a
machine to change these settings. This is a bad idea for two reasons. First, users may
want their own MIME type mappings. For example, two users who share a
workstation might disagree on whether Internet Explorer or Netscape is the best
browser; under NT 4.0 the MIME type settings for HTML would continually be
pingponging back and forth as the two browsers reset the default MIME types. The
second reason is more serious: permitting any user on the machine to change file
associations allowed any user to change those associations so that untrusted, or even
malicious, applications could potentially be run without the user's knowledge.
Windows 2000 solves this problem by putting MIME type mappings into the user-
specific section of HKEY_CURRENT_USER and moving the file associations and
OLE/COM mappings into a system subkey that has tighter permissions than the
Windows NT equivalent.

1.2.1.7 Application settings

So far, I've only talked about how the operating system uses the Registry.
Applications can use it too, and most well-written Win32 applications do. The
proliferation of INI files in Windows 3.x was bad for users, but it was every bit as bad
for most software vendors--imagine trying to troubleshoot a customer's problem when
your product's settings are intertwined with settings for every other program on that
user's computer! The Registry offered a neat solution to this problem, with the twin
benefits of better performance and some tamper-resistance thrown in as lagniappe.[4]

[4] Lagniappe (lan' yap) is a Cajun French word meaning "something thrown in for free as part of a deal." For
example, "Mais, I bought dat houn dog from Pierre, and he t'rew in 10 pound of shrimp for lagniappe."

Microsoft's guidelines (which may be, and frequently are, freely ignored by Microsoft
and third parties) say that third-party programs should install program-specific
settings in the HKEY_LOCAL_MACHINE\SOFTWARE\<VendorName> subtree.
For example, Netscape's products keep their settings under
HKEY_LOCAL_MACHINE\SOFTWARE\Netscape. This key is for settings that
pertain to the program itself, not the user's configuration settings for that program.
User-specific settings go under the user's key in HKEY_USERS. This is a subtle but
important distinction. As you can see in Figure 1.5, the settings under the Netscape
Navigator key in each of the Registry root keys are quite different.
HKEY_LOCAL_MACHINE\SOFTWARE\Netscape\Netscape Navigator\4.04 (en)
stores information about where different components of Navigator are installed, while
the corresponding entry under HKEY_CURRENT_USER\SOFTWARE\Netscape has
settings that apply only to your configuration, such as where your personal bookmark
file is stored.

Applications and system components can store any kind of data in the Registry:
configuration settings for hardware or software, user preferences, paths to shared
components, licensing information, and so on. Most "modern" Win32 applications

tend to keep all their settings in Registry values. For example, the Office 97 and 2000
suites use the Registry to store information about each user's preferences for which
toolbars are displayed, whether the Office Assistant appears, and so on. Netscape and
Microsoft's web browsers both keep their user profile data in the Registry.

Figure 1.5. User versus application settings

Of course, applications can freely use any of the other types of data stored in the
Registry. For example, an image-retouching program can use the Registry to get the
I/O address of the port to which the user has connected his digital camera, or a web
page editor might use it to fetch a list of all the ActiveX objects a user can embed in a
page he's designing. For the most part, though, well-behaved applications will read,
but not modify, keys that aren't theirs.

1.3 Advantages Offered by the Registry

The Registry offers a number of significant benefits to programmers, users, and
administrators. These benefits stem from the characteristics just described.

1.3.1 It Keeps Everything Tidy

Instead of the dozens (or even hundreds) of separate INI files typically found on a
Windows 3.1 machine, Windows NT/2000 machines usually only have a few, and
those typically belong to 16-bit legacy applications that can't use the Registry.
Windows 2000 itself uses the Registry for its configuration data, as do almost all 32-
bit applications written for Windows 9x and NT/2000. There's more to tidiness than
just the reduction in clutter that comes from eliminating INI files, though.
Centralizing where configuration information is stored makes it easier for
administrators to back up, restore, and secure the data.

1.3.2 It Provides Security

Access control for the Registry comes in two sizes. First, you can set individual
workstations or servers to disallow any remote Registry connections. While this is
secure, it also makes it impossible to use the System Policy Editor to set and inspect
policies on that machine. A better and more fine-grained solution is to use the built-in
ACL features. As I mentioned earlier, each Registry key, from the root keys on down,
can have its own set of access permissions in the form of ACLs that apply to the keys.

Each access control entry (ACE) in an ACL actually has two parts: a permission (as
shown in Table 1.1) and the account or group name that holds the permission. You'll
learn more about these permissions in Chapter 5. ACL permissions are usually written
like this, with the holder first and the permission following:

Everyone:Read
paul:Full Control
Engineering:Full Control

Table 1.1. Registry Access Permissions
Permission What It Allows

Read

Read-only access to a specific key, its subkeys, and their values (includes Query
Value and Enumerate Subkeys)

Full Control All of the above rights; Full Control allows the holder to do literally anything to
the keys with that permission

Query Value Getting the data or contents of a specific key's value
Set Value Changing the value of a specific key

Create Subkey Creating a new subkey under the key that holds this permission; the new subkey
inherits the parent's permissions unless they're explicitly changed

Enumerate
Subkeys Traversing all subkeys of a specific key and getting their full pathnames

Notify Getting or setting auditing notifications

Create Link Creating a symbolic link (such as a shortcut or a Unix symlink) that points to
another key in the Registry

Delete Removing the specified key, its subkeys, and all associated values

Write DAC Changing the Discretionary Access Control (DAC), or permissions, on the
specified key

Write Owner Changing the owner associated with the specified key
Read Control Reading the ACL for the key

Any account or group that is listed in the ACL has the matching permission; any
group or account that's not in the ACL can't getaccess. This gives precise control over
Registry access, since anyone you don't explicitly include in an ACL can't get access.

In addition to whatever accounts you've defined on your workstation or domain, you
can use the operating system's built-in accounts and groups. In particular, you'll see
the Authenticated Users pseudo-account[5] that grants read access to most keys in the
Registry, while the Administrators groups usually have Full Control access to all
keys. Since many NT software installers require write access to the
HKEY_LOCAL_MACHINE\Software and HKEY_CURRENT_USER\SOFTWARE
subkeys, you'll often see them tagged with Everyone:Full Control. Applications that

use the Windows Installer--which includes any application written exclusively for
Windows 2000--are smart enough not to require this access, but many administrators
will want or need to run software designed for NT on their Windows 2000 machines.

[5] Authenticated Users isn't really an account; it's a special token that matches any authenticated user. NT 4.0 SP3
introduced Authenticated Users, which is similar to the older (and deprecated) "Everyone" pseudo-account.

It's also worth mentioning the SYSTEM account name; SYSTEM refers to processes
and services owned by the kernel, so it's usually used to grant Full Control access to
many of the keys in HKEY_LOCAL_MACHINE.

Besides their access controls, Registry keys also have owners; for example, the
Administrators group owns the HKEY_LOCAL_MACHINE\HARDWARE subkey.
You can restrict access to parts of the Registry by changing their ownership to a
single account to which you control access; since any account that's not in an ACL
won't have any access, everyone except the owner is locked out.

As an additional security feature, NT allows you to create an audit trail of access to,
and operations on, the Registry. When you enable auditing for a key, you specify two
things:

What actions you want audited

You can create an audit trail of the success or failure (or both) of all of the
permissions in Table 1.1 except Read, Full Control, and Write Owner.

Which accounts are audited

The accounts you specify will generate audit trail entries when they attempt
one of the actions you specify.

The auditing data is written to the Windows 2000 event log, where you can view it
with the Event Viewer MMC snap-in or parse it with programs or scripts you've
written.

1.3.3 It Allows Remote Management

Every computer running Windows 2000 has a Registry. If you're supporting more
than one of these machines on a network, you'll be happy to know that the Registry
supports network inspection and modification. This capability, which is built into
RegEdit and RegEdt32, allows you to troubleshoot and fix some types of Registry
problems on network machines from your desktop. In addition, network Registry
access makes it possible to automatically inspect the Registry of every machine on
your network--a valuable way to gather statistical ("how many of our machines are
still running Netscape Navigator 2.x?") or configuration ("what machines have
impala.oreilly.com as one of their DNS servers?") data.

The old-style system policy mechanism requires network access to the Registry; there
are also a number of useful administrative tools and utilities that build on network
Registry access. For example, the ERDisk product from Aelita (http://www.aelita.net)
allows you to build an emergency repair disk (ERD) for a machine across the

network; in fact, you can automatically build updated ERDs for all the machines on
your network every night if you like. Microsoft's System Management Server (SMS)
product makes heavy use of network Registry access.

1.4 Registry Zen

Even if you're accustomed to using Windows, the Registry may sometimes seem like
a New Orleans graveyard at midnight, full of strange shadows, half-glimpsed terrors,
and legendary tales of misfortune. In this vein, I want to digress a little to talk about
the philosophy behind the Registry, as well as the Zen of editing and using it.

First of all comes the obligatory scare tactic. Microsoft's documentation contains
many warnings about the dire consequences that can result from editing the Registry
if you aren't careful and knowledgeable. Instead of repeating these warnings, I'll offer
one of my own, but just once, so you won't have to keep seeing it over and over.

The Registry is a key component of Windows 2000. If you
remove a necessary key or change a key's value to an out-of-
range value, some programs repair the damage automatically,
but others fail spectacularly. Microsoft's Registry editors
immediately make changes, so there's no backing out if you
make a mistake. Please don't edit the Registry on your
production machines until you've read Chapter 3, which explains
how to recover from a damaged Registry.

You can think of the Registry like one of those self-service storage warehouses that
have popped up across North America like sheet-metal mushrooms. If you've never
seen one, let me briefly digress: these warehouses, which usually have catchy names
such as "Public Storage" or "U-Store-It," are fenced compounds filled with long, low
metal buildings. These buildings are segmented into individual garages. When you
rent a space, you get the magic code that opens the outer gate, and you use your own
lock to secure the unit you've rented. Once you've rented it, the space is yours to use
as you wish (though you're not supposed to live in them or keep anything illegal or
dangerous there).

Just like the local U-Store-It, every tenant of the Registry has its own individual
space, where it can store anything under the sun. Access to that space is controlled
both by the operating system and the tenant who created the keys. Also like the real-
world equivalent, the landlord takes no responsibility for protecting what's in
individual spaces; that's up to the renter (or application). That's where the analogy
stops, though. In Windows 2000, Registry keys fall into three groups:

Keys you don't need to edit directly

Keys in this group have some other way to set their value; most control panels
are nothing more than pretty interfaces that make it easy for you to change
settings in the Registry without using a Registry editor. The Explorer's file
types dialog box is another good example; all it does is display, and allows
you to change, data in the HKEY_CLASSES_ROOT tree.

Keys you must edit directly

In the grand Microsoft tradition, the Registry is chock-full of keys whose
values can't be edited anywhere else. Windows 2000 is pretty good about
exposing formerly hidden features as settings in various GPOs, but since many
Windows 2000 components are thinly disguised reissues of Windows NT 4.0
pieces and parts, hidden settings live on. In addition, some settings (such as
the setting that controls whether Caller ID is used to identify incoming remote
access calls) are available only by editing the Registry directly.

Keys you should leave alone altogether

Just because you can edit a key in the Registry doesn't mean you should.
Many of Windows 2000's subsystems, particularly device drivers, are intended
to be self-tuning; they continually adjust their settings based on the system's
workload. If you directly adjust a setting behind its owner's back, your reward
can be anything from reduced performance to an unbootable machine.

Chapter 2. Registry Nuts and Bolts

Chapter 1, was just that: it was an introduction, and it was gentle. Now it's time to get
down to business and focus on how the Registry actually works. In this chapter, you'll
learn how the Registry is organized, both logically and physically, and how data gets
into and out of it.

2.1 How the Registry Is Structured

Since the Registry is such an important part of Windows 2000, understanding how it's
put together is crucial to learning how to use, modify, and protect its data. Let's start
by examining the basic structures and concepts that underlie the Registry. Once you
understand how these pieces fit together, we can move on to the data that actually
lives in the Registry.

2.1.1 The Basics

You may find it helpful to think of the Registry as a filesystem; their organizations are
similar in many respects. Both have a well-defined hierarchical structure, and they
both support the concept of nesting items within other items. Files are identified by
names and paths. Likewise, every key in the Registry is identified by a full path that
identifies exactly where to find it. Since the Registry can be shared and accessed over
a network, this full path can optionally include a computer name, which works as it
would for a file share. The data within a file can be interpreted by applications that
understand that file type. So it is with Registry keys, whose values can be understood
and used by applications, kernel services, and other Registry clients.

2.1.1.1 Root keys

Root keys are like disk volumes: they sit at the root of a hierarchy and aren't
contained or "owned" by any other item in the hierarchy. Windows Explorer groups
all local disks together under "My Computer," and the Win95 RegEdit app does the
same for Registry keys, but these groupings are fake, since the disks and root keys are
actually logically separate entities. The groupings just provide a convenience for
users. The six root keys that make up the Registry (see Section 2.1.2 later in this
chapter) are logically independent of one another; to reinforce this idea, the Windows
2000-specific Registry editor, RegEdt32, shows each root key in an individual
window.

In Windows 2000 and Windows NT 4.0, there are six root keys:

HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_CURRENT_CONFIG
HKEY_PERFORMANCE_DATA
HKEY_USERS
HKEY_CLASSES_ROOT

Earlier versions of NT don't have HKEY_CURRENT_CONFIG or
HKEY_PERFORMANCE_DATA.

2.1.1.2 Subkeys

Think of a subkey as a subdirectory somewhere on disk. Any key in the Registry may
have subkeys. Just as folders are contained inside other folders, these subkeys can in
turn hold other subkeys, and so on down the line. (Throughout the rest of the book, I'll
call a subkey's parent a parent key.) Naturally, the root keys all have subkeys, but no
parent keys; any other key, though, can have both parents and subkeys.

A subkey can have values of its own, or it can be a placeholder for subkeys that
contain values themselves. For example, HKEY_CURRENT_USER\Software has
subkeys, but it doesn't have any values attached to it. By contrast,
HKEY_CURRENT_USER\Software\Netscape\Netscape Navigator is a subkey too,
but it has several values of its own in addition to those of its subkeys. For example,
the Netscape Navigator key has subkeys named Bookmark List, Mail, and Security,
among others. The Bookmark List key in turn has a value named File Location. If you
talk about the value named HKEY_CURRENT_USER\Software\Netscape\Netscape
Navigator\Bookmark List\File Location, then you've completely described the path to
a particular value. Leave off File Location, and you're talking about a subkey.

2.1.1.3 Values

Speaking of values, now would be a good time to mention that any Registry key may
have zero or more values attached to it. These values normally have three
components:

• A name, which identifies them both to Windows 2000 and you. Just like files,
there can be many Registry values with the same name, but each key can only
have one value with a particular name. The combination of the value's name
and the path used to reach it must be unique. This means that it's okay to have
values named Stuff under both
HKEY_CURRENT_USER\Software\SomeVendor\AProduct and
HKEY_CURRENT_USER\Software\BigCompetitor\AnotherProduct, but
neither of those keys may have more than one value named Stuff.

• A datatype, which tells the Registry and its clients what kind of data the value
represents. The Section 2.1.5 and Section 2.1.6 sections later in this chapter
elaborate on the available types for Registry data.

• Some contents,[1] which are subject to any limitations imposed by the value's
type. In Windows 2000, the contents must be smaller than 64K of data. As a
practical matter, 2 KB is about the point beyond which performance starts to
suffer. In reality, most keys are much smaller--a few dozen bytes at most.

[1] The contents are just the value's value. This is confusing at best.

As with most other statements that include the word "normally," there's an exception
to this three-part rule: Registry keys can have a single value with no name. The
Microsoft editing tools show this value with a name of (Default) or <No Name>;
applications can still reach it by querying the key it's attached to. This behavior is an
artifact from Windows 3.x, but many modern applications still use this unnamed
value.

The combination of these components makes it possible for Registry clients
(including editors, applications, and the OS itself) to locate specific values, figure out
what kind of data they contain, and get that data.

2.1.1.4 Hives

Hives aren't just for beekeepers any more.[2] In the Registry world, a hive is a portion
of the Registry tree structure from any subkey under a root key on down. For
example, the SOFTWARE hive contains HKEY_LOCAL_MACHINE\Software and
all its subkeys, and their subkeys, and their subkeys, on down to the values attached to
the "deepest" subkey.

[2] In Managing the Windows NT Registry, I admitted to not knowing where the term "hives" came from. It turns
out that the Registry stores its data using a type of database called a b-tree. Where do bees live? In hives, of
course.

Hives are significant because each hive corresponds to a disk file that contains the
hive's data. Instead of INI files, these hive files are the actual on-disk location for the
system's crucial configuration data. Consequently, they're what you need to back up
and restore (you'll learn how to do this in Chapter 3). Windows 2000 normally uses
eight hives: HARDWARE, SAM, SECURITY, SOFTWARE, SYSTEM,
.DEFAULT, and two for the currently logged-in console user (one contains the user's
profile, while the other contains the user-specific portion of
HKEY_CLASSES_ROOT).

Windows NT has only one hive for the logged-on user instead of two; it contains
all the user's profile data.

You'll learn what each hive is for and where its corresponding file is stored in Section
2.1.3 later in this chapter. In the mean time, if you look at
HKEY_LOCAL_MACHINE\SYSTEM\Control\CurrentControlSet\Control\hivelist,
you can get a sneak preview of the list of supported hives.

2.1.1.5 Links

The Windows 2000 shell and filesystem support shortcuts. (You might be familiar
with aliases or symbolic links, the Mac and Unix equivalents.) All a shortcut does is
point to something else. For example, the Internet Explorer icon on your desktop is
actually a shortcut to the real installation of whatever version of IE you have installed,
if any. When you double-click it, the shell can resolve the shortcut to find the thing it
points to and run that instead.

The Registry equivalent of a shortcut is called a link. These links provide alternate
paths and names for Registry subkeys. For example, the entire
HKEY_CURRENT_USER root key is a link to the current user's subkey under the
HKEY_USERS root. Since links can be built dynamically, it's easy to construct a link
whose destination varies depending on some condition or other. Windows 2000 uses
these links internally in a number of places;
HKEY_LOCAL_MACHINE\System\Controls\CurrentControlSet is a link whose
origin depends on which set of device drivers, hardware components, and system
software is currently active.

2.1.1.6 Registry road map

Figure 2.1 shows a road map of the root keys and their major hives. As you can see,
several keys and subkeys are actually links to areas in different root keys. You may
find it helpful to refer back to this figure as we plunge forward into discussing the six
root keys themselves.

Figure 2.1. The Registry's overall organization

2.1.2 The Big Six

The root keys are, well, the root of the Registry's hierarchy. In the Windows 3.1
Registry, there was only one root key; in Windows NT 3.1 there were four, but
Windows 95, NT 4.0, and Windows 2000 all have six. These keys form the
foundation upon which all the Registry's capabilities rest. They provide a logical
structure for grouping related items, and each of them plays a role in providing
configuration data to clients and kernel components.

You'll notice that all the names start with odd nonwords like
HKEY and REG. Microsoft uses a system called Hungarian
notation for naming variables. In this scheme, the name of every
variable, datatype, or constant starts with a short code that
identifies the type of data it is. This notation carried over into the
Registry's design. HKEY is actually a handle to a key, which
seems reasonable for the root keys.

2.1.2.1 HKEY_LOCAL_MACHINE

HKEY_LOCAL_MACHINE (abbreviated HKLM) is the king of the Registry. Its job
is to consolidate and store all the systemwide configuration data for a particular

computer. HKLM includes the hardware configuration data without which Windows
2000 couldn't even boot. Besides that, it also holds settings for the computer's network
connections, security configuration, device driver settings, and more.

There are five major subkeys under HKLM, each of which plays a critical role in
keeping Windows 2000 running. They're enumerated in Section 2.2.1 later in the
chapter. As you may have noticed in Figure 2.1, some of the other root keys and their
subkeys are actually links to subkeys of HKLM ; that's another reason why this root
key is so important. For example, HKEY_CLASSES_ROOT is actually a link to
HKLM\SOFTWARE\Classes.

2.1.2.2 HKEY_USERS

Under Windows 2000 and NT 4.0, HKEY_USERS (also known as just plain old
HKU) contains all the profile and environment settings for users on the local machine.
These settings comprise all the per-user controls controllable by the System Policy
Editor (see Chapter 6, for more on SPE), plus user-specific environment variables, as
well as user-specific software settings. In Windows 2000, many of these profile
settings are actually applied by group policy objects, using the rules discussed later in
this section. The GPO provides the settings, and those settings are applied to HKU
when the policy is downloaded. Changes to the user's settings are stored in her profile,
but the GPO-specified settings can always override it. However, HKU still contains
much of the user-specific data, since in Windows 2000 it is mapped to the hive file
that contains the user's profile.

Each subkey of HKU is named by its security ID, or SID, a long string of digits that
uniquely distinguishes every system object, process, user, and computer on an
Windows NT/2000 network. Once an object is created, its SID never changes, but, its
name can, so Windows 2000 uses the SID to keep track of user account profiles to
keep them working when you change your account name from FredSmith to "The
Administrator Formerly Known As FredSmith." [3] For a more concrete example, the
SID for my account on my desktop machine is S-1-5-21-220523388-1214440339-
682003330-1001,[4] so when I log on locally to that desktop machine, I see subkeys
with that name under HKU.

[3] I wanted to include that odd-looking symbol used by the Artist Formerly Known as Prince but, strangely, it's
not anywhere on my keyboard.

[4] And you thought it was hard to spell "Robichaux!"

In Windows NT 4.0, there are at least two subkeys of HKU. The first, .Default,
contains a default group of settings (surprise!) named .DEFAULT that are applied
when someone whose profile isn't already in HKU logs in. This facility provides a
default profile that any profile-less user gets if there's no default profile in the
NETLOGON share. The second group of settings are for the built-in Administrator
account.

Windows 2000 is a little different; at any time when a user is logged on to the
machine's console, there will be three subkeys under HKU. The first is .DEFAULT,
which serves the same function it does in NT 4.0. The other two contain the settings
of the logged-on user: one (named with the SID) contains the profile data, and the

other (named with the SID with the string "_Classes" appended) contains the user-
specific setting stored in HKCR. Windows 2000 users also get settings automatically
from a special profile that's available to all users; it's stored in the Documents and
Settings\All Users\NTUSER.DAT. Settings in the user's profile override the contents
of the All Users profile, so the all-users default for a particular setting applies only if
the user hasn't created a conflicting setting.

When you create local accounts on a machine running Windows 2000 (whether
Professional or Server), their profiles are stored under HKU when they first log on
from that machine's console. When that logon takes place, Windows 2000 copies the
standard profile from HKU\.Default and creates a new subkey under HKU, named
with the account's SID. Until an account logs on interactively, no profile exists for
that account. At this point, you might be wondering what's under the individual
subkeys of HKU, since each user on an Windows 2000 machine has her own subkey,
which stores her settings independently of everyone else's. Instead of answering that
directly, let's see what lives in HKEY_CURRENT_USER.

2.1.2.3 HKEY_CURRENT_USER

Surprise! HKEY_CURRENT_USER (better known as HKCU) is actually a link to the
currently logged-in user's subkey in HKU. (On machines running Terminal Server,
each user has his own HKCU, and Windows 2000 uses the correct one for each user--
one of the benefits of HKCU being a link to a subkey of HKU!) Using a link was a
smart decision on Microsoft's part; the link allows applications to look up things they
need without needing to obtain the current user's SID first. When faced with the
choice of finding data in HKCU\Software\KoolStuff\AnApplication or the
mysterious-looking HKU\S-1-5-21-1944135612-1199777195-24521265-
500\Software\KoolStuff\AnApplication, the choice is pretty clear. More importantly,
since the Windows 9x family lacks the API routines needed to get SIDs, code written
to use HKCU can run without modification on Windows 95/98, NT, 2000, and even
CE.

Microsoft's guidelines require that applications should put their settings into HKLM
and users' settings into HKCU. The idea is that settings that apply to all users on a
machine go in that machine's key, while settings that users may--and probably will--
change should be stored somewhere else. HKCU provides this mechanism; as an
added bonus, a collection of subkeys under HKCU can be used as an individual user
profile, and it's easy to store, load, or remove settings on a per-user basis. In fact,
when Windows 2000 loads a profile, it actually copies data from the stored profile
into HKCU.

2.1.2.4 HKEY_CLASSES_ROOT

HKEY_CLASSES_ROOT (better known as HKCR) made its debut in Windows 3.1
and has been around ever since. It serves as a giant lookup table that maps file
extensions to the applications that own them. The Windows 2000 shell components
(the desktop interface, Windows Explorer, the File Manager, and Internet Explorer
5.x) all make heavy use of HKCR, as do OLE container and server applications and
ActiveX-capable software.

HKCR works because each registered file type or OLE class has two subkeys
associated with it. File extensions are registered under their own name; for example,
Microsoft registers HKCR\.doc, HKCR\.xls, and HKCR\.ppt (among others) as keys
for Office 2000 document types. The file extension key's value specifies the default
file type to associate with the extension. For example, the default value of HKCR\.doc
is WordPad.Document.1, since WordPad comes with the standard Windows 2000
installation.

Besides the associated name, the file extension's key can contain a subkey called
ShellNew. The Windows 2000 shell uses this subkey's value to figure out how to
create a new instance of that file type when the user requests it. In addition to
ShellNew, the file extension key can contain one or more document type keys that tie
the extension to particular document types. This allows a single extension such as
.doc or .bmp to be shared by several applications on the same machine. Each of these
document type keys contain a ShellNew key.

The file extension key tells the shell what type corresponds to a document, but so
what? The Windows 3.1 File Manager could do that too. In order to support OLE
embedding and linking, HKCR has some additional tricks that center on the file type
key. This key's name matches the default value of an extension key: when you install
WordPad, you'll get a new key named HKCR\WordPad.Document.1, which matches
the file type specified in HKCR\.doc. Its structure looks like this:

• The CLSID key specifies the globally unique class ID of this particular OLE
object type. Windows 2000, and thus OLE and ActiveX clients and servers,
use these class IDs to figure out what type of object to create when you create
a new embedded or linked object.

• The DefaultIcon key's value tells the Windows 2000 shell where to find the
icon for the file type. This is usually the name of the program or DLL that
created the file; the value must also include the integer ID of the icon to use,
since the executable can contain many different icons.

• The Insertable key specifies that this particular type of OLE object may be
inserted and embedded in other OLE document types. For example, WordPad
documents are insertable, but XML documents aren't because HKCR\xmlfile
doesn't have an Insertable key.

• The BrowseInPlace key is almost the opposite of Insertable; its presence
indicates that the specified object type can be browsed using in-place
activation instead of inserting.

• Protocol stores information OLE needs to support embedding, linking, and in-
place editing, including which OLE verbs (open, in-place activate, deactivate,
etc.) the object supports. OLE containers use this data to decide which
commands to pass on to embedded or linked objects.

• Shell holds subkeys that list the types of operations that can be done on the file
type from the shell. In the case of WordPad, there are three: Shell\Open,
Shell\Print, and Shell\PrintTo. Each of these has a Command subkey that
contains the actual command line the shell can use to carry out the associated
action. When you select a file in Explorer and open, print, or right-click on it,
Explorer look up the file's type in the Registry, then looks for a subkey of
Shell for that file and the requested command. For example, if you double-
click a Microsoft Word 2000 document, Explorer looks for

HKCR\Word.Document\Shell\Open\Command and executes the command it
finds there.

2.1.2.5 HKEY_PERFORMANCE_DATA

HKEY_PERFORMANCE_DATA, or HKPD for short, was originally introduced as
HKEY_DYN_DATA in Windows 95. It provides a central clearinghouse for dynamic
data that is rebuilt anew each time the OS starts. In Win95, it stores performance data
plus some other useful information; under Windows 2000 and NT 4.0 (it's not present
in NT 3.x), HKPD stores performance data only. "Stores" is perhaps a misnomer;
none of the data in HKPD is ever written to disk. Instead, when an application
requests a subkey value for any of HKPD's subkeys, the kernel gathers the appropriate
dynamic data, makes a fake subkey under HKPD, and passes it back to the requester.
Since the data doesn't exist until it's requested, you could even argue that it's not
stored in memory.

There's another catch, too: alone among the Big Six, HKPD doesn't appear in the
Windows 2000 Registry editors. (It does appear in the Windows NT version of
RegEdit, though it's labeled as HKEY_DYN_DATA.) You can't directly enumerate or
expand HKPD, either, as you can in Win95; only kernel clients can get or set values
for keys under HKPD, making it pretty worthless to most of us.

2.1.2.6 HKEY_CURRENT_CONFIG

HKEY_CURRENT_CONFIG, abbreviated HKCC, is the one-stop shopping center
for data about the computer's current hardware configuration. If you've defined
hardware profiles using the Hardware tab of the System control panel, when Windows
2000 boots you can choose whatever hardware profile reflects your current hardware
setup. The profile is actually a subset of HKLM; when you choose a profile, it's stored
in the key HKCC actually links to, HKLM\SYSTEM\CurrentControlSet\Hardware
Profiles\Current. Like HKDD, HKCC is new in NT 4.0 and later; it's not present on
NT 3.51 machines.

Now that you've made it through one and a half chapters, it's
time to start using the conventional abbreviations for the root
keys. From now on, I'll refer to root keys with the abbreviations
given above, even when they're in paths. Get used to reading
HKCU\Software\Microsoft... instead of the fully spelled-out
version.

2.1.3 Hives and Files

The Registry appears to be a single monolithic blob of data, but it's not. Instead, it's
made up of several hives. Each hive is a separate file or memory block that contains a
Registry subtree. The kernel knits these individual hives together into a single
seamless block. When your application (or any other) queries the Registry, it doesn't
have to be concerned with which physical hive the desired key lives in.

Windows 2000 maintains a list of which hives exist on a particular machine in
HKLM\SYSTEM\CurrentControlSet\Control\hivelist. This key normally contains
seven entries, as shown in Table 2.1. Each entry's value contains the full disk path to
the corresponding hive file. Interestingly, these paths aren't specified with drive
letters; instead, they use paths based on the hierarchy of loaded device drivers. At the
time the kernel loads, the driver hierarchy can be set up, but drive letters can't. The
entry for the SOFTWARE hive on a machine that boots off the first partition on a
SCSI disk with ID looks like this:

\Device\Harddisk0\Partition1\WINNT\System32\Config\Software

The first half of the path, \Device\Harddisk0\Partition1, tells the kernel where to find
the disk volume itself (it can either be FAT16, FAT32, or NTFS); the second part,
WINNT \System32\Config\Software, points to the hive file itself. By default, hives live
in the System32\Config subdirectory of the system's install directory.

Table 2.1. Hives and Files
Hive Name Hive File Corresponding Registry Key

.DEFAULT DEFAULT HKU\.DEFAULT

HARDWARE
None; this data is dynamically generated and isn't
written to disk

HKLM\HARDWARE

SOFTWARE Software HKLM\SOFTWARE
SAM SAM HKLM\SECURITY\SAM

SYSTEM System HKLM\SYSTEM
SECURITY Security HKLM\SECURITY

SID
Defaults to Documents And
Settings\userName\NTUSER.DAT [5]

HKU\SID

SID_Classes
Same base path as SID key, plus Local
Settings\Application
Data\Microsoft\Windows\UsrClass.dat

Some data under
HKEY_CLASSES_ROOT

[5] For a clean installation of Windows 2000, this is the default location. For an upgrade from Windows NT, the
profiles end up in %systemroot%\profiles\userName\NTUSER.DAT . Microsoft is trying to keep user data out of
the system folder.

This table contains a few surprises. First, let's start with the HARDWARE key. It
doesn't have a permanent hive because its data is never stored on disk--but there's an
entry for it in the hive list anyway. There's undoubtedly a good reason for this, but no
one outside Microsoft knows what it is.

Next are the SID and SID_Classes hives. Those aren't their real names; SID is just a
placeholder for the SID of the user currently logged into the console. This hive
actually points to the user's profile, which can be stored anywhere on the machine but
is usually in the Profiles subdirectory of the system directory. For example, when I'm
logged into my desktop PC, the hivelist entry for my SID points to
...\Profiles\Paul\ntuser.dat. The exact value of this hive's entry depends on whether
the user has an existing profile, whether it can roam, and whether it's mandatory. The
ntuser.dat file for an individual user (along with some other files and folders in the
same directory) makes up that user's profile, more on which in a bit.

By now, you might be wondering why these files exist as separate entities at all. The
answer is twofold. The first reason is that splitting the Registry data into the
groupings shown in Table 2.1 provides a clean separation between different types of
data. The user's profile data (for example) should go in its own hive, since it doesn't
have anything to do with the hardware, software, or security configuration of the
machine. Likewise, the SAM database goes in its own hive because its data may not
belong just to the local machine; for Windows NT servers that are domain controllers,
the SAM hive holds the domain SAM, too. As a bonus, dividing the Registry into
several components makes it possible to restore whole sections of the Registry
without affecting others. The hive organization was chosen with this in mind. As
you'll see in Section 3.3 in Chapter 3, the ability to restore only part of the Registry
can be invaluable.

User Profiles Demystified

Windows 2000 and NT support three types of profiles: normal, mandatory,
and roaming. Normal profiles are just that: plain, unadorned, ordinary groups
of settings that live on a single machine in a user's ntuser.dat file. If you have
a normal profile on one machine, it won't follow you to another machine, and
you may change or modify it as you wish. Roaming profiles follow users
from machine to machine: they live on the network and are downloaded to a
machine when a user logs in. That makes it possible for a user's settings to
follow her from machine to machine. For example, if you turn on roaming
profiles, a new user who logs on for the first time gets a new profile based on
the default profile settings in your domain. When she logs out, her profile is
copied back to the profile directory you associated with her account, from
which it can be downloaded on the next machine she logs into. A mandatory
profile is one that can't be changed by the end user. As an administrator,
you'll find it useful occasionally to specify unchangeable profile settings for
your users and computers. You can combine these types, too: you can have
normal or mandatory roaming profiles.

For domain accounts, the workings are a little different. Each account can
have a profile location specified. Let's say you're administering Windows
2000 domain named ADMIN that has a few dozen workstations in it. You add
a new account for Catbert, your new VP of human resources.[a] There are
three possible scenarios:

Catbert doesn't have a mandatory or roaming profile

The first time he logs onto any machine in the ADMIN domain, that
machine creates a new profile for him, using the SID of his domain
account. The new profile is based on the contents of that machine's
default user profile (taken from All Users\ntuser.dat). Changes made
to his profile on one machine won't be visible on any other machine.

Catbert has a roaming profile

The first time he logs onto a domain machine, that machine attempts
to fetch Catbert's roaming profile from the storage location defined in
his account. In a Windows 2000 domain, the location of the profile is
part of the Active Directory data that defines Catbert's account, but
the profile itself is just a file stored on some server. If he is ever
logged on to any other machine in the domain, and if the profile
server is available, the logon machine makes a local copy of Catbert's
profile under HKU; if not, it makes a new profile based on the
domain default profile and uses it instead. On subsequent logons,
Windows 2000 compares the locally cached profile with that stored
on the server; if they're different, Catbert gets to choose which profile
he wants the machine to honor. Any changes he makes to his profile
on one machine is copied back to the stored profile on the server, and

the changes appear on other machines when he logs into them.

Catbert has a mandatory profile

Mandatory profiles must be used. When setting up an account, the
domain admin specifies which mandatory profile Catbert's account
will use. When Catbert logs onto a domain machine for the first time,
Windows 2000 gets that profile from the profile server and uses it. If
the server can't deliver the profile for some reason, Catbert's logon
attempt will fail. If Catbert makes changes to the profile, they aren't
mirrored back to the server.

When you create a user account, you assign it using Profile button of the
User Properties dialog in the User Manager or User Manager for Domains
(for NT) or the Active Directory Users and Computers or Local Users and
Groups snap-ins in Windows 2000. Once you specify the UNC path to the
profile, Windows will automatically download—and upload—the profile so
the user has a consistent environment. If you don't explicitly provide a profile
for a user account, that account will use the local or domain default profile.
This, then, is the profile you should edit if you want to change what profile-
free users end up seeing.

The best way to build a default profile for your users is to create a special
account for profile editing. Log on as that account and modify the profile to
your liking, then log off and back on as Administrator. Once you do that, you
can use the Copy To... button on the User Profiles tab of the System control
panel to copy the profile account's profile to whatever share you specified in
the User Manager. The next time a user with a profile logs in, her
workstation gets an updated copy of the profile.

To specify that a profile should be mandatory, name it ntuser.man. You still
have to modify each user's account so that it points to the mandatory profile,
but one you do Windows 2000 faithfully downloads and applies it when a
user logs in. Changes made on the local workstation, however, aren't
propagated back to the original profile as they are with regular profiles.

[a] If you don't read the Dilbert comic strip: a) you should, and b) you won't get this joke.

2.1.4 Access Controls and Security

Windows 2000 implements access control and security for the Registry in four
overlapping levels. The specifics of how you actually use these settings are discussed
in other parts of the book, but it's helpful to understand them at a high level before
you begin implementing them.

2.1.4.1 Control via Registry APIs

The simplest and least effective control method is via a key that Microsoft provided,
first in Win95 and then in NT 4.0 and Windows 2000, which administrators can use to
disallow Registry editing on a machine. The good news is that this key,

HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\System\DisableRegistr
yTools, exists. The bad news is that this key doesn't actually do anything! Microsoft's
Registry editors check the key and refuse to run if it exists; however, there's no
enforcement of this method, so third-party Registry editors can, and do, ignore this
value with no penalty.

Worse still, users can clear this flag themselves if they have access (and permission)
to use the System Policy Editor or group policy objects on their local machines. Don't
depend on this flag to keep any but the least sophisticated users out of your Registry;
even though it's not much help, it's still worth setting.

2.1.4.2 Remote-access control

The next step up the security ladder is to restrict who can attach to, and modify, your
Registry remotely. By default, Windows NT machines grant remote read access to
their Registries. This stands in sharp contrast to Win95, where you have to manually
install the Remote Registry Access service on clients whose Registries you want to
edit remotely. Windows 2000 is somewhere in the middle. It also has a remote
Registry access service, but it's started by default, and it allows read-only access to
ordinary users. Depending on the account permissions you have, you may even be
able to make changes to other systems' Registries; however, you may disallow it
manually as described in Section 9.4 in Chapter 9.

2.1.4.3 OS-level security controls

In Windows NT and Windows 2000, Registry keys all have access controls and
permissions attached to them. Unfortunately, by default, in NT 4.0 prior to Service
Pack 3, most keys in the Registry had Everyone:Full Control as their permissions.
This led to a security exploit popularly known as the " RedButton" or "MWC" exploit,
where an untrusted program could attach to and modify Registries on machines where
the exploiter had no Administrator access. SP3 fixes this problem; in addition, Section
9.4 in Chapter 9 explains how to set adequate access controls on your Registry keys.

Windows 2000 doesn't suffer from this problem nearly as much, because it has a
much less permissive set of default permissions. With appropriate application of
security templates (discussed in more detail in Chapter 9) you can tighten things down
even further.

As an additional safety measure, you can--and should--set up auditing events to log
changes to the Registry on critical machines. There's a fine line between doing this
too much and not enough; there are guidelines in Chapter 9 as well.

2.1.4.4 System Key Security (SYSKEY)

Microsoft has frequently (and not always fairly) been criticized for leaving security
holes in its products. In particular, an exploit was reported in mid-1997 that took
advantage of the fact that NT 4.0 and earlier stored some account passwords--those
for services--in the Registry. Even though the passwords were obfuscated, having
them there represented a security risk, since an attacker could, in theory, grab the hive
files and figure out the passwords.

To fix this, Microsoft introduced a new feature called System Key Security, or
SYSKEY, in Service Pack 3 for NT 4.0. SKS encrypts a portion of the Registry
(mainly the SAM and SECURITY subkeys of HKLM) using the CryptoAPI
cryptographic services. As a practical matter, this makes it statistically very unlikely
that someone can get useful information out of your Registry unless the attacker
knows or steal the key used to encrypt it. You can choose your own password (which
then must be entered when you boot the machine), or you can have the system
generate and store a password. Either way, without that password, the SAM data
stored in the Registry is useless. It's important to note that SYSKEY doesn't keep
people from browsing the Registry or opening keys with the programming interfaces,
and it doesn't prevent them from actually making a copy of the SAM hive itself; it just
encrypts the SAM data so it's no longer directly useful for password crackers such as
l0phtcrack.[6] (However, a tool such as Todd Sabin's pwdump2, or future versions of
l0phtcrack, make it harder to extract these hashes.)

[6] l0phtcrack is a very fast, robust, and full-featured password cracker for Windows NT and Windows 2000.
Check it out at http://www.l0pht.com/l0phtcrack.

Service Packs Versus Hotfixes

Microsoft often issues bug fixes and enhancements for its operating system
products. These changes come in two flavors. Service packs include a large
number of fixes, plus occasional enhancements. While there's no fixed
schedule, they usually appear at least every six months, and sometimes more
often. As I write this, it's been a little over three years since NT 4.0 shipped,
and there have been six service packs released for it. These updates are
usually referred to as SPs, and when used with a number (i.e., SP3) you can
tell what SP is being discussed.

As of the time of this writing, Windows NT 4.0's current service pack is
SP6a. There aren't any service packs available for Windows 2000 yet, even
though Microsoft started working on SP1 as soon as they'd released the gold
master version of Windows 2000. One important change to Windows 2000 is
the new "slipstream" update model, in which each service pack can be
incorporated with the base distribution. This makes it possible to create a
sharepoint for distributing Windows 2000, then add service packs directly to
the sharepoint so that they're installed as part of the normal install instead of
adding them after installation.

The service-pack mechanism is the same for Windows 2000 and NT. First,
remember that SPs are cumulative. If you install NT 4.0 SP6, it includes all
the patches and fixes included in SP1 through SP5. You can use the system
utility hotfix.exe to get a quick indication of which SPs are installed on a
particular machine; you can also find the same data yourself in
HKLM\Software\Microsoft\Windows NT\CurrentVersion\CSDVersion.

Unlike SPs, hotfixes are intended to fix one or two critical problems. For
example, the IIS 3.0 denial-of-service attacks that brought down Microsoft's
web site several times in 1997 quickly led to the release of a hotfix that
repaired that specific problem. In their hurry to get hotfixes out the door,
Microsoft can't always do complete tests on them before release; if you
install a hotfix that fixes a problem you don't have, you may end up with new
problems caused by the hotfix itself!

Regrettably, some SPs have been released without adequate testing as well.
My best advice is this: install a new SP on one or two machines to see how it
does before rolling it out across your network. If Microsoft releases a hotfix
for a problem you're experiencing, get it and install it. If it's a security-related
hotfix, get it and install it even if you're not having the problem. Otherwise,
leave it alone.

Windows 2000 turns on SYSKEY by default, and there's no way to turn it off. This
might seem like an odd thing to do; after all, Windows 2000 uses the Active Directory
to store user account information, so why would there be a SAM hive present in the
first place? Not every Windows 2000 machine is an AD domain controller; for
example, member servers or Windows 2000 Professional machines may still have
local accounts on them. So can domain controllers, for that matter. In addition,

machines that don't run the AD services have a local SAM hive; domain controllers
have one too, with AD information mirrored into it.

Once you turn on SKSKEY, it can't be turned off. If you want to turn on SKSKEY
on your Windows NT machines, complete instructions are given in Section 9.6 in
Chapter 9.

2.1.5 Major Datatypes

The Registry can directly store and manipulate 11 different types of data: seven major
and four minor. This doesn't seem like very many at first, but remember that
applications can use the seven fundamental types to store whatever kind of data they
want. Only the application knows what the data actually means, and Windows 2000
doesn't care; it happily stores and retrieves whatever data you pass it as long as you
specify one of the following types for it.

2.1.5.1 REG_DWORD

REG_DWORD is a double word (the DWORD is Hungarian notation for a double
word). Since a word is a 16-bit number representing the range 0-65535, a double word
is just two 16-bit words, so it's a 32-bit value, probably the most common datatype in
the Registry. A REG_DWORD value can hold any integer up to 232. Even though
this provides a range of more than four billion possible values, many Registry keys
use REG_DWORD to stand in for Boolean[7] values: you'll see a lot of keys whose
values can either be 1 or 0. In other cases, the value represents a quantity of
something, like the percentage of time a replication request can echo on the network
or the number of seconds allowed between replication attempts. The hard part is
knowing what the value represents, since without that there's no way to intelligently
decide whether it needs to be changed. Chapter 10, points out some of the most
significant or interesting Registry keys, and others are documented in Microsoft's
knowledge base (http://support.microsoft.com) and in the Windows 2000 and NT
Server resource kits.

[7] "Boolean" comes from George Boole, the mathematician who first described formal systems for working with
problems whose solutions could only be expressed in terms of truth or falsehood. This makes a good trivia
question for springing on coworkers.

There is one other stumbling block: the Registry editors default to showing
REG_DWORD values in hexadecimal, not decimal, and you have to use hex values
when you're setting them unless you tell the editor you're entering decimal or binary
values. This isn't too surprising, since the Registry stores values internally as raw
bytes, not in decimal. It can be annoying to have to set Registry values for things such
as replication timers: "Start with the time, which is 2 days, 4 hours, 30 minutes--that's
189,000 seconds, which is, ah, 0x2d620 hex."[8]

[8] Yes, I did do that by hand--proof of a misspent youth.

2.1.5.2 REG_SZ

In Hungarian notation, S means "string," and Z means "terminated with a zero byte at
the end." Put them together, and you get the REG_SZ datatype, which stores fixed-

length strings by tacking on a zero at the end of the string. This extra zero is usually
called the string's terminator . The simple string "W2K" actually takes up four bytes
when stored as a REG_SZ: three bytes for its contents, and one for the terminator.
The terminator is mostly invisible to you (unless you write programs to manipulate
Registry values in C or C++); the Registry editing tools add, remove, and store the
terminator as appropriate, and they don't display it.

After REG_DWORD, REG_SZ is probably the second most-common Registry
datatype. Strings are pretty versatile; they can store human-readable names, file paths,
version numbers, and lots of other useful tidbits. These strings can contain Unicode
characters, which means they're not limited to the ASCII character set. If you have
occasion to edit the Registry on a machine running the Japanese, Korean, or Chinese
versions of Windows NT/2000, be prepared to see non-ASCII characters aplenty.

2.1.5.3 REG_MULTI_SZ

Sometimes it's useful to store a group of related strings as a single block. For
example, since a single PC can have more than one video BIOS, NT stores the
identification strings for each video BIOS it finds in
HKLM\HARDWARE\DESCRIPTION\SYSTEM\VideoBiosVersion. To support this
aggregation, Windows 2000 supports a special datatype called REG_MULTI_SZ--a
fancy name for what is essentially a collection of several Unicode strings. Programs
that use REG_MULTI_SZ values get the strings as a block and can add to or remove
from the block at will. Of course, you can edit the strings too, using the editor
provided as part of RegEdt32; see Figure 2.2.

Figure 2.2. The multiple-string editor in RegEdt32

2.1.5.4 REG_EXPAND_SZ

As part of what passes for its system scripting language, Windows 2000 provides a
number of system-defined variables. You may already know that these variables can
be used in .BAT files, the Environment Variables button on the System control panel's
Advanced tab, and directly from Windows 2000's command line, but they can also be
used within Registry values of type REG_EXPAND_SZ. For example, the
%SystemRoot% environment variable points to the root directory of the OS
installation (it's usually C:\WINNT or something similar). If a Registry key has type
REG_EXPAND_SZ and a value of %SystemRoot%\Media, any caller who retrieves
the value can expand the embedded variable to its true value. You might think, based
on the name, that the Registry would expand the embedded variable itself; sadly, this
isn't the case. You have to do it yourself, as you'll see in Chapter 8. In all other
respects, this type is identical to REG_SZ.

2.1.5.5 REG_BINARY

Programmers often use binary representations directly. For example, using a mask of
binary digits is a convenient way to represent features or flags that may or may not be
set; each bit in the mask can represent a separate on-off flag, making it possible to
pack 32 independent flags into a single DWORD. Of course, it's often useful to store
arbitrary binary data--pictures, cryptographic keys, encrypted passwords, and so on--
in a binary format. RegEdt32 supports storing and editing binary values with the
REG_BINARY type. Binary data is totally raw; there are no terminators, string
expansion, or anything else. What you put in is what comes back out. Figure 2.3
shows the binary value editor; you'll learn more about how to use it in Chapter 5.

Figure 2.3. The binary value editor in RegEdt32

2.1.5.6 REG_LINK

In Section 2.1.1.5 earlier in this chapter, you learned that the Registry supports links
that tie one subtree to another, much the same way you figure out that "Charles
Windsor" and "Prince Charles" are actually the same person. These links have their
own datatype, REG_LINK, which actually looks just like a REG_SZ. Let's say you
have an intranet application that stores its configuration information in
HKLM\Software\BigCorp\NiftyApp\version, where version is the application's
version number. If you want to read the application's settings without regard to what
version was installed, you can create a new key named
HKLM\Software\BigCorp\NiftyApp\CurrentVersion and make it a REG_LINK; its
link value would be HKLM\Software\BigCorp\NiftyApp\version. To reach the
application's communications settings, you can always refer to
HKLM\Software\BigCorp\NiftyApp\CurrentVersion\CommSettings, no matter what
the actual value of version is; the Registry API routines automatically resolves the
link and takes you to the correct destination of
HKLM\Software\BigCorp\NiftyApp\version\CommSettings.

As a more immediate example, consider HKCU. Software written for Windows 2000
must be aware that there can be several different user accounts on a single machine,
each with its own unique SID. Win9x applications may be aware that multiple users
sometimes share a computer, but the Win9x Registry doesn't have SIDs--making it
impossible for a Win9x app to find the current user's settings when run under
Windows 2000. Enter HKCU, which is a link that Windows 2000 builds at logon

time. Instead of having to know what the current user's security ID is and how to
resolve that to a name, the application can just look for settings under HKCU.

You can't create a new REG_LINK value from within RegEdit or
RegEdt32. You can use the Registry API calls described in
Chapter 8 to create these types if you need to; most often,
though, you won't.

2.1.5.7 REG_QWORD

If a DWORD is a double word, it stands to reason that a QWORD would be a quad
word, right? In fact, that's exactly what it is: four 16-bit words, providing a way to
store a 64-bit quantity in a single Registry value. You'll probably see these values
only in applications running on Windows 2000 Advanced Server or Datacenter
Server, and then only on 64-bit hardware. You can create and manipulate QWORD
values with the Registry APIs discussed in Chapter 8, but you can't edit them with
RegEdt32 or RegEdit.

2.1.6 Minor Datatypes

In addition to the datatypes presented above, Windows 2000 supports four additional
types that are less frequently used but still worth discussing. The first two,
REG_NONE and REG_DWORD_BIG_ENDIAN, aren't used very often, but they're
available if you need them. The remaining two are reserved for use by Windows
2000; RegEdt32 can display them but won't let you change any of their values.

The Windows 2000 Registry editors won't let you create new
values using any of the types described in this section, though
you can use the Registry programming APIs to create
REG_NONE and REG_DWORD_*_ENDIAN values. If you try
creating new values or keys using the resource types, however,
the default ACLs won't let you put them in
HKLM\HARDWARE, where they belong. You can create them
elsewhere, but NT ignores them.

2.1.6.1 REG_NONE

REG_NONE is a nice antidote to the more complicated datatypes featured in this
chapter; it's just a big zero. It's used to indicate the presence of a value only; since
REG_NONE doesn't store any values, you can't use it to retrieve or store data in a
key, but you can see whether the key is there or not. This is useful in some limited
situations where the existence or absence of a key indicates something important, but
it's a much better idea to use actual value types, and REG_NONE is rare.

2.1.6.2 REG_DWORD_BIG_ENDIAN

It's an often-forgotten fact that Windows NT was designed to work well on other
types of CPUs besides the ubiquitous Intel x86. At one point, NT actually ran on five

different CPU families: Intergraph's Clipper, the MIPS CPU family, DEC (now
Compaq) Alphas, the Apple/IBM/Motorola PowerPC chip, and the x86. Windows
2000 is now available only for x86 CPUs, but its multiplatform heritage lives on.

Not all these platforms order their bytes in the same way, though. "Big-endian"
platforms put the most significant byte of a quantity in the lowest address, while
"little-endian" platforms put the least significant byte at the low address. Figure 2.4
shows how the hex number 12345678 is represented with both kinds of "endianness."

Figure 2.4. The hex number "12345678" in big- and little-endian
form

To mix data between little- and big-endian machines, one end or the other has to swap
the byte ordering. Even though NT was originally designed for little-endian machines
(the x86 and MIPS), Microsoft realized that it might be desirable to run it on big-
endian platforms someday. In aid of that goal, they gave us
REG_DWORD_BIG_ENDIAN, which is rarely if ever seen on little-endian
machines. It stores DWORD values in big-endian order, without translating them
back to little-endian order on little-endian machines. Unless you're running Windows
NT on a PowerPC or Alpha (or an early beta of Windows 2000 on an Alpha), you
probably won't ever see any values of this type in your Registry. In Windows 2000,
there's also a corresponding REG_QWORD_LITTLE_ENDIAN type.

There's also a REG_DWORD_LITTLE_ENDIAN type, but you
won't ever see it on little-endian machines; it's only there so big-
endian machines have a way to store little-endian data. NT
automatically converts big- or little-endian data to the correct
representation when you query a key's value and tell the Registry
you're storing it as an ordinary DWORD.

2.1.6.3 REG_FULL_RESOURCE_DESCRIPTOR

Computers have finite resources; in particular, Intel-based PCs suffer from a limited
number of IRQs and direct-memory access (DMA) address ranges. Someone has to be

in charge of allocating this finite supply of goodies to requesters; in Windows 2000,
it's the hardware abstraction layer (HAL), which loads as part of the boot process, that
provides this necessary service. The resource arbitration's goal is (if at all possible) to
keep two or more devices from fighting over the same resource.

To make this work, the Windows 2000 kernel stores information about what resources
are available in HKLM\ HARDWARE; this information's gathered at boot time and
stored in RAM, which is then mapped to Registry keys. Completely describing a
resource requires quite a bit of data, and the operating system aggregates all the data
for a resource into a resource descriptor. The
REG_FULL_RESOURCE_DESCRIPTOR datatype consolidates this data, as shown
in Figure 2.5. (These fields may look familiar to you, since Microsoft's old-
schoolWinMSD diagnostic tool for Windows NT used a similar format.)

Figure 2.5. The resource descriptor display in RegEdt32

2.1.6.4 REG_RESOURCE_LIST

Even though the number of resources on a particular computer is finite, it can still be
large. Instead of scattering many values of type
REG_FULL_RESOURCE_DESCRIPTOR around, the Registry offers
REG_RESOURCE_LIST, a type designed to group related resource descriptors into a
single unit. Figure 2.6 shows a sample of RegEdt32 's display for this datatype.

Figure 2.6. The resource list viewer in RegEdt32

2.2 What Goes in the Registry

No two snowflakes are alike. It's not quite true to say that no two Registries are alike,
but they can vary significantly from machine to machine. There's a standard set of
keys Windows 2000 uses, but even this standard set varies somewhat, depending on
whether the computer's running Windows 2000 Professional or a member of the
Windows 2000 Server family, what optional components are installed, and how the
machine's network connection is configured.

The Registry help files included with the Windows 2000 Resource Kit (as well as the
material in Chapter 11) explain what individual keys are for, but using that data to
grasp what's important is like trying to build a watch out of a bag full of parts; it's
much more instructive to examine a working watch and see how its parts relate. To
provide a working watch for your entertainment, this section examines the most
important subkeys of the root keys described earlier in this chapter.

2.2.1 Major Subkeys of HKLM

HKLM 's purpose is to store all the important configuration data for the local
machine. It doesn't contain any information about other machines on the network or
about user-specific configuration data; instead, it's nothing but settings for the
machine where it's stored. HKLM has four important subkeys.

2.2.1.1 HARDWARE

All the keys and subkeys of HKLM\HARDWARE are generated by Windows 2000 at
boot time and exist only in memory; they aren't stored on disk. This may seem odd,
but when you consider the Windows 2000 boot process, it makes more sense. The
boot loader (NTLDR.COM) is loaded by the standard DOS boot mechanism. When it
executes, it loads and starts the Windows 2000 kernel. The kernel in turn must first
start up the hardware abstraction layer; the HAL provides a buffer between the gory
details of hardware resources and the neatly structured system of device drivers the
operating system uses to talk to hardware. For this approach to work, the HAL must

register the hardware it finds, but at the time it finds those devices, it may not have
found any disks to register the data on! Keeping the hardware keys in memory nicely
solves this problem.

There are four subkeys of HKLM\HARDWARE. For the most part, your interaction
with them will be very limited, especially since you can't change them. All the
information you might gain by manually inspecting these subkeys is more easily
available through the System Properties dialog box. Having said that, though, here
they are:

DESCRIPTION

This subkey keeps track of which hardware devices are present. During the
boot phase, the hardware-detection software creates entries under this key for
every hardware device it can find. Note that it keeps track of ports, not devices
on those ports; it will find a parallel printer port, but doesn't check to see
what's attached to it. Disk controllers are an exception to this rule.

DEVICEMAP

DEVICEMAP links the list of which devices are present and the drivers that
make them available to the system. Each driver starts up and attempts to take
control of whatever device it controls. If the driver succeeds, it registers its
ownership of the device in DEVICEMAP. This isn't much different from the
human process of registering car titles at the county courthouse.

OWNERMAP

This subkey ties bus devices to particular system buses. Many machines
support multiple buses; e.g., PCI, ISA, EISA, or VLBus controllers can all
coexist on a single machine. OWNERMAP registers which installed cards are
attached to which buses.

RESOURCEMAP

As its name strongly suggests, RESOURCEMAP provides a map of what
resources are available. To be more specific, it lists the IRQs, DMA port
addresses, and bus controller slots supported by the hardware. Drivers choose
from this list to reserve the resources they need; as they successfully claim
hardware, they register which resources they're using here so other drivers
won't try to use them too. The actual contents of this key are much different in
Windows 2000 than in Windows NT; the 2000-specific version includes a new
subkey for the Plug and Play manager.

2.2.1.2 SECURITY

The SECURITY subkey holds two important collections of data. First off, it caches
the local copy of the Security Account Manager database in HKLM\SECURITY\
SAM. This database is the foundation of all the system's access controls. Besides
ACLs for every object that has permissions assigned to it, this subkey contains a

roster of local or domain accounts and groups, since the ACLs grant permissions to
groups and users. This subkey actually maps to a separate hive, and its data is
normally readable only by kernel services that have the appropriate "need to know."
The SAM data has been kept here since Windows NT 3.1 first shipped, although in
Windows 2000 it's kept here only for backward compatibility and to support machines
that aren't part of an Active Directory domain.

As you learned in User Profiles Demystified, NT 4.0 adds the capability to use user
and group policies. These policies also live in subkeys of HKLM\SECURITY. These
policies control what users can and can't do on the machine, ranging from small things
like changing the desktop wallpaper to big things like rebooting servers or editing the
Registry. The data in the SAM is encrypted, so you can't directly access or modify it.
Instead, you need to use the System Policy Editor (as described in Chapter 6) to set
profiles, which NT then loads automatically into this subkey when they're needed.

Not even the Administratoraccount has permission to open these subkeys. Even if you
change the ownership rights on SECURITY or its hive so that your account can open
it, you'll find that the data there is encrypted. Even if you manage to decrypt it, the
data is in an undocumented format that probably won't do you any good. Don't
despair, though: there are functions in the Win32 API you can use to create, read, and
change security descriptors, permissions, and policies.

The HKLM\SAM subkey just points to
HKLM\SECURITY\SAM ; it's provided as a convenience for
parts of the kernel that need access to the SAM data.

2.2.1.3 SOFTWARE

Applications and system components store their settings under subkeys of
SOFTWARE. By convention, programs that keep things here are supposed to create
subkeys using the program and/or vendor name, then put their settings underneath.
HKLM\SOFTWARE\TechSmith\Snagit32 thus contains settings for TechSmith's
SnagIt/32 screen-capture utility. Most of the operating-system components keep their
systemwide settings under HKLM\SOFTWARE\ Microsoft\ComponentName.
Settings that belong only to a single user are stored elsewhere. The exact contents of
this subkey vary from machine to machine, depending on what software's installed.
My best estimate is that about 80% of the time you spend viewing or editing the
Registry will be spent in various subkeys of HKLM\SOFTWARE.

In particular, HKLM\Software\Microsoft\Windows NT holds most of the specific
software configuration settings. In addition, there's a counterpart key named
HKLM\Software\Microsoft\Windows that provides an equivalent to the Win95 key
with the same name. The Windows 2000 shell (which, of course, is largely based on
the Windows NT 4 shell's code) makes heavy use of this key for tracking where
applications are installed and how they can be uninstalled when needed.

2.2.1.3.1 SOFTWARE\Policies

Group policy objects can store their settings in four distinct keys, three of which are
under HKLM. Policy settings that are new for Windows 2000 (say, for instance, the
setting that controls whether the user is forcibly logged off or not when her smartcard
is removed) generally live under HKLM\Software\Policies. User-specific settings live
in HKCU\Software\Policies.

What about the things you could set with the SPE from NT 4.0? Most of these settings
were moved to the GPOs, which means you modify them through the Group Policy
snap-in. In Windows NT they were stored under
HKLM\Software\Microsoft\Windows\CurrentVersion or
HKLM\Software\Microsoft\Windows NT\CurrentVersion; in Windows 2000, they're
stored in a new subkey called Policies under one of those two keys. As you'll see later
in the chapter, settings in the GPO can still be applied to the Registry, just as they are
with the SPE.

2.2.1.4 SYSTEM

The SYSTEM subkey contains a potpourri of critical data. If HKLM is the most
important part of the Registry, SYSTEM is its most important subkey. It has four
subkeys that merit further discussion:

• The Disk subkey contains information stored by NT's Disk Administrator
application: which drives have which drive letters, whether any drives are part
of stripe or mirror sets, and so on. This information can later be used to help
regenerate damaged disks or rebuild stripe and mirror sets if something goes
boom. If you haven't run Disk Administrator on a machine, this subkey won't
exist, and it doesn't exist on Windows 2000 machines.

• Subkeys exist for each control set. A control set is nothing more than a group
of driver settings, hardware profile settings, and Registry entries; one control
set is loaded every time the system boots. Since you can change drivers,
hardware profiles, and other control-set elements, the kernel creates one
control set subkey under HKLM\SYSTEM for each control set it sees. At a
minimum, there will be two sets: one that you last used to boot, and the last
one that successfully booted. This "last known good" set can be a lifesaver
when things go wrong, as you'll see in Chapter 3. When you change control-
set settings, Windows 2000 creates a new control set. The sets are named with
a sequence number; ControlSet001 is first, followed by ControlSet002,
ControlSet003, etc.

• The Select subkey remembers which control sets exist on the machine, which
was the last known good set, and which was the last to cause a failed boot.

• The MountedDevices subkey is new for Windows 2000. It's used by the
Logical Disk Manager, a new system component that gives Windows 2000 the
ability to mount, unmount, format, and repartition disks on the fly, without
rebooting. There are two kinds of values here: the first kind (of the form
\??\Volume{volID }) lists all the known volumes, while the second kind (of
the form \DosDevices\driveLetter) ties known volumes to particular drive
letters.

• The Setup subkey is Windows 2000's way of detecting whether it's in the
middle of installation. When you install Windows 2000, it goes through a

multi-step installation process; once the first step completes, the machine
actually boots into a "light" version of the OS so ntdetect can do its work and
map the hardware. If this phase fails, the machine is in limbo: Windows 2000
isn't completely installed, but its boot loader is. The boot loader checks the
value of HKLM\Setup to see whether Setup was running when the machine
was last booted; if so, it restarts the setup process.

2.2.1.4.1 SYSTEM\CurrentControlSet

CurrentControlSet is almost, but not quite, a link to whatever control set was used to
boot the machine. The kernel copies the current control set (as pointed to by the
SYSTEM\Select key) to the CurrentControlSet and Clone keys early in the boot
process. System services, control panels, and well-behaved applications use
CurrentControlSet instead of using a particular ControlSetXXX key, since it may
move or even be deleted without the application's knowledge. The structure of
CurrentControlSet is thus identical to any of the ControlSetXXX keys; for
convenience, I'll describe it since that's the actual subtree NT uses while running:

• Control holds much of the system's configuration information. Among other
things, subkeys of Control contain information about the time zone the
machine's in (TimeZoneInformation), what directories contain Windows 2000
and its system files (Windows), and what the computer's network name is
(ComputerName). These data are all static; the system loads them at startup.
Though they can be changed, the changes don't normally take effect until the
next time Windows 2000 boots. In Windows 2000, the Control subkey also
contains a great deal of dynamically generated information. For example, the
Control\PnP subkey lists the PCI cards and devices detected at the last boot.

• Enum contains information about the hardware devices found in the system
during the boot phase. It has two subkeys: HTREE and ROOT. HTREE
contains subkeys for those devices that were actually found, while ROOT
contains subkeys for all devices that have installed drivers.

• In contrast to Control, Services holds configuration parameters for all of
Windows 2000's services and kernel drivers. Some of these settings are new
(such as the RemoteRegistry service and the smart-card server and client
drivers), while others are left over from NT 4.0. When you add services, they
typically add their own keys here as well.

• Hardware Profiles holds the hardware profile settings that appear in HKCC. At
a minimum, there are two entries under this key: Current holds the current
profile, and 0001 holds the default profile. If you define multiple profiles, the
profits get new sequence numbers: 0002 is the second profile you define, 0003
the third, and so on. Each profile's key in turn contains its own copy of the
CurrentControlSet key that matches the profile.

2.2.2 Major Subkeys of HKCU

The user profiles stored under HKCU are actually made up of data from ten major
subkeys. Since the values under these keys control most of the environment and
desktop settings that NT lets you customize, it's worth examining each of these
subkeys.

2.2.2.1 AppEvents

The AppEvents subkey stores the mappings between system events (new mail arrived,
window maximized, Windows logout, and so on) and sounds. You set these mappings
with the Sound control panel; in addition to the system events, applications can define
their own events (Visual C++ defines "compilation done"). When a listed event
occurs, NT can look in HKCU\AppEvents and play the appropriate sound.

2.2.2.2 Console

Console stores the console window properties you set with the Console control panel
or the "Command Line" Properties dialog available from the console window itself.
When you change the default command-line window's size, position, buffer size, or
font, those changes are stored here.

2.2.2.3 Control Panel

Control Panel doesn't directly store anything; instead, it's a placeholder for the
system's control panels. Each control panel that wants to store persistent settings on a
per-user basis can create its own subkey under HKU\Control Panel and use it however
it wants. Control panels that manage systemwide settings, such as the Network and
System panels, store their settings in subkeys of HKLM.

2.2.2.4 Environment

Environment holds the user-defined environment variables set in the Environment
Variables dialog (triggered by the button of the same name on the System control
panel's Advanced tab). Systemwide environment variables are kept in
HKLM\System\CurrentControlSet\Control\Session Manager\Environment.[9]
Interestingly, when you make changes to the user-environment variables, the changes
don't take effect until you log off and back on, but changes to the system's
environment variables take effect immediately (though applications that use
environment settings may need to be restarted to pick up the changes).

[9] Okay, you caught me; they're really kept in HKLM\System\ControlSetXXX.

2.2.2.5 Identities

If you're using Outlook Express or MSN Messenger, the Identities subkey contains
subkeys for each mailbox or message recipient identity. This allows multiple users to
share an Outlook Express installation, keeping each individual "personality" separate
from the others.

2.2.2.6 Keyboard Layout

Keyboard Layout retains the user's preferred keyboard layout. If you're used to the
standard U.S. English layout you may not know that, like the Mac, Windows 2000
supports international keyboards whose layouts are different from the standard
QWERTY layout. For example, the standard French keyboard's upper row starts with
AZERTY. Windows 2000 needs to know the physical layout of the keyboard so it can

map keystrokes to the appropriate character codes, especially since you can switch
between input locales on the fly.

2.2.2.7 Printers

The Printers key has two subkeys. Settings stores the user's default print settings,
including the name of the default printer and whatever page-setup parameters the user
has set. Connections contains one subkey for each installed printer to which the
current user can print. If no printers have been defined, this key is either empty or
missing, since Windows 2000 creates it the first time a printer's created. Once a
printer's been defined, a new subkey named after the print server and printer (for
example, ARMORY,HP5M Postscript) appears under Connections. The new subkey's
values store the name of the printer driver DLL used with the printer and the name of
the print server (if any) that shares the printer to other users.

2.2.2.8 Remote Access

This subkey holds settings used by the Dial-Up Networking system.

2.2.2.9 Software

Software, like Control Panel, is a placeholder for a set of subkeys. The exact list of
subkeys varies, since any software vendor can create program-specific keys.
Applications are supposed to use HKCU\Software for user-specific settings (such as
the location of private mail folders) and keep their systemwide settings in
HKLM\Software; however, many applications don't have any systemwide settings, so
they keep everything under HKCU\Software.

2.2.2.10 SYSTEM

It might seem that HKCU and HKLM\SYSTEM would mix about as well as motor oil
and Perrier. Normally, that's true; however, Windows 2000 allows users to set some
per-user options that override settings that usually live in HKLM. For example, the
spiffy new Windows 2000 Backup utility lets you specify which files not to back up;
if you override the default settings for a particular user,
HKCU\SYSTEM\CurrentControlSet\Control\BackupRestore\FilesNotToBackup
contains that user's list of files to be excluded. Likewise, other applications and
components can store settings in HKCU\SYSTEM if they override corresponding
settings somewhere in HKLM.

It turns out that this subkey exists only when an application (such as Windows 2000
Backup) creates it. A brand-new 2000 installation doesn't have this key.

2.2.2.11 Other

UNICODE Program Groups holds program group settings from previous versions of
NT installed on the machine. This key is always present, but on machines that have
never had a pre-4.0 version of NT, it is empty. On machines that have been upgraded
from NT 3.x to NT 4.0, it contains information about the defined user and system

Program Manager groups, but the key's main purpose under NT 4.0 is as a
placeholder for backward compatibility.

The Volatile Environment key stores per-user environment settings that change
between logon sessions. The only key NT 4.0 routinely creates here is LogonServer,
which points to the computer that validated the user's logon.

On Windows NT systems that were upgraded from Windows 3.x, there is a Windows
3.1 Migration Status subkey under HKCU. This subkey, which is also present on NT
machines upgraded from Windows 3.x to NT to Windows 2000, stores the contents of
the original REG.INI file, as well as assorted settings from other INI files. NT can
automatically map INI files to sections in the Registry, making it possible for 16-bit
applications to automatically use the Registry without being rewritten. (For more
information on building your own mappings, see Section 9.2 in Chapter 9.)

2.2.3 Major Subkeys of HKCC

HKCC was originally introduced in Windows 95, and it appeared in NT 4.0 strictly to
allow Win95 applications that use HKCC to run under NT. Windows NT and 2000
both support the concept of multiple hardware profiles; a profile is just a small set of
Registry keys that define the hardware available to the computer. The most often-
cited example for which hardware profiles are useful is that of a laptop. Let's say you
buy a fancy laptop and a docking station, then install Windows 2000 on it. You can
use the laptop in three configurations:

• At your office, plugged into the docking station. You can use your docking
station's display adapter and Ethernet card, and you have access to DNS,
DHCP, and WINS servers for your intranet.

• On the road, with a PC Card modem to give you dial-up access to your
intranet. In this mode, you need drivers for the modem and Dial-Up
Networking, and you need different settings for all your network software.
You also don't want the drivers for your docking station loaded.

• In the field, where you have no net access (well, you could use a satellite
phone, but at $6/minute let's just stick with the "no access" plan).

Each configuration can be stored as a unique hardware profile. When you boot
Windows 2000, you can tell it which one to use, and Windows 2000 loads the
appropriate drivers and settings. All the machine's hardware profiles are stored in the
Hardware Profiles subkey of control sets under the HKLM\System tree. More
importantly, system components and applications that are savvy enough to know
about HKCC can query it to see what kind of hardware is currently installed.

HKCC contains two subkeys: Software and System\CurrentControlSet. These are
sufficient to store the individual profile settings; as you learned earlier in the chapter,
CurrentControlSet actually stores driver settings. In addition, HKCC stores the
settings that are different from the default. If you use a profile that adds devices not
present in the default profile, they are added in HKCC and merged with the default
set.

2.2.4 What About the Other Root Keys?

At this point, you might be wondering why this chapter doesn't discuss the major
subkeys of HKCR, HKPD, and HKU. The real reason is that none of these root keys
has any particularly interesting subkeys under them! HKPD is opaque and can't be
browsed. HKCR has many subkeys, each of which has the same format and similar
contents, and it's only a link to portions of HKLM\Software\Classes anyway. Finally,
HKU 's structure and contents are described earlier in this chapter in Section 2.2.2.
The subkeys discussed in that section are the real meat of the Registry; for more
details on individual subkeys not covered here, see Chapter 11.

One interesting difference in Windows 2000 is that class data is split between HKCR
and HKCU\Classes, at least from the OS' point of view. Users and applications,
though, see a single seamless set of class registrations because Windows 2000 merges
HKCR and HKCU\Classes so that a query under HKCR actually queries both of
them.

2.3 Getting Data In and Out

There are several ways to move data into and out of the Registry; which one you use
depends on what you're trying to accomplish and the amount of time you're willing to
spend. Each of them is covered in more detail in later chapters.

First of all, you can make direct calls to the Win32 Registry API routines. At bottom,
this is what all the other methods eventually do; the OS' security components and the
undocumented internal format of the hive files ensure that the only way to load data is
to use these routines. The basic process is fairly simple: you start by opening a key or
subkey by its name. Once you've done so, you can do things to that key or its subkeys:
you can query its value, create new subkeys beneath it, or even ask about its security
settings. You can continue to use that particular key until you're done it, at which time
you must close it again. Here's a small sample that shows these steps in action; it gets
the computer's network name and uses it to print a welcome message. You'll learn
more about programming for the Registry in C (as in this example) in the section
titled Section 8.3 in Chapter 8.

// Hello, World! for the Registry: gets this machine's name and
prints
// it out.
#include <windows.h>
#include <winreg.h>
#include <stdio.h>

void main(void)
{
 unsigned char lpName[MAX_PATH] = "";
 DWORD nNameLen = MAX_PATH;
 HKEY hkResult, hStartKey = HKEY_LOCAL_MACHINE;
 LONG nResult = ERROR_SUCCESS;

 nResult = RegOpenKeyEx(hStartKey,
 "SYSTEM\\CurrentControlSet\\Control\\ComputerName",
 0L, KEY_READ, &hkResult);
 if (ERROR_SUCCESS == nResult)

 {
 nResult = RegQueryValueEx(hkResult, "ActiveComputerName",
0, 0,
 lpName, &nNameLen);
 if (ERROR_SUCCESS == nResult)
 printf("Hello, world, from %s!", lpName);
 }
 RegCloseKey(hkResult);
}

The next step up the evolutionary ladder of Registry access is to use a library or
language that removes you from direct contact with the Registry API routines.
Depending on your needs and inclinations, there are several ways to accomplish this:

• If you're using Visual Basic or Delphi, you can use a third-party library such
as Desaware's Registry Control for Visual Basic (http://www.desaware.com).
These libraries typically wrap several API calls into one, so you can more
easily perform the typical find-query-close cycle by making a single call. The
Desaware control is covered at length in Chapter 7 of Inside the Windows 95
Registry.

In addition, Microsoft makes available another package that simplifies
Registry handling from Delphi and VB: see
http://www.microsoft.com/vbasic/downloads/download.asp?ID=026.

• The Win32 version of the Perl programming language includes a number of
features that ease access to Registry data from Perl programs. Besides
wrapping the find-query-close cycle for you, they make it easy to enumerate
and search keys and quickly put the results into associative arrays. You'll see
how to harness these features in Section 8.4 in Chapter 8. For a complete
treatment of Win32 Perl, see Learning Perl on Win32 Systems by Randal L.
Schwartz, Erik Olson, and Tom Christiansen (O'Reilly & Associates).

• The Windows Scripting Host (WSH) provides a module called the Windows
Management Instrumentation (WMI); WMI provides a rash of Registry calls
you can use from within your WSH scripts.

• The Windows 2000 Resource Kit includes a tool called REGINI.EXE that
allows you to load text files of settings into the Registry. This is a handy and
fast way to take a predefined set of data and jam it into the Registry; best of
all, you can easily use REGINI to automate the process of loading Registry
data into many different machines. Note that this tool works fine under
Windows 2000, even though it's not included in the resource kit.

The final layer of Registry editing and spelunking revolves around using Registry
editors. In addition to RegEdt32 and RegEdit, there are a number of freeware and
shareware alternatives floating around.

Chapter 3. In Case of Emergency

By now, you've probably gotten the impression that working with the Registry is
serious business. How serious it can be may not become apparent until the first time
one of your Windows 2000 machines stops working because of a problem with the
Registry. This stoppage may be slight--say, Office 2000 stops working--or it may be
profound, resulting in the Blue Screen of Death or a lockup before the logon dialog
appears.

Either way, this chapter will teach you two things: how to prepare for that eventuality,
and how to recover from it smoothly when it does happen. If you're wondering why
this chapter is here instead of further back in the book, the reason is simple. It's a very
good idea for you to know how to restore your Registry before you learn how to edit
it.

3.1 Don't Panic!

Scaring people is often a good way to get their attention. For example, you may have
had to suffer through intentionally vivid films of auto accidents in drivers' education
class; the rationale behind this kind of shock treatment is to blast the viewer out of his
comfortable "it won't happen to me" mindset. This tactic is often effective, but, when
exaggerated, it can backfire.

Instead, ask yourself a question. "Self, what would happen if my Windows 2000
machines were abducted by aliens?" Just think: all your hardware, and the data it
contains, gone in a heartbeat. Sure, it's easy to disregard the risk of hardware failure,
fire, theft, or Registry corruption--that won't happen to you--but aliens? Look what
happened to Elvis.[1]

[1] He's still alive, you know, although thankfully no one's sent me any recent sighting reports.

Instead of panicking and running out into the streets like people do in alien-invasion
movies, wouldn't it be nice if you could lean back in your chair and smile, knowing
that your Registry data could easily be restored without breaking a sweat? There's
nothing like that state of calmness that comes from having a known good backup of
your critical data, and that's why I encourage you to read, and heed, the material in the
rest of the chapter. Don't panic, but don't fall asleep, either.

3.2 Safety Strategies

The first step towards effectively preparing yourself to handle Registry problems is to
adopt some strategies to safeguard your data. There are a number of fascinating books
about the minutiae of planning for disaster recovery, but this isn't one of them, so I'll
leave it to you to find out about off-site backups, fire suppression, and the other facets
of preparing to deal with catastrophic failures. If you want to read more on this
subject, check out the free (and very scary) Disaster Recovery Journal
(http://www.drj.com). Instead, I'll present two simple concepts that will save your
bacon if you implement them. While they're targeted at helping you recover from
Registry failures, you can also apply them to other situations that might render your
Windows 2000 machines (or any others, really) unusable or unavailable.

3.2.1 Make Backups

The cardinal rule of data protection is don't depend on a single copy of your data! Of
course, this rule is usually observed in the breach. You'd probably be surprised at the
number of experienced administrators who make sure to back up data on all machines
on the network, then forget to back up their own personal workstation! As you'll see
in Section 3.4, there are several ways to duplicate the Registry's contents. Whichever
you choose, though, the following four principles will make sure your backup strategy
works for you, instead of leading you into a false sense of security:

Make regular backups

If you back up data only at irregular intervals, you run the risk of losing an
indeterminate amount of data. Ask yourself this: if you had to reload your
Registry tomorrow from the most recent backup, how recent would it be?
Would it reflect all the configuration and user account changes you've made
since that last backup? (Hint: as often as the Registry's contents change, the
most likely answer is probably a rueful "no.")

Only you know how frequently your Registry data changes, so only you know
how often to back it up. Remember that every change to the domain or local
SAM database--including adding or removing accounts, changing the default
profile, changing account policies in the User Manager, or modifying any
local or global groups in a Windows NT domain--is actually a change to the
Registry. On top of these changes, installing or removing any Windows 2000
component can cause changes, as can installing or removing applications.

However often things change, establish a consistent schedule and stick to it.
Since Windows 2000 includes an easy-to-use frontend for scheduling tasks,
you no longer have an excuse not to be making regular backups. You can
probably schedule Registry backups in parallel with other scheduled
maintenance actions. I know of several sites that schedule software
installations and major account changes twice weekly; that night, they back up
the new changes. At worst, they lose no more than the previous update's
changes.

Make sure your backup software is working

There aren't many feelings that compare to the despair of trying to reload data
from a backup and finding that the data is missing or unusable. Oops. To
prevent this, you should make a regular habit of inspecting the data that is
actually sitting on your backup media. Make sure that the backups contain
everything that should have been backed up, and that the modification and
update times are reasonable.

If you're using conventional backup software, you can check to make sure the
files named in Section 3.4.1 later in this chapter are actually making it onto the
backup media. If you're building an emergency repair disk (ERD), you can
check the timestamps on the files to make sure they correspond to your
expectations.

As a practice measure, one day when you're feeling brave, go out and find a
scratch machine somewhere on your network. Back up its Registry using your
preferred method, then intentionally damage it and see whether you can
restore it. Be sure not to do this on a production machine, but be sure to do it.
Experience is the best reassurance, and if you're comfortable with the process
of restoring a damaged Registry you'll be much less stressed when the time
comes to do it for real.

Don't leave anyone out

Your backup plan needs to include every machine that's important. At a
minimum, make sure you're backing up all your Windows 2000 servers,
especially domain controllers and any other machine whose presence and
function are critical to your network. If you have special-purpose servers
running software such as Microsoft Exchange Server, Lotus Notes or Domino
servers, or Netscape's server products, make sure you include them as well,
since server products like these often make exceptionally heavy use of the
Registry for their own settings.

User workstations present a slightly different kettle of fish. If every user has
her own workstation, you probably need to back them all up. If all users share
a pool of workstations, and your network is set up to use roaming profiles, you
may be able to slip by without backing up the Registry data of pool machines.
If one crashes, you have to reload whatever software was on the machine to
restore its installation entries in the Registry, but the user account and profile
data are transparently restored by Windows 2000 as users log in.

Make sure your backups reflect recent changes

Even if you make regular backups, you still need to keep your ERD up to date.
In Windows NT 4.0, the ERD contains the local machine's SAM database and
portions of HKLM and HKU. In Windows 2000, the ERD contains
information the operating system can use to repair a damaged Windows 2000
installation, but no Registry data. That means that you have to unlearn the old
NT 4.0 habit of relying on the ERD as a Registry backup.

The RDISK utility (which you'll learn how to use later in this
chapter) displays a message telling you not to depend on ERDs
as a backup tool. This is good advice; an ERD should be part of
your backup plan, not a substitute for one.

This leads me to another general principle: make backups when things change. For
example, one network administrator I know instituted a strict policy of updating
ERDs and Registry backups before installing prerelease or beta versions of any web
browser. To her delight, this strategy saved her a significant amount of trouble when
the browser's installers misbehaved and damaged the Registry.

3.2.2 Be Prudent

"Fools rush in where angels fear to tread." When Alexander Pope said so in 1711, he
wasn't talking about Windows 2000, but his words apply, in spades, to working with
the Windows 2000 Registry, since it represents a potential single point of failure that
can render your whole machine unusable if you make a mistake while editing it.

The best defense against this sort of mistake is simple: abstinence! However, it's not
always possible to avoid editing the Registry yourself; some settings and parameters
aren't editable anywhere else. Here's how you can exercise maximum prudence to
guard yourself against Registry mishaps:

Practice random acts of self-restraint

A wise man named Mitch Ratliffe once opined that computers allow people to
make mistakes faster than any invention other than handguns and tequila. You
should keep that thought in mind whenever the temptation to edit the Registry
enters your mind. Don't change a value just to see what it will do when
changed; if you want to know what a particular key does, look it up in Chapter
11, instead of tweaking it to see what breaks.

In the same vein, don't remove keys or their values unless you've previously
uninstalled the software that uses those values. You may be certain that no one
needs the data in HKLM\Software\SomeVendor\SurfWriter, but it's generally
not wise to test your certainty by arbitrarily whacking the whole subkey to see
what happens. Instead, you can use the REGCLEAN utility (provided with
Microsoft's Developer Studio, Visual Basic, and Visual C++ products, or at
ftp://ftp.microsoft.com/softlib/mslfiles/regcln41.exe) to automatically clear out
any superfluous entries in HKCR. You're on your own for clearing out other
keys and values in other root keys.

Many people still have REGCLEAN Version 4.1. This version is
dangerous under Windows NT and Windows 2000; make sure
you get Version 4.1a or later if you want to use it.

Practice safe security

Of course, self-restraint is a virtue, but so is good security. You can think of it
as a way to help others have self-restraint when it comes to your data. Make
sure you follow the suggestions for choosing appropriate Registry permissions
and auditing settings in Chapter 9.

In particular, if you choose to enable SYSKEY protection on a Windows NT
4.0 computer (as described in Section 9.5 in Chapter 9), make sure you pay
careful attention to the description of what you must do to restore a SYSKEY-
protected Registry. Remember that SYSKEY is always on for Windows 2000
machines!

Use the scientific method

Sometimes there actually are good reasons for editing Registry values.
Microsoft's Knowledge Base (http://support.microsoft.com) is chock-full of
articles that explain how to tweak normally invisible Windows 2000 and NT
parameters. These settings are often worth changing for security, performance,
or bandwidth-related reasons; however, it can be hard to tell whether making
the changes will work well for you or not.

If possible, set aside a machine or two on your network for experimenting with
these sorts of seemingly necessary changes. Doing so gives you a safe area to
make changes, then study their effects, without compromising any of your
production machines. If the changes have the desired effect, you can always
add them to more machines when it's convenient; if, by chance, they turn out
to be detrimental, you don't have a long list of user or server machines to fix.

Consider buying better tools

Neither of the Registry editors provided with Windows 2000 support an
"undo" function, and neither of them log what changes were made during an
editing session. While word processor, CAD, spreadsheet, and other
"productivity" applications have had both of these features for years, they
haven't made the leap into Microsoft's OS development group. There's good
news and bad news to report. First the good news: there are other third-party
editors that allow you to undo changes at any time, even if you've already
applied them. The bad news: they cost money. Consider Symantec's Norton
Utilities for NT (available from http://www.symantec.com/). For its US$100
or so purchase cost, you get a Registry editor that combines many of the
features included in RegEdit and RegEdt32 with a robust undo capability. As it
turns out, you can use the Norton Registry Editor under Windows 2000, too,
by installing it on Windows 9x or Windows NT, then copying the needed files
to your Windows 2000 machine. If $100 is too rich for your blood, you can
instead use the shareware RegView and RegView Pro applications (available
from http://www.xnet.com/~vchiu/regview.shtml), which runs fine under NT
and Windows 2000 and offers its own undo facility.

Jerry Honeycutt created an .INF file that allows you to install
and use the Windows NT version of Norton Registry Editor with
Windows 2000. It's available from
http://www.robichaux.net/files/nre-install.inf.

3.3 All About Emergency Repair Disks

The very phrase "emergency repair disk" sounds ominous, like something the crew
aboard the ill-fated Mir space station might keep close at hand. In fact, the ERD (as
it's usually called) is a terrific insurance policy that can protect you from a number of
potential Registry mishaps, up to and including losing the password to your
Administrator account. However, ERDs won't do you any good unless you keep them
up to date; you must also be careful to keep close physical control over them, since
they contain a good bit of sensitive data that could potentially make it easier to
compromise a machine.

Remember, ERDs can be used only to repair the Registry under
Windows NT, not Windows 2000. If you've migrated to
Windows 2000, you can (and should) still make ERDs using
Windows 2000 Backup, but you don't use them to repair the
Registry.

3.3.1 What Is an ERD?

An ERD is nothing more than a FAT-formatted[2] floppy containing a subset of data
needed to recover some of the system's configuration. A Windows NT ERD includes
data from several Registry hives; when you create an ERD, you're actually making a
backup copy of the Registry's most essential data in a form that Windows NT can
directly use to replace damaged or missing keys. Windows 2000 ERDs don't include
this Registry data, but you get the same functionality by backing up Windows 2000
Registry data using the Windows 2000 Backup application and storing it on a floppy
or other backup media.

[2] Because the ERD is a FAT filesystem, it doesn't have access controls. Be sure to safeguard your Windows NT
4.0 ERDs as sensitive material, since they can contain SAM data.

Both the Windows 2000 and NT ERDs keep copies of additional useful data:

• The configuration files used to run DOS and Win16 programs (autoexec.nt
and config.nt).

• A copy of the current setup log file, setup.log. This file tracks the list of files
installed during Windows 2000's setup phase, including a checksum; this log
file enables setup, repair, service pack, and hotfix installers to know whether
they're replacing the right files or not.

• The default user profile for the machine, normally stored in ntuser.dat .

ERDs created under Windows NT contain copies of the SAM, SECURITY,
DEFAULT, SOFTWARE, and SYSTEM hives. This data comes from the
%systemroot%\repair directory, which is usually updated as part of the process of
generating an ERD. To get the same functionality under Windows 2000, you can copy
these files yourself, use a batch file or script to do it, or use Windows 2000 Backup, as
described later in the chapter.

From now on, when I talk about ERDs I'll assume you're
building them with the rdisk tool under Windows NT or using
one of the methods described above under Windows 2000. The
important thing is that you have one at all.

Wherever this data is, it's specific to a particular machine, so you can generally use it
to repair only the machine it originally came from. To be more exact, if you take the
emergency repair data from one machine on another, portions of the target machine's
Registry will be summarily replaced with the repair data's contents. In the case of the
SAM database and large chunks of HKLM, this can render the machine unusable.

When you back up Registry data under Windows 2000, what format the hives end up
in depends on how you do it. If you just copy the files from the repair directory, you
can load them with RegEdt32. If you use Windows 2000 Backup, you'll probably
have a .bkf file that can be read only with the backup tool. Registry files on a
Windows NT ERD are compressed, so you can't directly modify or view them; in all
other respects, they're ordinary files, so you can back them up, archive them, or copy
them to other media without uncompressing them.

When you build an ERD under NT 4.0, you're making a snapshot of the Registry's
contents at that point in time. Any changes you make after building the ERD won't be
preserved, which is why it's so important to keep your ERDs up to date. For example,
if you make an ERD for a machine, then change its Administrator account password,
the ERD will contain the old password. If you ever use the ERD, you'll find the
password set back to its old value--which you may no longer remember!

By default, the ERD you build while installing Windows NT

contains the original SAM created when NT is installed. You
must use the /s switch (see Section 3.3.3.2 later in this chapter)
to force RDISK to back up the current SAM data instead.

3.3.2 What ERDs Can and Can't Do

Windows 2000 ERDs can't restore any Registry data, but you can use them to restore
system configuration settings. On the other hand, a Windows NT ERD can restore
data for any of the hives it has backed up: SAM, SECURITY, DEFAULT,
SOFTWARE, and SYSTEM. When you reapply ERD data to a system, you are
generally restoring data on a wholesale basis, so the entire contents of a hive are
replaced with the ERD's copy.

When you restore a Windows 2000 Registry by using the system's recovery console,
you can copy only entire hive files, so you can replace any or all of the individual
hives. When running Windows NT setup, its repair application allows you to choose
which hives to replace, but not which individual values to update.

In either case, applying ERD data requires you be able to boot your machine. To use
the Microsoft-provided repair utilities for 2000 or NT, you need your original
bootable installation CD. If you prefer, you can install the Windows 2000 recovery
console so that it is available when you need it, but you have to do this before you
need it.[3]

[3] You install the recovery console by running winnt32.exe with the /cmdcons switch. That instructs the
setup program to modify the boot loader and add the recovery console as a choice during the boot process.

Applying a Windows NT ERD takes all the data in that section of the Registry back to
status quo ante : all changes you've made since the ERD was created will be lost. As
long as you keep your ERDs reasonably up to date, this shouldn't be a problem,
especially since many applications and components are now smart enough to
recognize when their Registry entries are missing and will recreate them when
needed.

As useful as the ERD is, it's not magical. First of all, it can't restore what's not on it;
you must keep your ERDs up to date if you want them to be available to you at crunch
time. Secondly, the Windows NT ERD doesn't store anything in HKU (or HKCU, for
that matter) except ntuser.dat, so it doesn't preserve user-specific settings. It also
doesn't restore all of HKLM\SOFTWARE , so be alert to the fact that application
installations and user preferences in your Registry won't be preserved by the ERD. If
you copy all the hive files when you're making your Windows 2000 ERD, you won't
have this problem.

3.3.3 How to Make an ERD

Making an ERD is pretty simple. Both Windows 2000 and NT include utilities that do
most of the work for you. However, if you want to create a repair disk that contains
Registry information under Windows 2000, you have some additional work to do.

3.3.3.1 Using Windows 2000 Backup

The Windows 2000 Backup utility was completely rewritten, so it looks a lot different
from its NT predecessor. It does the same things as Windows NT Backup, but it has a
ton of new functionality, including the ability to back up files to disk or CD-R/CD-
RW. It incorporates the function of the RDISK tool, too (as described in the next
section), so you can use one tool to back up the Registry and create an ERD. The
Windows 2000 Backup utility is discussed more fully in Section 3.4.3 later in the
chapter, so for now I'll confine my discussion to the process of creating an ERD.

When you launch Windows 2000 Backup, you see the Welcome screen, shown in
Figure 3.1. To create an ERD, you can either click the Emergency Repair Disk button
on this screen or use the Tools Create an Emergency Repair Disk command.

Figure 3.1. The Windows 2000 backup welcome screen, from which
you can create an ERD

When you tell Windows 2000 Backup to create an ERD by either method, you see a
very simple dialog, as shown in Figure 3.2. Note that this dialog doesn't say anything
about putting Registry data onto the repair floppy; that's because it does no such thing.
You can, however, use the "Also backup the registry in the repair directory" checkbox
to force Windows 2000 Backup to copy the hive files to the %systemroot%\repair
directory, as I mentioned earlier. What do you do with the files once they're in that
directory? For starters, you can use Windows 2000 Backup itself to make a backup
copy; you can also copy the files to another computer via the network, onto a
removable disk, or onto a CD-R or CD-RW.

Figure 3.2. The ERD dialog

3.3.3.2 Using NT's RDISK utility

RDISK.EXE is a fairly simple application to use; its main window is shown in Figure
3.3. As you can see, there are only two useful things you can do with RDISK; each of
the four buttons in the window controls a single function of the utility. The Help and
Exit buttons do what you'd expect, so I won't discuss them here.

Figure 3.3. The RDISK utility

The Update Repair Info button does just that: it makes a private copy of the data
described earlier and stores it on your hard disk. NT's setup utility can use this data to
try to repair some parts of a damaged installation without having an ERD available.
When the update is complete, you see the dialog shown in Figure 3.4, which allows
you to create an ERD immediately or defer it until later.

Figure 3.4. Generating an ERD with RDISK

While you might be tempted to copy RDISK from an NT
machine onto a Windows 2000 machine, don't give in to
temptation: it won't work.

Clicking Yes in this dialog generates an ERD, while clicking No (as you'd expect)
does nothing. You may notice that the dialog shown in Figure 3.4 is titled Setup;
there's a good reason for it, namely that NT's setup executable uses the same dialog to
ask if you want to build an ERD during installation. It's a good idea to build an ERD
when you install NT on a machine, then file it away in a safe place so you can use it if
the Administrator account password for the machine is ever lost or forgotten. This
works because the original ERD contains whatever Administrator password you chose
during the NT install process. However, remember that applying that ERD resets
allthe Registry data to the state it was in when you made the ERD, not just the
administrator password.

You can also kick off RDISK with two switches. /s has exactly the same effect as
starting RDISK and clicking "Update Repair Info"; it copies the contents of the
security and SAM hives to the floppy. If you instead use the /s- switch, that starts
RDISK and copies the repair files into the REPAIR subdirectory without prompting
you to insert a floppy disk. This latter switch is extremely useful for automating or
scheduling Registry backups.

You actually create an ERD with the Create Repair Disk command, or by choosing
Yes in the dialog presented after you use the Update Repair Info button. RDISK asks
you to insert a formatted floppy (but not without warning you that its contents will be
erased). Once you've inserted the floppy and clicked OK, RDISK creates an ERD by
copying the system's copy of the repair files to the floppy. When the ERD's done
building, you can pop out the floppy and put it in a safe place.

If you use the /s switch, the ERD will contain a complete copy
of the source machine's SAM and security data. This data is
much sought after, since it can be run through a password
cracker like l0phtcrack and used to find weak passwords that can
then be used to enter your system. Treat ERDs as sensitive
material and keep them away from public scrutiny.

3.3.4 How to Repair Your Registry with an ERD

An ERD won't do you any good unless you can apply its data to a machine when
needed. Depending on what's wrong with the machine you're trying to repair, you may
be able to boot it or not. Which repair tack you take depends on whether or not you
can boot the machine and log on with an account that has Administrator privileges.

There's one caveat I need to share before we start talking turkey: NT ERD floppies
are compressed using Microsoft's standard compression tool. You've undoubtedly
seen files whose extension ended with an underscore, like those on the NT
distribution CD. These files are compressed with Microsoft's tool, as are the ERD
files. To manually restore data from these files, you need a copy of EXPAND.EXE,

Microsoft's utility for expanding these compressed files. You probably have a copy
sitting around somewhere on your disk, or perhaps on one of your Microsoft product
CDs. Make sure you have it handy before starting a manual ERD restore. In fact,
make sure you have a recent copy of EXPAND.EXE; older versions can't handle NT
4.0's compression format.

3.3.4.1 Using the Windows 2000 setup utility

I've mentioned several times that a Windows 2000 ERD doesn't contain any Registry
data, but the repair directory does, and (in conjunction with the ERD) you can use the
Windows 2000 setup utility to repair a damaged Registry. To do this, boot with the
Windows 2000 CD (or boot floppies, if you've made a set). When the setup program
asks whether you want to install Windows 2000 or repair an existing installation,
select the repair option and provide the ERD when prompted. Setup then asks you to
choose a repair mode: fast or manual.

In fast mode, the setup program uses the files in the repair directory to repair the
Registry. It also fixes the boot sector, the boot loader, the startup environment, and
any system files that need repair. In manual mode, you get to choose which items the
system attempts to repair, but repairing the Registry is not one of your choices! That
means you can't rely on manual mode to save your bacon if you have a Registry
problem; it's either fast mode or one of the other repair methods described in the rest
of this section.

3.3.4.2 Using the Windows 2000 recovery console

One of the best new features in Windows 2000 is its recovery console. The console
offers you a limited command shell you can boot into; all told, it offers about 25
commands to do things such as repair the partition table, copy files hither and yon, or
enable or disable system services. One of the things you can do is copy files.
Assuming you have someplace to copy them from, you can quickly repair any
individual hive file using this method. Figure 3.5 shows a sample of what this might
look like.

Figure 3.5. A recovery console session

Of course, for this approach to work you have to have the console available. There are
two ways to start the console at boot time. One is to use the Windows 2000 setup CD
(or boot floppies). When you boot using either of these media, you have to let the
initial part of the boot sequence complete. Eventually, the setup program will ask
whether you want to repair an existing installation or start a new one. Choose the
repair option, then specify that you want to use the recovery console instead of the
ERD. Why? Because the Windows 2000 ERD enables setup to scan for missing or
downlevel files; it doesn't do anything to the Registry. Once the console comes up,
you can use the copy command to copy any hive file to the system32 directory, then
reboot the machine. (The second way to start the console is to use the boot-selection
menu, but this only works if you've already installed the recovery console.)

The recovery console is a pretty blunt implement. There's no way to selectively reload
individual keys or values, and (as of this writing) there's no way to extend the
recovery console by adding arbitrary executables. However, when something drastic
is wrong, you can often fix it using the provided tools.

Unlike Windows NT, Windows 2000 doesn't come with its own
set of bootable installation floppies; you need to make a set with
the makebt32.exe utility, found in the bootdisk directory on the
distribution CD.

3.3.4.3 Using RegEdt32

If you can successfully boot the operating system and log into a privileged account,
restoring data from an ERD is easy to do with RegEdt32. First, you have to find the
ERD hive file you want to restore from.

You then have to uncompress the hive file if it originally came from an NT 4.0
ERD. EXPAND.EXE takes two arguments: the source filename and its destination
name. Since hive files don't have extensions, you shouldn't specify one for the output
name. Here's an example:

expand default._ default-save.

Next, launch RegEdt32. Depending on what you're trying to restore, now is when
you'll have to make some choices. If you want to reload data that was accidentally
deleted, or that you need to refer to, without overwriting an existing hive, you can
load the hive from your ERD into a new subkey of HKLM or HKU by using the
Registry Load Hive... command. If you want to load the ERD data and replace the
existing hive, you need to use the Registry Restore... command. Both commands
are documented more fully in Section 3.5.4 later in this chapter.

3.3.4.4 Using NT 's setup application

Sometimes your only hope of restoring a downed NT machine is to restore all or part
of the Registry from an ERD by using NT's setup program. This last-chance
restoration is the original reason for the ERD, and there are times when nothing else
will do the trick.

This scheme works because of the way NT's setup process works. NT's installer
proceeds in three separate phases. In the first phase, NT copies just enough of the NT
kernel and its support drivers and infrastructure to your hard disk. It then reboots into
NT, using the newly made skeleton copy of NT and proceeds with the "blue screen"
portion of the setup process. It's at this point that you can tell Setup you're repairing
an existing NT installation. If you're not doing a repair, the third phase begins after
another reboot; that's the familiar Windows GUI portion of the installation.

To get the ball rolling, you need to get NT setup started. If you have the original boot
floppies and CD, you can use them; otherwise, if you have Windows 3.1, DOS, or
Windows 95 installed (with appropriate CD drivers), you can boot it and run the setup
program from the CD. Once you've done so, the first install phase completes, then
your machine reboots. When it does, you can tell Setup whether you want to repair an
existing installation (you do) or perform a complete installation. When you select the
repair option, the setup installer asks you which hives you want to restore (SYSTEM,
SECURITY, SOFTWARE, DEFAULT, and USERS are your choices). Once you've
chosen, you are prompted to provide the ERD and the saved hives are restored. After
the restoration's complete, you can reboot.

3.4 Backing Up the Registry

You probably remember from Section 2.1.3 of Chapter 2, that each hive of the
Registry is stored in a separate file. While it might seem reasonable to assume that
you can just back up these files as though they were Word documents or some other
innocuous file, the harsh reality is that you can't. The NT kernel always keeps the
Registry data files open, so ordinary backup software won't be able to back them up.
However, there are ways to successfully duplicate the files for safekeeping; we
explore three ways in the remainder of this section.

3.4.1 But What Needs Backing Up?

In Chapter 2 you learned that the Registry's made up of several hives, which are
actually files that live on your disk. They're normally stored in the System32\Config

subdirectory of your system volume; you can always find the correct location by
examining the value of HKLM\SYSTEM\Control\CurrentControlSet\hivelist.

If you change to System32\Config (or wherever your files are) and get a directory
listing, you'll see five files whose names match the hives listed in Table 2.1:
DEFAULT, SAM, SECURITY, SOFTWARE, and SYSTEM. (The other hives, SID
and HARDWARE, aren't stored here.) The hive files themselves don't have
extensions on them, but there are other files with the same names that do have
extensions. Files whose names end in .LOG contain log and auditing information for
the corresponding hive, while files with the .SAV extension keep backup copies of
Registry transactions so a hive can be automatically restored if the system crashes.
Finally, there's one file with its own unique extension: SYSTEM.ALT contains a
transaction log of the SYSTEM hive. If the computer crashes, the boot loader can
automatically replace the SYSTEM hive with SYSTEM.ALT if the latter has more
current data.

You can back up any or all of them; however, as long as you're going to the trouble of
backing them up at all you should back them all up. Special note to the curious: you
can't rename, move, or delete these files while the operating system is running, since
the kernel owns them and is holding them open for exclusive access; other
applications that try to modify the files cause a sharing violation when they try.

3.4.2 The Old-Fashioned Way

In the days before Windows NT and Windows 2000, backing up Windows'
configuration files was simple. You could just boot into DOS without starting
Windows, then do whatever you needed to do. In fact, the "boot-edit system files-
reboot-run Windows" routine is familiar to most Windows users, not just heavy-duty
administrators. Windows 95 and 98 modified this tactic a bit; not only could you boot
directly into DOS, you could use the built-in "safe mode" to tweak configuration files
before rebooting. Windows 2000 offers a safe mode, but in safe mode the OS still has
a firm grip on the hive files, so you can't use it to back up or restore your files. (Of
course, NT itself has no safe mode at all.) By booting into another operating system
(DOS, Windows, Linux, OS/2, or whatever else you have installed) or the Windows
2000 recovery console, you can still copy your files. There are four basic things you
need to do a manual backup of your Registry files; which ones you use depends on
your system configuration:

• If you want to back up your Registry to a backup device, you need appropriate
drivers for it (whether you're using a tape drive of some sort or a removable-
media drive like a Zip, Jaz, Orb, or similar). If you're using the recovery
console, note that you can't load any extra drivers in it.

• If you can't (or don't want to) use the recovery console, and you don't already
have another bootable operating system installed on your machine, you'll need
a DOS, Linux, or OS/2 boot disk that includes a command shell.

• If your system partition uses the NTFS filesystem, you need a driver to allow
your alternate OS to read it.

• You may need some kind of compression utility (unless you're booting into a
Win32 OS to do your backup, don'tdepend on WinZip32, which won't run
under DOS or Windows 3.x). You need this because the uncompressed hive

files can be several megabytes in size, so you won't be able to store them on a
floppy without compressing them.

You can't use a system boot floppy to accomplish this task if
your boot partition is NTFS; even though the floppy contains its
own copy of the boot loader and kernel, it will use the
configuration settings in the Registry on your "normal" system
volume. You can use a separate boot disk if it contains a
complete 2000/NT installation, as it would if you installed the
OS onto a Zip or Jaz removable disk and booted from it.

Once you've gathered all these things, you're ready to proceed. The first step in
making a backup is to determine whether you can boot from another OS on your disk.
If you can't, you need an alternative way to boot your machine from a floppy or
removable disk. Once you've arranged a bootable configuration, you must also
identify what type of filesystem your boot and system partitions are using; that
determines whether your boot disk or OS needs additional drivers.

Boot Versus System Partitions

Windows 2000 allows you to separate boot and system partitions. However,
Microsoft's terminology is backwards: they define the system partition as the
place where the boot loader is installed and the boot partition as the place
where the system files live! While this is undoubtedly confusing, just
remember that each term means the opposite of what you'd think, and you'll
be fine.

If your system partition is FAT, that means that you can boot DOS,
Windows, or another OS that requires a FAT boot partition, but your
Windows 2000 system files can still be on an NTFS partition. This is a good
solution if you need to dual-boot another OS and Windows 2000. If you just
want extra recoverability, install Windows 2000 again so you have a parallel
installation you can boot into when needed.

If you don't ever need to boot from another OS, or if you're willing to use a
floppy for those times when you do, you can use NTFS for your boot and
system partitions. This setup offers maximum security; it may offer better
performance and disk-space usage, depending on the size of your drive.

If your boot and system partitions are both using FAT, you don't need any special
drivers (other than those you need for whatever backup device you're using).
However, if your boot partition uses the NTFS filesystem, you'll need an additional
driver to allow whatever OS you boot to read it. For Windows 3.1, 95/98, or DOS,
you can use the excellent (and free!) NTFSDOS driver. NTFSDOS comes in several
versions, including a read-only free version and versions that run under MS-DOS and
Windows 9x. They're all available from http://www.sysinternals.com/. If you're using
Linux, a similar read-only driver is available from http://www.informatik.hu-
berlin.de/~loewis/ntfs/.

Once you've accomplished these two steps, you're ready to back up the files
themselves. Here's what to do:

1. Boot your computer, using whatever OS you've chosen. Get to a command
prompt and change to the System32\Config subdirectory of your installation
directory. Make sure you can see the hive files you want to back up.

2. If you're using a backup program, start it, point it at the hive subdirectory, and
tell it which hive files to back up. It should do the rest.

3. If you're not using a backup program, use your preferred compression utility to
create a new archive containing the files from the System32\Config directory
you want to back up.

4. Safeguard your backup archive, tape, or disk; it contains a complete and
readable copy of your entire Registry.

You might wonder whether this approach is worth the hassle. The answer is "it
depends." Windows 2000 does a great job; as a bonus, it allows you to back up files
even without a tape drive. On the other hand, if you don't have a tape drive, you can't
use Windows NT Backup. Many third-party backup utilities can back up to floppies
or removable disks, but not all of them can back up the Registry. You can always use
REGBACK and REGREST, but they may not always be available when you need
them. The ERD mechanism works well and is easy to use, but it has a critical defect:
it doesn't back up the entire Registry, just what Microsoft thought were the most
important parts.

3.4.3 Using Windows 2000 Backup

As part of the overall Windows 2000 facelift, Microsoft threw out the old NT backup
utility and replaced it with a new tool they licensed from Veritas. The resulting tool is
still called NTBACKUP.EXE, but other than that it's quite different in most respects.
In particular, its user interface is completely revamped, and it takes advantage of
Windows 2000's media services toolkit to let you do backups using tape autoloaders,
optical jukeboxes, hierarchical storage management (HSM) packages, and other
exotica.

Windows 2000 Backup takes an all-or-nothing approach to backing up the system's
configuration data. When you select what data you want to back up, you'll see a
category called System State; when you back that up, there are actually five separate
pieces of data that get backed up. The bulk of the Registry constitutes one piece, the
Active Directory database is another, as are the system's boot files, the COM+ class
registry (drawn from HKCR) is the fourth, and the system volume (or SYSVO; the
Windows 2000 equivalent to the NETLOGON share in NT) is the final item.

Earlier in the chapter (Figure 3.1), you saw the Welcome screen that appears when
you start Windows 2000 Backup. In keeping with the overall wizard-ization of
Windows 2000, the first two buttons on that screen will take you directly to the
Backup and Restore wizards respectively. The corresponding Backup and Restore
tabs offer similar functionality, and since the wizards are easy to understand once you
grasp the manual process, I'll start there.

Here's how to do a manual backup of the Registry using Windows 2000 Backup:

1. Launch Windows 2000 Backup (Start Programs Accessories System
Tools Backup). Click the Backup tab. (If you prefer the wizard interface,
either use the Tools Backup Wizard command or click the Backup Wizard
button on the Welcome tab.)

2. Use the tree control on the left side of the Backup tab to select the items you
want backed up. In particular, make sure the System State item is checked.
(Note that you can't select or deselect individual subparts of the System State
item.) Of course, you should feel free to include any other files or folders you
want backed up.

3. Use the Backup destination control to select where you want the backup file to
go. On systems without a tape drive, the default is to store the data to a backup
file (with a .bkf extension) in a directory you specify. If you have a tape drive,
you can select it instead of the default setting of "File."

4. Select the file or tape you want the backed-up information to be stored on with
the "Backup media or file name" field and its associated Browse... button.

5. Click the Start Backup button. The backup will run; by default, you'll get a
summary log file. If you use the Tools Options command, you can use the
Log tab to change the level of logging detail. Don't turn it off altogether.

Make sure to turn on backup logging and check the log files to
be sure your backups are capturing the data you expect. Not
much is worse than being lulled into a false sense of security by
your backup scheme only to find it didn't back up the data you
really needed!

3.4.4 Using Windows NT Backup

Microsoft provides a backup utility, NTBACKUP.EXE, as part of the standard NT
Workstation and Server installations. As with many other bundled utilities, it's not the
be-all of backup tools, but it works tolerably well and it's included for free. It can
back up local or network volumes (as long as they're already mounted), and it does a
good job of logging errors and exceptions.

Lots of tools can do the same things as NTBACKUP, but unlike some other backup
tools (particularly those designed for Windows 95), NTBACKUP has one important
feature: it can back up the Registry to any supported tape device.[4] This Registry
backup captures an up-to-date copy of the Registry files from the local machine ; if
you're backing up network drives and include the Registry, you get the Registry of the
machine that's running NTBACKUP along with data from whatever drives you've
mapped. NTBACKUP doesn't back up Registry data from any remote machine, so
don't depend on it to do so, or you'll be seriously disappointed.

[4] This is only a skeleton description of NTBACKUP. For more details, see O'Reilly's Windows NT in a Nutshell
by Eric Pearce, and Windows NT Backup and Restore by Jody Leber.

Figure 3.6 shows the main interface of NTBACKUP. The main window contains two
child windows at startup. The Drives window shows a list of all mounted volumes on
the current machine (including shares connected over the network), while the Tapes
window shows a list of all the available tape devices.

Figure 3.6. NTBACKUP

A basic backup with NTBACKUP requires just three simple steps:

1. Use the Drives window to select the drives and files you want backed up.
Double-clicking a drive expands it into a File Manager-like window with two
panes. The left pane contains a tree view of the folders on the disk, while the
right pane contains a list of the files in the selected folder. Each item in either
pane has a checkbox next to its file or folder name. If the checkbox is marked,
the file or folder is backed up; if it's cleared, it won't be. Figure 3.7 shows a
sample window with some files marked.

2. Click the Backup button or use the File menu's Backup command. You see the
dialog shown in Figure 3.8. Make sure the Backup Local Registry checkbox
has an X in it, then click OK. The backup will start.

3. Go do something else while the backup runs. When it's done, put the tapes in a
safe, secure place.

Figure 3.7. The NTBACKUP file selection window

Figure 3.8. The Backup Information dialog

For best performance, you may want to run NTBACKUP only after stopping other
applications on your computer. The Registry files will be backed up even if system
components are using them; however, other files (like SQL Server databases, Office
documents, or any other file) are backed up only if they're closed. To ensure a
complete backup of all of your machine's data, I recommend closing all other
applications and stopping any shared services (IIS, SQL Server, Netscape FastTrack
or Enterprise, and so on) whose files you want to back up.

Use the Log File field in the Backup Information dialog (see
Figure 3.8) to specify where you want the log to go. If you want
to make sure you see it, put it in the Administrator's desktop
folder (try %systemroot%\PROFILES\Administrator\Desktop) .

3.4.5 Using REGBACK

The REGBACK utility does pretty much what its name implies: it allows you to back
up all or part of the Registry. Microsoft recommends that you use NTBACKUP for
making Registry backups if you can, but REGBACK is still a useful tool in its own
right, since you can use it to export parts of the Registry for storage onto media that
the Windows NT backup utilitydoesn't support, namely floppies and removable-media
drives. You can also execute REGBACK from the command line, so you can schedule
Registry backups or perform them as part of a batch file. For example, you can
schedule a nightly Registry backup of some, or all, of your machines and put the
backup files on a central server. In addition, REGBACK stores its output as
uncompressed files, so you don't have to worry about having the correct
decompression tool handy.

There are some caveats to using REGBACK, though; let's examine them before I tell
you how to use it:

• The account that you use to run REGBACK must have the "Back up files and
directories" right. Windows 2000 uses this right internally to let certain
accounts copy files without giving them read access; this allows a backup-only
account to copy files owned by other users without being able to open them.
The Administrator account has this right by default, as do any accounts that
you've placed in the Backup Operators group.

• REGBACK backs up only the hives in the System32\Config directory, not any
of the other files stored there. In addition, it won't back up inactive hives that
you've unloaded with RegEdt32. However, it warns you with an error message
indicating what files it found that need to be copied manually.

• REGBACK isn't very flexible. If you try to back up files to a device that
doesn't have enough space, it will silently fail. If the destination for your
backup already has hive files in it, the backup will silently fail. NTBACKUP
doesn't have either of these limitations.

You can run REGBACK in two modes. In the first mode, every active hive in your
Registry is backed up to a directory you specify, like this:

regback directory

The specified directory has to be on a mounted volume; you can't use UNC paths.
REGBACK cheerfully back ups all the Registry hives it finds on your machine and
warns you of any files it didn't back up, like this:

C:\>regback \regsave
saving SECURITY to \regsave\SECURITY
saving SOFTWARE to \regsave\SOFTWARE
saving SYSTEM to \regsave\SYSTEM
saving .DEFAULT to \regsave\DEFAULT
saving SAM to \regsave\SAM

***Hive = \REGISTRY\USER\S-1-5-21-1944135612-1199777195-24521265-500
Stored in file
\Device\Harddisk0\Partition1\WINNT\Profiles\Administrator\
 ntuser.dat
Must be backed up manually
regback <filename you choose> users S-1-5-21-1944135612-1199777195-
24521265-500

Notice that REGBACK warned that it didn't copy my user account hive, but it gave me
a command line that would do so--the last line of its output. This command line uses
the second mode that REGBACK supports, one that allows you to back up a specified
hive instead of the entire Registry:

regback output hivetype hivename
output

Specifies where you want the saved hive to go; can be a full or partial
pathname, but cannot be a UNC path.

hivetype

Accepts only two hive types: machine represents HKLM, while users
represents HKU. If you supply any other hive type, REGBACK fails with an
error message.

hivename

Specifies a subkey immediately beneath either HKU (either .DEFAULT or
one of the SID-identified subkeys) or HKLM (SOFTWARE, SYSTEM, and so
on). If you specify a key that's not immediately beneath either HKLM or
HKU, REGBACK will fail.

This form of REGBACK saves the entire contents of the specified hive to the file you
specify; there's no way to save individual values within a hive. If you want to back up
an entire Registry, you may still prefer to use this form of the command, since you
can specify the filename for each hive's output file--a valuable feature when you want
to back up several machines on a network to the same directory on a server. This
snippet shows the output from me telling REGBACK to preserve my main subkey
under HKU:

C:\>regback d:\regsave\paul users S-1-5-21-1944135612-1199777195-
24521265-500
saving S-1-5-21-1944135612-1199777195-24521265-500 to d:\regsave\paul

REGBACK returns standard DOS-style error codes: for success, 1 if there were files
that need to be manually backed up, and 2 if something else went wrong (disk full,
bad hive type, and so forth). You can use the ERRORLEVEL construct in a batch file
to branch when errors occur. For example, this small batch file attempts to back up
HKLM\SOFTWARE to a central directory:

regback j:\save-me\enigma-software machine SOFTWARE
if ERRORLEVEL 1 echo "Some files weren't backed up"
if ERRORLEVEL 2 echo "An error occurred."

The Windows 2000 Resource Kit costs about $300, and the NT
Resource Kit is around $150. You might wonder whether it's a
necessary expense. The answer is a resounding "yes." The
REGBACK and REGREST utilities alone can literally save you
days of effort when rebuilding a trashed machine. In that light,
the cost of the Resource Kit seems more reasonable, and I
recommend it highly.

3.4.6 Using RegEdt32

You can do some rudimentary backup and restore tasks with nothing more than
RegEdt32. It allows you to load previously stored hives into your Registry, then
unload them later (though you can only unload hives you loaded yourself). In
addition, you can export keys and hives in a format that RegEdt32 can reload at a later
time.

You can't actually save any of the predefined hives (i.e., the hives stored in
System32\Config) from RegEdt32, but there's a good reason for this limitation: those

hives are already saved as disk files! Remember, a hive is a disk file that contains
Registry keys. You can load a hive that you've saved in RegEdt32 (or gotten from
somewhere else); see the section Section 3.5.4 later in this chapter for more details.

RegEdt32 does allow you to do something else, though; you can save any key that's
not a root key into a hive file. To keep from confusing the "big" hives (which store the
root keys' contents) from the files you can create, I'll call them "honeycombs" (after
all, what's a hive full of? Well, besides bees). When you create a honeycomb file,
RegEdt32 takes the specified key and its subkeys and stores them in a file that uses
the hive format. You can then move the file to any other Windows 2000 machine and
load it into that machine's Registry (with some caveats that I'll discuss later).

The mechanics of doing this are simple: select the key or subkey that you want to
save, then use RegEdt32 ' s Registry Save Key command. When the standard Save
dialog appears, specify a filename; the editor happily saves your key's contents to the
file (assuming you have adequate permission to read all the keys and their values).
Once the save is finished, you can copy, compress, fold, spindle, and mutilate your
new honeycomb file just like any other, plus you can load it into the Registry on any
Windows 2000 machine--either in place of or in addition to existing keys.

3.4.7 Using Text Files

You might think that using a plain-text file to represent the Registry is crazy. While
it's not the best way to make a complete copy, and it's not a very good way to make
copies for restoration use, there aresome sensible reasons to use this method. For
example, if you periodically dump the contents of a Registry key (whether a root key
or any subkey) to a text file, you can use a file comparison tool such as WinDiff to
highlight changes between the two files. This is an invaluable strategy when you're
trying to figure out what Registry keys and values have changed due to software
installation or user tinkering. It's also a winning plan for tracking what your own
home-grown software does to the Registry and how that matches up with what you
wanted it to do.

There are a number of tools for dumping Registry contents to text files. Which one
you use is largely a matter of personal preference; they're all free, and they all work
well.

3.4.7.1 Using RegEdt32

RegEdt32 can save any Registry key (and its subtrees) as text. The output is pretty
verbose, as shown in this sample from HKLM\SOFTWARE\Netscape:

Key Name: SOFTWARE\Netscape\Netscape Navigator\4.0 (en)\Main
Class Name: <NO CLASS>
Last Write Time: 6/24/97 - 11:26 PM
Value 0
 Name: Install Directory
 Type: REG_SZ
 Data: C:\Program Files\Netscape\Communicator

Value 1

 Name: Java Directory
 Type: REG_SZ
 Data: C:\Program
Files\Netscape\Communicator\Program\Java

Value 2
 Name: NetHelp Directory
 Type: REG_SZ
 Data: C:\Program
Files\Netscape\Communicator\Program\NetHelp

To save a subtree, all you need to do is select the subtree (or root key) you want to
save, then use RegEdt32 's Registry Save Subtree As... menu command. You are
prompted for a file to save the data in, then RegEdt32 spits out the data you selected.
However, it's worth noting that there's no way to import this data back into the
Registry again! You can use a file-comparison utility such as WinDiff to compare two
file dumps generated by RegEdt32, but you can't restore the Registry's contents based
on a RegEdt32 file.

3.4.7.2 Using REGDUMP

Andrew Schulman's REGDUMP [5] produces similar output to that generated by
RegEdt32, but it's more nicely formatted, as you can see from this sample:

[5] REGDUMP made its debut in Chapter 5 of Inside the Windows 95 Registry.

Netscape Navigator
 CurrentVersion="4.0 (en)" -> ""
 4.0 (en) -> ""
 Main
 Install Directory="C:\Program Files\Netscape\Communicator"
 Java Directory="C:\Program
Files\Netscape\Communicator\Program\Java
 NetHelp Directory="C:\Program
Files\Netscape\Communicator\Program\NetHelp"

Like the output from RegEdt32, REGDUMP output is primarily useful for your
reading pleasure; there's no way to take a dumped file and import it back into the
Registry. However, because REGDUMP 's output is compact and neatly formatted, it
lends itself well to use with WinDiff.

3.4.7.3 Using RegEdit

Alone among the utilities in this chapter, RegEdit can generate text dumps of the
Registry that it can actually import and restore again. When you run RegEdit, you can
use its Registry Export Registry File... command to produce output that looks like
this:

[HKEY_USERS\S-1-5-21-1944135612-1199777195-24521265-
500\Software\inetstp\
 Netscape Navigator\Bookmark List]
"File Location"="C:\\Program
Files\\Netscape\\Navigator\\Program\\bookmark.htm"
"Start Menu With"="Entire Listing"
"Add URLs Under"="Top Level of Listing"

[HKEY_USERS\S-1-5-21-1944135612-1199777195-24521265-
500\Software\inetstp\
 Netscape Navigator\Cache]
"Cache Dir"="C:\\Program Files\\Netscape\\Users\\cache"
"Disk Cache SSL"="no"
"Disk Cache Size"=dword:00001388
"Memory Cache Size"=dword:00000400

Note that each key is enumerated with its full path; this makes it possible for RegEdit
to tell exactly where a key and its values belong when it reimports the exported file.
Choosing the command produces the dialog shown in Figure 3.9. The controls in the
"Export range" group let you export the entire Registry or just the currently selected
branch. In addition, you can edit the branch shown in the "Selected branch" field to
further tighten the output's scope.

Figure 3.9. Exporting a Registry key

At this point, you might be wondering why the Resource Kit's
REGINI utility isn't discussed here. Although it can change the
contents of the Registry based on the contents of a text file,
there's no way to automatically generate that text file from an
existing Registry; you have to build the .REG file yourself.

3.5 Restoring a Backed-up Registry

Now that you know how to back up your Registry, the next logical step is to learn
how to restore it. You need to be comfortable enough doing this that the prospect
doesn't scare you; no one looks forward to repairing a damaged Registry, but it
shouldn't be frightening either. Practice until you're comfortable with the approaches
described in the rest of the section.

3.5.1 The Old-Fashioned Way

Restoring the Registry from a manual backup isn't useful in all circumstances, since to
restore the hive files you must be able to boot your machine and gain access to
Windows 2000's boot partition, as described earlier in the chapter. Once you've
booted your machine into DOS, Linux, or some other OS that gives you access to the
partition where your hive files are stored, all you need to do is copy the backup copies
over to the original hive directory. (Of course, you have to uncompress them first if
they're compressed!) Reboot into Windows 2000, and you're done.

While this approach is appealingly simple, it has its disadvantages. Apart from
requiring that you be able to boot into another OS, it has the drawback of being
indiscriminate. When you restore a hive, you'll be restoring everything in the hive.
This can have the unwanted consequence of removing changes you wanted to keep
while fixing whatever problem originally required you to use a backup.

3.5.2 Using Windows 2000 Backup

Restoring a Registry backup with Windows 2000's backup utility is fairly painless. It's
not smart enough to check whether you're restoring to the same machine you backed
up from, so you must be careful to avoid installing the wrong Registry (including the
SAM database and HKLM\SECURITY subtree) on the wrong machine.

Earlier in the chapter, you saw Figure 3.6, which shows NTBACKUP 's user interface.
To make a backup, you had to select a drive (and its subfolders and files) to back up.
Guess what? To restore from a backup, you do the opposite and select a tape to use
for the restoration. Here's how the process works:

1. Use the Tapes window to select the tape that contains the files you want
backed up. The selection interface works just like the one shown earlier in
Figure 3.7; you mark the items you want restored. You have to restore at least
one item to restore the Registry. Though you can restore files to any drive, you
can only restore the Registry to the drive where it normally lives.

2. Click the Restore button or use the File menu's Restore command. You'll see
the dialog shown in Figure 3.10. Make sure the Restore Local Registry
checkbox has an X in it, then click OK. The restore will start.

Figure 3.10. Restore Local Registry

3.5.3 Using REGREST

If you back up your Registry with REGBACK, naturally you'll use its companion,
REGREST, to restore it. REGREST can use only the files created by REGBACK, but
since they come as a pair, that shouldn't be an impediment. However (like its partner),
REGREST has some limitations you should be aware of.

First, and most seriously, it runs only under Windows NT and Windows 2000.
REGREST actually works by repeatedly calling the RegReplaceKey API routine,
meaning that it has to have access to the Windows 2000 registry to do its work. Even
though this routine exists in Win95, the Win95 version operates only on the Win95
Registry. If you can't boot your machine into Windows 2000, you'll need to use an
ERD to fix it, not a REGREST backup.

Of course, you should plan on keeping a copy of REGREST on
any boot disks you might use to effect a Registry repair.

Second, you can run REGREST only from accounts that have "Restore files and
directories" privilege. In most cases, that means your local Administrator account,
plus any accounts you've added to the Backup Operators group. (Of course, you can
grant this right to any user.)

Next, REGREST works only with REGBACK files that are on the same volume as the
hive files themselves. If your backup files are stored elsewhere, you have to move
them to your Windows 2000 boot volume before running REGREST.

Finally, you have to reboot your machine before REGBACK 's changes will take
effect. This is sometimes an annoyance, but it's actually a safety feature: you can undo
or redo restores as much as necessary, and the changes won't be permanent until you
reboot.

If you can live with these four restrictions, REGREST is fairly easy to use. It actually
operates in three steps:

1. It copies the original hive file to a backup directory that you specify; this
allows a graceful fallback position if Steps 2 or 3 fail.

2. It moves the new hive file to the hive directory; this movement requires the
"Restore files and directories" privilege mentioned earlier.

3. It repeatedly calls RegReplaceKey to put the new hive file's contents into the
Registry. (That's why it can work when the hive files are open, and it's also
why you must reboot before the changes take effect.)

Like REGBACK, REGREST comes in two flavors. The first restores as many hives as
it can find; it looks for files in the backup directory whose names match hive files in
the hive directory. When it finds a match, it copies the matching file according to the
previous three steps. You use it like this:

regrest backupDir saveFilesDir
backupDir

Specifies where the files generated by REGBACK are stored; must be on the
same volume as your Windows 2000 system files.

saveFilesDir

Tells REGREST where to put the secondary backup files it creates. If
necessary, you can copy these files back to the hive directory before rebooting
to undo a restore.

REGREST warns you if there are hives it can't restore automatically, or if errors
occurred. Here's a sample transcript:

C:\>regrest \regsave \backsave
replacing SECURITY with \regsave\SECURITY
replacing SOFTWARE with \regsave\SOFTWARE
replacing SYSTEM with \regsave\SYSTEM
replacing .DEFAULT with \regsave\DEFAULT
replacing SAM with \regsave\SAM

***Hive = \REGISTRY\USER\S-1-5-21-1944135612-1199777195-24521265-500
Stored in file
\Device\Harddisk0\Partition1\WINNT\Profiles\Administrator
\ntuser.dat
Must be replaced manually
regrest <newpath> <savepath> users S-1-5-21-1944135612-1199777195-
24521265-500

You must reboot for changes to take effect.

The second form of the command allows you to manually restore one hive at a time:

regrest backupFileName saveFileName hiveType hiveName
backupFileName

Specifies which hive file (including its full path, if desired) REGREST should
restore.

saveFileName

Tells REGREST what name and directory to use for the copy it makes of the
existing hive file.

hiveType

Just like REGBACK, REGREST accepts only two hive types. Specify machine
for HKLM or users for HKU. If you provide any other hive type, REGREST
will fail.

hiveName

Specifies a subkey immediately beneath either HKU or HKLM. If you specify
any other key, REGREST will fail.

3.5.4 Using RegEdt32 and RegEdit

As you've seen in earlier sections, the two stock Registry editors shipped with
Windows 2000 are useful when it comes time to back up your Registry data.
Fortunately, they can also help you restore it should you need to.

3.5.4.1 Loading hives

You can load hive files created with RDISK, ERDisk, or RegEdt32 into your Registry.
When you do, however, it's important to note that RegEdt32 creates a new key that
contains your hive or honeycomb contents. That key and the hive or honeycomb it
contains remain loaded until you explicitly unload them.

There's another wrinkle, too: RegEdt32 allow you to load hives only under HKU and
HKLM. As a practical matter, this isn't a big deal; it just means that the hives you load
are subkeys of one of those two roots, not subkeys of their subkeys. If you have
anything other than HKLM or HKU selected when you give the command, you get an
error dialog telling you that you don't have permission to load the hive.

When you use the Registry Load Hive command, RegEdt32 asks you for a hive file
to load. Once you've identified a file, it asks for the name of the key you want the
loaded hive to be under. For example, if you load the .DEFAULT hive to a new key
named "MyDefaults" under HKU, you see that HKU\MyDefaults is now equal with
HKU\.DEFAULT and HKU\sid, and it contains whatever the original hive or
honeycomb file contained.

Once a hive's loaded, you can add, remove, or change keys and values in it like any
other part of the Registry; the changes are reflected in the associated hive file.

3.5.4.2 Reloading saved keys

You can reload a previously saved key at any time using RegEdt32's Registry
Restore Key... menu command. However, this command is an accident waiting to
happen. Why? Well, when you save a key, the saved key doesn't contain any path
data. For example, if you save HKLM\SOFTWARE\Qualcomm\Eudora, its values
and all its subkeys are saved--but not the fact that it originally came from
HKLM\SOFTWARE\Qualcomm\Eudora. This in and of itself isn't so bad, but the real
danger comes when you get ready to reload the key.

When you tell RegEdt32 to reload a key, you see a warning dialog (shown in Figure
3.11) telling you what's about to happen. It's not an idle warning, either; if you click
Yes, the currently selected key in the Registry will have all its subkeys and values
replaced by whatever's in your saved file. Not only does the saved key not go where
you wanted it, it also destroys whatever happened to be underneath the key you
selected! If you accidentally load HKLM\SOFTWARE\Qualcomm\Eudora while you
happen to have HKCU\SOFTWARE\AppEvents selected (to pick a fairly innocuous
victim), you'll find that RegEdt32 happily blasts your Eudora settings into the middle
of Windows 2000's sound-to-event mapping list. The results are, at best,
unpredictable.

Figure 3.11. RegEdt32 overwrite warning

Of course, this problem can be worked around with a little caution: make sure you
have the correct key selected when using this command. Failing that, make sure you
have a reliable, up-to-date backup.

3.5.4.3 Using RegEdit files

Since the .REG files produced by RegEdit contain the full path for each exported key,
they're extremely simple to use. To reimport a .REG file, all you need to do is run
RegEdit and use its Registry Import Registry File... command. When you do,
RegEdit imports the file's contents without any further intervention on your part;[6] it
automatically replaces existing keys and their values with whatever's in the file, as
well as adding back any keys that are in the file but not in the Registry. It doesn't,
however, delete keys in the Registry that have been added since the .REG file was
created; you have to do that yourself if necessary.

[6] This actually poses somewhat of a security risk, since any .REG file that a user can be tricked into double-
clicking may make malicious changes. To fix this, change the default action for RegEdit to open .REG files with
notepad.exe instead.

Chapter 4. Using RegEdit

In the first three chapters, you learned what the Registry is, how it functions, and how
to safeguard it against accidental damage or loss. Now that you've absorbed this basic
knowledge, the real fun starts: now you learn how to modify the Registry's contents.
In later chapters, you'll learn how to use the powerful RegEdt32 application, as well
as how to write your own programs that find, store, and modify Registry data. As a
departure point, though, let's start with RegEdit, a simple, easy-to-use tool that will
help you get familiar with the mechanics of navigating and editing the Registry.

4.1 Know Your Limitations

The RegEdit included with Windows 2000 is a direct descendant of the first version,
which shipped with Windows 3.1. That first RegEdit couldn't do much because there
was so little in the Registry. In the intervening years, Microsoft has added a great deal
of data to the Registry, but RegEdit itself hasn't progressed too much beyond its
original capabilities. Sure, it uses the Win32 common controls, so it looks like a
modern application, and it's been rewritten as a 32-bit application for Win9x and
NT/2000--but overall, it's still the flat-blade screwdriver of Registry editing tools:
ubiquitous but of limited capability.

Let me start by pointing out the useful and desirable things RegEdit doesn't do:

• It has no undo or journaling capability, so there's no easy way to back out of
an unwanted change or keep an auditable record of changes made.

• It is completely innocent of any understanding of Windows 2000's security
features, so you can't view or change permissions or ownership settings for
keys.

• You can only create and edit binary, string, and DWORD values. When you
view other data types, they're displayed as binary data.

While this list may seem like a harsh assessment, remember how valuable a flat-blade
screwdriver can be. It can be a punch, a prybar, a chisel, a spacer, a mallet (albeit a
small one), plus it can drive screws. Likewise, RegEdit can do some very valuable
things: it allows you to search the Registry for a value or key, and these searches can
be local or remote. It provides a nicely unified display of all the root keys, allowing
you to quickly browse and compare values in different roots. Finally, its limited
functionality makes it easy to understand and use.

4.2 Learning the RegEdit Interface

I have a weakness for power tools--the more powerful, the better! One thing I've
learned is that it's a good idea to spend some time getting accustomed to a new tool
before starting a real project with it. This break-in period helps me get familiar with
how the tool works, teaches me how it feels as I use it to saw, drill, or whatever, and
gives me some confidence that I won't screw up whatever I'm working on.

In the same vein, allow me to present the user interface for RegEdit. As you read
through this section and its successors, you'll gain an understanding of how RegEdit
looks, feels, and works, but the best way to cement that knowledge is to launch it and

experiment: practice moving around, searching for things, and exploring the Registry.
Even after you've mastered the skills needed to administer the Registry, you'll still
find RegEdit's search abilities to be quite useful in your everyday administration.

4.2.1 Don't I Know You from Somewhere?

If you've ever used Windows Explorer (or even the old-style Windows File Manager),
you'll feel instantly comfortable with RegEdit 's interface (shown in Figure 4.1). The
application's window is divided vertically. The left pane (which I'll call the key pane
from now on) shows a tree representing the Registry's hierarchy, while the right side
(the value pane) shows the values associated with whatever key is selected in the key
pane. You can adjust the relative widths of the two panes by dragging the gray bar
that divides them.

Figure 4.1. RegEdit's interface

The value pane is further subdivided into two columns. The first, known as the name
column, shows the value's name, while the second (the data column) shows the value's
actual contents. You can change the width of these columns by clicking and dragging
the divider bar in the header at the top of the value pane.

By default, RegEdit 's main window includes a status bar across its bottom margin;
when the status bar is visible, the full path of the currently selected key appears there.
This provides a quick reference if you need to make a note of a particular key.

When you first start RegEdit, the root keys (HKLM, HKCU, HKU, HKDD, HKCR,
and HKCC) appear directly under the My Computer icon. As with Explorer, you can
expand or collapse individual keys by clicking the small icon next to the key in the
key pane. As you move around, clicking at will, the tree grows and shrinks to reveal
the keys you're interested in.

4.2.2 Interface Trivia

As with most other system-administration tools provided with Windows 2000,
RegEdit provides a View menu. For the most part, the commands here are of little use
and seem to have been added for parity with the old-school NT 4.0 tools such as User
Manager, WINS Manager, and so on. Nevertheless, in the spirit of completeness, let
me briefly describe the commands that live there:

Status Bar

Controls RegEdit 's bottom-of-the-window status bar. When checked, you see
the status bar. By default, this option is turned on, and it's useful, so I
recommend leaving it that way.

Split

Activates the vertical bar that segments RegEdit 's window. Once you use the
Split command, moving your mouse left or right (or using the left and right
arrow keys) moves the bar with it. Why this is included is beyond me (though
it does let you repartition the window when you don't have a mouse).

Refresh

The only worthwhile command in this menu. RegEdit updates its display to
reflect any changes you make in the Registry from within RegEdit, but it won't
notice updates that occur because of other programs. For example, if you're
testing a Perl script you've written to do something to the Registry, it would be
nice to see the changes immediately. To force an update, you can use the
Refresh command (or F5, its key equivalent). You can also use the Refresh
command to quickly update the display when you're browsing the Registry of
a remote computer.

4.3 "Just Browsing, Thanks"

The first thing you should learn to do with RegEdit is to browse around the Registry
and see what's there. The Explorer-style interface makes the Registry's data very
"discoverable"; that's a fancy way of saying you can start off with a high-level view,
then see as much or as little detail as you like as you become more comfortable with
the Registry's structure.

4.3.1 Navigating with the Keyboard

RegEdit follows the standard Windows conventions for keyboard navigation--not
surprising when you consider that the key pane itself is built with the standard tree-list
control. When an item is selected, it is highlighted using the standard system highlight
color, and you can maneuver about by using the keys shown in Table 4.1.

Table 4.1. Navigational Keys for RegEdit

Key
When Used

in... Action

Tab
Key or value
panes Switches focus between the key and value panes

Return Value pane Opens selected item for editing

Up/down
arrows

Key or value
panes Moves focus to the next or previous item in the current pane

Left/right
arrows

Key pane
If selected item has subkeys, expands (left arrow) or collapses (right
arrow) it; if not, moves to next or previous item

Left/right
arrows Value pane Scrolls the value pane left or right

PgUp/PgDn
Key or value
panes Moves the focus up or down one pane's worth of data

Home and End
Key or value
panes

Moves to top or bottom of pane's contents

Backspace Key pane Moves the focus to the current key's parent
Keypad * Key pane Expands all subkeys of the currently selected key

Keypad + Key pane Expands the immediate subkeys of the currently selected key
Keypad - Key pane Collapses the selected subkey

4.3.2 Using the Context Menu

Windows 95 brought the concept of a "context menu" to the Windows world. The
basic idea is that by clicking the right mouse button[1] you can get a pop-up menu of
commands or actions that are specific to the object you clicked on. For example, the
context menu in Borland C++ has choices such as "Toggle breakpoint" and "Browse
symbol," while the corresponding menu for Netscape's Communicator features items
such as "Open link in new window" and "Save image to disk."

[1] Or the left one, if you're using a left -handed mouse setup.

RegEdit has these context menus, too. There are three context menus you can
summon; the commands in each menu duplicate commands that are already present in
the application's menu bar:

• Right-clicking a key in the key pane pops up a menu with six commands:
o Expand/Collapse (which one appears depends on whether the key's

already expanded or collapsed) opens or closes the selected key. This
command is dimmed if the key has no subkeys.

o New allows you to create a new key or value.
o Find opens the find dialog.
o Delete deletes the selected key and all its subkeys.
o Rename allows you to change the key's name without removing and

reinserting it.
o Copy Key Name copies the current key's full path to the Clipboard.

• Right-clicking a value name in the name column of the value pane displays a
smaller menu with three commands. The Modify command opens a dialog box
that allows you to edit the value; the Delete and Rename commands are the
same as those in the key pane's context menu.

• Right-clicking anywhere else in the value pane displays a single command,
New.

4.4 Connecting to Other Machines' Registries

RegEdit allows you to connect to the Registry of any Windows NT or 2000 machine
on your network. Of course, there are two caveats: you must have permission to do so,
and the remote machine must be configured to allow remote Registry access. In
particular, Windows 2000 machines must have the Remote Registry Access service
installed and running (the same is true for Windows 9x machines, by the way).

From within RegEdit, you connect to other machines with the Registry Connect
Network Registry...command. You then see a small dialog box that prompts you for a
computer name to attach to. This dialog box also contains a Browse button; clicking it
displays a network browser window (similar to the one in Windows Explorer) that
allows you to poke around your LAN to find the machine you want to connect to.
Once you've identified the machine you want to reach, RegEdit opens its Registry and
displays its root keys in the key pane. Your local machine's root keys are under the
My Computer icon; other machines' keys appear under folder icons with their names,
as shown in Figure 4.2.

Figure 4.2. Remote Registries and local Registries

While you're connected to a remote computer's Registry, you can browse keys subject
to whatever permission the remote Registry's owner has imposed. Depending on those
same permissions, you may be able to modify, create, or remove keys; before doing
so, of course, you should make sure that you have both a good backup of the target
machine and permission from its owner.

Because RegEdit doesn't dynamically update the Registry, you'll quickly become
practiced at the skill of using the View Refreshcommand (or the F5 key, its
accelerator) to force RegEdit to update the portion of the Registry you're viewing.

RegEdit often fails to allow access to the various root keys of
remote Registries even when they are displayed (whereas
RegEdt32 works flawlessly and consistently well). There doesn't
seem to be any pattern to the failures. If you have trouble
connecting with RegEdit, try RegEdt32 instead.

Finally, when you're done with your Registry connection, you should close it.
Knowing how to put away toys is a prerequisite skill for kindergartners and system
administrators! The Registry Disconnect Network Registry command does the job,
allowing you to choose from a list of machines you're connected to.

4.5 Searching for Keys and Values

One of RegEdit 's best features is its ability to search the Registry for a particular key
or value. For example, let's say that you want to find where the Dial-Up Networking
(DUN) service stores its list of phonebook entries. You could go to Microsoft's
Knowledge Base and look it up, but the fastest way to find your answer is to use
RegEdit 's search function to look for entries whose contents match the name of one
of your phonebook entries.

There are a few things you need to know about how searches work. Searches are case-
insensitive, so you don't have to pay attention to proper capitalization. By default,
searches are substring searches, not literal searches. Searching always starts with the
"first" root key, which in RegEdit 's case means that all searches have to plow through
HKCR first. Finally, the search process accepts only ASCII text and looks only in
string values. That makes it impossible to find all the values whose DWORD value is
0x220 or to find data stored in values of type REG_BINARY.

You activate the Find command with the Edit Find menu command. You then see
the dialog box shown in Figure 4.3.

Figure 4.3. RegEdit's Find dialog

Finding values is pretty straightforward: if you want to search the entire Registry, just
type your search string into the "Find what" field and click the Find Next button. Of
course, you can be more selective by using the four checkboxes in the Find dialog:

• The "Look at Keys" checkbox (on by default) tells RegEdit to look for the
specified string in the names of keys. Searching for "software" would thus find
HKLM\SOFTWARE, HKCU\Software, HKU\.DEFAULT\Software, and
perhaps other keys whose names contain "software" in some form or other.

• The "Look at Values" checkbox (on by default) instructs RegEdit to search for
your string in the names of values, too; searching for "User" with this
checkbox set might find HKCR\DAO.User, HKLM\Software\SMIME\Users,
and HKCU.

• The "Look at Data" checkbox (on by default) enables RegEdit to actually look
within values' data for the specified string. Searching for "System" turns up a
treasure trove of string values that contain the search string.

• The "Match whole string only" checkbox (off by default) constrains RegEdit
to reporting only those items that match exactly. Searching for "User" with
this option off finds both HKCR\DAO.User and
HKLM\Software\SMIME\Users; turning the option on doesn't find either, but
does match HKLM\Software\LJL\CurrentVersion\User.

While the search is proceeding, you see a progress dialog. That's perhaps a misnomer,
since it doesn't actually indicate the search's progress; it gives you a Cancel button,
though. RegEdit 's searching performance is poor, so don't be alarmed if searches
seem to take a long time.

As with many other programs that include search capability, RegEdit provides a
convenient shortcut for finding the next item that matches your search target. To find
the next match, use the Edit Find Nextcommand or its accelerator key, F3. When
you do, RegEdit finds the next match; if it can't find any more matches, it displays a
dialog box telling you that no more matches exist.

4.6 Printing Registry Contents

If you want to print all or part of the Registry, you're in luck: RegEdit can produce a
printout that contains the full path, subkeys, and values of the key you select. The
Registry Print... command allows you to print the entire Registry or any subset of it,
using the dialog box shown in Figure 4.4.

Figure 4.4. RegEdit's Print dialog box

The "Print range" group gives you a convenient way to filter the keys you print.
Selecting the All radio button will (as you'd expect) print the entire Registry. I don't
recommend doing this unless you have a very fast printer with a very large paper tray.
The "Selected branch" button is a better alternative; with it, you can choose a single
subkey to be printed.

RegEdit's printed output is pretty rudimentary. It doesn't have any way to print page
headers or footers, and its output isn't indented or otherwise formatted to make it more
readable. For quick reference, you may find it more useful to export a portion of the
Registry (as described in Section 4.8.2 later in this chapter), then print it using your
favorite text editor.

4.7 Working with Keys and Values

By now, you probably have a good feel for the Registry's structure. Once you're
comfortable navigating the Registry with RegEdit, it's time to move on to the
mechanics of working with keys and values in the Registry. RegEdit has a complete
suite of commands for creating, modifying, deleting, and renaming keys and values.
However, it doesn't have a safety net, so be sure to limit your initial experimentation
with editing to changes you can back out if necessary--and don't forget the backup
strategies you learned in Chapter 3.

Even though it was mentioned before, it bears repeating: there's
no convenient way to undo changes you make when editing the
Registry with RegEdit. Make sure you've developed and are
executing a Registry backup strategy. If you're not, please go
back and read Chapter 3 before you start editing anything.

Now is also a good time to mention a few things that RegEdit can't do. Chief among
them is the fact that it can't directly edit or create values that aren't of one of the three
types it supports: DWORD, binary, and string. You can edit values of these other
types, but you have to do so by viewing and editing the hex bytes that make up the
binary version of the data--not a task to undertake lightly! This limitation makes it
harder to edit REG_MULTI_SZ or REG_EXPAND_SZ values, which are fairly
common; it's also a problem if you try to modify the more obscure data types
discussed in Section 2.1.6 in Chapter 2. As a practical matter, this isn't a huge
hindrance, since most Registry values use one of the three types RegEdit supports.

In Knowledge Base article Q155267, Microsoft warns against
using RegEdit to edit Registry data on a Windows NT machine.
That's because RegEdit wasn't designed for, and doesn't
understand, some of the data types supported by Windows NT
and 2000. You'll be OK if you stick to editing DWORD and
REG_SZ values.

4.7.1 A Word About the Clipboard

RegEdit would have been a much better application if it had full Clipboard support,
allowing you to cut, copy, and paste keys and subkeys, especially when you're
viewing more than one machine's Registry from a single instance of RegEdit. Though
it doesn't explicitly have much Clipboard support, you can still manage to exchange
names and values through the Clipboard if you keep in mind the available ways to do
it.

Let's start with key names: to copy a key's name to the clipboard, you can use the
Edit Copy Key Name command, RegEdit 's only Clipboard command. This
command copies the key's full path, including the root key, to the Clipboard as a text
string, ready for use elsewhere. When renaming a key, for example, you can paste a
name into the Rename dialog box instead of typing it.

Likewise, it's possible (though not through the menu) to copy a value's name or value.
To accomplish this, open the editing dialog box for the value whose name or value
you're interested in, either by double-clicking it or using the Edit Modifycommand.
When the edit dialog box appears, you can use the mouse to select either the name or
the value, then issue the appropriate Windows shortcut or context menu command to
copy, cut, or paste the value.

4.7.2 Modifying Values

The most common use for RegEdit is to modify existing values. Many of the settings
stored in the Registry are accessible through various control panels and snap-ins, but
others aren't, and applications often keep private settings that occasionally require
adjustment.

You can modify a value by double-clicking its entry in the value pane, by selecting it
and using the Edit Modifycommand, or by selecting Modify from the right-button
context menu. What happens next depends on the value type you're modifying.

However, in all cases, once you click OK in the editing dialog, the change is made,
and there's no way to undo it other than changing back the value by hand or restoring
from a backup. Note that most applications and system components won't notice
changes to a Registry value if they're made once the application is running; you'll
usually have to quit and restart the application before the changes take effect.

4.7.2.1 Modifying a string value

The Edit String dialog box (pictured in Figure 4.5) is pretty simple; it displays the
selected value's name and data. You can select and copy the value name, but you can't
change it. You can change the value's data using the "Value data" field. Like the name
field, this field supports the Windows cut, copy, and paste keyboard shortcuts, so you
can quickly paste in values from elsewhere. You'll see this dialog box when you select
a value whose type is REG_SZ or REG_EXPAND_SZ.

Figure 4.5. The Edit String dialog

4.7.2.2 Modifying a DWORD value

When you edit a REG_DWORD value, you see the dialog box shown in Figure 4.6.
Like the Edit String dialog, you can copy text from the "Value name" field, and you
can copy, paste, or cut text in the "Value data" field itself. The two radio buttons in
the Base group let you specify a DWORD value in either decimal or hex; if you
choose hex, you don't need to add a leading 0x to the value you provide.

Figure 4.6. DWORD edit dialog

It's a very good idea to always double-check the value you enter
to make sure it matches the setting of the Base radio buttons. If
you're entering a value in hex, make sure the Hexadecimal
button is selected. If the base you select and the data you enter
don't match, the change you make may not have the expected
effect.

4.7.2.3 Modifying a binary value

The Edit Binary Value dialog box appears whenever you edit something that's not a
DWORD, a REG_SZ, or a REG_EXPAND_SZ. Specifically, when you edit a
REG_BINARY, a REG_MULTI_SZ, or either of the resource types described in
Chapter 2, you see a dialog box like the one shown in Figure 4.7. Like its
predecessors, you can copy text from this dialog's Value name field; however, the
Value data field's behavior is a bit different.

Figure 4.7. The Edit Binary Value dialog

Instead of holding plain text or a single binary value, the Edit Binary Value dialog's
Value data field displays as much data as the value holds. Some binary values are a
single byte; others, like the one in Figure 4.7, can be hundreds of bytes long. RegEdit
doesn't care; it displays whatever data is stored for the value. The offset column
shows the offset, in hex, at which each block of data starts. The hex display area
shows the value's data as blocks of 8 hex bytes per line, and the ASCII display area
shows the printable representation (if any) of the corresponding line's hex data.

As with the string and DWORD dialogs, you can cut, copy, and paste text in the
Value data field. You can also insert or replace text by highlighting text, just as in a
word processor. There's one important difference, though: what you type is
interpreted according to where you clicked to select text. If you click on the hex area,
whatever you type is taken as hex (only the digits 0-9 and letters A-F are acceptable
input, though). If you click in the ASCII display area, what you type is interpreted as
ASCII text.

What this means is that you have to be careful. Let's say you want to change part of
the value shown in the figure: you want to change the part that says "1705" to say
"1999." [2] If you select the text in the ASCII area and type "1999," you'll get the
change you expect. If, instead, you select the corresponding range of bytes in the hex
display area and type "1999," RegEdit changes the first two bytes, 0x31 and 0x37, to
what you typed: 0x19 and 0x99. Not exactly what you had in mind!

[2] This change makes no sense. Don't do it. It's shown here for instructional purposes only.

You can insert data, too. Just position the insertion point where you want the new data
to go and start typing. This is particularly useful for adding strings to a
REG_MULTI_SZ value; you still have to make sure to add the hex 0x00 byte that
indicates the end of each string. (Better still, use RegEdt32, which offers a built-in
editor for REG_MULTI_SZ strings.)

4.7.3 Adding New Keys or Values

For the most part, you will probably have little use for the commands that let you add
values and keys. This is because of the way applications and components use the
Registry; they look for data in predetermined locations, and if you add new data that
they don't expect to find, they ignore it. I call this the "hide in plain sight" effect.
Think of it like this: if you leave your FedEx delivery person a note taped to your
front door asking them to leave your package on the front porch, they will. If,
however, you hide the note under your doormat, they won't look for it, won't find it,
and won't do what you wanted. So it is with Windows 2000.

However (and you knew this was coming, right?), Microsoft didn't add these
commands just to make RegEdit look more impressive. There are good reasons to add
values and keys; it's just that the circumstances that lead to these reasons are relatively
rare. First of all, if you're a software developer, you may need to use RegEdit to add
keys and values that you use in your own program. The industry trend has been to
have installers take care of any Registry changes that need to be made, but before the
installer is written sometimes you have to do it by hand.

The second, and probably more common, reason is that Microsoft often adds options
or functions to system software that are only accessible by adding new keys to the
Registry. These options may be documented in Microsoft's knowledge base
(http://support.microsoft.com), but they may remain undocumented until Microsoft
feels like revealing their presence. Here's an example: let's say you want one Active
Directory domain controller to participate in multiple sites. Since a site is a collection
of subnets, a server with multiple network interfaces might credibly do so, but you
can't configure the server to do so without using the Registry editor. Knowledge Base
article Q200498 explains that you must add a new REG_MULTI_SZ value named
SiteCoverage to HKLM\System\CurrentControlSet\Services\Netlogon\Parameters,
then put the names of all the sites you want the server to join into it. While this
capability is documented in the Knowledge Base, it requires you to make a change to
the Registry, which brings us to the mechanics of doing so in RegEdit.

Third-party manufacturers often take this same approach and put hidden tuning or
diagnostic settings into their software or device drivers. These settings can be
activated only by adding keys or values with a name known to the software.

The Edit New command can create new keys or values; it's actually a submenu with
four commands in it: New Key, String Value, DWORD Value, and Binary Value.
These commands all work in a similar way:

1. Select the key under which you want to create a new key or value.
2. Choose the appropriate command from the menu bar or the context menu.

3. RegEdit creates the requested object and gives it a temporary name, which you
may edit in place. When you create a new key, it gets an empty value:
(Default). Similarly, new string and binary values are empty when created, and
new DWORD values have an initial value zero. Figure 4.8 shows the results of
some (injudicious) experimentation on my (backup) computer.[3]

[3] Surely you don't think I'd experiment on my production machine, do you?

4. If you're creating a value, use the Edit Modify command to actually assign a
real value to the newly created object.

Figure 4.8. New keys and default contents

If you're ready to try your newfound powers, look no further than Chapter 10; it
contains a list of the most frequently sought-after Registry modifications.

4.7.4 Deleting Keys or Values

There are times when you may need to remove data from the Registry. For example,
even commercial products that include "uninstall" programs may not completely clean
up all the Registry entries they've made. However, of all the potential ways to damage
your Registry, this is the one I most often see people have problems with. Why? Two
reasons: there's no way to undo mistaken deletions from within RegEdit or RegEdt32,
and some deletions don't cause problems until the next reboot. I strongly recommend
(again) that you have a current Registry backup on hand before deleting any key you
didn't create yourself.

Having said that, on to the instructions. RegEdit lets you delete any key except the
root keys and any value except the (Default) value some keys have. You can delete
keys and values in two ways: by selecting them (using the mouse or keyboard) and
using the Edit Delete command (or its shortcut, the Del key) or by clicking the right
mouse button over the target item and using the context menu's Delete command.

When you delete a key, RegEdit displays a confirmation dialog box that asks you
whether you reallywant to delete the selected item. However, in a major faux pas, the
dialog box doesn't tell you which key you're deleting! Before clicking the "Yes"
button in this dialog, closely examine what key or value is selected and confirm that

what's selected is what you actually wanted to delete. Once you confirm the deletion,
RegEdit deletes the selected key, all its subkeys, and all their values. If you
accidentally delete a major key such as HKLM\SOFTWARE, you're in for big trouble
unless you have that backup handy.

Be very, very careful when deleting keys orvalues. End of sermon.

4.7.5 Renaming Keys or Values

You can rename keys and values with the Edit Renamecommand, which works
equally well on keys or values. Select the item you want to rename and give the
command, and the item's name changes into an editable text field into which you can
type or paste. Hit the Return key when you're done or the ESC key to cancel your
changes.

A cautionary note: just because you can rename keys and values doesn't mean that
doing so is a good idea. System components and applications always look for values
with specific names, and they expect to see them in specific locations. If you change
the key or value name for an important parameter, the software that uses it won't be
able to find it. Depending on how robust the software is, you may not notice any
difference, or your machine may crash. The best heuristic I can recommend is never
to rename any keys that belong to the OS itself and to avoid renaming keys whenever
possible.

4.7.6 What Were They Thinking, or, the Favorites Menu

About the only noticeable change between the Windows NT 4.0 and 2000 versions of
RegEdit is the latter's addition of a Favorites menu. It's empty by default, but you can
use the Add to Favorites command to add the selected key as a favorite. When you
add a new favorite, you can give it whatever name you want; the names of whatever
favorites you've defined appear at the bottom of the menu.

To jump to a particular favorite, just select it. RegEdit expands the necessary root and
subkeys, then highlights your selection. To remove a favorite, use the Remove
Favorite command, which displays a small dialog box listing the keys you've defined.

Why did Microsoft add this? I honestly don't know. It couldn't have taken much time,
and it might be useful if there are certain keys you edit over and over again, but I
confess that, IMHO, they probably could have found a better use for the man-hours
invested in building this particular feature.

4.8 Exporting and Importing Data

One of RegEdit 's unique features is its ability to store Registry data in a human-
readable format, then import data in that same format to repair or recreate existing
data, or even create new keys and values. Better still, you can create your own files,
so you can automate Registry changes needed for your particular network or
computing environment. You can also store multiple sets of Registry data and switch
between them as needed. This is often useful for system administrators who need to
develop their own management tools.

4.8.1 What's in a .REG File?

The .REG file format is simple to understand. Fortunately, that makes it simple for
programs to parse, too; in Chapter 8, you'll see some Perl scripts that manipulate
.REG files. In the meantime, let's examine the format that RegEdit uses so you'll be
able to make sense of it when you see it.

Here's a snippet gleaned from my desktop machine's Registry:

REGEDIT4

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Browser]
"Type"=dword:00000020
"Start"=dword:00000002
"ErrorControl"=dword:00000001
"ImagePath"=hex(2):25,53,79,73,74,65,6d,52,6f,6f,74,25,5c,53,79,73, \
 74,65,6d,33,32,5c,73,65,72,76,69,63,65,73,2e,65,78,65,00
"DisplayName"="Computer Browser"
"DependOnService"=hex(7):4c,61,6e,6d,61,6e,57,6f,72,6b,73,74,61,74,69
, \
 6f,6e,00,4c,61,6e,6d,61,6e,53,65,72,76,65,72,00,4c,6d,48,6f,7
3,74, \
 73,00,00
"DependOnGroup"=hex(7):00
"ObjectName"="LocalSystem"

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Browser\Linkage
]

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Browser\Linkage
\Disabled]

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Browser\Paramet
ers]
"MaintainServerList"="Auto"
"IsDomainMaster"="FALSE"

The first line in the file identifies the file as a .REG file. If this string's present,
RegEdit attempts to interpret the rest of the file as a set of keys and values; if it's not
present, RegEdit complains that the file you're importing isn't really a .REG file.

The next interesting line identifies the full path to a key. In this case, the key is
HKLM\SYSTEM\CurrentControlSet\Services\Browser. There are two noteworthy
things about this key path. It's enclosed in square brackets (which RegEdit looks for as
delimiters), and the root key is spelled out: HKEY_LOCAL_MACHINE instead of
the more convenient HKLM.

The remaining lines for this key specify its values as name/value pairs. The general
syntax looks like this:

"name"=[type:] ["] value ["]

Each value has a name. Keys can have a special value whose name is empty; RegEdit
displays this value with a name of (Default), but in .REG files the special name @

takes its place. The name must always be in double quotes to accommodate the fact
that Registry value names can contain spaces.

Next comes the optional data type specifier. The specifier is necessary to preserve all
the details of the values. Even though RegEdit can only directly edit binary, DWORD,
and string values, its export and import commands must correctly preserve the entire
state of the keys and values they're operating on. When the value is a standard
REG_SZ string, RegEdit omits the type specifier; otherwise, it uses the values shown
in Table 4.2. Note that if a type specifier's used, the colon that follows it is required.

Table 4.2. .REG File Data Type Specifiers
Registry Type .REG Type

REG_BINARY hex
REG_DWORD dword
REG_EXPAND_SZ hex(2)

REG_FULL_RESOURCE_DESCRIPTOR hex(9)
REG_MULTI_SZ hex(7)
REG_RESOURCE_LIST hex(8)

REG_SZ None

The value's actual value is the next item in the name/value definition. Standard
REG_SZ strings are easy to identify, because they're always between double quotes.
DWORD values are written as 32-bit hex numbers, including leading zeros but
without any kind of type identifier (such as the "0x" prefix that RegEdt32 uses). The
other data types are all represented as a comma-delimited list of hex bytes, as you can
see in the previous code snippet. Since all these data types can be of arbitrary length,
the actual number of bytes can vary from value to value. RegEdit allows you to use
the backslash character as a line-continuation character; when present at the end of a
line, the backslash indicates the following line should be considered part of the
current line.

Blank lines aren't significant to RegEdit ; however, if no value definitions follow a
key definition, that key is created without any values, as with Browser\Linkage and
Browser\Linkage\Disabled in the previous example.

4.8.2 Exporting Registry Data

You can export any key and its subkeys, from the root keys on down. When you
export a key, all the data necessary to recreate it is stored in a .REG file that you can
archive, print, or edit like any other. You can also reimport the file. As you learned in
Chapter 3, this capability gives you a useful way to back up and restore individual
keys within the Registry.

The Registry Export Registry File... command actually does the exporting; when
you invoke it, you see the dialog box shown in Figure 4.9. If you have selected a key
in the key pane, the Selected branch radio button is selected, and the currently active
key appears in the associated text field. If you'd rather export the entire Registry, you
can use the All radio button to do so.

Figure 4.9. The Export dialog

Once you've supplied a filename and chosen exactly what you want to export,
RegEdit writes out the selected data to your file, using the format described earlier in
Section 4.8.1

4.8.3 Importing Registry Data

Once you've exported a .REG file or created one by hand, RegEdit allows you to load
it back into the Registry. As you read in the preceding section, the .REG file contains
enough information for RegEdit to load key and value data from the file and place it
in the proper location in the Registry. However, the program is indiscriminate; once
you tell it to load a file, it happily blasts the entire file's contents into your Registry,
with no further opportunity for you to limit the scope of its replacements.

When you select the Registry Import Registry File... command, RegEdit displays
the standard Open File dialog box so you can choose a file. If you select a file that's
not in .REG format, you get an error dialog box telling you that the file you chose
can't be loaded. If, however, the file is in valid format, RegEdit imports it, displaying
a progress dialog box to tell you how far along it's gotten. There's no way to cancel or
interrupt the loading process from within the program. Forcing RegEdit to quit during
an import operation (by using the Task Manager, a process manager such as PVIEW,
or other tools) can leave your Registry looking like the front yard of your local
college's Fraternity Row after a football game--don't do it.

Once the import operation's finished, you see a confirmation dialog box that tells you
RegEdit did in fact import the entire file. It also includes the pathname of the imported
file so you'll know exactly what file got imported (just in case you've forgotten).

One caveat: when you import data with a .REG file, RegEdit adds any keys that are in
the .REG file but not in the Registry, and it changes the value of any keys that appear
in both places. It doesn't remove keys that are in the Registry but not in the .REG file,
so you can't use RegEdit to clean out an accidentally added key or remove keys that
have been added since the time the .REG file was created. If you import a key whose
path contains components that don't exist, RegEdit creates any subkeys needed to
complete the entire path to the new key.

4.8.4 Creating Your Own .REG Files

Even though RegEdit can generate .REG files, there's no reason why you can't
generate your own files. In fact, this is a handy strategy when you need to make the
same set of Registry changes on more than one machine. You can create a .REG file,
test it and tweak it on a single machine until you're satisfied that it does what you
want, then import it using RegEdit on each machine you want to modify.

4.8.4.1 A concrete example

Windows 2000 Server includes the File Server for Macintosh (FSM) package, which
lets a Windows 2000 server serve NTFS volumes to Mac clients. To the Mac, these
FSM volumes look just like native Mac disks, and they preserve the Mac-style file
type and creator information needed to associate files with the applications that
created them. Unfortunately, NTFS doesn't support these type and creator codes;
instead, FSM keeps a table that translates PC-style file extensions to the
corresponding type and creator codes. This enables both PC and Mac users to
recognize files with names such as chapter04.doc as Microsoft Word files.

Windows NT 4.0 had the same feature, but it was called Services for Macintosh
(SFM) instead.

Microsoft helpfully provides a default set of type/extension mappings with FSM.
That's the good news. The bad news is that it doesn't include many of the most useful
file types.[4] Even if it did, the exact mix of file types you use depends on what
programs your users are running. FSM provides a dialog box for associating types and
extensions, but it's a tedious task at best. RegEdit provides an ideal solution: once you
have a set of file extensions built on one server, you can easily replicate it to other
FSM servers by importing a .REG file. In fact, you can easily do this with new servers
in your domain, too, making it easy to maintain and upgrade your file services without
undue effort on your part.

[4] Of course, it already has type information for Microsoft's Office applications.

4.8.4.2 Safely experimenting with .REG files

One especially handy use for these files is to let you fine-tune your .REG files without
endangering the rest of your Registry. You accomplish this by building a file that
contains the values and keys you want to modify, but that puts them beneath a
different key than the original. For example, if you're writing a .REG file you want to
apply to HKLM\Software\Netscape\Netscape Navigator, you can safely fiddle around
with your .REG file without fear by following these steps:

1. Export the key you're going to modify using RegEdit 's export facility. This
gives you a .REG file that overwrites the existing key's contents when
reloaded, restoring the original contents.

2. Make a note of the path that contains the keys you're modifying. For example,
if you're modifying keys that live under the
HKLM\Software\Microsoft\Windows NT\CurrentVersion\IniFileMapping
tree, your .REG file contains code that looks like this:

3. [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\
4. CurrentVersion\IniFileMapping\Clock.ini]

@="#USR:Software\\Microsoft\\Clock"

5. Use a text editor to change all instances of the key's path to a new, unused
value. For example, you might change from
HKLM\Software\Microsoft\Windows NT\CurrentVersion\IniFileMapping to
HKLM\Software\Microsoft\Windows NT\Testing\IniFileMapping. Of course,
you must use one of the root keys as the base, but you are otherwise free to
improvise a path, since RegEdit creates any keys or subkeys that need to be
created to complete the import.

6. Load the new .REG file; its contents will then appear under the key you've
specified.

You can now edit the .REG file to your heart's content. When you're satisfied with the
changes it makes, you can reverse Step 3 to put the original key path back in place so
the changes go where you want them to, then use, distribute, or store the .REG file
however you'd like.

Why does this work? Applications and system components look for Registry data in a
particular path. If the data isn't in that precise location, the application won't find
them. This is akin to what would happen if your postman put your incoming snail-
mail under your doormat: it would be delivered, but when you checked your mailbox,
you wouldn't find your mail. Likewise, if you take the Browser service's settings from
HKLM\System\CurrentControlSet\Services\Browser and copy them to
HKLM\Software\TestBrowser, you can still see your changes, but the system
component they're intended for won't.

This approach won't help you tell whether the changes you're
making are appropriate or will do what you want; it can only
help you ensure that the changes go where you intend them to
and that nothing extraneous is added or deleted.

4.9 RegEdit Command-Line Options

Even though I've been talking about using RegEdit as a standard Windows
application, it also supports several command-line options that let you to import and
export Registry data from scripts, batch files, or the command line. Both switches run
RegEdit as a background process. The export process is quiet; the import process
displays a completion dialog, just as it does when you use the Registry Import
Registry File...command.

4.9.1 Exporting Data

You tell RegEdit to export data with the /e command-line switch. The command
looks like this:

regedit /e targetFile [registryPath]
targetFile

This specifies where RegEdit should write its data. You can specify any path,
filename, and extension so long as it's not a UNC path.

registryPath

This optional parameter tells RegEdit what to export. If you omit it, the entire
Registry is exported. If you specify a key, that key and all its subkeys are
exported. The path must be a complete path, including a root key, and you
must spell out the name of the root key.

If you want to dump the contents of HKLM\Software\metrowerks to a file named
warrior.reg, you can do it like this:

regedit /e c:\dist\hklm\warrior.reg
HKEY_LOCAL_MACHINE\SOFTWARE\metrowerks

4.9.2 Importing Data

The simplest way to import data using RegEdit is to specify the name of the file you
want imported on the command line, like this:

regedit warrior.reg

RegEdit happily imports the file's entire contents and presents a confirmation dialog
when done. Alternatively, you can force RegEdit to replace the entire contents of the
Registry with a .REG file. RegEdit won't replace the keys that are dynamically built
(such as HKLM\HARDWARE and HKDD), but everything else is fair game, so make
sure the file you're loading has a complete set of Registry contents and that you have a
current backup. To invoke this mode, use the /c switch, like this:

regedit /c whole-enchilada.reg

When you use the /c switch, you may get an odd dialog box accusing you of
tampering with the product type. Windows NT 4.0 keeps a pair of threads running in
the background; these threads do nothing more than watch
HKLM\System\Setup\SystemPrefix and
HKLM\System\CurrentControlSet\Control\ProductOptions\ProductType for changes
and reverse any changes that occur. When you reload the entire Registry, the threads
notice and present the warning dialog box because they're not smart enough to tell
that the value isn't any different--just that someone tried to change it. (For more
information on these threads and why they're there, see Andrew Schulman's article at
ftp://ftp.ora.com/pub/examples/windows/win95.update/ntnodiff.html .)

Chapter 5. Using RegEdt32

In Chapter 4, you learned how to use the RegEdit utility to browse, search, and edit
the Registry. RegEdit ships with Windows 95/98, Windows NT, and Windows 2000;
however, Windows NT and Windows 2000 also include RegEdt32, a more powerful
Registry editor that fully supports the security and auditing features present in
Windows 2000. In this chapter, you'll learn how to use RegEdt32 to view, edit, create,
and delete data in the Registry.

5.1 How RegEdt32 and RegEdit Differ

Since RegEdit was originally written for Windows 95, it doesn't support the full
capabilities of the Registry in Windows NT and 2000. In particular, it doesn't have
any support for Windows 2000's security features, so you can't change or view
permissions on keys. While this may make RegEdit look like the computer equivalent
of a tricycle when compared to RegEdt32, this isn't really accurate. A better
comparison is between a bicycle and a car. Each has its uses; sometimes a bicycle is
the best, cheapest, most enjoyable, or fastest way to reach your destination, but it's not
a good way to bring home a new baby from the hospital or take six friends out to
dinner.

So it is with the two Registry editors. RegEdt32 has a number of features RegEdit
doesn't, but it also has some unique limitations:

• RegEdit can search keys and values, while RegEdt32 can search only key
names. You'll quickly become comfortable with firing up RegEdit to find the
value you're looking for, then editing it as needed in RegEdt32.

• RegEdt32 fully supports Windows 2000's security features. It allows you to
view and set ownership, permissions, and auditing controls for root keys and
their subkeys.

• RegEdt32 can load and save keys in binary format. In addition, it can import
these saved keys as self-contained hives, making it easy to transfer data from
machine to machine.

• RegEdt32 supports many more display options, and its interface allows you to
view as many or as few root keys as you wish, each in its own window.

The two are similar in many respects, too. Both allow you to view and edit Registry
data on remote computers, and both allow you to edit different data types with an
appropriate editor (though RegEdt32 supports more of Windows 2000's Registry data
types than does RegEdit).

Microsoft warns against using RegEdit to edit any value type
other than REG_DWORD and REG_SZ. In particular, if you
edit REG_MULTI_SZ or REG_EXPAND_SZ strings, they'll be
saved as REG_SZ.

5.2 Learning the RegEdt32 Interface

Where RegEdit 's interface is like that of Windows Explorer, RegEdt32 has an
interface very similar to the original Windows 3.1/NT File Manager. This likeness is
partly due to heritage; RegEdt32 was first delivered with NT 3.1 back in 1993, and
hasn't been rewritten to take advantage of the user-interface enhancements included
with later revisions of the operating system.

Figure 5.1 shows RegEdt32 in action. Each root key has its own document window.
These windows are independent of one another and can be moved, tiled, resized, and
arranged however you wish. You can't, however, close individual root key windows
for the keys on your own machine, but you can minimize them to keep them out of the
way, or you can use the Registry Close command to close all the root windows.

Figure 5.1. The RegEdt32 interface

Each root key window is further divided into two panes. The tree pane, which is
similar to RegEdit 's key pane, is on the left and shows a tree structure representing
the hierarchy of keys under that root. The data pane is on the right, and it displays all
values for whatever key is selected in the tree pane. Between the two panes is a
standard Windows splitter control, which allows you to adjust the relative width of the
two panes. In a welcome departure from RegEdit, the tree and data panes both have
horizontal scrollbars, thus making it easier to view long values without having to
resort to trickery.

RegEdit doesn't automatically update its display as keys and values changed.
However, RegEdt32 gives you a choice. In "automatic update" mode, RegEdt32
refreshes its display when the Registry changes, but this is time-consuming and
sometimes unnecessary. You can turn this mode off, in which case RegEdt32 acts like

RegEdit: it doesn't automatically update values that have been changed by other
applications or system components.

5.2.1 Manipulating Windows

When you start RegEdt32 for the first time, all five root key windows appear, stacked
diagonally across the RegEdt32 root window area. (Yes, five: even though HKDD is a
legitimate root key, RegEdt32 doesn't know about it, doesn't display it, and won't
allow you to open it.) You can manually move the windows around however you like;
the Window menu also offers you several commands for quickly arranging windows
the way you want them:

• The Cascade command (Shift+F5) arranges all the open root key windows in a
diagonal pattern. The first window snugs up immediately beneath the menu
bar, and the others are offset down and to the right so that all their titlebars are
visible. The currently active window will end up at the bottom-right corner of
the stack.

• The Tile command (Shift+F4) sizes and positions the open windows so that all
of them are equally sized and visible simultaneously.

• The Arrange Icons command neatly aligns any minimized windows along the
bottom margin of the application window.

Besides these commands, RegEdt32 also includes the root key windows in the
Window menu. Each of the five windows has its own entry, and you can jump to any
one by selecting it from the menu. If you have additional root keys on other
computers open, they'll be displayed too. If you have more than nine open root key
windows, the Window More Windows... command appears, making available a
dialog from which you can choose any open window.

There's one more useful window command, but it's not in the Window menu:
Registry Close. The individual root key windows don't have the standard "close"
icon in their titlebar, and the tool stripe pop-up menu doesn't have a close command
on it either. However, Registry Close closes your windows in two ways. If you
select it while the active window is for a root key on your local machine, all the root
key windows for your machine close, and you have to use the Registry Open Local
command to reopen.[1] If you select Registry Close when the active window is
displaying a root key from another machine, the set of root key windows for that
machine are closed. When you close the last window to another machine's Registry,
RegEdt32 disconnects from the remote machine altogether.

[1] Every time you use the command, RegEdt32 opens up a new set of local root key windows. Do it three times,
and you've suddenly grown 15 new root key windows! This might appear to be a bug, but it's not; you can use this
feature to quickly compare multiple keys under a single root without having to scroll back and forth.

5.2.2 Controlling What You See

RegEdt32 includes a View menu that gives you some degree of control over the way
data is displayed in the root key windows. The commands in this menu affect only the
frontmost window, with one exception (the Refresh All command):

• By default, RegEdt32 shows both the tree and data panes. This corresponds to
the View menu's first command, Tree and Data. If you prefer, you can use the
Tree Only or Data Only commands to limit the display to whatever you're
interested in looking at. The current setting is marked with a checkmark.

• The View Split command activates the vertical window splitter bar that
separates the tree and data panes. Once you issue the Split command, you can
drag the splitter left or right by moving your mouse left or right or using the
left and right arrow keys. Of course, this duplicates what you could do by
clicking and dragging the splitter bar itself (that little black square at the
bottom of the splitter).

• RegEdt32 normally displays data in its native format. For example, DWORD
values are shown as hex numbers, REG_SZ values are shown as strings, and
so on. The View Display Binary Data command lets you override this
behavior and force RegEdt32 to show everything as though it were binary data
(it actually appears as a string of hex digits, not in true binary).

• RegEdt32 may or may not automatically refresh its display to reflect any
added, deleted, or changed keys or values, depending on your preference. If
you've told RegEdt32 not to automatically update the display, you must
manually ask for updates when you want them. There are two ways to do so.
The first way is to ask RegEdt32 to update its display of all open root keys
with the View Refresh All command or its accelerator, Shift+F6. As its
name suggests, this command tells RegEdt32 to update every root key window
for local and remote machines. For those times when you care about only
what's displayed in the frontmost window, the View Refresh Active
command (or its accelerator, F6) does just that, updating only the values and
keys in the currently active root key window.

The View menu also sports a Find Key command, which is discussed in Section 5.5 a
bit later.

5.2.3 Setting Session Options

RegEdt32 lumps a number of useful settings into its Options menu; these settings give
you additional control over how RegEdt32 behaves. The first one worth mentioning is
actually the last command in the menu: Save Settings on Exit. When this command is
checked (as it is by default), RegEdt32 remembers the settings of all the other options
in the menu, as well as the positions, sizes, and minimized/maximized states of all the
root key windows. RegEdt32 stores this information in
HKCU\SOFTWARE\Microsoft\RegEdt32\Settings. The other Options menu
commands are a mixed bag:

• You can choose the font face and size used to draw the root key windows and
their contents with the Options Font... command. This is a boon for both
high- and low-resolution displays, since you can find a comfortable point size
that allows you to read the tree and data panes without squinting.

• The Auto Refresh command controls whether RegEdt32 automatically updates
its tree and data panes to keep them in sync with the actual contents of the
Registry. If this command is enabled, RegEdt32 updates all open root key
windows whenever changes occur. This takes a small, but noticeable, amount
of time. If you turn Auto Refresh off, you can still use the manual refresh

commands in the View menu to force RegEdt32 to update itself when you
think it's necessary. However, Auto Refresh is convenient and works fine as
long as you don't mind the occasional pause. Note that when you're connected
to a remote Registry you have to use the manual refresh command, since
automatic updating doesn't work.

• Read Only Mode is, sadly, not turned on by default. When it is on, RegEdt32
won't let you change anything in the Registry. You can look at keys and values
as much as you'd like, but you won't be able to add or delete keys or add, edit,
or delete values. Whenever you open a value to edit it, RegEdt32 presents a
polite dialog telling you that read-only mode is enabled and that your changes
won't be saved.

When setting up a new installation, I always make sure to log on as
Administrator, run RegEdt32, make sure "Save Settings On Exit" is checked,
and turn on Read Only Mode. Savvy users can always turn it off; in the
meantime, it's useful protection against the curious but unschooled. It can also
keep you from making mistakes on your own machine, so I recommend
turning it on there as well. Unfortunately, this setting is saved on a user-by-
user basis, but you can achieve the desired effect by making the change to the
default user profile.

• The Options Confirm On Delete command is another potential bacon-saver,
which probably explains why it's turned on by default. When it's on, RegEdt32
warns you with a confirmation dialog when you try to remove a value or key;
this last-ditch "are you sure?" step has saved many an administrator from
accidentally removing something unintended. For your own health and safety,
please leave this option turned on.

5.3 Browsing with RegEdt32

RegEdt32 's interface isn't as "discoverable" as RegEdit; that's just a fancy way of
saying that it's not as easy to just jump in and start poking around. However, this
doesn't mean that using RegEdt32 is hard--just a little unfamiliar if you're not an old
File Manager hand.

Since each root key appears in its own independent window, your browsing sessions
usually focuses on the subkeys of one particular root key. One nice thing about having
each root key in a separate window is that it makes it easy to compare Registry values
on different machines, as shown in Figure 5.2. Since you can minimize, resize, and
position each window independently, it's easy to put off the ones you're not interested
in at the moment, then recall them later when you need them.[2]

[2] Of course, since HKCU and HKCR are really links to subkeys of HKU and HKLM, respectively, you can get
all you need by leaving HKU and HKLM open and hiding the rest.

Figure 5.2. Arranging your RegEdt32 windows

5.3.1 Navigating with the Keyboard

If you've used the keyboard to navigate around the Windows 3.1 File Manager, you'll
feel right at home doing the same in RegEdt32. Table 5.1 shows the key navigation
commands you can use to move around. The last four entries in the table are actually
accelerators for commands in the Tree menu.

Table 5.1. Navigational Keys for RegEdt32

Key
When Used

in...
Action

Tab
Tree or data
panes Switches focus between the key and value panes

Return Tree pane Expands currently selected key but not its subkeys
Return Data pane Opens selected item for editing
Up/down
arrows

Tree or data
panes

Moves focus to the next or previous item in the current pane

Left/right
arrows

Tree or data
panes

Scrolls the active pane left or right if it has scrollbars; otherwise, moves
to the next or previous item in the tree

PgUp/PgDn
Tree or data
panes Moves the focus up or down one pane's worth of data

Home and End
Tree or data
panes

Moves to top or bottom of pane's contents

+ Tree pane Expands the currently selected key but not its subkeys
* Tree pane Expands all subkeys of the currently selected key

Ctrl+ * Tree pane Expands the entire tree; may take a few seconds
- Tree pane Collapses the selected key and all its subkeys

5.4 Remote Registry Editing

RegEdt32 originated the concept of remotely editing another machine's Registry. This
is invaluable for administrators, since it gives you the ability to peek into the Registry
of a misconfigured or broken machine from the comfort of your office. As with most
magic powers, this ability to edit the Registry from afar has some associated
constraints and requirements.

First of all, you must have sufficient privilege to see the Registry on the remote
machine. By default, NT Workstation machines allows anyone to connect to their
Registries, as does NT Server Version 3.51 and earlier. NT Server 4.0 turns remote
access off; Windows 2000 Professional and Server turn it on again. This privilege,
which is discussed in the section Section 9.3 in Chapter 9, lets you view HKU and
HKLM on the remote machine, but that's all. If you want to see the contents of
HKCR, HKCC, or HKCU, you have to look in the appropriate section of the two keys
you can see.[3]

[3] HKPD is, of course, not visible either; this isn't surprising since you can't see it in RegEdt32 at all.

Next, you must be able to modify the Registry on the remote machine. Let's say you're
logged into a machine where your account has Administrator privileges. If you use
RegEdt32 to open the Registry of another machine on your network where your
account doesn't have Administrator access, you can see that machine's HKLM and
HKU entries but you can't open them! This also holds true when your machine and/or
the target are members of the same domain: to change data on the remote machine,
you must have Administrator access on the remote machine.

RegEdt32 doesn't buffer or cache any Registry data from whatever remote machines
you're connected to, and it won't automatically update windows containing remote
machines' root keys. This means that your display can quickly lose sync with the
target machine's Registry; make sure to refresh the display as needed.

5.4.1 Connecting to Remote Computers

You actually connect to remote machines' Registries with the Registry Select
Computer command, which displays the standard Select Computer dialog shown in
Figure 5.3. Neither RegEdt32 nor Windows 2000 makes any attempt to restrict the list
of machines displayed so that it shows only machines that can actually talk to
RegEdt32; the list may thus contain machines whose Registries you can't edit--
including Win95, Windows 3.11, and even Unix machines running the Samba file
server package! If you try to connect to a machine that doesn't support remote
Registry editing, RegEdt32 tells you it can't connect to the remote machine. That's
because remote Registry editing uses remote procedure calls (RPCs) over named
pipes; you need to have RPC connectiviy and be talking to a machine that can handle
RPCs.

Figure 5.3. The Select Computer dialog

Once you've successfully connected to a remote machine, its HKU and HKLM keys
appear in new windows within the RegEdt32 frame window. Assuming that you have
the right permissions, you can browse, edit, export, and otherwise modify the Registry
on the remote machine as much as you'd like. You may freely close sets of root key
windows that display data from remote machines. When you close the last window to
a machine, RegEdt32 closes the Registry connection to that machine as well.

5.5 Searching for Keys

RegEdt32 's search capability is much less capable than RegEdit 's, but it's better than
nothing. Where RegEdit can search key names, value names, and value contents,
RegEdt32 can search only key names. This is still useful, however, since most of the
available documentation covering Registry keys gives you the key names even when
value names and contents aren't specified.

When you search the Registry with RegEdt32, the search starts at whatever key you
currently have selected and proceeds until one of two things happens: a match is
found, or the search hits the end of the Registry. In the former case, RegEdt32
highlights the matching key. In the latter, it displays a dialog telling you that no more
instances of the search string can be found.

You get to RegEdt32's Find dialog with the View Find Key menu command. The
dialog itself is shown in Figure 5.4. It looks, and works, very much like the Find
dialogs of other applications you've probably used before, such as Notepad and
Wordpad. Here's what its controls do:

• You specify the key name you want to find by typing all or part of it into the
"Find what" field. You may also use the standard Windows keyboard shortcuts
to cut, copy, or paste Clipboard text into this field.

• The "Match whole word only" and "Match case" checkboxes control how
RegEdt32 compares the search string you type against the Registry data. By
default, both these checkboxes are off.

• The Up and Down radio buttons control the direction in which RegEdt32
searches: Up searches from the selected key to the root key of the active
window, while Down searches from the selected key to the last subkey of the
last key of the active root.

Figure 5.4. RegEdt32's Find dialog

Each time RegEdt32 finds a match, it highlights the matching key in the tree pane of
the active root key window. You can then use the Find Next button to search for the
next instance, or the Cancel button to stop looking.

If you want to find keys and values with maximum flexibility,
the excellent Registry Search & Replace utility is probably what
you're looking for. It's an easy-to-use, flexible tool for searching
the Registry. You can get it at
http://www.iserv.net/~sjhswdev/REGSRCH.HTM.

5.6 Saving and Loading Registry Keys

RegEdt32 allows you to dump Registry data into ordinary files that you can back up
or use on other machines. You can save data in binary and text formats, and you can
reload binary data when you need it again. The text format has the advantage of being
human-readable, but the binary format is more efficient and is the only one RegEdt32
can import. (For more details on using this capability to back up your Registry, see
Chapter 3.)

RegEdt32 normally deals with the hive files stored in
%systemroot%\system32\Config. However, you can also create your own files that
contain just the keys and values you want. Once you've created such a file, you can
load it back to its original location or anywhere else in the Registry. You can also use
the file on another machine's Registry.

5.6.1 Saving Keys

To create a binary file of Registry data, just select the key or subkey you want to save,
then use RegEdt32's Registry Save Key command. When the standard Save dialog
appears, specify a filename, and RegEdt32 stores the selected key's contents (as well
as those of its subkeys) to the file (as long as you have adequate permission to read
the key, its subkeys, and their values). The completed file is an ordinary file, so you
can copy it to floppy, email it, or handle it just like any other kind of document.

There's no way to combine more than one key in a file unless they have a common
parent. If you want to capture web browser settings from your local machine, you
could save HKLM\Software\Microsoft and HKLM\Software\Netscape in two separate
files, or you could save HKLM\Software and get them both--plus a lot of other
unrelated stuff.

5.6.2 Restoring Keys

Once you've saved a key, restoring it is fairly straightforward. Select the location
where you want the key to appear when loaded, then use the Registry Restore
Key... command. RegEdt32 loads the saved key as a subkey of the currently selected
key. For example, if you select HKLM\Software\Qualcomm\Eudora and load a file,
the saved file's contents appear under Eudora. Be careful with this command; the
saved key file doesn't contain any information about the key's path, so RegEdt32 can't
warn you that you're restoring a key in the wrong place.

When the new key is loaded, it actually replaces allsubkeys and values of the selected
key. Before anything actually gets replaced, you'll see a warning dialog asking you to
confirm that you want to wipe out all the existing subkeys and values of the selected
key. Unfortunately, though, the dialog doesn't tell you which key is about to be
affected, so make sure you double-check the selected key to ensure it's the one you
meant to restore over.

5.6.3 Loading Saved Keys as Hives

When you load a key with Registry Restore Key..., it overwrites whatever was there
before. You can also load a saved key as a new hive without overwriting any existing
data. When you do this, the loaded key is mapped into the Registry the same way the
standard system hives are, and it remains loaded until you manually unload it. This
function gives you an easy way to add a copy of a user account, since you can just
grab HKU\sid from one machine and load it as a hive under HKU on another.

You may load a saved key as a hive under HKU or HKLM but not any other root key.
If you have HKU or HKLM selected, RegEdt32 enables the Registry Load Hive...
command; it is disabled otherwise. (It'll also be disabled if you have read-only mode
enabled.) When you load a key as a hive with this command, the saved key is loaded
as a subkey of whichever root you loaded it into. You have to name the new key after
you select the file to be loaded; this name is used to identify the new hive. For
example, if you select HKU and load a saved key, telling RegEdt32 to namethe new
key ExplodingStuff, the new hive appears as HKU\ExplodingStuff.

Once a saved key is loaded as a hive, you can modify its keys and values like any
other key. The changes are reflected in the saved key file, which remains loaded and
available until you explicitly unload it with the Registry Unload Hive command.

5.6.4 Saving as Text

RegEdt32 also allows you to save a key and its values to a text file with the
Registry Save Subtree As... command. The formatting is identical to what appears
when you print a key. If you need to search the Registry for a particular value (as
opposed to a key name, which RegEdt32 can do) your options are to use RegEdit or to
save the root key you want to search to a text file and search it yourself. Apart from
that, this command isn't very useful.

5.6.5 Providing an Improvised Clipboard

There's one major feature that RegEdt32 and RegEdit both lack: a real set of
Clipboard operations. It would really be handy to be able to copy a Registry key from
one location and paste it in another, especially since both programs let you open the
Registries of other machines on the network.

While RegEdt32 doesn't directly provide Clipboard support, you can get the same
effect with the Registry Save Key... and Registry Restore Key... commands. Let's
say you're setting up a batch of new laptop machines running Windows 2000
Professional for your company's sales force. They're all on the network, but you want
to set up each laptop's Dial-Up Networking (DUN) phonebook entries so that they're
all the same. Here's one way to accomplish your goal:

1. Set up one laptop so that its dialing options and phone book settings are
configured the way you want them. Let's call this machine the source machine.

2. Copy the source machine's phonebook file
(%systemroot%\system32\ras\rasphone.pbk) to the corresponding place on
each of the target machines.

3. Run RegEdt32 on a machine (the source machine will do, or you can use your
desktop machine). Open the source machine's Registry and select
HKCU\Software\Microsoft\RAS Phonebook, then use the Registry Save
Key... command to save the data to a file.

4. Open the Registry of each machine you need to modify, then use Registry
Restore Key... to load your saved file into
HKU\.DEFAULT\Software\Microsoft\RAS Phonebook. Now any new user
account created on that machine inherits the RAS phonebook settings. If you
instead want to apply the phonebook settings to another account, feel free. In
fact, as long as you have administrative rights on the machine, you can add the
phonebook settings to all the accounts under HKU.

5.6.6 A True Story

Now it's time for an anecdote. While writing this chapter, I ran into a problem. The
shareware screen capture software I use to grab figures for my writing (the excellent
SnagIt/32 from TechSmith; http://www.techsmith.com/) is installed under my account
on a machine named enigma. When I'm logged on to that machine, SnagIt can find its
registration key and settings data in HKCU\Software\TechSmith\SnagIt\Settings, and
it's happy. However, for some of the figures, I needed to log into a different domain,
and since I wasn't logged in as the same user, SnagIt could no longer see its settings
data. To make things worse, I couldn't find the piece of paper with my registration
code, and I was in a hurry.

Solution: use RegEdt32. I logged onto enigma, saved the SnagIt settings key by
selecting HKCU\Software\TechSmith\SnagIt\Settings and using the Registry Save
Key command, and logged out. I then logged into my domain account, selected
HKCU\Software\TechSmith\SnagIt, used the Registry Restore Key command to
restore the file I just saved, and ran SnagIt again. Problem solved! A few minutes
later, I captured all the necessary images and was back on schedule.

5.7 Printing Registry Contents

RegEdt32 includes a rudimentary printing function. When you select a key and use
the Registry Print Subtree command, you get a hardcopy version of that key's
subkeys and values that looks like this example:

Key Name: SOFTWARE\Netscape\Netscape Navigator\Users\paul
Class Name: <NO CLASS>
Last Write Time: 6/29/97 - 7:07 PM
Value 0
 Name: DirRoot
 Type: REG_SZ
 Data: C:\Program Files\Netscape\Users

RegEdt32 prints everything below the key you've selected, so if you select
HKLM\SOFTWARE for printing (as I foolishly did while writing this section), expect
to wait a while for the completed output. The formatting and indentation help make
the printout slightly more readable, but you'll probably find it more worthwhile to
save the keys you're interested in as text with the Registry Save Subtree As...
command, then print that text file with your favorite editor.

The related Registry Printer Setup command allows you to set characteristics for
the printout, including what printer, paper size, and print orientation to use.

5.8 Editing Keys and Values

RegEdt32 is a more powerful and flexible Registry editor than RegEdit. However, the
two are roughly equivalent when it comes to adding and deleting keys and values.
Since the underlying functionality of the Registry is identical, it makes sense that their
workings should be identical as well. (Just a reminder: don't edit things unless you're
sure they need editing. End of sermon.)

5.8.1 Viewing Values as Binary Data

By default, RegEdt32 shows each value as its native type. Sometimes, though, it can
be useful to see a Registry value in raw form, without any kind of interpretation or
formatting. Since hive files are always open, you can't use a standard file or hex editor
to look at the file's contents; instead, RegEdt32 gives you a way to get a hex dump of
any value in the Registry. The View Display Binary Data command takes the
selected value's contents and displays it in hex, as shown in Figure 5.5.

Figure 5.5. The Binary Data dialog

The radio buttons in the Format group let you control how RegEdt32 presents the
data. The default setting, Byte, shows the data as individual bytes. As a bonus, the
rightmost section of the dialog shows the ASCII representations of the data, making
this setting particularly useful for viewing strings. The Word and Dword buttons show
the same data, but grouped as words or DWORDs, respectively. These settings are
most useful for viewing binary or DWORD values.

5.8.2 Modifying Values

Once you've selected a value in the data pane, you can modify it by double-clicking it,
pressing the Enter key, or using the commands on the Edit menu: Binary, String,
DWORD, and Multistring.[4] Each data type has its own editing dialog. While they all
basically work the same way, some have subtle differences or additional controls.

[4] You may notice the lack of editing tools for REG_FULL_RESOURCE_DESCRIPTOR and
REG_RESOURCE_LIST. Microsoft doesn't want you editing those types, since they're used only in
HKLM\HARDWARE.

5.8.2.1 Modifying a string value

The String Editor dialog, shown in Figure 5.6, is arguably the simplest of all the data
editors in RegEdt32. The current string value is shown in the String field; you can
type or paste any data you'd like into the field. When you click OK, your changes are
stored as the new contents for the value you're editing.

Figure 5.6. String editing

This string editor works for REG_EXPAND_SZ and plain old REG_SZ strings;
there's a separate editor (discussed later) for REG_MULTI_SZ values.

5.8.2.2 Modifying a DWORD value

If strings are the simplest type of value to modify, DWORD runs a close second. The
DWORD Editor dialog is shown in Figure 5.7. Like the String Editor, it offers you a
field in which you type the desired new value. The three radio buttons in the Radix
group allow you to specify what number base you're using. The default is Hex, so you
can enter quantities such as "FF00" and "a29d" without any prefix or suffix. If you
prefer, you can use the Binary and Decimal buttons to select base-2 or base-10
instead.

Figure 5.7. The DWORD editor

5.8.2.3 Modifying a multiple-string value

The Registry stores multiple-string values as a concatenation of all the individual
strings, separated by null characters (hex 0x00). While you can edit these multi-string
blocks as binary data, remembering where to put the null character that terminates
each individual string gets to be tedious pretty quickly. RegEdt32 offers a better
solution in the form of the Multi-String Editor dialog (see Figure 5.8).

Figure 5.8. The Multi-String Editor

You may enter as many (or as few) strings as you like in this dialog's Data field. Each
string is treated as an individual entity. When you hit Return at the end of a line,
RegEdt32 takes that as a signal to move to the next line and start another string. As
with the other editors, you can use the standard Windows keyboard shortcuts to cut,
copy, and paste text into this dialog.

5.8.2.4 Modifying a binary value

Many of the Registry's most important values are stored as raw binary data. This can
pose a problem when you need to change (or undo a change!) their contents. After all,
strings and numbers are easy to edit, but binary data can be a little tougher. RegEdt32
includes a binary editor that makes it easier to inspect and change binary values when

the need arises. The Binary Editor itself, shown in Figure 5.9, is fairly
straightforward.

Figure 5.9. The Binary Editor

The column of digits on the left side of the edit field shows the offset of that line's
data from the beginning of the data block. For example, the row labeled "0020"
indicates that the first byte on that line starts 32 bytes (or hex 0x20) from the start of
the data item. Likewise, the scale across the top of the edit field shows the offset
within the line. The 44th byte in Figure 5.9 is at offset 0x2c from the beginning of the
block. To find it, you'd first use the left column to find the row labeled "0020", then
read across to "c" to find the correct byte.

The Binary and Hex radio buttons control how RegEdt32 actually displays the data.
When you change from one mode to another, the contents of the edit field changes, as
do the horizontal and vertical scales.

The edit field itself shows the value's contents. RegEdt32 treats the data there as text,
so you can insert, remove, cut, copy, and paste in this field as much as you'd like. If
you hit a key that's not legal (for example, "2" while editing binary data, or "J" in hex
mode) RegEdt32 ignores it. If you enter data that ends with an incomplete byte,
RegEdt32 warns you with a dialog, then pads the data with zeroes until it's the proper
length.

One final caveat: unlike Windows 95 and 98, Windows 2000 and NT stores their
strings in Unicode format. That means that each character in a string actually takes up
two bytes of storage space. When you edit an ordinary ASCII string using the binary
editor, you'll see that every other byte is zero: that's because ASCII strings only need
one byte of the two reserved for each character. Don't fool with the zero bytes, or you
risk turning your strings from ASCII to a weird hybrid of ASCII, Japanese, Cyrillic,
and maybe even Pinyin Chinese.

5.8.2.5 Modifying a value of a different type

RegEdt32 is helpful enough to remember, and store, a data type for every value in the
Registry. However, you're free to ignore that data and edit a value as though its type
were different. You've already seen one example of how this works: the View

Display Binary Data command lets you inspect the contents of any type of value as
though it were a REG_BINARY value.

When you have a value selected, if you double-click it you'll see its data displayed in
whatever editor is appropriate. If instead you use the Binary, String, DWORD, or
Multistring commands in the Edit menu, you can open any value's data as any of
those types. For example, if you open a string as binary data, you see a display like
the one shown in Figure 5.9.

While this is a useful trick, be careful. It's easy to corrupt data when editing it with an
editor that has no knowledge of the data's native format. The safest course of action is
to use the native format editor whenever possible. If you need to tweak a value
without using its native format, I recommend using the binary editor instead.

5.8.3 Adding New Keys or Values

Like RegEdit, RegEdt32 allows you to add new keys and values. The same cautions
discussed in Section 4.7.3 in Chapter 4 apply here too. For the most part, you won't
need to add new keys unless you're adding one of the famous Microsoft hidden keys
that are sometimes needed to activate (or deactivate) a particular feature.

5.8.3.1 Adding new keys

When you add a new key, it has to be a subkey of one of the existing root keys, and
you must have appropriate access to that subkey. You tell RegEdt32 where you want
the new key by selecting a key in the tree pane of any root key window; the new key
is created immediately beneath the selected key. There's no way to relocate a key once
it's in place, so make sure you put it in the right location the first time.

Once you've picked out a good spot for your key, you can use the Edit Add Key
command to actually create the new key. When you do, you'll see the dialog shown in
Figure 5.10. You specify the key name by typing it into the Key Name field (big
surprise, right?), and you may optionally specify a data class for the key with the
Class field. When you click the OK button, RegEdt32 adds the new key in the
selected location.

Figure 5.10. The Add Key dialog

5.8.3.2 Adding new values

Adding a new value is a three-step process. The first, and arguably hardest, step is to
select the key to which you want to add the new value. This is important, since

RegEdt32 doesn't give you a good way to move a value from one key to another. Be
sure to visually confirm that the key you want the new value on is actually the one
that's highlighted.

The second step (once you've selected the desired key) is to use the Edit Add
Value... command, which displays the dialog shown in Figure 5.11. You use this
dialog to supply a name and type for the new value: the name goes in the Value Name
field, of course, while the Data Type combo box allows you to choose any one of the
data types RegEdt32 supports (REG_SZ, REG_EXPAND_SZ, REG_DWORD,
REG_MULTI_SZ, and REG_BINARY).

Figure 5.11. The Add Value dialog

The third and final step is to actually give the value some contents. You use the
dialogs shown earlier in Section 5.8.2; which dialog pops up in this third step depends
on the type of data you selected in the second step. Once you enter a value into the
appropriate editor dialog, RegEdt32 adds the new value and stores it permanently in
the Registry. At any prior point, you can cancel the operation without actually adding
the new value.

5.8.4 Deleting Keys and Values

Contrary to what you might think, deleting data from the Registry is required
somewhat more often than adding it. The biggest reason for deleting keys or values is
to remove traces of applications or system components whose uninstallers are
nonexistent or (more commonly) too poorly written to fully reverse whatever the
original installation program did. Of course, sometimes it's necessary to undo
something you've done yourself. For example, if you add one of the magic Microsoft
keys sprinkled throughout their knowledge base, you may one day find it necessary to
remove it again.

You may remember the Options Confirm on Delete command
discussed earlier in Section 5.2.3. I strongly recommend leaving
this option turned on, as it can save you from accidentally
deleting something you would rather have kept. However,
remember that this flag is set on a per-user basis!

Whether you're deleting a key or a value, the basic procedure is the same: highlight
the key or value you want to remove, then either hit the DEL key or use the Edit
Delete command. If you have the Options Confirm on Delete option turned on,

you'll see a confirmation dialog asking you if you really want to remove the selected
key or value. If you say "Yes," RegEdt32 deletes the item, just as you requested.

When you delete a key, RegEdt32 also deletes all its subkeys and their values, so be
sure to visually confirm that the key you want to delete is actually the one that's
highlighted. The confirmation dialog unfortunately doesn't tell you what key or value
is about to bite the dust, so it's up to you to double-check.

5.9 Registry Security Fundamentals

The Registry's hierarchical arrangement looks suspiciously like that of a filesystem in
more ways than one. Like NTFS files, directories, and volumes, Registry keys can
have attached attributes that control who owns them, who may read, write, and change
them, and what events should be logged for further scrutiny.

In particular, every key has an access control list, or ACL, associated with it. The
ACL is made up of zero or more access control entries, or ACEs. Each ACE grants a
specific permission to a specific user or group. The permissions specified by the
ACEs in the ACL apply to the object that holds the ACL and its children, if any.
There are actually two separate kinds of ACL: a discretionary ACL (DACL) contains
the permissions you put on the key, and a system ACL (SACL) contains permissions
applied (and managed) directly by the OS.

5.9.1 Basic Registry Permissions

Some Windows 2000 permissions apply to more than one kind of object. However,
the semantics of Registry permissions are a bit different from those of filesystem or
objects. Table 5.2 shows the 10 basic permissions that can be attached to Registry
keys. These permissions are also called Discretionary Access Controls, or DACs.

Table 5.2. Registry Access Permissions
Permission What It Allows

Query Value
Retrieving a specific key's value: for example, the value Paul Robichaux of the
HKLM\SOFTWARE\SMAIL\Users key

Set Value Changing the contents of a specific key's value

Create Subkey
Creating a new subkey of the specified key; the new subkey inherits the parent's
permissions, but they may be explicitly changed later

Enumerate
Subkeys

Traversing all subkeys of a specific key and getting their full pathnames

Notify Receiving or setting auditing notifications

Create Link
Creating a symbolic link (such as a shortcut or a Unix symlink) that points to another
key in the Registry

Delete Removing the specified key, its subkeys, and all associated values
Write DAC Changing the DACs attached to the specified key

Write Owner Changing the owner of the specified key. This permission is new in Windows 2000.
Read Control The permission holder can read the ACL for the key

Besides these basic DACs, there are additional composite DACs. These composites
grant combinations of two or more of the rights listed in Table 5.2. For example, the
Full Control composite grants all 10 of the rights listed above. Table 5.3 shows the
composite DACs and the rights they include.

Table 5.3. Composite DACs
Permission What It Allows

Read
Read-only access to a specific key, its subkeys, and their values (actually includes Query
Value and Enumerate Subkeys)

Write
Owner

Changing the owner associated with the specified key; in Windows 2000, this is a basic
permission, not a composite

Full Control
All of the above rights; Full Control allows the holder to do literally anything to the keys
with that permission

Some older versions of NT exhibit a serious security

weakness: by default, many of the keys in the Registry are set to
Everyone:Full Control access. This is unnecessarily permissive.
See Chapter 9 for more details on how to tighten your Registry
permissions for Windows 2000 and NT.

5.9.2 Applying ACLs

Both Windows 2000 and NT use some fairly simple rules to evaluate ACEs and
decide whether you get access to a particular resource or not. Understanding these
rules and how they work is critical to knowing how to secure your systems.

The first rule is actually a significant difference in how permissions are handled
between Windows NT and Windows 2000. In NT, you can explicitly deny someone
access by giving them the No Access permission. In Windows 2000, there are
separate Allow and Deny flags in each ACE entry. This difference becomes important
when you consider it in the light of the ACL evaluation rules:

Everything not specifically permitted is forbidden

Much as in the old Soviet Union, the only access that's permitted is whatever
is explicitly granted by the ACEs on the object. For example, if the ACL on a
key contains a single ACE that specifies Administrators:Allow Full Control,
no one else has any access because there's no explicit grant of access.

The most restrictive permission always wins

If two or more ACEs conflict, the effective permission is always the most
restrictive ACE. For example, consider a Registry key that has Authenticated
Users: Allow Read and Domain Users: Deny Read. A domain user's effective
permission will be Deny Read, since that's the most restrictive ACE that
applies to the user.

Taken in combination, these two rules allow you to calculate the effective permission
that result from any combination of ACEs in an ACL. They also highlight why

Microsoft added separate Allow and Deny flags. Since the most restrictive permission
is always used, an explicit denial (using the Deny flag) is always more powerful than
any grant of the same right. Rather than depending on the implicit denial rule (#1
above), you can gain improved security (and clearer semantics) by expressly denying
access to an object.

5.10 Securing Registry Keys in Windows 2000

RegEdt32 allows you to set permissions on any key in the Registry. Since most of the
data in the Registry belongs to system components, you must use this feature
carefully; if you change permissions on a key so that the application that needs it can't
get to it, you may destabilize or destroy your system.

The Security Permissions... command, which displays the Permissions dialog as
shown in Figure 5.12, is the only security-related command in the Windows 2000
version of RegEdt32. To use it, select a key in any root key window, then select the
command. When the dialog opens, it shows which key you've selected and what
ACEs are in effect for that particular key. This is different from the NT 4.0 version of
the same dialog; that's because the standard security dialog in Windows 2000 has
been substantially enhanced.

Figure 5.12. Registry key Permissions dialog

• The Name list shows the current list of accounts and groups that have ACE
entries on this key. The names of domain groups are expanded to show the
domain they belong in. You can change which users and groups are in the
ACL with the Add and Remove buttons to the right of the list.

• The Permissions field shows the predefined composite DACs listed in Table
5.3. The two checkboxes to the right of each entry let you specify whether to
allow or deny specific permissions, according to the rules I mentioned earlier
in this section.

• The Advanced button opens the Access Control Settings dialog, which
contains three tabs: Permissions, Auditing, and Owner. Each is discussed in
more detail in the next three sections.

• The "Allow inheritable permissions from parent to propagate to this object"
checkbox controls whether the permissions applied to parents of the currently
selected key will be applied to this key (and possibly its subkeys, if they have
this same checkbox set).

5.10.1 Setting Permissions

To set permissions on a Registry key in Windows 2000, you have to use the
Permissions tab of the Access Control Settings dialog (see Figure 5.13). This tab
contains a summary of the contents of the selected key's DACL and SACL, listing
each ACE individually.

Figure 5.13. The Permissions tab summarizes ACEs for the current
Registry key

The ACLs shown in the Permission Entries list are pretty vanilla, but they still bear
explanation:

• The Type column shows whether the ACE allows or denies the specified
permission. Notice that Deny entries are always listed first; that makes sense,
since they'll always be evaluated first.

• The Name column shows the name of the account or group to which the ACE
applies. Local and domain accounts and local groups may be assigned
permissions. There are also several built-in account proxies (such as
CREATOR OWNER, which represents whichever account originally created
an object, and ANONYMOUS LOGON, which indicates any account that can
log on anonymously) that may have DACs attached.

• The Permission column shows the effective DAC granted by this ACE. You'll
see either a composite DAC from Table 5.3 or "Special Access", the synonym

used when there's some combination of DACs that don't match a predefined
composite DAC.

• The Apply to column indicates whether the specified ACE is applied to the
selected key only, the selected key and its subkeys, or the subkeys alone.
Normally, ACE changes apply to the selected keys and all subkeys, although
this may change if you change the permission inheritance settings.

5.10.1.1 Adding, removing, and changing ACE entries

You modify ACE entries with the Add..., Remove, and View/Edit... buttons below the
permission list. Let's deal with removal first, since it's the most straightforward case:
select an ACE, click Remove, and it's gone (though the change isn't actually recorded
in the Registry until you OK the Access Control Settings and Permissions dialogs).

Adding and viewing or changing ACE entries are similar in concept and execution.
When you add a new entry by clicking the Add... button, you must begin by
specifying the user or group account to which the ACE applies. Once you choose a
subject for the ACE, you see a dialog like the one shown in Figure 5.14.

Figure 5.14. The Object tab controls the specific ACEs applied to a
Registry key

• The Name field (and the associated Change... button) shows the user or group
specified for this ACE and allows you to change it.

• The Apply onto pulldown lets you choose what the new or modified ACE
applies to. By default, the pulldown is set to "This key and subkeys", meaning
that the ACE is blasted onto all subkeys of the current key when you finish
twiddling it. You can also choose to apply permissions to the current key only

by choosing This key only, or to the subkeys only with the Subkeys only
option.

• The Permissions list shows you the actual DACs and lets you allow or deny
them in any combination. While the user interface items shown look like
checkboxes, they behave like radio buttons in that you can either allow or
deny any DAC, but not both. The Clear All button unchecks everything in
both columns.

• The "Apply these permissions to objects and/or containers within this
container only" checkbox acts as a modifier to the Apply onto pulldown's
Subkeys only and "This key and subkeys" values. When you check this box,
the DACs you select are applied only to the current key and its immediate
subkeys.

5.10.1.2 Seeing and controlling permission inheritance

Microsoft apparently realized that the inheritance scheme for Windows 2000
permissions is a little confusing, because they took the welcome step of adding a
plain-spoken description of the inheritance settings in effect for the current key. For
example, Figure 5.13 says "This permission is defined directly on this object. This
permission is inherited by child objects": that's a remarkably clear statement of the
inheritance settings in effect for that key. The contents of the text description depend
on the setting of the two checkboxes at the bottom of the dialog:

• "Allow inheritable permissions from parent to propagate to this object"
controls whether the parent's permissions are applied to the selected key and
its values. Normally this box is checked, so permission settings are passed
down to subkeys when a parent's permissions are changed.

This default setting means that if you make some boneheaded
change to a parent key's permissions, you will wreck
permissions on all its subkeys. Be careful when changing
permissions, and be doubly careful when using this option.

• "Reset permissions on all child objects and enable propagation of inheritable
permissions" allows you to specify that you want any existing ACEs on
subkeys of the current key to be removed. When you check it, the subkeys'
ACLs are cleared, their "allow inheritance" flag is enabled, and permissions
set on the parent object you're editing take effect when you approve them.

5.10.2 Auditing Registry Activity

The Auditing tab, shown in Figure 5.15, summarizes the auditing ACL entries for the
selected Registry key. Its appearance is similar to the Permissions tab shown in Figure
5.13; that's by design, since the mechanisms for reviewing and setting ACEs for
auditing or object access are similar. The Auditing Entries list shows each audit ACE
entry defined for the current Registry key, using a format that's almost identical to the
format used for ACE entries. The primary difference is that the Type field for audit
entries are either Success or Fail; this indicates whether audit log entries will be
generated for successful or failed access attempts.

Figure 5.15. The Auditing tab summarizes auditing entries for the
current Registry key

5.10.2.1 Adding, removing, and changing auditing entries

You manage auditing entries with the Add..., Remove, and View/Edit... buttons. Like
their counterparts on the Permissions tab, these buttons allow you to change the
individual ACEs that make up the auditing ACL on the key you're modifying:

• The Add... button prompts you to designate a user or group to whom the new
auditing settings apply. It then displays the dialog shown in Figure 5.16. By
checking the Successful or Failed checkboxes for each DAC, you can control
whether the system records an audit message in the event log for each
successful or failed attempt to exercise the corresponding permission.

• The Remove button removes the selected auditing entry, without asking for
confirmation. Note that your changes aren't saved until you click OK in the
Access Control Settings dialog and again in the Permissions dialog itself.

• The View/Edit... button displays the dialog from Figure 5.16, with which you
can edit the existing auditing controls on a key.

Figure 5.16. The Auditing Entry dialog

5.10.2.2 Seeing and controlling audit control inheritance

Since the Permissions and Auditing tabs are so similar, it might not be surprising that
the Auditing tab contains the same plain-English[5] description of the audit settings you
apply. The two checkboxes at the bottom of the tab have exactly the same effect as
their counterparts on the Permissions tab; they work together to control how your
audit settings are propagated to subkeys of the current key.

[5] Literary license allows me to ignore the fact that you may be using a language other than English.

5.10.3 Changing Key Ownership

Changing the ownership of a particular key in Windows 2000 is pretty
straightforward; that's the sole function of the Owner tab in the Access Control
Settings dialog, shown in Figure 5.17. Normally, you won't change ownership of a
key that belongs to the system, although in some security-related circumstances
(usually dictated by a Microsoft security bulletin) you might. More often, you'll
change ownership of keys used by applications you've installed to keep users from
fiddling with them. The actual process of changing ownership is simple: switch to the
Owner tab and select the new owner you want for the key. The Change owner to list is
filled with accounts and groups that can own the current key, based on its parentage
and the inheritance settings currently in force. Checking the "Replace owner on
subcontainers and objects" applies the change recursively to the subkeys and values
beneath the current key. Leaving it in its default unchecked state changes ownership
only of the selected key and its values.

Figure 5.17. The Owner tab of the Access Control Settings dialog

5.11 Securing Registry Keys in Windows NT

When using RegEdt32 under NT, you'll notice a few things that differ between
Windows 2000 and NT. For starters, the Security menu has more commands in it;
when you use these commands, the user interface is different as well. However, for
the most part the underlying behavior is the same. If anything, NT is less flexible than
Windows 2000 because it doesn't have all the same inheritance and permission
controls.

5.11.1 Setting Permissions

The Security Permissions... command displays the Registry Key Permissions dialog
(see Figure 5.18). To use it, select a key in any root key window, then give the
command. When the dialog opens, it shows which key you've selected and which
account owns it (you can't change either of them from the dialog, however). The
controls in the dialog give you access to the permission settings for the key.

Figure 5.18. Registry Key Permissions dialog

• The "Replace Permission on Existing Subkeys" checkbox tells RegEdt32
whether to apply the permission changes you specify to all subkeys of the
current key or not. When subkeys are created, they inherit the parent key's
access controls. However, by the time you change the parent key's access
controls, the subkeys may have different controls in place. Use this option
only when you intend to override any access controls that have been applied to
subkeys.

• The Name field lists the current access controls in force on the key. Each line
in the list shows an account name and the DAC granted to that account. The
standard DACs are listed in Table 5.2 and Table 5.3. The Type of Access
combo box lets you change the DACs for any account in the Name list.
Changes you make are immediately reflected in the list, but aren't applied until
you click OK.

• The Add... button allows you to use NT's standard "Add Users and Groups"
dialog (see Figure 5.19) to add new accounts to the ACL. The accounts you
add from this dialog appear in the Name list with Full Control as the default
DAC; make sure you change this to avoid opening a security hole.

Figure 5.19. The Add Users and Groups dialog

5.11.2 Auditing Registry Key Activity

Auditing allows you to keep a trail of evidence to identify problems and pin their start
down to an exact time. NT's auditing facility lets you audit specified actions taken by
specified accounts. For example, you can audit any attempt to change security policy
by any accounts, or you could audit failed attempts to log on by a single account. This
combination of specifying who and what makes auditing pretty flexible.

5.11.2.1 Enabling auditing on an NT machine

While auditing is useful, it also takes time. By default, NT leaves system auditing
turned off. Before you can audit Registry access (or anything else), you have to enable
auditing on the machine you want audited.

You do this with the User Manager or User Manager for Domains,[6] yet another of the
standard administrative utilities NT includes to simplify your job. Here's how to
enable auditing on a single server or workstation:

[6] Which one you get depends on whether you're using Windows NT Workstation or Server. Workstations always
get the vanilla User Manager, and servers (in or out of a domain) always get User Manager for Domains.
Fortunately, they're very similar, so I'll treat them here as identical.

1. Run User Manager on the target machine. To change auditing control settings,
you have to be logged in with an account that has Administrator privilege on
the target machine.

2. Use the Policies Audit... menu command to display the Audit Policy dialog,
shown in Figure 5.20.

Figure 5.20. The Audit Policy dialog

3. Make sure the "Audit These Events" radio button is turned on. Otherwise, NT
still happily refuses any auditing requests you make in other applications,
including RegEdt32.

4. Use the checkboxes to select which classes of events you want to audit. For
Registry access auditing, make sure the "File and Object Access" checkboxes
are marked. You may also want to enable other types of auditing, but they're
not strictly necessary.

5. Click OK, then exit the User Manager.

Once you take these steps on a machine, you won't have to do them again; auditing on
that machine will remain enabled unless you manually turn it off using the same
procedure. You do, however, have to execute these steps on every machine for which
you want to enable auditing. Once you've done so, you can actually turn on auditing
for the Registry.

5.11.2.2 Telling RegEdt32 what to audit

The Registry Key Auditing dialog, shown in Figure 5.21, appears when you choose
the Security Auditing... menu command.

Figure 5.21. The Registry Key Auditing dialog

This dialog can be a little confusing at first, so a look at what its controls do will
demystify it some:

• The "Registry Key" field shows you what subkey you've selected, but it
doesn't tell you what root that subkey belongs to. You may need to move the
entire Registry Key Auditing dialog around to make sure you're auditing the
key you intended to audit.

• The "Audit Permission on Existing Subkeys" checkbox tells RegEdt32
whether you want the audit changes you specify to apply to all subkeys under
the selected key or just the selected key. If you audit all subkeys of a large root
key like HKLM, your performance will suffer. Sometimes, though, this type
of shotgun auditing is necessary so you can see which keys are being changed
when you don't know in advance which ones you need to audit.

• The "Name" list shows which accounts will be audited. You can think of this
list like the FBI's Most Wanted list: names on this list are the ones scrutinized,
while other names are ignored. The Add... and Remove buttons let you change
the members of this list using an interface like the one shown in Figure 5.19.
In addition to actual user accounts, you can audit the built-in accounts like
Everyone, INTERACTIVE, and SYSTEM.

• The two columns of checkboxes in the "Events to Audit" group are the meat of
this dialog, since they control what actions are logged for the specified
accounts. Each of the DACs listed earlier in Table 5.2 may be audited. When
you check a DAC's Success checkbox, the system creates an audit record any
time an account on the Name list succeeds in using that DAC. Conversely, the
Failure checkbox causes NT to generate an audit record when a listed account
tries to use the DAC and fails.

For example, let's say you add the account peanut to the audit list for
HKLM\Software\Microsoft, then check Success for Create Subkey and Failure
for Write DAC. Once you save those settings, NT generates an audit record
whenever peanut succeeds in creating a new subkey under the selected key or
fails while trying to change the DACs for an ACL entry.

As you'd expect, the OK and Cancel buttons allow you to preserve or discard changes
you make in this dialog.

5.11.2.3 Reviewing the audit records

Once you've told RegEdt32 what to audit, you still need to see the audit entries that
have been generated. If you're accustomed to administering Unix machines, you're
probably familiar with the syslog service. NT has a similar feature; it keeps an event
log that applications and system components may write to. The NT event log is
actually three separate logs: one for system data, one for application-generated data,
and one for security data. Auditing messages (no matter their source) go into the
security log.

To view these log messages, you'll need to use Microsoft's Event Viewer application.
A complete discussion of how to use the Event Viewer is outside the scope of this
book, but the basic process is simple enough to boil down into a few concise steps:

1. Launch the Event Viewer (eventvwr.exe). There's a shortcut to it in the Start
menu, too; look under Programs Administrative Tools (Common) Event
Viewer to find it.

2. When Event Viewer opens, you see a window like the one shown in Figure
5.22. Use the Log Security command to display the security log.

Figure 5.22. The Event Viewer application

3. Event Viewer shows you a passel of events (the exact number depends on how
big the event log is). You can sort, filter, and view events using the commands
in the View menu. If there's a particular event you're interested in, double-
click it or use the View Details... command to get the dialog shown in
Figure 5.23, which gives all the pertinent event details in one place.

Figure 5.23. Registry audit event detail display

5.11.3 Changing Key Ownership

Like every other object in NT's world, each Registry key has an owner. As with Unix,
NT allows the owner to control access to objects it owns to a certain extent; the
superuser or Administrator account can always take ownership of an object and
change its permissions when necessary. NT does, however, provide a standard
auditing mechanism that logs all manually initiated changes of ownership, so you'll
always have an audit trail that shows when someone's taken over one of your objects.

When you use this command, you're telling RegEdt32 to change the owner of the
currently selected key and all its subkeys to the current account. This blanket change
of ownership can lead to unexpected behavior, since many NT components assume
they'll always have unrestricted access to all subkeys of HKLM and many subkeys of
HKCU and HKCR. However, it's usually a good idea to set appropriate ownership of
HKU 's subkeys, as well as those subkeys of HKLM that are safe to reset. The best
way to set ownership is with a utility like David LeBlanc's everyone2user, which is
discussed in Section 9.4 in Chapter 9.

If you insist on doing it manually, RegEdt32 allows you to take ownership of Registry
keys with the Security Owner... command. The Owner dialog, pictured in Figure
5.24, shows you what key is selected and which account owns it. The Take
Ownership button changes the key's (and its subkeys') ownership to whatever account
you're logged in as, while the Close button cancels the command without changing

anything. Of course, if you don't have Administrator privileges you can't take
ownership of any key you don't already own.

Figure 5.24. The Owner display

6.1 All About System Policies

Windows 2000 supports aggregating users into groups and domains. You can assign
users to a particular group or domain, then grant (or deny) permission to use certain
system resources based on their membership. For example, you could create a group
of users in the accounting department and grant that group access to the printer in the
department conference room, without having to grant printer access to users from
outside the department. For a complete explanation of managing users, groups, and
domains, see Essential Windows NT System Administration, by Æleen Frisch
(O'Reilly & Associates).

Besides offering access controls so that users and groups gain or lose access to
individual files, shares, servers, and printers, NT 3.1 offered a set of features you
could customize on a per-machine or per-user basis. As you might guess, these
settings were just keys in the Registry; an example is the warning notice that you can
add to the logon process by adding two new values to
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon. Even
though these settings were present, there were two serious flaws that made them more
difficult than necessary to use:

They weren't organized well

Even though there were a large number of customizable settings in NT 3.1,
3.5, and 3.51, there was little in the way of organized documentation, and
related settings weren't grouped together in the user interface (or in any other
meaningful way).

They were too hard to use

None of the adjustable settings were difficult to change in and of themselves,
but trying to add a logon warning to one machine is much easier than trying to
do so for an entire network of several thousand machines. To compound the
problem, savvy users could change the settings (assuming they had
appropriate privileges).

Microsoft addressed these flaws in the NT 3.51 Resource Kit with the introduction of
tools for managing system policies. These policies were nothing more than groups of
settings: one group that controlled the appearance of the desktop, one that controlled
what programs users could run, and so on. However, the key innovation was a
mechanism for distributing policies to all computers in a domain. This made it
possible for an administrator to write policies for individual users, groups of users,
and individual machines, then let NT take care of the actual work of distributing the
policies to each machine in the domain and applying them.[1] These policy
mechanisms were included as a part of the standard installation for Windows NT
Server 4.0 and the Windows 2000 Server family.

[1] Windows 95 and 98 may have system policies applied too, though some of their policy elements live in
different keys than the NT equivalents.

6.1.1 Why Is This in a Windows 2000 Book?

Windows 2000 introduced Active Directory. It turns out that among its other features,
Active Directory provides a new, and greatly improved, mechanism for setting and
delivering system policies. Group policy objects (GPOs) provide a more scalable and
greatly expanded set of policies than the tools that shipped with Windows NT 4.0.
You might wonder why Microsoft even included the policy tools described in this
chapter with Windows 2000. The answer is simple: you can't use GPOs to apply
policies on computers that don't support Active Directory. That means that Windows
95, 98, and NT clients are out of luck, as are Windows 2000 computers that aren't part
of an Active Directory domain. To effectively set policies on a mixed network, you
need to use the NT 4.0 policy mechanism -- detailed in this chapter -- to set policies
for these downlevel clients; you normally use them in conjunction with GPOs, as
described in Chapter 7.

When you use the NT and 2000 policy systems in combination, you actually end up
having to maintain policy settings in two separate places. This is undesirable, but it's
better than having no policy capability for older clients.

6.1.2 What's a Policy?

A policy is nothing more than a group of related settings whose values you can
specify. Each policy typically has a name, such as "Shell Restrictions." Policies are
arranged in a hierarchy like Registry keys or disk files and folders. You use policies to
enforce access controls on what users can do. For example, there are policies that let
you to restrict what applications users may run, whether they can change the desktop
pattern, or what resources can appear in the Network Neighborhood.

6.1.2.1 Categories contain one or more policies

Each user, group, or computer policy is actually made up of several policy categories.
For example, the default policy template provided for NT machines provides
categories such as "Control Panel" and "Windows NT Shell." Each category in turn
contains individual policies such as "Restrict access to desktop" or "Hide Settings
tab." This usage can be a little confusing: a user policy can contain several categories,
each of which can contain several policies. I use the term "policy" to mean the
policies that live in a category and "user policy" to mean the policy settings applied to
a user, group, or computer.

6.1.2.2 Policies are made of parts

Policies are made up of parts. Each part represents one aspect of a policy, such as
"don't allow users to use the Start Run... command" or "here's a list of applications
that the user may run." Parts got their name from the fact that each part of a policy has
a control associated with it. Parts have values, and these controls allow you to set
them. The permissible set of values for a part depends on what the part controls. Some
parts need numeric values, while others accept lists of programs or true/false values.

A single policy may consist of one part or many. Each part within a policy
corresponds to a value stored somewhere in the Registry. When you enable a policy,
what you're really doing is telling the target computer to assign some particular value
to each part in that policy. That in turn forces certain values in the Registry (each of
which corresponds to a single part) to have particular values as well. You'll see some
more concrete examples later in the chapter. Note that these Registry changes are
persistent, an effect known as Registry tattooing.

6.1.2.3 How are policies defined?

Policy definitions are built using policy templates. These templates are nothing more
than text files that tell POLEDIT what to display in its interface and how to convert
the user's settings into a .POL file.

When you install any of the Windows 2000 or NT Server products, you get three
policy files in %systemroot%\INF : WINNT.ADM (which holds settings specific to
Windows 2000 and Windows NT), COMMON.ADM (which holds settings that apply
to both Windows 9x and NT/2000), and WINDOWS.ADM (the Win9x-only settings).
These standard files cover most of the things you can restrict or constrain with
policies. However, it's possible for third parties to write policy templates that add new
policy definitions for other software. The most widely known examples are
Microsoft's Office policy templates; these templates let you restrict Office-specific
settings, such as which hosts appear in the FTP dialog within Word. Other vendors
have produced policy template files, and you can even create your own (as described
in Section 6.3.5 later in this chapter) to control applications that don't ship with their
own templates.

The template files use a simple language to specify which keys and values are
affected by the policy and its parts. When you create a template, you're really giving
POLEDIT instructions on what to display and how to build a .POL file based on the
user's policy settings; the system policy mechanism applies that file's changes without
regard to what they are.

Simac Software makes a product called Policy Template Editor
(see http://www.tools4nt.com/). It's a specialized tool, but it
works very well and is much easier than editing template files by
hand.

6.1.2.4 User versus machine policies

The policy mechanism allows you to build policies that apply to computers,
individual users, or groups of users. Computer policies apply to all users on a
machine; they're stored in each machine's HKLM root key, and they remain in effect
no matter what user logs on to the machine. By contrast, user and group policies apply
only to the user or group named as the target, and they are automatically downloaded
and installed onto each machine the user logs into. (The system evaluates group
membership at logon time to decide which policies should be applied to the user
account logging on.)

Here's an example. Let's say you have four machines in your domain: titan,
minuteman, atlas, and trident. Within this domain, you have a few dozen user
accounts, but you create policies that apply to two accounts: intern and visitor.
Whenever either of these accounts logs into a machine, the defined policy is
downloaded from a domain controller and is stored in that machine's HKCU root key.
Whenever any other user logs into a machine, the default policy settings will be in
effect.

6.1.3 How Are Policies Stored?

Like butterflies, policies go through a number of stages between their initial creation
and their final emergence. Understanding where policy settings live at each stage of
their lifecycle is key to understanding how to build and apply them.

The System Policy Editor stores policies as individual .POL files. You can think of
these files as similar to Registry hives, as they contain a number of Registry key/value
pairs that are loaded into the target machine's Registry when the policy is applied.
When you create a policy and save it, you're actually generating a file that tells the
System Policy Editor what values to change in the policy target's Registry.

Unlike the hives you can create with RegEdt32, these files can contain values from
several different subkeys without having to hold the entire contents of their superior
root key. For example, a single .POL file might contain values for
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion and
HKLM\SOFTWARE\Netscape\Netscape Navigator, without having to contain all of
HKLM\SOFTWARE as well.

When you first create a policy, its .POL file is stored wherever you choose to save it.
Once you've created and saved a policy file, the next stage of its lifespan begins:
distribution. You can manually apply a policy file to individual machines; you may
also store it on a Windows NT or Windows 2000 domain controller so it is be
replicated automatically to Windows 95/98 and NT machines in your domain. You
may choose to replicate the policy to backup domain controllers if you want users to
get the correct policy setting when the primary controller is unavailable.[2] (In fact, if
you want the policy to be automatically distributed, you must put it on the PDC and
any BDCs that have replication enabled if you want to ensure that the policy is
available.)

[2] This scheme changes somewhat in Windows 2000, since there's no longer a distinction between primary and
backup domain controllers. In that case, you should put the policy files on whichever Windows 2000 server is
acting as the PDC emulator.

The final step in a policy's lifetime is the actual installation process. When a computer
boots, or when a user logs into a machine running Windows 9x, NT, or 2000
Professional, the system checks the domain controller for an applicable policy. If
there is one, a special system component called the policy downloader [3] transfers the
.POL file to the workstation and merges its contents with the appropriate Registry root
key.

[3] It's unlikely that you'll need to, but Microsoft provides a mechanism for writing your own policy downloaders,
which can supplement or replace the system's. Complete documentation for this is included in the MSDN SDK
documentation.

6.1.4 How Are Policies Applied?

Once the policy downloader has pulled the policy file down to the workstation, the
policy's settings still have to be applied. This is accomplished by merging the policy
settings into the appropriate parts of the Registry. As you'll see in more detail later in
the chapter, policy parts can have three values:

On

The part's policy is active, and whatever settings are enforced by that part
should be applied.

Off

The part's policy is active, and that part's settings should be forced off.

Leave as is

Whatever value is currently in the Registry should be left alone.

If a part's corresponding value in the Registry matches the policy's value, no changes
are made. If the part's value is "leave as is," no changes are made either. However, if
the part's specified value and the Registry's contents are different, the policy value
wins out, and the Registry's value is changed. These changes persist as long as the
user's logged in, but--since the merge operation is really just loading a Registry hive--
they disappear from the Registry when the user logs out.

Computer-specific policies are merged into HKLM, while user- or group-specific
policies are merged into HKCU. It's important to remember that the policy settings
are merged with the existing settings; they don't automatically overwrite the existing
contents when the corresponding part is set to "leave as is." In addition, changes users
make to policy-defined values under HKLM or HKCU are not written back to the
policy! This prevents users from changing a policy setting and having the change
propagate to other users. (Of course, if you're using policies, probably the first policy
you'll set is the "Disable Registry editing tools" flag.)

6.1.4.1 The default policy

It's possible to assign policies to some users and computers, but not others. You might
want to put restrictive policies onto machines in a shared lab area without enforcing
any policies on individual users' machines, or you might want to restrict what some
users can do no matter what machine they log into.

No matter what computers and accounts have policies, you can specify a default
policy. This default applies to all users and computers that don't have an explicit
policy defined for them. The default computer policy is applied to all computers in a
domain (assuming the policy is applied to the whole domain), and the default user
policy is applied to all domain users. By convention, these default policies are saved
in a file named NTconfig.pol (for NT systems) or config.pol (for Windows 95
systems).

The initial default policies just set all policy parts to their "leave as is" state, meaning
that the policy doesn't change anything. You may edit the default policy and save it
back to its original filename; whatever changes you make are applied as defaults from
that point onward.

Default policies apply to every user, including administrators! If
you create a restrictive default policy, it applies to local and
domain administrator accounts unless you create less-restrictive
group or user accounts for your fellow admins.

6.1.4.2 Applying computer and user policies

When you create computer-specific policies, they're stored in the .POL file as groups
of settings, one for each computer. To revive our earlier example, if you define
policies for titan and trident, there will be keys with the same name in the policy file.
When the policy downloader retrieves the policy file, it decides to apply it, or not,
based on two rules. First, if there's a key in the policy file with the same name as the
computer, that policy's part values are merged into HKLM. If no such key exists but
there is a key named .default, that default key is applied. If neither condition is true no
changes are made. A computer-specific policy always overrides the default: in fact,
the default policy won't even be examined if there's a policy whose name matches the
computer's.

User policies are applied using the same two rules: if there's a policy whose name
matches the user who's logging in, it is applied. If not, the .default entry is used if it
exists; otherwise, no changes are made.

6.1.4.3 Applying group policies

The rules that decide whether or not to apply a user or computer policy are very
simple. However, the rules for applying group policies are a little more complicated.
There are only two rules to know. The first, and most important, rule is this: a named
user policy always trumps any group policies. For example, a policy for a user named
bob overrides policies for any groups of which bob is a member.

The second rule to remember is that group policies are additive. If a user who's in
more than one group logs in, the system uses the group priority to decide which
policies to apply first. You set the group priority from within the System Policy Editor
(as you'll see later in "Setting group policy priorities"). The lowest-priority group
policy is applied first; its part settings are applied to the logged-in user's HKCU root
key. The next lowest-priority group policy is evaluated next, and so on, until the
highest-priority policy is applied. This approach means that if you put conflicting part
values into two group policies, any user who's in both groups ends up with the part
value of whichever policy is evaluated last.

Let's say you have two groups in your domain for executives and engineers. Your
boss is an executive, but has an engineering degree, so you put her in both groups. If
the "Don't allow users to play Solitaire" policy is set to "on" for executives and "off"

for engineers, your boss's ability to play Solitaire hinges on the priority you assign to
the two groups: the highest-priority setting will triumph.

6.2 Introducing the System Policy Editor

You create and edit system policies with the System Policy Editor (poledit.exe),
which is normally installed only when you install a member of the Windows 2000 or
NT server product families. It can be run from Windows 2000 Professional or NT
Workstation, though, if you can legally obtain it from a server installation. Don't
confuse this version of System Policy Editor with the Windows 95/98 version: if you
want to create policies that Win9x clients can use, you must use the Win9x editor, and
the same is true for the NT version.[4]

[4] Actually, you can use the 2000/NT policy editor under Win95 or 98 with no ill effect, as long as you use the
right .ADM files.

If you don't have System Policy Editor installed, you can quickly install it (along
with the User Manager for Domains, Server Manager, the Services for Macintosh
Manager, and several others) by running the setup.bat file in the
\clients\servtools\winnt directory of your NT Server CD. Once you've completed the
installation, you'll have access to the System Policy Editor.

6.2.1 Learning the System Policy Editor Interface

When you use RegEdt32 or RegEdit, you can definitely tell that you're using software
that predates Windows 2000. Although both take on some aspects of the Windows
2000 GUI, they're indisputably different from other Windows 2000 software such as
Internet Explorer or the system shell. POLEDIT, on the other hand, has an interface
very similar to the shell, making it more immediately familiar.

The main window for POLEDIT is shown in Figure 6.1. In the figure, each computer,
user, or group policy is represented by a large icon. Double-clicking one of these
icons opens the associated policy, and policies may be created or deleted from this
view as well.

Figure 6.1. The System Policy Editor interface

6.2.1.1 Controlling what you see

The View menu allows you to change POLEDIT 's display in a number of ways, all of
which are similar to commands in the shell and other administrative tools.

The first two commands in the menu are window dressing: the View Toolbar
command controls the state of POLEDIT 's toolbar. The toolbar is visible when this
command is checked (the default) and invisible when it's not. Like RegEdit,
POLEDIT has a status bar that can occupy the bottom margin of the application
window. The View Status Bar command governs whether this decorative but
useless bar appears or not.

The remaining View menu commands let you change the format of the display.
Unless you change it, POLEDIT displays policies as large icons; this default
corresponds to the View Large Icons command. If you prefer, you can instead see
policies as small icons (View Small Icons) or an alphabetically sorted list. For some
reason, Microsoft included both the View List and View Details commands, even
though they display the same information in the same format!

The settings you choose in the View menu are stored with the policy file, so when you
reload a new file it appears as it was when you last had it open.

6.2.1.2 Navigating in the policy window

As in Explorer, you can move from item to item in POLEDIT 's window with the
arrow, PgUp, PgDn, Home, and End keys. When a policy is selected, you can open it
by double-clicking it, pressing the Enter key, or using the Edit Properties...
command.

6.3 Managing Policies with POLEDIT

For the most part, creating policies with POLEDIT is simple and straightforward.
Even though what you're really doing is editing the Registry on one or many
machines, the interface lends itself to quickly making needed changes and saving
them for later application.

The sequence of operation to apply policies is simple; there are only six steps:

1. Select whatever policy templates to use before creating any policies, then
make them available to the editor by attaching them (more on that shortly).

2. Decide which users, groups, and computers you want to enforce policies on.
3. Create a "relaxed" policy for your administrative-level users that incorporates

only those items from Step 3 you want to enforce on your admins.
4. Create a new policy file to contain your policies, then create enough user,

group, and computer policies to satisfy your list from Step 2. Alternatively,
you may open the Registry of a single machine (including the local machine)
to make changes to that machine only.

5. Edit each individual policy to reflect the settings you want the policies to
enforce.

6. Save the policy file in the appropriate location so that policy downloaders can
find it.

6.3.1 Attaching Policy Templates

POLEDIT supports attaching an arbitrary number of policy templates. Templates you
attach add their policies to the policy properties dialog; once you attach a template, its
policies are available whenever you create new policies. This argues in favor of
attaching policy templates to POLEDIT before creating any policies. That way,
whatever templates you attach contribute to the policies you create without adding the
extra work of going back and revising previously built policies.

When you first start POLEDIT, it automatically attaches the two policy templates
needed for Windows 2000 machines, COMMON.ADM and WINNT.ADM. You may
attach other templates using the Options Policy Template... command, which
displays the dialog shown in Figure 6.2.

Figure 6.2. The Policy Template Options dialog

There are a number of additional policy templates floating around. For example, the
Office 97 and Office 2000 resource kits include templates for their respective settings,
as does the Internet Explorer Administration Kit (IEAK). You can write your own if
you wish; for example, I wrote one for Exchange 5.5 (see
http://www.robichaux.net/writing/man-exchange.html). The Current Policy
Template(s) list shows which templates are currently attached; you can use the Add...
and Remove buttons to change this list's contents. Once you're satisfied with your
changes, you can click OK to preserve the attachments or Cancel to dismiss the dialog
without changing anything.

One final note: POLEDIT won't let you attach or detach policy templates while you
have a policy file or Registry open. This restriction prevents you from accidentally
overwriting an open policy with a new template's contents.

6.3.2 Creating Policies

After you've attached the appropriate policy templates, you're ready to start creating
new policies. One of the nice things about POLEDIT is that it lets you make changes,
store them, and make more changes without immediately affecting the Registry. Like
most other document-oriented applications, changes you make to the currently open
policy won't take effect until you save the policy document in the appropriate place.

6.3.2.1 Creating a new policy file

When you start POLEDIT, it opens with a new policy file named Untitled. However,
at any time you may create a new, empty policy with the File New Policy
command. As its name implies, it opens a new document named Untitled with default
group and user policies in it; you're then free to change those default policies or add
your own user, computer, and group policies.

6.3.2.2 Creating a new user policy

You create new user policies with the Edit Add User... command. This command
produces a dialog (see Figure 6.3) you use to name the new policy. The "Browse"
button opens the standard NT Add User dialog, so you can browse the list of local and
domain user accounts to choose a user.

Figure 6.3. The Add User dialog

The name you enter in the "Type the name of the user to add" field is the name the
policy downloader uses when trying to find a user's policy. If you're creating a policy
for a user whose account is named oreilly, the policy won't be applied if it's named
anything other than oreilly (althoughit's not case-sensitive). Be careful to ensure that
you get the right username for the user you want the policy applied to; this is
especially important on large networks where there might be several users with
similar account names.

6.3.2.3 Creating a new computer policy

You create policies for individual computers in much the same way you do for users;
the Edit Add Computer... command displays a dialog identical to the one shown in
Figure 6.3 except for its use of the word "computer" instead of "user." In this dialog,
however, the Browse button displays a network browser you can use to locate the
machine you want (the browser's appearance varies, depending on whether you're
running SPE under NT or 2000).

The same caveat about names applies to computer accounts, too; if you're trying to
apply a policy to a machine named titan but type in titian instead, the policy won't
take effect as you expect it to.

6.3.2.4 Creating a new group policy

Like computer and user policies, creating group policies is straightforward: you use
the Edit Add Group... command to display the New Group dialog, then supply the
name of the group to which the new policy belongs. You may apply policies to local
or global groups within a domain, as well as groups that are strictly local to a single

machine. As with computer and user policies, supplying the correct name is critical to
getting the policy behavior you expect.

Since the Default User policy applies to every user on the
machine including the Administrator account, it's a good idea to
create a policy for the Administrators, Domain Admins, and
Enterprise Admins groups. Reverse the settings from their
default state so that the policy can undo any changes you make
to unprivileged accounts.

6.3.3 Editing Policies

Creating new policies is easy, mostly because just creating the policy doesn't do
anything! All the policy templates that Microsoft provides use the "leave as is"
setting. This means that if you create a bunch of new policies and don't edit them, no
changes will be enforced. This approach satisfies the Principle of Least Astonishment
("when forced to make decisions on its own, your software should always do
whatever will least surprise the user"), but it means that you still have some work to
do once your policies are created.

Remember that policy changes don't take effect until you save
the policy file in the proper location. Even after that's done, user
and group policies don't take effect until the next time the user
logs in; machine policies won't go into action until the next time
the machine boots.

6.3.3.1 Setting user, group, and computer policy options

Once you've created user policies for all the users, groups, and computers you want to
control, the next step is to set appropriate values for each individual part within the
categories and policies for each user. Each user policy has a properties dialog, which
displays all categories, policies, and parts for that user policy.

You can open the properties dialog for a policy in two ways: you can double-click the
icon or list item corresponding to the user policy you want to edit, or you can select it
with the mouse and use the Edit Properties... command. In either case, you'll end up
with the properties dialog shown in Figure 6.4.

Figure 6.4. The Properties dialog

The upper part of the properties dialog shows a tree view of the categories within the
active user policy. When you first open a user policy, the categories all are collapsed;
you can expand or collapse individual items by clicking the small +/- icon next to the
category's name.

As you expand categories, you'll see checkboxes appear beneath them. Unlike normal
Windows checkbox controls, these checkboxes can have three states:

• When checked, as "Restrict display" is in Figure 6.4, the policy is active, and
its settings will be applied to turn on the policy when appropriate.

• When unchecked and white (like an ordinary Windows checkbox that's not
on), the policy is inactive. Its settings will be applied to turn off the policy.

• When unchecked and gray, like "Run only allowed Windows applications" in
the figure above, the policy is inert. No changes will be made to a policy or its
parts when its checkbox is grayed; this corresponds to the "leave as is" state I
mentioned earlier.

You must pay careful attention to the wording of the policy to make sure that the
effect is what you want: when the checkbox next to "Disable Registry editing tools" is
on, the tools are disabled. When it's off, the tools are not disabled, and when it's gray,
whatever settings are currently in effect on each target machine, group, or user remain
intact.

As you select individual policies within a category, notice that the contents of the
settings area at the bottom of the properties dialog change. Some policies can have
multiple parts; for example, the "Restrict display" policy shown in Figure 6.4 has a
total of five parts. You can set the value of each part independently of the others. Parts
may accept on/off, numeric, or list selection choices, depending on what the policy
template specifies.

You can move through the properties dialog, making changes as you go. POLEDIT
preserves the changes within the current editing session, but they'll be lost unless you
explicitly save the policy file.

6.3.3.2 Removing user policies

You can easily remove a user policy from within POLEDIT: select the policy you
want to remove, then use the Edit Remove command, or just press the Del key.
POLEDIT asks you to confirm that you want to delete that policy. In a welcome
change from RegEdt32 and RegEdit, it tells you which policy you're deleting so you
won't accidentally remove one you wanted to keep. Once you've removed a user
policy, there's no getting it back unless you close and reload your policy file without
saving changes. POLEDIT doesn't have an undo command.

It's worth noting that the only way to remove a policy category or part is to open the
policy template file that defines it and remove it; you can't remove individual template
items from a single policy, though you can use the "leave as is" setting to force the
policy downloader to take no action on that part.

6.3.3.3 Policies and the clipboard

POLEDIT offers a measure of clipboard support. You can use the Edit Copy
command to copy the contents of a user, group, or computer policy to the clipboard.
However, the only place you may paste it is on top of another policy! This "feature"
means you can quickly copy a policy to several user accounts by doing the following:

1. Create one user, group, or computer policy, and set it the way you want it.
2. Use Edit Copy to copy the policy settings.
3. Create as many user, group, or computer policies as you'll need.
4. Select all the new policies at the same time, then use the Edit Paste

command. POLEDIT asks you to confirm that you want to overwrite the
existing policy settings; click Yes to paste your policy atop the existing
settings, or No to cancel the paste.

Although it's not evident from the program or its documentation, you can copy from
group to user policies and vice versa: select the source item, use Edit Copy, and
paste the policy onto the user or group you want it to stick to.

6.3.3.4 Setting group policy priorities

As soon as you start creating group policies, you run the risk of a collision between
two groups' mutually exclusive policies. As long as no user belongs to more than one
group, you won't run into this problem. However, since Microsoft recommends
putting users into groups for controlling access to network resources like file shares
and printers, the odds of having one user in more than one group are pretty good.

The Section 6.1.4.3 earlier in this chapter explains how the policy downloader decides
which group policy parts to apply and which to ignore. For this approach to work, you
must do your part by specifying the priority of each group's policy. You do this with

the Options Group Priority... command; the resulting "Group Priority" dialog
appears in Figure 6.5.

Figure 6.5. The Group Priority dialog

The initial priority order comes from the order in which you created the group
policies: the first policy you create has the highest priority. You can rearrange group
priorities using the Move Up and Move Down buttons; when you're happy with the
ordering, save it by clicking OK.

Once you set a group priority ordering, it's stored as part of the policy file and is
available to the policy downloader. If you change the priority ordering later, the new
order takes effect every time the policy's applied at logon time.

6.3.4 Saving and Loading Policies

As you create and modify user policies, you'll often need to save those policies to a
file and load them again later. Like most other document-oriented Windows
applications, POLEDIT has commands in its File menu for loading and saving policy
files.

The File Open Policy..., File Save, and File Save As... commands all work just
like they do in other Windows applications. Unlike other applications, though, there's
one gotcha involved with saving policy files: if you're creating policies for
distribution to other Win95 or NT machines on your network, you must make sure to
save the file in the right place, as described later in Section 6.4.3.

Once you've created an initial policy, it's simple to add to or modify its user, group, or
computer policies: just open the file with File Open Policy..., modify it as needed,
and save it again. If you configure the automatic policy distribution mechanism
correctly, your policy is applied where necessary with no further action on your part.

6.3.5 Creating Your Own Policy Templates

The .ADM policy template files POLEDIT uses are just plain text files. If you open
one of them up with a text editor, you'll find that the files are structured so that
POLEDIT can figure out which categories, policies, and parts to display, where to

store their values in the Registry, and what user interface controls to display so you
can edit these values.

Windows 2000's version of POLEDIT understands and generates
Unicode-encoded .ADM files. The NT version understands only
ASCII-encoded files, so you can't create an .ADM file with the
Windows 2000 policy editor and work with it later in the NT
version.

You can create your own policy templates and attach them to POLEDIT. For
example, you can create a template that controls your standard distribution of Dial-Up
Networking settings, configuration parameters for Netscape Navigator, or almost any
other Registry data that lives in HKLM or HKCU. Here's a small sample of an .ADM
file that allows you to set the default search engine and home page Internet Explorer
uses:

CLASS MACHINE

CATEGORY InternetExplorer
 KEYNAME "Software\Microsoft\Internet Explorer\Main"
 POLICY "Default search engine"
 PART "URL of default search engine" EDITTEXT REQUIRED
 VALUENAME "Default_Search_URL"
 DEFAULT "http://www.ljl.com/intrasearch/"
 END PART
 PART "URL of default home page" EDITTEXT REQUIRED
 VALUENAME "Default_Page_URL"
 DEFAULT "http://www.ljl.com"
 END PART

 END POLICY
END CATEGORY

As you can see from the sample, the format of these files is pretty structured. Let's
look at what each piece of the example actually does:

• The initial CLASS MACHINE statement tells POLEDIT that this policy
should go under HKLM. You can also use CLASS USER to specify policies
that belong under HKCU.

• The CATEGORY... END CATEGORY block defines a single category of
policies. In this example, I defined a category named InternetExplorer; if you
want to use spaces in the name, you have to enclose it in quotes. Category
names can be any string, but they must be unique to a policy template file.

• The KEYNAME statement tells POLEDIT that all the policies and parts that
belong to this category store their values under Software\Microsoft\Internet
Explorer\Main. Individual policies and parts can provide their own key names,
too.

• The POLICY... END POLICY block defines a single policy for this category.
Categories may contain any number of policies, each of which may have one
or more parts. Each policy has a name ("Default search engine" in this case)
that POLEDIT displays when it shows the policy.

• Each PART... END PART block specifies a single part for its enclosing
policy. In this example, we're defining two parts--one for the search engine
default, and one for the default home page. Both are edit text controls, and
both require that a value must be specified. The returned value is stored as a
value named as specified by the VALUENAME keyword; the value in turn
goes under whatever key was named with a previous KEYNAME statement,
and you provide a default value for the user to accept or change.

A single policy may have many PART blocks in it. Each PART block defines
a single component, which may be a checkbox, edit field, combo box, drop-
down list, or numeric input field. In addition, each control type has a variety of
optional parameters that specify default values, increments, and settings.

If you want to see a more complex example of an .ADM file, I've
written one for controlling policy settings for Microsoft
Exchange 5.5 servers. See
http://www.robichaux.net/files/exchange.adm.

6.4 Distributing Policies

Once you've created policy files that contain the access controls you want to enforce,
you still have to get those policies to each machine you want to be under policy
control. This process, called policy distribution, is probably the most complex part of
the policy development process, since how you do it depends on whether you want to
use policies on one machine, a few machines, or many machines.

6.4.1 Applying Policies to One Machine at a Time

The simplest way to apply policies is to put them on individual machines. For
example, you might want to apply policies to keep transient users from making
changes to the configuration of public workstations in a library, factory floor, or
conference room. For this type of requirement, you don't need to blast policies to
every machine on a network; a more surgical approach lets you put policies only
where you really need them.

6.4.1.1 Setting policies on the local machine

POLEDIT allows you to edit the local computer's Registry using the same interface
you'd use to edit policies. When you use the File Open Registry command,
POLEDIT acts as if you'd opened a new policy file, but it actually loads data from the
local Registry and displays it as two user policies: "Local User" and "Local
Computer" instead of "Default User" and "Default Computer."

You can edit the contents of these policies as though you were editing any other
policy. However, you can't create new user, group, or computer policies while the
local Registry is open. As with other policy files, though, changes you make to the
local Registry aren't saved until you explicitly use the File Save command, so using
File Open Registry is somewhat safer than using RegEdt32 or RegEdit.

6.4.1.2 Setting policies on other computers

If you want to apply policies to a single remote machine, you can use POLEDIT's
File Connect... command to open the Registry on a remote machine and set policies
on it. When you use this command, the first step is to specify the name of the machine
whose policies you want to edit. If you have administrative access to that machine,
POLEDIT connects to its Registry and shows you a dialog listing all users who are
logged on. Normally, this list has only a single entry representing whoever's logged
into the console, but network users may be listed too. Choose the user whose policy
you want to edit. POLEDIT won't let you interactively edit the policy of a user who
isn't logged on.

Once you've completed these two steps, you may edit the computer and user policies
as you normally would. You can't create new user, group, or computer policies;
however, before you use File Connect..., you can attach new policy templates if you
want to change the default settings that can be applied within each policy.

6.4.2 Applying Policies to Many Machines

Policies offer a robust, useful way to apply settings to many machines, in such a way
that the end user can't change them once they're applied. This is a boon to system
administrators, since with effective policies you can prevent users from changing
things you don't want them to change without a great deal of effort on your part.

The primary method of distributing policies to all machines within a domain depends
on the fact that domain controllers have a share named NETLOGON. It points to the
domain controller's %SystemRoot%\System32\Repl\Import\Scripts directory and
contains logon scripts, user profiles, and other data needed to allow local and remote
logons with shared environments. NETLOGON can also hold policy files, meaning
that the policy downloader on each machine in the domain has easy access to those
policy files if they are saved in the NETLOGON share.

On a Windows 2000 domain controller, the SYSVOL share serves
the same function as NETLOGON, so you use it instead.

6.4.2.1 Enabling automatic policy updates

If you want machines on your network to automatically download policy changes
when they happen, you'll have to make a change to the policy for those machines. For
most networks, that means the Default Computer policy, since most admins want
automatic updates everywhere; however, you may enable automatic updates on a per-
machine basis.

This setting lives in the Network category under the computer policy. Figure 6.6
shows the properties dialog with the appropriate setting selected. You can use the
"Update mode" combo box to choose automatic or manual updates. If you choose
manual updates, you can specify a UNC path to the share where your policies will
live.

Figure 6.6. The Remote update part

It's important to understand one thing about automatic updates: when you create a
new policy file for the first time, it's downloaded automatically to every machine. If
automatic updating is then turned on, each machine receives subsequent updates. If
it's not turned on, the workstations' policy downloaders won't ever download policy
changes. This may lead to undesirable behavior, since your policy changes will be
silently ignored while you're expecting them to be in effect!

6.4.2.2 Windows NT policies

To have your NT-specific policies automatically blasted out to all machines in your
domain, save your policy file as NTconfig.pol in the directory you specified when
setting up automatic policy updates. I recommend using the NETLOGON or SYSVOL
shares to store your policies so they can be automatically replicated among and
between domains. However, if you've specified another directory you can use it
instead.

6.4.2.3 Windows 95/98 policies

If you have a mixed network of Win9x and NT machines, you can store both types of
policies on your domain controllers so that the Win9x machines get automatic updates
too. Save your policy file as config.pol in the directory you specified when setting up
automatic policy updates. If you want Win9x policies to be distributed automatically,
you must put them in NETLOGON; the Win9x policy downloader can't get policies
from any other share.

6.4.2.4 Windows 2000 policies

Windows 2000 machines won't pay any attention to an NT-style system policy. If you
want to apply a policy to a Windows 2000 server or to a machine using Windows
2000 Professional, you can use the GPO mechanisms to do so if the target machine's
in an Active Directory domain. If not, you can use the Local System Policy object to
make local policy settings.

6.4.2.5 Supporting multiple domain controllers

If your network has more than one Windows NT domain controller[5] (either because
you have more than one domain or because you have more than one controller for
redundancy), you should use NT's directory replication service to copy your policy
files to every domain controller. Since any domain controller in a network can answer
logon requests, it's a good idea to duplicate your policy files to make sure they're
available when a user logs in.

[5] Even small networks should have primary and backup controllers for NT 4.0; in Windows 2000, there's no
longer a distinction between primary and backup controllers, but you should still maintain a second controller for
redundancy. You may also find it worthwhile to have several DCs for load balancing.

The simplest way to do this is to copy the policy files into the controller's
%SystemRoot%\System32\Repl\Export\Scripts directory. As long as the directory
replication service is running, NT mirrors the files automatically throughout your
domains.

6.4.3 Preventing Policy Problems

While policies can be a great help, they can also pose some subtle pitfalls until you
get them working the way you want. Here are some common problems--and
solutions--you may run into while deploying policies on your network.

6.4.3.1 Make sure the files are in the right place

Perhaps the easiest policy mistake to make is putting the policy files in the wrong
place. Windows 9x policy files must be named config.pol, and they must be stored in
the domain's NETLOGON share--period! For NT policies, you must name the file
NTconfig.pol. Ahough you can put it in a share other than NETLOGON, the policy
isn't used unless you specify the correct path to it when you turn on automatic
updates.

6.4.3.2 Is automatic updating on?

Policies are most useful when they're always kept up to date. The policy downloader
can automatically download and apply the appropriate set of user, group, and
computer policies whenever a user logs on. To accomplish this magic, though, you
have to put the policy in the right place (as described in Section 6.4.2), and you must
turn on automatic downloading. If your policy changes don't seem to take effect once
you've made them, be sure you've enabled automatic updates as part of the computer
policy for all machines you want to keep updated.

6.4.3.3 Implement policies in all domains or none

If you're going to implement policies in one domain on your network, you may be in
for a rough ride unless you implement policies on all domains. Why? If you have trust
relationships between domains so that users from one domain can log onto another,
consider this scenario:

1. You have two domains: HQ and RESEARCH. They trust each other. You've
enabled system policies for all HQ users, but not for users in RESEARCH.

2. A user from HQ logs into a machine in the RESEARCH domain. Because
RESEARCH gets its logon credential information from HQ, the user's logon
causes the RESEARCH machine to get a system policy update even though
policies aren't enabled in the domain! The HQ user can still log in and get her
work done.

3. When the HQ user logs out, the computer, group, and user policies
downloaded at logon time are still on the machine. The next time a
RESEARCH user logs onto the same machine, the policies won't be changed
because RESEARCH has no policies of its own to apply.

In case it's not obvious by now, the solution to this potentially ugly problem is to
implement policies on all your domains or none of them. It's still okay to apply
policies to individual users and computers; however, if you set up group policies or
policies for users who can log in to other domains, your best bet for avoiding trouble
is to enable policies for all domains.

6.4.3.4 Check group membership and names

Sometimes your memory can fail you when it comes time to remember which groups
a user is in. If you use group policies, make sure all users you want to fall under those
policies are actually members of the group! If there are any who aren't, you can copy
the group policy and make an individual user policy out of it, or you can add them to
the group.

Don't forget to double-check your group names, too. If you meant ENGINEERING
but typed ENGINEERS, POLEDIT won't complain, but your policies won't be
activated either. Worse still, they might be activated on the wrong group.

6.4.3.5 Verify which policies are in effect

If you want to see what policy is actually being applied to a user or computer, use the
File Connect... command in POLEDIT to connect to the target computer. Once you
do, you can open the Local Computer and Local User policies to make sure they
contain the settings you want enforced. If they don't, that's a clue that your policy
distribution or downloading is amiss.

6.5 What's in the Standard Policy Templates

The three primary policy templates used with Win95 and NT installations define what
policy settings are available to you when building policies. Each template file
contains settings that apply to HKLM and HKCU; however, in the following sections
these entries are separated depending on the root key they affect.

6.5.1 WINNT.ADM

The WINNT.ADM policy template defines policy settings that are specific to Windows
2000 and NT. Some entries in this template have counterparts in the Windows 95
template file. Table 6.1 shows the WINNT.ADM entries that apply to computer
policies, while Table 6.2 shows the settings that apply to user and group policies.

6.5.2 COMMON.ADM

COMMON.ADM contains policy settings that are common to Windows 2000, NT, 95,
and 98. Table 6.3 shows the entries that apply to computer policies, while Table 6.4
shows the settings that apply to user and group policies.

6.5.3 WINDOWS.ADM

The WINDOWS.ADM policy template defines policy settings that are specific to
Windows 95/98. When you use System Policy Editor to edit policies for Win9x
machines, this template is used to determine which policies and parts you may apply.
Because the items in this policy are all Win9x-specific, I've elected not to cover them
here.

Table 6.1. HKLM Entries in WINNT.ADM
Category Policy Registry Key/Value What It Does Value

Windows NT
Network\Sharing

Create hidden
drive shares
(workstation)

System\CurrentControlSet\
Services\LanManServer\ Parameters\
AutoShareWks

Creates
drive$ and
ADMIN$
shares on
workstation

Default on
(shares are
created)

Create hidden
drive shares
(server)

System\CurrentControlSet\
Services\LanManServer\
Parameters\AutoShareServer

Creates
drive$ and
ADMIN$
shares on
server

Default on
(shares are
created)

Windows NT
Printers

Disable
browse thread
on this
computer

System\CurrentControlSet\ Control\Print\
DisableServerThread

Controls
whether
printer shares
advertise
themselves

Default off
(shares are
advertised)

 Scheduler
priority

System\CurrentControlSet\ Control\Print\
SchedulerThreadPriority

Adjusts
priority of
printer
scheduling
thread up or
down

Default 0
(leave at
normal
priority); +1
(raise
priority); -1
(lower
priority)

 Beep for error
enabled

System\CurrentControlSet\
Control\Print\BeepEnabled

Beeps every
10 seconds
when a
remote print
job error
occurs

Default off
(keep quiet
and don't
beep); on
(beep)

Windows NT
Remote Access
Service

Maximum
number of
unsuccessful
authentication
retries

System\CurrentControlSet\Services\
RemoteAccess\Parameters\
AuthenticateRetries

Sets the
number of
times a
remote
system can
try to
authenticate
itself

0-10;
default 2

Maximum
time limit for
authentication

System\CurrentControlSet\
Services\RemoteAccess\
Parameters\AuthenticateTime

Sets the
number of
seconds
allowed
before an
authentication
times out

20-600;
default 120

 Wait interval
for callback

System\CurrentControlSet\
Services\RemoteAccess\
Parameters\CallbackTime

Sets the
number of
minutes to
wait for a
callback

2-12;
default 2

 Auto
disconnect

System\CurrentControlSet\
Services\RemoteAccess\
Parameters\AutoDisconnect

Disconnects
after X
minutes of
inactivity

0-65536;
default 20

Windows NT
Shell

Custom
shared
Programs
folder

Software\Microsoft\Windows\
CurrentVersion\Explorer\ User Shell
Folders\Common Programs

Sets the path
to common
Programs
folder for all
users on this
machine

Any path;
can use
environment
variables to
point to
path

Custom
shared
desktop icons

Software\Microsoft\Windows\
CurrentVersion\Explorer\ User Shell
Folders\Common Desktop

Sets the path
to common
desktop icons
for all users
on this
machine

Any path;
can use
environment
variables to
point to
path

Custom
shared Start
menu

Software\Microsoft\Windows\
CurrentVersion\Explorer\ User Shell
Folders\Common Start Menu

Sets the path
to common
Start menu
folder for all
users on this
machine

Any path;
can use
environment
variables to
point to
path

Custom
shared Startup
folder

Software\Microsoft\Windows\
CurrentVersion\Explorer\ User Shell
Folders\Common Startup

Sets the path
to common
startup items
folder for all
users on this
machine

Any path;
can use
environment
variables to
point to
path

Windows NT
System\Logon Logon banner

Software\Microsoft\Windows NT\
CurrentVersion\Winlogon\
LegalNoticeText

Sets the text
to display in
logon dialog

Default "Do
not attempt
to log on
unless you
are an
authorized
user."

 Logon caption
Software\Microsoft\ Windows
NT\CurrentVersion\

Sets the
caption to

Default
"Important

Winlogon\LegalNoticeCaption display for
logon banner
message

Notice:"

Enable
shutdown
from
Authentication
dialog box

Software\Microsoft \Windows NT\
CurrentVersion\Winlogon\
ShutdownWithoutLogon

Displays
"Shutdown"
button in
logon dialog
so you can
shut down
without
logging in

On or off;
default on
for NTW
and off for
NTS

Do not display
last logged on
username

Software\Microsoft\Windows NT\
CurrentVersion\Winlogon\
DontDisplayLastUserName

Hides name
of previously
logged in
users

Off or on;
default off

Run logon
scripts
synchronously

Software\Microsoft\Windows NT\
CurrentVersion\Winlogon\
RunLogonScriptSync

Runs logon
scripts before
desktop and
start menu
appear

Off or on;
default off

Windows NT
System\File
System

Do not create
8.3 filenames
for long
filenames

System\CurrentControlSet\
Control\FileSystem\
NtfsDisable8dot3NameCreation

Suppresses
creating 8.3
names

Off or on;
default off
(create
names)

Allow
extended
characters in
8.3 filenames

System\CurrentControlSet\
Control\FileSystem\
NtfsAllowExtendedCharacterIn8dot3Name

Allows
extended
characters to
be used in
short
filenames,
even though
some
machines
may not
display them
properly

Off or on;
default off
(don't
allow)

Do not update
last access
time

System\CurrentControlSet\
Control\FileSystem\
NtfsDisableLastAccessUpdate

Doesn't
update NTFS
"last access
time" field on
files that are
read but not
modified

Off or on;
default off
(do update
it)

Windows NT
User Profiles

Delete cached
copies of
roaming
profiles

Software\Microsoft\Windows NT\
CurrentVersion\Winlogon\
DeleteRoamingCache

Throws away
cached
profiles when
users log out

Off or on;
default off

Automatically
detect slow
network
connections

Software\Microsoft\Windows NT\
CurrentVersion\Winlogon\
SlowLinkDetectEnabled

Automatically
times network
links to see
whether
they're slow

Off or on;
default on

Slow network
connection
timeout

Software\Microsoft\Windows NT\
CurrentVersion\Winlogon\
SlowLinkTimeOut

Sets the
number of
milliseconds
to wait before
timing out on

1-20000;
default 2000

a slow link

 Timeout for
dialog boxes

Software\Microsoft\Windows NT\
CurrentVersion\Winlogon\
ProfileDlgTimeOut

Sets the
number of
seconds to
wait before
canceling a
dialog box

0-600;
default 30

Table 6.2. HKCU Entries in WINNT.ADM
Category Policy Registry Key/Value What It Does Value

Shell\Custom
Folders

Custom
Programs
folder

Software\Microsoft\Windows\
CurrentVersion\Explorer\ User
Shell Folders\Programs

Specifies a
custom
"Programs"
folder to be
used in
Explorer and
the taskbar

Defaults to
%userprofile%\Start
Menu\Programs; may be
any local or UNC path

Custom
Desktop
folder

Software\Microsoft\Windows\
CurrentVersion\Explorer\ User
Shell Folders\Desktop

Specifies a
path to a
custom set of
desktop icons
and items

Defaults
to%userprofile%\Desktop;
may be any local or UNC
path

Hide Start
menu
subfolders

Software\Microsoft\Windows\
CurrentVersion\Policies\
Explorer\NoStartMenuSubFolders

Hides the
standard Start
menu folders;
should be set
when you
specify
custom
desktop or
programs
folders

By default, value doesn't
exist; when it exists, 1
hides the folders and
leaves them alone

 Custom
Startup folder

Software\Microsoft\Windows\
CurrentVersion\Explorer\ User
Shell Folders\Startup

Specifies
location of
custom
Startup folder

Defaults to
%userprofile%\Start
Menu\Programs\Startup;
can be any local or UNC
path

Custom
Network
Neighborhood

Software\Microsoft\Windows\
CurrentVersion\Explorer\ User
Shell Folders\NetHood

Specifies
location of
custom items
for Network
Neighborhood

Defaults to
%userprofile%\NetHood;
can be any local or UNC
path

Shell\Restrictions

Use approved
shell
extensions
only

Software\Microsoft\Windows\
CurrentVersion\Policies\Explorer\
EnforceShellExtensionSecurity

Restricts
which
Explorer
extensions
may be
loaded and
run to those
included in
this list

Doesn't exist by default;
you must manually add
any shell extensions you
want to approve

Hide common
program
groups in
Start menu

Software\Microsoft\Windows\
CurrentVersion\Policies\Explorer\
NoCommonGroups

Forces
Explorer not
to display any
shared
program

Doesn't exist by default;
when value exists, 1
means hide groups, and
means show them

groups

System
Parse
autoexec.bat

Software\Microsoft\Windows
NT\ CurrentVersion\Winlogon\
ParseAutoexec

When on, NT
parses
autoexec.bat
when the user
logs on

REG_SZ; default value of
1 forces parse; means
don't parse

Run logon
scripts
synchronously

Software\Microsoft\Windows
NT\ CurrentVersion\Winlogon\
RunLogonScriptSync

When on, NT
doesn't start
the shell until
the user's
logon script
has completed

REG_DWORD; when value
is missing or set to 0,
scripts are run in parallel
with the shell startup;
when value is 1, script
executes before shell;
identical to "Run logon
scripts synchronously"
under HKLM; that value
overrides this one

Table 6.3. HKLM Entries in COMMON.ADM

Category Policy Registry Key/Value
What It

Does

Network
Update

Remote
update mode System\CurrentControlSet\ Control\Update\UpdateMode

Controls
whether
system
policies are
automatically
updated or
not (see
Section
6.4.2.1)

0: (default)
don't update
1: update
automatically
from DC
2: update
manually from
NetworkPath

Path for
manual
update

System\CurrentControlSet\ Control\Update\ NetworkPath

Specifies
UNC path
from which
to update
policies at
logon

Empty by
default; may be
any legal UNC
path

 Display error
messages System\CurrentControlSet\Control\Update\Verbose

Toggles
display of
policy update
error
messages

When value
exists, error
messages are
displayed

 Load
balancing System\CurrentControlSet\Control\Update\LoadBalance

Toggles load
balancing of
policy
updates from
multiple
domain
controllers

When value
exists, load
balancing
occurs

System\SNMP Communities System\CurrentControlSet\Services\SNMP\Parameters\ValidCommunities

Displays a
list of
communities
to which
SNMP traps
are sent

Empty by
default;
otherwise, list
of communities
as individual
values

 Permitted
managers

System\CurrentControlSet\ Services\SNMP\Parameters\
PermittedManagers

Displays a
list of entities
permitted to

Empty by
default;
otherwise, list

manage
SNMP

of managing
entities as
individual
values

Traps for
Public
community

System\CurrentControlSet\ Services\SNMP\
Parameters\TrapConfiguration\Public

Displays a
list of traps
that may be
sent to Public
community

Empty by
default;
otherwise, list
of traps as
individual
values

System\Run Run Software\Microsoft\Windows\ CurrentVersion\Run

Displays a
list of items
to run at
startup

Defaults to
systray.exe
otherwise, list
of things to run
after shell starts

Table 6.4. HKCU Entries in COMMON.ADM
Category Policy Registry Key/Value What It Does Value

Control Panel\
Display

Disable
Display icon

Software\Microsoft\Windows\
CurrentVe rsion\Policies\
System\NoDispCpl

Prevents user
from opening
Display control
panel

REG_DWORD: 1
restricts control
panel, 0 doesn't

Hide
Background
tab

Software\Microsoft\Windows\
CurrentVersion\Policies\
System\NoDispBackgroundPage

Hides
Background
tab of Display
control panel

REG_DWORD: 1
hides
Background tab,
0 doesn't

 Hide Screen
Saver tab

Software\Microsoft\Windows\
CurrentVersion\Policies\
System\NoDispScrSavPage

Hides Screen
Saver tab of
Display control
panel so users
can't change
screen savers

REG_DWORD: 1
hides Screen
Saver tab, 0
doesn't

Hide
Appearance
tab

Software\Microsoft\Windows\
CurrentVersion\Policies\
System\NoDispAppearancePage

Hides
Appearance tab
of Display
control panel

REG_DWORD: 1
hides
Appearance tab,
0 doesn't

 Hide Settings
tab

Software\Microsoft\Windows\
CurrentVersion\Policies\
System\NoDispSettings

Hides Settings
tab of Display
control panel
so users can't
adjust display
resolution or
color depth

REG_DWORD: 1
hides Settings
tab, 0 doesn't

Desktop\Wallpaper
Wallpaper
Name

Control
Panel\Desktop\Wallpaper

Controls
background
image used as
wallpaper

REG_SZ;
contains full
path to specified
wallpaper file

 Tile wallpaper
Control
Panel\Desktop\TileWallpaper

Controls
whether
wallpaper is
tiled or not

REG_DWORD: 0
means no tiling,
1 means tiling

Desktop\Color
Scheme Color scheme

Control
Panel\Appearance\Current

Contains color
settings for
currently
selected decor
scheme

Depends on
selected color
scheme

Shell\Restrictions

Remove Run
command
from Start
menu

Software\Microsoft\Windows\
CurrentVersion\Policies\
Explorer\NoRun

Hides Run
command on
Start menu so
users can't run
arbitrary
programs

REG_DWORD: 1
hides the
command, 0
doesn't

Remove
folders from
Settings on
Start menu

Software\Microsoft\Windows\
CurrentVersion\Policies\
Explorer\NoSetFolders

Hides Settings
folders on Start
menu

REG_DWORD: 1
hides the
folders, 0
doesn't

Remove
Taskbar from
Settings on
Start menu

Software\Microsoft\Windows\
CurrentVersion\Policies\
Explorer\NoSetTaskbar

Only hides
Taskbar setting
folder on Start
menu

REG_DWORD: 1
hides the
Taskbar folder,
0 doesn't

Remove Find
command
from Start
menu

Software\Microsoft\Windows\
CurrentVersion\Policies\
Explorer\NoFind

Removes Find
command from
Start menu

REG_DWORD: 1
hides the
command, 0
doesn't

 Hide drives in
My Computer

Software\Microsoft\Windows\
CurrentVersion\Policies\
Explorer\NoDrives

Hides some
drives in My
Computer

REG_DWORD bit
mask; see
Section 10.3.6 in
Chapter 10

 Hide Network
Neighborhood

Software\Microsoft\Windows\
CurrentVersion\Policies\
Explorer\NoNetHood

Hides Network
Neighborhood
icon

REG_DWORD: 1
hides the `hood,
0 doesn't

No Entire
Network in
Network
Neighborhood

Software\Microsoft\Windows\
CurrentVersion\Policies\
Network\ NoEntireNetwork

Leaves
Network
Neighborhood,
but removes
"Entire
Network" icon

REG_DWORD: 1
hides the icon, 0
doesn't

No workgroup
contents in
Network
Neighborhood

Software\Microsoft\Windows\
CurrentVersion\Policies\
Network\
NoWorkgroupContents

Doesn't show
contents of
local
workgroup in
Network
Neighborhood

REG_DWORD: 1
hides the
workgroup, 0
doesn't

 Hide all items
on desktop

Software\Microsoft\Windows\
CurrentVersion\Policies\
Explorer\NoDesktop

Blanks out the
desktop

REG_DWORD: 1
hides the
desktop, 0
doesn't

Disable Shut
Down
command

Software\Microsoft\Windows\
CurrentVersion\Policies\
Explorer\NoClose

Stops users
from shutting
down their
machines

REG_DWORD: 1
removes the
Shut Down
command, 0
doesn't

 Don't save
settings at exit

Software\Microsoft\Windows\
CurrentVersion\Policies\
Explorer\NoSaveSettings

Forces the shell
to ignore any
environment
changes the
user makes

REG_DWORD: 0
allows changes
to be saved, 1
doesn't

System\Restrictions
Disable
Registry
editing tools

Software\Microsoft\Windows\
CurrentVersion\Policies\
System\DisableRegistryTools

Tells compliant
Registry
editors not to
run

REG_DWORD: 1
specifies that
editing should
be disallowed, 0
allows it

Run only
allowed
Windows
applications

Software\Microsoft\Windows\
CurrentVersion\Policies\
Explorer\RestrictRun

Specifies list of
which
Windows
applications
may be
executed

When
RestrictRun
exists, its values
specify which
applications
may be run

6.6 Picking the Right Policies

Which policies are appropriate for you? It depends on how your network's built, who
uses it, and what they should--and shouldn't--be able to do. As you can tell from the
preceding tables, the built-in policy templates offer a pretty wide range of capabilities,
and you can roll your own templates to give you centralized control over almost
anything whose behavior is controlled by Registry entries.

The following sections suggest which policies might be appropriate for various
situations; you can pick and choose to build a set of policies that's right for you.

6.6.1 Policies for Anybody

Most administrators who use policies do so to prevent users from doing things they
shouldn't. First on the list is probably preventing users from running unapproved
applications, which you can do with the "Run only approved Windows applications"
and "Remove Run command from Start menu" policies. In addition, you might want
to consider using the floplock program from the Resource Kit to prevent user access to
the floppy drives.

Most administrators hate to spend time fixing things like display resolution settings.
Consequently, you may be interested in the Control Panel\Display policy category,
since it allows you to prevent users from changing display settings.

6.6.2 Policies for a Lab Network

Many schools and universities have lab networks that students can use to do their
classwork. Many companies have something similar: test labs, training classrooms,
and so on. These environments share a central feature: a varying group of users have
access to the machines, and they should probably be prevented from changing many
of the things they might otherwise be able or tempted to modify.

In addition to restricting which applications may be run, most labs need to protect the
desktop from changes. This prevents students from using their own wallpaper,
changing the desktop colors to neon green with fuschia accents, or otherwise leaving a
mess for the next user. The "Control Panel\Display" and "Desktop" policies are great
for this.

For labs that share a network segment with production machines, you may also find it
useful to restrict what users can see over the network. The "Shell\Restrictions"
category offers several ways to prevent casual network browsing, including hiding the
Network Neighborhood altogether.

For performance reasons, you should use the options in "Windows NT User Profiles"
to control how profiles get transferred and whether slow connections are
automatically flagged as such.

6.6.3 Policies for an "Ordinary" Office

Anything goes! The policies you set for machines in an ordinary office environment
varies by user, machine, and group; what's appropriate for HR may not be appropriate
for engineering, and vice versa. In general, the most frequently used policy
components in office networks tend to be those dealing with custom Start menu
folders and security settings, such as those found in "Windows NT System\Logon."

In some cases, it may be necessary or desirable to restrict display and desktop changes
too, especially on public machines.

Chapter 7. Using Group Policies

One of the most powerful capabilities included with Windows 2000 is the Group
Policy mechanism. Active Directory provides a comprehensive way for administrators
to manage network resources. When you use Active Directory, Group Policy allows
you to apply policies to users and computers over the entire hierarchy of your
network, from entire domains right down to individual computers.

As you learned in the preceding chapter, the Windows NT 4.0 System Policy Editor is
used to configure membership-based permissions for users, groups, and computers in
a domain. System policies, such as desktop appearance and program control, can be
distributed and applied to whole domains. For Windows 2000 network clients,
policies are no longer Registry-based; they're replaced by Group Policy. By
associating policies with actual objects in Active Directory, each site, domain, and
organizational unit can distribute its own set of policy demands. You manage this
capability with the Group Policy snap-in for the Microsoft Management Console
(MMC). Group Policy, sometimes referred to as the Group Policy Editor, uses policy
files to interface to a system's Registry.

7.1 What Are Group Policies?

In a general sense, policies define what a user can and can't do. Under Windows 2000,
system administrators use Group Policy to manage the policies that apply to
computers and users within a site or domain. These policies define certain aspects of
the user's desktop environment. They specify system behavior, and they restrict what
users are allowed to do. In short, a policy is simply a group of related settings an
administrator can set.

Many of these policy settings are applied to keys in the Registry. The specific keys
and values written into the Registry depend on the policies you're trying to enforce. In
the Windows NT world, policy changes are persistent because they're applied
throughout the Registry, and no mechanism exists to sweep away the changes once
they're made (though one policy's changes can be overwritten by another set of
changes that occurs later).

Under Windows 2000, Group Policy settings that modify the Registry are always
applied in one of four Registry subtrees. Microsoft recommends that Windows 2000-
savvy applications should look for policy information in HKLM\Software\Policies
and HKCU\Software\Policies. If they don't find their settings there, they can look in
HKLM\Software\Microsoft\CurrentVersion\Policies and
HKCU\Software\Microsoft\Windows\CurrentVersion\Policies. If the application still
hasn't found the settings it needs, it can look elsewhere in HKCU or HKLM, or even
in INIfiles (though that's strongly discouraged). None of these subtrees may be
modified by nonadministrators.

7.1.1 Elements of a Group Policy

Much the same way that the Registry is arranged in a hierarchical structure, policies
are categorized into sections and subsections. The sections and subsections that build
the hierarchy of Group Policy are called categories. Think of categories like folders: a

group policy contains one or more categories, and each category may contain
subordinate categories. The subordinate categories may contain their own
subcategories, and so on. In addition to containing subcategories, categories contain
the specific policies an administrator can configure.

Each policy controls the behavior of one aspect of a user's environment. For example,
a simple desktop policy specifies whether to hide all icons on the desktop. There are
more elaborate policies that define the default quota limit and warning level for an
individual filesystem.

Remember that these specific policies are applied to keys in the Registry. The number
of Registry keys affected depends on the complexity of the actual policy. A single
policy can consist of multiple settings, or parts. A part represents a single value that is
stored in the Registry. Each policy is made up of zero or more parts. The policy for
hiding icons on the desktop does not contain any parts; it's simply enabled or disabled.
The quota limit and warning level policy, however, contains a number of parts, one
for each value that needs to be stored: the default quota limit value, the measurement
units for the quota limit, and so on. Since policies require values of various data types,
parts differ as to their permissible values. Some parts require strings, some require
numeric values, and some parts' values are restricted to a set of predefined values.

7.1.2 User Versus Machine Policies

There are two types of group polices: polices that apply to the computer and policies
that pertain to users. Computer configuration policies apply to all users on a computer
and are active whenever a machine is running. They're stored in the HKLM section of
the machine's Registry and include policies that define security settings, desktop
appearance, and startup and shutdown scripts. They're applied when the machine
boots. This is different from System Policy Editor machine policies, which are applied
when a user logs on.

User configuration settings, on the other hand, are active for each user on a computer.
They're stored in the Registry under HKCU and define user-specific settings such as
assigned programs, program settings, and desktop appearance. Unlike computer
settings, which remain in effect until the computer is shut down, user configuration
settings are reloaded for each new user. In this way, user policies can be downloaded
for a user, regardless of what machine she logs into. You can specify user policies that
can be applied to all users of a specific machine, or you can apply policies that apply
only to specific users no matter where they log on.

Even though Microsoft uses the name Group Policy, you can't
apply group policies to Windows 2000 groups (more on that
later). This is a significant difference from the System Policy
Editor mechanism.

7.1.3 Defining Group Policy Objects

In Windows NT 4.0, policies are created for users, groups, and computers. They're
applied manually to individual machines or stored on domain controllers for

replication throughout a domain. In Windows 2000, administrators can attach policies
to Active Directory containers such as sites, domains, and organizational units
(lumped together with the acronym SDOU), as well as to individual machines. These
policies are stored in Active Directory Group Policy Objects, or GPOs. GPOs are
associated with sites, domains, organizational units, and individual machines, and
contain all the Group Policy settings an administrator can configure. The policy
settings contained in a GPO are applied according to the SDOU membership of those
users and computers; there's a set of rules I'll discuss in the next few pages that
determines the effective policy applied to any given user or computer.

There are two types of GPOs: local GPOs and nonlocal GPOs (an inelegant if useful
term). Local GPOs are stored only on local machines, while nonlocal GPOs are stored
in Active Directory.

7.1.3.1 The local GPO

Regardless of whether a computer is part of an Active Directory environment or
operates as a standalone machine, every system running Windows 2000 stores exactly
one local group policy object (LGPO).[1] The LGPO contains the primary policies for
that computer and the users on it. For a standalone Windows 2000 machine, these are
the only group policies the computer sees. When the computer is component of a site,
domain, or organization unit, nonlocal GPOs join and take precedence over the
LGPO. If there's a conflict between LGPO policy settings and settings from the more
influential nonlocal GPOs, the LGPO settings are overwritten.

[1] You sometimes see reference to the local machine policy; that's just another name for the LGPO.

GPO Rule #1: since local settings are applied first, they're
always overwritten by settings in inherited nonlocal GPOs.

7.1.3.2 Policies and the Active Directory

The other type of GPOs, nonlocal GPOs (NGPOs), are stored in an Active Directory.
Each NGPO is associated with a site, domain, or organizational unit. In contrast to
locally applied policies, NGPOs are applied to users and computers that are members
of various SDOUs. Each SDOU may have zero or more GPOs associated with it. The
order of application determines which specific settings are applied.

The order in which nonlocal GPOs are applied respects the Active Directory
hierarchy. Sites, the most broad and least restrictive of Active Directory containers,
process group policies first. All groups within a site inherit the site's policies. Next,
domain group policies are processed; containers beneath the domain inherit these
settings. High- and low-level organizational units follow in succession.

7.1.4 How Are Policies Stored?

While the Group Policies snap-in quietly hides policy storage facilities from the user,
seeing how policies are actually stored in Active Directory will help in understanding

how effective policies are subsequently calculated and applied. In Windows NT 4.0,
the System Policy Editor creates .POL files that contain Registry key and value pairs;
these pairs are loaded into a machine's Registry when the policy is applied. Far from
containing the contents of the entire Registry, these policy files contain only those
values required to implement the desired policy. After the policy file is created, it can
be applied manually to individual machines or stored on a domain controller for
replication.

There's a similar mechanism for Windows 2000 policy settings stored in the Registry.
The Group Policy snap-in stores Registry-based settings in a file named Registry.pol.
The Registry.pol file is actually part of the group policy object. Although the format
of the policy file differs from the Windows NT 4.0 style, the idea is the same.
Separate Registry.pol files exist for the different root keys in the Registry that can be
modified through Group Policy; one file contains customized Registry settings for
HKLM, another contains settings for HKCU. When the Group Policies snap-in starts
up, it creates temporary Registry hives for users and machines. If current policy files
are available, they're imported into this temporary Registry. As you change policy
settings, Group Policy modifies the temporary Registry under the node you've
changed. When Group Policy exits, the temporary Registry is exported into the two
Registry.pol files, from which the changes can be distributed.

Unlike Windows NT 4.0, however, policies are associated with sites, domains, and
organizational units through GPOs. When Registry.pol files are created for nonlocal
GPOs, they're stored in what's called a Group Policy Template. Along with
administrative templates, scripts, and other GPO information, this folder structure
includes user and machine subdirectories, which each contain their appropriate
Registry.pol file.

7.1.4.1 The structure of the Group Policy Template

Group Policy Objects actually consist of two separately stored parts: the Group Policy
Container (GPC) and the Group Policy Template (GPT). The snap-in doesn't
differentiate between items that are stored in these two parts; all their data appears as
a single seamless collection.

The Group Policy Template resides on the domain controller in a tree of folders called
the System Volume (SYSVOL). SYSVOL serves the same function as the Netlogon
share on a Windows NT domain controller. It's designed to store information that
doesn't change very often. In addition to storing Registry.pol policy files, the GPT
stores scripts, administrative templates, and other GPO-related files. The GPT is a
folder structure with the following subfolders:

ADM

Contains administrative templates for this GPO

Scripts

Contains logon, logoff, startup, or shutdown scripts and other related files

USER

Contains the Registry.pol file applied to the HKCU portion of the Registry

USER\Applications

Contains application advertisement scripts (.AAS files) that advertise the
availability of automatically installed applications to users when they log on

MACHINE

Contains the Registry.pol file applied to the HKLM portion of the Registry

MACHINE\Applications

Contains .AAS files for applications applied to computers, not to individual
users

The GPC is an Active Directory object that contains metadata about the GPOs in it.
Among other things, it contains information about the version of the templates it
contains, status flags indicating whether the GPT is enabled or disabled for each
SDOU, and a list of which items are contained in the GPO. This information indicates
whether the GPO is enabled or disabled and helps keep the GPC synchronized with
the GPTs.

7.1.5 How Are Policies Applied?

Applying a policy simply means merging the appropriate policy files into a
computer's Registry under the respective root keys--HKCU for user-specific settings
and HKLM for computer-specific settings. Once a policy file is retrieved, the
individual policies contained within the file are compared against the Registry. As
you'll see in the section that deals with editing policies, individual policies are set to
one of three states: enabled, disabled, or not configured. Note that these states don't
say what the policy does, just whether it is applied (enabled), not applied (disabled),
or left alone (not configured).

When an enabled policy is encountered in the policy file, the parts of the policy are
checked against the current settings in the four Registry subtrees that can contain
policy settings. If a part's value matches the corresponding value in the Registry, no
change is made. If, however, the part's value conflicts with the Registry setting, the
Registry is changed to reflect the enabled policy. This value exchange is strictly a
one-way push from the policy file to the Registry. Manual changes made to the
Registry under HKCU or HKLM, with a Registry editor for instance, are not written
out to a policy file. This keeps users from modifying administrator-defined policy
settings.

Since each site, domain, or OU in Active Directory can have multiple policies, and
since user and computer policies can exist both locally and in any SDOU, you
probably have two questions at this point: when, and in what order, are policy files
applied?

7.1.5.1 Applying computer and user policies

The only types of objects in the Active Directory environment that policies affect are
users and computers. The Registry.pol file contained in the user subfolder of the
appropriate GPT is downloaded and applied to the user (HKCU) portion of the
Registry. Likewise, the Registry.pol file in the machine subfolder gets merged into the
Registry under the machine (HKLM) root key. Machine settings are applied when the
machine boots. User settings are downloaded each time a user logs on to a computer.
This enables machine policies to persist while the more transient user settings are
swapped in and out. This additionally allows users to log on to different machines and
be greeted with a consistent set of policies (ignoring, for the moment, any differences
in machine policies between different machines).

In addition to being applied during their respective initializations, both user and
machine settings are applied during a periodic refresh cycle. This allows automatic
updates of policies that have changed during the current session.

In Windows 2000, when user Registry settings conflict with
computer Registry settings, computer settings generally take
precedence. This is a convention followed by the operating
system, rather than a rule of the Group Policy infrastructure.

7.1.5.2 Order of policy file application

I've answered the "when"; now on to the "in what order" question. Policy files are
applied in a specific order that reflects the Active Directory structure. Since AD uses
a hierarchy to categorize different objects in a network, its structure lends itself nicely
to imposing a relative importance to policies. The order of application is as follows:

1. The LGPO for the target machine is applied first. Remember that one and only
one LGPO exists on every Windows 2000 machine.

2. Any GPOs for the AD site are applied next, in an order you specify.
3. Any domain GPOs are applied next, again in the order you specify.
4. Any Organizational Unit GPOs are applied last, from the least restrictive to

the most restrictive (parent, child, grandchild). At each OU level, order is
specified by the administrator. For example, if a child OU has three policies
specified, the administrator can arrange them in any order, but all the child OU
policies are applied before any grandchild policies are applied.

The means that the last GPO to be processed is the GPO for the "lowest" OU. If you
think about how Microsoft normally draws AD hierarchies (you know, the big
triangle diagrams), this makes sense; the last GPO applied is the one for the SDOU
that the user or computer is a direct member of. Processing the local GPO before any
Active Directory GPOs gives the LGPO the smallest relative importance.

As policy files are processed, they're merged into the Registry under the appropriate
keys. All applied policies contribute to the effective policy of the computer or user.
Naturally, there will be instances where settings being applied for a policy conflict
with earlier policy settings. By default, newer settings overwrite previous settings. In

fact, these newer settings may in turn be overwritten by another, later GPO. It is
possible, however, to enforce policies from a higher GPO (in effect, a policy applied
earlier in the application order) so that they cannot be overwritten. This applies only
to nonlocal GPOs; the LGPO settings can't be set absolutely. Later in the chapter,
you'll see how the effective policies are calculated from the array of policy files that
are applied to a system.

7.2 Introducing the Group Policy Snap-in

For defining and controlling how various components of Windows 2000 behaves for
users and computers, Group Policy is used. Group Policy is a Microsoft Management
Console (MMC) snap-in that allows you to manage the behavior of programs,
network resources, and the operating system.

Under Windows NT 4.0, the System Policy Editor creates and
edits system policies. While this editor is supplied in Windows
2000, its use is limited to supporting downlevel clients. Since it
creates Windows NT 4.0-style system policy files, you still need
it to support NT domains. Additionally, it's useful if you have
Windows NT 4.0, 95, or 98 clients in your AD domains.

7.2.1 Adding the Group Policy Snap-in

To add the Group Policy snap-in to the MMC, run mmc.exe. From the Console menu
in the MMC, choose Add/Remove Snap-in. Click the Add button on the Standalone
tab and select Group Policy from the list of snap-ins provided. You're then required to
choose a Group Policy Object to edit. Remember that group policy objects can be
stored locally on a computer or can be linked to an Active Directory organizational
unit, domain, or site. The Select Group Policy Object dialog defaults to the local
computer as the target GPO but allows you to browse through domains, OUs, sites,
and computers to select the GPO you're interested in editing.

Once you've decided on a GPO, click the Finish button and close the list of provided
snap-ins. If everything went well, you're back on the Standalone tab of the
Add/Remove Snap-in dialog, and you see your target GPO listed as a snap-in under to
the Console Root. Figure 7.1 shows the Local Computer Policy as the only added
snap-in.

Figure 7.1. The Add/Remove Snap-in dialog

You select the functionality of the snap-in by adding Group Policy extensions. Group
Policy extensions correspond to areas of the Group Policy that you can edit. The
following is a list of Group Policy extensions:

Administrative Templates (Computers)

Edits Registry-based policy information for computer configuration

Administrative Templates (Users)

Edits Registry-based policy information for user configuration

Folder Redirection Editor

Redirects Windows 2000 special folders (such as My Documents and My
Pictures) to network locations

Remote Installation Services

Sets up client computers remotely

Scripts (Logon/Logoff)

Specifies scripts for user logon/logoff

Scripts (Startup/Shutdown)

Specifies scripts for computer startup/shutdown

Security Settings

Configures security for domains, computers and users

Software Installation (Computers)

Makes applications available to computers

Software Installation (Users)

Makes applications available to users

To add one or more extensions to the Group Policy snap-in, select the Extensions tab
on the Add/Remove Snap-in dialog. By choosing Group Policy from the dropdown
list of snap-ins that can be extended, the available extensions are displayed, as
illustrated in Figure 7.2.

Figure 7.2. Available Group Policy Extensions dialog

You can select extensions on an individual basis or mass add all extensions by setting
the Add all extensions checkbox.

To edit local group policy without having to endure the pomp
and circumstance of the Microsoft Management Console and
plug-ins, you can simply launch gpedit.msc. You'll be
transported directly to a Group Policy window with focus on the
local group policy object.

7.2.2 Learning the Group Policy Snap-in Interface

If you've already used any of the MMC snap-ins, you'll be instantly familiar with the
interface for Group Policy. The console is divided into two panes: the left pane holds
the console tree, and the right pane displays information such as policies and settings.

Each node in the console tree under the Console Root represents an instance of an
added snap-in. Thus, by adding Group Policy with different GPOs, you can manage
multiple objects from the single console tree. Figure 7.3 shows a single GPO (the
local group policy object) under the console root, with the Administrative Templates
(Computers) and Administrative Templates (Users) extensions previously added.

Figure 7.3. The Group Policy MMC snap-in with Local Computer
Policy added

7.2.2.1 Controlling what you see

The MMC provides a consistent interface for many facets of Windows 2000. The
commands that modify the display apply to the MMC as a whole, not just Group
Policy. The first thing you realize about MMC, as you start adjusting window sizes
and resizing panes, is that MMC allows you to open more than one console window at
a time. The Window New Window command creates a copy of the console
window. This enables you to view policies of one GPO in the first window while
concurrently viewing policies of a second GPO in another window.

The View menu provides a way to change the appearance of the console window. The
View Customize command leads to a Customize View dialog that lets you
configure which aspects of the MMC and snap-in you want available. Using the
checkboxes in this dialog, you can hide or display the console tree, the standard
menus, the standard toolbar, the status bar, the description bar, and the taskpad
navigation tabs.

The right pane of the MMC displays pertinent information about the node selected in
the console tree. The View menu provides four ways to view this information. The
View Large Icons and View Small Icons commands provide pictorial
representation in the right pane; however, this can be repetitious as Group Policy
icons tend to be the same anyway. View List shows the same information in a
single column. The most useful display command, View Detail, parses information
into separate columns. Most leaf nodes in Group Policy contain a policy column and a

settings column. In detail mode, you can sort this information by clicking a column
heading; that column is sorted into either alphabetical or reverse alphabetical order.

The View Choose Columns command brings up a Modify Columns dialog that
allows you to add and remove columns from the display list. This dialog additionally
allows you to change the order of some columns.

7.2.2.2 Navigating the console tree

The console tree acts in much the same way as the Windows Explorer tree view. You
expand branches by clicking the plus beside the node you want to expand and contract
them by subsequently clicking the minus sign. You highlight a node to display its
individual settings in the right pane. The up arrow icon on the standard buttons
toolbar hikes you back up the hierarchical chain of the console tree until you reach the
root.

Some of the nodes have special commands associated with them. For example, the
Administrative Templates node allows you to Add/Remove Templates. To view the
menu associated with a specific node, simply right-click that node. I'll explore some
of these special commands in a bit.

7.2.2.3 Viewing policy properties

As stated previously and shown back in Figure 7.3, most Group Policy leaf node
information contains policies and corresponding settings. To view the properties of a
particular policy, right-click the policy in the right pane and select Properties.

7.3 Managing Policies

The Administrative Templates extensions to Group Policies handle all Registry-based
policies in Windows 2000. In other words, Administrative Templates provide a
mechanism for administrators to configure user interface settings that are stored in the
Registry.

Two administrative template extensions can be enabled for a GPO, one for computers
and one for users. In GUI terms, these extensions enable Administrative Template
nodes in the console tree under Computer Configuration and under User
Configuration. (Refer back to Figure 7.3 for a console tree that includes both
Administrative Templates nodes.) Until administrative templates are added, however,
these nodes are empty.

7.3.1 What Is an Administrative Template?

Administrative templates are ASCII text files, usually with a .adm extension, that tell
the Group Policy interface what Registry settings an administrator can set. The
template files specify what categories and subcategories should appear under the
Administrative Templates node and how policy options are displayed. The Group
Policy interface translates the template files into the GUI representation you see, from
the intermediate folders down to the policy settings.

The Windows 2000 syntax for administrative templates encompasses the previous
template syntax. You can use older NT 4.0-style administrative templates to create
user interfaces in Group Policy, however, new templates can't be used with the
System Policy Editor.

It's not a good idea, however, to allow NT 4.0-style policies to be applied to Windows
2000 clients, as could be the case in a mixed-mode domain with both NT 4.0 and
Windows 2000 domain controllers. If, for instance, an NT 4.0 client is upgraded to
Windows 2000, but the accounts of users on the machine continue to be managed by a
Windows NT 4.0 domain controller rather than Active Directory, the user receives NT
4.0 user System Policy.

This could have an adverse effect on the computer's Registry. The reason is that
Windows 2000 policies set keys and values in only specific areas of the Registry,
namely:

• HKEY_LOCAL_MACHINE\Software\Policies
• HKEY_CURRENT_USER\Software\Policies
• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\P

olicies
• HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Pol

icies

When Windows 2000 policy changes, these trees are cleared, and new policies are
copied down. Windows NT 4.0 policies, however, don't recognize these Registry
areas. The keys and values they write can invade any part of the Registry and persist
until they're either manually deleted or reversed by a counteracting policy.

7.3.2 Adding Administrative Templates

Assuming you have the Administrative Templates extensions enabled for Group
Policy, you can add administrative templates for computer and user configuration of a
GPO. Under the GPO you wish to manipulate, expand either the Computer
Configuration or User Configuration node. Right-click the Administrative Templates
node and select Add/Remove Templates from the menu. The ensuing dialog, shown in
Figure 7.4, lists the current policy templates.

Figure 7.4. The Add/Remove Templates dialog

To add additional templates to this list, select the Add button and browse for the
desired template. Templates included with Windows 2000 are installed in the
%SystemRoot%\inf directory and come with a .adm extension. I'll talk more about
provided templates later in the chapter.

Understand that templates you add can contain settings for both Computer and User
configuration. That is, there are sections for Registry keys under both HKLM and
HKCU. It doesn't matter which node you add the templates from, the template is
added to the Group Policy as a whole.

As you add administrative templates, category nodes appear beneath the
Administrative Template branches in the console tree. Each template consists of a
new set of categories, subcategories, and options to display to the user. These are
interlaced into the settings of the currently loaded templates. Settings in the Computer
section of the template appear under the Computer Configuration node; likewise, the
User section populates the User Configuration Node.

7.3.3 Editing Policies

Using Group Policies to modify policies is quite easy. The templates you add to
Group Policy provides the entire interface you need; what's left is deciding what
values you want for your policies.

To edit a policy, expand the console tree until you find the category that holds the
policies you want to edit. Once you highlight the target category, you see the
category's policies in the right pane. If you've taken the advice earlier in this chapter,
you have the display set to View Detail, and you can see the policies' current
settings. A policy can have three settings; enabled, disabled, or not configured.

Right-click the policy you want to edit and select Properties (double-clicking works
just as well). The property's edit dialog will appear. What you see--that is, what you're
able to edit--depends on what parts make up the policy. You'll find that many policies
are simply enabled or disabled, without any parts.

Figure 7.5 shows the policy edit dialog for the Limit profile size policy, which is
found in the user section of the SYSTEM.ADM administration template, under the
System category and Logon/Logoff subcategory.

Figure 7.5. The Limit profile size policy edit dialog

The policy tab is displayed by default. The Explanation tab merely contains a
description of the policy. The first thing you see on the policy tab is a checkbox for
the policy name. This is actually a checkbox with three states representing whether
the policy is enabled (checked), disabled (cleared), or not configured (grayed out).
When this checkbox is cleared or grayed out, the policy part inputs are disabled.

The policy in Figure 7.5 contains five parts that pertain to Registry keys and can be
modified. The first part is an edit text box filled with a default string. The second and
fifth fields are numeric inputs filled with default values. In addition to default values
for numeric input fields, templates can also specify minimum and maximum values
for acceptable user input. Lastly, two checkboxes accept Boolean input. In addition to
strings, numbers, and Boolean values, part types include combo boxes and list boxes.
Static text may also appear for directions or user information.

The buttons at the bottom of this dialog, Previous Policy and Next Policy, allow you
to iterate through all the policies of this category without having to close and reopen
the dialog.

7.3.4 Creating Your Own Administrative Templates

Since administrative templates are merely ASCII files, they can be opened with a text
editor, modified, and loaded back into Group Policy. As you'll see in a moment, the
syntax and language used in these files, while perhaps not instantly intuitive, is far
from cryptic. These templates afford administrators the flexibility to create a "safe"
conduit to nearly all Registry data that lives in HKLM or HKCU.[2] This can include
configuration parameters for common programs such as Internet Explorer, as well as
network and desktop settings. (However, note that there are already Group Policy
templates for Office 2000 and Internet Explorer, provided as part of the Office
Resource Kit. See http://www.microsoft.com/office for more details.)

[2] A second, but much more ambitious, way to extend the functionality of Group Policy is to write a software
extension for the Group Policy snap-in. Software development, unfortunately, is beyond the scope of this book.

Administrative Template files follow a basic structure that represents the hierarchy of
categories, subcategories, policies, and parts you see in the Administrative Templates
namespace. To illustrate the template format, here is an example template I
cannibalized from the provided system template, system.adm:

CLASS USER

CATEGORY !!SystemControl
 KEYNAME Software\Microsoft\Windows\CurrentVersion\Policies\System

 POLICY !!LimitSize
 KEYNAME
"Software\Microsoft\Windows\CurrentVersion\Policies\System"
 EXPLAIN !!LimitSize_Help
 VALUENAME "EnableProfileQuota"

 PART !!SizeMessage EDITTEXT
 VALUENAME "ProfileQuotaMessage"
 DEFAULT !!DefaultSizeMessage
 END PART

 PART !!WarnUser CHECKBOX
 VALUENAME "WarnUser"
 END PART

 PART !!WarnUserTimeout NUMERIC REQUIRED SPIN 5
 VALUENAME "WarnUserTimeout"
 DEFAULT 15
 MIN 0
 END PART
 END POLICY ;LimitSize
END CATEGORY ;SystemControl

[strings]
DefaultSizeMessage="Storage space exceeded."
LimitSize="Limit profile size"
LimitSize_Help="Limits size of Profile."
SizeMessage="Custom Message"
SystemControl="System"
WarnUser="Notify user when profile storage space is exceeded."
WarnUserTimeout="Remind user every X minutes:"

Notice that this template consists of one category, SystemControl. Inside that category
is a single policy, LimitSize. That policy is comprised of three parts, SizeMessage,
WarnUser, and WarnUserTimeout. Let's dissect the template:

• The first statement, CLASS User, tells Group Policy that this policy falls
under HKCU. Policies that come under HKLM appear with the CLASS
MACHINE statement. Indeed, templates can and will contain both statements.

• The CATEGORY... END CATEGORY block defines the categories, or nodes,
that fall under the Administrative Templates node in the console tree. This
example contains one category, SystemControl. More elaborate templates
contain a hierarchy of categories.

• The KEYNAME statement tells Group Policy that all polices and parts that
belong to this category store their values under
Software\Microsoft\Windows\CurrentVersion\Policies\System. Policies can

specify their own key names as well. In this case, the keyname for the
LimitSize policy is the same as the category keyname.

• The POLICY... END POLICY block defines a single policy. Each policy
block corresponds to a policy item in the right pane of Group Policy you can
right-click to display its properties. A policy can be enabled, disabled, or not
configured. This template contains one policy item, LimitSize.

• Each PART... END PART block specifies a single part of the policy that
encloses it. This appears as a control in the policy's property dialog, such as an
edit field (EDITTEXT), a checkbox (CHECKBOX), or a numeric input field
(NUMERIC). Default values for parts may be provided for a user to accept or
reject. Policies that are either simply enabled or disabled won't contain parts.
The policy to remove the search button from Windows Explorer, for example,
doesn't require additional Registry values beyond the enabled status and
therefore, doesn't contain any parts.

The policy in this example contains three parts, an edit text box, a checkbox
and a numeric input field. The quoted VALUENAME is the name the value is
stored as. The edit text box, SizeMessage, contains a default string value of
"Storage space exceeded." The numeric user field contains a default value of
15 and a minimum value of 0.

• Tags that are preceded by a double exclamation point (e.g., !!LimitSize) are
tied to character strings from the string section. This provides the text Group
Policy uses to display the categories, policies, and parts.

The preceding Administrative Template contains a single, multipart policy. Figure 7.6
shows how the property dialog for this policy looks.

Figure 7.6. The example policy properties dialog

7.4 Distributing Policies

Computers that operate as standalone machines depend solely on local policy files for
their policy settings. Networked computers, however, have the chore of obtaining
policy files from the Domain Controller and merging them into their Registry. These
downloaded policies contain the policies of the sites, domains, and organizational
units that the computer and users are members of.

When you run the Group Policy snap-in, you're required to select the Group Policy
Object for the settings you wish to modify. This can be a GPO associated with an
Active Directory object, or it may be a local or remote computer GPO. The users and
computers that the policy affects, however, depends directly on which GPO is chosen.
The higher the GPO is in the hierarchy, the more machines the policy file is
distributed to.

7.4.1 Understanding How Effective Policies Are Calculated

I said earlier that policies are applied to the Registry in a specific order. That is: the
local GPO, site GPOs, domain GPOs, and then OU GPOs from largest to smallest.
Clearly, since policies are cumulative, order of application is quite important. Policies
set early in the process can be overwritten by later GPOs. Since local GPO settings
are applied before nonlocal GPOs, the LGPO is considered to be the least influential
of all GPOs. The important policies, then, are those held by nonlocal, or Active
Directory, GPOs.

The hierarchy of the Active Directory is tree-like in that an Active Directory container
can accommodate multiple containers beneath it. Each of those containers, in turn,
can itself hold multiple containers. This continues down to the lowest-level OU
container that actually houses actual users and machines. As the nonlocal policies are
applied in the order described previously, each new policy file is merged into the
Registry. This means that policy settings for site GPOs cover all domains,
organizational units, users and machines within it. Settings for a domain GPO fan out
to all the organizational units, users, and machines below the domain. Next, high-level
organizational unit policies take effect and envelop all subordinate OUs. Policies of
low-level OUs, while they are not as broadly applied as the higher nodes, are most
likely to be applied, since they overwrite all conflicting policies previously merged
into the Registry. Since policies are applied top-down in a single direction, policy
settings applied at lower levels, such as subordinate OUs, don't affect higher group
policy objects, such as site and domain GPOs.

7.4.2 Policy Inheritance

In the scheme of calculating effective policies, there are some basic rules that need to
be understood about how policies are inherited. For the sake of clarity, let's discuss
this in terms of parent and children GPOs, where a parent is any Active Directory
Container, and a child is one of the containers directly beneath it in the Active
Directory hierarchy.

First, you know from the previous discussion about editing policies that policies can
be enabled, disabled, or not configured. Child containers don't inherit policies that
aren't configured from their parent GPOs. This extends to the users and computers in
those containers. Disabled policies are, however, inherited as disabled. Enabled
policies, of course, are inherited as such. Furthermore, policy settings that are
configured for a parent OU (that is, either enabled or disabled) and not configured for
a child OU are inherited by the child. As an example, consider a desktop policy that
hides the Internet Explorer icon on the desktop. A child OU inherits this policy if it's
enabled or disabled for the parent OU. The child doesn't inherit it if it's not configured
for the parent OU.

Inheritance additionally depends upon the compatibility of policy settings; that is,
whether the intent of a setting inherently conflict with that of another policy setting.
When a policy of a parent OU is incompatible with a policy of a child OU, the child
doesn't inherit the parent's policy setting. Instead, the child's policy takes precedence
and is applied. When a policy configured for a parent is compatible with the child's
policy, both policies are used. The parent's policy is inherited and applied along with
the child's policy; in this case, the effective policy is the sum of the parts of those two
policies.

In some cases, an administrator may wish to keep a child GPO from inheriting
policies from its parent and instead rely solely on the child's own policies. A third
basic rule of policy inheritance allows child GPOs to block inheritance. If this option
is set for a GPO, the GPO doesn't inherit any policy settings from its parent. This is
useful when a parent GPO has general policies it wants to enforce on most of its child
GPOs. Yet, there might be a child GPO that's exempt from these settings and should
maintain its own set of policies. Blocking inheritance allows the subordinate unit to
create its own policies without interference from its parent. Following the previous
example, a child OU can disable or not configure the policy to hide the Internet
Explorer icon while blocking inheritance from the parent OU. In this case, even if the
hide icon policy is enabled for the parent OU, the effective child policy doesn't reflect
that.

Lastly, there's an option for parent GPOs that give them the ability to set mandatory
inheritance. By setting the No Override option on a parent GPO, all children GPOs
must inherit all configured policies from that parent, regardless of compatibility or
inheritance blocking on the child GPO. This can be used for parent GPOs that want
their policy decisions to be unconditionally respected. This option also provides a
means of making sure that incompatible settings don't keep child GPOs from
inheriting parent GPO policies. Supposing that No Override is set for a parent OU that
also enabled the hide Internet Explorer icon policy, its child OU unconditionally
inherits that policy.

7.4.3 Managing Dispersal Through Group Policy Policies

The system administrative template includes a number of policies that define more
concretely how and when Group Policies are retrieved and applied. These policies are
found in both the computer and user sections of the system.adm file. To view the
computer-specific policies in Group Policies, make sure system.adm is included as a
current policy template. Under the Computer Configuration\Administrative Templates
branch, the System category contains a subcategory for Group Policy. The following
list describes some of these policies and what they mean:

Disable background refresh of group policy

Keeps group policy from being updated while a user is logged on. Not
enabling it allows policy to be updated whether a user is logged on or not.
When not enabled, update frequency is tied to the Group Policy refresh
intervals for users and computers.

Apply group policy for computers asynchronously during startup

Allows the system to display the login prompt before the computer Group
Policy is finished updating.

Apply group policy for users asynchronously during startup

Lets the system display the Windows desktop before the user Group Policy is
finished updating.

Group Policy refresh interval for computers

Allows customization of policy update frequency. The policy's parts allow you
to specify how often Group Policy is applied to computers. The default is 90
minutes.

There is an additional user-specific policy found under User
Configuration/Administrative Templates in the System category and Group Policy
subcategory. It works much like its computer-specific sibling:

Group Policy refresh interval for users

Like the computer refresh interval policy, this policy allows you to specify
how often Group Policy is applied to users. The default is 90 minutes.

7.4.4 Setting Single Computer Group Policies

When you start Group Policy as a standalone MMC snap-in, a Select Group Policy
Object dialog appears that allows you to choose the GPO to modify. The GPO for the
Local Computer is entered as the default. You can browse for another GPO by
selecting the Browse button. The subsequent browse dialog contains four tabs:
Domains/OUs, Sites, Computers, and All. GPOs stored on local computers are found
on the Computers tab. The radio buttons on this dialog allow you to toggle between
the computer you're currently on and another computer, as shown in Figure 7.7.

Figure 7.7. Browse for Group Policy Object dialog

To modify the LGPO of another computer, type in the computer name or browse and
select.

7.4.5 Setting Nonlocal Group Policies

You use the same dialog as shown in Figure 7.7 to select Active Directory Container
GPOs to configure. These GPOs are divided into two groups, Domains/OUs and
Sites. The Domains/OUs tab features a dropdown list to choose a container to look in
as well as a list of GPOs in that container and their associated domain.

Similarly, you can specify a Site GPO on the Site tab. Again, a dropdown list contains
the available sites to look in. To view all available GPOs in a certain domain, use the
All tab and select the domain to look in. All GPOs in the selected domain will appear
for easy pickings.

7.5 What's in the Standard Policy Templates?

Windows 2000 includes a number of administrative policy templates. Some are more
general in nature and cover a wider scope; others pertain to specific applications. The
first two templates are specific to Windows 2000 clients and are installed in Group
Policy by default:

INETRES.ADM

Contains Internet Explorer policies for Windows 2000 clients; contains both
machine and user settings. The HKCU settings, for the most part, regulate
settings in the control panel of Internet Explorer. It has categories for the
General tab, Content tab, Connection tab, Programs tab, Advanced tab, as well
as some information delivery restrictions. The machine settings include
categories for security and code downloading restrictions.

SYSTEM.ADM

By far the largest standard policy template. The machine portion of the
template includes policy categories for administrative services, which
encompasses login policies, file system settings, policy policies, and the task
scheduler; networks; and printers. Registry settings under HKCU cover a
broad range, from the control panel to Windows components to policies for
system control.

The next administrative templates are specific to NT 4.0, 95/98, or both, and should
be used with the System Policy editor rather than the Group Policies snap-in:

WINDOWS.ADM

Defines policy settings specific to Windows 95 and 98. The two categories
included in the HKLM section of this template detail network and system
policies, both of which encompass intermediate policy categories. Policy
settings for the control panel, network sharing, system restrictions, and custom
folders round out the user portion of this template.

WINNT.ADM

Defines user-interface options specific to NT 4.0. While some of the
categories from the WINDOWS.ADM template appear here, the underlying
subcategories and policies are different. As expected, this template contains
both machine and user settings. The general machine categories cover policies
for the system, networking, remote access, printers, user profiles and shell
settings. The policy categories for the system, user profiles, and the shell are
present under HKCU as well.

COMMON.ADM

Defines user interface options that are common to Windows NT 4.0, 98, and
95. In addition to system settings, it includes network settings for the machine
and desktop settings for users.

Finally, here are a few templates included in the %SystemRoot%\inf directory:

CONF.ADM

Contains both user and machine policy settings for Microsoft NetMeeting.

INETSET.ADM

While INETRES.ADM contains policy settings for Internet restrictions,
INETSET.ADM defines general Internet settings. The HKCU section of the
template covers policy settings for colors, fonts, modem, and advanced
settings.

WMP.ADM

Contains customization settings for the Windows Media Player.

For detailed information about these templates and the policies,
Registry keys, and values that they cover, refer to Appendix A,
and Appendix B.

Chapter 8. Programming with the Registry

So far, all the chapters in this book have taught you how, and why, to use the Registry
tools that Microsoft provides as part of Windows 2000. For the most part, these tools
are sufficient for everyday use. However, you may find it necessary to write your own
tools from time to time.

Windows 2000 also provides a comprehensive set of routines that allow your
programs to read, write, and modify Registry keys and values. You can also connect
to remote computers' Registries, get and set security data on keys and values, and do
basically everything that RegEdt32, RegEdit, and the resource kit utilities can do. This
capability is a double-edged sword: you can write programs that do exactly what you
want, but the burden of properly using the Registry calls is entirely on you.

8.1 The Registry API

The original Registry API is defined in winreg.h, part of Microsoft's Win32 Software
Development Kit (SDK) for NT 4.0 and Windows 95. The current version is still part
of the Win32 API, but now it lives in the Microsoft Developer Network (MSDN)
Platform SDK. There are 28 distinct routines in the Registry API, though most of
them actually have two variants: one that works with standard one-byte ASCII strings
and another that handles Unicode strings. The ASCII versions have routine names that
end in "A," such as RegCreateKeyA, while the Unicode versions end with a "W," as
in RegCreateKeyW. Macros in winreg.h automatically map the correct variant to the
routine name. When you call RegCreateKey, you automatically get the correct
Unicode or ASCII variant depending on how your header files are set up. (Of course,
in Visual Basic or Perl this distinction is moot.) The Registry stores strings in
Unicode format, so when you call one of the ASCII variants, the Registry code takes
care of converting one encoding to another.

As if this original set of functions wasn't enough, Microsoft has added a separate set
of Registry-related API routines as part of the Internet Explorer 4.0/5.0 shell. These
routines are delivered as part of the Shell Lightweight Utility API, and most of them
are implemented in Version 4.71 and later of shlwapi.dll. All machines running
Windows 2000 or 98 have this DLL (as of this writing, it's Version 5.00), while
machines running Windows 95 or NT 4.0 have it if they also have Internet Explorer
4.0 or later. Some functions discussed later in the chapter are only available as part of
Internet Explorer 5.0 or later; those functions are noted.

8.1.1 API Concepts and Conventions

If you've used any other set of Win32 API routines, you'll probably find the Registry
API easy to digest. If you haven't, though, a brief review of some Win32 API
fundamentals will help flatten your learning curve.

8.1.1.1 Input and output parameters

Each Registry routine described next has its own unique set of parameters. These
parameters give you a way to tell the API routines what you want done and how to do
it. It's important to make sure you specify the parameters completely and correctly. If
you don't, you'll likely get ERROR_INVALID_PARAMETER back as an error; it's entirely
possible that instead you might get a corrupted Registry and a crashed machine.

In general, the C/C++ declarations for the Registry routines use pointers both for
input and output. For example, strings are always passed as pointers (surprise!), as are
outputs for things like security attributes and newly opened HKEYs. The Perl and
Visual Basic declarations use the type system appropriate for the language, as you'll
see in the sections that cover each language.

8.1.1.2 Registry error codes

Every Registry API routine returns an error code as its value. These codes, all of
which are defined in winerror.h, give you an easy way to test for success or failure of
an operation. Table 8.1 lists the most commonly used codes. A few routines can
return other error codes as noted, but these are the ones you're most likely to see.
Your code should always test for all returned errors (not just these) and handle them
properly if they should occur.

Table 8.1. Registry Error Codes
Error Code Meaning

ERROR_SUCCESS The requested operation succeeded.
ERROR_FILE_NOT_FOUND The requested Registry key or path doesn't exist.
ERROR_ACCESS_DENIED The permissions on the requested key don't allow you to access it.
ERROR_INVALID_HANDLE The HKEY you passed in isn't a valid Registry handle.
ERROR_OUTOFMEMORY There's not enough memory to read the data you requested.

ERROR_INVALID_PARAMETER One or more parameters you supplied are invalid; you may have
omitted values for a required parameter or supplied a bad value.

ERROR_BAD_PATHNAME The path specified doesn't exist.

ERROR_LOCK_FAILED
The internal Registry locking mechanism failed. This is usually
because you're making multiple requests of the Registry from
within a single process or thread.

ERROR_MORE_DATA The buffer you provided as a parameter is too small to contain all
the available data.

ERROR_NO_MORE_ITEMS There are no more keys or values to enumerate.
ERROR_BADKEY The key handle you provided is bad.
ERROR_BADDB The hive that holds the key or value you requested is corrupted.
ERROR_CANTOPEN The requested key or value can't be opened.
ERROR_CANTREAD The requested key or value can be opened but not read.
ERROR_CANTWRITE You can't write data to the key or value you're trying to overwrite.
ERROR_REGISTRY_RECOVERED One or more hive files was reconstructed.
ERROR_REGISTRY_CORRUPT Something very bad has happened to one or more hive files.

ERROR_REGISTRY_IO_FAILED The kernel tried to read, write, or flush cached Registry data from
the corresponding hive but couldn't.

ERROR_NOT_REGISTRY_FILE The hive file you tried to load isn't a hive file.
ERROR_KEY_DELETED You're trying to modify a key that's been deleted.

8.1.1.3 Why some calls have names ending in "Ex"

Back in ancient times,[1] the original Windows 3.x API was the One True API
application developers were counseled to use. As programmers did use the API, the
inertia of a large installed base made it hard for Microsoft to change the way any of
the original 3.x routines worked. Instead of changing the originals, the Win32 API
added new routines where necessary and gave them new names ending with Ex. For
example, RegOpenKey begat RegOpenKeyEx, which adds an options flag and a SAM
access context--both of which are specific to Win32.

[1] Well, all right: around 1990.

In general, you should avoid using the original routines when an Ex equivalent exists.
Most of the cool features of the Windows 2000 Registry (especially those related to
security) aren't available with the "classic" API. In addition, it's possible that the old-
style routines will stop being supported in future Windows versions. In a few cases it
may make sense to use the old-style routine anyway; I've noted these exceptions
where appropriate.

8.1.1.4 "Happy families are all alike"

The whole point behind the Win32 API is that you can write programs that use a
single API. As long as you stick with that API, your code should run on any Win32-
compliant platform, whether it's Win95 on Intel, WinNT on Alpha, Windows 2000 on
Itanium, or WinCE on whatever CPU the HPC builder chose. You're not supposed to
have to care which underlying operating system is present. While this is a wonderful
theory, it sometimes breaks down in practice. For example, many of the routines
described here have slightly different behavior under Windows CE.[2] More
importantly, some routines don't work at all under Win95.

[2] MSDN and the Win32 SDK both document these differences, so I won't go into them here.

This may be too harsh an indictment. What really happens is that the routines don't
fail, but they don't do what they're supposed to; they just return ERROR_SUCCESS. This
means that your code still executes under Win9x, but it may not do what you intended
it to. At present, there are only four routines that behave this way under Win9x:
RegRestoreKey, RegGetKeySecurity, RegSetKeySecurity, and
RegNotifyChangeKeyValue. If your application uses any of these routines, be
forewarned: you won't get back the data you expect when your code is run under
Win9x. Be sure to handle these cases gracefully (for example, checking whether the
SECURITY_DESCRIPTOR returned by RegGetKeySecurity is valid before trying to use
it).

The same is true for the shell APIs I mentioned earlier: none of those APIs are
supported under Windows CE, and they may have slight functional differences
between Windows 2000/NT and 95/98.

8.1.1.5 New and exciting datatypes

One of Windows 2000's biggest advantages over Win9x is its robust security
architecture. Since the Win32 API is supposed to be common across Win9x,
Windows 2000/NT, and Windows CE devices, you may have seen, and ignored, some
of the Windows 2000-specific datatypes used in Registry API routines. These
datatypes can be useful, so a quick introduction will help you get familiar with them.
(Skip this section if you already know how to use these types.)

The Registry API uses many standard Windows datatypes such as DWORD and LPSTR.
However, there are six datatypes that are fairly unfamiliar to most programmers who
haven't yet written Windows 2000-specific code. Each is used in at least one Registry
call.

HKEY

The initial letter of this type should tip you off to what it is. Microsoft uses
Hungarian notation,[3] so the initial H means this datatype is a handle to
something. An HKEY is an opaque handle to a Registry key; the handle actually
points to a large table of key references, so it's not a handle in the pointer-to-a-
pointer sense most programmers usually use.

[3] This notation gets its name from Charles Simonyi, the Microsoft developer who invented the
scheme. As you might infer from his surname, he's Hungarian. Despite the fact that it's ugly and
restrictive, it has caught on in Windows books, perhaps because Microsoft uses it exclusively in their
header files and example code.

winreg.h includes definitions for the standard six root keys. Anywhere you can
use an HKEY, you can use HKEY_LOCAL_MACHINE or one of the other
predefined root key HKEYs.

REGSAM

REGSAM is really a DWORD in disguise; its values represent the permission you're
requesting when you open or create a key. Legal values are shown in Table
8.2. You can use any of them when creating or opening a key, but you should
limit what you ask for to what you actually need. In most cases, that means
either KEY_READ or KEY_WRITE.

Table 8.2. REGSAM Access Mask Values
Value Meaning

KEY_ALL_ACCESS

Combination of KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS, KEY_NOTIFY,
KEY_CREATE_SUB_KEY, KEY_CREATE_LINK, and
KEY_SET_VALUE access

KEY_CREATE_LINK Grants permission to create a symbolic link to specified key
KEY_CREATE_SUB_KEY Grants permission to create new subkeys
KEY_ENUMERATE_SUB_KEYS Grants permission to enumerate subkeys of the parent key
KEY_EXECUTE Grants permission to read subkeys and values

KEY_NOTIFY Grants permission to request change notification on the parent key or
its values

KEY_QUERY_VALUE Grants permission to get subkey values and their contents

KEY_READ Combination of KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS, and KEY_NOTIFY access

KEY_SET_VALUE Permission to change subkey values

KEY_WRITE Combination of KEY_SET_VALUE and KEY_CREATE_SUB_KEY
access

SECURITY_INFORMATION

Windows 2000 allows you to read and write ACLs on Registry keys.
However, you must specify exactly which ACL you want to view or change.
The SECURITY_INFORMATION type handles this; it allows you to specify any of
the values listed in Table 8.3 when calling RegGetKeySecurity or
RegSetKeySecurity. The first four values in the table are valid for Windows
NT 4.0 or 2000; the last four are Windows 2000-only.

Table 8.3. SECURITY_INFORMATION Values
Value Meaning

OWNER_SECURITY_INFORMATION Indicates that you want information about the
owner identifier of an object.

GROUP_SECURITY_INFORMATION

Indicates you're requesting information about
the primary group identifier of the object. Only
objects connected with the POSIX subsystem
have this information.

DACL_SECURITY_INFORMATION Indicates that you want information about the
discretionary ACL of the object.

SACL_SECURITY_INFORMATION Indicates that you want information on the
system ACL of the object.

PROTECTED_DACL_SECURITY_INFORMATION Indicates that this DACL may not inherit ACE
entries from its parent.

PROTECTED_SACL_SECURITY_INFORMATION Indicates that this SACL may not inherit ACE
entries from its parent.

UNPROTECTED_DACL_SECURITY_INFORMATION Indicates that this DACL inherits ACE entries
from its parent object.

UNPROTECTED_SACL_SECURITY_INFORMATION Indicates that this SACL inherits ACE entries
from its parent object.

SECURITY_DESCRIPTOR

Access control data is stored in SECURITY_DESCRIPTOR structures. Like HKEY,
HWND, and other types, a SECURITY_DESCRIPTOR is opaque; there's no way to
decipher exactly what it points to or contains without using the Win32 security
API routines. (Actually, this is a fudge. Microsoft documents the structure but
sternly warns developers against reading or modifying its fields.)

SECURITY_ATTRIBUTES

The SECURITY_ATTRIBUTES structure encapsulates a security descriptor and
data needed to interpret it:

typedef struct _SECURITY_ATTRIBUTES {
 DWORD nLength;
 LPVOID lpSecurityDescriptor;

 BOOL bInheritHandle;
} SECURITY_ATTRIBUTES;

The nLength member specifies the size of the security descriptor pointed to by
lpSecurityDescriptor. The bInheritHandle member controls whether a
child process spawned by the process that owns the SECURITY_ATTRIBUTES
structure should also receive the owning process' security descriptor.

FILETIME

The FILETIME structure contains the access date and time for an object. Its
format is a little odd:

typedef struct _FILETIME {
 DWORD dwLowDateTime;
 DWORD dwHighDateTime;
} FILETIME;

Together, the two DWORDs represent the number of 100-nsec intervals since 1
January 1601. I have no idea what possessed Microsoft to use this particular
date as the base of their time system. Fortunately, there are a number of
routines for converting between FILETIME values and more useful formats;
check out FileTimeToSystemTime for one example.

8.1.1.6 New routines = new datatypes

When Microsoft added the shell utility routines as part of IE 4.0, they also had to
create some new datatypes to fully support those routines. Most of the shell utility
routines provide functionality not included in the standard Win32 API set. However,
the file association routines (AssocCreate, AssocQueryKey, AssocQuery-String,
and AssocQueryStringByKey) bundle several Registry operations into a single
function. These routines actually encapsulate the IQueryAssociations COM object;
its purpose is to return the correct key and OLE class information from HKCR for a
specific type of document file. By providing a standard way to do this (instead of
requiring every developer to roll their own) Microsoft is trying to reduce the number
of association-related frustrations foisted on end users. The new datatypes are:

ASSOCF

The ASSOCF structure holds flags that specifies what data you want back from
a call to one of the association functions. Table 8.4 shows the flags and their
values.

Table 8.4. ASSOCF Values
Value Meaning

ASSOCF_INIT_BYEXENAME
Finds the association for the selected executable. When this
flag is not set, the query routines return the association for the
.exe filetype.

ASSOCF_OPEN_BYEXENAME Identical to ASSOCF_INIT_BYEXENAME.

ASSOCF_INIT_DEFAULTTOSTAR
If no matching association is found under the selected root
key, and this flag is set, checks the HKCR* subkey for a
match.

ASSOCF_INIT_DEFAULTTOFOLDER
If no matching association is found under the selected root
key, and this flag is set, checks the HKCR\Folder subkey for a
match.

ASSOCF_NOUSERSETTINGS
When set, directs the query code to search HKCR only, not
HKCU\Software\Classes. By default, both keys are searched,
and the user value is used if present.

ASSOCF_NOTRUNCATE
If the found value is too big for the supplied buffer, don't
truncate it; instead, return the required buffer length and an
error.

ASSOCF_VERIFY
Cross-checks the found association with the class factory or
executable that owns the associated type. Imposes a
performance penalty but provides extra safety.

ASSOCF_REMAPRUNDLL
Tells the query code to ignore the presence of the rundll.exe
command in the supplied command string; this prevents the
query code from returning association information for rundll.

ASSOCF_NOFIXUPS
Don't fix any errors found when ASSOCF_VERIFY is set.
When set, this flag may cause your code to modify Registry
data.

ASSOCF_IGNOREBASECLASS Ignores the BaseClass value when searching for
associations.

ASSOCKEY

The ASSOCKEY enumerated type tells the association routines what kind of key
you want returned from your association query. You have to use this type in
calls to AssocQueryKey to ensure that you get the desired key in return. See
Table 8.5 for the enumeration's values.

typedef enum {
 ASSOCKEY_SHELLEXECCLASS = 1,
 ASSOCKEY_APP,
 ASSOCKEY_CLASS,
 ASSOCKEY_BASECLASS,
 } ASSOCKEY;

Table 8.5. ASSOCKEY Values
Value Indicates you're asking for...

ASSOCKEY_SHELLEXECCLASS A handle to a key that can be passed directly to the ShellExec(
) function

ASSOCKEY_APP A handle to the Application key for the specified file class
ASSOCKEY_CLASS A handle to the class key or ProgID
ASSOCKEY_BASECLASS A handle to the class BaseClass key
ASSOCSTR

The ASSOCSTR enumerated type tells the association routines what type of
string you want as the result of a query. For example, you can request the
friendly name of an executable or document type, the command for a
particular shell verb, and so on. Table 8.6 enumerates this type's values and
their meanings.

typedef enum {

 ASSOCSTR_COMMAND,
 ASSOCSTR_EXECUTABLE,
 ASSOCSTR_FRIENDLYDOCNAME,
 ASSOCSTR_FRIENDLYAPPNAME,
 ASSOCSTR_NOOPEN,
 ASSOCSTR_SHELLNEWVALUE,
 ASSOCSTR_DDECOMMAND,
 ASSOCSTR_DDEIFEXEC,
 ASSOCSTR_DDEAPPLICATION,
 ASSOCSTR_DDETOPIC
 } ASSOCSTR;

Table 8.6. ASSOCSTR Flags
Value Indicates you're asking for...

ASSOCSTR_COMMAND The command string associated with the specified shell verb

ASSOCSTR_EXECUTABLE The executable name from a shell verb command string (see the
note for ASSOCF_REMAPRUNDLL)

ASSOCSTR_FRIENDLYDOCNAME The friendly name of a document type
ASSOCSTR_FRIENDLYAPPNAME The friendly name of an application
ASSOCSTR_NOOPEN All information except the contents of the Open subkey
ASSOCSTR_SHELLNEWVALUE Information from the ShellNew subkey
ASSOCSTR_DDECOMMAND The template that forms DDE commands sent to this object

ASSOCSTR_DDEIFEXEC The DDE command that creates a new instance of the selected
object's factory

ASSOCSTR_DDEAPPLICATION The application name needed to send DDE broadcasts to the
application

ASSOCSTR_DDETOPIC The topic name needed to send DDE broadcasts to the application
HUSKEY and PHUSKEY

HKEY is an opaque type that represents a handle to an open Registry key.
HUSKEY is a little different. It's a handle that represents a user-specific key (as
you'll see in the next section).

8.1.1.7 User-specific keys

Windows NT 3.1 introduced the concept of multiple user profiles to the Windows
world. The idea was that each user could have her own group of personal settings that
would automatically be loaded when she logged on. In Windows NT 3.51, Microsoft
expanded this concept to cover domains, so that users could get their personal setting
(or profile) information no matter where in the domain they logged on. However,
some applications store their settings under HKCU, and others use HKLM.
Compounding the problem, not all programs and components keep their setting data
in the Registry. The introduction of user-specific class keys (see Section 2.1.2.4)
makes things even more complicated, since some per-user settings may actually be
inherited from HKCR.

To fix this problem, Microsoft has introduced the concept of user-specific keys
(USK). The idea is that all settings for one user can be stored beneath that user's USK,
which then conveniently becomes the user's profile, making the settings portable.
Applications that use the shell utility API are encouraged to use the USK functions to

store and retrieve user-specific data so that all the user's profile settings are stored in
the same place.

8.1.1.8 An extremely brief example

Almost every C or C++ book includes an example based on the famous "Hello,
World" example from Kernighan and Ritchie's The C Programming Language.
Following that venerable tradition, Example 8.1 shows what a similar program that
uses the Registry looks like.

Example 8.1. A Modern Variation of the Canonical "Hello, World"
Program
#include <windows.h>
#include <winreg.h>
#include <stdio.h>

// Hello, World! for the Registry: gets this machine's name and
prints
// it out.
void main(void)
{
 unsigned char pszName[MAX_PATH] = "";
 DWORD nNameLen = MAX_PATH;
 HKEY hkResult, hStartKey = HKEY_LOCAL_MACHINE;
 long nResult = ERROR_SUCCESS;

 nResult = RegOpenKeyEx(hStartKey,

"SYSTEM\\CurrentControlSet\\Control\\ComputerName\\ActiveComputerName
",
 0L, KEY_READ, &hkResult);
 if (ERROR_SUCCESS == nResult)
 {
 nResult = RegQueryValueEx(hkResult, "ComputerName",
0, 0,

pszName, &nNameLen);
 if (ERROR_SUCCESS == nResult)
 printf("Hello, world, from %s!\n", pszName);
 else
 printf("I don't even know my own name.\n");
 }
 RegCloseKey(hkResult);
}

Throughout the C examples in this section, you'll notice that I've
had to use double backslashes (\\) in Registry paths. That's
because the C preprocessor treats a single backslash as a flag
character that marks a special character sequence; to get one
backslash in a string, you need to include two.

This example contains code to implement the three most basic--and most common--
Registry operations:

1. Open a key whose full path you know using RegOpenKey or RegOpenKeyEx,
then retain the HKEY returned when the key is opened.

2. Use that returned HKEY to get a value whose location and type you already
know (in this case,
HKLM\SYSTEM\CurrentControlSet\Control\ComputerName\ActiveCompute
rName).

3. Do something with the retrieved value, and close the key opened in Step 1.

Almost all programs that use the Registry involve these three steps. Of course, in
addition to (or instead of) reading Registry data, you can write new data to a value or
enumerate a sequence of keys or values to find one that matches what you're looking
for. You'll learn how to do all these things in the following sections.

In the following sections, I present the API as Microsoft defined
it: using C. The sections on programming with Perl and Visual
Basic contain the correct definitions for those languages.

8.1.2 Opening and Closing Keys

In Chapter 1, I pointed out the organizational similarities between a filesystem and the
Registry. These similarities are more than skin deep: they extend to the actual process
of moving data into and out of the Registry. In general, the same rules apply when
working with Registry keys and their values as with disk files.

First and foremost, you have to open a key when you want to use it, then close it when
you're done. If you don't open a key, you can't get its values. If you don't close the key
when done, other applications can't access it, and your changes aren't written out
when you'd expect them to be. The API routines that open keys require two
arguments: a path to the key you want to open and an open parent key. This may seem
like a Catch-22: how can you open a key if you must already have an open key? The
answer is simple: the root keys (HKLM, HKCC, HKCU, HKU, HKDD, and HKCR)
are always open, so you can use them when you open any other key.

There are exceptions to the foregoing rule: some of the shell
utility API routines don't have to open or close keys. For
example, you can call SHRegCreateKey, which creates a new
user-specific key underneath your choice of HKLM or HKCU,
without opening either parent key. You even get back a handle
that you can use with other shell API routines, all without
opening or closing any other keys.

The next similarity involves access controls and rights. If you're accustomed to NTFS,
Unix, or Novell filesystems, you know that files and directories can have permissions
attached to them that govern who can open, modify, delete, and move things around.
In ACLs, files also have rights, which the ACLs grant. One entry in the ACL might
grant Administrator the right to read or write a file, while another might deny write
access to members of the Domain Users group. Registry keys have these same
controls and rights. As you'll learn in Chapter 9, you can keep your Registry secure by

putting ACLs on security-sensitive keys. When you open a Registry key, you must
specify what access you want to it: read, write, enumerate, and delete are all
examples. Windows 2000 checks the access you request against the ACLs on the
Registry key to decide whether or not you get access.

The best way to stay out of trouble when opening and closing keys is to remember to
balance key openings with closings. Later in the chapter (in Section 8.3.2), you'll see
a C++ class, StKey, that automates the cleanup process. Please be sure to close any
keys you open even when errors or exceptions interrupt the normal flow of control in
your code.

8.1.2.1 Opening keys

When you're ready to open a key, there are two different approaches you can take.
The first one is to use the RegCreateKey or RegCreateKeyEx functions, which I'll
talk about in a bit. They'll automatically open the key you specify or create it if it
doesn't exist. The second method, which is probably better for most applications, is to
open the key with RegOpenKeyEx or RegOpenKey. Why are these calls better? They
fail when you try to open a key that doesn't exist, while the RegCreate functions will
create a new key with no values in it. Imagine that you're calling a friend named Bill
on the phone. If you call and are told "Bill's not here" by the person who answers,
that's the equivalent of calling RegOpenKey routines on a nonexistent key. By contrast,
calling Bill and being told "Bill's not here, but I'll pretend to be him" is more or less
what happens when you call RegCreate. That may sometimes be desirable, but it's
not a pleasant surprise if you're not expecting it.

The recommended way to open a key is with RegOpenKeyEx. You supply an open
key, which may be a root key or a key you've already opened; the name of the full
path to the key you want to open; and a mask describing what access you want to the
newly opened key.

LONG RegOpenKeyEx(hKey, pszSubKey, dwOptions, samDesired, phkResult);
HKEY hKey Handle to any open key or root key.

LPCTSTR pszSubKey Name of the subkey of hKey you want to open; if NULL or empty,
RegOpenKeyEx just opens an additional copy of hKey instead.

DWORD dwOptions Reserved; must be 0.

REGSAM samDesired Mask defining access rights you're asking for (just use either KEY_READ or
KEY_WRITE).

PHKEY phkResult Pointer to the newly opened key; NULL if an error occurs.

The following code opens a key under HKLM for reading, then goes on to do some
other processing (which I've omitted here). If you combine the root key and the value
of pszSubKey, you'll see that the key being opened is
HKLM\SOFTWARE\LJL\ArmorMail\Users; if I'd already had any key in that path
open (for example, HKLM\SOFTWARE\LJL) I could have shortened the subkey
name accordingly.

DWORD result = ERROR_SUCCESS;
HKEY firstKey;

// try to open the user list key; if we succeed, enumerate its
subkeys
result = RegOpenKeyEx(HKEY_LOCAL_MACHINE, "SOFTWARE\\LJL\\ArmorMail\\
 Users", 0L, KEY_READ, &firstKey);
if (ERROR_SUCCESS == result)
 ...

If you try to open a key for access that the DACL on the key doesn't allow (for
example, trying to open any of the HKLM\HARDWARE subkeys for write access
from an unprivileged user account), you get ERROR_ACCESS_DENIED for your trouble.
One of the "strongly recommended" criteria for getting the Win9x and Windows 2000
certification labels is that you should open keys with the privileges you need: don't
ask for KEY_ALL_ACCESS when what you really need is KEY_READ. You should ask for
write access only when you're ready to write data to the Registry; this reduces the risk
that your code will accidentally damage the Registry while you're developing it.

If you're willing to use the default system security mask for key access, you can use
the RegOpenKey function instead. It takes the same hKey, pszSubKey, and phkResult
parameters as RegOpenKeyEx, but it doesn't accept a desired SAM mask.

LONG RegOpenKey(hKey, pszSubKey, phkResult);
HKEY hKey Handle to any open key or root key.

LPCTSTR pszSubKey Name of the subkey you want opened; if NULL or empty, RegOpenKey
opens another copy of hKey.

PHKEY phkResult Pointer to the newly opened HKEY.

The only difference between RegOpenKey and RegOpenKeyEx is that the latter has two
extra parameters. Apart from that, they function identically. One portability warning,
though: as with the other Win 3.x Registry API calls, RegOpenKey is unsupported on
Windows CE. If you're writing code you want to be portable, stick with the .Ex
functions, tempting though the old ones may be.

8.1.2.2 Opening a key while impersonating another user

As it turns out, Windows NT and 2000 both cache the contents of HKCU for all
threads in a process. This is a big efficiency win (which is why Microsoft did it), but
if you're writing an application that uses multiple threads, it can pose a sticky problem
if any of those threads has to impersonate another user. For example, let's say you're
writing an antivirus utility. You want it to be able to scan memory and files owned by
whichever users are present on the system, so you code it to spawn one thread for
each interactive or network user. Guess what? The default behavior results in your
application reading, and storing, settings only in HKCU, even if other users have set
preferences in their own profiles. This problem is particularly acute for people who
are writing management utilities that have to deal with users and services sharing a
computer (or, worse, using Terminal Services).

There's a way to fix this when writing applications for Windows 2000: the
RegOpenCurrentUser call opens the appropriate user-specific key for the thread that
calls it. For example, if you have one thread running as Administrator and another
running as RA\paulr, and each thread calls RegOpenCurrentUser, one thread gets
HKU\Administrator and one gets HKU\paulr.[4]

[4] Actually, these names would be replaced by SIDs, but you get the idea.

LONG RegOpenCurrentUser(rDesiredPerms, phkResult);
REGSAM rDesiredPerms Permissions you want to have on the user-specific key.
PHKEY phkResult Pointer to the newly opened HKEY.

8.1.2.3 Opening the user's class data

In Windows 2000, the class information that used to live only in HKCR has been
partitioned into two chunks: one that lives in HKCR and one that occupies the new,
user-specific HKCU\Classes subkey. When you want data about OLE/ActiveX
objects or class definitions (say, to find out which class factory to use to create a new
object), how do you know where to look? Worse still, what if you're writing a
multiuser or server-based application that needs to get the correct settings for
whatever user is currently making a request? Oh, the horror.

The solution is a new, Windows 2000-only API call, RegOpenUserClassesRoot. This
routine allows you to open a handle to the class data for a particular user. Windows
2000 automatically combines that user's HKCU\Classes key with the machine's
HKCR data to present a single unified tree to your program.

LONG RegOpenUserClassesRoot(hToken, dwOptions, samDesired,
phkResult);
HANDLE hToken Access token that identifies the user whose data you want.
DWORD dwOptions Reserved; must be 0.

REGSAM samDesired Mask defining access rights you're asking for (just use KEY_READ or
KEY_WRITE).

PHKEY phkResult Pointer to the newly opened HKEY; NULL if an error occurs.

The dwOptions, samDesired, and phkResult parameters are all pretty
straightforward, since they work the same as they do when calling RegOpenKeyEx.
hToken takes a little more explaining: it's a process token like the one the system
generates internally when you log on interactively. In fact, you can pass that same
token to RegOpenUserClassesRoot, but normally you wouldn't need to, since you
can get the active user's class data when running processes in that user's context. It's
more likely that you'd need to get a token representing some user other than the
current user. For example, in a multiuser server application, you'd probably want to
retrieve each individual user's data by opening their class data key. There are six
routines that can give you back a token of the type you need to call
RegOpenUserClassesRoot: (see Table 8.7). Which of these routines you use will
depends on what you're trying to do. Most of the time, though, you'll probably use
either LogonUser, OpenProcessToken, or OpenThreadToken.

Table 8.7. API Routines That Can Give You a Token to Use with
RegOpenUserClassesRoot

API routine Use it when you want to...

LogonUser Log a new user on to the local computer and run processes as that
user.

CreateRestrictedToken (Windows 2000 only) Create a new token with fewer privileges than

some existing token.
DuplicateToken Duplicate an existing token, keeping the same access privileges.

DuplicateTokenEx Duplicate an existing token, creating either an exact duplicate or an
impersonation token.

OpenProcessToken Obtain a handle to the access token of an existing process.
OpenThreadToken Obtain a handle to the access token of an existing thread.

8.1.2.4 Closing keys

There's only one way to close a handle to a key: RegCloseKey. You pass in the HKEY
you want to close. If it's successfully closed, you get ERROR_SUCCESS back.
Otherwise, you get an error that indicates what went wrong.

LONG RegCloseKey (hKey);

You can actually call RegCloseKey on one of the predefined root key entries. It
reports a successful close but doesn't actually close the root key. This frees you from
worrying about whether the HKEY you're trying to close is really yours or not.

When you close an HKEY, any data you've changed in that HKEY or its subkeys may be
written to disk. On the other hand, it may not; the Registry support code may cache
these changes until the next time it's convenient to flush them out to disk. Don't
assume that your changes are immediately preserved as soon as you close a HKEY. Do
assume that your changes are not preserved until you do so.

8.1.3 Creating Keys

You can create new keys anywhere you have permission. As I pointed out in earlier
chapters, you probably won't need to do so very often unless you're writing
applications that use the Registry to store their parameters. Just in case, though, here's
how to do it.

RegCreateKeyEx is the most powerful function for creating a new key. When you ask
it to create a key, it does so, then opens it. If the key already exists, it just opens it and
returns a handle to it. In either case, after a successful call to RegCreateKeyEx you'll
have an open key handle that can be used for all manner of things as described
elsewhere in the chapter.

LONG RegCreateKeyEx(hKey, pszSubKey, Reserved, pszClass, dwOptions,
 samDesired, lpSecurityAttributes, phkResult, lpdwDisposition);

HKEY hKey

Handle to an open key under which the
new subkey is created; applications can't
create keys directly under HKLM or
HKU.

LPCSTR pszSubKey

Path to the new subkey you want to
create; this path is interpreted relative to
hKey. The pathname must not begin
with a backslash. Any keys in the path
that don't exist are created for you.

DWORD Reserved Reserved; must be NULL.

LPCSTR pszClass Specifies the class of the key. Microsoft

says "No classes are currently defined;
applications should pass a NULL string."

DWORD dwOptions

May be
REG_OPTION_NON_VOLATILE
(creates the key as a normal, persistent
key), REG_OPTION_VOLATILE
(creates the key as a volatile key that is
never stored to disk), or
REG_OPTION_BACKUP_RESTORE
(ignores samDesired and attempts to
open the key for backup/restore access.)
The default is
REG_OPTION_NON_VOLATILE.

REGSAM samDesired
Contains an access mask specifying
what access you want to the new key;
see Table 8.2 for a complete list.

LPSECURITY_ATTRIBUTES lpSecurityAttributes

On input, points to a
SECURITY_ATTRIBUTES structure
that controls whether child processes
and threads may access this key. Leave
this NULL to turn off inheritance.

PHKEY phkResult Pointer to HKEY containing the newly
opened key.

LPDWORD lpdwDisposition

Points to a DWORD that indicates what
happened; it is set to
REG_CREATED_NEW_KEY if the
requested key has to be created, or
REG_OPENED_EXISTING_KEY if the
key is merely opened.

When you open an existing key, RegCreateKeyEx ignores the lpClass, dwOptions,
and lpSecurityAttributes parameters, since their values are determined by the
existing key.

Once you successfully call RegCreateKeyEx, you're guaranteed to have an open HKEY
you can use to add values or subkeys. Of course, a newly created key won't have any
of either item, but an existing key that RegCreateKeyEx opened might indeed; be sure
to check lpdwDisposition if you need to know whether the key was created or just
opened.

You can use RegCreateKeyEx as a mutual-exclusion locking
mechanism (or mutex) for two or more processes. When one
process creates a new key using RegCreateKeyEx, the return
value is REG_CREATED_NEW_KEY. When subsequent processes try
to create the same key, they get back
REG_OPENED_EXISTING_KEY, which they can use as a signal that
the mutex is in use. Windows NT and 2000 offer more
sophisticated mutex mechanisms, but this one has the advantage
that it works on any variant of the Win32 API--even under
emulators like Linux's Wine.

You can also use the less-flexible RegCreateKey, but neither Microsoft nor I
recommend it. It lacks a way to specify what access or security attributes you want to
apply to the key, meaning that it may fail unexpectedly when trying to open an
existing key that has an ACL applied to it. In addition, it doesn't tell you whether it
created a key or opened it.

LONG RegCreateKey(hKey, pszSubKey, phkResult);

HKEY hKey Handle to an open key under which the new subkey is created; applications
may not create keys directly under HKLM or HKU.

LPCSTR pszSubKey Full path of key you want to create; any components that don't exist are
created.

PHKEY phkResult Pointer to HKEY containing newly opened key.

8.1.4 Getting Information About Keys

Every key has a great deal of information associated with it, even if it's not
immediately obvious. When you use one of the Registry editing tools, you see a
neatly tree-structured view of what's beneath each root key, but the system maintains
a lot more data beneath the surface so that it can efficiently access keys and values
and give them back to requesting programs.

RegQueryInfoKey gives you access to a total of 11 different pieces of data for any
key in the Registry. Typically you use it to find how many subkeys or values exist so
you can efficiently enumerate through them (more on that in the next section).
RegQueryInfoKey looks like the following.

LONG RegQueryInfoKey(hKey, pszClass, lpcbClass, lpReserved,
lpcSubKeys,
 lpcbMaxSubKeyLen, lpcbMaxClassLen, lpcValues,
lpcbMaxValueNameLen,
 lpcbMaxValueLen, lpcbSecurityDescriptor, lpftLastWriteTime);
HKEY hKey Handle to any open key or root key.

LPTSTR lpClass Points to a buffer that receives the key's class name.
May be NULL if you don't want the class name back.

LPDWORD lpcbClass

Points to a DWORD containing the length of the class
name passed back in lpClass. May be NULL if
lpClass is also NULL; if one is NULL, but the other
isn't, you get ERROR_INVALID_PARAMETER back.

LPDWORD lpReserved Reserved; must always be NULL.

LPDWORD lpcSubKeys Points to a DWORD that receives the number of subkeys
of hKey.

LPDWORD lpcbMaxSubKeyLen
Points to a DWORD that holds the length (not including
the terminating NULL) of the longest subkey name
under hKey.

LPDWORD lpcbMaxClassLen
Points to a DWORD that holds the length, not including
the terminating NULL, of the longest class name of any
key under hKey.

LPDWORD lpcValues Points to a DWORD that holds the number of values
attached to hKey.

LPDWORD lpcbMaxValueNameLen Points to a DWORD that receives the length of the
longest value name. This is useful when using

RegEnumValue.

LPDWORD lpcbMaxValueLen
Points to a DWORD that receives the length of the
longest value contents. This is also useful when using
RegEnumValue.

LPDWORD lpcbSecurityDescriptor

Points to a DWORD that receives the size of the security
descriptor associated with this key. Security descriptors
can vary in size, so it's helpful to know how big a
particular key's descriptor is before calling
RegGetKeySecurity.

PFILETIME lpftLastWriteTime
Points to a FILETIME structure (see Section 8.1.1.5)
that is filled in with the date and time hKey or any of
its values were modified.

Any of the parameters except hKey can be NULL; if you specify NULL for a parameter,
that data isn't returned. Here's a small routine that gets the number of values attached
to any open Registry key; notice that it passes NULL for everything except lpcValue :

DWORD GetKeyValueCount(HKEY inKey)
// Gets the count of values attached to a particular key. Returns
// the value count (which may be 0) or -1 if an error occurs.
{
 DWORD valCount = 0;
 DWORD result = ERROR_SUCCESS;

 result = RegQueryInfoKey (inKey,
 NULL, NULL, // class & class size
 NULL, // reserved
 NULL, // # of subkeys
 NULL, // subkey length
 NULL, // class length
 &valCount, // # of values
 NULL, NULL, NULL, NULL);
 if (ERROR_SUCCESS != result)
 valCount = -1;
 return valCount;
}

It's worth making special mention of lpcSubKeys, lpcValues,
lpcbMaxValueNameLen, and lpcbMaxValueLen. It's often necessary to do some kind
of processing over every key or value under a particular subkey. This enumeration is
nothing more than an iterative loop that starts with the first key or value of interest,
then proceeds on, continuing until it has processed every key or value. For example,
you could enumerate the subkeys of HKU to find out the SIDs of every installed local
account on a machine. Armed with that information, you can look up the account
names to build a list of users who have profiles on the machine.

These four parameters make it easier to efficiently enumerate keys and values.
Knowing how many items there are makes it possible to enumerate any subset of a
key's values, and knowing the maximum name and content lengths means you can
allocate a buffer that's just the right size, instead of too big or too small, to hold the
data returned by the enumeration.

8.1.5 Enumerating Keys and Values

The enumeration API routines treat a key's subkeys or values as an ordered list of n
values, numbered from to n-1. You pass an index value to the API routines to indicate
which key or value you want; the corresponding key or value is returned. For values,
there's an extra wrinkle: keys can have a default value, which always appears as item
in the enumeration list. (You'll see how this works in Section 8.1.5.3 later in this
chapter.) This is convenient, but don't be misled: the values or keys aren't really an
ordered list, and if you enumerate the same subkey twice in a row, you can potentially
get items back in a different order each time.

8.1.5.1 Enumeration strategies

When you enumerate keys or values, there are a few different strategies you can use
to process all the enumerated keys. The easiest way is to call RegQueryInfo-Key to
find out how many subkeys or values exist, then use a simple loop to process every
key or value. A small snippet implementing this tactic might look like:

DWORD idx=0, keyCount = 0
LONG retVal = 0;

retVal = RegQueryInfoKey (inKey,
 NULL, NULL, // class & class size
 NULL, // reserved
 &keyCount, // # of subkeys
 NULL, // subkey length
 NULL, // class length
 NULL, // # of values
 NULL, NULL, NULL, NULL);

for (idx=0; idx < keyCount; idx++)
{
 // get the idx'th key's name and length
 retVal = RegEnumKeyEx(interestingKey, idx, name, nameLen, NULL,
 NULL, NULL, NULL);

 // do something with it
}

This approach has the advantage of being simple to implement and understand.
However, you may not want to process every key or value. Instead, if you want to
process only keys or values that meet some criterion, you can use a conventional
while loop like this:

DWORD idx = 0;
bool keepGoing = true;
LONG retVal = 0;

while (keepGoing)
 {
 retVal = RegEnumKeyEx(interestingKey, idx++, name, &nameLen,
 (unsigned long *)NULL, (char *)NULL,
 (unsigned long *)NULL,
(LPFILETIME)NULL);
 if (ERROR_SUCCESS == retVal)

 {
 // If we're interested in this key, we'd process it
further;
 // we might also set keepGoing here if we only want one
key
 }
 keepGoing = (keepGoing && retVal == ERROR_SUCCESS);
 }

With this approach, you don't have to know in advance how many keys or values
exist, and it's a simple matter to stop enumerating as soon as you find what you're
looking for.

8.1.5.2 Enumerating keys

You enumerate keys using the RegEnumKeyEx and RegEnumKey routines. They're very
similar; the primary difference is that RegEnumKeyEx allows you to retrieve the
modification time and class name for a subkey, while RegEnumKey doesn't. In either
case, you simply supply the HKEY you want enumerated and an index value that
indicates which subkey you want to see. The name (not the complete path) of the
corresponding subkey is returned, so you can open any subkey you find by passing
the name to RegOpenKey or RegOpenKeyEx.

LONG RegEnumKeyEx(hKey, dwIndex, pszName, lpcbName, lpReserved,
pszClass,
 lpcbClass, lpftLastWriteTime);
HKEY hKey Handle to any open key or root key.

DWORD dwIndex Index, from to the number of subkeys-1, indicating which key
you want to fetch.

LPSTR pszName Points to an area that will receive the name of the enumerated
key.

LPDWORD lpcbName
Points to a DWORD containing the size of pszName; on return,
contains the length of pszName in bytes, including the NULL
terminator.

LPDWORD lpReserved Reserved; as always, must be NULL .

LPSTR pszClass Points to a buffer that receives the subkey's class name; may
be NULL if you don't care about this datum.

LPDWORD lpcbClass

Points to a DWORD containing the size of pszClass ; on
return, contains the length of pszClass in bytes, including
the NULL terminator. May be NULL only if pszClass is also
NULL .

PFILETIME lpftLastWriteTime
Points to a structure that is filled in with the date and time of
the last modification to the subkey; may be NULL if you're not
interested.

RegEnumKey is identical in function, except for having fewer parameters.

LONG RegEnumKey(hKey, dwIndex, pszName, cbName);
HKEY hKey Handle to any open key or root key.
DWORD dwIndex Index, from to the number of subkeys, indicating which key you want to fetch.
LPSTR pszName Points to an area that receives the name of the enumerated key.
LPDWORD cbName Points to a DWORD containing the size of pszName ; on return, contains the

length of pszName in bytes, including the NULLterminator .

8.1.5.3 Enumerating values

Once you've located a key of interest, you might want to enumerate its values. Most
Registry keys have at least one value; quite a few have many values whose number
and contents vary from machine to machine. (HKCR is a good example, because it
differs depending on what classes and objects are registered on a machine.) You can
accomplish this with RegEnumValue: [5]

[5] Surprisingly, there's no RegEnumValueEx. The original function hasn't changed since its introduction,
so Microsoft left it alone in Win32.

LONG RegEnumValue(hKey, dwIndex, pszValueName, lpcbValueName,
lpReserved,
 lpType, lpData, lpcbData);
HKEY hKey Handle to any open key or root key.

DWORD dwIndex
Ordinal index of the value you want to fetch; you usually start with and
move up until you either get ERROR_NO_MORE_ITEMS or hit the
number of items returned by RegQueryInfoKey.

LPSTR pszValueName Points to a buffer that, on return, contains the value's name.

LPDWORD lpcbValueName
On entry, points to the size of pszValueName; on return, points to
length of string copied into pszValueName, not including the NULL
terminator.

LPDWORD lpReserved Reserved; must be NULL.

LPDWORD lpType
Points to a buffer that, on return, holds the type of the requested value
(REG_DWORD, REG_SZ, etc.). May be NULL if you don't care what
type the value is.

LPBYTE lpData Points to a buffer into which the contents of the specified value are
copied.

LPDWORD lpcbData On entry, points to a DWORD containing the size of lpData; on return,
contains the number of bytes written into lpData.

To see RegEnumValue in action, check out Example 8.7 in Section 8.3.3 later in this
chapter; the example illustrates the basic things you should do when enumerating a set
of values:

• Call RegQueryInfoKey first to get the maximum subkey length, then use that
to allocate any buffers you need to get the value name or contents.

• Make sure you either check for ERROR_NO_MORE_ITEMS or honor the number
of values returned by RegQueryInfoKey.

• Open the parent key with KEY_READ or KEY_QUERY_VALUE access.

8.1.6 Getting Registry Data

Maybe you patiently enumerated a sequence or keys, or perhaps you already know
just where the data you want is stored. Either way, at some point you'll want to
actually retrieve a value stored under some Registry subkey. If you used
RegEnumValue, you could have gotten the value's contents when you enumerated it,
but if you just want to grab a single value whose path you know, there are better ways
for doing so.

8.1.6.1 Getting a single value

The first, and most useful, method of getting a single value's contents out of the
Registry is the RegQueryValueEx function. As its name implies, it's a Win32 routine;
you supply an open key and a value name, and it returns the value's datatype, length,
and contents.

LONG RegQueryValueEx(hKey, pszValueName, lpReserved, lpType, lpData,
lpcbData);

HKEY hKey Handle to any key or root key opened with KEY_READ or
KEY_QUERY_VALUE access.

LPTSTR pszValueName Name of the value to query; if NULL or empty, queries default value.
LPDWORD lpReserved Unused; must be NULL .

LPDWORD lpType On return, holds the datatype of the value (REG_DWORD, REG_SZ, etc.).
If you pass in NULL, no type data is returned.

LPBYTE lpData
Points to the buffer that holds the value's contents on return. If you pass
in NULL, no value data is returned but the lpcbData parameter holds
the length of the contents.

LPDWORD lpcbData
On input, points to the buffer that specifies the size of lpData buffer.
On return, holds amount of data copied into lpData. You can pass in
NULL if lpData is NULL also.

The most straightforward way to call RegQueryValueEx is just to get the value, like
this (assuming you're fetching a REG_DWORD value named "SomeValue" from a
previously opened key):

nResult = RegQueryValueEx(hOpenKey, "SomeValue", NULL, NULL,
 (LPBYTE)&theValue, &valSize);

Since you always know how big a DWORD is, the size really isn't important. Things get
a little more complex when querying for a string value named "SomeStringValue". At
runtime, you don't know the string's length, which means you must either dynamically
allocate a buffer or check to see whether there's more data available than your buffer
can hold. RegQueryValueEx returns ERROR_MORE_DATA if the requested value has
more data than can fit in the buffer length as specified by lpcbData:

DWORD bufSize = MAX_PATH;
char theBuf[MAX_PATH];

nResult = RegQueryValueEx(hOpenKey, "SomeStringValue", NULL, NULL,
 (LPBYTE)theBuf, &bufSize);
if (ERROR_MORE_DATA == nResult)
{
 // too much data for our buffer; fail, use another buffer, or do
 // something else
}
else if (ERROR_SUCCESS == nResult)
{
 // continue normally
}

Alternatively, you can find out how big the value is, then allocate the buffer for it.
This approach requires an extra Registry query but lets you economize on memory by
not allocating any more than you actually need:

DWORD bufSize = 0;
char *theBuf = NULL;

nResult = RegQueryValueEx(hOpenKey, "SomeStringValue", NULL, NULL,
 NULL, &bufSize);
if (ERROR_SUCCESS == nResult)
{
 theBuf = (char *)malloc(bufSize+1); // allow extra byte for NULL
 // terminator
 if (theBuf)
 {
 nResult = RegQueryValueEx(hOpenKey, "SomeStringValue", NULL,
 NULL, (LPBYTE)theBuf, &bufSize);
 if (ERROR_SUCCESS == nResult)
 // do whatever with the value
 free(theBuf);
 }
}

Notice that this code snippet adds an extra byte to the buffer to allow for the NULL
terminator, which may be stored as part of the string. Also notice that extra space isn't
allocated for a Unicode string: if you define UNICODE, the initial call returns the
string's Unicode length in bufSize, but if UNICODE isn't defined, the string is
converted into ANSI, and bufSize contains the ANSI string length.

The MSDN documentation for RegQueryValueEx points out that
it can return things you didn't ask for in some cases. In particular,
if you use RegQueryValueEx to query a value under
HKEY_PERFORMANCE_DATA, the data you get back in lpData may
contain some extraneous data, so you have to walk through the
value's contents yourself to see what's in it.

You can also use RegQueryValue to request a key's value, but it can get only the
default value (remember, that's the only value Win3.x supports, and RegQueryValue
is a 3.x compatibility function).

LONG RegQueryValue(hKey, pszSubKey, pszValue, lpcbValue);
HKEY hKey Points to any currently open key or one of the root keys.

LPCSTR pszSubKey Points to the subkey of hKey whose default value you want to get. If it's
NULL, RegQueryValue fetches the value of hKey.

LPSTR pszValue Points to a buffer that holds the value contents; may be NULL if you only
want the contents' length.

LPDWORD lpcbValue On entry, points to the length of lpValue ; on return, indicates the actual
length of the value's contents.

8.1.6.2 Getting multiple values

You can retrieve multiple values from a key at once using RegQuery-
MultipleValues, but its interface can be a little confusing.

LONG RegQueryMultipleValues(hKey, valList, numVals, pszValueBuf,
ldwTotalSize);

HKEY hKey Points to any currently open key or one of the root keys. The key must be
opened with KEY_SET_VALUE or KEY_WRITE access.

PVALENT valList Array of VALENT structures (see the next paragraph); each item holds
the name of a value to retrieve on entry and the value's data on exit.

DWORD NumVals Number of elements in the valList array.

LPTSTR pszValueBuf Points to the buffer which, at exit, holds the retrieved values.

LPDWORD ldwTotalSize On entry, points to the size (in bytes) of pszValueBuf; at exit, returns
the number of bytes written to the buffer.

To use this function, fill out an array of VALENT structures: you put the value name
you're looking for in ve_valuename, and RegQueryMultipleValues fills in the other
fields for you:

typedef struct value_entA {
 LPSTR ve_valuename;
 DWORD ve_valuelen;
 DWORD ve_valueptr;
 DWORD ve_type;
}VALENTA, FAR *PVALENTA;

On entry, pszValueBuf should point to a buffer big enough to hold all the value data
you're requesting. On return, you can iterate through valList; each item's
ve_valueptr member points to the location within pszValueBufwhere the value
data's actually stored. You can also call RegQueryMultipleValues with an
pszValueBuf of NULL; when you do, ldwTotalSize contains the buffer size
required to hold all the requested values.

8.1.7 Adding and Modifying Values

Keys can signify things based on their presence or absence, but values are the best
way to store persistent data in the Registry. The RegSetValueEx function does double
duty; it can create new values or change the contents of existing ones.

LONG RegSetValueEx(hKey, pszValueName, Reserved, dwType, lpData,
cbData);

HKEY hKey Points to any currently open key or one of the root keys. The key must
be opened with KEY_SET_VALUE or KEY_WRITE access.

LPCSTR pszValueName
Name of the value to set; if no value with the specified name exists,
RegSetValueEx creates it. If pszValueName is empty or NULL,
the supplied value is assigned to the key's default value.

DWORD Reserved Unused; must be 0.

DWORD dwType Type of the value you're adding or modifying; may be any of the types
defined in Chapter 2.

CONST
BYTE * lpData Data to load into the value.

DWORD cbData Length (in bytes) of the data pointed to by lpData. If the value
contents are of type REG_SZ, REG_EXPAND_SZ, or REG_MULTI_SZ,

cbData must reflect the length of the string plus the terminating NULL
character.

If you call RegSetValueEx with the name of an existing value in pszValueName, its
contents and type is replaced by whatever you pass in. If no such value exists, it's
created with the contents and type you specify.

In addition to RegSetValueEx, there's also a second value-setting function you may
use: RegSetValue. It was originally part of the Win 3.1 Registry API. You may
remember from Chapter 1 that the Win 3.1 Registry allowed only a single value for
each key. In keeping with that heritage, RegSetValue allows you to set only the
default value for a key, and the value you set must be a REG_SZ. I present this function
for completeness, but you should avoid it in favor of RegSetValueEx.

LONG RegSetValue(hKey,pszSubKey, dwType, pszData, cbData);

HKEY hKey Key to which the new value is added; can be any currently open key or root
key.

LPCSTR pszSubkey Name of subkey that gets the value; if NULL, the value is added to hKey.

DWORD dwType Datatype of new value; must be REG_SZ.
LPCSTR pszData Pointer to string buffer containing new value's contents.
DWORD cbData Length of pszData, not including its terminating NULL character.

As with RegSetValueEx, if the key named in pszSubkey doesn't exist, it's created. In
an additional twist, if the key named by pszSubkey doesn't exist, RegSetValue
creates any keys necessary to construct a legal path, then adds the default value to it.
Note that if all you want is to set the default value, you can do so using
RegSetValueEx and passing NULL for pszValueName.

Example 8.2 illustrates how RegSetValueEx works; the example sets the
DiskSpaceThreshold value to the percentage of disk space you specify. This routine
is used in a tool I wrote that configures new servers with the desired default settings
before delivering them to customers or remote sites.

Example 8.2. SetDiskWarningThreshold
// This routine sets the DiskSpaceThreshold to the specified
percentage.
// You should check all the system's disk volumes to figure out a
reasonable
// percentage for the machine, then call this routine to set it.
long SetDiskWarningThreshold(const int inThreshold)
{
 char pszName[MAX_PATH] =

"System\\CurrentControlSet\\Services\\LanmanServer\\Parameters";
 HKEY hkResult = NULL;
 LONG nResult = ERROR_SUCCESS;

 // preflight our arguments
 if (inThreshold < 1 || inThreshold > 99)
 return ERROR_INVALID_PARAMETER;

 // open the key with write access so we can set the value

 nResult = RegOpenKeyEx(HKEY_LOCAL_MACHINE, pszName, 0L,
KEY_WRITE, &hkResult);
 if (ERROR_SUCCESS == nResult)
 {
 nResult = RegSetValueEx(hkResult, "DiskSpaceThreshold", 0L,
 REG_DWORD, (unsigned char
*)&inThreshold,
 sizeof(int));
 if (ERROR_SUCCESS == nResult)
 nResult = RegCloseKey(hkResult);
 }
 return nResult;
}

8.1.8 Deleting Keys and Values

You may find it necessary to delete keys or values from within your home-brewed
Registry utilities. Since many of the lesser-known features of Windows 2000 and NT
discussed in Chapter 10, function based on the presence or absence of special trigger
keys, turning these features on or off may require you to delete values, and there's no
way to do so with a .REG file. You must be careful with your newfound destructive
powers, though; accidentally deleting the wrong key or value can make your system
stop working altogether.

Before you delete a key or value, you must have the parent key opened with adequate
access. If you supply KEY_WRITE as the REGSAM value when you open the key, you can
delete it. You can also request KEY_CREATE_SUB_KEY or KEY_SET_VALUE rights to
gain delete access to keys and values, respectively.

There's one other thing worth mentioning here: when you delete a key or a value, it's
not actually deleted. Instead, the Registry subsystem marks the deleted items as
deleted, but doesn't delete them until the next time Registry data is flushed (either
explicitly with RegFlushKey or automatically by the kernel's lazy flusher). If you try
to read, write, or enumerate a key or value that's been marked as deleted, you get
ERROR_KEY_DELETED as a return value. You can always call RegCloseKey on a
deleted key without getting an error, though.

8.1.8.1 Deleting a key

You delete individual keys with the RegDeleteKey routine. If you specify a valid key
and subkey, the key is immediately marked for deletion, even if other processes
currently have the key open. This is different from the file metaphor used elsewhere
in the Registry; if you try to delete an open file, the delete operation will fail, but not
so with RegDeleteKey. At that point, attempts by other processes to access data
attached to the open key will fail.

LONG RegDeleteKey(hKey, pszSubKey);
HKEY hKey Key pointing to parent of target value; may be a root key or a subkey.

LPCSTR pszSubkey Name of the subkey to be deleted; if NULL or empty, the key specified by
hKey is deleted.

You can't delete a root key, and you can't delete first-level subkeys of root keys. For
example, you can't remove HKLM\SOFTWARE or HKCU\SOFTWARE, but you can
remove HKLM\SOFTWARE\Microsoft (though I wouldn't recommend it). In
addition, you may not delete a key that has subkeys; if you try, you get an error. It's
okay to delete keys that have values; the values are deleted along with the key.

Under Windows 95 and 98, RegDeleteKey deletes keys that
have subkeys. If your code depends on the standard Windows
2000 behavior of failing when a targeted key has subkeys, it
works fine under Win9x, but it deletes the subkeys without
warning you! If you want to use routines with more explicit
semantics, consider using SHDeleteKey or SHDeleteEmptyKey.

8.1.8.2 Deleting a value

Deleting values is wonderfully straightforward (as long as you have KEY_WRITE or
KEY_SET_VALUE access on the target key)! RegDeleteValue removes the specified
value from the key you provide.

LONG RegDeleteValue(hKey, pszValueName);
HKEY hKey Key pointing to parent of target value.
LPCSTR pszValueName Name of the value to be deleted.

If pszValueName is NULL or contains an empty string, RegDeleteValue deletes the
default value (you know, the one that appears as <Default> or No Name in Registry
editors). Otherwise, pszValueName must contain the correct name of an existing
value.

8.1.9 Using Registry Security Information

Under Windows 2000, every object in the entire system has security information
attached to it. Registry keys are just objects, so they too can have ACLs that control
who can read, write, or delete the key and its values. Ordinarily, you don't need to
control these ACLs; when you do, RegEdt32 is probably the best tool for doing so. If
you find it necessary or desirable to get a key's security data programmatically,
though, you certainly can.

What's in a Security Descriptor?

The short answer is "it depends." The long answer is, well, longer. A security
descriptor, or SD, is really an opaque block of data that Windows 2000 can
parse into a set of access controls. Every object in the system has an SD
associated with it. A single SD contains one or many sets of the following
items:

• The security ID (SID) of the object's owner

• The SID of the object owner's primary group

• A discretionary ACL (the object owner can freely modify)

• A system ACL (modified only by entities with system privileges)

• Qualifiers (specify whether the other items are self-contained or point
to other SDs and ACLs)

You can't directly modify (or even decipher) an SD's contents; instead, you
have to use the security API routines, notably:

• InitializeSecurityDescriptor

• GetSecurityDescriptorOwner

• SetSecurityDescriptorDacl

• SetSecurityDescriptorOwner

• SetSecurityDescriptorSacl

With these, you can peel back the contents of a single SD and use the
security data therein to verify or change who owns an object and who may
access it with which permissions. Of course, your ability to do this depends
entirely on whether your code has adequate permission itself when it runs!

ACLs come in two types: system ACLs, or SACLs, are owned by (and can only be
changed by) the system; while discretionary ACLs (DACLs for short) are controlled
by the owner of the object. As you might expect from security information, not just
anyone can read either type of ACL. To read the DACL, the requesting process must
have READ_CONTROL access on the key. To get this access, the requester must either
own the key itself, or the DACL must grant READ_CONTROL to the account under
which the requester is running.

System ACLs are trickier. They can be read only by applications that have been
granted the ACCESS_SYSTEM_SECURITY permission. In turn, the only way to get
ACCESS_SYSTEM_SECURITY is for the calling process to ask for the

SE_SECURITY_NAME privilege, open the key with a REGSAM value of
ACCESS_SYSTEM_SECURITY, then turn off SE_SECURITY_NAME again.

To actually retrieve a key's security data (assuming you've fulfilled the access control
requirements), you can use RegGetKeySecurity . Besides passing in the name of the
key whose information you want, you must also fill in the SecurityInformation
field to indicate which data you want. If you have permission, pSecurityDescriptor
is filled with the ACL or ownership data on return, and lpcbSecurityDescriptor
contains the ACL size. ACLs vary in size, since they may contain one or many
entries.

LONG RegGetKeySecurity (hKey, SecurityInformation,
pSecurityDescriptor,
 lpcbSecurityDescriptor);

HKEY hKey Open Registry key whose security
information you want.

SECURITY_INFORMATION SecurityInformation

SECURITY_INFORMATION
structure indicating what parts of the
security descriptor you're asking for;
may be any combination of items from
Table 8.3.

PSECURITY_DESCRIPTOR pSecurityDescriptor
Pointer to record that receives the
security descriptor specified by
SecurityInformation.

LPDWORD lpcbSecurityDescriptor

Points to a DWORD ; on entry, it must
hold the size of pSecurity-
Descriptor, and, on return, it
contains the size, in bytes, of the
returned security descriptor.

If the buffer pointed to by pSecurityDescriptor is too small, RegGetKey-Security
returns ERROR_INSUFFICIENT_BUFFER and the lpcbSecurity-Descriptor
parameter contains the number of bytes required for the requested security descriptor.
This makes it possible to efficiently allocate a buffer of the right size by calling it
twice, like this:

long retVal = 0, aclSize = 0;
PSECURITY_DESCRIPTOR pWhat = NULL;

retVal = RegGetKeySecurity(theKey, DACL_SECURITY_INFORMATION, pWhat,
&aclSize);
if (ERROR_INSUFFICIENT_BUFFER != retVal)
 throw(retVal);
pWhat = malloc(aclSize);
retVal = RegGetKeySecurity(theKey, DACL_SECURITY_INFORMATION, pWhat,
&aclSize);
if (ERROR_SUCCESS != retVal)
 throw(retVal);

8.1.9.1 Setting an item's security information

If you're not thoroughly familiar with how Windows 2000's
security system works, stay away from RegSetKeySecurity
until you have a good set of Registry backups. Setting the wrong
permissions on a key is much easier to do programmatically than

permissions on a key is much easier to do programmatically than
through any of the GUI editing tools, so please be very careful.

Once you've gotten a security descriptor and modified it,[6] you can write it back to the
key that owns it with RegSetKeySecurity.

[6] I'm not about to talk about how you actually create or modify ACLs; that's a book all by itself.

LONG RegSetKeySecurity (hKey, SecurityInformation,
pSecurityDescriptor);

HKEY hKey Open Registry key whose security
descriptor you want to set.

SECURITY_INFORMATION SecurityInformation
SECURITY_INFORMATION structure
indicating what parts of the security
descriptor you're changing.

PSECURITY_DESCRIPTOR pSecurityDescriptor Pointer to security descriptor containing
ACL data you want to apply to hKey.

To ensure that your new security data gets written, you should call RegCloseKey on
the modified key after successfully calling RegSetKeySecurity. This is true even if
you've set security on one of the root keys; it won't actually be closed, but its cached
security data is updated.

8.1.10 Connecting to Remote Computers

In Chapter 4, and Chapter 5, you learned how to use RegEdit and RegEdt32 to edit
Registry data on remote computers. Adding this same functionality to your own
programs is trivial: all you need do is call RegConnectRegistry and use the HKEY it
returns in any other calls you make to Registry API functions. When you're finished
with the remote key, you call RegCloseKey on it as though it were a local key. The
API function declaration looks like the following.

LONG RegConnectRegistry(pszMachineName, hKey, phkResult);

LPSTR pszMachineName Name of the remote machine you want to connect to; must not include
the leading backslashes.

HKEY hKey Root key you want to connect to: may be either HKLM or HKU.
PHKEY phkResult Pointer to returned key in remote Registry.

HasPackage (shown in Example 8.3) showcases RegConnectRegistry in action. You
supply it with a machine name and a subkey; it checks the Registry on the specified
machine to see whether it has a subkey of HKLM\SOFTWARE by the name you
specify. The call to RegConnectRegistry and the corresponding RegCloseKey on the
key it returns are the only changes needed to enable remote Registry connections in
this small program.

Example 8.3. HasPackage
void main(int argc, char **argv)
{
 char pszName[MAX_PATH];
 HKEY hkRemoteKey = NULL, hkResult = NULL;

 DWORD dwIdx = 0;
 LONG nResult = ERROR_SUCCESS;
 memset(pszName, 0x0, MAX_PATH);

 // preflight our arguments
 if (argc < 3)
 DoUsage(argv[0]);

 nResult = RegConnectRegistry(argv[1], HKEY_LOCAL_MACHINE,
&hkRemoteKey);
 if (ERROR_SUCCESS == nResult)
 {
 sprintf(pszName, "SOFTWARE\\%s", argv[2]);
 nResult = RegOpenKeyEx(hkRemoteKey, pszName, 0L, KEY_READ,
&hkResult);
 if (ERROR_SUCCESS == nResult)
 {
 fprintf(stdout, "%s has a key for %s.\n", argv[1],
argv[2]);
 }
 else
 {
 fprintf(stderr,
 "Error %d while opening SOFTWARE\\%s on remote
machine %s\n",
 argv[2], argv[1]);
 }
 nResult = RegCloseKey(hkResult);
 nResult = RegCloseKey(hkRemoteKey);
 }
 else
 {
 fprintf(stderr, "Error %d while opening remote registry on
%s\n",
 nResult, argv[1]);
 }

 fflush(stdout);
}

8.1.11 Moving Keys to and from Hives

In Chapter 3, Chapter 4, and Chapter 5, you learned how to use the Registry editor
functions that allow keys and values to be saved into hive files and later restored. You
can do the same thing with your own code by using the routines discussed in this
section.

8.1.11.1 Saving keys

The first step in moving keys in and out of hives around is to create a hive; you can do
this with RegSaveKey .

LONG RegSaveKey(hKey, pszFile, lpSecurityAttributes);

HKEY hKey
Key to be saved; must be open.
Everything below the specified key is
saved.

LPCTSTR pszFile Full path of file to save in.

LPSECURITY_ATTRIBUTES lpSecurityAttributes

Pointer to SECURITY_ATTRIBUTES
structure describing desired security on
the new file; pass in NULL to use the
process's default security descriptor.

If the file you specify in pszFile already exists, RegSaveKey will fail with the
ERROR_ALREADY_EXISTS error code. This prevents you from accidentally overwriting
another hive file you previously saved. There's another subtlety involved with
pszFile : if you don't specify a full path, the file is created in the process's current
directory if the key is from the local Registry, or %systemroot%\system32 for a key
on a remote machine.

The created file has the archive attribute set and whatever permissions are specified
by lpSecurityAttributes. Instead of creating a brand-new security descriptor, you
may pass NULL to have whatever security context applies to the process applied to the
file.

8.1.11.2 Loading keys

Once you've saved keys into a hive file, the next thing you're likely to want to do is
load them. You can do so in two distinct ways: you can load a hive as a new key, or
you can replace the contents of an existing key with the hive's contents. Either
approach requires the process that loads the keys to have the SE_RESTORE_NAME
privilege.

RegLoadKey supports the former: you tell it what file to load and what to name the
new subkey, and it creates the specified subkey and loads the file into it. RegLoadKey
will fail if the file doesn't exist or if the named subkey does exist.

LONG RegLoadKey(hKey, pszSubKey, pszFile);

HKEY hKey
Open key under which the new subkey is created; may be HKLM or HKU on
a local machine, or a handle obtained by opening HKLM or HKU with
RegConnectRegistry.

LPCTSTR pszSubKey Name of the subkey to create beneath hKey ; the subkey must not currently
exist.

LPCTSTR pszFile
Full pathname to the hive file you want to load into the new key. This file
must have been created with RegSaveKey or RegEdt32's Registry Save
Key command.

Calling RegCloseKey on a key loaded with RegLoadKey doesn't
unload it; instead, you must call RegUnloadKey as described
later.

If you want to overwrite an existing key that's part of one of the standard hives, you
can instead call RegRestoreKey. Like RegLoadKey, it takes a parent key and the name
of a file to load. However, in this case the parent key's subkeys are replaced by the
contents of the file. For example, if you open
HKLM\SOFTWARE\Microsoft\Windows and pass that to RegRestoreKey, the key
with that name persists, but all subkeys and values beneath it are deleted. After

RegRestoreKey returns, the victim key contains whatever values and subkeys were in
the loaded file.

LONG RegRestoreKey(hKey, pszFile, dwFlags);
HKEY hKey Key whose values and subkeys you want to replace.

LPCTSTR pszFile File (saved with RegSaveKey or RegEdt32) with the new contents you want
loaded into hKey.

DWORD dwFlags
If you pass in for this parameter, the entire hKey is replaced; if you pass in
REG_WHOLE_HIVE_VOLATILE, hKey is replaced, but the changes are not
written to the Registry.

8.1.11.3 Replacing a loaded key

Once you've loaded a hive file with RegLoadKey, you can replace the loaded key with
another hive file. This is a good way to dynamically swap between several hives'
worth of data. However, changes don't take effect until the machine is restarted.

LONG RegReplaceKey(hKey, pszSubKey, pszNewFile, pszOldFile);
HKEY hKey Open key that contains subkey you want to replace.

LPCTSTR pszSubKey Contains the name of the subkey whose values and subkeys are replaced by
the newly loaded hive.

LPCTSTR pszNewFile Contains full path to the hive file you want loaded; the file must be
generated by RegSaveKey or RegEdt32.

LPCTSTR pszOldFile Contains the name of a file to which Windows 2000 save a backup copy of
the previously loaded hive file.

8.1.11.4 Unloading a key

RegLoadKey allows you to load a stored hive file as a new hive under HKLM or
HKU. Once you've loaded a hive, it makes sense to have a way to unload it when
you're done, and RegUnloadKey provides that functionality.

LONG RegUnLoadKey(hKey, pszSubKey);
HKEY hKey Handle to an open key.
LPCTSTR pszSubKey Full path to the subkey you want to unload.

You can unload only keys you load yourself, which prevents unloading (accidentally
or on purpose) an important key such as HKLM\SOFTWARE. The process that calls
RegUnloadKey must have the special SE_RESTORE_NAME privilege.

8.1.12 Getting Notification When Something Changes

If you want to write a program that does something when a particular Registry key or
value changes, you can do so by sitting in an infinite loop and periodically checking
the item of interest to see whether it changes. This is terribly inefficient, though, so
it's good that there's another way to do it. The RegNotify-ChangeKeyValue routine
allows you to register your interest in a particular key or value, then go do something
else. Your code gets a notification you when the Registry key (or its attributes)
changes; it doesn't, however, tell you if the key is deleted.

LONG RegNotifyChangeKeyValue (hKey, bWatchSubtree,
dwNotifyFilter,hEvent
 fAsynchronous);
HKEY hKey Key you want to monitor for changes; may be a root key or any subkey.

BOOL bWatchSubtree When true, indicates that you want to watch all subkeys and values of
hKey ; when false, indicates you want to watch hKey only.

DWORD dwNotifyFilter

Flag specifying what events you're interested in; may be any
combination of:

• REG_NOTIFY_CHANGE_NAME for renaming, addition, or
deletion of a subkey

• REG_NOTIFY_CHANGE_ATTRIBUTES for changes to any
key attributes

• REG_NOTIFY_CHANGE_LAST_SET for changes to a value
of a subkey

• REG_NOTIFY_CHANGE_SECURITY for changes to security

HANDLE hEvent Event to post when a change is detected; ignored if fAsynchronous
is false.

BOOL fAsynchronous When true, routine returns immediately and posts an event when a
change takes place; when false, routine blocks until a change occurs .

8.1.13 Flushing Registry Changes

The Registry uses a "lazy flusher" to propagate changes from memory to disk. The
overall goal is to minimize the number of disk I/O operations, since they tend to be
relatively time-consuming. The lazy flusher achieves this goal by not immediately
writing every change out to disk as it occurs. Instead, it aggregates changes and writes
them when the system is mostly idle.

When you call RegCloseKey, whatever changes you've made are thus not
immediately copied to disk. There can be an interlude of indeterminate length
(Microsoft says "as long as several seconds" without elaborating) before your data
actually hits the disk. For most applications, this is perfectly acceptable. However, if
for some reason you want to make sure your changes get written to disk, you can use
the RegFlushKey routine to immediately force a Registry update:

LONG RegFlushKey (hKey);

Calling this routine forces the lazy flusher to buckle down and flush the specified
key's data to its hive file; it may also cause other keys to be written as well. Flushing
the cached data also updates the .LOG files that act as a backup copy of the Registry.
The Win32 SDK warns that this function is expensive, so you shouldn't call it often.
RegFlushKey returns ERROR_SUCCESS when all goes well or a standard Win32 error
code for failed flush attempts.

8.2 The Shell Utility API Routines

The shell utility API routines allow you to use a different set of API routines instead
of the ones I've discussed up until now. While this might seem like a needless
fragmentation of what should be a unified API, there's are two reasons for it. First,
some of the tasks that the shell utility API can do don't have direct equivalents in the
Win32 API. For example, the shell API has routines to copy a key and its contents,
delete an entire key and all its subkeys, and so on. Second, Microsoft is clearly trying
to position the utility API as the thing you use if you're writing small utility
components- not all of which will necessarily run on Windows as we know it today.
(For example, what about an embedded version of Windows running on a smart
card?)

The shell API routine definitions are unnecessarily confusing
because of their naming scheme (or lack of one.) Most of the
Registry-related routines have names that start with SHReg, but
some don't (e.g., SHDeleteValue or SHGetValue). Worse still,
the file association routine names don't use the SH prefix at all.

8.2.1 Working with File Associations

One of the biggest innovations of the Macintosh when it was originally introduced
was the idea that documents would somehow "know" what application they belonged
to. The Mac OS implemented this by storing eight bytes of type and creator
information with each file. The type bytes identified the file's datatype, and the creator
bytes associated the file with a particular application. Windows 3.0 introduced the
concept of file associations to the PC world, but the Windows version was based on
binding a three-character DOS filename extension to an application. Later versions of
Windows expanded this mapping so that object types (like, say, an Excel table) could
be mapped to an executable; in addition, MIME types could be associated with file
extensions too.

Managing these associations has long been painful for programmers. In particular, it's
difficult to find what application or DLL the user wants called to create or modify
some existing object type, even more so under Windows 2000. Recall that Windows
2000 stores class information in two places: HKCR and HKCU\Classes. In an effort
to ease this pain, Microsoft created a Component Object Model (COM) interface
called IQueryAssociations. By making the appropriate COM calls, you can get a
pointer to the IQueryAssociations interface, call some of its routines, and get the
desired information. However, not everyone is comfortable using COM, so Microsoft
added a set of wrapper routines in the shell utility API. These handle all the messy
COM calls while providing a simple C interface to their functionality.

8.2.1.1 Getting a file association key from the Registry

One common operation is to look up the file association for some piece of data you
have, like a file extension or a CLSID. There are three ways to do so, depending on
what data you have and what kind of data you want back.

If you want to get an HKEY that points to the key where the association is stored, you
can do so with the AssocQueryKey routine.

HRESULT AssocQueryKey (afFlags, akKey, pszAssoc, pszExtra, HKEY
*phkResult)

ASSOCF afFlags
ASSOCF flags that control how you want the association retrieved. You can
combine any number of flags, except that you can use one of the
ASSOCF_INIT variants.

ASSOCKEY akKey ASSOCKEY structure that specifies what kind of key you want back: one to
pass to the ShellExec() routine, etc.

LPCTSTR pszAssoc Query string that looks up the key (described later).

LPCTSTR pszExtra Optional additional information (e.g., a shell verb) that goes with
pszAssoc; pass NULL if not used.

HKEY * phkResult On exit, pointer to an HKEY containing the found key.

In large part, the result you get back is determined by the value you pass in the
pszAssoc parameter. You can pass in a file extension (.cpp), a CLSID (using its
GUID, in the standard "{GUID}" format), a ProgID (e.g., "Excel.Worksheet.2"), or
the name of an .exe file (but only if the ASSOCF_OPEN_BYEXENAME flag is set).

If you'd rather have a text string describing the association, use AssocQuery-String
instead; it's similar to AssocQueryKey.

HRESULT AssocQueryString (afFlags, asStr, pszAssoc, pszExtra, pszOut,
pcchOut)

ASSOCF afFlags
ASSOCF flags that control how you want the association retrieved. Yo u can
combine any number of flags, except that you may use only one of the
ASSOCF_INIT variants.

ASSOCSTR akKey ASSOCSTR structure that specifies what kind of string you want back, e.g., a
command line, the "friendly" document name string, etc.

LPCTSTR pszAssoc Query string that looks up the key (described later).

LPCTSTR pszExtra Optional additional information (e.g., a shell verb) that goes with
pszAssoc; pass NULL if not used.

LPCTSTR
* pszOut On exit, holds the requested string.

LPDWORD pcchOut

On entry, should hold the size of pszOut. On exit, holds the number of
characters stored in pszOut. AssocQueryString truncates the string if the
buffer is too small, unless you specify the ASSOCF_NOTRUNCATE flag, in
which case this function returns E_POINTER as its result. In that case,
pcchOut holds the buffer size required to hold the entire string.

The permissible values for pszOut are the same for this function as for
AssocQueryKey.

The third way is a hybrid of the first two. When you call AssocQueryString-ByKey,
you pass in the key where you want the routine to start looking, along with a mix of
the parameters used for AssocQueryString and AssocQueryKey. Here's what it looks
like.

HRESULT AssocQueryStringByKey (afFlags, asStr, hkAssoc, pszExtra,
pszOut, pcchOut)

ASSOCF afFlags
ASSOCF flags that control how you want the association retrieved. You can
combine any number of flags, except that you can use only one of the
ASSOCF_INIT variants.

ASSOCSTR akKey ASSOCSTR structure that specifies what kind of string you want back, e.g., a
command line, the "friendly" document name string, etc.

HKEY hkAssoc HKEY from which you want AssocQueryStringByKey to start looking.

LPCTSTR pszExtra Optional additional information (e.g., a shell verb) that goes with
pszAssoc; pass NULL if not used.

LPCTSTR
* pszOut On exit, holds the requested string.

LPDWORD pcchOut

On entry, should hold the size of pszOut. On exit, holds the number of
characters stored in pszOut. AssocQueryString truncates the string if
the buffer is too small, unless you specify the ASSOCF_NOTRUNCATE flag,
in which case this function returns E_POINTER as its result. In that case,
pcchOut holds the buffer size required to hold the entire string.

8.2.1.2 Getting a pointer to the IQueryAssociations interface

If you need to call one of the routines in the IQueryAssociations class that doesn't
have a wrapper, you can do so by getting a pointer to an object that contains that
interface and using the pointer to call the routine you want. While a discussion of
writing this sort of COM code is outside the scope of this book, the shell utility API
routine provides an easy way to get a pointer to the interface so you can use it:
AssocCreate. Be aware that this routine doesn't actually create anything you can use
directly; all it does is return a pointer to a COM interface, creating an object to handle
that interface if necessary.

HRESULT AssocCreate (clsID, refIID, pInterface)

CLSID clsID CLSID of the object that exposes the interface you want. This must always
be set to the constant value CLSID_QueryAssociations.

REFIID refIID Reference ID of the interface you want to use. This must always be set to the
constant value IID_IQueryAssociations.

LPVOID
* pInterface Pointer to a pointer that, on exit, points to the interface.

8.2.2 Copying and Deleting Keys and Values

The original Registry API had a few weak areas. One was the annoying lack of any
functions for copying keys and values from one place to another, as you might do
when establishing initial settings for a new installation. The API routines for saving
and restoring keys provided a somewhat clunky way to do this, but the shell utility
API provides a cleaner way. SHCopyKey (available with Version 5.0 or later of
SHLWAPI.DLL) recursively copies all the subkeys and values beneath the source key
you specify to the destination key.

LONG SHCopyKey (hkSrcKey, szSrcSubkey, hkDestKey, fReserved)
HKEY hkSrcKey Source key whose subkeys you want to copy; must be open.

LPCTSTR szSrcSubkey Specific subkey of hkSrcKey you want to copy, not including initial
backslashes.

HKEY hkDestKey Destination key under which you want the tree specified by
szSrcSubkey to be copied; this key must already be open.

DWORD fReserved Reserved; must always be NULL.

Deleting keys in Win32 code has always been a little tricky. The semantic behavior of
RegDeleteKey varies according to which operating system it runs on. In the Windows
9x family, it deletes the key whether or not it's empty, while under Windows
2000/NT, the function fails if the target key has any subkeys. In an effort to keep from
surprising people with unexpected behavior, Microsoft added two separate routines to
clearly distinguish two different operations: removing a key that you know (or
suspect) to be empty and removing a key when you don't care if it's empty or not.

SHDeleteEmptyKey is what you use in the first case. It fails if the specified target key
has any subkeys, although (like RegDeleteKey) it happily removes any values that are
attached to the otherwise-empty target key.

HKEY SHDeleteEmptyKey (hkKey, pszTargetSubkey);

HKEY hkKey Handle to a root key or any currently open key (as long as it's an
ancestor to the target).

LPCTSTR pszTargetSubkey Name of the key to remove, relative to hkKey.

If you really want to remove the key and all its subkeys, you should use SHDeleteKey
instead. It recursively removes the target and all its subkeys, along with all values
attached to the target or any of its descendants.

HKEY SHDeleteKey (hkKey, pszTargetSubkey);

HKEY hkKey Handle to a root key or any currently open key (as long as it's an
ancestor to the target).

LPCTSTR pszTargetSubkey Path of the key to remove.

There's also a new routine intended for removing individual values: SHDeleteValue
accepts the name of a subkey and value, then removes the value from that key. Unlike
RegDeleteValue, which requires you to pass in an HKEY that points to the target
value's parent key, SHDeleteValue accepts any open key as long as it's a parent of the
target, plus the path from that key to the target's actual home.

HKEY SHDeleteValue (hkKey, pszParentSubkey, pszTargetValue);

HKEY hkKey Handle to a root key or any currently open key (as long as it's an
ancestor to the target).

LPCTSTR pszParentSubkey Path to parent subkey that owns the value to remove.
LPCTSTR pszTargetValue Value name to remove.

8.2.3 Getting Key and Value Information

When you're ready to read and write individual keys and values, you'll probably find
it helpful to get some fundamental information about the keys and values themselves.

8.2.3.1 Querying keys and values

RegQueryInfoKey gives you a wealth of information about a key--maybe too much
for some uses. Most of the time, you need to know three things about a key: how

many subkeys it has, how many values it has, and how much space to allocate when
fetching things from it. SHQueryInfoKey provides most of this data.

LONG SHQueryInfoKey(hKey, pdwSubKeys, pdwMaxSubKeyLen, pdwValueCount,
 pdwMaxValueNameLen);

HKEY hKey Handle to any key or root key opened with KEY_READ or
KEY_QUERY_VALUE access.

LPDWORD pdwSubKeys Pointer to DWORD that receives the number of subkeys under
hKey.

LPDWORD pdwMaxSubKeyLen Pointer to DWORD that receives length of longest subkey name
under hKey.

LPDWORD pdwValueCount Pointer to DWORD that receives total number of values under
hKey.

LPDWORD pdwMaxValueNameLen Pointer to DWORD that receives length of longest value name
under hKey.

For example, you can use it to find how many subkeys were beneath a particular key
so you can efficiently enumerate them. One thing you can't do with it, though, is find
out the length of the longest value under a key, as you can with RegQueryInfoKey.
That means that if you want to preallocate a buffer to the size of the largest value
under a key, you can't do it efficiently unless you use RegQueryInfoKey.

SHQueryValueEx is identical to RegQueryValueEx, down to the inclusion of the
"reserved" parameter. That being so, I'm not going to cover it again here, but it exists
if you want to use it.

8.2.3.2 Getting and setting values

Let's start with something familiar: SHQueryValueEx is a dead ringer for
RegQueryValueEx. It takes the same parameters and has the same restrictions and
conditions, so it's pretty much a drop-in replacement.

LONG SHQueryValueEx(hKey, pszValueName, pdwReserved, pdwType, pvData,
pcbData);

HKEY hKey Handle to any key or root key opened with KEY_READ or
KEY_QUERY_VALUE access.

LPTSTR pszValueName Name of the value to query; if NULL or empty, queries default value.

LPDWORD pdwReserved Unused; must be NULL .

LPDWORD pdwType On return, holds the datatype of the value (REG_DWORD, REG_SZ, etc.).
If you pass in NULL, no type data is returned.

LPBYTE pvData
Points to the buffer that holds the value's contents on return. If you pass
in NULL, no value data is returned, but the pcbData parameter holds
the length of the contents.

LPDWORD pcbData
On input, points to the buffer that specifies the size of lpData buffer.
On return, holds amount of data copied into lpData. You may pass in
NULL if pvData is NULL also.

SHGetValue is a new routine. If you think of the fairly useless (and now deprecated)
RegGetValue call, don't: SHGetValue is much more interesting, since it essentially
duplicates RegQueryValueEx. Instead of passing the bogus "reserved" parameter,

SHGetValue expects you to pass in a path that points to the key that owns the value
you're trying to query.

LONG SHGetValue(hKey, pszSubKeyName, pszValueName, pdwType, pbData,
pcbData);

HKEY hKey Handle to any key or root key opened with KEY_READ or
KEY_QUERY_VALUE access.

LPCTSTR pszSubKeyName Path to subkey whose value you're querying.
LPDWORD pszValueName Name of the value to query; if NULL or empty, queries default value.

LPDWORD pdwType On return, holds the datatype of the value (REG_DWORD, REG_SZ,
etc.). If you pass in NULL, no type data is returned.

LPBYTE pbData
Points to the buffer that holds the value's contents on return. If you pass
in NULL, no value data is returned, but the pcbData parameter holds
the length of the contents.

LPDWORD pcbData
On input, points to the buffer that specifies the size of pbData buffer.
On return, holds amount of data copied into pbData. You may pass in
NULL if pbData is NULL also.

When you want to set a value, you can use RegSetValueEx or its very close relative,
SHSetValue. As with many of the other SH* routines and their vanilla Win32
counterparts, the primary difference between these two is that SHSetValue lets you
specify the full path to the target key, instead of requiring you to open the target key
and pass in a handle to it.

LONG SHSetValue(hKey, pszSubKeyName, pszValueName, pdwType, pbData,
pcbData);

HKEY hKey Handle to any key or root key opened with KEY_READ or
KEY_QUERY_VALUE access.

LPCTSTR pszSubKeyName Path to subkey whose value you're setting.
LPDWORD pszValueName Name of the value to set; cannot be NULL.
LPDWORD pdwType Contains the datatype of the value to be stored.
LPBYTE pbData Points to the buffer that holds the value's contents; may not be NULL.

LPDWORD pcbData Points to length of pbData.

8.2.4 Enumerating Keys and Values

The Registry API already contains a number of routines that enumerate keys and
values. Guess what? The shell utility API contains more of them, including several
normally used with user-specific values. In particular, there are two routines that
duplicate existing functionality in the Registry API: SHEnumKeyEx and SHEnumValue.
Why? Mostly because Microsoft wanted to provide a more straightforward set of
routines without breaking applications that depended on the original API. Let's look at
SHEnumKeyEx first.

LONG SHEnumKeyEx (hKey, dwIndex, pszName, pcchName)
HKEY hKey Handle to currently open key or root key.

DWORD dwIndex Index of the key to retrieve. For the first call, pass in zero; subsequent calls can
use other index values.

LPCTSTR pszName Output buffer; on exit, contains full name of current key.
LPDWORD dwFlags On entry, points to DWORD containing size of pszName. On exit, contains the

actual number of characters copied to pszName.

Like RegEnumKeyEx, SHEnumKeyEx allows you to iterate through every key under the
specified subkey. Unlike its big brother, SHEnumKeyEx doesn't allow you to get the
key's modification time. You can still use RegQueryInfoKey to determine in advance
what indices to use, or you can start with zero and work your way up.

SHEnumValue is a somewhat redundant beast. It looks like RegEnumValue, except that
SHEnumValuedoesn't have the useless "reserved" parameter. Other than that, the two
are functionally identical.

LONG SHEnumValue (hKey, dwIndex, pszValueName, pcchValueName,
pdwType, pvData,
pcbData)
HKEY hKey Handle to currently open key or root key.

DWORD dwIndex Index of the key to retrieve. For the first call, pass in zero; subsequent
calls can use other index values.

LPTSTR pszValueName Output buffer; on exit, contains full name of enumerated value.

LPDWORD pcchValueName Pointer to a DWORD that contains size of pszValueName on entry and
number of characters copied to pszValueName on exit.

LPDWORD pdwType Pointer to DWORD that receives datatype of the enumerated value, e.g.,
REG_SZ, REG_DWORD, etc.

LPVOID pvData
Pointer to buffer that receives value contents. If you don't care, pass
NULL; otherwise, size the buffer appropriately and put the size in
pcbData.

LPDWORD pcbData Size of pvData buffer.

8.2.5 Working with User-Specific Keys

If you decide to use the shell API routines that give you access to user-specific keys
(USKs), you'll find that they're familiar and different at the same time. Most of the
things you have to do when using the standard Registry API are still required; in
particular, you still have to open and close keys before you read or write them or their
values, and the normal Win32 access controls still apply.

8.2.5.1 Creating and removing keys

Before you can do much of anything else with user-specific keys, you need to be able
to create them. Of course, the counterpart of creating something is deleting it, so it's
handy to know how to remove USKs as well.

You create a new USK with SHRegCreateUSKey, which also opens the key after
creating it.

LONG SHRegCreateUSKey(pszPath, samDesired, hkRelUSKey, phkNewUSKey,
dwFlags);
LPCTSTR pszPath Pointer to string containing name of subkey to create and open.
REGSAM samDesired Desired security access to the key when opening it.

HUSKEY hkRelUSKey Key to be used as base of relative path; if you specify a relative path in
pszPath, it's interpreted relative to hkRelUSKey. If pszPath is

absolute, set hkRelUSKey to NULL.
PHUSKEY phkNewUSKey Pointer to handle of the newly opened key.

DWORD dwFlags

Flags that control the root key under which the new key is created and
opened:

• SHREGSET_HKCU creates the key under HKCU if it doesn't
already exist under either HKCU or HKLM.

• SHREGSET_FORCE_HKCU opens the key under HKCU if it
exists and creates/opens it if not.

• SHREGSET_HKLM creates the key under HKLM if it doesn't
already exist.

• SHREGSET_FORCE_HKLM opens the key under HKLM if it
exists and creates/opens it if not.

• SHREGSET_DEFAULT will create and open the key under both
HKCU or HKLM, using whichever one it finds first.

The way this routine works requires some explanation. Since USKs can be created
either under HKCU or HKLM, you have to use the dwFlags parameter to specify
where you want the key created. Note that SHRegCreateUSKey creates the key and
opens it. If the key already exists, you get to choose whether you want to open it in its
existing location or force creation of a key with the same name under another root.
When you request that a key be created under HKCU, though, you may find that it's
actually created under the user's subkey of HKU.

Once you're done using a key (usually as part of your program's uninstallation code),
it's polite to delete any USKs you've created. You do so with
SHRegDeleteEmptyUSKey, which does just about what you'd expect.

LONG SHRegDeleteEmptyUSKey(hkUSKey, pszTargetPath, delRegFlags);
HUSKEY hkUSKey Currently open USK.

LPCTSTR pszTargetPath Full path to target key to delete; the target key must be
empty.

SHREGDEL_FLAGS delRegFlags

Flags that control which key you want to remove:

• SHREGDEL_DEFAULT removes the key from
HKCU if it exists or from HKLM if it's not under
HKCU.

• SHREGDEL_HKCU removes the key under HKCU if
it exists.

• SHREGDEL_HKLM removes the key if it exists
under HKLM.

• SHREGDEL_BOTH removes the key under HKCU
and HKLM.

Note that SHRegDeleteEmptyUSKey refuses to delete a USK unless all its subkeys and
values have been previously removed; this prevents you from accidentally removing
settings you want to keep. In practice, that means you need to enumerate through any
USKs you create and remove their contents before removing them at uninstall time.

8.2.5.2 Opening and closing keys

You have to open and close USKs just as you do regular keys. Since there's a new
opaque type for USKs (HUSKEY), you can't intermix the shell utility routines and the
ordinary Win32 API routines. To open a USK, use SHRegOpenUSKey.

LONG SHRegOpenUSKey(pszPath, samDesired, hkRelUSKey, phkNewUSKey,
fIgnoreHKCU);
LPCTSTR pszPath Pointer to string containing name of subkey to open.
REGSAM samDesired Desired security access to the key once it's opened.

HUSKEY hkRelUSKey
Key to be used as base of relative path; if you specify a relative path in
pszPath, it's interpreted relative to hkRelUSKey. If pszPath is
absolute, set hkRelUSKey to NULL.

PHUSKEY phkNewUSKey Pointer to handle of the newly opened key.

BOOL fIgnoreHKCU When TRUE, SHRegGetUSValue looks for the key in HKLM instead
of HKCU.

Once you have the key returned in phkNewUSKey, you can pass it to any of the other
USK-related functions covered in this section. When you're done, of course, you need
to close the key by calling SHRegCloseUSKey.

LONG SHRegCloseUSKey(hkTarget);
HUSKEY hkTarget Open USK you want to close.

8.2.5.3 Getting key and value information

After you've opened a USK, you'll probably need to get information about the keys
and values in it. There are a total of three routines that do so: SHRegQueryInfoUSKey,
SHRegEnumUSKey, and SHRegEnumUSValue. These are similar to their non-USK
counterparts. For example, SHRegQueryInfoUSKey takes the same parameters as
SHQueryInfoKey and returns the same information: a count of how many values and
subkeys the specified USK has, plus the length of the longest subkey and value
names. There are a few differences, though.

When you want to enumerate the subkeys of a USK, SHRegEnumUSKey is the
appropriate routine to use. Like all the other enumeration routines I've talked about in
this chapter, SHRegEnumUSKey allows you to walk an entire USK and get the names of
each of its subkeys. Unlike (say) SHRegEnumKeyEx, though, the USK version needs
another parameter: a flag that indicates whether to return information about the USK
under HKLM or HKCU.

LONG SHRegEnumUSKey(hUSKey, dwIndex, pszName, pcchName,
enumRegFlags);
HUSKEY hUSKey Handle to the currently open USK.
DWORD dwIndex Zero-based index indicating which subkey you want

information about.

LPCTSTR pszName
Address of a buffer that receives the enumerated key's name;
make sure the buffer is MAX_PATH characters long to ensure
enough space.

LPDWORD pcchName On input, specifies size of pszName; on exit, specifies how
many characters were copied to pszName.

SHREGENUM_FLAGS enumRegFlags

• SHREGENUM_DEFAULT enumerates the key under
HKCU if it exists or from HKLM if it's not under
HKCU.

• SHREGENUM_HKCU enumerates the key under
HKCU if it exists.

• SHREGENUM_HKLM enumerates the key if it exists
under HKLM.

• SHREGENUM_BOTH isn't a legal value, even though
it's defined in the header file.

SHRegEnumUSValue is just like SHEnumValue, with one exception: it adds an
enumRegFlags parameter that accepts the same values as the one defined for
SHRegEnumUSKey.

8.2.5.4 Reading values

When you want to read or write values under a USK, you'll again find that the process
is quite similar to what you're accustomed to doing for ordinary Registry data. Once
you have an open USK, you can get a specific value from it in two ways.

SHRegGetUSValue is the general-purpose routine for fetching USK values. You pass
in the value's name and get back its contents, just like SHGetValue or
RegQueryValueEx. However, since SHRegGetUSValue is for USKs, its argument list
looks more like the other USK routines discussed thus far.

LONG SHRegGetUSValue(pszSubKey, pszValue, pdwType, pvData, pcbData,
fIgnoreHKCU,
 pvDefaultData,
dwDefaultDataSize);

LPCTSTR pszSubKey Path to subkey (relative to HKLM and/or HKCU) that contains
the desired value.

LPCTSTR pszValue Name of the value to get.

LPDWORD pdwType On exit, contains value's datatype; pass NULL if you don't care
what type it is.

LPVOID pvData Pointer to buffer for value's data. If you don't want the data
returned, pass NULL.

LPDWORD pchData On entry, points to DWORD specifying size of buffer in pvData.
On exit, contains actual count of bytes copied to pvData.

BOOL fIgnoreHKCU When TRUE, SHRegQueryUSValue returns a value from
HKLM only, ignoring any values under the USK in HKCU.

LPVOID pvDefaultData Buffer that gets the default value's data; pass NULL if you don't

want it.
DWORD dwDefaultDataSize Size of pvDefaultData buffer.

You may have noticed that there's no hUSKey parameter for this routine. That's
because you don't have to open a USK to get a value with SHRegGetUSValue; it opens
and closes the key for you. This is easy, but inefficient if you need to fetch several
values in a row. In that case, you probably want to use SHRegQueryUSValue instead
by opening the desired USK, calling it several times, and closing the key.

LONG SHRegQueryUSValue(hUSKey, pszValue, pdwType, pvData, pcbData,
fIgnoreHKCU,
 pvDefaultData,
dwDefaultDataSize);
HUSKEY hUSKey Handle to the currently open USK.
LPCTSTR pszValue Name of the value to be queried.

LPDWORD pdwType On exit, contains value's datatype; pass NULL if you don't care
what type it is.

LPVOID pvData Pointer to buffer for value's data. If you don't want the data
returned, pass NULL.

LPDWORD pchData On entry, points to DWORD specifying size of buffer in pvData.
On exit, contains actual count of bytes copied to pvData.

BOOL fIgnoreHKCU When TRUE, SHRegQueryUSValue returns a value from
HKLM only, ignoring any values under the USK in HKCU.

LPVOID pvDefaultData Buffer that gets the default value's data; pass NULL if you don't
want it.

DWORD dwDefaultDataSize Size of pvDefaultData buffer.

There's also a special-purpose routine that gets a single value of type BOOL from a
USK. SHRegGetBoolUSValue fetches a single Boolean value, using the same method
as SHRegGetUSValue. It opens the specified key, retrieves the value, and returns it to
you. This is an easy function to use, since its functionality is so limited, but it's still
handy if you want to check the value of a Boolean flag in a USK within your
program.

BOOL SHRegGetBoolUSValue (pszSubkey, pszValue, fIgnoreHKCU, fDefault)

LPCTSTR pszSubkey Path to subkey (relative to HKLM and/or HKCU) that contains the desired
value.

LPCTSTR pszValue Name of the value you want to retrieve.
BOOL fIgnoreHKCU When TRUE, SHRegGetBoolUSValue looks only under HKLM.
BOOL fDefault Default value to be returned if the requested value doesn't exist.

For example, let's say you write an application that allows users to download the
contents of an Outlook contacts folder to a GSM mobile phone. Most GSM phones
can store numbers on a smart card in the phone or in the phone's internal RAM, so it
would be nice if you let the user specify a default for where new numbers should go.
At download time, it's fairly easy to check the setting before blasting data out to the
phone.

// get all the contact info from Outlook

// see where the user wants the numbers stored

BOOL storeInPhone = SHRegGetBoolUSValue("Software\\RA\\PhoneBlaster",
 "StoreNumbersInPhone", false,
false);
if (storeInPhone)
 // store the numbers in the phone
else
 // store the numbers on the SIM card

8.2.5.5 Writing and deleting values

So far, I've talked only about reading values. Fortunately, there are routines you can
use to store values in USKs too. In fact, there are two distinct ways to write a value.
SHRegSetUSValue just sets the value without requiring you to open and close the
USK you're using, while SHRegWriteUSValue expects to have an open USK passed to
it. Like the functions you use to read values, the one you use depends on whether
you're doing one operation (in which case SHRegSet-USValue is easier to use) or
several (in which case SHRegWriteUSValue is more efficient).

LONG SHRegSetUSValue(pszSubKey, pszValue, dwType, pvData, cbData,
dwFlags);

LPCTSTR pszSubKey Path to subkey (relative to HKLM and/or HKCU) where you want the value
to go.

LPCTSTR pszValue Name of the value to write.
DWORD dwType Value's datatype; must be REG_SZ.

LPVOID pvData Pointer to buffer for value's string data.
DWORD cbData Length of the value string, not including the terminating NULL.

DWORD dwFlags

Same flags specified for SHRegCreateUSKey:

• SHREGSET_HKCU

• SHREGSET_FORCE_HKCU

• SHREGSET_HKLM

• SHREGSET_FORCE_HKLM

SHRegWriteUSValue looks pretty much the same, except that it requires a handle to
an open USK as once of its parameters:

LONG SHRegWriteUSValue(hkUSKey, pszValue, dwType, pvData, cbData,
dwFlags);
HUSKEY hkUSKey Handle to currently open USK or one of the predefined root keys.
LPCTSTR pszValue Name of the value to write.
DWORD dwType Value's datatype; must be REG_SZ.

LPVOID pvData Pointer to buffer for value's string data.
DWORD cbData Length of the value string not including the terminating NULL.

DWORD dwFlags

Same flags specified for SHRegCreateUSKey and SHRegSetUSValue:

• SHREGSET_HKCU

• SHREGSET_FORCE_HKCU

• SHREGSET_HKLM

• SHREGSET_FORCE_HKLM

Finally, you can delete a single value from a USK when you're done with it.
SHRegDeleteUSValue does the trick (remember, you have to remove the values from
a USK before you can remove it with SHRegDeleteEmptyUSKey). Removing a value
is simple: you have to pass an open USK, the name of the value, and a flag word that
indicates where you want to remove the value if found.

LONG SHRegDeleteUSValue(hkUSKey, pszValue, delRegFlags);
HUSKEY hkUSKey Handle to currently open USK.
LPCTSTR pszValue Name of the value to remove.

SHREGDEL_FLAGS dwType

Flags that tell routine where to remove value if found. Flags that
control which key you want to remove:

• SHREGDEL_DEFAULT removes the key from HKCU if it
exists or from HKLM if it's not under HKCU.

• SHREGDEL_HKCU removes the key under HKCU if it
exists.

• SHREGDEL_HKLM removes the key if it exists under
HKLM.

• SHREGDEL_BOTH removes the key under HKCU and
HKLM.

8.2.6 Leftovers

There are three routines that don't really belong anywhere else. Two of them allow
you to read or change file paths, while the third duplicates a key handle. Let's look at
it first; it's probably the simplest routine in the entire Registry API set.

HKEY SHRegDuplicateHKey (hkKey);
HKEY hkKey Key to duplicate.

SHRegDuplicateHKey does only one thing, but it does it well: it duplicates a current
HKEY and makes a copy of it. If you're accustomed to the dup() function in Unix,
this does exactly the same thing, so you can quickly duplicate a key handle (whether
open or closed) and go on to do separate things to the two handles, independent of one
another.

The path functions are also pretty straightforward. Windows 2000 really embodies
Microsoft's philosophy that users should keep their data in their profiles, and that
certain areas of the filesystem should be used only by applications and the OS.
Accordingly, these functions allow you to pass in a path and have any symbolic

names in it expanded to match actual folders on disk, or vice versa. The symbolic
names that these functions support are shown in Table 8.8.

Table 8.8. Symbolic Names
Symbol Name Expands to...

%USERPROFILE% Current user's profile folder. Note that this variable can't be used by services
that impersonate another account by manipulating the security context.

%ALLUSERSPROFILE% The "All Users" profile folder.
%ProgramFiles% The Program Files folder. This is normally not set under Windows NT.
%SystemRoot% The system root directory where Windows 2000 is installed.
%SystemDrive% The system volume's drive letter.

Although these routines work fine under Windows 95/98, the
environment variables in Table 8.8 will probably be empty, since
those operating systems don't support profiles.

The first of these routines, SHRegGetPath, takes the path to a Registry key that
contains a file path. If that value is a REG_EXPAND_SZ, SHRegGetPath expands any
symbolic names found in the path; if not, it returns the string without modifying it.

LONG SHRegGetPath (hKey, pszTargetSubkey, pszValue, pszExpandedPath,
dwFlags)
HKEY hKey Handle to currently open key or root key.
LPCTSTR pszTargetSubkey String containing path to target subkey.

LPCTSTR pszExpandedPath
Output buffer; on exit, contains fully expanded path. Set the size of
this buffer to MAX_PATH to ensure there's enough room for the
expansion.

DWORD dwFlags Reserved; always pass 0.

The counterpart of SHRegGetPath is SHRegSetPath, which takes a path string that
contains one or more full path to the folders listed in the rightmost column of Table
8.8, then converts those paths to the symbols listed in the table.

LONG SHRegSetPath (hKey, pszTargetSubkey, pszValue, pszCompletePath,
dwFFlags)
HKEY hKey Handle to currently open key or root key.

LPCTSTR pszTargetSubkey String containing path to target subkey. This subkey must exist or
SHRegSetPath fails.

LPCTSTR pszValue String containing name of value to be created under
pszTargetSubkey.

LPCTSTR pszCompletePath Output buffer; on exit, contains rewritten path. Set the size of this
buffer to MAX_PATH to ensure there's enough room.

DWORD dwFlags Reserved; always pass 0.

The combination of these two functions allows you to store file paths in a reasonably
flexible way, since if a user or administrator moves something (such as a user profile
or the system drive), these API routines make that change transparent to your
application.

8.3 Programming with C/C++

The API examples and documentation in earlier sections all present the Registry API
in its native C/C++ form. Since many administrators are comfortable with C and/or
C++, I'll start the programming examples by presenting three distinct uses for the
Registry API routines I've already presented.

8.3.1 Example: Watching a Key for Changes

RegNotifyChangeKeyValue is a little-used, but very useful, routine. It's only present
in Windows 2000 and NT, which perhaps accounts for its relative anonymity. If you
need to be notified when a key or its values changes, it's the best tool for getting you
that notification. WatchKey, shown in Example 8.4, is a small utility that takes
advantage of RegNotifyChangeKeyValue to warn you when a key you specify has
been changed.

8.3.1.1 How the code works

After a check of its initial command-line arguments, the code performs the following
steps:

1. It identifies which root key "owns" the key you want to monitor; this is
required because RegOpenKeyEx needs an already open key (i.e., one of the
roots) to open the target key. If it can't figure out which root the user specified,
it prints an error and exits.

2. It captures the pathname of the key to monitor and uses it, along with the root
key, to call RegOpenKeyEx. The key is opened with KEY_READ access, which
includes KEY_NOTIFY access too. If the key can't be opened, the code generates
an error message and exits.

3. The target key is monitored with a call to RegNotifyChangeKeyValue. The
code passes TRUE for the bWatchSubtree parameter so that any change to a
key or value beneath the target key generates a notification. For the
dwNotifyFilter parameter, you pass all available event flags in so that any
changes to the target key trigger a notification. No event handle is passed in,
and the fAsynchronous parameter is set to TRUE so that the process blocks
until a change occurs.

Example 8.4. The WatchKey Utility
// WatchKey.c
// Watches the key you specify until it changes, then displays the
time and date
// when the change occurred.

#include <windows.h>
#include <stdio.h>
#include <time.h>

// error codes we generate
#define kBadParams 1
#define kNoRootKey 2
#define kCantOpenPath 3

static const HKEY hkRootList[5] = {HKEY_LOCAL_MACHINE,
HKEY_CURRENT_USER, HKEY_USERS,
HKEY_CURRENT_CONFIG, HKEY_CLASSES_ROOT};
static const char *pszRootNames[5] = {"HKLM", "HKCU", "HKU", "HKCC",
"HKCR"};

void DoUsage(const char *inName);

void DoUsage(const char *inName)
{
 printf("%s: improper command-line parameters\n", inName);
 printf("\tUsage: %s root path\n", inName);
 printf("\t\troot\tRoot key to monitor; may be HKLM, HKCC, HKCR,
 HKU, or HKCU\n";
 printf("\t\tpath\tFull path to subkey you want to monitor\n");
}

void main(int argc, char **argv)
{
 char pszPath[MAX_PATH];
 HKEY hkRoot = NULL, hkResult = NULL;
 DWORD dwIdx = 0, dwRootIdx = 0;
 LONG nResult = ERROR_SUCCESS;

 memset(pszPath, 0x0, MAX_PATH);

 // preflight our arguments
 if (3 != argc)
 {
 DoUsage(argv[0]);
 return;
 }

 // first argument must be the root key name
 while (5 > dwIdx && 0 == dwRootIdx)
 {
 if (0 == strcmp(pszRootNames[dwIdx], argv[1]))
 dwRootIdx = dwIdx;
 else
 dwIdx++;
 }
 if (0 == dwRootIdx)
 {
 DoUsage(argv[0]);
 fprintf(stderr, "!!! no root key named %s\n", argv[1]);
 return;
 }

 // get the path name
 strncpy(pszPath, argv[2], max(MAX_PATH, strlen(argv[2])));

 // open the corresponding key
 nResult = RegOpenKeyEx(hkRootList[dwRootIdx], pszPath, 0L,
KEY_READ,
 &hkResult);
 if (ERROR_SUCCESS != nResult)
 {

 fprintf(stderr, "Error %d while opening %s\n", nResult,
pszPath);
 return;
 }

 // watch it until something happens or the program's terminated
 fprintf(stderr, "Watching %s\\%s...\n", pszRootNames[dwRootIdx],
pszPath);
 fflush(stderr);

 nResult = RegNotifyChangeKeyValue(hkResult,
 true, // tell us if
subkeys change
 REG_NOTIFY_CHANGE_NAME +
 REG_NOTIFY_CHANGE_ATTRIBUTES +
 REG_NOTIFY_CHANGE_LAST_SET +
 REG_NOTIFY_CHANGE_SECURITY,
 NULL, // don't pass an
event
 false // wait; don't be
 // asynchronous
);
 if (ERROR_SUCCESS != nResult)
 {
 fprintf(stderr, "Error %d while monitoring %s\n", nResult,
pszPath);
 fflush(stderr);
 return;
 }

 // if we're still here, that means the key was changed
 time_t now = time((long *)NULL);
 fprintf(stderr, "!!! Key %s\\%s changed at %s",
pszRootNames[dwRootIdx],
 pszPath, ctime(&now));
 fflush(stderr);
}

8.3.1.2 Possible enhancements

WatchKey is a useful tool as it stands right now, but (as with almost every program
ever written) it could be enhanced. Here are a few suggestions to get you thinking
about how you could apply what you've learned:

• The first, and most obvious, improvement would be to let users specify values
for the bWatchSubtree and dwFilterOptions parameters, thus making the
actual watching more flexible.

• Instead of just printing out the date and time when a modification occurred,
you can generate an Event Log entry.

• Since RegNotifyChangeKeyValue can function asynchronously, you can
modify the code in Example 8.4 so that it spawns a separate watcher thread for
each key you want to monitor at one time. In conjunction with event logging,
this provides a low-overhead auditing mechanism that can be applied only to
keys you're interested in.

8.3.2 Example: A Stack-Based Wrapper Class

Earlier in the chapter, I alluded to a neat C++ feature that is sadly underutilized.
Whenever you create an C++ object, its constructor is called. When you're done with
the object and are ready to delete it, you call a disposal method that calls the object's
destructor. Calls to these methods are supposed to balance so that you never construct
anything that doesn't get destroyed, and you don't destroy any object more than once.
This may sound suspiciously like the rule for Registry keys: open them, use them, and
always close them.

If you create automatic objects on the stack, the compiler automatically calls the
objects' destructors when it's time to destroy them. This may happen because your
code has finished executing the scope where the objects are or because a jump or
exception caused the objects to go out of scope. Here's a small example:

void test(void)
{
 anObject A;

 A.doSomething();
 if (A.IsEmpty())
 throw(kRanOutOfData);
 A.DoSomethingElse();
 if (A.IsFull())
 throw(kTooMuchData);
}

When this function starts up, A is allocated on the stack, and its constructor is called.
The destructor may potentially be called in three cases: when the function returns
normally, when kRanOutOfData is thrown, or when kTooMuchData is thrown. No
matter how this function exits, A's destructor gets a chance to clean up whatever the
constructor did.

Example 8.5 shows the class definition for a stack-based Registry key class. The
constructor opens the key you specify, and the destructor closes it again. In between,
there are members for getting and setting individual values.

Example 8.5. The StKey Class Definition
class StKey
{
 public:
 StKey(HKEY inRoot, LPCTSTR inPath, REGSAM inAccess =
KEY_READ);
 ~StKey();

 LONG GetDWORDValue(LPCTSTR inValName, DWORD &outCount);
 LONG GetStringValue(LPCTSTR inValName, LPSTR outValue, DWORD
&ioBufSize);
 LONG GetValueCount(DWORD &outCount);

 LONG SetDWORDValue(LPCTSTR inValName, const DWORD inVal);
 LONG SetStringValue(LPCTSTR inValName, LPCTSTR inVal,
 const DWORD inBufSize = 0, DWORD inType
= REG_SZ);

 LONG AddDWORDValue(LPCTSTR inValName, const DWORD inVal);
 LONG AddStringValue(LPCTSTR inValName, LPCTSTR inVal,
 const DWORD inBufSize = 0, DWORD inType
= REG_SZ);

 private:
 HKEY mCurrKey;
};

8.3.2.1 How the code works

Example 8.6 shows the actual implementation of the StKey class.[7] The constructor
and destructor are straightforward: they open and close the requested key, and that's
it! Likewise, there's nothing magic about the GetValueCount, GetDWORDValue, or
GetStringValue members.

[7] I omitted AddDWORDValue and AddStringValue from the example because they just call
the corresponding Set routines.

The most interesting piece is actually the SetStringValue member. It handles more
than one type of Registry string. You probably remember that values may contain
plain strings (REG_SZ), expandable strings (REG_EXPAND_SZ), or multiple strings
(REG_MULTI_SZ). SetStringValue correctly creates values of all three types; in
addition, it's smart enough to figure out the correct string length based on the input
type.

Example 8.6. The StKey Class Implementation
StKey::StKey(HKEY inRoot, LPCTSTR inPath, REGSAM inAccess /* =
KEY_READ */)
{
 long nResult = 0;
 mCurrKey = NULL;
 nResult = RegOpenKeyEx(inRoot, inPath, 0L, inAccess,
&mCurrKey);
 if (ERROR_SUCCESS != nResult)
 mCurrKey = NULL;
}

StKey::~StKey()
{
 if (mCurrKey)
 {
 RegCloseKey(mCurrKey);
 mCurrKey = NULL;
 }
}

LONG StKey::GetValueCount(DWORD &outCount)
{
 return RegQueryInfoKey (mCurrKey,
 NULL, NULL, NULL,
 NULL, NULL, NULL,
 &outCount,
 NULL, NULL, NULL, NULL);

}

LONG StKey::GetDWORDValue(LPCTSTR inValName, DWORD &outValue)
{
 DWORD sz = sizeof(DWORD);
 return RegQueryValue(mCurrKey, inValName, (LPTSTR)&outValue,
(long *)&sz);
}

LONG StKey::GetStringValue(LPCTSTR inValName, LPTSTR outValue, DWORD
&ioBufSize)
{
 DWORD sz = sizeof(DWORD);
 return RegQueryValue(mCurrKey, inValName, outValue, (long
*)&ioBufSize);
}

LONG StKey::SetDWORDValue(LPCTSTR inValName, const DWORD inVal)
{
 return RegSetValueEx(mCurrKey, inValName, 0L, REG_DWORD,
(BYTE *)&inVal,
 sizeof(DWORD));
}

LONG StKey::SetStringValue(LPCTSTR inValName, LPCTSTR inVal,
 const DWORD inBufSize /* = 0*/,
 DWORD inType /*= REG_SZ*/)
{
 if (!IsValidStringType(inType))
 return ERROR_INVALID_PARAMETER;
 if (0 == inBufSize && REG_MULTI_SZ == inType)
 return ERROR_INVALID_PARAMETER;
 return RegSetValueEx(mCurrKey, inValName, 0L, inType, (BYTE
*)inVal,
 (inBufSize ? inBufSize
: strlen(inVal)));
}

LONG StKey::AddDWORDValue(LPCTSTR inValName, const DWORD inVal)
{
 return SetDWORDValue(inValName, inVal);
}

LONG StKey::AddStringValue(LPCTSTR inValName, LPCTSTR inVal,
 const DWORD inBufSize /* = 0*/,
 DWORD inType /*= REG_SZ*/)
{
 return SetStringValue(inValName, inVal, inBufSize, inType);
}

8.3.2.2 Possible enhancements

You could easily extend this class to support a Standard Template Library-style
iterator capability for value. This makes it easy to iterate through all values of a

subkey in a structured, exception-safe manner. You can also make the constructor
smarter, perhaps by allowing it to recognize and parse a fully qualified path such as
"\\enigma\HKLM\SOFTWARE\LJL\SMIME\Users" instead of requiring the root key
and path to be separate. Another useful expansion is to make the class able to store
values in USKs. For a real treat, consider building a stack-based class that loads and
unloads hive files!

8.3.3 Example: Loading a Control with a Set of Values

If you store useful data as values attached to a subkey, at some point you'll want to get
them out again. In writing an S/MIME-compliant electronic mail client, I found that I
needed to get a list of stored user profiles (which lives in
HKLM\SOFTWARE\LJL\SMIME\Users) and display them in a dropdown list so the
user can efficiently pick a profile to use when logging in. The actual code that does so
is in Example 8.7; it's fairly straightforward.

Example 8.7. Move the Values from a Key into a Windows Combo
or List Box
#include <windows.h>

typedef enum {eCombo=0, eList} eBoxType;

HRESULT LoadBoxWithUsers(eBoxType inBoxType, HWND inControl, LPSTR
inDefName,
 int &outSelected)
{
 DWORD nResult = ERROR_SUCCESS;
 HKEY hkFirstKey;
 HRESULT retVal = 0;
 long idx = 0;
 DWORD dwValCount = 0;

 SendMessage(inControl, (eCombo ==
 inBoxType ? CB_RESETCONTENT : LB_RESETCONTENT),
 (WPARAM)0, (LPARAM)0);
 outSelected = 0;

 // try to open HKLM\SOFTWARE\SMAIL; if we succeed, enumerate
 // through its subkeys and return the first one
 nResult = RegOpenKeyEx(HKEY_LOCAL_MACHINE,
"SOFTWARE\\LJL\\SMIME\\Users",
 0L, KEY_READ, &hkFirstKey);
 if (ERROR_SUCCESS == nResult)
 {
 char *pszName = NULL;
 DWORD dwNameLen = 0;

 // find out what the longest subkey is and how many values
exist
 nResult = RegQueryInfoKey (hkFirstKey,
 NULL, NULL, // class & class size
 NULL, // reserved
 NULL, // # of subkeys
 NULL, // longest subkey length
 NULL, // class length
 &dwValCount, // # of values

 NULL, NULL,
 &dwNameLen, // longest value contents
 NULL);

 // allocate buffers based on what we just learned
 pszName = (char *)malloc(dwNameLen);

 for (idx = 0; idx <= dwValCount; idx++)
 {
 nResult = RegEnumValue(hkFirstKey, idx, pszName,
&dwNameLen, NULL,
 NULL, NULL, NULL);
 if (ERROR_NO_MORE_ITEMS != nResult)
 SendMessage(inControl, (eCombo == inBoxType ?
CB_INSERTSTRING :
 LB_INSERTSTRING), (WPARAM)-1,
(LPARAM)pszName);

 // if this item matches the default, return it as a match
 if (inDefName && stricmp(pszName, inDefName) == 0)
 outSelected = idx;
 memset(pszName, 0x0, MAX_PATH); dwNameLen = MAX_PATH;
 }
 nResult = RegCloseKey(hkFirstKey);
 SendMessage(inControl, (eCombo == inBoxType ?CB_SETCURSEL :
 LB_SETCURSEL),(WPARAM)outSelected,
(LPARAM)0);
 free(pszName);
 }
 else
 retVal = E_NOT_FOUND;
 return retVal;
}

The first thing this code does is clear out the Windows list/combo box control; once
that's done, it opens the key where the relevant values are stored. If RegOpenKeyEx
succeeds, a call to RegQueryInfoKey returns the length of the longest value and the
number of values attached to the key.

With that information in hand, it's easy to iterate through the values by repeatedly
calling RegEnumValue. As each value is retrieved, it's added to the combo box. If the
caller specifies a default value for the combo box, when that value is encountered, its
index is saved so you can preset the combo box's selection. This makes it possible to
remember the user's last selection and have it appear as the selection when the
program's next run.

8.4 Programming with Perl

Ahhh, Perl![8] Once upon a time, its power and entertainment value were reserved
solely for Unix administrators. A long line of Windows programmers have labored to
bring the Perl toolset to Win32; in doing so, they've added some nifty features not
present in other platforms' Perl implementations. ActiveState Perl is an
implementation of Perl for Win32 platforms and is available at
http://www.activestate.com . In addition to the Perl core, ActiveState Perl also
includes complete support for the Registry, COM, OLE, and Win32 security.

[8] Since this is an O'Reilly book, I was sternly admonished to talk about Perl.

Throughout the rest of this section, I'm going to assume that you're familiar with Perl
syntax and semantics, particularly the Perl implementation of objects and modules. (If
you're not, I highly recommend Learning Perl On Win32 Systems by Randal L.
Schwartz, Erik Olson, and Tom Christiansen from O'Reilly & Associates.)

Even if you don't use the Win32-specific extensions, you can write plain-vanilla Perl
and it works fine, but the extensions let you use Perl's expressive power to make short
work of tasks such as creating batches of user accounts (as described in Windows NT
User Administration by Ashley J. Meggitt and Timothy D. Ritchey; O'Reilly &
Associates). Note that all the examples in this section were developed under and
tested with ActivePerl Version 5.6.0.

Before Perl Version 5 hit the streets, when people wanted to extend Perl, they actually
had to change the core language itself. This resulted in products such as oraperl,
which is Perl plus Oracle connectivity. Version 5 included a general extension
mechanism developers could use to extend and change Perl without having to change
the core. Developers can write extensions in Perl or other languages such as C or C++
(see the documentation on Perl's extension mechanism--called XS--in the perlxs and
perlxstut sections of the Perl manual). This is how ActivePerl makes the Registry API
available.

8.4.1 The Win32API::RegXXX Functions

The Win32 Perl module includes definitions that correspond to each of the standard C
function definitions described in Section 8.3, earlier in this chapter. You can use them
as you would the C or Visual Basic equivalents; the one difference is that you should
qualify the routine names by specifying they come from the Win32 module. Example
8.8 shows what the program from Example 8.1 looks like when rewritten in Perl with
the standard Win32 module's calls.

Example 8.8. "Hello, World" from Example 8.1, Rewritten in Perl
use Win32API::Registry 0.13 qw(:ALL);

RegOpenKeyEx (HKEY_LOCAL_MACHINE,

"SYSTEM\\CurrentControlSet\\Control\\ComputerName\\ActiveComputerName
",
 0, KEY_READ, $theKey) or die
 ("Couldn't open name key!$^E");

RegQueryValueEx($theKey, 'ComputerName',
 [], # our friend lpReserved
 REG_SZ,
 $who, []);
print "This computer is named $who\n";

RegCloseKey($theKey);

The first line imports the Win32 module definitions themselves. The real fun starts
with the call to RegOpenKeyEx. The most unusual feature of this call is that the

constant parameters are passed by reference; other than that (and the call to die) it
looks much like the C calls discussed in other sections of this chapter.

Likewise, the call to RegQueryValueEx looks almost like the other languages'
equivalents. One difference is that the value is returned in $who; since Perl doesn't
need the length of the data in $who, there's no parameter for it. There is a parameter
that can return the value's type, but in this case it's useless so I passed in [] instead of
a variable reference. (Note that you can pass &NULL or [] to indicate a NULL value.)

The special value $^E tells the Perl interpreter to call the Win32 GetLastError()
routine and turn the returned error code into a text string. This is optional, but helpful.

Finally, once the computer name's been printed, RegCloseKey closes the key just
opened. This is just as necessary in Perl as anywhere else; when you open an HKEY,
the OS needs to be told when you're finished with it.

8.4.1.1 When to use them

If you're already comfortable with the C/C++ interfaces, the Perl equivalents will
seem familiar, because they are; they're just Perl transliterations of the existing C++
idioms from the Win32 API definitions. However, if you're going to program in Perl,
you should do that instead of using what Perl hackers disparagingly call "C-in-Perl."
The next section tells you how to do just that.

8.4.2 The Win32::TieRegistry Module

A large part of Perl's popularity is the fact that Perl takes care of many fussy details
for the programmer. Larry Wall, Perl's creator, describes this design philosophy as
"making easy things easy and hard things possible." Compare the original Perl "Hello,
World" program in Example 8.7 to the version shown in Example 8.9.

Example 8.9. Perl "Hello, World" Rewritten with the
Win32::TieRegistry Module
use Win32::TieRegistry Delimiter => '/';

my $name = join '/',
 qw/ LMachine SYSTEM CurrentControlSet Control
 ComputerName ActiveComputerName /;

my $key = $Registry->{$name}
 or die "$0: can't open $name: $^E\n";

print "This computer is named $key->{'/ComputerName'}\n";

There are some things in this code that will probably look pretty odd to people who
aren't used to Perl. If you're comfortable with Perl, skip the next section; otherwise,
read on for some interpretation of all that funny-looking stuff.

8.4.2.1 A few Perl-isms

Like practically every other computer language ever invented, Perl supports arrays.
Perl also supports a special type of array called a hash. You may be familiar with the
underlying concept under another name, such as "associative array" or "dictionary
list." A hash is just a data structure that maps a key to some data; it's like an array, but
instead of being indexed by positive integers it's indexed by values.[9] The join
operator concatenates values, and the qw operator quotes strings (so that qw/Hello/ is
equivalent to "hello" in a C program). qw also replaces spaces with the appropriate
delimiter.

[9] For much more on hashes, see Chapter 7 of Learning Perl on Win32 Systems>, Chapter 5 of the original
Learning Perl by Randal L. Schwartz and Tom Christiansen, or the heavy-duty Programming Perl by Larry Wall,
Tom Christiansen, and Jon Orwant, all published by O'Reilly & Associates.

Win32::TieRegistry also uses shorter names for the root keys: HKLM, HKU,
HKCU, and HKCR are LMachine, Users, CUser, and Classes, respectively. I've used
the TieRegistry abbreviations instead of the more standard C/C++-style names
because that's what you're likely to see in other Perl code.

8.4.2.2 The code in detail

Let's start with line 1: instead of importing the entire Win32 module, the code uses
only the TieRegistry module. Notice that we're separating keys and subkeys with
slashes instead of a backslashes (that's what we meant by Delimiter => '/' in the
use directive). The next line creates the key name we want to open. The big surprise
starts on the next line: instead of calling RegOpenKeyEx, the code accesses the registry
key of interest by inspecting the $Registry hash, using the key name fabricated with
qw as an index into the hash.

Perl uses the arrow operator (->) familiar to C and C++ programmers. $Registry is
actually a reference to a hash. Perl's references are analogous to a safe implementation
of C's pointers. If you have a reference to something, then that reference is guaranteed
to be valid; there's no such thing as a NULL reference. Think of $Registry->{$name}
as being equivalent to, but safer than, p->field in C.

The hash behind $Registry is very special: it's a tied hash. Tied hashes in Perl link
the name of a hash entry to code that fetches the corresponding value when you need
it. In this case, asking for a key from the $Registry hash actually causes TieRegistry
to read the corresponding key with RegOpenKeyEx. Another example of tied hashes is
Perl's magic %ENV hash that lets you read and set environment variables by reading
from and writing to what appears to be a Perl hash. (See the perltie section of the Perl
manual for more details on tied hashes.)

One more difference: instead of returning an HKEY, extracting a value from a hash
returns another reference to a tied hash that represents the HKEY. It's possible to
continue to extract values from the new reference, as the example demonstrates. This
is a very nice property, because you can then traverse the registry as a splay tree using
the usual recursive algorithm.

Internally, all the routines in Win32::TieRegistry call the
Win32 API routines, either directly or out of the Win32 module.
That means that any limitations described earlier in Section 8.1
still pertain to these calls, even though they're not completely
identical to the original routine definitions.

8.4.2.3 Opening and closing keys and retrieving values

Before you can do anything to a key or value, you must have an open key. You open
keys by accessing the value associated with a particular key name. The key name can
be the full path of the key you want or a relative path from a key that you already
opened. The return value is a new registry object for subkeys or the corresponding
value for values:

$newobj = $RegObj->{$subkeyname};

$value = $RegObj->{$valuename};
retrieve type also
$RegObj->ArrayValues(1);
($value, $type) = @{ $RegObj->{$keyname} };

Notice you don't have to explicitly close Registry keys.

8.4.2.4 Creating, adding, and modifying keys and values

You can create, add, or modify a subkey or value beneath an open key simply by
assigning to a key of the registry object:

$RegObj->{$subkeyname} = $newvalue;

As the following example from the Win32::TieRegistry documentation
demonstrates, you can also insert arbitrarily nested data:

$Registry->ArrayValues(1);
$Registry->{"LMachine/Software/FooCorp/"} = {
 "FooWriter/" => {
 "/Version" => "4.032",
 "Startup/" => {
 "/Title" => "Foo Writer Deluxe][",
 "/WindowSize" => [pack("LL",$wid,$ht), "REG_BINARY"],
 "/TaskBarIcon" => ["0x0001", "REG_DWORD"],
 },
 "Compatibility/" => {
 "/AutoConvert" => "Always",
 "/Default Palette" => "Windows Colors",
 },
 },
 "/License", => "0123-9C8EF1-09-FC",
};

8.4.2.5 Enumerating keys and values

To list a hash's keys, use Perl's keys operator. Note that Win32::TieRegistry uses a
special naming convention under which value names start with the delimiter and
subkeys end with the delimiter. Enumerate the keys and values using the for operator,
like this:

my(@keys,@vals);
$RegObj->Delimiter('/');
for (keys %$RegObj) {
 if (m<^/(.*)$>s) {
 push @vals, $1;
 }
 elsif (m<^(.*)/$>s) {
 push @keys, $1;
 }
}

As you'd expect, enumerating the keys doesn't recurse down the tree, so the subkeys
in its array represent only the first level beneath the requested key.

Example 8.10 illustrates a possible application of key and value enumeration. After
opening the key of interest, it enumerates the subkeys and values. Once it has the two
lists, it iterates over them with the foreach operator to print each key in the array.

Example 8.10. Iterating Through Keys and Values with GetKeys
and GetValues
use Win32::TieRegistry Delimiter => '/';

my $name = join '/',
 qw/ LMachine System CurrentControlSet
 Services LanmanServer /;

my $key = $Registry->{$name}
 or die "$0: can't open $name: $^E\n";

my(@subs,@vals);

for (keys %$key) {
 if (m<^/(.*)$>s) {
 push @vals, $1;
 }
 elsif (m<^(.*)/$>s) {
 push @subs, $1;
 }
}

print "Subkeys of $name:\n",
 map("$_\n", @subs),
 "Values of $name:\n",
 map("$_=$key->{$_}\n", @vals);

8.4.2.6 Deleting keys and values

In keeping with the theme of functioning just like hashes, use Perl's delete operator
to delete keys and values:

$old = delete $regObj->{$key_or_value_name};

8.4.2.7 Saving and loading keys

Win32::TieRegistry has versions of RegSaveKey and RegLoadKey from the
Win32API::Registry module:

$regObj->AllowSave(1);
$regObj->RegSaveKey($filename, $security);

$regObj->AllowLoad(1);
$regObj->RegLoadKey($keyname, $filename);

The $security argument to RegSaveKey contains a SECURITY_ATTRIBUTES structure
that specifies the permissions to be set on $filename. This is typically [], a reference
to an empty array.

8.4.2.8 Mixing Win32API::Registry and Win32::TieRegistry

The Win32::TieRegistry module provides an object-oriented interface also. Many
of these methods' names are the same as or similar to their Win32API::Registry
counterparts (e.g., RegLoadKey and RegSaveKey). Read the Win32::TieRegistry
documentation for all the gory details.

8.4.3 Example: Walking the Registry

Perl excels at processing, formatting, searching, and generally handling textual
information. Since the Registry is really one big binary blob, you might not think Perl
would be a useful language for working with the Registry. However, as any true Perl
hacker knows, Perl is useful for everything!

In his upcoming book (alas, at the time of this writing, it still doesn't have a title) on
functional programming for Perl hackers published by Morgan Kaufmann, Mark
Dominus develops a parameterized directory tree walker that takes as arguments two
callbacks for processing files and directories. Realizing that directory tree structure
and registry structure are practically identical, we can develop a similar tool and put it
to use for whatever purpose you wish.

Despite its power, the code looks deceptively simple:

package RegWalk;

use strict;
use Win32::TieRegistry ArrayValues => 1;

sub import {
 no strict 'refs';
 my($pkg) = caller;

 *{ $pkg . '::' . 'reg_walk' } = \®_walk;
}

sub reg_walk {
 my($key, $valfunc, $keyfunc) = @_;

 my $info = $Registry->{$key};
 if (not defined $info) {
 warn "$0: couldn't open registry key:\n" .
 " $key ($^E)\n";

 return;
 }
 elsif (ref($info) eq 'Win32::TieRegistry') {
 my @results;
 foreach my $k (keys %$info) {
 push @results,
 reg_walk($key . $k, $valfunc, $keyfunc);
 }

 return $keyfunc->($key, $info, @results)
 if $keyfunc;
 }
 else {
 return $valfunc->($key, $info)
 if $valfunc;
 }
}

1;

To use the RegWalk module, put it somewhere that Perl can find it (one of the
directories in the @INC section of the output of perl -V is a good place).

Don't worry if you don't understand the import subroutine; it works some behind-the-
scenes magic to make reg_walk appear to be defined in the calling package (this
particular spell is called exporting).

reg_walk takes as arguments a key name, a callback for registry values, and a
callback for registry subkeys. It opens the specified key and decides whether it has a
subkey or a value. If it has a subkey, it gathers the results from a recursive call to
itself (think of it as "drilling" all the way to the bottom in RegEdit) and passes the key
name, a reference to a tied hash representing the open key, and the gathered list of
results to the registry subkey callback that you provided. (If you want to impress your
computer-scientist friends, you can say that it's performing a depth-first search of the
registry.) If it sees that it has a value, it passes the key name and a reference to an
array of the form:

[$value, $type]

to the Registry value callback that you provided.

Not impressed yet? What if I told you that you can use this module to do any possible
Registry management task that you could think up? Any task, from deleting
everything in your Registry (which I wouldn't recommend) to looking for values that
match some regular expression to sending a copy of your Registry to your buddies
hiding behind Comet Hale-Bopp (assuming, of course, that you have
Net::SubSpace::Transmit installed). The trick is to provide callbacks that do what
you want.

Philippe Le Berre wrote a small Perl utility, dumpreg.pl, which dumps a specified key
(and its subkeys and values) in a nice formatted list. I've updated his code to take
advantage of Win32::TieRegistry and RegWalk. The main section of the code
(shown in Example 8.11) gets the user's command-line input, validates it (filling in
defaults where appropriate), connects to a remote machine if requested
(Win32::TieRegistry handles this transparently when it sees key names that look
like \\machinename\...), opens the key to be traversed, and opens the output file. If
any step fails, the program stops; if they all succeed, the process_key routine gets
called.

Example 8.11. The Main Section of dumpreg.pl
use strict;
use Win32::TieRegistry qw/ :REG_ /;
use RegWalk;

sub usage { "Usage: $0 key [output-file]\n" }

my %type = (
 REG_SZ() => 'REG_SZ',
 REG_EXPAND_SZ() => 'REG_EXPAND_SZ',
 REG_BINARY() => 'REG_BINARY',
 REG_MULTI_SZ() => 'REG_MULTI_SZ',
 REG_DWORD() => 'REG_DWORD',
);

die usage unless @ARGV >= 1;

my $key = shift;
my $out = shift || 'Hive.key';

my $box;
my $root;

 # e.g., \\machine\HKEY_LOCAL_MACHINE..
if ($key =~ /^(?:\\\\(.+?)\\)?(HKEY_[^\\]+)?\\?(.*)/) {
 $box = $1 || '';
 $root = $2 || '';
 $key = $3 || '';
}

my %root = (
 HKEY_CLASSES_ROOT => 'Classes',
 HKEY_CURRENT_USER => 'CUser',
 HKEY_LOCAL_MACHINE => 'LMachine',
 HKEY_USERS => 'Users',
 HKEY_PERFORMANCE_DATA => 'PerfData',
 HKEY_CURRENT_CONFIG => 'CConfig',
 HKEY_DYN_DATA => 'DynData',
);

if ($root) {
 if (exists $root{$root}) {
 $root = $root{$root};
 }
 else {
 die "$0: unknown registry root key: '$root'\n";
 }
}

else {
 $root = $root{HKEY_LOCAL_MACHINE};
}

$key = $root . '\\' . $key;
$key =~ s/([^\\])$/$1\\/;

print "Dumping:\n",
 "'$key'\n";
print "from machine $box...\n" if $box;

open my $file, ">$out" or die "$0: open >$out: $!\n";

process_key $key, $file;

close $file;

process_key itself is shown in Example 8.12.

Example 8.12. process_key Does All the Hard Work
sub process_key {
 my $key = shift;
 my $file = shift;
 my $total = 0;

 my $valfunc = sub {
 my $k = shift;
 my($val,$type) = @{ shift @_ };
 if ($k =~ /^(.+?)\\\\(.*)$/) {
 my $parent = $1;
 my $name = $2 || '(Default)';
 my $depth = $parent =~ tr/\\//;
 my $indent = ' ' x $depth;
 printf "%03d)$indent$name\n", ++$total;
 $val ||= '[empty]';
 return "$indent$name\n" .
 "$indent $name = $type{$type}\n" .
 "$indent $val";
 }
 else {
 warn "$0: unexpected key name: '$k'\n";
 }
 };
 my $keyfunc = sub {
 my $k = shift;
 my $info = shift;
 my @result = @_;
 if ($k =~ /^(.+\\)?(.+)\\$/) {
 my $parent = $1 || '';
 my $name = $2;
 my $depth = $parent =~ tr/\\//;
 my $indent = ' ' x $depth;
 printf "%03d)$indent$name\n", ++$total;
 unshift @result, "$indent$name";
 }
 else {
 warn "$0: unexpected key name: '$k'\n";
 }
 return @result;
 };

 for (reg_walk $key, $valfunc, $keyfunc) {
 next unless $_;

 print $file $_, "\n";
 }
}

The two callbacks, stored in $valfunc and $keyfunc, are the meat of the subroutine.
Remember that reg_walk calls the appropriate callback for each subkey and value
that it encounters in its traversal. Both callbacks determine the parent key name and
the current key name. They then count backslashes in the parent using the tr///
operator to determine the current depth in the tree (i.e., how many levels reg_walk
has "drilled down"). Once reg_walk has assembled all the nformation from the
callbacks, the code iterates over the resulting list, printing each non-empty result to
the output file.

Example 8.13 shows another Registry walker that searches case-insensitively for key
names containing a particular substring:.

Example 8.13. Keyword Search
use strict;
use RegWalk;

sub findkey {
 my $goal = shift;
 my $names = shift;
 my $val = sub {
 my $key = shift;
 my($info) = @{ shift @_ };
 if ($key =~ /^.*?\\\\(.*)$/) {
 my $name = $1 || '(Default)';
 if (index(lc($name), $goal) >= 0) {
 return "$key - $info";
 }
 }
 };
 my $key = sub {
 my $k = shift;
 my $info = shift;
 my @result = @_;
 if ($k =~ /^.*\\(.+)\\$/) {
 my $name = $1;
 if (index(lc($name), $goal) >= 0) {
 unshift @result, $k;
 }
 }
 return @result;
 };

 foreach my $root (@$names) {
 for (reg_walk $root, $val, $key) {
 next unless $_;

 print $_, "\n";
 }
 }

}

main
my %root = (
 HKEY_CLASSES_ROOT => 'Classes',
 Classes => 'Classes',
 HKEY_CURRENT_USER => 'CUser',
 CUser => 'CUser',

 HKEY_LOCAL_MACHINE => 'LMachine',
 LMachine => 'LMachine',
 HKEY_USERS => 'Users',
 Users => 'Users',
 HKEY_PERFORMANCE_DATA => 'PerfData',
 PerfData => 'PerfData',
 HKEY_CURRENT_CONFIG => 'CConfig',
 CConfig => 'CConfig',
 HKEY_DYN_DATA => 'DynData',
 DynData => 'DynData',
);

my $goal = shift;
die "Usage: $0 <goal> search...\n" unless $goal;

my @roots;
for (@ARGV) {
 unless (exists $root{$_}) {
 warn "$0: unknown root key '$_'\n";
 next;
 }
 push @roots, "$root{$_}\\";
}
die "$0: nothing to search!\n" unless @roots;

findkey lc($goal), \@roots;

You might call it like so:

findkey perl HKEY_CURRENT_USER

8.5 Programming with Visual Basic

Visual Basic used to be regarded as a toy language, in large part because that's what it
was. In true Microsoft tradition, though, it has been continually enhanced, revised,
tweaked, and improved to the point where it's a real honest-to-goodness programming
tool. While hard-core programmers may look down their noses at any language with
"Basic" in its name, many administrators have come to know and love VB because it
makes it extremely easy to construct robust applications with the full Windows look
and feel.

Besides that, VB includes a wide range of components that allow it to easily connect
to large databases, generate custom reports, and do a number of other things that are
much more difficult to do in C++ (or even Perl, unless you're already fluent). A good
friend of mine described VB by saying that its learning curve didn't reach as high as
Visual C++, but it was a lot flatter at the bottom.

While you could use VB to write a tool whose purpose was to manipulate the
Registry, it's more likely that you'll need to add Registry access to a VB program you
already have (or are writing). Accordingly, in this section I focus on how to get data
into and out of the Registry; that means opening and closing keys, enumerating keys
and values, querying and setting values, and deleting keys and values. If you want to
do anything else, you can do so using the API definitions discussed next.

As in the sections on C++ and Perl above, I'm going to assume
that you're already familiar with VB and how to use it. If you're
really interested in learning lots more about Registry
programming in any language--but particularly VB--I
recommend Inside the Windows 95 Registry (O'Reilly &
Associates).

8.5.1 Talking with the Outside World in VB

VB is arguably the most successful programming tool ever developed.[10] Its success is
primarily because it's easy to write programs that actually accomplish something. This
ease of use in turn comes from the ways that VB lets you extend its base functionality
to add new features. First of all, you can write new procedures and functions in VB
itself. This allows you to build your own library of reusable pieces you can apply to
new programs as you write them.

[10] In terms of sales, anyway; let's not start any religious wars about what the One True Language is or should be.

That's nothing very new, though; almost all other languages offer some support for
recycling code so it can be reused. VB also offers a sophisticated component model
based on ActiveX controls; almost any functionality can be wrapped up into an
ActiveX control so that other VB programmers can just drag and drop it into their
own programs. This is part of the reason why so many VB programs sport
sophisticated interfaces, with things such as calendars, spreadsheet-style grids, and
other frills. Since those elements can be packaged and reused, many programmers do
just that. As a side effect of this componentization, there's a healthy market for selling
VB components, and this acts as a further spur to component development.

8.5.1.1 DLL interfaces

Besides its component support, though, VB allows you to load any Windows DLL
and call the routines it exports. Most of its support for Win32 API routines is actually
implemented this way; there are function declarations that map a VB routine or
symbol name to an exported symbol in a DLL somewhere. Here's an example:

Declare Function RegOpenKey Lib "advapi32.dll" _
 Alias "RegOpenKeyA" _
 (ByVal hKey As Long, ByVal lpctstr As String, _
 phkey As Long) As Long

This tells VB that you're declaring a function named RegOpenKey. The actual
implementation of the function lives in the advapi32.dll library, and the function in
that DLL is actually named RegOpenKeyA. (Remember, all the Registry routines have

both ANSI and Unicode variants, but VB usually uses the ANSI versions.) The rest of
the function declaration contains the argument list. This particular function takes three
parameters:

• hKey is declared as a Long, and the ByVal keyword tells VB to pass the value
of the parameter, not its location in memory. This distinction is critical, since
the DLL being called expects data to arrive in a particular format.

• lpctstr is declared as a String; because it's also declared with ByVal, its
contents are passed instead of its address. There's another reason why the
string is declared with ByVal: VB uses its own string format, which the
standard Win32 DLLs can't decipher. In this case, the ByVal keyword tells VB
to convert the string into a standard ANSI string, with a NULL terminator,
before passing it to the DLL.

• phkey is not passed by value; instead, its address is passed in to the DLL so
that the DLL can return a handle to the newly opened key. When you don't use
ByVal, VB assumes you're passing parameters by reference. You can also use
the ByRef keyword to explicitly declare that you want something passed by
reference.

The last element in the declaration is the return type of the function. The Win32 API
standard is that all functions return a long integer, which corresponds to VB's Long
type, so that's what RegOpenKey returns.

8.5.1.2 A few more subtleties

The VB documentation includes an entire chapter on how to construct the correct VB
function declaration for any C or C++ DLL routine. Even after reading this chapter
several times, you may find the details confusing. Rather than send you back to read it
again, let's see if I can boil the rules down to their essentials.

First of all, you've already seen the basic rule above: if you're passing in a variable the
API routine fills in and returns, you need to pass it by reference, not with ByVal.
Strings are the exceptions to this: you always need to include ByVal so that VB knows
it should convert strings to and from its own funny format instead of passing them on
to the unsuspecting Win32 DLLs.

The corollary to this rule is that you use ByVal when you're passing in a non-string
parameter the API routine can't modify. Examples include the HKEY you must pass in
for all the Registry routines or the REGSAM and DWORD values you use with
RegCreateKeyEx.

In C, C++, and Perl, you probably use NULL sometimes to indicate that you don't want
to supply a value for a parameter. The Registry API routines allow this for most
parameters, but you'll quickly run into trouble if you do something like the following:

Call RegCreateKeyEx(HKEY_CURRENT_USER,
"SOFTWARE\LJL\ArmorMail\PFXLocation",
 0, 'reserved
 0, 'class -- but it's WRONG!
 0, 'dwOptions

 KEY_READ,
 0, 'security attributes --
WRONG AGAIN
 resultKey,
 disposition);

This seems perfectly legal; after all, it's a well-known fact that NULL is just a textual
representation of 0. Unfortunately, this code isn't passing a pointer whose value is
NULL. Instead, you're passing a pointer that points to a NULL. This is like the difference
between sending a letter to your spouse and sending a letter about your spouse--the
consequences can be unintended and possibly severe.

Here's the correct way to call RegCreateKeyEx. The fix is to add ByVal to the two
pointer parameters (lpSecurityAttributes and lpClass). This tells VB that you
really want to pass NULL pointers instead of pointers to NULL:

Call RegCreateKeyEx(HKEY_CURRENT_USER,
"SOFTWARE\LJL\ArmorMail\PFXLocation",
 0, 'reserved
 ByVal 0, 'class
 0, 'dwOptions
 KEY_READ,
 ByVal 0, 'security attributes
 resultKey,
 disposition);

Here's another bear trap that's waiting to snap shut on your ankle. Some of the
Registry APIs accept raw data. For example, RegSetValueEx accepts the value
contents you want to store as a block of type BYTE. Since VB doesn't know whether
you're storing a DWORD, a string, or something else, the function prototype doesn't
specify a definite type. VB includes a rough equivalent, the As Any keyword. When
you use it, you're telling VB not to check the datatype of that parameter, which is
tantamount to begging for trouble.

The solution recommended by Ron Petrusha in Inside the Windows 95 Registry is to
declare aliases of functions that normally might use As Any; e.g., this declaration adds
an alias for RegSetValueEx that "knows" it's storing a string value:

Declare Function RegSetStringValue Lib "advapi32.dll" _
 Alias "RegSetValueExA" _
 (ByVal hKey As Long, ByVal lpValueName As String, _
 ByVal Reserved As Long, ByVal dwType As Long, _
 ByVal lpData As String, ByVal cbData As Long) As Long

This makes it possible to declare the lpData parameter as a string so the VB compiler
can check it for correctness. You can also define similar aliases for setting DWORD,
REG_MULTI_SZ, or REG_BINARY data.

8.5.2 Using the Registry with VB

Now that you know what to watch out for when calling the Registry API routines, it's
time to move on to actually writing some Registry code in VB.

8.5.2.1 The VBA functions

VB includes a set of functions for accessing the Registry. Unfortunately, they are so
limited as to be practically worthless:

• You may only access keys under HKCU\Software\VB and VBA Program
Settings. Period. This is a severe limitation if you're writing programs that
need to access keys that aren't under HKCU.

• The provided routines can work only with one level of keys, so if you open a
key named HKCU\Software\VB and VBA Program Settings\MyStuff, you
can't access values under HKCU\Software\VB and VBA Program
Settings\MyStuff\CurrentVersion.

• You can store and retrieve only string values: no binary or DWORD data
allowed.

These limitations came about because the built-in Registry routines were designed to
be seamlessly compatible when the compiled VB applications were run on Win3.x,
Win9x, Windows NT, and 2000. This means that the functionality is restricted to the
lowest common denominator. There's no reason to use them unless you want your
programs to run under Win3.x; not likely if you're reading this book. I won't talk
about them any further.

8.5.2.2 Using WINREG.BAS

Even though the built-in VB functions are unsuitable for most uses, you still have
another alternative: you can use the original Win32 API routines with suitable VB
function declarations. If you follow the rules in the previous section, you could easily
write your own set of VB function declarations for the Registry API, but doing so
would be wasteful, because Andrew Schulman has already done so. WINREG.BAS
(available from the O'Reilly web site at http://www.oreilly.com) contains declarations
for all the Registry API routines discussed in this chapter (except for
RegQueryMultipleValues), plus some additional routines you may find useful. You
need this file to use the examples later in the chapter, and you'll probably want to use
it in your own projects.

You can also use a third-party VB control that encapsulates
Registry functions into a higher-level set of routines. The
Desaware Registry Control (http://www.desaware.com) is one
example, but there are others. The chief drawback to these
controls is that they cost money, but they can save you time if
you're not entirely comfortable with using the raw Registry
routines.

Since all WINREG.BAS does is put a VB-compatible face on the API routines
described earlier in the chapter, I'm not going to reiterate how those routines work or
what their parameters are. Instead, let's see them in action.

8.5.3 Example: A RegEdit Clone

You may have noticed that RegEdit looks like a pretty simple program. For the most
part, it is; it has to gather small amounts of data from the user, then pass that data to
one or another of the Registry API routines. In Inside the Windows 95 Registry, Ron
Petrusha provides a RegEdit clone written in Visual Basic! It's not truly a clone; in
fact, it doesn't do anything except display keys and values, but it does so with the
familiar tree control, just like RegEdit. However, if you look at the clone in operation
(see Figure 8.1), you'll be hard-pressed to tell the difference between the two.

Figure 8.1. The RegEdit clone

8.5.3.1 Creating the initial tree

The first step in creating a RegEdit clone is to build the VB form definitions. Since
that has nothing to do with the Registry, I won't talk about it here. (If you want to see
the code, check out http://windows.oreilly.com/registry.) Instead, let's focus on the
interesting stuff. The first block of interest is in the main form's Load method. It
creates a new root key named "My Computer" in the tree list, then adds nodes for
each root key:

Set nodRegTree = TreeView1.Nodes.Add("home", tvwChild, "HKCR", _
 "HKEY_CLASSES_ROOT", "closed",
"open")
Set nodRegTree = TreeView1.Nodes.Add("home", tvwChild, "HKCU", _
 "HKEY_CURRENT_USER", "closed",
"open")
Set nodRegTree = TreeView1.Nodes.Add("home", tvwChild, "HKLM", _
 "HKEY_LOCAL_MACHINE", "closed",
"open")
Set nodRegTree = TreeView1.Nodes.Add("home", tvwChild, "HKU",
"HKEY_USERS", _
 "closed", "open")
If blnWinNT4 Then
 Set nodRegTree = TreeView1.Nodes.Add("home", tvwChild, "HKCC", _

 "HKEY_CURRENT_CONFIG",
"closed", "open")
 Set nodRegTree = TreeView1.Nodes.Add("home", tvwChild, "HKDD", _
 "HKEY_DYN_DATA", "closed",
"open")
End If

Once the tree view is set up, the next step is to make any root key that has subkeys
expandable. Part of this is making sure there's enough space to store the name of the
longest subkey name that might ever appear:

For intctr = 1 To TreeView1.Nodes.Count
 strNode = TreeView1.Nodes.Item(intctr).Key
 If strNode <> "home" Then
 ' Convert node abbreviation to handle
 Select Case strNode
 Case "HKCR"
 hKey = HKEY_CLASSES_ROOT
 Case "HKCU"
 hKey = HKEY_CURRENT_USER
 Case "HKLM"
 hKey = HKEY_LOCAL_MACHINE
 Case "HKU"
 hKey = HKEY_USERS
 Case "HKCC"
 hKey = HKEY_CURRENT_CONFIG
 Case "HKDD"
 hKey = HKEY_DYN_DATA
 End Select

 ' Get size of longest subkey for each key and use that to size
the
 ' retrieval buffer
 Call RegQueryInfoKey(hKey, 0, 0, 0, 0, lngLenSubkeyName, 0, 0,
0, 0, 0, 0)
 lngLenSubkeyName = lngLenSubkeyName + 1
 strSubkeyName = String(lngLenSubkeyName + 1, 0)

 ' Retrieve one subkey; if that succeeds, get one subkey to find
out if
 ' there are any subkeys for this node.
 If RegEnumKeyEx(hKey, 0, strSubkeyName, lngLenSubkeyName, 0&, _
 strClass, ByVal 0, ByVal 0&) = ERROR_SUCCESS
Then
 strSubkeyName = Left(strSubkeyName, lngLenSubkeyName)
 'Add node to top-level key so icon appears with a "+"
 Set nodRegTree = TreeView1.Nodes.Add(strNode, tvwChild, _
 , strSubkeyName, "closed", "open")
 End If
 End If
Next

Notice the use of ByVal 0 to pass NULL pointers in the call toRegEnumKeyEx. There's
another trick here, too: the call to RegQueryInfoKey gets the length of the longest
subkey name, and that length allocates the buffer that holds the subkey name returned
by RegEnumKeyEx. This ensures that the buffer is always long enough to hold the
name, even if the longest name comes up first.

This code alone displays the initial tree, but it's dead; users won't be able to expand or
contract nodes in the tree as they can with RegEdit. Time for some additional code.

8.5.3.2 Expanding the tree

The next step is to allow users to expand tree nodes that have subkeys. The snippet in
Example 8.14, taken from the tree view's Expand method, does just this. The code
performs five basic operations:

1. If the user's trying to expand a subkey, the code opens it. This means no
subkeys are opened until the user explicitly asks for them, which is a big
performance win.

2. It calls RegQueryInfoKey to find out how many subkeys there are. In addition,
it gets the length of the longest subkey name.

3. If the number of elements in this node doesn't match the number of subkeys,
or if the node's Tag field indicates that it was collapsed, it's time to expand the
tree by enumerating each subkey of the target and adding it as a node. In this
step, the subkey count obtained in Step 2 is invaluable.

4. While traversing subkeys of the expanded key, any subkey that has at least one
subkey itself is marked as having children. This forces the tree view control to
mark them with the "+" icon so users know that node can be expanded.

5. If any keys were opened in Step 1, they're closed again.

Example 8.14. Expanding a Node in the Registry Tree
' If we're expanding a subkey, open it. This allows us to only open a
key
' when the user clicks on it.
If Len(Trim(strSubkey)) > 0 Then
 Call RegOpenKey(hRootKey, strSubkey, hKey)
 blnKeyOpen = True
Else
 hKey = hRootKey
End If

' Find out how many subkeys and values there are and their maximum
name lengths
Call RegQueryInfoKey(hKey, 0, 0, 0, lngSubkeys, lngLenSubkeyName, _
 0, lngValues, lngLenValueName, lngLenValueData,
0, 0)

' If the node isn't fully expanded, go ahead and expand it.
If (Val(Node.Tag)) <> 1 Or (Node.Children <> lngSubkeys) Then

 ' First, delete existing nodes
 lngChildren = Node.Children
 For intctr = 1 To lngChildren
 TreeView1.Nodes.Remove Node.Child.Index
 Next

 ' Enumerate all this key's subkeys, adding each one as a node.
 For lngIndex = 0 To lngSubkeys - 1
 lngLenSubkey = lngLenSubkeyName + 1
 strSubkey = String(lngLenSubkey, 0)

 ' get the IngIndex'th key

 Call RegEnumKeyEx(hKey, lngIndex, strSubkey, lngLenSubkey, 0&,
0, 0, 0)
 strSubkey = Left(strSubkey, lngLenSubkey)

 ' Add it as a tree node
 Set nodRegTree = TreeView1.Nodes.Add(Node.Index, tvwChild, ,
strSubkey, _
 "closed", "open")

 ' If this node has at least one subkey, add a child to it to
enable it
 ' to be expanded too
 Call RegOpenKey(hKey, strSubkey, hChildKey)
 Call RegQueryInfoKey(hChildKey, 0, 0, 0, lngSubSubkeys,
lngLenSubkey, _
 0, 0, 0, 0, 0, 0)
 If lngSubSubkeys > 0 Then
 lngLenSubkey = lngLenSubkey + 1
 strSubkey = String(lngLenSubkey, 0)
 Call RegEnumKeyEx(hChildKey, 0, strSubkey, lngLenSubkey, 0&,
0, 0, 0)
 Call RegCloseKey(hChildKey)
 ' Add to most recent key
 lngNodeIndex = nodRegTree.Index
 Set nodRegTree = TreeView1.Nodes.Add(lngNodeIndex, tvwChild,
, _
 strSubkey, "closed",
"open")
 End If
 Next
 Node.Tag = 1
End If

' If we opened a key earlier, close it
If blnKeyOpen Then Call RegCloseKey(hKey)

8.5.3.3 Displaying values

So now our clone can display the root keys and expand them when users request it,
but what about displaying the values? To get value-display capability, the code needs
to do something when the user clicks on a tree node. That means adding a NodeClick
event handler. After some setup and variable declarations (which I'm not showing
here), our NodeClick routine starts by preflighting the value list and opening the
requested key:

' Clear current contents of ListView control
ListView1.ListItems.Clear

' Open the registry key attached to this node
If Len(Trim(strPath)) > 0 Then
 Call RegOpenKey(hRootKey, strPath, hKey)
 blnOpenKey = True
Else
 hKey = hRootKey
End If

The next step is to find out how many values there are and how big the largest value
name and contents are. Armed with that data, it's possible to display a default value
and stop if there aren't actually any values attached to this key:

' Get value count, max value name length, and max value contents
length
Call RegQueryInfoKey(hKey, 0, 0, 0, 0, 0, 0, lngValues, _
 lngMaxNameLen, lngMaxValueLen, 0, 0)

' Add default value entry if there aren't any real values present
If lngValues = 0 Then
 Set objLItem = ListView1.ListItems.Add(, , "<Default>", "string",
"string")
 Exit Sub
End If

If there are real values, the earlier call to RegQueryInfoKey indicates what the biggest
value data block is, so the data buffer can be sized accordingly:

' Redimension the byte array for value data using the max value
contents length
ReDim bytValue(lngMaxValueLen)

Now the fun begins. The code must enumerate over every value of this subkey,
getting both its name and its contents. Each value has a type, and it would be nice to
display an appropriate icon in the left-most column of the value list, just like RegEdit :

' Enumerate all value entries of this subkey
For lngIndex = 0 To lngValues - 1
 lngNameLen = lngMaxNameLen + 1
 ' make sure our buffer's big enough
 strValueName = String(lngMaxNameLen, 0)
 lngValueLen = lngMaxValueLen
 Call RegEnumValue(hKey, lngIndex, strValueName, lngNameLen, 0, _
 lngDataType, bytValue(0), lngValueLen)

 ' Determine icon type
 Select Case lngDataType
 Case REG_SZ, REG_MULTI_SZ, REG_EXPAND_SZ
 strIcon = "string"
 Case Else
 strIcon = "bin"
 End Select

 ' if it's empty, substitute "<Default>"; otherwise, use the name
 If lngNameLen = 0 Then
 strValueName = ""
 Set objLItem = ListView1.ListItems.Add(, , "< Default >",
strIcon, strIcon)
 Else
 strValueName = Left(strValueName, lngNameLen)
 Set objLItem = ListView1.ListItems.Add(, , strValueName,
strIcon, strIcon)
 End If

Users would hate our clone if it displayed everything in binary or hex, so it should
neatly format and display the value data, no matter its type. In all cases, a call to

RegQueryValueEx, combined with some formatting tweaking depending on the
datatype, achieves this happy result. Notice that for binary data there's no call to
RegQueryValueEx ; that's because the earlier call to RegEnumValue loaded the data
directly into the bytValue array:

' Format and display data
 Select Case lngDataType

 ' for a string, get the value and display it directly
 Case REG_SZ, REG_EXPAND_SZ
 strTemp = String(lngValueLen, 0)
 Call RegQueryValueEx(hKey, strValueName, 0, 0, ByVal
strTemp, _
 lngValueLen)
 objLItem.SubItems(1) = Left(strTemp, lngValueLen)

 ' for a multistring, get the value and pick it apart
 Case REG_MULTI_SZ
 strTemp = String(lngValueLen, 0)
 Call RegQueryValueEx(hKey, strValueName, 0, 0, ByVal
strTemp, _
 lngValueLen)
 strTemp = Left(strTemp, lngValueLen - 2)
 intPos = 1
 While intPos > 0
 intPos = InStr(1, strTemp, Chr(0))
 If intPos > 1 Then
 strTemp = Left(strTemp, intPos - 1) & "|" & _
 Mid(strTemp, intPos + 1)
 End If
 Wend
 objLItem.SubItems(1) = strTemp

 ' for binary or BIG_ENDIAN values, display in hex
 Case REG_BINARY, REG_DWORD_BIG_ENDIAN
 strTemp = ""
 For intctr = 0 To lngValueLen - 1
 strHex = Hex(bytValue(intctr))
 If Len(strHex) = 1 Then strHex = "0" & strHex
 strTemp = strTemp & strHex & " "
 Next
 objLItem.SubItems(1) = strTemp

 ' for a DWORD, display as a DWORD
 Case REG_DWORD
 lngLenDW = Len(lngTemp)
 Call RegQueryValueEx(hKey, strValueName, 0, 0, lngTemp,
lngLenDW)
 objLItem.SubItems(1) = lngTemp
 End Select
Next

The last--but not least--step is to clean up any messes made before this point:

' Close the key if we opened it
If blnOpenKey Then Call RegCloseKey(hKey)

Chapter 9. Administering the Registry

When you're responsible for administering computers--whether one or many--you
quickly find that much of what you do on a daily basis is miscellanea. You create new
accounts, remove old ones, figure out why your backup tape drive is dead, and so
forth. It would be nice if your whole career could revolve around orderly, planned
upgrades, maintenance, and migrations, but those little tasks are important too. This
chapter introduces you to several small tasks related to managing the Registry. While
none of them is a full-time activity, all of them are worth doing.

9.1 Setting Defaults for New User Accounts

Windows NT was designed from the start to support multiple user accounts sharing a
single computer. Unlike DOS and Windows 3.x, Windows NT provided a way
(through the Registry, actually) to keep individual settings for each user. However,
the original versions of NT didn't provide any way for these settings to be shared
between computers, and there were no mechanisms for collecting all of a user's
settings data in a single place.

NT 4.0 was the first version of NT to support the concept of user profiles. Like the
profiles in Win95, NT 4.0 profiles contain a user's desktop environment, application
settings, and other preferences. These profiles can be configured to roam from
computer to computer, so that users can have their own personalized environment
follow them to every machine they log onto. In addition, administrators can configure
these profiles to prevent users from changing all or part of the settings, thus making it
easier to set up shared computer labs and other facilities where it's important to
protect machines against tampering.

Windows 2000 expands the profile concept by allowing you to store more data in the
profile, as well as by supporting folder redirection, a trick that allows each user's "My
Documents" folder to appear on their desktop no matter where they log on, even
though it's actually stored on a remote server somewhere else. In addition to typical
user files stored in a server-based home directory, Windows 2000 profiles can hold
application-specific data like custom template or dictionary files, temporary files (like
browser caches) that follow the user around, favorites, and other preference
information.

In Windows 2000 and Windows NT, the profile consists of the contents of HKCU
(stored in ntuser.dat), plus information from the user's local profile file (either
%systemroot%\profiles\userName or \Documents and Settings\userName).

9.1.1 Under Windows 2000

Microsoft recommends a simple strategy for preconfiguring user accounts under
Windows 2000. The Windows NT approach (which you'll see in the next section)
doesn't take into account the expanded contents of the profile. Here's what to do:

1. Create a new local user account on a target workstation. This account holds
the settings you want the preconfigured account to use. For example, if you're

building a new account to hold defaults for the legal department, name the
account something like "Legal Profile."

2. Log on to the newly created account, then apply whatever settings you want to
be in force for that account.

3. Log on as an administrator and use the Active Directory management tools
(including the Group Policy snap-in) to apply whatever policy settings you
want tacked onto that class of accounts. You can also apply group settings if
desired.

Once you've configured the profile, you're ready to move it to the servers your users
will actually be using. You do this with the Profiles tab of the System control panel:

1. Open the System control panel (Start Settings Control Panels System).
2. Switch to the User Profiles tab (see Figure 9.1), then select the profile you

want to copy.

Figure 9.1. The User Profiles tab of the System control panel

3. Click the Copy To button: the Copy To dialog then appears. Put the local or
network path where you want the profile to be stored in the Copy profile to
field.

4. Use the Change... button in the Permitted to use control group to specify who
can use this profile. Normally, you should specify that Everyone can use the
profile; if you do, the profile is used automatically as the default profile for
new users.

You must also specify where the users' profile directory is by using either the Local
Users and Groups or Active Directory Users and Computers snap-in; you can do so
before or after you actually move the profile:

1. Open the appropriate snap-in and find the user path you want to modify.
2. Open the account's Properties dialog with the Action Properties command

or by right-clicking the account and choosing Properties from the context
menu.

3. Switch to the Profile tab of the properties dialog, then enter the path to the
user's profile directory. This must match the path you entered in Step 3 in the
previous list.

9.1.2 Under Windows NT

When you install Windows NT on a machine, the system uses a default profile to
provide settings for your user accounts. The first time a newly created account logs in,
the default profile is copied into HKCU, thus making the new account inherit the
default settings. Unfortunately, there's no direct way to change settings in this default
profile. You can use the System Policy Editor (as described in Chapter 6) to set
policies for the "Default User" account on Windows NT machines but if you want to
change a setting that's not in one of the policy templates--say, the default currency
format or the list of predefined URLs that Internet Explorer stores--you have two
choices. You can create a new policy template that contains the new settings you want
to apply, or you can edit the default user profile directly.

NT stores the default user profile in a file. On individual workstations and servers, the
profile is stored in %systemroot%\profiles\Default User. You can also force the
default profile to apply to all domain logons by putting it in the NETLOGON share of
your domain controller.[1] When it's there, the file must be named Ntuser.dat.
Whatever settings are in this file are applied to new user accounts, but they won't
affect existing accounts. Ntuser.dat is really just a Registry hive; when a new account
logs on interactively for the first time, NT copies the contents of the hive to HKCU,
then writes the changes to the appropriate subkey of HKU. By changing what's in the
initial hive, you affect what settings go into that user's HKCU when he logs on.

[1] To do this, you need to use the "Copy To" button on the User Profiles tab of the System control panel to move
the profile from your local machine to the domain controller's NETLOGON share.

Because the default user profile is just a Registry hive, you can edit it with RegEdt32.
Here's what to do:

1. Start RegEdt32. When it opens, open up the HKU window and select the HKU
root key.

2. Use the Registry Load Hive... menu command to select the default user
profile you want to edit. You can open %systemroot%\profiles\Default User
directly, or you can edit NTuser.man if it's available.

3. When RegEdt32 asks for a key name, make up any name that reminds you
what the hive is for. I usually use "DefaultUserProfile." RegEdt32 then
imports the hive and attaches it under the name you supply.

4. Select the new hive key and use the Security Permissions... command to add
Everyone:Read access to the key and its subkeys. This enables the profile-
sharing mechanism to copy keys from the default profile to users' HKCU.

5. Use RegEdt32 to make the desired changes to subkeys of your new hive. As
you make changes, they are stored transparently in the hive file.

6. Once you've finished editing all the hive keys, use the Registry Unload Hive
command to detach the hive. Until you do this, no other computer or user can
get access to the changes you've made.

9.2 Using Initialization File Mapping

In Chapter 1, I described how the Registry evolved from its humble parentage of INI
files. A surprising number of Windows 2000 and NT installations are still running 16-
bit Win 3.1 applications that don't support the Registry, and a surprising number of
32-bit applications still rely on the old INI file structure, despite the fact that using the
Registry is one of the requirements for getting the coveted "Designed for Windows"
logo from Microsoft.

Since there's no way to upgrade skanky old 16-bit applications to use the Registry,[2]
you might think that you're stuck forever with the mess of tracking, backing up, and
protecting a mess of INI files. Not so. Windows NT included a feature called
initialization file mapping (I'll call it just "mapping" from now on) that allows you to
force Registry-unaware programs to load and save configuration data in the Registry
instead of in an INI file. Windows 2000 implements mapping too, using the same
techniques and keys originally made available for NT.

[2] Chapter 5 of Inside the Windows 95 Registry actually explains how to use the Win95 Registry from 16-bit and
DOS apps, but there's no time machine that allows unmodified applications to do so.

The default OS install already includes mappings for several system components,
including the Windows clock desk accessory, the bundled backup application, and
even RegEdt32 . Mappings aren't just for 16-bit applications; rather, they're for any
application--16- or 32-bit--that doesn't include code to read and write Registry data.
Of course, mapping's not required; applications that depend on INI files can work just
fine without having the files mapped. In fact, unless you explicitly take action to map
these files, they remain unmapped, and their normal INI file usage continues without
interruption.

9.2.1 How Does Mapping Work?

Mapping works because Windows 2000 and NT trap the private profile API routines I
mentioned in Chapter 1. Windows applications and components ordinarily use these
calls to get and set data stored in INI files, but when there's a mapping entry, the
kernel first checks for the presence of a mapping key. If one exists, and if it points to a
key that contains data, that data is returned to the caller. If there's no mapping key, or
if it points to an empty or non-existent Registry key, the kernel tries to read the data
from the INI file. The caller need never be aware that the data didn't come from the
requested file.

Mapping occurs only when there's a mapping key in place. These keys are stored
beneath the HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\IniFileMapping subkey. If you look there, you'll notice a number
of subkeys with names such as Clock.INI, regedt32.INI, and ntbackup.ini. These keys
tie sections of the old Win 3.1-style INI files to keys in the Registry so that older
components continue to find their settings.

Application programmers and administrators are free to create new mappings between
any INI file and any key in the Registry. This allows you to move settings data to the

Registry where it properly belongs. Once it's there, you can edit, save, massage, and
manage it using the skills you've learned throughout this book.

Time for a real-life story: a client had licensed several hundred seats for a popular
email application. This app had a 32-bit version, but it didn't use the Registry. I
created a mapping for the program's settings, then built a system policy template (see
Chapter 6 for details) so they could centrally control how users set up their mail
clients. Everyone walked away happy.

9.2.2 Setting Up Your Own Mappings

In an ideal world, all the applications on your computers would be 32-bit, Registry-
aware, Windows 2000-savvy programs. Unfortunately, relatively few people have that
luxury. For the rest of us, though, it's easy to add mapping keys to stealthily allow
those applications to use Registry keys instead of sections in an INI file; best of all,
you can do so without any changes to the application that owns the INI file.

If you've ever opened an INI file, you know that it's divided into sections. Section
names are enclosed by square brackets, and they contain name/value pairs. The whole
arrangement looks like this sample from an imaginary data security package's INI file:

[Encryption]
DefaultSigAlgorithm=RSAWithSHA1
DefaultEncryptionAlgorithm=DES3-EDE-CBC
WipeFilesWhenDone=1

In this example, "Encryption" is the section name, and "DefaultSigAlgorithm,"
"DefaultEncryptionAlgorithm," and "WipeFilesWhenDone" are the value names.

9.2.2.1 Adding the mapping key

You may map any or all sections of any INI file to a Registry key. To do so, you must
add a new subkey to HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\IniFileMapping. This subkey should have the same name as the
INI file you're mapping; for example, to remap a file named ccmail.ini you add a new
subkey with that name to the IniFileMapping key.

If you just add a new mapping key by itself, nothing will happen. This is because the
named subkey just tells Windows 2000 to watch for access to the INI file with the
same name; it doesn't tell where the data are actually stored in the Registry. You
specify the location (or locations) by creating values underneath the key. Each of
these values should have a name that matches a section in the INI file. These section
names are combined with the name of the parent key to help the profile API routines
figure out what data you're requesting.

To map the key in the previous example, create a new key named
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\IniFileMapping\Crypto.INI. Under that key, add a value named
Encryption. The combination of these two values indicates that any attempt to access
the "Encryption" section of crypto.ini should instead look in the Registry.

The value you give to these section keys tells the OS where the real data is stored in
the Registry. Let's say that our data security program stores its data in
HKLM\Software\Crypto\CurrentVersion\Settings. To complete the mapping started in
the previous paragraph, use this Registry path as the contents of the Encryption value.
By adding values under HKLM\Software\Crypto\CurrentVersion\Settings with names
that match the value assignments in the INI file (e.g., DefaultSigAlgorithm,
WipeFilesWhenDone, etc.), you can achieve the equivalent effect of actually using an
INI file.

When the application attempts to open thecrypto.ini file, the mapping key under
CurrentVersion\IniFileMapping redirects the PrivateProfile calls to the Registry key
specified. Calls to fetch profile settings from the Encryption section are redirected to
HKLM\Software\Crypto\CurrentVersion\Settings.

9.2.2.2 Mapping key tricks

There are a couple of tricks that apply to building mapping key entries. First of all,
you can specify a default value that handles any sections that don't have explicit
mappings. Going back to our data security program example, if you added an
Encryption key, Windows 2000 still wouldn't know how to map requests for data in
the "Signature" section. However, by adding a default value (which appears as "<No
Name>" or "Default") to the root of the subkey, you can tell the operating system
which key to use for any sections that don't have their own section keys defined.

There are also several special symbols to use in the values of section keys. Table 9.1
shows these symbols; you'll see them in action in the next section.

Table 9.1. Special Strings for Initializing File Mappings
Symbol What It Means

SYS
Store data under a path relative to HKLM\Software; for example, SYS:Netscape expands to
HKLM\Software\Netscape.

USR
Store data under a path relative to HKCU; for example, USR:Software\Qualcomm\Eudora
expands to HKCU\Software\Qualcomm\Eudora.

!
Store data for this named section both in the Registry and the INI file; when data is written to
one, it will be written to the other.

@ Never read data from the INI file, even if no matching data is found in theRegistry.

When a new user logs in, copy the section's settings from the INI file into the specified
Registry location.

9.2.2.3 A mapping sample

The Entrust data security package from Entrust Technologies
(http://www.entrust.com) comes in both 16- and 32-bit versions, as well as versions
that run under Unix and the MacOS. To preserve a consistent set of source code, the
Entrust engineers decided to stick with INI files instead of using the Registry. Here's
the process I followed to build a set of mappings to replace Entrust's INI files with
Registry data.

1. I created a new subkey named entrust.ini under
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\IniFileMapping.

2. Since Entrust settings are user-specific, I created a new key,
HKCU\Software\Entrust, to hold the settings data. I also added subkeys named
Other and EntrustSettings to actually hold the data.

3. The interesting user-specific data in the Entrust INI file is all in the "Entrust
Settings" section. To map it, I added a subkey named Entrust Settings under
entrust.ini and gave it a default value of
@USR:Software\Entrust\EntrustSettings. This makes Windows 2000 map
data stored in the "Entrust Settings" section to the key of the same name; the
@ prevents the mapping code from reading data from the INI file.

4. I gave the entrust.ini subkey a default value of #USR:Software\Entrust\Other.
This forces Windows 2000 NT to copy the INI file's data for new users and to
store data for all other sections of entrust.ini in
HKCU\Software\Entrust\Other.

As a finishing touch, I saved the mapping keys to a .REG file using RegEdit so I could
quickly distribute them to users throughout our network.

9.3 Limiting Remote Registry Access

In Windows NT 3.51 and earlier, any user could access the Registry on any machine
over the network. From a security standpoint, this was much too liberal; NT 4.0 (and
3.51 with SP4 or SP5) defaults to allowing only members of the Administrators group
to access the Registry remotely. This is considerably more secure than the original
permissions.

However, this setting may not suit your environment. Sometimes allowing any
member of the Administrators group access is still too permissive, since some high-
value machines may warrant the added security of allowing only a single account or
group to access their registries over the network. Conversely, you may want to
proactively allow other users and groups to remotely connect to, and edit, Registry
data on some machines.

9.3.1 Turning Off Remote Access Entirely

Windows 2000 introduces a new system service (the Remote Registry Service) that
actually handles remote requests for Registry access. If you turn this service off, no
incoming requests are accepted, period. By default, the service is started automatically
at boot time, but if you disable it using the Computer Management snap-in (or stop it
manually), no one can connect remotely and flip through your Registry.

9.3.2 Limiting Access to Authorized Users

In Windows 2000 and NT 4.0 , you can control which users, groups, and services may
access the Registry on a particular machine by setting the ACL for a single Registry
key, namely HKLM\SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg.
The kernel grants remote access to a machine's Registry only to those entities named
in the ACL attached to the key.

Before proceeding, I should point out that this restriction key controls access to the
Registry as a whole. You may still enforce more stringent controls on individual keys.
For example, you can grant one group of users access to the Registry by setting the
restriction key permissions accordingly, but if you put access controls on other keys
those users can see, the most restrictive set of controls wins out.

9.3.2.1 Creating the restriction key

Before you can take advantage of this feature, the restriction key must exist on your
computer. By default, Windows 2000 Server and Advanced Server (as well as NT
Server 4.0) include this key, and administrators have Full Control access to it. If you
don't have the key present, and you want to restrict access, you have to manually add
the restriction key to your Registry. Here's what to do if you don't already have this
key available:

1. Log in as Administrator (or an account with administrator privileges) and run
RegEdt32. Navigate to HKLM\SYSTEM\CurrentControlSet\Control.

2. Use the Edit Add Key... command to add a new key named
SecurePipeServers, then select it and use Edit Add Key... again to add a new
subkey named winreg to the SecurePipeServers key you just added.

3. Add a REG_SZ value named "Description" to the winreg subkey. Microsoft
recommends that you give the description as "Registry server," but the exact
contents are up to you.

Depending on your machine, you may find that you have some parts of the restriction
key; for example, NT Workstation 4.0 with no service packs has the
HKLM\SYSTEM\CurrentControlSet\Control\SecurePipeServers key itself, but it
doesn't have the winreg subkey that's needed to actually make the restrictions work.

9.3.2.2 Setting permissions on the restriction key

Once you've verified that the winreg key exists, you can use the Security
Permissions... command to give it an ACL. The permissions applied to this key
govern which users and groups can access your Registry via the network.

The Registry Key Permissions dialog (shown in Figure 9.2) allows you to change the
users and groups that can access the key, as well as modify permissions for those
users and groups that you choose to allow access. (If you need a refresher, see
Chapter 5.)

Figure 9.2. Setting Registry key permissions

Windows 2000 and NT 4.0 installations by default have permissions like those shown
in Figure 9.2: the Administrators or Domain Admins group have Full Control rights,
as will the system and the account that created the key. You can add new users and
groups to this list and give them permissions commensurate with what you want them
to do; for example, you might grant read-only access to all domain users while
restricting Full Control access to a single named account. Change whatever else you
want, but leave the system and CREATOR OWNER permissions alone; the kernel
and Registry subsystem depend on these permissions to gain access to the key
themselves.

Some system services, such as the directory replicator and the
print spooler, require remote access to the Registry. If you
change the access control entries on the winreg key, these
services may stop working. To avoid this problem, make sure the
local accounts that run the replication service and the print
spooler have explicit permissions in the ACL for the winreg key.

9.3.2.3 Allowing exceptions

You may also choose to loosen the leash on your Registry a bit by allowing
exceptions to the access control rules specified by the permissions on the winreg key.
These exceptions can be expressed in two ways: you can provide a list of keys that are
exempt from the access controls, or you may specify a list of users who have free
access to specific keys and their values.

Both methods are governed by values you add beneath
HKLM\SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg\AllowedPath
s.

• The Machine value, of type REG_MULTI_SZ, accepts a list of Registry paths.
Any path listed here is visible to any machine on the network. By default, this
key contains a set of paths that enable the replicator, print spooler, event

logger, and kernel to function properly:
System\CurrentControlSet\Control\ProductOptions and
Software\Microsoft\Windows NT\CurrentVersion for the kernel,
System\CurrentControlSet\Control\Print\Printers for the print spooler,
System\CurrentControlSet\Services\Eventlog for the event logging service,
and System\CurrentControlSet\Services\Replicator for the directory replicator.
Windows 2000 machines also have a set of keys for Terminal Server
(System\CurrentControlSet\Control\TerminalServer,
TerminalServer\UserConfig, and TerminalServer\DefaultUserConfig) and
content indexing (System\CurrentControlSet\Control\ContentIndex).

• The Users value (also a REG_MULTI_SZ) lists Registry paths that will be
made available to any member of the Users or Domain Users group. This key
is empty by default, and you should probably keep it that way unless you have
a compelling reason to exempt individual users from the restriction key-
imposed controls. In general, if you have a user who needs unusual access, it's
better to put the user account into a group and assign the group a permission
entry on the restriction key.

Access granted via either of these methods is still subordinate to permissions you've
applied directly to individual keys. For example, if you use the Security
Permissions... command to apply Everyone:Read access to
HKLM\Software\Netscape\Netscape Navigator, then add that same path to the
Machine value, remote users won't be able to change the values under that subtree: the
explicit ACL you've added overrides whatever access was granted by the Machine
entry.

9.4 Fixing Registry Security ACLs in Windows NT

Every key in the Registry has an ACL. Unfortunately, many of those ACLs are
unnecessarily permissive. For example, by default the Everyone account has write
access to several keys that allow untrusted users to execute arbitrary programs--never
a good idea. You can significantly improve your NT security posture by paying
careful attention to a few simple steps.

These steps aren't necessary in Windows 2000 because Microsoft
has changed its default Registry ACLs to be more restrictive.
Furthermore, you can use the Security Configuration Manager to
apply even more restrictive settings by applying a particular
security template.

First, a brief digression: every authenticated user is automatically a member of the
Everyone group. On machines running NT 4.0 SP3 or later, these users are also
members of the Authenticated Users group. Everyone also includes anonymous and
guest accounts, though, so in general it's a wise idea to never grant Everyone:Full
Control access to anything if you can prevent it.

On to the actual steps. First of all, apply the changes suggested earlier in the section
Section 9.3. Once you've done so, make sure that Everyone has only Read access on
HKLM\SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg\AllowedPath

s. This prevents an interloper from inserting her own allowed paths for anonymous
access.

Next, follow Microsoft's suggestions from knowledge base article Q126713 and
tighten the permissions on these three keys by limiting Everyone to Read access on
them:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

These keys specify programs to run when NT starts (Run and RunOnce) or when a
program's uninstalled (Uninstall), so you don't want an attacker to be able to change
them.

Likewise, you should remove the Server Operators group's Write permission on
HKLM\System\CurrentControlSet\Services\Schedule. Normally, members of the
Server Operators group have permission to schedule jobs, but these jobs are run under
the SYSTEM account--making it possible for a Server Operators member to gain
Administrator privileges. In the same vein, remove Server Operators' Write privilege
on HKLM\Software\Microsoft\WindowsNT\CurrentVersion\Winlogon to prevent a
similar attack on the UserInit and BootVerificationProgram values.

The next step is pretty open-ended: you should bolt down your Registry by restricting
access wherever possible. The kicker is in knowing what's possible, and that varies
from application to application. For example, Office 97 requires Everyone:Read on its
own keys under HKLM\Software and HKCU\Software (plus write access to a number
of other keys in HKLM and HKCU). Remove those permission, and some Office
features stop working. The same is true for Internet Explorer and a wide range of
other products. As you make changes to Registry key ACLs, be sure to test the
applications you need to run to ensure their correct function before rolling out your
changes to the entire network.

Instead of just randomly adjusting ACLs, I recommend you start with the ones in
Table 9.2. These are excerpted from the canonical reference for Windows NT
Registry ACLs, the "Windows NT Security Guidelines-A Study for NSA Research"
white paper, written by Trusted System Services (http://www.trustedsystems.com) for
the U.S. National Security Agency. The white paper is detailed and covers
workstation, server, and network security settings, not just Registry ACLs. In the
table, "Installers" refers to any groups you want to have permission to install
application software, and "Apply to entire tree" means you should make the ACL
change to all keys and subkeys in the specified path, not just the indicated key.

Table 9.2. Recommended Registry ACLs for Windows NT
Key Path Permissions Notes

\Software

Installers:
Change

Everyone: Read

Only accounts that can install
software should have change
rights to this tree. In particular,
only installers should be able to
create new subkeys.

\Software\Classes
Installers: Add

Everyone: Read

Upon installing Windows NT,
set the ACLs on the entire
Classes tree to Public: Read
(plus the Common ACEs), then
set the ACL on Classes key as
noted. (This removes the
INTERACTIVE entry from
these ACLs.) This Registry tree
holds various properties
associated with applications,
such as the correlation between
the filename extension and the
application defined to handle it.
To contain potential spoofing
threats, it seems prudent to limit
these keys, although it may
impact some applications.

\Software\Microsoft\Windows\CurrentVersion\App Paths

Installers:
Change

Everyone: Read

Apply to entire tree. At install
time this key is empty; remove
Public: Write permission to
prevent its misuse.

\Software\Microsoft\Windows\Current Version\Explorer Everyone:Read
Apply to entire tree. (Appears to
be unused.)

\Software\Microsoft\Windows\Current
Version\Embedding

Installers:
Change

Everyone: Read

Apply to entire tree.

\Software\Microsoft\Windows\Current Version\Run,
RunOnce, Uninstall, and AEDebug Everyone: Read

The command named in the
Run key runs at logon for all
users (including administrators)
and must therefore be protected
against spoofing. It should only
be writable by full
administrators. Similarly,
protect RunOnce and Uninstall.
The AEDebug key specifies
[arameters for the system
debugger users can run when a
program crashes (such as "Dr.
Watson"). Restrict access to
prevent spoofing.

\Software\Microsoft\Windows NT\CurrentVersion\Font*,
GRE_Initialize

Installers:
Change

Everyone: Add

Change only keys that begin
with "Font," except
FontDrivers, and Gre-Initialize.
Some sites may wish to restrict
Everyone access to Read to
prevent users from adding fonts.

\Software\Microsoft\Windows NT\CurrentVersion\Type 1
Installer\Type 1 Fonts

Installers:
Change

Everyone: Add

\Software\Microsoft\Windows
NT\CurrentVersion\Drivers, Drivers.desc Everyone: Read

Apply to entire tree. Drivers32
is the principal storage control
location for Windows NT
drivers and is strongly
protected. The function of the
Driver key is unclear, but

protect it anyway.
\Software\Microsoft\Windows NT\CurrentVersion\MCI,
MCI Extensions

Installers:Change Apply to entire tree.

\Software\Microsoft\Windows NT\CurrentVersion\Ports

INTERACTIVE:
Change

Everyone: Read

Apply to entire tree. Parameters
for COM, LPT, and other ports.
You allow INTERACTIVE
users to modify these because
there seems little security risk,
although some sites may wish
to tighten these ACLs. Note that
Microsoft recommends
tightening these keys to
Everyone: Read only.

\Software\Microsoft\Windows
NT\CurrentVersion\ProfileList

Public: Add

Install as nonpropagating ACL
if possible. Each subkey in
Profiles holds parameters for a
profile created in
WINNT\Profiles. To prevent
spoofing, a new subkey should
not be publicly writable.
Unfortunately, there's no
standard Registry ACL tool that
allows the public to create keys
that then have no public access,
although "Add" permission is
secure as long as the subkeys
don't themselves have
meaningful subkeys, which is
the case in Profiles. Third party
tools (such as SuperCACLS,
available from
http://www.trustedsystems.com)
that can install ACL entries that
don't propagate to subkeys are
useful here because they
produce the desired protection.

\Software\Microsoft\Windows NT\CurrentVersion\WOW Everyone: Read

Apply to entire tree. Holds
parameters for the DOS
environment. Although it is not
clear how serious a spoofing
threat exists, it seems wise to
prevent public modification.

\Software\Windows 3.1 Migration Status Everyone: Read Apply to entire tree.

\System\CurrentControlSet\Services\LanmanServer\Shares Everyone: Read

The values in this key and its
Security subkey holds critical
information about directory and
printer shares. These values are
adequately protected by default.
However, any user can add new
subkeys to these keys, and
Microsoft recommends
tightening the permissions.

\System\CurrentControlSet\Services Everyone: Read
Apply to entire tree. This setting
prevents nonadministrators
from changing service settings.

You can also use the Security Explorer tool, discussed later in this chapter, to
automatically and recursively apply whatever permissions you want (including
removing Everyone in all Registry ACEs).

9.5 Adding Registry ACLs to Group Policy Objects

One of the most useful features in Windows 2000 is the new Group Policy
mechanism, explained in more detail in Chapter 7. The GPO mechanism allows you
to designate a wide range of settings that you want applied to users and computers in
your administrative domain. One feature of GPOs that's worth a special mention in
this chapter is that you can assign ACLs to Registry keys, then propagate those ACLs
to computers throughout your domain as part of the domain GPO.

The actual process of adding Registry ACLs to a GPO is pretty straightforward:

1. Open the MMC and navigate to the Group Policy snap-in that owns the scope
over which you want to apply these restrictions.

2. Expand the GPO's node; you're looking for the Computer Configuration
Windows Settings Security Settings Registry node.

3. Use the Add Key... command (available by right-clicking the Registry folder,
from the Action menu, or right-clicking in the right half of the MMC console
window).

4. The Select Registry Key dialog (see Figure 9.3) appears. Use it to either
navigate directly to the key of interest or to specify the path by typing it into
the Selected key field, then click OK.

Figure 9.3. Select the Registry key to which you want a new ACL
applied

5. The standard Registry security dialog then appears (jump way back to Figure
5.12 if you need to see it again). Use it to apply the ACEs you want on this
key, then click OK.

6. The Template Security Policy Setting dialog (see Figure 9.4) then appears.
Use it to specify how you want the ACL applied to the key:

o The "Configure this key then" radio button has two subordinate radio
buttons. The first, "Propagate inheritable permissions to all subkeys",
forces the ACL you specify onto all subkeys of the target key. The
second, "Replace existing permissions on all subkeys with inheritable
permissions", forces only the new ACL onto subkeys that inherit from
the target key.

o The "Do not allow permissions on this key to be replaced" button
indicates that you don't want any change to the permissions, and that
you don't want anyone else to be able to change them either.

7. Click OK. The Template Security Policy dialog disappears, and the new ACL
appears in the list on the right side of the MMC window.

Figure 9.4. Choose how you want the new ACL applied to the
target key

That's all you have to do; once you make the change, it's propagated automaticallyto
wherever the specified GPO carries its settings.

9.6 Encrypting HKLM\SAM with SYSKEY

Like Unix, Windows 2000 and NT don't directly store user or machine passwords.
Instead, they take the passwords and passes them through a scheme called a one-way
function , or OWF. The OWF takes a password in and generates a new block of data
that is related to, but doesn't contain, the password. The "OW" in OWF comes from
the fact that it's not feasible to take the output of the OWF and "go backwards" to
derive the original password. The output of the OWF is called a password hash. NT
stores the password hashes instead of the password, so you can't steal the hash and use
it directly in place of a password. Windows 2000 also stores hashed passwords for
local user and computer accounts, as well as for backward compatibility with older
Win9x and NT clients.

In the spring of 1997, an enterprising group of hackers from L0pht Heavy Industries
(http://www.l0pht.com) publicized the fact that it was possible to get the password
hashes from a SAM database (or by sniffing them over the network) and feed them to
a password-cracking tool. These types of attacks have been known for many years in

the Unix community, but their appearance in the Windows NT world generated a lot
of headlines. In practical terms, the actual risk was significant. Even though only
administrators have access to the SAM to get the OWF'ed passwords in the first place,
the hashes could be recovered from backup tapes or ERDs, and they could be sniffed
off the network.

Accordingly, Microsoft took a beating on the Internet and in the press for the
perceived insecurity of the SAM password data. To provide a solution, Microsoft
introduced a method of protecting the SAM data with strong encryption; the SYSKEY
utility installs and controls this extra protective layer. SYSKEY is available with NT
4.0 SP3 and later, and it's installed and enabled by default in Windows 2000 (in fact,
you can't turn it off).

9.6.1 What SYSKEY Does

SYSKEY adds an extra layer of security to the password data stored in the SAM
database by encrypting the hashed password data using a 128-bit system key. This key
(Microsoft calls it the password encryption key , or PEK; so will I) is randomly
generated when you install SYSKEY. Once your PEK is generated, NT uses it to
encrypt and decrypt all password data (but not the ordinary account data) in the SAM.
Because the data's encrypted, it's useless to any thief or cracker who might get it (and
getting it still requires you to gain physical and administrative access to a domain
controller). As a bonus, because the data is stored in encrypted form, it remains
protected when it's backed up to an ERD or a tape.

Once the password data's encrypted, it's stored back into the SAM database, and
services (including the local security authority, or LSA) that access the password data
must depend on the kernel to decrypt it for them. For this to work, though, the kernel
has to know what the PEK is at boot time: the SAM password information includes
password data for system services that start when the machine's booted, in addition to
the more mundane user password data.

In December 1999, a security team at BindView
(http://www.bindview.com) found a vulnerability in SYSKEY's
password encryption, making it much easier to attack. Microsoft
immediately released a hotfix for NT 4 systems; the fix is
included in Windows 2000 RC3 and later.

To accomplish this, SYSKEY stores the PEK. You might wonder how storing the PEK
could possibly increase security; it seems foolish to store the master password used to
encrypt the data that's supposed to be protected! The answer is simple: another key is
used to encrypt the PEK. This second key is the system key, after which SYSKEY is
named. SYSKEY supports three options for storing the system key and making it
available to the system when it's needed to decrypt the PEK.

The first, and most secure, option allows you to store the system key on a floppy.
When the machine's booted, the floppy must be present so the kernel can retrieve the
system key and use it to decrypt the PEK. Without the right floppy, the machine
cannot be booted into the version of Windows 2000 or NT that's protected by that

floppy.[3] This introduces a new single point of failure for your machines, so it's critical
to keep backup copies of the floppy. In addition, the floppy serves as a token that
allows access to the SAM data, so you must control who has access to it.

[3] Each installation of the OS gets its own unique PEK. If you have multiple versions, or multiple copies, of
Windows 2000/NT installed on a single computer, each has a unique PEK. If you have two installations on one
machine and lose the system key disk for one of them, you can still boot the other one.

The next option is to store the system key encrypted with another key. This second
key is generated from a passphrase you choose. Instead of inserting the system key
floppy at boot time, a human must be present to type in the passphrase. The encrypted
version of the system key is stored on the computer so that only the passphrase is
required; there's no separate floppy or key disk involved.

Finally, you can choose to have the system key stored on the local machine. SYSKEY
uses what Microsoft calls a "complex obfuscation algorithm" to hide the key. This is
supposed to make it hard to compromise the system key. This reliance on "security
through obscurity" offers considerably less security than the other available methods,
but it has one saving grace: it allows unattended reboots, since the kernel can derive
the PEK when needed without any human intervention. This is critical for some
applications; only you can determine whether it's the best choice for your servers.

9.6.2 Before You Enable SYSKEY on Windows NT

As with most other NT components, it's tempting to rush out and install SYSKEY now
that you know how it can add security to your machines' Registry data. However, in
this case it pays to be cautious and make sure you've adequately planned deploying
SYSKEY on your network. It's important to understand what SYSKEY protects you
against and what additional problems it can potentially impose. Committing to using
SYSKEY is not to be done lightly.

Every NT 4.0 workstation and server can run SYSKEY, and each machine can use any
of the three system key storage options mentioned earlier. If you choose to use key
floppies or passphrases, remember that the floppy or passphrase is just like an ERD:
it's useful only on the machine where it was created, so you have one disk or
passphrase for every protected machine. (You can cheat and use the same passphrase
on all machines, though.)

First of all, let's start with the scariest problem: SYSKEY can make your system more
secure, but it's a one-way trip. Once you enable strong encryption of the SAM account
database, there's no way to turn off encryption and go back to the old unencrypted
version (though you can use an ERD, as described later). In practice, as long as you
keep your ERDs up to date, you won't need to go back to the unencrypted version.

The next problem is what security experts call the "steel lock, balsa-wood door"
problem. If you have multiple domain controllers for one domain, and one uses
SYSKEY but the others don't, you haven't added any security to your network. One
machine's SAM database is protected, but--since all the other controllers have
replicated copies--the data you want to secure is still easy to grab. Ideally, you should
implement SYSKEY on every machine that has an accounts database. That means all
domain controllers and any NT workstation machine that has local accounts.

The final difficulty posed by SYSKEY is the fact that it adds security by encrypting the
data on your machine. As long as you retain access to the system key, NT can decrypt
the PEK and use it to access the stored passwords. If you choose to use a passphrase
or key floppy, and you lose or forget it, you'll have to restore from an ERD. If the
only ERD you have was made after the Registry was encrypted, you still won't be
able to get in! It's critical to safeguard the key floppy and make backup copies of it so
a bad floppy doesn't take you out of production--but since the key floppy is a security
component, you have to keep careful watch over it.

9.6.2.1 "What I tell you three times is true"

Microsoft recommends making a total of three ERDs when installing SYSKEY: one
before installing the SYSKEY hotfix or service pack, one after installing it but before
enabling SYSKEY, and one after the first reboot after installing SYSKEY. While this
may seem excessive, making all three disks maximizes the likelihood that you can
recover your machine if it crashes in the future:

• The post-SYSKEY ERD contains the encrypted version of your accounts
database. As you add and remove accounts, keep this ERD up to date. As long
as you have the system key (either stored on the computer or on a floppy), you
can restore the account database, and the rest of the Registry, from the ERD.

• The pre-SYSKEY ERD holds a record of your unencrypted Registry. If you
ever need to recover the machine but don't have the system key, you have two
choices: reinstall NT and lose all of your account data, or recover the Registry
from this ERD and lose any changes made after SYSKEY was activated.

• The preinstall ERD protects you from problems with the hotfix or service
pack. In general, you should always update your ERD just before installing
any service pack or hotfix; this gives you an escape hatch if you need to back
out of a fix that actually made things worse on your machine.

Keep all three ERDs for each machine you might someday need to restore. At a
minimum, that means you'll need them for every domain controller on your network,
plus one set for any NT Workstation machine that has important local accounts.

9.6.2.2 Upgrading domain controllers

Microsoft also warns you about installing SYSKEY on your primary domain
controller: if something goes wrong with the SYSKEY installation, or if you ever lose
the system key for that one machine, no one will be able to log on to your domain!
For domains with more than a few users, you should already have a backup domain
controller anyway; if you don't, it's worth considering adding one.

The safest way to roll out SYSKEY for your Windows NT domain controllers in a
multiple-domain or multiple-controller network is this:

1. Pick a domain. Make sure it has at least two domain controllers (one primary
and one backup).

2. Use the Server Manager application to force a synchronization of the PDC
with all BDCs.

3. Stop the netlogon service on the original primary domain controller. This
prevents it from servicing any logon requests.

4. Activate SYSKEY on the original primary domain controller. When you're
satisfied that everything is working properly, restart the netlogon service on
the machine from Step 3.

5. Activate SYSKEY on the other domain controllers in the domain. If you have
more than one domain on your network, go back to Step 1 and pick another
domain.

If you have domains with only one controller, it's probably okay to dispense with
these steps and just activate SYSKEY on the controller, as long as you have the
recommended set of three ERDs.

9.6.3 Turning On SYSKEY Protection

You control SAM database encryption with the SYSKEY.EXE executable. As you
might expect, only administrators may turn on system key protection. The first time
you run SYSKEY, you see a dialog that warns you encryption can't be disabled once
you turn it on; you see that warning again after you first enable encryption. There are
only five controls in the window: the Encryption Enabled and Encryption Disabled
radio buttons show the current state of system key encryption on this machine. You
can change from disabled to enabled, but not vice versa. The standard OK and Cancel
buttons work like they do in every other dialog. The Update button allows you to
change the key storage method later (you'll see how to do that in Section 9.6.4).

The first step in activating SYSKEY is simple: click the Encryption Enabled radio
button, then click the OK button. You then see a warning dialog reminding you that
this conversion can't be undone and suggesting that you ensure that you've got a
current ERD before proceeding. When you click OK in that dialog, you see the
Account Database Key dialog (see Figure 9.5), which you use to tell SYSKEY where
you want the system key stored after it's generated:

• If you want to use a passphrase to unlock the system key, click the Password
Startup button and type your password into the Password and Confirm fields.
You may enter up to 128 characters for a passphrase, and longer phrases are
better. Unfortunately, SYSKEY doesn't enforce any minimum length
restrictions on the password. Microsoft recommends at least 12 characters, but
it's easy to come up with a longer password than that: pick two easy-to-
remember adjectives and a noun, then string them together with punctuation or
special characters (for instance, "galloping_sleepy#motorhome"). NT feeds
the passphrase you enter to a special algorithm, which generates a 128-bit key
from it.

Figure 9.5. Specifying the location for the system key

• If you want the system to generate a password on its own, click the System
Generated Password radio button. In this mode, NT uses its own
pseudorandom number generator[4] to pick a random 128-bit system key. As
you know, that key has to be stored somewhere. You get to choose where:

[4] The great mathematician and computer scientist John von Neumann once said that if you rely on
software to generate random numbers you're living in a state of sin. However, cryptographically
strong pseudorandom generators (like the one NT uses) are only a little sinful.

• The Store Startup Key on Floppy Disk button instructs NT to keep the
encrypted system key on a floppy. The key itself is stored in a file named
StartKey.key. When you choose this option, you need a floppy handy to hold
the key. Although it may be temptingly close, don't use your ERD to store the
key: doing so concentrates both pieces of data needed to steal passwords on a
single floppy.

• The Store Startup Key Locally button stores the obfuscated system key in
HKLM\SYSTEM. When you choose this option, you can reboot the machine
without having a human present.

Once you've selected the method you want, click the OK button. If you've chosen to
store the key on a floppy, SYSKEY prompts you to insert a floppy and confirms that
it's written the key to the disk. Otherwise, the key is silently updated and SYSKEY
then exits.

The next time you boot the machine, SYSKEY protection will be in effect. This means
that unless you're storing the system key locally, you have to be at the machine every
time it's rebooted to either type in the passphrase or stick in the key floppy.

If you're in a hurry, you can use the -l flag with SYSKEY; this
instructs it to silently generate a system key and store it on the
local machine. This is a handy trick to use when setting up a new
workstation or server; you can add the command to your
ordinary setup scripts, then change the key storage method later
when you have more time. This gives you immediate protection
without any extra effort on your part.

9.6.4 Changing the Key Storage Method

Once you've installed and activated SYSKEY, you're not bound to your initial choice
of key storage. You can run SYSKEY again at any time and change from one method
to another. When you change methods, SYSKEY generates a new system key and
stores it instead of reusing the old key; this helps protect your password data against
compromise.

To change the key storage method for a machine, run SYSKEY and click the Update
button. The Account Database Key dialog (shown earlier in Figure 9.5) then appears,
and the radio button corresponding to the currently active storage method is active. To
change to a new method, just click one of the other radio buttons, filling in the
password if necessary.

Because SYSKEY generates a new key when you change storage methods, you must
supply the old key as part of the change process. This means that what happens after
you click "OK" depends on what storage method you were previously using. If you
changed from "Store Startup Key Locally" to something else, SYSKEY can get the old
key from HKLM\SYSTEM, so you don't have to do anything. If you're changing from
storing the password on a floppy or being protected by a passphrase, SYSKEY requires
you to provide the key disk or passphrase to continue. This prevents an attacker from
changing the key, storing on a floppy, and stealing the floppy--thus rendering your
machine unbootable.

Figure 9.6 shows the dialog that asks for the key disk, while Figure 9.7 shows the
dialog requesting the current passphrase. If you supply the correct passphrase or
floppy, SYSKEY displays a confirmation dialog to remind you that it's changed the
system key, and the new key is stored using the method you've chosen. If you don't
supply the right information, SYSKEY won't change anything.

Figure 9.6. The key disk dialog

Figure 9.7. The password dialog

9.6.5 Restoring a SYSKEY-Protected NT Registry

Chapter 3, described the mechanics of restoring a damaged Registry using a Windows
NT ERD. To restore a machine protected with SYSKEY, you follow this same basic
procedure, but there are a few new subtleties introduced as a result of SYSKEY 's
presence. The golden rule for restoring a SYSKEY-protected machine is simple: use
the correct ERD.

9.6.5.1 Restore SYSTEM and SAM hives

Even though the actual encrypted account information is stored in the HKLM\SAM
subtree, the actual PEK, as well as all the other data SYSKEY needs to tell where the
system key is stored, lives in HKLM\SYSTEM. To recover an encrypted account
database, you must restore both the SYSTEM and SAM hives at the same time--not
just SAM. If you don't do this, NT can't decrypt the Registry, either because it can't
find the system key (if you don't restore SYSTEM) or because the key doesn't decrypt
the data (if you don't restore SAM). Of course, you must restore these hives from the
same ERD.

9.6.5.2 Get the right system components

If you got SYSKEY as the result of installing an NT 4.0 service pack, you may not
have noticed that three existing system files were replaced as part of the update:
winlogon.exe, samsrv.dll, and samlib.dll. These three files, along with syskey.exe,
implement the account database protection. Their presence is required to enable the
encrypted SAM data to be read and decrypted by system services that need it.

When you first install NT, it logs the versions of all the components you install in
system.log. When you install service packs, hotfixes, or software such as Internet
Explorer that replaces one or more system files, the installer application is supposed
to update the entries in system.log so that it always reflects the current version of all
DLLs, drivers, and other operating-system components.

What this means is that if you install SYSKEY as part of a hotfix or service pack, the
system.log entries for winlogon.exe, samsrv.dll, and samlib.dll reflects the versions
installed with SYSKEY, not the original versions you installed. If you want to restore
your machine to its pre-SYSKEY state, you need to use the NT setup application's
"Repair system files" option to restore the original versions from your NT CD or file
server. However, you must be sure to restore the SAM and SYSTEM hives from the
pre-SYSKEY ERD: if you revert to the original system components but leave the
encrypted Registry in place, nothing will work right.

If you install SYSKEY but don't turn it on, the winlogon.exe,
samsrv.dll, and samlib.dll files won't match your original
installation. When you install the new versions of these files,
they change the Registry format even when encryption is off. If
you use NT setup to restore these three files to their original state
by using your pre-SYSKEY ERD, you must also restore SAM
and SYSTEM from the same ERD: if you don't, the old
components won't be able to read the new Registry format.

9.6.5.3 Which ERD should I use?

Three ERDs is three more than most NT systems have, and so deciding which one to
use may seem a little overwhelming. It's not hard, though: each ERD can put your
system back into a particular state. Which one you use depends on what you want the
restored system to have on it. Table 9.3 shows your options.

Table 9.3. ERD Restoration Table

To Revert to...
Use This

ERD Don't Forget...

System as it was before
installing SYSKEY

Preinstall
ERD

You may lose account database changes made since SYSKEY
was installed.

You must also choose "repair system files" in NT setup to
restore the original versions of winlogon.exe, samsrv.dll, and
samlib.dll. You can always fall back to this level, even without
the system key.

System as it was after
installing, but before
activating, SYSKEY

Pre-
SYSKEY
ERD

You may lose account database changes made since SYSKEY
was installed.

You can always fall back to this level, even without the system
key. When using this ERD, don't "repair system files" from CD.

System as it was after
activating SYSKEY

Post-
SYSKEY
ERD

This preserves all account database changes since the ERD was
updated.

It requires presence of system key/passphrase on floppy or
machine. When using this ERD, don't "repair system files" from
CD.

9.7 Miscellaneous Good Stuff

So far in this book, you've learned how to use a variety of tools to modify, back up,
and restore the Registry. At this point, though, you might be wondering what you can
actually do with some of these tools. There are some common and necessary
administrative tasks involving the Registry; knowing how to perform them will help
keep the machines under your care stable, secure, and safe.

9.7.1 Changing the Registry Size

Since the Registry is a collection of hives, most of which are actually disk files, you
might not realize that Windows 2000 (and NT) actually maps the entire Registry into
memory. Doing so makes it possible for Registry calls to perform efficiently;
however, it means that as the Registry grows it takes up a larger proportion of the
virtual memory space in your system. To prevent the Registry from sucking up too
much space in the system's page file, the system maintains an internal parameter
called the Registry Size Limit, or RSL. The RSL sets an upper bound on how much
address space the Registry may occupy; however, as you add software and users to
your machines, the Registry gets larger. If it gets so big that it starts to bump up
against the RSL, problems will occur. (Go to the Microsoft Knowledge Base at
http://www.microsoft.com/kb/default.asp and search for "Maximum Registry Size" to
see a long list of such problems, most of which are reasonably obscure.)

By default, the RSL is set at about 20-25% of the total virtual memory allocation for
the system. This limit is a maximum, not a guarantee, and the limit set by the RSL
doesn't actually mean that much space is reserved, just that the system can't use more
than that. There's a complex relationship between the total size of the pool of
available virtual memory and the RSL; in general, you should keep the RSL at 80% or
less of the total virtual memory allocation. Failure to do so can result in impressive
performance losses.

The Virtual Memory dialog (see Figure 9.8) shows you the current RSL and the
current amount of space in use by the Registry. If the current size is more than 80% of
the RSL, you should increase it. When choosing a new RSL, be sure to keep it below
80% of the total virtual memory size; in general, you shouldn't ever need to increase it
above 33% of the virtual memory size. If you need more space even with an RSL
33% as big as your virtual memory stash, consider increasing the size of your virtual
memory, then increase the RSL.

Figure 9.8. The Virtual Memory dialog

You adjust the RSL through the Virtual Memory dialog pictured in Figure 9.8; how
you get to it depends on whether you're using Windows 2000 or NT. In Windows
2000, open the System control panel and click on the Advanced tab, then click the
Performance Options button. In Windows NT, open the System control panel and
click on the Performance tab. In either case, once the Performance dialog appears,
click the Change button in the Virtual Memory control group, and the Virtual
Memory dialog appears. Type a reasonable value into the Maximum Registry Size
field, then click OK and close the Virtual Memory dialog and the System control
panel. You re then notified that your changes won't take effect until the next restart.

9.7.2 Auditing Registry Access

In Section 5.9 in Chapter 5, you learned how to apply auditing controls to any key in
the Registry. Since Windows 2000 and NT store so much critical configuration data in
the Registry, auditing some of it is a good idea; there are a number of keys you can
audit to keep an eye on potential security problems or to catch users doing things they
shouldn't be.

Windows components and applications often determine whether
a specific key is present by trying to read it and noting if the
attempt fails. This is normal, and it's so common that I
recommend you avoid auditing failed attempts on the Read,
Query Value, or Enumerate Subkeys operations; doing so
generates lots of unnecessary audit log entries.

Once you turn on auditing, the events you specify are stored in the system's event log.
Since the event log files are your record of what auditable events have taken place,
you need to make sure that they're protected against tampering too! Set their
permissions to include Full Control for CreatorOwner, SYSTEM, and Administrators

and Read for Everyone, then make sure no other users have write access to the log
files.

9.7.2.1 Making sense of the audit log

When you enable auditing, the security reference manager process writes an audit
entry to the security event log whenever one of the conditions you specify comes true.
Here's a sample entry:

12/2/97 11:27:19 PM Security Success Audit Object Access 560
Administrator BOOMBOX
 Object Open:
 Object Server: Security
 Object Type: Key
 Object Name: \REGISTRY\USER\S-1-5-21-34824712-245319459-
1244863647-500
 New Handle ID: 240
 Operation ID: {0,47947}
 Process ID: 2161664032
 Primary User Name: Administrator
 Primary Domain: BOOMBOX
 Primary Logon ID: (0x0,0x1E35)
 Client User Name: -
 Client Domain: -
 Client Logon ID: -
 Accesses Create sub-key

 Privileges -

I got this by turning on file/object access auditing in User Manager, then using
RegEdt32 to audit HKCU for successful Create Subkey access requests. Once I did,
every time I created any subkey under HKCU, I got a new audit record like the one in
the example.

As you can see, this record tells me what key was the target of the request (the Object
Name field), what username made the attempt (along with that user's domain), and
what access or privileges were requested. If you want to routinely scan your event
logs for Registry accesses, I suggest using a tool such as SomarSoft's DumpEvt
(http://www.somarsoft.com), writing your own Perl script to parse the Event Log
using functions in the Win32::EventLog module or using a third-party tool like
RippleTech's LogCaster (http://www.rippletech.com).

9.7.2.2 Tracking software installations or reinstallations

Any software that uses the Registry (which means any package wearing the
"Designed for Windows" logo, plus lots of others) leaves tracks in either
HKLM\SOFTWARE or HKCU\SOFTWARE. Microsoft's recommendation is that
software vendors create their own subkey of one of these two keys, so you'll see lots
of entries like HKLM\Software\Netscape and HKLM\SOFTWARE\Qualcomm. You
can audit these keys directly, or you can audit only specific subkeys of interest. For
example, if you want to see an audit notice whenever someone adds new software to a
machine, you can add an audit entry for "Create Subkey" on HKLM\SOFTWARE. If
instead you wanted to know when someone installs only software made by Netscape,

you can audit "Create Subkey" on HKLM\SOFTWARE\Netscape and
HKCU\SOFTWARE\Netscape.

The need to do this is relaxed somewhat in Windows 2000, since users' privileges to
install software are more constrained. Users can install applications for themselves,
but they can't install software other users can run; only administrators can do that.
Accordingly, you may not find it necessary to audit HKLM.

9.7.2.3 Guarding against Trojan horses

Windows 2000 and NT allows administrators to install one or more DLLs that
validate passwords before passing them to the logon subsystem. The NetWare
gateway tools shipped with NT use such a DLL, and the documentation for what such
a DLL should do is available from Microsoft. This opens the door for a user to install
a password-grabbing DLL that just stores the password in a file without changing it,
then passes it on to the logon subsystem. The list of these DLLs is maintained in the
HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Notification Packages key. I
strongly recommend that you set appropriate permissions and turn on auditing for this
key.

9.8 Using the Resource Kit Registry Utilities

Microsoft offers a separate package of tools, documentation, and utilities called for
each of its operating systems. There are different resource kits for Windows NT
Server and Workstation, Windows 2000 Server and Professional,[5] 98, and 95 (not to
mention separate kits for other products, including Exchange and IIS). The resource
kits offer a wealth of useful tools and documentation; even though some of the tools
are only partly functional, and most are poorly documented, the resource kit for
whichever OS you're running is well worth the US$150 or so it costs, since many of
its tools are unavailable from any other source.[6]

[5] The Server kit includes everything in the Professional kit, so you don't need to buy both.

[6] Of course, you could argue that these tools should be included with the OS itself. I'd agree with that, but then
Microsoft would have to clean up, document, and test the tools, most of which are only of interest to support
professionals, system administrators, and the like.

9.8.1 The Windows 2000 Resource Kit

The Windows 2000 resource kit contains only a few Registry-related tools; the
primary tool is reg.exe. However, this version of reg.exe does everything that its NT
predecessor did, plus what all the other Windows NT resource kit registry tools did. If
the old version was like a Swiss Army knife, the Windows 2000 version is more like
one of those nifty Leatherman Wave tools that has everything except a hammer in it.
There are some other useful items in the Windows 2000 kit, too:

• regentry.chm is a help file that lists most of the interesting Windows 2000
Registry keys and values; it also provides some general introductory guidance
to the Registry and its care and feeding.

• gp.chm contains information about the local and domain GPOs available. (You
can find the same information, usually in more detail, in Appendix A, and
Appendix B.)

• dureg.exe is a nifty tool that produces a size estimate showing how much data
is actually in the Registry.

• regback.exe and regrest.exe, covered in Chapter 3, allow you to back up and
restore the Registry, or portions thereof.

• regini.exe allows you to change the Registry via an INI-style file.
• regfind.exe is a Registry search tool discussed in Section 9.9.4, later in this

chapter; the Windows 2000 version also can search and replace Registry keys
and values.

• scanreg.exe allows you to grep the Registry.

9.8.2 The Windows NT Resource Kit

The NT 4.0 resource kit CD has a variety of tools and documents on it. Table 9.4
summarizes items that have something to do with the Registry. Most of these tools
originally shipped with the by-now-ancient NT 3.1 Resource Kit. In Summer 1997,
Microsoft issued an update to the resource kit (available from
ftp://ftp.microsoft.com/bussys/winnt/winnt-public/reskit/nt40), which adds a new tool,
reg.exe. reg supersedes a number of other tools, even though they still appear on the
resource kit CD. I've noted the superseded tools in the table so you'll know which
ones you can safely skip over.

Table 9.4. Resource Kit Registry Tools
Tool What It Does Notes

compreg.exe
Compares contents of two Registry values you specify;
like diff

See Section 9.9.3 later
in this chapter.

reg.exe
Everything: add, remove, or change keys; load and
unload hives, and lots more

See Section 9.9.

regback.exe and
regrest.exe

Backs up and restores Registry keys, values, and hives;
can restore all or part of a damaged Registry Covered in Chapter 3.

regchg.exe Changes a single value from the command line Superseded by reg.exe.

regdel.exe
Deletes the specified subkey of HKLM from the
command line Superseded by reg.exe.

regdir.exe
Provides a directory-style listing of a specified tree or
subkey

regdmp.exe
Dumps the specified key, plus its subkeys and values, in
text form

regentry.hlp Documents many of NT's keys and values

regfind.exe
Searches the Registry for a specified value; works like
grep or the search function in RegEdit

See Section 9.9.4 later
in this chapter.

regini.exe
Adds, removes, or changes keys based on a command
script you write

regkey.exe
Offers a GUI to set several trivial parameters (auto-
logon, number of cached user profiles, etc.)

Better to use system
policies.

regread.exe
Reads the specified subkey of HKLM and returns its
values

Superseded by reg.exe.

regsec.exe Sets security descriptors on a key and its subkeys; useful See Section 9.4 earlier

for undoing needlessly permissive default ACLs in this chapter.
restkey.exe Restores a key saved by SAVEKEY Superseded by reg.exe.

rktools.hlp Gives a brief description of each tool in the Resource Kit
rregchg.exe Changes a key's value on a remote machine Superseded by reg.exe.
savekey.exe Saves a key's values for later reloading Superseded by reg.exe.

9.9 reg: The One-Size-Fits-All Registry Tool

I have been heard to describe the reg.exe utility as "RegEdt32 in a can." It does almost
everything RegEdt32 can do, but it allows you to do it from a command line. Not only
is this a boon when you want to quickly make a change without firing up RegEdt32 ;
it also allows you to embed Registry operations in logon scripts and batch files. (Of
course, you learned how to use the Registry from within Perl in Chapter 8, but for the
non-Perl-hackers among us, reg is a welcome substitute.)

If you've ever used the net command, you'll immediately recognize how reg works.
Like net, you use reg by giving it a command from a short list of options (query,
add, delete, copy, save, load, unload, restore, compare, export, and import),
followed by one or more optional parameters that the command you specify
interprets. Here's a short example in which reg gets the query command for a
specified subkey of HKLM:

C:\reskit>reg query HKLM\Software\Qualcomm /s

Listing of [Software\Qualcomm]

[Eudora]
[Eudora\3.0.1]

Here's the problem with reg: the Windows 2000 and NT versions have different
command-line parameters and switches. In an effort to do away with the clutter of
multiple tools, Microsoft revamped the interface for the Windows 2000 reg tool,
making it more functional and more consistent, not to mention unlike its older
brother.

9.9.1 Using the Windows 2000 Version of reg

The Windows 2000 version of reg.exe offers 11 separate functions, ranging from
querying for the existence of a key or value to recursively deleting everything beneath
a specific key. Each mode has its own mnemonic, which you specify after the reg
command itself.

9.9.1.1 Querying keys

The reg query command allows you to query a single key for a single value or a
range of keys for all their values. This provides you with a quick way to check
whether a key has the value you think it does, or in fact whether it has any values
associated with it at all.

REG QUERY [rootKey\]key [\\machine] [/S] [/V value] [/VE]
rootKey

Optional; specifies which root key to use as base of query. May be HKLM,
HKCU, HKCR, or HKCC. Defaults to HKLM if omitted.

key

Specifies the full name of a key under the specified rootKey.

value

Specifies a value under key to query. If omitted, all keys and values under key
are displayed.

machine

Specifies the name of a remote machine to query; if omitted, defaults to local
machine. You can only query HKLM and HKU on remote machines.

/S

Queries all subkeys of key.

/V value

Queries the specified value and print its contents.

/VE

Queries the default, or empty, value.

9.9.1.2 Adding keys and values

The reg add command adds new keys and values to the Registry. You can add a
value to an existing key, add a new key with no values, or create a new key and a
value beneath it. If you try to add a key or value that exists, reg warns you.

REG ADD [\\machine\]key [/V value | /VE] [/T dataType] [/D data]
 [/S separator] [/F]
machine

Name of a remote machine to add the key on; if omitted, defaults to local
machine. You can only add to HKLM and HKU on remote machines.

key

Full path to key you want to add (if you're adding a key) or to key where the
new value should be added (if you're adding a value). Must include a root key
(HKLM, HKCU, HKCR, HKU, or HKCC) and a full path to the target subkey.

/V value

Specifies the full name of the value to add. Don't use this switch if you want to
add a key; instead, just specify the new key as the last component of key.

/VE

Specifies that you want to add the empty or untitled value to the specified key.

/T dataType

Type of the new value to be added. Can be REG_NONE, REG_SZ,
REG_MULTI_SZ, REG_EXPAND_SZ, REG_DWORD, REG_BINARY,
REG_DWORD_BIG_ENDIAN, or REG_DWORD_LITTLE_ENDIAN. If
omitted, REG_SZ is the default. If you specify REG_DWORD, you must
specify newValue as a decimal number.

/D data

Contents of newly created value. String values may contain spaces and special
characters, but must be enclosed in double quotes if they do.
REG_MULTI_SZ variables must be separated by whatever separator you
want to use: either \0 or whatever you specify with the /S switch.

/S separator

When adding a REG_MULTI_SZ value, specifies which character to use as
the separator. If omitted, \0 is assumed to be the separator.

/F

Forces reg to make the change without prompting you for confirmation.

For example, let's say you wanted to create a registry key as part of a configuration
script, adding a necessary REG_EXPAND_SZ value along the way. Here's one way
to do it:

reg add HKLM\Software\RA\ExchangePlus\DLMaster /F
reg add HKLM\Software\RA\ExchangePlus\DLMaster /v SystemPath
 /t REG_EXPAND_SZ /d "%SYSTEMROOT%" /F

These commands forcibly add the required key, then add the required value with the
correct data type and contents.

9.9.1.3 Deleting keys and values

The reg delete command removes a key or value. When you remove a key, reg
delete removes all subkeys and values beneath that key; however, it asks you to
confirm your intentions before it actually deletes anything unless you use the /F
switch. That notwithstanding, be careful when using this command. As with reg
update, you can delete only keys where the ACLs (and/or the remote Registry
settings) allow you access.

REG DELETE [\\machine\]key [/V value | /VE | /VA] [/F]
machine

Name of a remote machine from which you want to remove the value; if
omitted, defaults to local machine. You can only remove keys from HKLM
and HKU on remote machines.

key

Full path to key you want to remove (if you're removing the key itself) or to
key where the target value lives. Must include a root key (HKLM, HKCU,
HKCR, HKU, or HKCC) and a full path to the target subkey.

/V value

Specifies the full name of the value to remove. Don't use this switch if you
want to remove an entire key; instead, just specify the key name and use the
/VA switch.

/VE

Specifies that you want to remove the empty or untitled value from the
specified key.

/VA

Specifies that you want to remove all values from the target key without
touching its subkeys.

/F

Forces reg to remove the targeted keys or values without prompting you for
confirmation.

9.9.1.4 Copying keys and values

reg copy might be my favorite of all reg 's commands, if only because it greatly
eases the process of copying settings from one place to another. You can use the
command to copy a single key or an entire hive from its original location to another;
the target location can be on the same machine as the source or on any other machine
on the network. This command makes short work of tasks like copying a standard set
of file associations to new machines or tweaking one machine so its configuration
matches another.

REG COPY [\\srcMachine\]srcKey [\\destMachine\]destKey [/S] [/F]
srcMachine and destMachine

Specifices names of source and destination machines. Either or both may be
remote machines; if either is omitted, the local machine is assumed. You can
copy keys into and out of HKLM and HKU only on remote machines.

srcKey

Specifies the full name of the source key, including the root key. You can
copy from any root key, provided you have access to the source key. All
values beneath the source key are copied to the destination key.

destKey

Specifies the full name of the destination key. This may be different from the
source key if you wish, as long as you have access to the area where you're
trying to graft the copied key.

/S

Specifies that you want to recursively copy all subkeys and values from
srcKey to destKey. If you don't specify this switch, only the specified key and
its values are copied.

/F

This switch is documented but doesn't seem to do anything, since reg copy
never prompts you for a confirmation.

9.9.1.5 Saving and restoring keys

Sometimes having a quick way to make a backup copy of a key and its values, or
restore a key from such a backup, can be very useful indeed. You can back up the
entire Registry using the strategies outlined in Chapter 3; however, if that's overkill
consider using the reg save and reg load commands instead.

To save a key and its values to a new hive file on disk, you can use either reg save or
reg backup (they're synonyms):

REG SAVE [\\machine\]srcKey fileName
machine

Name of a remote machine to query; if you omit it, the local machine is used.
As usual, you can only manipulate keys in HKLM and HKU on remote
machines.

srcKey

The full name of the source key, including the root key, you want to back up.
All of the source key's values and subkeys are recursively copied to the file
you specify.

fileName

Names the file that will hold the saved data. You can specify any valid full or
partial path to receive the file; if you leave one off, local keys are backed up to
the current directory, and remote keys go in %systemroot%\system32.

To quickly store a copy of all of your current settings, use this command:

reg save HKCU my-profile

then use it anywhere you can use a hive file, including RegEdt32 and the reg load
and reg restore commands.

You may restore a saved hive with the reg restore command. This command
overwrites an existing key with a new set of values, so you must be cautious when
using it (reg asks you to confirm your command before it overwrites anything,
though).

REG RESTORE [\\machine\]targetKey fileName
machine

Specifies which machine you want to restore the hive file to. You can restore
from a local file to a remote machine if you wish, but (as usual) you only have
access to HKLM and HKU on the remote machine.

targetKey

Specifies which key to overwrite with the contents of the saved hive.

fileName

Specifies the path and name of the saved hive file. You can restore only hive
files that were created with RegEdt32 or the reg save command.

9.9.1.6 Loading and unloading hives

Section 5.6 in Chapter 5 explains how you can use RegEdt32 to load and unload saved
keys as hives immediately beneath HKLM or HKU. The reg utility gives you the
same ability, albeit with the same limitations.

To load a hive, use the reg load command. Unlike reg restore, reg load loads the
hive by adding it with the key name you specify instead of overwriting the key you
specify. This makes it possible for you to use reg load to load a saved hive, edit it,
and unload it again without making any changes to the rest of your Registry. (If you're
wondering why you might want to do so, go back and reread Section 9.1 at the
beginning of the chapter.) When you load a hive, it's not fully persistent; the hive is
unloaded when the current user logs off or when the computer next reboots.

REG LOAD [\\machine\]targetKey fileName
machine

Specifies the name of a remote machine to load the hive on; if omitted,
assumes the local machine. As with the other commands, you can load hives
in HKU or HKLM only on the remote box.

targetKey

Specifies the name of the key to receive the new hive. This key is created and
must not already exist. key must be an immediate subkey of HKLM or HKU.

fileName

Specifies the name of the hive file to load, with no extension. You may specify
a full local or UNC path here.

For example, to load the ntuser.dat hive as suggested in Section 9.1, just copy
ntuser.dat to ntuser-default, then use this command:

reg load ntuser-default DefaultProfile

and modify the hive as needed.

Once you've finished working with a loaded hive, you may unload it with reg
unload. Its command syntax is pretty simple.

REG UNLOAD [\\machine\]key
machine

Name of a remote machine on which to unload the hive; if omitted, defaults to
local machine

key

Name of the key to unload. key must be an immediate subkey of HKLM or
HKU, whether you're on a local or remote machine.

9.9.1.7 Comparing keys and values

Instead of using a separate comparison tool such as NT 4, the Windows 2000 toolset
allows you to use reg itself to compare the contents of two keys or values. There are a
number of new bells and whistles in this revision of the tool, although for heavy-duty
comparison, I still prefer using a visual comparison tool such as windiff.

The reg compare command does have some nifty features that give you some extra
flexibility. One is that it returns a status code: means the comparison was successful,
and the two items were identical; 1 means the comparison failed; 2 means the
comparison succeeded, but the target items were different. This makes it easy to use
reg compare in Windows Scripting Host scripts. Another is that you can control what
output it produces, meaning that you're freed from seeing tons of irrelevant results
when you're comparing things.

REG COMPARE [\\machine1\]keyName1 [\\machine2\]keyName2 [/V valueName
| /VE]
[/OA | /OD | /OS | /ON] [/S]
machine1 and machine2

Specifies names of remote machines to compare keys on. If you omit either or
both remote names, the local machine is used instead. You can compare only
remote machine keys that reside in HKU or HKLM.

keyName1 and keyName2

Specifies the full paths (including a root key) of the keys to compare. When
comparing keys on different machines, these paths may be the same, but they
don't have to be.

/V valueName

By default, compares all the values beneath the specified keys. If you want to
limit comparison to a single value, use the /V switch. Annoyingly, you can't
specify two different value names to compare.

/VE

Specifies that you want to compare the empty default value in the target keys.

/OA

Forces output of both differences and matches between the target keys. This is
the most verbose output setting.

/OD

Shows only items that are different between the two keys.

/OS

Shows only items that are the same (e.g., those that match) between the two
keys. This is a quick way to test how similar two keys are.

/ON

Suppresses all output. This switch is commonly used in conjunction with the
status code as a simple way to get a yes-or-no result of a comparison.

/S

Recursively descends the keys being compared and compares their subkeys
and values too.

9.9.1.8 Exporting and importing Registry data

If you need to save the contents of a Registry key for later--perhaps to back up and
restore it--you can do it with RegEdt32 or using the reg export and reg import
commands: reg export takes the key you specify and saves it to a text file, and reg
import reads a file in the correct format and loads it back into the Registry. The

Windows 2000 version of reg uses a different format from the Win95 and NT 4.0
version, but there's a command-line switch you can use to tell reg to recognize the old
format. Exporting is straightforward.

REG EXPORT keyName fileName [/NT4]
keyName

Specifies name of the key you want to export. The name must include the root
key, and you can only export keys on the local machine.

fileName

Specifies name of the file you want the exported data in.

/NT4

Forces reg to write a file in the older format used by the Windows NT
resource kit version of reg.

When you want to reload the exported file (which you can do after copying, mailing,
or editing the text-format .REG file to your heart's content), you use the extremely
simple reg import command.

REG IMPORT fileName
fileName

Specifies the name of the exported key file to load. You may specify a full
local or UNC path here.

Since the .REG file contains the full name of the key that was exported, importing the
file automatically puts the loaded data into the right place. You can certainly edit the
file to take a block of data exported from one key and load it into another; bear in
mind that if you do, reg import silently overwrites whatever exists there. You've
been forewarned.

9.9.2 Using the Windows NT Version of reg

The older Windows NT resource kit version of reg.exe works fine under Windows
2000, but its functionality is quite limited by comparison.

9.9.2.1 Querying keys

reg query works the same way as the Windows 2000 version, with a few differences
in syntax and semantics:

REG QUERY [rootKey\]key [\value] [machine] [/S]
rootKey

Optional; specifies which root key to use as base of query. May be HKLM,
HKCU, HKCR, HKU, or HKCC. Defaults to HKLM if omitted.

key

Specifies the full name of a key under the specified rootKey.

value

Specifies a value under key to query. If omitted, all keys and values under key
will be displayed.

machine

Specifies name of a remote machine to query; if omitted, defaults to local
machine. You can only query HKLM and HKU on remote machines.

/s

Queries all subkeys of key.

9.9.2.2 Adding new keys

reg add adds new keys and values to the Registry. You can add a value to an existing
key, add a new key with no values, or create a new key and a value beneath it. If you
try to add a key or value that already exists, reg warns you.

REG ADD [rootKey\]key [\value=newValue] [machine] [dataType]
rootKey

Optional; specifies which root key to add new key under. May be HKLM,
HKCU, HKCR, HKU, or HKCC. Defaults to HKLM if omitted.

key

Specifies the full name of the key to add under the specified rootKey.

value

Optionally specifies the name of a value to add under key. If omitted, the key
is created with no value.

newValue

Specifies contents of newly created value. String values may contain spaces
and special characters, but must be enclosed in double quotes if they do.

machine

Specifies name of a remote machine to add the key on; if omitted, defaults to
local machine. You can add keys to HKLM and HKU only on remote
machines.

dataType

Specfies type of the new value to be added. May be REG_SZ,
REG_MULTI_SZ, REG_EXPAND_SZ, or REG_DWORD. If omitted,
REG_SZ is the default. If you specify REG_DWORD, you must specify
newValue as a decimal number.

For example, to add the value that disables Dial-Up Networking's "save password"
checkbox, you could use this command:

reg add SYSTEM\CurrentControlSet\Services\
RasMan\Parameters\DisableSavePasswordValue=1

9.9.2.3 Updating existing keys

reg update updates a single value of an existing key. You can update any value
where you have permission according to the parent key's ACL; if you're trying to
modify a remote machine's Registry you must have access to it. reg warns you if you
try to modify a nonexistent value.

REG UPDATE [rootKey\]key [\value=newValue] [machine]
rootKey

Optional; specifies which root key holds the targeted key. May be HKLM,
HKCU, HKCR, HKU, or HKCC on local machine or HKLM or HKU on
remote machine. Defaults to HKLM if omitted.

key

Specifies the full name of the key to update under the specified rootKey.

value

Specifies which value under key to update.

newValue

Contents to use when replacing existing value. String values may contain
spaces and special characters, but must be enclosed in double quotes if they
do. DWORD values must be specified in decimal.

machine

Specifies name of a remote machine to query; if omitted, defaults to local
machine. You can query HKLM and HKU only on remote machines.

9.9.2.4 Removing a key

reg delete removes a key or value. When removing a key, it removes all subkeys
and values beneath that key; however, it asks you to confirm your intentions before it
actually deletes anything.

REG DELETE [rootKey\]key [\value] [machine]

rootKey

Optional; specifies which root key the targeted key lives under. May be
HKLM, HKCU, HKCR, HKU, or HKCC on local machine or HKLM or HKU
on remote machine. Defaults to HKLM if omitted.

key

Specifies the full name of the key to remove under the specified rootKey.

value

Specifies which value under key to remove. If omitted, all keys and values
under key are deleted.

machine

Specifies name of a remote machine to remove the key on; if omitted, defaults
to local machine. You can modify HKLM and HKU only on remote machines.

9.9.2.5 Copying keys and values

The Windows NT version of the reg copy command is a little more flexible than its
big brother, since it can copy values from one location to another.

REG COPY [srcRootKey\]srcKey [\srcValue] [srcMachine]
[destRootKey\]destKey
 [\destValue] [destMachine]
srcRootKey

Optional; specifies which root key holds the source key. May be HKLM,
HKCU, HKCR, HKU, or HKCC. Defaults to HKLM if omitted.

srcKey

Specifies the full name of the source key.

srcValue

Optionally specifies a value under srcKey to copy. If omitted, all keys and
values under srcKey are copied.

srcMachine

Specifies name of a remote machine to act as copy source; if omitted, defaults
to local machine. You can use remote machines' HKLM and HKU only as
source roots.

destRootKey

Optional; specifies where copied key should be rooted. May be HKLM or
HKU; defaults to HKLM if omitted.

destKey

Specifies the full name of the key to hold the copied data.

destValue

Optionally specifies name for a single copied value; ignored if no srcValue is
specified.

destMachine

Specifies name of a remote machine to serve as the copy target; if omitted,
defaults to local machine.

When I installed a beta version of a popular Internet mail package, I (rightly, as it
turned out) feared that the new version would damage the old version's Registry
settings. A quick command saved the day:

reg copy software\qualcomm\eudora software\qualcomm\eudora-4.3

This code made a backup copy of my existing settings so I could install the new
version, secure in the knowledge that I could easily revert to a previous version if
needed.

9.9.2.6 Saving and restoring keys

The REGBACK and REGREST utilities allow you to back up and restore entire hives,
but reg offers a similar pair of functions that add the ability to save and reload
individual keys, much like RegEdt32 's commands. To save a key and its values, you
can use either reg save or reg backup (they're synonyms).

REG SAVE [rootKey\]key fileName [machine]
rootKey

Optional; specifies under which root key the key to save lives. May be
HKLM, HKCU, HKCR, HKU, or HKCC on local machine or HKLM or HKU
on remote machine. Defaults to HKLM if omitted.

key

Specifies the full name of the key to update under the specified rootKey. If
omitted, all contents of rootKeyare saved.

fileName

Specifies name of file that will hold the saved data. fileName may not have an
extension specified.

machine

Specifies name of a remote machine to query; if omitted, defaults to local
machine.

To quickly store a copy of all of your current settings, use this command:

reg save HKLM my-profile

You then can use it anywhere you use a hive file.

You may also restore a saved hive with the reg restore command. This command
overwrites an existing key with a new set of values, so you must be cautious when
using it (reg asks you to confirm your command before it overwrites anything,
though).

REG RESTORE fileName [rootKey\]key [machine]
fileName

Specifies file name that holds the data you want restored, with no extension.

rootKey

Optional; specifies which root key the targeted key lives under. May be
HKLM, HKCU, HKCR, HKU, or HKCC on local machine or HKLM or HKU
on remote machine. Defaults to HKLM if omitted.

key

Specifies the full name of the key whose subkeys and values will be replaced.

machine

Specifies name of a remote machine to query; if omitted, defaults to local
machine. You can query HKLM and HKU only on remote machines.

9.9.2.7 Loading and unloading hives

The Windows NT resource kit versions of reg load and reg unload operate
identically to the Windows 2000 version, with all the same restrictions and
capabilities. They're arguably more useful under NT, since you can use them to
engineer the default profile settings you want new user accounts to inherit.

9.9.3 Comparing Keys and Values with COMPREG

When you're trying to troubleshoot a configuration problem, it's often useful to
examine the broken machine and one that works to discern what's different between
the two. Without the resource kit, doing this with the Registry involves saving suspect
portions of the Registry to a text file, then using a difference tool such as windiff to
highlight differences between the two files. The compreg tool, included for the first
time in the NT 4.0 resource kit, provides a command-line tool for comparing
differences in Registry keys. Here's how it works.

COMPREG key1 key2 [-v] [-r] [-e] [-d] [-q] [-n] [-h] [-?]
key1

Specifies the full path to the first key to compare. This path can include a
machine name (e.g.,
\\ENIGMA\HKEY_LOCAL_MACHINE\SOFTWARE\LJL). Instead of
spelling out the Registry keys, you may abbreviate them by taking the
standard mnemonic we've used in this book and dropping the initial "HK"; for
example, you could also specify a path of \\ENIGMA\lm\SOFTWARE\LJL to
save some typing. If no root is specified, HKCU is the default.

key2

Specifies the full path to the second key to compare. This can be the same path
as key1 but on a different machine, or it can be a different path altogether. If
you specify only a machine name, compreg uses the path from key1 but looks
for it on the computer specified in key2.

-v

Verbose mode; prints both keys whose values differ and those that match.

-r

Recurse into keys that only have a single subkey.

-e

At exit, sets errorlevel to the last error encountered. This switch lets you
test the return value of compreg when using it in scripts or batch files.

-d

Suppresses printing the values of keys whose values differ; prints just the keys
themselves.

-n

Monochrome output (the default scheme uses multiple colors).

-?

Displays a short help message.

The ability to find differences between two machines is extremely useful at times.
While troubleshooting some of the entries in Chapter 10, I wanted to clone an existing
drive restriction and modify it. Unfortunately, after I modified it it didn't work, and I
couldn't see what I had done wrong. A quick:

compreg software\Microsoft\Windows\CurrentVersion\Policies\Explorer
\\armory

showed me my error, and I was able to fix it without any further damage to my
Registry or my self-esteem.

9.9.4 Searching for Keys with regfind

Sometimes there's no substitute for a little brute-force searching. If you've ever used
grep or findstr (the Win32 equivalent) to find something you knew was somewhere on
your disk, you'll love regfind. It's flexible: it can search for value and key names or
contents, it can search or search and replace, and it understands all the common
Registry data types. This flexibility makes it a bit more complex than some of the
other Resource Kit utilities, though:

REGFIND [-h hiveFile hiveRoot | -w win95Dir | -m \\machine]
 [-i tabStop] [-o outputWidth]
 [-p keyPath] [-z | -t dataType] [-b | -B] [-y] [-n]
 [searchString [-r replacementString]]
-h hiveFile hiveRoot

Specifies the full path to a local hive file (generated with reg save or
RegEdt32).

-w win95Dir

Tells regfind to look for Windows 95 user.dat and system.dat hive files in the
directory specified by win95Dir.

-m machine

Specifies that regfind should search the remote computer named machine.

-i tabStop

Sets the tabstop width; the default is 4.

-o outputWidth

Tells regfind how wide to make its output. The default is the width of the
console window, or 240 if the output's been redirected to a file.

-p keyPath

Directs regfind to start looking in keyPath. You may specify one of
HKEY_LOCAL_MACHINE, HKEY_USERS, HKEY_CURRENT_USER, or
USER; since HKCR and HKCC are links into HKLM, this is not a big loss. If
you omit this switch, regfind searches the entire Registry.

-z

Searches for REG_MULTI_SZ or REG_EXPAND_SZ strings that are missing
the required zero terminator or that have illegal lengths.

-t dataType

Forces regfind to look only at values with the specified data type. You may
specify any one of REG_SZ, REG_MULTI_SZ, REG_EXPAND_SZ,
REG_DWORD, REG_BINARY, and REG_NONE. If no type is specified,
regfind looks at all the string types.

-b

Tells regfind to look for the specified search string inside REG_BINARY values
in addition to any SZ type specified with -t.

-B

Same as -b, but also searches for ANSI strings in addition to Unicode.

-y

When used during an SZ search, forces regfind to do a case-insensitive search.
Ignored for REG_DWORD, REG_BINARY, and REG_NONE searches.

-n

Searches key and value names, not just contents. -n and -t are mutually
exclusive.

searchString

Specifies string to search for. To search for a string with embedded spaces,
brackets, etc., wrap it in double quotes. If no search string is specified, the
search finds values of the specified type. When searching for a
REG_DWORD, you may specify it in decimal or hex, with a leading 0x.
When searching for a binary value, you must provide a length byte, optionally
followed by a sequence of DWORDs containing the actual data to search for.

-r replacementString

Replaces any occurrence of searchString with replacementString.
searchString and replacementString must be of the same type, but their
lengths may differ. There are several constraints that apply to the use of -r:

• You may specify replacementString the same way as searchString.
However, if your searchString is a REG_BINARY length only, you can't use -
r.

• If you specify -z and -r together, the replacement string is ignored. Instead of
replacing anything, regfind fixes any strings with missing terminators or bad
lengths.

• There's no confirmation option with -r, so it's a good idea to run regfind
without it until you're sure what is replaced is what you want replaced.

Because this is a complicated command, an example may help to clarify how the
command works. Let's try finding all the keys whose contents or names include the
string "Mac":

C:\ntreskit>regfind -y -n Mac
Scanning \Registry registry tree
Case Insensitive Search for 'Mac'
Will match values of type: REG_SZ REG_EXPAND_SZ REG_MULTI_SZ
Search will include key or value names
\Registry
 Machine
 SOFTWARE
 Microsoft
 AsyncMac
 Exchange
 Client
 Mac File Types
 Shared Tools
 Text Converters
 Export
 MSWordMac4
 MSWordMac5
 MSWordMac51
 Import
 MSWordMac
 SYSTEM
 ControlSet001
 Services
 AsyncMac
 AsyncMac2
 EventLog
 System
 AsyncMac
 ControlSet003
 Services
 AsyncMac
 AsyncMac2
 EventLog
 System
 AsyncMac
 Users
 S-1-5-21-1944135612-1199777195-24521265-500
 Software
 Microsoft
 Ntbackup
 Backup Engine
 Process Macintosh files = 1
 Machine Type = 0
 Telnet
 Machine1 = fly.hiwaay.net
 LastMachine = hq
 Machine2 = hq

The only real drawback to regfind is that it can't handle regular expressions or
wildcards like findstr and grep can. Apart from that limitation, though, it's a valuable
tool when you need to find a key whose value you know but whose path you don't. If
you need to use regular expressions, use scanreg.exe instead.

9.10 Spying on the Registry with RegMon

Ask a private investigator what the best way to gather evidence is, and you're likely to
get a simple answer: watch and wait. Unfortunately, trying to use RegEdt32 or
RegEdit to watch the Registry as it changes is a difficult and unrewarding way to
work. Unless you know ahead of time exactly which keys or values you want to
watch, it's difficult to monitor individual changes, and there's no easy way to tell
which application, process, or driver changed the setting you're trying to watch.

Mark Russinovich and Bryce Cogswell have solved this problem, to the delight of
administrators and programmers everywhere. They wrote a utility called RegMon
(available with source code from http://www.sysinternals.com) that lets you spy on
every Registry access made anywhere in the system. It can monitor reads, writes, and
queries and record them in a log that you can peruse at will; it can also limit the
Registry accesses it records based on filtering criteria you supply. RegMon makes
short work of figuring out who modified a particular key or value, and it's a great
resource for watching what the system's doing with Registry data.

Figure 9.9. The RegMon main interface

RegMon works by installing a small device driver when you run the application; this
driver installs hooks to all the Registry API routines, so it can see what parameters
callers pass in and what results the system returns. The RegMon application itself just
opens the device driver and waits for it to send along the data it's captured.

Sneaking a Peek with RegEdt32

RegMon isn't the only way to spy on the Registry. The following steps are a
handy trick that allows you to see even the SAM and SECURITY hives,
which are normally inaccessible:

1. Enable the Scheduler service and have it log in as the SYSTEM
account by selecting the "System Account" radio button in the
Services dialog.

2. Once the Scheduler is running, open a command-line window and use
the at command to schedule an invocation of RegEdt32 in the near
future. For example, if it's 1:35 P.M. when you start off, schedule
RegEdt32 to run at 1:36 P.M. like this:

at 13:36 /interactive regedt32.exe

3. If you prefer, and if you're using Windows 2000, you can schedule
the task using the Scheduled Tasks wizard.

At the appointed time, RegEdt32 opens, but it's running under the SYSTEM
account instead of your normal account. HKLM\SYSTEM and HKLM\SAM
is enabled, so you can open and inspect them. Don't expect to see much,
since their contents are all binary data. Don't edit anything in these hives.

One extremely valuable thing you can do with this trick is to enable auditing
on the SAM hive. This can give you an audit trail of attempted and
successful misbehavior, including grabbing the password hashes or changing
passwords on the Administrator account.

9.10.1 Learning the RegMon Interface

RegMon has an extremely simple interface. As you can see in Figure 9.9, it uses a
single document window to display the Registry data it captures. The toolbar offers
access to all six menu commands; the bulk of the window is devoted to the list of
captured data. Each column of the list has its own header at the top of the list window;
you can resize each column in the list by dragging the small vertical lines next to each
header. Each entry in the list displays seven fields' worth of data:

ID

A sequence number assigned by RegMon. The first thing it logs gets ID #1,
and the ID is incremented from there. However, these IDs are assigned by the
device driver. If events occur faster than RegMon can add them to its display
list, you'll notice gaps in the numbering.

Time

Either the elapsed time since the last request or the date and time of the
request.

Process

The name of the process that made the request. Since DLLs are loaded into a
process' address space, RegMon shows only the process name, not the name of
the individual DLL making the request.

Request

What action the requesting process asked for. Most often, you see
QueryValue, OpenKey, CloseKey, and SetValue, but RegMon also reports
enumerations, security changes, and all the other Registry services available
through the Registry API documented in Chapter 8.

Path

The path supplied as part of the request. RegMon always shows the path
including the topmost root key.

Result

The numeric result code returned by whatever Registry API routine was
called. You see a lot of "SUCCESS" entries here, with an occasional
"NOTFOUND." It's rare to see anything other than these two.

Other

A catch-all field. For Registry calls that return data, RegMon shows the data
here as a value of whatever type is appropriate. You see string values in
quotes, but DWORDs, HKEYs, and other binary data appears as a block of
hex digits. It's up to you to interpret binary data and make sense out of it.

9.10.1.1 Controlling what you see

Besides dragging the column headers to resize each individual column, RegMon
doesn't offer much in the way of user interface. The Edit Clear Display command
erases the current list of logged Registry accesses, and the Options Auto Scroll
command toggles whether RegMon attempts to automatically scroll the displayed list
to always show the most recently added item.

9.10.1.2 Some other useful Edit menu commands

There are several other useful commands in the Edit menu, too:

• The Edit Copy command copies the selected entry's information as a single
plain-ASCII text line.

• The Edit History Depth... command lets you control how many events
RegMon buffers. The default value of means that it attempts to keep all the
entries it logs, but you can restrict it to a smaller number.

• The Edit Font... and Edit Highlight Colors... commands let you control
how the captured data are displayed.

• The Edit Find... command allows you to search the capture buffer for a
particular event

• The Edit Regedit Jump... command opens RegEdit and opens the value
referenced in the selected log entry.

9.10.2 Capturing and Filtering

Using RegMon to figure out what's going on in the Registry is a two-step process. The
first step is optional: you may choose which events you want to see (and which you
don't) by building a capture filter. RegMon applies this filter during the second step--
the actual capture of events.

9.10.2.1 Turning capture on and off

When you first start RegMon, it's in capture mode. If you just sit there for a minute
and let it run, you see an occasional Registry access recorded in its window; you can
see many more if you switch to Explorer and open a file, or even click on an icon in
your My Computer window. If you leave RegMon in capture mode, it's likely to
capture an overwhelming amount of data, much of which won't bear any relation to
the data you're actually looking for.

The best way to reduce this information overload is simple: turn off capture mode
when you don't need it. The Options Capture Events command (Ctrl+E is its
accelerator) toggles capture mode off and on (as does the toolbar button).

9.10.2.2 Using capture filters

The Edit Filter/Highlight... command is arguably the most useful command in the
whole program. The Regmon Filter dialog (see Figure 9.10) lets you specify in detail
which events you want to see in the capture list and which you don't.

Figure 9.10. RegMon's filter dialog

Here are the filter criteria you may specify:

Include

Includes only those events you specify. If you leave it blank, nothing is
included. More likely, you'll want to include only specific keys, results, or
executable names. The default value of * indicates that you want to include

everything. You can use multiple values, too, by separating them with
commas. For example, a value of lsass.exe,explorer.exe includes activity
generated by those two processes only.

Exclude

Lets you filter out things you don't want to see. As with the Include field, you
can use wildcards and multiple values. In Figure 9.10, I've specified that I
want to see all activity except that generated by lsass.exe and the DLLs it
loads into its process space.

The Highlight field

Lets you pick which Registry calls you want to highlight, using the color you
selected with the Edit Highlight Colors... command. Notice that in this field,
I've added a process ID (the :1136 after the process name). You can use
process IDs in the Include and Exclude fields as well.

The Log checkboxes

Let you control what actions RegMon logs. By default, it logs reads, writes,
successes, and errors, but you may adjust this to narrow the breadth of the data
you have to wade through.

9.10.2.3 Saving your captured data

RegMon can save its logged data as a tab-delimited text file. There's no provision for
saving part of a log; you can either save every logged event, or none. This is easy to
work around, though; all you need to do is define an appropriate capture filter before
you capture data, then there won't be any extraneous stuff in your capture log.

The File Save... and File Save As... commands let you save logged data to a file
you specify. Unlike the Performance Monitor, there's no way to load a file of saved
data for further review; you have to use a spreadsheet or text editor to view the saved
data if you need it later.

9.10.2.4 Logging boot-to-boot activity

If you've ever wondered what happens behind Windows 2000's chunky-pixeled boot
screens, RegMon gives you an easy way to find out. If you choose the Edit Log
Boot command, RegMon logs pretty much every Registry access from the beginning
of the boot cycle. This generates a lot of data (25+ MB on a Windows 2000
Professional machine), but there's a lot of interesting stuff in there.

Chapter 10. Registry Tweaks

In the preceding chapters, I showed you how to use the Registry tools and
programming interfaces. As a sort of graduation exercise, this chapter contains a list
of Registry settings you can use to change the way your computer behaves. I have
deliberately not listed anything unsafe or dangerous here; as long as you follow the
restrictions stated in each setting's explanatory text, these changes should be safe for
you to make on any Windows 2000 or NT 4.0 machine.

If you read Appendix A and Appendix B carefully, you may notice that some of these
items are also editable through group policies. I've included them here on purpose;
even if you're not using policies you may still want to make these changes. Of course,
you can take any setting in this chapter and add it as a policy template file using the
instructions in Section 7.3.4 in Chapter 7.

Be careful to apply the correct capitalization to any values or
keys you change. Some applications are smart enough to ignore
case, but most aren't.

The actual mechanics of making these changes should be pretty obvious by now: use
your favorite Registry editor to add or modify keys or values as described for each
setting. Some of these tweaks require you to add a new key, while others may require
you to add or change a specific value. In all cases, when I say something like "add the
value HKCU\Control Panel\Desktop\WindowMetrics\MinAnimate," what that means
is that you should add it if it doesn't already exist. If it does exist, change its value as
suggested in the text.

10.1 User Interface Tweaks

The user interface for Windows 2000 and NT 4.0 is customizable in a lot of small
ways. You can't easily change the standard way windows and menus work, for
example, but you can change their colors. In that spirit, there are several adjustments
you can make to change some basics of how you and the operating system interact
with one another.

10.1.1 Add Your Own "Tip of the Day"

Microsoft Word for Windows introduced the "Tip of the Day" feature, which presents
an ostensibly helpful tip every time you start a tip-enabled application. This feature
made it into Windows 95, Office 95, NT 4.0, and a raft of third-party applications.
Apart from disabling the feature altogether (which you can do with the "Don't show
tips at startup" checkbox in the Tip of the Day dialog), you can add your own set of
tips. This is particularly useful when you make this change as part of a system policy;
you can build your own set of tips that are specific to your local environment, then
remove the ability for users to turn the tips off. This is an easy, and cheap, way to
disseminate information to your users. The list of tips is stored as a set of values
under:

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Tips

The tip values are stored as sequentially named REG_SZ values; the first one is
named "0," and the names go up from there. You can replace any of the existing tips
included with NT by changing that tip's value; alternatively, you can replace all of
them by removing all the values under Tips and replacing them with your own.

However, the tip list is only half of the necessary change. There's also a pair of
REG_BINARY values that control whether tips are displayed and which tip comes
next. These values are stored in HKCU, so they can be different for every individual
user. Here's how they work:

HKCU \Software\Microsoft\Windows\CurrentVersion\Explorer\Tips\Show

Controls whether tips are shown at startup or not. A value of 00000000
disables the tip display, while 01000000 enables it.

HKCU \Software\Microsoft\Windows\CurrentVersion\Explorer\Tips\Next

Controls which tip appears next. Its value is a sequence number that must
match the name of a value in the tips list. A value of 00000000 displays tip 0,
01000000 displays tip 1, 0c000000 displays tip 12, and so on. NT
automatically increments and updates this value as each tip is displayed.

10.1.2 Disable Window Animations

Windows 2000 and NT 4.0 copy the Win95 habit of using animated rectangles to
provide a "zooming" effect when windows are opened and closed. However, after the
first few times you've seen this effect it can become annoying; it also causes a slight
but perceptible slowdown as the system draws all the fancy rectangles instead of just
closing the window directly.

If you want to disable this animation for Windows 2000, you may do so by adding the
REG_SZ value HKCU\Control Panel\Desktop\WindowMetrics\MinAnimate and
setting its value to 0. NT 4.0 users should to add this value as a REG_DWORD type.
If you later decide that you like the animations after all, setting MinAnimate back to 1
turns it back on.

10.1.3 Speed Up the Taskbar

The Taskbar is a useful addition to the standard user interface. When Apple was
designing the Macintosh interface, their research found that a single menu bar at the
top or bottom of the screen was the fastest menu system; instead of having to
carefully guide the mouse to a particular area, you can just slam it down (or up) to the
menu region without any need for precise control. The Taskbar's default location at
the bottom of the screen satisfies this. One failing of the Taskbar, however, is the
speed with which the Start menu (and other menus attached to Taskbar items) pops
up. In a word, it's slow. Fortunately, the speed is adjustable via a Registry change.

To adjust the Taskbar pop-up speed, add a REG_SZ value named MenuShowDelay to
HKCU\Control Panel\Desktop. This value determines the number of milliseconds the

shell pauses before displaying the Taskbar. By default, it's set to "400," which is a
0.4-second delay. Adjust it to your taste, then reboot to make the change take effect.

10.1.4 Enable Tab for Filename Completion

If you're a Unix administrator or programmer, you'll love this one. Many Unix shells
allow you to quickly complete filenames in the shell by using the Tab key. For
example, if you type ls -l aar and hit the Tab key, the shell looks for files whose
names start with "aar." If it finds one, it automatically expands what you typed into
the full file or directory name. This is a lifesaver, especially since Unix allows you to
have very long file and pathnames with embedded spaces--just like Windows 2000
and NT.

This behavior is specified by the REG_DWORD value
HKCU\Software\Microsoft\Command Processor\CompletionChar. Set it to the hex
value of the character you want to use for filename completion. To use the Tab key,
set its value to 0x09. While other characters may fill in as the completion character,
such as Ctrl-D (0x04), the Tab key is familiar and otherwise unused in the command
window.

Setting this Registry value enables completion for all invocations
of the command processor. However, if you run the command
processor with the file and directory name-completion characters
option explicitly enabled (cmd /F:ON), the default completion
characters are used, rather than the value in the CompletionChar
Registry setting. The default control characters are Ctrl-D for
directory name completion and Ctrl-F for file name completion.

10.1.5 Run a Different Screen Saver While Waiting for a Logon

You probably know you can use the "Screen Savers" tab of the Display control panel
to set a screen saver to be run after a specified period of inactivity. You can also
choose which screen saver runs while a Windows 2000 or NT machine is waiting for
a logon. The default choice displays the familiar "Press Ctrl+Alt+Del to log in"
dialog, complete with the three-fingered hand icon, but you can easily choose another.

Some of the screen savers bundled with Windows 2000 and NT
are CPU hogs. If you're choosing a logon screen saver for a
server, make sure you stick with the "blank screen" saver;
otherwise, your server's valuable CPU cycles are used to draw
OpenGL objects or flying stars, robbing your server of the power
it needs to handle your users.

If you want to use another screen saver while your operating system is waiting for
someone to log on locally, you need to make three changes. First of all, add
HKU\.DEFAULT\Control Panel\Desktop\ScreenSaveActive as a REG_SZ; set its
value to 1. This tells the system that when no one's logged in (for example, when the

.DEFAULT profile's being used), you want a screen saver to run. Under NT 4.0, add
this key as a REG_DWORD value instead.

Next, edit the value of HKU\.DEFAULT\Control Panel\Desktop\SCRNSAVE.EXE to
specify the full path of the screen saver you want to run. (If the screen saver you want
is in the default location of %systemroot%\system32, you don't have to enter the full
path.) For example, you might enter sstars.scr to run the "flying stars" screen saver.

Finally, edit the value of HKU\.DEFAULT\Control Panel\Desktop\ScreenSave-
TimeOut and enter a value for the screen-saver trigger time. This value, in seconds,
specifies the amount of inactivity you're willing to allow before the screen saver kicks
in.

Once you make the changes, you must reboot before they take effect.

10.1.6 Enable X Window-Style "Auto Raise"

The X Window system has a neat configuration setting called "auto-raise." When this
setting's in effect, you don't have to click on a window to bring it to the front of the
window stack. Instead, just passing the mouse over a window raises it. This takes a
little getting used to, but once you've made the adjustment, you'll find that it
eliminates a lot of extra mouse clicks.

NT does something similar: it can automatically set the focus to a window when you
put the mouse in it, but it won't raise that window to the top of the stack. This setting
is off by default to avoid confusing people who haven't been exposed to auto-raise
before. To turn it on, set the value of HKCU\Control
Panel\Mouse\ActiveWindowTracking to 1. You have to log out and log back on
before the change takes effect.

10.1.7 Enable "Snap to Default Button"

Some X Window system implementations also have another handy feature: you can
force the cursor to always jump to the default button of any dialog or alert that
appears. This speeds the process of moving the cursor from wherever it happens to be
to the dialog or alert, especially if you're using a high-resolution monitor or an input
device that makes it hard to move the cursor quickly.

You can enable or disable this behavior by adjusting the value of HKCU\Control
Panel\Mouse\SnapToDefaultButton. When this value is 0, as it is by default, no
snapping occurs. Set it to 1, though, and the cursor warps to the default button once
you log out and log back on. Try it--you may like it.

10.1.8 Suppress Error Messages During Boot and Logon

During a Windows 2000 or NT boot process, it's not uncommon to see error dialogs
reporting problems that occurred during startup. For example, you may see warnings
telling you that a device driver couldn't be started, or that some other system
component didn't do what it was supposed to do. You can suppress these error dialogs

with a simple Registry change; the errors are still logged in the system and application
sections of the event log, but the dialogs won't interrupt or intrude on the boot and
logon process.

The actual errors are displayed in two phases; their display is thus controlled by two
separate Registry values. Messages that pop up on Windows 2000 as the result of
errors in the boot phase are controlled by the value
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Windows\NoPopUpsOnBoot. In the Windows NT 4.0 Registry,
the NoPopUpsOnBoot key is found at HKCU\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Windows\NoPopUpsOnBoot. Add this value as a REG_DWORD
and give it a value of 1 to suppress boot errors, or to allow the normal error dialog
display.

Messages that appear as part of the post-boot startup phase (including messages
produced by most device drivers and services) are controlled by a different value,
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\ErrorMode
or, for NT 4.0, HKCU\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Windows\ErrorMode. Set this REG_DWORD value to to allow
all system and application errors to display dialogs, 1 to display only application
errors, or 2 to suppress all error dialogs. The default value is 0.

10.1.9 Set NUMLOCK Key During Startup

You can specify whether the NUMLOCK key is on or off when the computer starts
through the HKCU\Control Panel\Keyboard\InitialKeyboardIndicators value.
InitialKeyboardIndicators is a REG_SZ type that, when set to 2, causes the
NUMLOCK key to be on when the user logs on. Setting the value to ensures the key
is off.

10.1.10 Display Version Number

A simple desktop tweak allows you to display the Windows 2000 version number and
build number in the lower right corner of the desktop. Set the REG_DWORD value
HKCU\Control Panel\Desktop\PaintDesktopVersion to 1 to show the OS build
information.

10.2 Filesystem Tweaks

The guts of the filesystem of both Windows 2000 and NT 4.0 are mostly self-tuning.
This is on purpose, following the theory that the filesystem can adjust its own caching
and buffering better than you can. Whether this is true or not, there are still some
changes you can make to control whether the filesystem does certain things. These
changes apply to FAT, NTFS, and NTFS 5 filesystems.

10.2.1 Change Low Disk Space Warning Threshold

Even though you may never have encountered it, Windows NT and 2000 can display
an alert warning you that your disk is almost full. The threshold for these alerts is

90% disk usage; while this may seem generous, if you're using a large disk, a 10%
margin results in you seeing these warnings even when the amount of space
remaining is large in absolute terms. My local Internet service provider runs an NT
news server with more than 80GB of disk storage, so getting a warning that there's
"only" 8GB free is not very useful to them.

The DiskSpaceThreshold value controls when you see this alert; it sets the minimum
amount of free space (as a percentage) that triggers a warning. Add this value (it's a
REG_DWORD) to
HKLM\System\CurrentControlSet\Services\LanmanServer\Parameters; the value you
specify should be the percentage of free space, from to 99, which should trigger a
warning. When the amount of free space on any volume falls below this value, you
get a warning.

10.2.2 Use Longer File Extensions

Even though Win95 ostensibly supports long filenames, there's an ugly secret
involved: it really supports only three-character file extensions! That means that the
names medical.doc, medical.doctor, and medical.doctrine all point to the same file.
Since NTFS doesn't have that restriction, you can make it take advantage of the longer
extensions instead of being stuck with the three-character versions.

The value of
HKLM\System\CurrentControlSet\Control\FileSystem\Win95TruncatedExtensions
controls this behavior. On Windows NT machines, it's set to by default. This truncates
extensions to the first three characters. Set it to 1 (the Windows 2000 default) and
reboot to take advantage of full-length extensions on NTFS volumes.

10.2.3 Turn Off CD-ROM AutoRun

Ahh, "AutoRun." While Microsoft undoubtedly did a favor for some users who like to
have CDs start running automatically when they're inserted, many of the users I talk
to don't like this feature. If, for example, you're loading the Windows 2000 Resource
Kit CD to copy a tool you need, do you really want to wait while the AutoRun-
invoked setup tool loads, or would you rather just copy the file you need?

Happily, you can banish AutoRun from your Windows 2000 or NT machine with a
simple change. Add a REG_DWORD value named
HKLM\SYSTEM\CurrentControlSet\Services\Cdrom\Autorun and set its value to 0,
and you'll no longer be forced to wait for AutoRunning-CDs to do their stuff. You can
later change the value to 1 if you want to reenable AutoRun for CD-ROMs.

For more specific AutoRun control of all your Windows 2000 drives, add a
REG_DWORD named
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Explorer\NoDrive
AutoRun. Populate this value with a bit mask of the drives (lowest bit representing
drive A) you want to disable AutoRun on. For example, the hex value 0x18 (binary
0001 1000) disables AutoRun on drives D and E.

10.2.4 Suppress "Last Access" Timestamp on NTFS Volumes

NTFS volumes store a "last access" timestamp for every directory on the volume.
That means that every time you look at a directory listing, the operating system is
busily updating the timestamps on each directory it detects. As you might guess, this
is often a waste of CPU cycles and disk bandwidth that could better be used
elsewhere. To prevent Windows from updating the "last access" timestamp for
directories under NTFS volumes, add a REG_DWORD value named
NtfsDisableLastAccessUpdate to
HKLM\System\CurrentControlSet\Control\FileSystem and set its value to 1. Note that
this change has no effect on the "last modified" timestamp.

While suppressing "last access" timestamps can increase the speed of directory
listings and prevent the NTFS log buffer from becoming filled with timestamp update
records, be aware that these timestamps are useful for NT auditing. Disabling last-
access update decreases available auditing information.

10.3 Security Tweaks

A surprising number of Windows 2000 and NT's security
features are only accessible through Registry tweaks. For the
most part, these adjustments add to your system's security;
except as noted, you are not adding extra risk by not making the
changes discussed here. You should carefully note the security
suggestions included in Chapter 9. They reflect changes you
should make to preserve system security, while the items in this
section are optional.

10.3.1 Clear the System Pagefile at Shutdown

The U.S. Government (actually the National Computer Security Center) has
established a rating system for configurations of computer operating systems. This
rating system, set forth in a document called the Orange Book, rates how secure
operating systems are. To earn a particular rating, there are certain features an OS
must implement. One of these features is object reuse. Simply put, object reuse just
means that objects (including disk blocks, memory, and other shared resources) are
cleared out after use. This prevents any leakage of confidential data.

While Windows 2000 and NT can be made compliant, as shipped neither OS clears
inactive pages in the virtual memory's pagefile. A couple of publicized attacks[1] rely
on the fact that the system's pagefile is left intact when the system shuts down; it can
then be scanned for useful data. To prevent this, you can add the REG_DWORD
value HKLM\System\CurrentControlSet\Control\Session Manager\Memory
Management\ ClearPageFileAtShutdown value and set it to 1; this forces the system
to zero out the contents of the pagefile at system shutdown. Be forewarned that
making this change increases your system shutdown time in direct proportion to the
size of your pagefile.

[1] The attacks depend on application bugs; a well-written application won't leave any sensitive data in virtual
memory, but a well-written OS won't expose it either.

10.3.2 Prevent Caching of Logon Credentials

By default, Windows 2000 and NT workstations cache the last 10 sets of logon
credentials received from a domain controller. This reduces the number of times a
workstation has to contact a domain controller for verification of a logon request, and
it often makes it possible to log on to a domain even when the domain controller isn't
available on the network. If you want to prevent these credentials from being cached,
as you might if you're running a high-security network, add a REG_SZ value named
CachedLogonsCount beneath the HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon key. Set its value to to prevent any caching or to the
number of cached credential sets you're willing to allow.

10.3.3 Turn Off "Save Password" Option in Dial-Up Networking

The Dial-Up Networking (DUN) subsystem of Windows 2000 and NT lets you
maintain a separate username and password for every entry in the Phonebook. You
can also use the "Save this password" checkbox, which appears in the RAS Logon
dialog; when you do, the system stores that account's password in the Registry. This is
pretty insecure, especially when the machine using DUN is a laptop; if it's stolen, the
thief has automatic access to your dial-up connection if the password's been saved.

You can force DUN not to store passwords by adding the REG_DWORD value
DisableSavePassword value to
HKLM\SYSTEM\CurrentControlSet\Services\RasMan\Parameters. If you set its
value to 1, DUN won't display the "Save password" checkbox, and it forgets any
passwords it has previously stored. This setting's a good candidate for inclusion in a
policy template; that allows you to enforce the security setting you want applied.

10.3.4 Prevent Users from Changing Network Drive Mappings

Once you establish a set of drive mappings for your users (either as part of a logon
script, a profile, or a persistent connection), you can protect them from changes by
changing the permissions on HKCU\Network, and its subkeys, to remove the Delete
and Create Subkey permissions. If you do this, users can still add or delete network
connections, but the changes won't persist after they log out.

Do not remove the users' Set Value or Read access; if you do,
connections won't be reestablished when that user logs on again.

10.3.5 Control Who Can See Performance Monitor Data

The Performance Monitor for Windows 2000/NT is a nice addition to the system's
basic toolset; it allows you to quickly gather and analyze performance data for local
and remote machines. If you're like most network administrators or managers, though,
you'd probably prefer that your servers' performance data be kept away from other
network users, since there's no good reason for ordinary users to be monitoring a
server's performance.

The permissions on the HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Perflib key control who may read a machine's performance data.
By default, an ordinary NT 4.0 installation has Everyone:Read permission on this key,
though Windows 2000 defaults are less permissive. I suggest using RegEdt32 to
tighten permissions on the Perflib key: let Administrators have Full Control and
remove Everyone altogether. If you want any user who's actually logged into the
machine to have access, you can add Interactive Users:Read; doing so keeps network
users from seeing the performance data while still allowing interactive users to
monitor the machine if they need to do so.

10.3.6 Control Which Drives Are Visible Throughout the System

If you need to, you can hide drives on a machine so they don't appear in My
Computer, Explorer, or the open and save dialog boxes. You might do this (in
conjunction with other access control measures like the "run only allowed
applications" policy setting) to keep users from damaging their Windows 2000 or NT
installations or installing unapproved software. Hide the drives you don't want users
to tamper with and they won't see them. (Actually, hidden drives are accessible
through the File Manager and the Windows 2000 and NT command prompts.
Solution? Turn those off with a policy.) This hiding occurs on a per-user basis, too, so
you have fairly fine control over which volumes users can see.

The value that controls drive hiding is actually a bit mask.
HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\NODRIVES
is a REG_DWORD, which makes it 32 bits long. Since the system can map only26
drives (A: through Z:), this mapping works out nicely. The upper six bits of the value
are ignored; the remaining 26 bits map to each drive letter, with A: in the right-most
position and Z: in the left-most, like this:

0
Z Y X C B A

To turn off drives A, B, C, and D, you end up with a mask value of
"00000000000000000000001111"; to turn off all drives, just use all 1 bits in the
mask. RegEdt32 makes it easy to add new DWORD values as bitmasks or to edit
existing values as binary strings (see Chapter 5, if you need more details), so adding
this restriction is easy to do. There's one caveat: if your drive letters change--perhaps
because you've added a new disk or removed an old one--your NODRIVES values are
shifted, and you may suddenly lose sight of a drive you wanted to keep visible.

10.3.7 Change When the Password Expiration Warning Appears

A good password policy is one of the cornerstones of network security. You start by
making users pick good passwords,[2] then follow up by setting a password aging
policy that forces users to change their passwords at reasonable intervals.[3] Windows
2000 and NT helpfully warns users that their password is going to expire two weeks,
or 14 days, in advance. Since most users won't change their passwords when the first
warning appears (most, in fact, won't change until their password finally does expire),
why torture them with two weeks' worth of warnings?

[2] There's an excellent discussion of what makes a password good or bad in O'Reilly's Windows NT User
Administration by Meggitt and Ritchey.

[3] You do this with the User Manager under NT or with Active Directory Users and Computers under Windows
2000.

Instead, add a REG_DWORD value named PasswordExpiryWarning to
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon. Set its
value to the number of days, up to 14, you want to start the expiration warnings at; I
recommend between three and seven days.

10.3.8 Allow Members of the Printer Operators Group to Add
Printers

Both Windows 2000 and NT 4.0 include a number of built-in groups that allow you to
assign limited administration privileges to people who need them. The Server
Operators, Print Operators, and Backup Operators groups allow a network
administrator to grant greater-than-normal rights to these operators without making
them members of the Administrators group.

Print Operators can stop and restart the print spooler, route print jobs, and perform
other printer-related administrative functions. However, they cannot add or modify
printer ports, meaning that you can't delegate that responsibility to the people who
should most likely have it. You may reverse this unhappy state of affairs by changing
the permissions on a single Registry key. Here's what to do:

1. Open RegEdt32 and select
HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors.

2. Use the Security Permissions... command to display the Registry Key
Permissions dialog.

3. Click the Add button; when the Add Users and Groups dialog appears, select
the Print Operators group and give them Full Control access. Click OK; the
Registry Key Permissions dialog reappears with the new permissions.

4. Stop and restart the Spooler service using the net stop spooler and net
start spooler commands from a command window.

10.3.9 Set the Number of Authentication Retries for Dial-Up
Connections

You may adjust the number of authentication attempts DUN allows before it decides
the remote user is bogus and hangs up the phone. By default, DUN allows two
unsuccessful retries; you can adjust this value from zero to 10 by editing the
HKLM\System\CurrentControlSet\Services\RemoteAccess\Parameters\AuthenticateR
etries value. A value of zero tells DUN to hang up at the first failure, which may be
too restrictive for users who must type in passwords manually; I set the value to 1 so
that users can make one mistake before they have to start over again.

10.3.10 Keep Users from Changing Video Resolutions

Being able to change screen resolution and color depth on the fly is a terrific
Windows 2000 and NT feature, until your users start changing settings when you

don't want them to. You can prevent this by changing the permissions on the settings
key for the video card. The exact location of this key varies depending on the number
and type of video cards installed in a particular computer; it also varies between
machines that have different video card types.

The key to change permissions on is at HKLM\System\CurrentControlSet\Hardware
Profiles\Current\System\CurrentControlSet\Services\devicename\DeviceX where
devicename is the name of your video adapter driver (mine is "S3," but you should be
able to deduce the right value for your computers depending on what type of card you
have). The proper value for DeviceX varies too, but if you only have one video card
it's always "Device0."

10.3.11 Set the Authentication Timeout for Dial-Up Connections

In addition to setting the number of authentication retries you'll allow, you can also
specify how long each attempt takes before the system counts it as a failed attempt.
By default, DUN allows connecting users 120 seconds to either authenticate
successfully or have their attempt deemed a failure. Edit the value
HKLM\System\CurrentControlSet\Services\RemoteAccess\Parameters\AuthenticateT
ime to adjust the timeout period; you can set any value you like from 20 seconds all
the way up to 10 minutes (or 600 seconds; the value must be specified in seconds).

10.3.12 Keep Remote Users from Sharing a Mounted CD-ROM or
Floppy

By default, the system automatically creates an administrative share for every disk or
CD-ROM volume. This share, which is named by the drive letter plus a dollar sign, is
invisible, so it doesn't appear in Network Neighborhood, but a savvy user can find it
anyway. There may be times when you don't want anyone but the locally logged-in
user to access a CD-ROM; for example, many reference CD-ROMs have strict
licensing limits that promise big trouble if you share the CD-ROM across the
network.

Remember the brief discussion about object reuse? It applies to other shared
resources, too, including CD-ROMs and floppies. In its quest to gain C2 security
certification for NT, Microsoft added two Registry keys that cause the CD-ROM and
floppy drives to be allocated to the currently logged-in user. When this allocation
occurs, other users can't access the drives or the media in them; when no one's logged
in, the drives are unallocated and may be shared. These NT settings made it into the
Windows 2000 Registry.

Two keys under HKLM\Software\Microsoft\WindowsNT\CurrentVersion\Winlogon
implement these settings: AllocateFloppies and AllocateCDRoms. Both are of type
REG_SZ. To force allocation of either device type during logon, set the appropriate
key's value to 1; to turn allocation off, set the key's value to 0.

10.3.13 Keep Users from Customizing "My Computer"

There's no policy setting that prevents users from changing the name or icon of the
My Computer icon on the desktop. If you've ever had to administer a lab full of
computers, you've probably had at least one incidence of finding a machine's My
Computer icon renamed to "Beavis & Butthead" or something even worse. To nip
these changes in the bud, change the access permissions on
HKLM\Software\Classes\CLSID\20D04FE0-3AEA-1069-08002B30309D.

Remove the Everyone group from this key and add the Users group with Read access.

10.4 Performance Tweaks

When it comes to computers--particularly those running Windows 2000 or NT--you
can never have too much speed. The least expensive performance upgrade for
Windows machines is usually just additional RAM, since the computer can
productively use as much as you can stuff into it. Failing that, you can make a few
small changes to improve both your computers' speed and their availability.

10.4.1 Automatically Delete Cached User Profiles

User profiles make it easy to centralize and distribute user-specific settings. This
enables users to have their same desktop settings follow them as they wander around
your network. However, these profiles take up space; if you have many users who
interactively log onto a particular machine, their cached profiles will slowly
accumulate, stealing your disk space as they build up.

You can tell your system to automatically delete cached profiles when they're no
longer needed. When a user logs on, if her profile isn't on the local machine, the
system fetches it and keeps it there until it's removed or updated (in which case the
updated version is downloaded into the cache). This makes it possible to log on and
get profile information even when the domain controller(s) aren't answering profile
requests. If you enable automatic removal, the system deletes the cached profile when
the user logs out. The good news is that this approach saves disk space at a small cost
in extra profile downloads. The bad news is that users may not be able to log on when
your domain controllers are unavailable; there won't be a cached profile on the
machine for them to use when logging on.

If you want cached profiles to be deleted automatically, add a REG_DWORD value
named DeleteRoamingCache to
HKLM\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon. Give it a
value of 1 to enable removal or to allow cached profiles to stay around.

10.4.2 Enable Automatic Reboot After a Crash

Normally when an NT machine crashes, it produces a "Blue Screen of Death"
(BSOD), which indicates the cause of the crash and gives some information about the
system's state when the crash happened. The problem with this approach is that the
server sits there, BSOD proudly displayed, until a human comes along and reboots it.

This is not ideal for most server applications; if no one is able to get to the machine to
reboot it, none of its users can use it. Imagine having your Exchange server go down
while you're on vacation, with users unable to get mail until you can find someone in
the office to go reboot it for you!

As an administrator, you can force Windows 2000 to automatically reboot after a
crash by setting the value of
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\AutoReboot to 1; this
forces the system to automatically reboot after writing out the crash log file. Under
NT, use the value HKLM\SYSTEM\CurrentControlSet\CrashControl\AutoReboot.
While this change is necessary for NT and Windows 2000 Professional, Windows
2000 Server reboots after a crash by default.

10.4.3 Record Evidence of a Crash

Besides the standard crash dump file, you can also tell Windows 2000 and NT to
record the occurrence of a crash in two ways. First, the kernel can send an
administrative alert to another machine; this alert may provide the first warning you
get of a fresh crash. Second, the kernel can record a crash message in the event log. If
you've turned on the automatic reboot option as discussed in the previous section,
having a message in the event log gives you positive confirmation of the time when
the crash occurred.

These two capabilities can be set only by an administrator. The values controlling
these capabilities are found under the
HKLM\SYSTEM\CurrentControlSet\CrashControl key. To turn on alert broadcasting
for Windows 2000 Professional or NT, set the SendAlert value to 1, instead of its
default 0. To turn on event log messages, set the LogEvent value to 1 as well. Both of
these capabilities are already turned on by default on the Windows 2000 Server.

All the values under the CrashControl key, including the
aforementioned automatic reboot, can be set through the System
control panel. These settings can be found on the
Startup/Shutdown tab on an NT machine or gotten to from the
Advanced tab on Windows 2000. Better still, you can control
them by writing a policy template file to automatically install the
settings you want on all machines in your domain.

10.4.4 Enabling Automatic Logon After Boot

My local library has a batch of PCs running an electronic library catalog application.
These machines are basically single-function kiosks; the librarians don't want people
using them for anything else. To get the machines set up to run with as little
intervention as possible, the catalog software is installed as part of the Startup group;
that way, it runs when Windows 95 starts. An NT-based kiosk system allows the
library to keep their computers more secure and administer them with less hassle; they
can even get the automatic logon feature Windows 95 offers.

Never enable auto-logon with an account that has administrative
privileges. If you ever leave your machine unattended, an office
prankster (or determined attacker) can have the run of your
network right from your machine. Good security practice
dictates that you only log in with an administrative account when
you need to do something that requires the extra privileges.

To enable automatic logons, you have to make a total of four changes to values under
HKLM\Software\Microsoft\Windows NT\Current Version\Winlogon:

1. Set the DefaultDomainName value to the name of the domain you want to
automatically log into. Of course, instead of a domain, you may specify the
name of the computer itself.

2. Set DefaultUserName to the user account name you want to use when logging
on.

3. Add a REG_SZ named AutoAdminLogon, and set its to value to 1.
4. Add a REG_SZ named DefaultPassword, and set its contents to the password

for the account you specified in DefaultUserName. If you leave this value
blank, automatic logon is turned off (actually, AutoAdminLogon is set back to
its default value of 0).

Once you make these changes, the next reboot automatically logs on the account you
specified. If you want to log on as a different user, hold down the Shift key as you log
off the machine; the operating system allows you to use the standard logon dialog to
log on as another user.

One final warning: realize that the Registry stores these values in plain text. By
enabling this feature, you could be disclosing the default password for this user
account to anyone who can read your Registry.

10.4.5 Power Off at Shutdown

Most laptops, many workstations, and even a few servers have smart power
management hardware that lets the operating system actually turn off the hardware
when the system is shut down. While not all machines can take advantage of this, it's
nice to have the "Shut Down" command do just that instead of requiring an extra trip
to the power button.

The
HKLM\Software\Microsoft\WindowsNT\CurrentVersion\Winlogon\PowerdownAfter
Shutdown value enables this feature; add it as a REG_SZ and set its value to 1, and
your computer actually turns itself off when you tell NT to shut down, if your
hardware supports this feature. If it doesn't, no harm will come to it, but the feature
won't work. Reset PowerdownAfterShutdown back to to restore normal operation.

10.4.6 Force Hung Tasks to End When Logging Off

When you log off of or shut down a Windows 2000 or NT machine, the system
scheduler attempts to stop any running tasks. In addition to shutting down any drivers

or services started by the system, the OS must shut down the 16-bit Windows
subsystem and any applications you've started yourself. Most well-behaved Win32
applications will honor a system shutdown request, but it's unfortunately common to
see hung tasks in the VDM prevent the entire system from shutting down.

Windows' normal response to this problem is to display a dialog that asks whether
you want to cancel the shutdown or logoff, wait for the recalcitrant task to stop by
itself, or kill off the task. You can automate this process by specifying that you always
want the system to go ahead and kill tasks that don't listen to shutdown requests; this
finally makes it possible for you to tell your machine to reboot and go get a diet Coke
while it does, secure in the knowledge that it won't be still waiting for you to end a
task when you return.

To force this shutdown, add a REG_SZ value named AutoEndTasks to
HKEY_USER\<SID>\Control Panel\Desktop. Set it to 1 to forcibly kill unresponsive
tasks. You may also want to add the same value to HKU\.DEFAULT so that new
accounts inherit it; you can also add it to a policy template.

10.4.7 Set a Time Limit for Shutting Down Tasks

You now know how to force an automatic end to tasks that won't stop when they get a
shutdown request, but did you know you can also tell Windows 2000 and NT how
long to wait before deciding an application isn't answering? If you add a REG_SZ
value named WaitToKillAppTimeout to HKEY_USER\<SID>\Control
Panel\Desktop, you can specify the interval (in milliseconds again) that the system
waits before deciding that an application is ignoring the shutdown request. The
default is a generous 20 seconds; if, like me, you're impatient you can whittle this
down to 10 seconds or even less. If the user process doesn't answer the shutdown
request and terminate within this time period, and AutoEndTasks is defined, the
scheduler kills the task.

10.4.8 Speed Up System Shutdowns

When you boot an Windows 2000 or NT machine, part of the boot phase involves
starting up all the system's drivers and services. Conversely, part of the shutdown
process requires that all these services be shut down so they can write out any data
they've got cached. This is particularly important when you consider that Exchange
Server, SQL Server, and several other BackOffice server products depend on the
system's services.

However, waiting for system shutdown can take a long time, depending on the service
load you have running. Part of the problem is the generous default timeout value:
Windows 2000 and NT shutdowns give each service up to 20 seconds to shut down
before the system kills it. If you have many services running, this time can add up.

The HKLM\SYSTEM\CurrentControlSet\Control\WaitToKillServiceTimeout value
specifies how long the system should wait before killing a service; the value is a
REG_SZ expressed in microseconds (1000 microseconds make one second). You can
adjust this value as low, or high, as you'd like.

Note that WaitToKillAppTimeout and WaitToKillServiceTimeout are two different
values. The former controls the timeout period for system tasks, while the latter
applies only to system services.

It's critical to leave services enough time to clean up after
themselves and write out any cached data they may be
maintaining internally. If you don't, you may lose all or part of
the data maintained by the service; since the DHCP, DNS,
WINS, Exchange, and SQL servers are all services, this poses a
real risk to your data. You probably shouldn't adjust this value
on machines that run any of these services.

10.4.9 Automatically Try to Detect Slow Network Connections

Face it: not all network connections are as fast as you'd like. In fact, if your network
includes sites that are linked by a WAN, you may find they're much, slower than
you'd like. In a domain environment, both Windows 2000 and NT normally attempt to
fetch a user's profile from the domain controller. In a typical enterprise network, not
every WAN-connected site has its own domain controller--meaning that logon
requests from Huntsville may have to go to a domain controller in Chicago. With
more than a few users, you'll quickly wish there was a way to encourage your system
to use cached user profiles whenever possible.

Good news: you can do exactly that. The first step is to set a time limit for deciding
whether a connection is "slow" or not. The system makes this decision by pinging the
domain controller and waiting for a response. If the response takes longer than a
threshold you specify, the link is considered "slow." You can set this threshold by
adding a REG_DWORD value named HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\SlowLinkTimeOut and setting it to the number of
milliseconds (remember, 1000 milliseconds make one second) to wait for a ping
response. The default value of 2000 means that Windows waits 2 seconds for a
response; if you're really desperate, you may adjust this value all the way up to
120,000 milliseconds (or 2 minutes).

The other required change is to add a REG_DWORD named SlowLinkDetectEnabled
to HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon. This value
controls whether or not the system pays attention to SlowLinkTimeOut. When
SlowLinkDetectEnabled is 0, Windows doesn't attempt to detect a slow link. When
it's 1, the system waits for the amount of time specified in SlowLinkTimeOut; if that
amount of time passes, the user may select a locally cached profile instead of
continuing to wait. By default, Windows 2000 does attempt to detect slow
connections.

10.4.10 Don't Automatically Create 8.3 Names on NTFS Volumes

For backwards compatibility with DOS, Windows for Workgroups, and other
operating systems that don't understand long filenames, NTFS automatically creates
standard 8.3 filenames and stores them along with the NTFS long name. For example,
this chapter's full name is Chapter 10 draft.doc, but its 8.3 name is CHAPTE~1.DOC.

If you don't care whether older operating systems and software can read your
filenames, you can turn off the process that automatically creates short names for
long-named files and increase your file performance. If you depend on DOS or
Win3.x programs on your computers, this probably isn't a good idea, as they depend
on 8.3 names; however, if you're running only 32-bit applications you should be in
good shape.

To accomplish this, add a new REG_DWORD value named
NtfsDisable8dot3NameCreation to
HKLM\System\CurrentControlSet\Control\FileSystem and give it a value of 1. After
you reboot, the system no longer creates 8.3 names for new files (but it won't delete
the old ones).

You may be surprised to find that many alleged 32-bit
applications rely on 8.3 filenames to work properly. Don't apply
this tweak until you've made a full backup of all NTFS volumes
on your machine, and be prepared to use that backup to restore
from if things don't work properly.

10.4.11 Disable the Printer Browse Thread

When you create a new printer share, the print spooler service starts a new thread
whose job is to broadcast announcements of the share's presence. Print servers and
clients can receive these announcements and automatically add the new printer to
their lists of known resources. To ensure that print servers have consistent resource
lists, each print server also broadcasts its list of known shares. This enables other
servers to be sure that their resource lists are complete. The combination of these two
broadcasts can cause unneeded broadcast traffic, since once a printer's established and
the servers have all seen it, there's little need to keep retransmitting the data.

You may disable the printer browse thread on each machine that shares a printer with
the network; you may also wish to disable the thread on any centralized print servers
on your network. Once you do, remember that when you add new printers they won't
show up in browse lists until you reenable the browse thread on all machines where
you've disabled it.

To stop the browse thread, add a new REG_DWORD value named
DisableServerThread to HKLM\SYSTEM\CurrentControlSet\Control\Print. Give it a
value of 1 to disable the thread or to reenable it, then restart the computer to make the
change effective. Since printer browsers share information, it may take as long as one
hour for all the print servers on your network to make themselves known again by
broadcasting.

The following two tips appear courtesy of the NT*Pro user
group newsletter.

10.4.12 Forcibly Recover a Crashed PDC

If your domain's PDC crashes or becomes unavailable before you have the chance to
promote a BDC, the key that controls the server's role won't be changed to reflect that
the PDC isn't a PDC anymore. When you recover and reboot the PDC, it thinks it's
still a PDC, but when it discovers the newly promoted PDC on the network the
original PDC petulantly stops its netlogon service. The recommended way to fix this
is to edit the default or "<No Name>" value of HKLM\Security\Policy\PolSrvRo. Its
value will be 0x03000000 for a PDC and 0x02000000 for a BDC. To turn the PDC
into a BDC, change the value to 0x02000000, then reboot.

To accomplish this fix, you'll have to allow the Administrators group Full Control
permissions on HKLM\Security\Policy\PolSrvRo. Make sure to restore the
permissions to their original state after making the change.

10.4.13 Hiding Servers from Network Computers

There may be times when you want to keep human browsers from seeing a particular
server on your network. You may hide the server from Network Neighborhood and
other browsing tools while still allowing users who know what share they want to
access it. To hide a Windows 2000 Server (or workstation, for that matter), you have
to add a new value to
HKLM\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters. Name the
new value hidden and give it a type of REG_BINARY and value of 1 (to hide it) or
(to make it visible). For NT, use the value name HIDDEN and make it a
REG_DWORD type. The values 1 and still apply. You have to restart the computer to
make it stop broadcasting its presence; in addition, it can take an hour or two for the
newly hidden machine to drop out of sight on other machines on your network.

10.5 Network Tweaks

The networking subsystem for Windows 2000 and NT is pretty flexible. Most of the
things you can change are exposed through the Network control panel and its various
tabs, subdialogs, and property pages. However, there are some things you can change
on your own that will smooth your network operations.

10.5.1 Create a Shared Favorites Folder for All Network Users

A standard Windows 2000 or NT installation gives every user her own Favorites
folder. Since Internet Explorer and Microsoft Office both use this folder extensively,
you might find it useful to build a shared Favorites folder containing IE shortcuts or
Office documents you want to make available to all your users.

Building a shared Favorites folder is pretty easy. The first step is to build the folder
itself: on one of your file servers, share the directory you want to use as the shared
Favorites folder. It can be an existing directory, or you may create a new one. Be sure
to set appropriate share and NTFS permissions.

Next, on each machine you want to use the shared folder, you need to change the
value of HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell
Folders\Favorites from its existing setting to the path to the new folder. For example,
if your shared folder is on a machine named armageddon in a share named favorites,
your new Favorites value would read \\armageddon\favorites. You can make this
change as part of a group or system policy by adding a new policy template; you may
also put it in HKU\.DEFAULT so that newly created accounts inherit the setting.

You can also use this setting to specify a custom path for each user on a shared drive.
For instance, after creating user directories under a shared folder, the value of the
Favorites Registry setting for user1 might be \\armageddon\users\user1\favorites.

10.5.2 Automatically Use Dial-Up Networking to Log On

You can configure Windows 2000 and NT 4.0 to use DUN to log onto your selected
domain by default. Normally, when you have DUN installed and active you see a
checkbox in the logon dialog that allows you to use DUN to establish a connection to
your network for logon; setting this value selects the checkbox by default. You might
do this on a laptop or other computer that can connect to your LAN only via DUN.

To make this change, add a new REG_SZ value named RasForce to
HKLM\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon and set its
value to 1. After you reboot, the "Logon using Dial-up networking" checkbox is
automatically selected. Windows 2000 changed the functionality of this value slightly,
allowing the user to manually clear or select this checkbox, regardless of the RasForce
setting. Under NT, adding this value and setting it to 1 permanently selects the
checkbox, and you can't deselect it. This means that if your NT machine can't access
your remote network, you can't log on. (As a workaround, you can restore from an
ERD or edit the Registry using RegEdt32 's network connection function.)

10.5.3 Enable the WINS Proxy Agent

NT machines can act as Windows Internet Name Service (WINS) proxies; these
proxies answer name-resolution requests from machines (such as Macintoshes or
Unix machines) that don't speak the WINS protocol. In NT 4.0, the only way to
enable this proxy mode is via a Registry change (in earlier versions, there was a
checkbox in the TCP/IP control panel).

To turn a machine into a WINS proxy, add a new REG_DWORD value,
HKLM\System\CurrentControlSet\Services\Netbt\Parameters\EnableProxy, and give
it a value of 1. This enables the target machine to route WINS resolution requests to
an available WINS server.

10.5.4 Set the Number of Rings for Answering Incoming Dial-Up
Networking Calls

If you're using a TAPI or Unimodem-based device to answer incoming DUN calls,
you may have noticed that the standard method of adjusting the modem.inf file to
control how many times incoming calls may ring before the modem answers them

doesn't work. This is by design, but it's not well-documented. The solution is to add a
new Registry value to indicate the number of rings you want to allow. Add
HKLM\CurrentControlSet\Services\RasMan\Parameters\NumberOfRings as a
REG_DWORD, then set its value to the number of rings you want to use (between 1
and 20). Once you reboot your computer, DUN answers only after the specified
number of rings have occurred. Note that if you're not using a TAPI/Unimodem
modem, this value is completely ignored.

10.5.5 Turn On Logging for Dial-Up Networking

You can enable logging for Dial-Up Networking connections by changing the value
of HKLM\System\CurrentControlSet\Services\RasMan\Parameters\Logging from its
default of to 1. When you do, DUN logs details of the initial connection in
%systemroot%\system32\ras\device.log; this log reveals what data DUN sends to the
remote device and what responses come back. This log is invaluable when you're
trying to troubleshoot DUN connections that fail at initial establishment.

10.5.6 Keep a Dial-Up Networking Connection up After You Log Out

Windows 2000 and NT 4.0 automatically terminate DUN connections when you log
off. This is a sensible feature (even though it's a change from previous versions), since
it keeps you from inadvertently running up big connection or long-distance bills
during a time when you're not even logged on to your machine. However, there may
be times when you want the connection to stay up even when no one's logged on. For
example, keeping the connection open when no one's logged on enables the DUN-
connected machine to share files and printers with other network users.

To keep DUN connections active even when the user who started them has logged
out, add HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\KeepRasConnections as REG_SZ. Set it to 1, and
connections will stay connected when users log out; set it back to to enable the
standard behavior of automatically disconnecting DUN.

10.5.7 Set the Dial-Up Networking Automatic Disconnect Timer

You can set the deadman timer that causes DUN connections to hang up after a
certain period of inactivity. The default value for Windows 2000 is 0, which instructs
the system to never automatically hang up. NT 4.0, on the other hand, hangs up idle
connections after 20 minutes by default. You may change this value in the Windows
2000 Registry to any period between 1 and 0xFFFFFFFF seconds (or between 1 and
1000 minutes for NT)--enough of a range for any scenario. To effect this change, edit
the REG_DWORD value named
HKLM\System\CurrentControlSet\Services\RemoteAccess\Parameters\AutoDisconne
ct and set it to the number of idle seconds you're willing to tolerate before hanging up
the connection. Remember that you can also set AutoDisconnect to zero, which
causes the connection to always stay up until manually disconnected.

10.6 Printing Tweaks

The paperless office is not yet upon us and may never be. Until it finally arrives, you
need to keep printing things, and if you're using Windows 2000 or NT 4.0 you can
improve your printing experience with some minor Registry changes.

10.6.1 Keep the Print Spool Service from Popping Up Dialogs

The print spooler has an annoying "feature" that causes it to display a notification
telling you when a print job has been completed. I was delighted to find that you can
stop it from doing so by adding a new REG_DWORD named NetPopup to
HKLM\SYSTEM\CurrentControlSet\Control\Print\Providers. Give it a value of to
suppress the alerts or 1 to re-enable them. After making this change, you need to
reboot, but you'll be free of print status messages forevermore.

10.6.2 Change the Print Spool Directory

Windows 2000 and NT defaults to putting its print spool directories on the system
disk. If you have a small number of print jobs, or a large disk, this may work fine; for
disk space or performance reasons, though, it may make more sense to move your
print spool directories to another volume. For example, networks that include high-
resolution color printers such as the Epson Stylus 1520 (which print 11"x 17" pages in
24-bit color: each page takes several tens of megabytes of spool space!) can quickly
overwhelm the free space on a typical Windows 2000 or NT system disk. Although
Windows 2000 supplies a mechanism for modifying print server properties (from the
printer folder, File Server Properties; the Advanced tab holds the spool folder
location), NT provides no user interface for changing the spool locations; fortunately,
you're probably comfortable enough with the Registry so that you don't need a user
interface!

If you want to change the spool directory for a single printer on an NT 4.0 system,
you need to add a new value to
HKLM\SYSTEM\CurrentControlSet\Control\Print\Printers\<PrinterName>, where
PrinterName is the name you gave the printer when you created its spooler entry.
Name the new value SpoolDirectory, and make it a REG_SZ. For this item's value,
supply the full local path to the spool directory. The spool directory can't be a UNC
path, and it must exist. Under Windows 2000, that Registry path is used as a backup
for printer entries under HKLM\SOFTWARE. To change the spool directory for a
printer on a Windows 2000 print server, add a new REG_SZ value SpoolDirectory to
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Print\Printers\<PrinterName>. Supply it with the full local path
to the spool directory.

If you want to change the default spool used for any printer that doesn't specify its
own spool directory, you should add a REG_SZ value named
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Print\Printers\DefaultSpoolDirectory for Windows 2000, or
HKLM\SYSTEM\CurrentControlSet\Control\Print\Printers\DefaultSpoolDirectory
for NT. As with SpoolDirectory, the path you specify here must be a fully qualified
local path, and it must exist before you make the change.

If you add either of these values, you need to stop and restart the Spooler service. To
avoid losing any queued print jobs, it's best to make these changes only when your
print queues are empty; that keeps users from having to resubmit their jobs to get
them into the new spool directory.

10.6.3 Stop Print Job Logging in Event Log

Normally Windows 2000 and NT logs every print job processed by a server in that
machine's application event log. Since for the most part these logs fall into the
category of "data no one will ever look at," you can configure the spooler service to
not make these log entries in the first place.

To suppress print job event log entries for errors, warnings, and other information,
add a new REG_DWORD value named
HKLM\SYSTEM\CurrentControlSet\Control\Print\Providers\EventLog and give it a
value of 0. As with all the other printing tweaks, this change won't take effect until
you stop and restart the Spooler service.

Chapter 11. The Registry Documented

Documenting the Registry is like building a cathedral in the Middle Ages: it's a task
that spans generations,[1] with many collaborators each doing a small piece of the
work. Powerful forces come to bear; some help the work, while others hinder it. In the
end, the result is overwhelming: massive, imposing, yet open to all comers. (One
major difference: cathedrals are spiritually uplifting. Try as I might, I just can't get
that same feeling from the Registry. If you do, drop me a note.)

[1] Generations of operating systems, anyway.

11.1 What's Here and What's Not

Because the Registry is so dynamic, there's no possible way to capture the meaning of
every key in a single document. As I write this, Microsoft is preparing to release a
host of new Windows 2000-based products, each of which will have its own set of
Registry keys and values. Quite apart from the proliferation of key is the problem of
what configuration a particular machine has. What software's on it? Which service
pack? Is it part of a network? Does it run any server products?

As if Microsoft products alone weren't enough of a problem, there's an ongoing flood
of third-party products running on Win32--web servers, Usenet news servers, CAD
tools, office applications--and they all have their own keys.

So, the first confession I have to make is that this chapter is incomplete. By design, it
doesn't include information about keys that aren't part of either the core Windows
2000 or NT 4.x operating systems: no BackOffice components, no Netscape servers,
no nothing. Instead, it covers only the most interesting keys found in ordinary
networked installations of Windows 2000 Server and NT Server 4.0.

The good news is that the pages you're looking at now represent a small subset of
what's documented about the Registry. Because of space and time limitations, I had to
choose the most important keys and document them here.

This chapter, then, is like a traveler's foreign-language phrase book. It doesn't teach
you every word of the language, but it does teach you the most important words and
phrases. (I wonder what the Registry equivalent of "Where is the bathroom?" would
be?)

11.2 HKLM\HARDWARE

HKLM\HARDWARE is the odd man out in the Registry for two reasons. First of all,
all its keys are volatile, meaning they're never stored on disk. This is because when
Windows 2000 or NT 4.0 boots, they can interrogate the system to find out what
hardware's present, but they need to keep track of that information before any device
drivers have actually been loaded. Since there's no requirement that Registry hives
actually be stored in a hive file[2] (instead of in RAM), loading HARDWARE into
RAM as a volatile hive makes it accessible to boot-time components and the driver
loading phase. Because its contents are volatile, changes you make to this hive won't
be stored on disk.

[2] There may as well be such a rule, though; HARDWARE 's the only volatile hive.

The second odd thing about this subkey is that almost all its values are stored as
REG_BINARY values. This makes it difficult to edit values in this tree. That's
actually a good thing, because doing so can suddenly render your machine inoperable.
Since the system creates this tree from scratch each time it boots, there won't be any
permanent damage, but you should still treat this tree as read-only.

11.2.1 HARDWARE\DESCRIPTION

The DESCRIPTION subkey stores data to represent what actual physical hardware is
present when the system first starts up. This list may have items on it that don't appear
in the DEVICEMAP or RESOURCEMAP subkeys; for example, a SCSI adapter that
fails to initialize will be in DESCRIPTION but may not appear in either of the others.

The data in DESCRIPTION comes from the hardware recognizer. On x86 machines,
this task is handled by ntdetect.com. The recognizer gathers data about the
configuration of the system's buses, serial, parallel, mouse, and keyboard ports, SCSI
and video adapters, and floppy drives. Notice that network adapters, PCMCIA cards,
and external devices like printers aren't included on this list; they're not automatically
detected in Windows 2000 and NT 4.0.

Each bus controller (ISA, PCI, EISA, etc.) gets its own subkey under Multi-
functionAdapter ; in turn, each of these keys has subkeys for each device found on
that bus. For example,
HARDWARE\DESCRIPTION\System\MultifunctionAdapter\3\DiskController\0
points to the first disk controller on my desktop machine's motherboard bus. If I had a
secondary controller, it appears as DiskController\1.

Any device in the DESCRIPTION tree may optionally have values named
ComponentInformation and ConfigurationData. These values, both of which are of
type REG_BINARY, store information about the device; the exact contents vary by
device type, and frankly I don't know the details.

11.2.2 HARDWARE\DEVICEMAP

DEVICEMAP links devices in the DESCRIPTION subtree with device drivers in
HKLM\SYSTEM\ControlSetX\Services. Each device that requires a driver has an
entry that points to a driver in one of the control sets. During the two driver start
phases, the kernel can consult entries in DEVICEMAP to find the matching entry in
the Services subkey; that data specifies what driver should be loaded, what phase it
should be loaded in, and what configuration data it requires. (See Section 11.4.2 later
in this chapter for details on the Services subkey.)

11.2.3 HARDWARE\RESOURCEMAP

DEVICEMAP ties hardware entries to device drivers; RESOURCEMAP ties those
same device drivers to physical machine resources such as DMA address ranges and
IRQs. Since there is a finite number of these hardware resources, and since conflicts

between multiple devices can render them all inoperable, this subkey is an important
part of the Windows 2000/NT load phase.

Each class of device has its own subkey under RESOURCEMAP ; for example,
RESOURCEMAP\ScsiAdapter is the device class key for (you guessed it) SCSI
adapters. Every device in that class gets its own subkey under its class key. That
means that a machine with two SCSI adapters has two entries, the names of which
correspond to the device driver names in the Services subkey.

The contents of RESOURCEMAP come from the device drivers themselves. When a
device driver starts, it claims whatever resources it needs for its hardware device and
updates its entry in RESOURCEMAP to indicate what it used.

11.3 HKLM\SOFTWARE

HKLM\SOFTWARE is the motherlode of software configuration information. Any
configuration data an application or system component needs can be stored here;
settings specific to an individual user belong in that user's HKU\SOFTWARE key.
For example, the SOFTWARE\Microsoft\Windows NT CurrentVersion\Winlogon
key stores settings that apply to the winlogon program. These settings apply to all
users on the machine, so they belong under HKLM. On the other hand, an individual
user's choices for which tools to use to view certain types of web content properly
belong to that user, so they should go under HKCU (e.g., Software\Netscape\Netscape
Navigator\Viewers).

11.3.1 SOFTWARE\Classes\CLSID

This key is the root under which all the machinewide class definitions are registered.
In NT, the HKCR root key displays data from this subkey alone. In Windows 2000,
classes may also be registered under HKCU\Software\Classes, providing for class
registration on a per-user bases. See Section 11.6.3 for details on the format of this
key's subkeys and values.

11.3.2 SOFTWARE\Microsoft

This key is the root location for parameters and settings for all Microsoft products
installed on a machine. As you might expect, such a key covers a multitude of sins.

11.3.2.1 Microsoft\ActiveSetup

ActiveSetup is Microsoft's name for its "new and improved" setup system.
ActiveSetup records which components have been installed on a machine in the
Installed Components subkey. Each installed component has its own class ID subkey
under Installed Components where it can store its own settings; for example, Internet
Explorer's data is located at HKLM\SOFTWARE\Microsoft\Active Setup\Installed
Components\{89820200-ECBD-11cf-8B85-00AA005B4383}.

11.3.2.2 Microsoft\Cryptography

NT 4.0 introduced Microsoft's Cryptographic Application Programming Interface,
better known as CryptoAPI. CryptoAPI provides OS-level services for signing,
verifying, and encrypting data, as well as for using digital certificates for access
control and authentication. Complete documentation for CryptoAPI is available online
at http://www.microsoft.com/msdn.

The following subkeys are used for certificate storage in NT 4.0:

CertificateStore

This subkey contains the store of X.509 certificates currently loaded onto a
particular machine. As new certificates arrive, CryptoAPI applications can
read and verify them, then store them here if desired.

CertificateStore\CertificateAuxiliaryInfo

Each stored certificate can have arbitrary data associated with it. Microsoft
calls this data tags; applications may add tags to certificates, but don't have to.
This subkey is usually empty.

CertificateStore\Certificates

The default value of this subkey contains the number of certificates as a
REG_SZ, plus one named value for each certificate. For example, if three
certificates are present, they are stored in values named "1," "2," and "3," and
the default value contains "3." Each certificate's value contents consist of a
binary chunk of data that actually contains the certificate itself.

In Windows 2000, certificates are stored and managed through the use of the MMC
Certificates snap-in. There are a number of subkeys throughout the Registry that store
certificates, and they're certainly not limited to the HKLM root key. Indeed, HKCU
contains subkeys that hold certificates for users, while certificates are also found in
HKU\Default. And yes, the HKLM root key contains certificate stores, such as
HKLM\Software\Microsoft\EnterpriseCertificates and
HKLM\Software\Microsoft\Cryptography\Services\PolicyAgent\SystemCertificates.

In general, the certificate storage structure in the Windows 2000 Registry begin with a
subkey such as SystemCertificates or EnterpriseCertificates. Beneath this subkey
appears a list subkeys that correspond to a certificate type. Here are the four most
prevalent:

CA

This subkey contains X.509 certificates, certificate revocation lists, and
certificate trust lists for Certificate Authorities. CAs issue certificates to
individual users and services.

My

Individual certificates are stored here.

Root

Certificates, certificate revocation lists, and certificate trust lists associated
with root authorities (that is, authorities at the top of the certificate trust chain)
are found under this subkey.

Trust

This subkey contains certificates, revocation lists, and trust lists that help
determine trust.

Beneath these certificate types are three subkeys, namely Certificates, CRLs
(certificate revocation lists), and CTLs (certificate trust lists). The values beneath
these subkeys contain binary data, forming lists of certificates, revocation lists and
trust lists, respectively.

11.3.2.3 Microsoft\ NtBackup

The bundled Windows NT backup tool stores its settings here. Interestingly, this key
is remapped by HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\IniFileMapping\Ntbackup.ini, meaning that the backup program
(bless its ancient little heart) thinks it's using an INI file to store its settings in.

11.3.2.4 Microsoft\RAS

The Dial-Up Networking service was originally known as RAS. Sometimes Microsoft
calls it RAS, sometimes DUN; in this case, its Registry settings all have "RAS" in the
name somewhere. The values in this key control the Remote Access Service, which
clients can use to dial into a Windows 2000 or NT machine.

CurrentVersion

This subkey looks very much like the CurrentVersion\Network Cards keys
you'll meet in the section by the same name. That's not surprising, since RAS
is really just a virtual NIC. CurrentVersion's values specify the setup info file
name (Infname), major and minor software versions, and the path where RAS
parts are stored (PathName). In addition, the CurrentVersion\NetRules subkey
specifies the rest of the information gathered when RAS was first installed.

Protocols

This subkey contains a set of REG_DWORD flags that govern which
protocols are selected and which may be used. For example, the f
TcpIpSelected and f TcpIpAllowed flags indicate whether the server supports
TCP/IP RAS connections or not.

Each installed RAS protocol has its own subkey; for example, TCP/IP-specific
settings are stored in Microsoft\RAS\Protocols\IP. These subkeys contain
values and flags specific to the protocol.

TAPI DEVICES

This subkey holds a list of any Telephony API (TAPI)-compliant devices
known to the RAS service, including any Unimodem devices.

11.3.3 SOFTWARE\Microsoft\Windows NT

This subkey contains configuration settings specific to Windows 2000 (on Windows
2000 machines) or NT (on NT machines); this key doesn't include settings for the
shell or Explorer. The CurrentVersion subkey contains a number of interesting pieces
of data, as well as some subkeys that merit their own mentions:

RegisteredOwner and RegisteredOrganization

These REG_SZ values store whatever values you entered into the name and
company fields of the system's installation dialogs. You can freely change
them if need be.

CurrentVersion and CurrentBuildNumber

Together these two REG_SZ values identify what core version of Windows
2000/NT you're running. A stock Windows 2000 installation has a version of
"5.0" and a build number of "2195"; later versions will obviously have
different values.

SystemRoot

This value points to the system directory. If you ever need to migrate your
Windows 2000 or NT installation to a different volume, be sure to update this
as part of the process.

SourcePath

This REG_SZ points to the source from which the operating system was
originally installed. For example, on my machine this value contains a path to
the CD-ROM, "G:\i386".

ProductId

This string holds the Microsoft "product ID," which is nothing more than a
magic number combined with your CD key. A typical product ID looks like
"64366-492-0966186-35833".

CSDVersion

This value indicates what service pack, if any, is installed. The boot loader
uses this (along with CurrentVersion and CurrentBuildNumber) to display the
blue-screen boot-time message that tells you what you're booting.

11.3.3.1 CurrentVersion\ AeDebug

This subkey tells the system what debugging application to use (if any) when a
program crashes.

Debugger

The program to run when an application crashes. The value may include the
full path and any arguments (for example, the default debugger, Dr. Watson,
appears as drwtsn32 -p %ld -e %ld -g).

Auto

REG_SZ specifying whether the debugger should just be run ("1") or whether
the user should be prompted to choose between starting the debugger and
killing off the errant app ("0", the default).

UserDebuggerHotKey

REG_DWORD that, when set, specifies a key code that instantly starts the
debugger when pressed. Leave this alone.

11.3.3.2 Multimedia driver stuff

The installed list of multimedia device drivers is stored in three subkeys of
CurrentVersion: Drivers32, drivers.desc (or DriverDesc), and DriverList. They're
pretty self-explanatory; each device class has a mapping that specifies what DLL
handles its requests and what its human-readable name is.

11.3.3.3 CurrentVersion\Network Cards

This subkey contains one entry for each installed network adapter card or wrapper.
For example, a machine with one network card and Dial-Up Networking installed has
two entries: one for the NIC and one for DUN. The first entry is stored in a subkey
named "1" (or CurrentVersion\Network Cards\1 if you prefer), and subsequent cards
count up from there. These keys each have several values, but the most important
ones are ServiceName (which specifies which driver runs the card) and Title (which
determines the name that appears in the Network control panel).

Each network adapter subkey can in turn have a subkey named NetRules. This key
contains values that specify what kind of adapter it is (type), what setup information
file was used to install it (InfName), and what kind of device it actually is (class and
block).

11.3.3.4 CurrentVersion\ ProfileList

The list of cached profiles on a particular machine lives here. Each profile has a
subkey whose name is its SID ; these subkeys contain a path that points to the actual
hive containing the profile (ProfileImagePath), some flags that the system uses to
control profile loading (Flags and State), and a second copy of the SID that owns the
profile (Sid).

11.3.3.5 CurrentVersion\ Shutdown

There are two interesting values stored under this key: LogoffSetting and
ShutdownSetting. Both are DWORD values that may range from 0-3. They control
what button is selected by default in the Logoff and Shutdown dialogs; you can preset
the choice you want to use as a default by adjusting their contents. Table 11.1 lists the
available values.

Table 11.1. CurrentVersion\Shutdown Controls the Default Logoff
and Shutdown Buttons

Value What It Means
0 Make the "Logoff" button the default

1 Make the "Shutdown" button the default
2 Make the "Shutdown and Restart" button the default

3
Make the "Shutdown and Power Off" button the default; ignored unless the computer has
power-management support

11.3.3.6 CurrentVersion\Winlogon

The Winlogon service provides a graphical interface that allows you to log onto or off
of the console of a Windows 2000 or NT computer. The values under the Winlogon
subkey let you change some aspects of how the logon process works.

Most of these values are here for you to customize. The Group
Policy snap-in for Windows 2000 machines and the System
Policy Editor for Windows NT machines provide an easy way to
set these values to meet your needs, even for many computers.
See Chapter 6, and Chapter 7 for details.

AutoAdminLogon

Signals whether the computer should automatically log on with a stored
account name and password. When this REG_SZ is set to 1, the values of
DefaultUserName, DefaultDomainName, and DefaultPassword are used to
attempt a logon. This value must be manually added.

AutoRestartShell

REG_DWORD that controls whether Explorer (or whatever other shell
program's specified) should be restarted if it crashes. The default, 0x01, means
yes.

DebugServerCommand

Microsoft describes this as a command used for internal debugging of
Winlogon at Microsoft. Its default value is "no"; I have no idea what other
values might mean. If you know, please tell me.

DefaultDomainName

Winlogon stores the name of the domain (or machine) that hosted the last
successful logon here.

DefaultPassword

When AutoAdminLogon is set to 1, this password (which must be the
password for the account given in DefaultUserName) is used in the logon
attempt.

DefaultUserName

Winlogon stores the name of the last account that successfully logged on in
this value. You may change it and set the AutoAdminLogon value to force an
automatic logon to a particular account.

DeleteRoamingCache

When this REG_DWORD value is set to 1, cached copies of roaming profiles
are deleted when each user logs off. You must add this value manually.

DontDisplayLastUserName

Windows 2000/NT normally displays the name of the last account to log on in
the Welcome dialog. Set this REG_SZ value to 1 to keep this space blank, or
(the default) to allow the last account to be displayed.

LegalNoticeCaption

Windows 2000/NT can display a warning dialog immediately after the logon
dialog is dismissed; this makes it possible for you to display a warning
message, as recommended by the Computer Emergency Response Team, to
warn intruders that they are in fact intruding. The system uses the REG_SZ
value you put in LegalNoticeCaption to title the warning dialog. By default in
Windows 2000 and NT 4.0, this value exists but is empty.

LegalNoticeText

The warning text displayed in the post-logon warning dialog comes from the
LegalNoticeText value, which is also blank by default.

ParseAutoexec

REG_SZ that specifies whether autoexec.bat should be parsed at logon time or
not. If the value is set to 1, autoexec.bat is parsed when you log on, and the
autoexec.bat path statement is appended to the system path.

PowerdownAfterShutdown

REG_SZ that controls whether the system attempts to power down the
computer when it's shut down. means no; 1 means yes. This value has no
effect on machines without power-management support.

ProfileDlgTimeOut

If a user logs in but can't get a copy of his current logon profile, the system
displays a dialog asking what the user wants done to fix the problem. This
REG_DWORD value sets the timeout (in seconds, from 0-0xFFFFFFFF in
Windows 2000; 0-600 in NT) after which any user profile dialog boxes are
automatically dismissed.

ReportBootOk

When Windows 2000 or NT boots, it saves the boot configuration as the "last
known good" control set. Ordinarily, this REG_SZ is set to 1, which tells the
system to update the control set automatically when booting finishes. If this
REG_SZ value is set to 0, the system won't automatically update the last
known good set. Another program, such as Bootok.exe or Bootvrfy.exe must be
used. This value must be "0" if you supply alternate values in the
BootVerification or BootVerificationProgram keys.

RunLogonScriptSync

Specifies whether logon scripts should be run synchronously (so the desktop
doesn't appear until the script completes) or asynchronously (so the script runs
while the desktop is being activated). This is a REG_SZ; set it to 1 to force the
script to run synchronously.

Shell

This value tells Windows 2000/NT what program to run as the system shell.
By default, explorer.exe is the preferred shell. Setting up a Zero-
Administration Windows (ZAW) workstation usually sets the preferred share
to iexplore.exe. You may change it manually, but doing so may have
unpredictable results.

ShutdownWithoutLogon

As an administrator, you may choose whether or not to allow users to shut
down their workstations or servers without being logged in. A REG_SZ value
of 1 in this value adds or enables a Shutdown button to the standard logon
dialog, while a value of removes or disables it. By default, this button is on for
Windows 2000 Professional and NTW 4.0, and off for Windows 2000 Server
and NTS 4.0.

SlowLinkDetectEnabled

When set to on (the default), Winlogon automatically detects slow network
connections and flags them as such. When off, no such detection occurs.

SlowLinkTimeOut

This REG_DWORD sets the timeout value, in milliseconds, after which a link
is marked slow when SlowLinkDetectEnabled is on.

System

This value specifies which programs are trusted to run in the system context.
Changing it may open a security hole, since untrusted programs can run with
high privileges. The default is lsass.exe; don't change it. In NT 4.0 pre-SP3,
the default also includes spoolss.exe.

Taskman

Specifies the path to an executable to be used for the system task manager. On
Windows 2000 machines, this value is taskmgr.exe by default.

Userinit

This value specifies which programs should be started automatically when a
user successfully logs on. The default value in Windows 2000 is userinit,
which specifies that the shell named in Shell should be run. In Windows NT,
nddeagnt.exe is also added as a default. This then starts the NetDDE service
process.

VmApplet

This value determines which program should be run to adjust the virtual
memory configuration. The default contents of this value are rundll32 shell32,
Control_RunDLL, "sysdm.cpl".

11.4 HKLM\SYSTEM

HKLM\SYSTEM is where Windows 2000 and NT keeps their crown jewels: the
configuration settings that boot the current incarnation of the machine, as well as a
number of ancillary settings that govern pretty much everything the OS and kernel
services do.

There are four subkeys of interest directly beneath HKLM\SYSTEM:

Disk

This subkey stores information about the physical and logical disk volumes on
your machine. When you run the Disk Administrator utility for the first time,
this key is created; subsequent runs of Disk Administrator update the key's
data, which is then keeps track of how your disks are configured.

MountedDevices

This Windows 2000 subkey replaces the Disk subkey used in NT 4.0. It's used
by the NTFS filesystem to link volume names with the internal identifiers of
the volumes, which are usually comprised of a volume's disk signature.

Select

Ever wonder how a Windows 2000/NT system keeps track of which control
set is the "last known good" set? Here's the answer! Each of the four values is
a REG_DWORD that contains the ordinal index of a ControlSetXXX entry
under HKLM\SYSTEM:

Current

Contains the ID of the control set currently in use; this set is the one linked to
HKLM\SYSTEM\CurrentControlSet.

Default

Contains the ID of the control set that boots the machine next time, unless you
manually intervene during the boot process.

LastKnownGood

Contains the ID of the "last known good" set; this ID changes only when a
boot fails.

Failed

Contains the ID of the control set in force the last time a boot failed.

Setup

This key holds settings that the Windows 2000/NT setup installer uses to
figure out which installation phases have been completed and where the
installation is currently.

Experimenting with the Setup key may bring you a visit from the
Blue Screen of Death with a SYSTEM_LICENSE_VIOLATION
fault code.

SetupType

Indicates whether the setup program is running in GUI mode, in text mode, or
not at all.

SystemSetupInProgress

This REG_DWORD is 1 if the system is in the middle of a setup, and
otherwise. The system uses this value to figure out what to do after a reboot;
that's how it knows what to do when you reboot partway through setup.

SystemPartition

Contains the ARC path (e.g., \Device\HarddiskVolume1) to the system
partition.

OsLoaderPath

Points to the path (relative to SystemPartition) where the Windows 2000/NT
boot loader lives. On x86 machines, this is usually "\", but on Alpha machines,
it may point elsewhere.

NetcardDlls

This REG_MULTI_SZ stores the names of the DLLs needed for the network
cards detected in the final phase of the system's setup operation.

11.4.1 SYSTEM\CurrentControlSet\Hardware Profiles

Hardware profiles let you establish multiple "personalities" for a single machine that
may have different configurations. For example, my desktop box has a BusLogic
SCSI card that runs the boot disk and some additional external hardware. I
occasionally need to add a second SCSI controller. If I left the second card's driver
permanently installed, it would fail to start at boot time, and the system would
complain about a driver failure. Instead, I create a new hardware profile and enable
the card driver for that profile only.

By default, CurrentControlSet\Hardware Profiles has two subkeys: 0001 (the first
profile on the machine) and CurrentProfile, which links to one of the available
profiles. When you add a new hardware profile for Windows 2000 in the System
control panel's Hardware tab (Hardware Profiles tab, for NT), the system creates a
new subkey of Hardware Profiles for you. You can then customize the profile with the
System control panel or the Devices and Services control panels.[3]

[3] For lots more on hardware profiles, see O'Reilly's Windows NT in a Nutshell.

The actual contents of the hardware profile keys are pretty sparse: they consist of
small subtrees of HKLM\SOFTWARE and HKLM\SYSTEM\CurrentControlSet. The
profiles include only flags that have been changed from the base hardware profile; for
example, the only difference in my one-SCSI and two-SCSI profiles is that the one-
SCSI profile has an entry for the second card's driver that tells the driver it's disabled.

11.4.2 SYSTEM\CurrentControlSet\Control

This key's named Control for a good reason: its subkeys and values control much of
the kernel's functionality.

11.4.2.1 Control\BackupRestore

This Windows 2000 subkey contains values that specify to the system which files
Backup should not back up and which keys Backup should not restore. These values
are separated into two subkeys, namely, FilesNotToBackup and
HKLKeysNotToRestore.

11.4.2.2 Control\BootVerificationProgram

The BootVerificationProgram specifies a program that is run by the Windows
2000/NT service loader at boot time. Its job is to judge whether a boot was successful
or not; if not, the machine can be rebooted using the last known good control set
instead. Additionally, this program can call Bootok.exe, a Windows 2000 executable,
which informs the operating system the boot was successful.

The only value under this key is ImagePath, which you use to specify the full path to
the boot verification program you want to run.

11.4.2.3 Control\Class

The Control\Class key lists instances of devices such as mice, SCSI controllers, and
sound cards. Each class of device has a subkey, named with the CLSID class
identifier. These CLSID keys may have subkeys; for example, the modem key (whose
CLSID is the unpronounceable "{4D36E96D-E325-11CE-BFC1-08002BE-10318}")
has one subkey for each installed modem, and each of these subkeys in turn has its
own parameters stored as subkeys and values.

11.4.2.4 Control\CrashControl

Much as Microsoft would like to pretend otherwise, Windows 2000 and NT machines
crash just like any other kind. What happens when a crash occurs depends on the
values set in the CrashControl key. You normally adjust these values on the Startup
and Recovery dialog through the Advanced tab (Startup/Shutdown tab on NT
machines) of the System control panel, but setting them directly in the Registry (or
via a policy editor) gives you an easy way to control what happens during a crash.

LogEvent

When this REG_DWORD is set to 1, a crash generates an entry in the system
event log. When it's 0, as it is by default on Windows 2000 Professional and
NT machines, no event log entry is created.

SendAlert

This REG_DWORD causes an administrative alert message to be broadcast
when it's set to 1; its default value is 0.

CrashDumpEnabled

Windows 2000 and NT systems may or may not generate their equivalent of a
core file when a crash occurs. You decide which it is by setting this
REG_DWORD to (don't generate a dump file) or 1 (do generate one). These
files can be loaded by a variety of postmortem debuggers you can use to
isolate the cause of a particular or persistent crash. The default is on Windows
2000 Professional and NT machines, and 1 on Windows 2000 Servers.

AutoReboot

You can have a crashed machine reboot itself automatically by changing this
REG_DWORD value from its default of to 1.

DumpFile

This REG_EXPAND_SZ specifies where the crash dump should go. By
default, it ends up in the system directory with a name of memory.dmp.

Overwrite

When this REG_DWORD is 1, the crash dump file is overwritten when a new
crash occurs; when it's 0, the dump file is preserved, and a new one created.

KernelDumpOnly

This REG_DWORD specifies whether the entire contents of system memory
are dumped (value of 0) or only that portion of memory that is used by the
operating system kernel (value of 1). By default, the entire contents of
memory are copied to the dump file.

NMICrashDump

This value specifies whether a nonmaskable interrupt (NMI), caused by a
hardware error, triggers software error processing. When this REG_DWORD
value is 0, as it is by default, only a hardware malfunction message appears.
When set to 1, standard software error processing follows the hardware
message.

11.4.2.5 Control\Enum

Subkeys of this key contain information about every driver, device, or service that
might potentially be attached to the machine. For example, Control\Enum contains
entries for the ATAPI driver even on machines with no ATAPI interface. These keys
are used by the system to map devices and services with their drivers and
configuration data.

11.4.2.6 Control\FileSystem

These values control the Windows 2000/NT filesystem's naming behavior. The
filesystem itself is self-tuning and doesn't store any parameters out in the open where
they can be tweaked, so you'll have to content yourself with these.

Win31FileSystem

If you set this REG_DWORD to 1, any FAT volumes suddenly start acting
like old-style Win3.x volumes: neither long filenames nor access/modification
times are created or updated. By default, this option is off, but you may need
to turn it on if you're using Win3.x or DOS applications that can't handle even
a hint of long filenames.

NtfsDisable8dot3NameCreation

By default (i.e., when this value's set to 0), NTFS creates 8.3 names for long
filenames. This slows things down. Set this value to 1 to prevent NTFS from
creating 8.3 names; this means that DOS applications and computers using
different languages from yours may not be able to access files on an NTFS
share.

NtfsDisableLastAccessUpdate

NTFS keeps track of when each file and directory was last accessed. This
time-stamp is even updated when you get a directory listing or otherwise
traverse a directory; as you might expect, this imposes a performance penalty.
Set this REG_DWORD to 1 to turn the last-access timestamp off or to (the
default) to turn it on.

NtfsAllowExtendedCharacterIn8dot3Name

This DWORD controls whether characters outside the standard printable
ASCII set (including characters from languages other than the system
language) may be used in 8.3 names on NTFS volumes. If the value is (the
default), 8.3 names can contain only legal ASCII characters; if it's 1, any
nonreserved character may be used.

Win95TruncatedExtensions

Win95 honors only the first three characters of file extensions. By default, this
REG_DWORD is set to 0, which forces Windows 2000 and NT to truncate
extensions to the first three characters. Set it to 1 and reboot to take advantage
of full-length extensions on NTFS volumes.

NtfsEncryptionService

New to Windows 2000, NTFS provides confidentiality to files and directories
by way of encryption. This REG_SZ value determines which encryption
service NTFS should use to protect its files. Currently the default and only
allowable value is Efs, which specifies the encryption filesystem (EFS)
provided by Windows 2000. The presence or absence of this value in the
Windows 2000 Registry affects whether files and directories are encrypted or
decrypted. That determination can be made selectively through Windows
Explorer.

11.4.2.7 Control\Hivelist

This subkey holds the locations of the system's hive files. See Chapter 2, for a
discussion of hive files. It's important to leave these values alone; if you don't, you
can prevent the system from finding one or more necessary hive files, which will
probably render your machine unbootable.

11.4.2.8 Control\LSA

The Local Security Authority, or LSA, is the Windows 2000 and NT security
component charged with enforcing access controls on local objects. For the most part
it does an admirable job; however, there's one significant security problem this key
causes.

The Notification Packages value contains a list of DLLs that are notified any time a
user changes an account password. This is supposed to allow seamless
synchronization of NetWare and system passwords; the default value for this entry is
"FPNWCLNT," which is the name of the File and Print Services for NetWare DLL.
However, if you're not running the NetWare module, an attacker can load his own
FPNWCLNT.DLL and use it to steal passwords.

To guard against this, set the Registry ACL on this key to limit any nonadministrator
access. If you're not running the NetWare services, remove FPNWCLNT from this
value. If you are, set a file ACL on the FPNWCLNT.DLL file so it can't be removed or
replaced.

11.4.2.9 Control\Print

Control\ Print, rather unsurprisingly, contains configuration and settings data for the
Windows 2000 and NT printing subsystem. One handy feature of the Windows
2000/NT print mechanism is that it supports remote printer drivers, meaning that you
can install drivers for Win95, Win3.x, and various flavors of NT on a central server
and feed them to clients as needed. These drivers are registered in the Environments
subkey of this key; there are also some useful values directly beneath Control\Print:

MajorVersion and MinorVersion

These two REG_DWORD values specify the major and minor version of the
printer subsystem.

DisableServerThread

This value controls whether printer shares advertise themselves over the
network. You have to manually add this REG_DWORD value and set it to 1
to turn off the thread; if it doesn't exist, or if its value is 0, the thread remains
active.

SchedulerThreadPriority

This value raises or lowers the priority of the printer scheduling thread. It's a
REG_DWORD, and its default value of means "leave the thread at normal
priority." You can set this value to either 1 (which raises the thread's priority)
or 0xFFFFFFFF (which lowers it).

BeepEnabled

If you want notification when a remote print job fails, set this REG_DWORD
to 1, and your system will beep every 10 seconds when a remote print job

error occurs. The default value of prevents any unnerving beeping from
disturbing you while working.

NoRemotePrinterDrivers

You might find it desirable to tell NT not to serve remote drivers for some
devices. The default value of this REG_SZ is "Windows NT Fax Driver,"
meaning that particular driver won't ever be offered to remote clients.

11.4.2.10 Control\SecurePipeServers

This key allows you to restrict remote access to the Registry, which I strongly
recommend you do. See Section 9.3 in Chapter 9.

11.4.2.11 Control\Session Manager

The Session Manager key contains a group of private configuration parameters
Windows 2000 and NT use for internal housekeeping. Microsoft warns against editing
these values.

ObjectDirectories

This REG_MULTI_SZ names the object directories that the system creates at
boot time. Do not edit them at the risk of rendering your machine unbootable.

BootExecute

This REG_SZ value specifies the applications, services and commands run at
boot time. The Windows 2000 default value runs Autochk.exe. After a crash
it's set to run CHKDSK, and after you convert a FAT volume to NTFS it's set
to autocheck autoconv \DosDevices\x: /FS:NTFS.

ProcessorControl

This REG_DWORD value indicates whether the system has run a processor
check routine to determine if the processor supports advanced memory
management features. This value should not be modified or deleted.

RegisteredProcessors

This REG_DWORD controls how many processors the system attempts to
use. The default value is 4 on Windows 2000 Server machines and 2 on
machines running Windows 2000 Professional.

LicensedProcessors

This value specifies how many processors this version of the operating system
is licensed to handle. Editing it may cause a blue-screen crash with
SYSTEM_LICENSE_VIOLATION.

11.4.2.12 Control\Session Manager\ Memory Management

This key deserves its own section even though nearly all values are disabled by
default on Windows 2000 machines, and most NT machines won't ever even have this
subkey. One alleged advantage of NT over some Unix variants is that NT self-tunes
its virtual memory system for maximum performance. Part of this tuning is
calculating how big a pagefile to use and how much physical RAM to reserve as a sort
of rainy-day fund. The algorithm that actually performs the tuning takes into account
how much physical RAM your machine has. Article Q126402 in the Microsoft
knowledge base provides a complicated formula you can use to approximate what this
algorithm does.

A few of the values within the Memory Management subkey are present to override
the normally calculated system values. The PagedPoolSize and NonPagedPoolSize
values, if present, override the self-tuning mechanism; if their values are 0, the self-
tuning goes back into effect. The PagedPoolQuota and NonPagedPoolQuota values
also override system calculations. They hold the maximum space a process can
allocate in the paged pool and nonpaged pool, respectively. Again, a setting of allows
the system to calculate an optimum value. I strongly recommend leaving these values
alone unless you see a Knowledge Base article or other reliable suggestion to do
otherwise.

11.4.3 SYSTEM\CurrentControlSet\Services

Many Windows 2000 and NT components are implemented as services, which are
roughly equivalent to Unix daemons or NetWare NLMs--small faceless programs that
run in the background, even when no users are logged in. Services can be device
drivers, application servers, or any other kind of background task, and they can run in
the local system context or be bound to run under a particular account.

By convention, standard and optional Windows 2000 and NT's system services store
their parameters under the Services subkey of the current control set. Third-party
services may store their settings here, or they may choose to use
HKLM\SOFTWARE.

All the services whose settings live in SYSTEM\CurrentControlSet\Services have
some combination of the following values attached to them:

DependOnGroup

This REG_MULTI_SZ names all the prerequisite groups for this service. For
example, a SCSI PC Card reader might name "SCSIMiniport" here to indicate
that its service shouldn't be started until at least one service in the
"SCSIMiniport" group has been successfully started.

DependOnService

Like DependOnGroup, this REG_MULTI_SZ contains a list of prerequisites
for a service; the difference is that this value contains names of services that
must be started first, not entire groups.

ImagePath

This REG_EXPAND_SZ specifies where the actual executable for this service
is located. Device drivers usually don't have this value, but standalone services
such as the DHCP, DNS, and WINS servers usually do.

PlugPlayServiceType

I don't know what this does.

DisplayName

Some services include a "friendly" name suitable for display in the Services
control panel. Those that do store it here as a REG_SZ.

ObjectName

Background services may be run under a particular account. By default,
services always run as LocalSystem ; some services (like the printer spooler,
scheduler, and Services for Macintosh package) are usually run under their
own account. ObjectName stores the name of the account under which the
service is run, if any. For kernel drivers, this value specifies which kernel
object is used to load the driver.

Type

This REG_DWORD specifies the kind of service or driver this is; it must
always be one of the values in Table 11.2. At boot time, the system loads
drivers according to their type: kernel-mode drivers first, then filesystem
drivers, and on down the list.

Table 11.2. The Type Value Specifies the Service Type
Value What It Means

0x01 This item is a kernel-mode device driver.
0x02 This item is a kernel-mode device driver that implements filesystem services.
0x04 This item is a bundle of arguments used by a network adapter.

0x08 This item is a filesystem driver service.
0x10 This item is a Win32 service that should be run as a standalone process.
0x20 This item is a Win32 service that can share address space with other services of the same type.

0x110
This item is a Win32 service that should be run as a standalone process and can interact with
users.

0x120
This item is a Win32 service that can share address space with other services of the same type
and interact with users.

Start

This REG_DWORD specifies when the subject service should actually be
started. When you open a service in the Services control panel, you can assign
the start type with a set of five radio buttons whose labels correspond to the
"Start Type" column in Table 11.3.

Table 11.3. The Start Value Controls When Services Are Loaded

Value
Start
Type What It Means

0x00 Boot
The kernel loader loads this driver first because it's required to utilize the boot
volume device.

0x01 System This service should be loaded by the I/O subsystem when the kernel is brought up.

0x02 Autoload This service should always be loaded and run, no matter what.

0x03 Manual
This service should be loaded, but the user must start it manually from a control
panel or the command line.

0x04 Disabled This service should be loaded but may not be started by the system or the user.
Group

Birds of a feather flock together, and so do Windows 2000 and NT services.
Any items with the same value in their Group key are considered to belong to
the same group; when it's time to start services within a group, group
members' Tag values decide which group members should be loaded first.
Services without this entry do not belong to a group and are loaded after all
services in service groups are loaded.

Tag

The REG_DWORD Tag value specifies the load order within a single group.
For example, if there are five devices in the "SCSI Miniport" group, the one
with the lowest Tag value is loaded first, then the next highest, and so on.

ErrorControl

Some services are more important than others. The ErrorControl value is
proof, since it lets critical services be marked as such. If a service fails to load,
or fails during startup, what happens next is governed by that service's
ErrorControl value. Possible values are listed in Table 11.4.

Table 11.4. ErrorControl Governs What Happens on a Failure
Value What It Means

0x00
If this driver can't be loaded or started, don't worry; ignore the failure and don't display any
warnings.

0x01
Act normally. If this driver fails during startup, produce a warning message but proceed with the
boot process.

0x02
Be afraid. If the startup process is currently using the last known good control set, continue on;
if it's not, switch to the last known good set.

0x03
Play "Taps." Record the current startup as a failure. If this startup is using the last known good
set, run a diagnostic. If not, switch to the last known good set and reboot.

There are also six subkeys commonly found beneath subkeys of Services:

Linkage

Network adapters can be bound to multiple protocols and services. Every
network card driver has a Linkage subkey, which stores the bindings data for
that particular card. Disabled bindings are stored in Linkage\Disabled . None
of the binding subkeys or values are directly editable; you should change them
only via the Network control panel.

Parameters

Parameters is a catch-all subkey that lets drivers and services store their
private settings. Some components store their settings in
HKLM\SOFTWARE. Device drivers (particularly those for network cards)
can store hardware-specific settings such as their preferred IRQ and DMA
ranges; other drivers and services can store whatever they want here.

Performance

Services that offer Performance Monitor counters advertise them by creating a
Performance key. Beneath this key, there are several values that tell the
Performance Monitor which DLL to load to activate the counters and what
routines the service offers for collecting performance data.

Security

The values in this key contain permission information for Windows 2000
services and drivers.

Enum

This Windows 2000 key contains values that store hardware information for
devices that the service controls or interacts with.

networkprovider

The Windows 2000 network provider subkey may appear for network services
where the Group value is NetworkProvider. The values under this subkey
contain information about the network provider, such as the provider name
and order.

Of course, any individual service is free to store additional values either as part of its
key or in subkeys added to the ones listed here.

11.4.3.1 Services\Browser

The Browser service controls NetBIOS browsing, including allowing the machine to
act as a master browser when requested. (For a complete description of how NetBIOS
browsing actually works, see article Q102878 in the Microsoft knowledge base.) The
Services\Browser\Parameters subkey contains five particularly interesting values:

MaintainServerList

This REG_SZ can assume three values: "Auto" (the default), "Yes," and "No."
When it's "No," the system doesn't cache the list of browser announcements it
hears, so it can't become a Browse Server. When it's "Auto," the list is cached,
and the computer may force an election (which it can win) for a new master
browser when necessary. When it's "Yes," the computer always acts as a
Browse Server.

BackupPeriodicity

REG_DWORD value, in seconds (legal values range from 300-4294967, or
about 48 days), which specifies how often a backup browse server should
contact the master browser for an update.

MasterPeriodicity

Like BackupPeriodicity, except that it controls how often a master browser
should contact the domain master browser.

IsDomainMaster

IsDomainMaster is just what its name implies: a REG_SZ that indicates
whether this computer is, or is not, a domain master browser. Legal values are
TRUE and FALSE.

QueryDriverFrequency

This REG_DWORD value represents the interval (0-900, in seconds) after
which a browser decides that its name cache is invalid and requests a new
copy of the available browser server list. Increasing this value speeds up
browsing at the cost of keeping stale data in the cache longer; conversely,
decreasing it keeps data fresher at the expense of bandwidth.

11.4.3.2 Services\DHCPServer

The Dynamic Host Configuration Protocol, or DHCP, is becoming more and more
widespread because it offers an easy way to manage TCP/IP networks. The DHCP
server's parameters are stored under its Parameters key. In the Windows NT 4.0
Registry, however, these values are found in the Parameters key under
Services\DHCP:

BackupDatabasePath

The DHCP server keeps a backup copy of its database. This
REG_EXPAND_SZ value lets you specify where it's kept. By default, it goes
in SystemRoot\System32\dhcp\backup. You should edit this to move the
backup database to another volume on the same machine to protect against
disk failures.[4]

[4] And you should keep a backup copy as well, since depending on software to keep good backups of
its own configuration data is risky at best.

BackupInterval

This REG_DWORD specifies the interval in minutes at which DHCP backs
up its database. By default, backups happen every 60 minutes, but you may
specify any interval.

DatabaseCleanupInterval

DHCP leases and reservations expire. Good housekeeping practices dictate
that these old records be scavenged from the DHCP database;
DatabaseCleanupInterval (a REG_DWORD whose default value is 1440
minutes or 1 day) specifies how many minutes should pass between
scavenging runs.

DatabaseLoggingFlag

Performance will suffer, but you can log DHCP transactions if you feel it
necessary. A value of 1 in this REG_DWORD enables logging, while turns it
off.

DatabasePath and DatabaseName

By default, these REG_SZ values combine to point to a file named dhcp.mdb
in %systemroot%\system32\dhcp. If needed, you can edit these values to put
the DHCP database somewhere else.

RestoreFlag

This value can restore the DHCP database from the backup copy. However it's
not quite implemented in Windows 2000 and should not be changed.

Besides these parameters, you can instruct the DHCP server which TCP/IP
configuration parameters to deliver to clients. Once you do this (using the
DHCPOptions Scope command in the DHCP server manager), one or more subkeys
under DHCP\Parameters\Options appear--one subkey per option, each named after the
option number. These new keys tell the server where to get the values that are being
broadcast to the client machines. Don't edit them.

11.4.3.3 Services\EventLog

The Event Logger service in Windows 2000 has three subkeys under
Services\EventLog: one for the application log, one for the system log, and one for the
security log. In addition, Windows services creates subkeys for their own logs. The
Windows 2000 and Windows services subkeys are named after their respective logs
and can contain a combination of seven values that can be edited via the Event
Viewer application:

File

This REG_EXPAND_SZ supplies the full path to the event file. If you want to
store your event logs on a secure partition, you can edit this value to do so.

MaxSize

Specifies the maximum size, in bytes (64-KB increments), that the log can
grow to before it's marked as full.

Retention

This REG_DWORD represents the number of seconds entries are retained
before they're overwritten. The default is seven days (or, more exactly,
604,800 seconds).

Sources

Each system component that logs event messages can supply its own message
file. This makes it possible for logged messages to be very specific, since the
component that generated them has extensive knowledge about why the entry
was logged. This REG_MULTI_SZ holds a list of names. Each name is
interpreted as a subkey of EventLog\Application, EventLog\Security, or
EventLog\System . Each of these subkeys in turn contains two values that
specify which message file to use for that named component.

DisplayNameFile

This REG_EXPAND_SZ value specifies the file that holds the event log's
localized name. By default, this file is %systemroot%\system32\els.dll.

DisplayNameID

This REG_DWORD value holds an ID number between and 0xFFFFFFFF.
Used in combination with DisplayNameFile, it specifies a message ID number
for the log name.

PrimaryModule

The keys under Services\EventLog are associated with different logs. The
PrimaryModule value (REG_SZ) indicates the subkey where default values
are stored for log source entries within these logs.

11.4.3.4 Services\LanmanServer

The Server service actually does all the hard work of sharing files and printers under
Windows 2000/NT. Its parameters live under Services\LanmanServer, and there
certainly are a lot of them! Most parameters are automatically tuned by Windows
2000 and NT based on the server load, but some must be tweaked manually. Here
they are:

AutoDisconnect

You can automatically force idle clients to disconnect by setting this
REG_DWORD value to the number of minutes of idle time you're willing to
allow. Clients who have open files or searches on a connection aren't
disconnected, but completely idle clients will be. The default idle time allowed
is 15 minutes.

AutoShareServer and AutoShareWks

Windows 2000 Server, by default, creates administrative shares of your local
disks. Windows 2000 Professional and NT can be made to do so as well.
These REG_DWORD values, when set to 1, tell the system to map local
drives to hidden shares on computers running either Windows 2000 Server
(AutoShareServer) or Windows 2000 Professional (AutoShareWks). When
these values are 0, no such shares are created.

Comment

This REG_SZ holds the comment displayed next to this machine's name when
users browse the network.

DiskSpaceThreshold

The DiskSpaceThreshold value controls when Windows 2000 and NT reports
that a disk is low on space. The value represents a minimum percentage of free
space; when the space available drops below that percentage, a warning alert
is generated. This value's a REG_DWORD and can range from 1-99%. The
default value is 10.

Hidden

If you want to hide a server or workstation from network browsers, set this
REG_BINARY value to 1, and the machine disappears. Clients who know it's
there can still access it, but it won't show up in Explorer or any of the other
browsing tools.

RestrictNullSessionAccess

LAN Manager, NT's ancient ancestor, allowed users to connect with a NULL
session[5] to get some types of information from a server, including a list of
available shares and account names. Because this is a security vulnerability,
Microsoft now offers a way to deny NULL session access to network
resources--this value. Set it to if you want to allow NULL session access (not
recommended), or 1 if you want to deny it. When set to 1, the shares and pipes
specified in NullSessionShares and NullSessionPipes can still use NULL
sessions.

[5] So named because instead of supplying a valid username and password, you open a null session
with an empty username and password.

NullSessionShares and NullSessionPipes

These two REG_MULTI_SZ values list any file shares and/or pipes NULL
session-using clients may access. By default, NullSessionShares lists
COMCFG DFS$ as accessible when RestrictNullSessionAccess is turned on;
The default contents of NullSessionPipes are COMNAP, COMNODE,
SQL\QUERY, SPOOLSS, LLSRPC, EPMAPPER, and LOCATOR.

Users

This REG_DWORD controls how many users may simultaneously log on to
your server. Its legal range is from 1 to 0xFFFFFFFE (representing a number
of users), or 0xFFFFFFFF (the default) denoting no limit. As a practical
matter, you should probably set this to some value less than or equal to the
number of actual licenses you have for your server.

11.4.3.5 Services\NetBt

You can run the NetBIOS protocol over a TCP/IP connection; this combination is
called NBT or (occasionally) NetBT. NBT makes NetBIOS traffic routable. It can
also provide a performance boost, and with the advent of the Internet it makes it
possible to offer NetBIOS services over an Internet connection. The NetBT service
handles encapsulating NetBIOS data into TCP/IP packets, and its Parameters key
contains several values that govern the overall operation of the NetBT service:

DhcpXXX

There are several values whose names begin with Dhcp. These are set
automatically by the DHCP client service. Any Dhcp value can be overridden
by its non-DHCP counterpart: for example, DhcpScopeID is overridden by
ScopeID. Don't change any of the Dhcp values, or DHCP will stop working
properly.

EnableDNS

This REG_DWORD indicates whether DNS name resolution is enabled.
When it's 1, the default, NetBT uses DNS to resolve names that can't be
resolved via WINS, lmhosts, or broadcast queries; when it's 0, DNS won't be
used. Microsoft warns against changing this value in the Registry; instead, you
should use the Network control panel.

EnableLMHOSTS

This REG_DWORD value indicates whether lmhosts are used to resolve
names that can't be resolved via WINS or broadcast queries. Like EnableDNS,
you shouldn't modify it directly.

EnableProxy

This DWORD controls whether this computer answers WINS proxy requests;
these proxy requests come from computers not running WINS and allows
connections across subnets. Don't change this value directly either.

LmhostsTimeout

You can control the timeout period for DNS and lmhosts name queries by
adjusting this REG_DWORD value. It represents the timeout period in
milliseconds; the default value of 6000 allows a 6-second timeout, but you can
adjust it from 1000-0xFFFFFFFF. Tweaking this value lets you accommodate
slow DNS servers, so it might make a good system policy entry.

NameSrvQueryCount

"If at first you don't succeed, try, try again" applies to name resolution, too. By
default, NetBT issues three WINS queries for a name before deciding that the
name can't be resolved. You can change this REG_DWORD's value to
anything between and 65,535 to change the number of requests.

NameSrvQueryTimeout

A single WINS query can either be answered or not. This REG_DWORD
controls the number of milliseconds after which a query is judged to have
timed out. Its default value of 1500 allows for a 1.5-second timeout, but you
may use any value from 1000-0xFFFFFFFF. The maximum time it can take to
decide a name can't be resolved via WINS is thus equal to
NameSrvQueryCount multiplied by NameSrvQueryTimeout.

WinsDownTimeout

If no WINS servers can be contacted, the system can automatically wait a
prescribed period before trying to contact a WINS server again. The length of
this period is controlled by WinsDownTimeout, which is a REG_DWORD
number of milliseconds. By default, the system waits 15 seconds after failing
to catch a WINS server before it tries again, but you can modify this interval
to any value between 1000 and 0xFFFFFFFF milliseconds.

In addition to these settings, each adapter card to which NetBT is bound has its own
adapter-specific settings, which may supplement or override the ones in
Services\NetBt\Parameters. These settings are stored under the
Services\NetBt\Adapters subkey; each adapter has a subkey named after its driver.
These keys have the same DhcpXXX values as the Services\NetBt\Parameters key. In
addition, their NameServer and NameServerBackup values specify the IP addresses of
the primary and backup WINS servers for that adapter. If present and nonblank, these
values are used instead of the corresponding systemwide entries.

11.4.3.6 Services\Netlogon

The Netlogon service handles communications between Windows 2000 machines
(whether it's a workstation or a server) and domain controllers. For the sake of
backward compatibility, Netlogon additionally handles replicating the user account
database to backup domain controllers running NT 3.x/NT 4. NetLogin doesn't
manage replication between two Windows 2000 servers. There are eight significant
values in Services\Netlogon\Parameters:

DisablePasswordChange

To secure conversations between domain controllers and domain computers,
each computer in the domain uses a unique, randomly generated password to
log on to the domain. By default on Windows 2000 machines, this password is
regenerated every 30 days. Normally you leave this alone, but there are
instances where you might want to force Windows 2000/NT not to change the
password, for example, if you're dual-booting more than one copy (or version)
of the operating system on a single machine. Keeping the account password
unchanged ensures that each copy of Windows 2000 and NT can be a member
of the domain without anyone changing the domain password behind its back.

By default, this REG_DWORD is set to 0, meaning that the system changes its
computer account password regularly. Setting it to 1 on a machine prevents
that machine from automatically changing its computer account password,
although you can still change it manually.

RefusePasswordChange

As an alternative to setting DisablePasswordChange on lots of machines, you
can set the REG_DWORD RefusePasswordChange value to 1 on all domain
controllers in the domain. This forces the DC to refuse any password change
request from its Windows 2000/NT 4 clients. It doesn't stop the clients from
trying, however. See article Q154501 in Microsoft's knowledge base for a full
explanation of this parameter and its ramifications.

Pulse

This REG_DWORD, and the pulse and replication settings that follow, are
used for replication under NT 4.0, or under Windows 2000 when an NT 4.0
(or earlier) server is involved. Pulse controls how often a change notification
is sent from the primary domain controller (PDC) to each backup domain
controller (BDC). All the changes occurring between pulses are collected
together; when the pulse interval expires, the changes are sent to any domain
controller that needs an update. Up-to-date domain controllers don't get a
pulse. The default interval is 300 seconds, but you may specify any number of
seconds from 60 to 48 hours' worth (172,800).

PulseConcurrency

When a PDC has updates and sends pulses to each BDC that needs the update,
the BDC responds by asking for the updated data. The number of pulses a
PDC can queue at one time is controlled by this REG_DWORD; the default
value of 10 means that 10 BDCs can be pulsed. Thus the PDC may have to
deal with 10 update requests at one time. You can specify any value from 1 to
500; the bigger the number, the more load may be placed on the PDC.

PulseMaximum

Specifies a maximum interval after which a BDC will be sent an update pulse,
even if it doesn't need an update. The default value is 7200 seconds, or two
hours, but you may specify any interval in seconds, from 60 to 172,800.

PulseTimeout1 and PulseTimeout2

These two values control how long a PDC waits when pulsing a BDC before it
considers the BDC unresponsive. PulseTimeout1 regulates how long the BDC
has to answer a pulse; it can be anywhere from 1-120 seconds. PulseTimeout2
specifies how long the PDC waits for the BDC to finish absorbing the update
data once it's sent, from 60-3600 seconds.

ReplicationGovernor

Under ordinary circumstances, Netlogon uses a 128-KB buffer for copying the
SAM database and replicates the database whenever a preset number of
changes accumulate. For domain controllers on a WAN or slow local link,
these settings can consume a significant amount of your bandwidth. The
REG_DWORD ReplicationGovernor value can range from to 100; its value
represents a percentage of both the buffer size and the amount of time an
outstanding replication request is in progress. For example, a
ReplicationGovernor value of 25 specifies that a BDC use a 32-KB buffer
(25% of 128 KB), and that a replication request can be on the Net no more
than 25% of the time. You must make this setting on every BDC you want to
affect; it has no effect on the PDC. Do not set this value to zero! If you do, the
PDC never synchronizes with the affected BDC.

Scripts

This REG_SZ value specifies the full path to the Net Login shared directory
on the domain controller where logon scripts are kept.

Update

Ordinarily, the SAM database is synchronized only after a number of changes
have accumulated. You can force Netlogon to completely synchronize the
database when the service starts by setting this REG_SZ value to "Yes." The
default value, "No," allows synchronization to happen when needed.

11.4.3.7 Services\RasMan

The Dial-Up Networking (née RAS) subsystem lets you dial into remote
computers and communicate using Microsoft's protocols, IPX, or TCP/IP. The
RasManservice is the component that actually handles making over-the-modem
network connections on outbound calls. There are only two significant values for this
service's Parameters subkey:

DisableSavedPasswords

Normally, each user may choose whether she wants DUN to save her
passwords or not. You can compel DUN not to cache these passwords by
adding this REG_DWORD value and setting its value to 1. When you do,
DUN doesn't display the "Save password" checkbox, and it forgets any
passwords it has previously stored.

Logging

When this REG_DWORD is 1, the DUN dial-up component logs its
interaction with whatever serial device it's using. This is a great way to
troubleshoot connection problems; DUN logs to the
%systemroot%\system32\ras\device.log file until a connection is established.
The log file is cleared when you stop and restart DUN components or when its
size exceeds about 100 KB.

The Services\RasMan\PPP key has all the really useful DUN settings, including:

NegotiateTime

This value specifies the time, in seconds, the PPP module allows for a
successful connection negotiation. If the two sides can't complete negotiation
in this period, the connection fails. The default value is 150 seconds, but you
may set it to any DWORD value. A value of means the connection never fails.

Logging

When this REG_DWORD is set to 1, each PPP connect, disconnect, or failure
event is logged to \%systemroot%\system32\ras\ppp.log.

ForceEncryptedPassword

PPP servers may specify what types of authentication they support. The
ForceEncryptedPassword value forces a RAS server to request CHAP
authentication from its clients instead of the less secure PAP. Set this
REG_DWORD to 1 to force CHAP authentication or to allow PAP. This value
has no effect on computers that aren't RAS servers.

11.4.3.8 Services\Replicator

The Directory Replicator service (usually called just "the replicator") can mirror
directories on one server in a domain to other workstations and servers. Any machine
may import replicated directories, and any server may export them. What gets
replicated and when is controlled by values under the Services\Replicator key. First of
all, the Exports and Imports keys contain one value entry for each exported or
imported directory. You manage these lists with the Directory Replication dialog in
the NT Server Manager.

In Windows 2000, the NT Server Manager functionality is
replaced by Active Directory Users and Computers.

The Parameters subkey contains parameters (also settable through the Server
Manager) that control how the replication process actually runs:

ExportPath

This REG_SZ contains the full path to the directory being exported. Any
given machine may export only a single directory; on domain controllers, this
is almost always the directory where logon scripts are stored, but it can be
anything.

GuardTime

GuardTime tells the replicator service how long to wait after the last file
change before sending a new change notice. Its value can range from (send
changes immediately) to half of the value of Interval. This value has no effect
unless you specify that the export files should be "Stabilized" in the Server
Manager.

ImportPath

This value specifies the full path to the directory where imported files and
directories are stored on the local machine.

Interval

This REG_DWORD value specifies how often an export computer should
check its export directory for changes. The default is 5 minutes, but the value
may range from 1 to 60 minutes.

Pulse

Pulse controls when the export computer rebroadcasts change notices. These
change notices are sent even when no changes occur so that importers know
whether they missed any updates due to network outages. The value of Pulse
may range from 1 to 10; it's used as a multiplier of Interval. A Pulse value of 3
(the default) combined with an Interval of 60 (minutes) means that redundant
change notices are sent every 3 hours.

Replicate

This REG_DWORD controls what replication role this machine plays. A
value of 1 means this machine exports files; a value of 2 means it imports
from other exporters, and a value of 3 (the default) means it can do both.

11.4.3.9 Services\Tcpip

TCP/IP is a complicated protocol, so it's not surprising that there are a large number
of values in Services\Tcpip\Parameters. In keeping with Microsoft's hands-off
approach, most parameters that affect how the TCP/IP stack allocates resources are
self-adjusting, and I haven't documented them here because there's really no reason to
ever adjust them.

It may be tempting to adjust some of these parameters on all
your machines by building a policy file, but it's a better idea to
use DHCP, which is designed specifically for this task. As a side
bonus, DHCP works with non-Windows computers too.

DatabasePath

This REG_SZ contains the path where the TCP/IP stack should look for its
hosts, lmhosts, networks, and protocols files. By default it points
to%systemroot%\system32\drivers\etc.

DefaultTTL

The Time-To-Live (TTL) value determines how long an IP packet can remain
on the network before it either reaches its destination or is discarded. By
default, Windows 2000 marks its packets with a TTL of 128 (NT's default is
32), but this may be too short for some applications. This REG_DWORD
value has a range of between 1 and 255 seconds.

Domain

This REG_SZ contains the suffix for the primary Domain Name System,
which is used in DNS name registration and name resolution.

Hostname

This REG_SZ contains the hostname you entered in the TCP/IP Properties
dialog.

NameServer

This single REG_SZ contains a list of IP addresses (with a space between each
address) indicating which DNS servers you've configured for DNS-based
address resolution. This value, if any, overrides the name server list provided
via DHCP.

IPEnableRouter

This REG_DWORD determines if IP forwarding is enabled. When this
DWORD is 1, the system attempts to route IP packets between the subnets
attached to its network adapter cards; when it's (or when you only have one
NIC) no routing takes place.

SearchList

This REG_SZ value contains a space-separated list of domain names to
append to any hostname that's missing a suffix and can't be resolved.

EnableSecurityFilters

When set to 1, this REG_DWORD enables the TCP/IP stack to filter incoming
connections according to the ports specified in TcpAllowedPorts and
UdpAllowedPorts in the next list.

PersistentRoutes

Starting with NT 3.51, you could add persistent static routes with the route
add command. Should you do so, each route is stored as a REG_SZ value
under the Services\Tcpip\PersistentRoutes subkey. Each route has its own
value entry, constructed as a REG_SZ:

destinationAddr,subnetMask,routeGateway, routeMetric

The entries' names contain all the useful data; their contents are empty.

In addition to these parameters, each network adapter card to which TCP/IP is bound
has its own individual set of parameters stored in the card's key under
HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\<interface
-name> (or HKLM\SYSTEM\CurrentControlSet\Services\adapter\Parameters\Tcpip
on Windows NT machines).

IPAddress

This REG_MULTI_SZ contains the actual IP addresses assigned to the
physical adapter card. If the first address in the list is "0.0.0.0," the address is
assigned by a DHCP server. You can add multiple addresses to a single
adapter card by adding them here.

DefaultGateway

This REG_MULTI_SZ specifies an ordered list of default targets for packets
that aren't destined for one of the addresses on the IPAddress list.

DontAddDefaultGateway

This REG_DWORD (which doesn't get created automatically) can be either or
1. When it's 1, Windows 2000 and NT won't use a default gateway entry for
this adapter. Microsoft warns that "PPTP users must add this Registry entry
for each adapter that is not connected to the Internet" to prevent accidentally
routing unintended traffic across a PPTP link.

EnableDHCP

If this REG_DWORD is 1, the system asks the DHCP client service to
configure the first IP address on this adapter.

SubnetMask

Since IPAddress allows multiple addresses, SubnetMask is a
REG_MULTI_SZ too; it needs to accommodate one subnet mask per IP
address! If the first mask is "0.0.0.0," all the mask data is retrieved from
DHCP. You should have one subnet mask for every IP address specified in
IPAddress.

TcpAllowedPorts and UdpAllowedPorts

These two REG_MULTI_SZ values allow you to specify a set of ports on
which connections are accepted. When EnableSecurityFilters equals 0, these
values are ignored; when it equals 1, connections from these ports are allowed,
but connections from all other ports are rejected.

11.5 HKU

The "U" in HKU stands for "user." That's appropriate, since HKU's subkeys store
settings that vary from user to user. Every time a user logs in, one of two things
happens. If the user's never logged in before, the system makes a new copy of the
contents of HKU\.DEFAULT and stores it in a new subkey whose name matches the
user's SID. If the user has logged in before, his subkey under HKU is mapped to
HKCU, and the logon process continues. There are some subtleties to this process; for
example, if the network's using profiles, the system may have to fetch the user's
profile from a server if it's not locally cached.

11.5.1 HKU\.DEFAULT

The settings in this hive are used as defaults for new users when they log in. Section
9.1 in Chapter 9 discusses how you can modify these defaults so that all new users get
the defaults you set automatically when their HKU subkeys are created.

11.5.2 HKU\sid

Each user account has a unique SID; this SID is also used to identify that account's
settings under HKU. For a detailed description of what keys and values are stored
under HKU\sid, see the section Section 11.7 later in this chapter.

11.6 HKCR

HKCR is the backbone of the OLE/ActiveX subsystem. The shell, the Explorer, and
many applications depend on the data stored here for prosaic tasks such as deciding
which icon to display with a file or what to do when the user double-clicks a file. OLE
applications need this data to determine what servers to start when a user embeds or
links a foreign object into a document, and the Distributed OLE and DCOM systems
need it too.

In Windows NT 4.0 and previous versions of NT, this root key got its data solely from
the software classes subkey under HKLM, that is HKLM\Software\Classes. This
worked fine, although the system could register program classes only on a per-

machine basis. In Windows 2000, the software classes under HKCU\Software\Classes
are merged with the HKLM software classes to make up HKCR. Defined as per-user
class registration, this allows program classes to be registered independently for each
user.

11.6.1 HKCR\ext

The original Win3.x scheme for linking a file with the application that created it was
to associate the file's extension with the name of an executable. With the introduction
of OLE, though, it became necessary to associate file contents with DLLs, since an
OLE server might be a DLL instead of a standalone application. The Win 3.x File and
Program Managers were primitive at best, and to improve them Microsoft needed a
lot more information about files, their creators, and their types.

The starting point for these improvements is the set of filename-extension keys that
live under HKCR. These keys are named after file extensions: HKCR\.txt,
HKCR\.html, and so on. The default value of each of these keys contains a string
called the application identifier such as "textfile" or "htmlfile." This value is used to
look up an HKCR subkey of the same name.

While it's possible to add other values to file association keys, no part of the system
will use them, and they're subject to being overwritten, so don't count on your values
being available if you keep them here.

11.6.2 HKCR\ fileType

For each file association key, there is usually a single key whose name matches the
application identifier. These keys are called class-definition keys. Continuing the
previous example, let's say there's a key named HKCR\htmlfile. To figure out what to
do with a file when the user double-clicks it, the shell follows three steps:

1. Strip the extension from the file and use it to find a file association key such as
HKCR\.doc or HKCR\.pl.

2. Open the file association key and get its default value, then use that value to
look for a key with the same name. For example, if HKCR\.pl's default value
is "Perl script," the shell looks for HKCR\Perl script and tries to open it. This
subkey is called the application identifier key.

3. The application identifier key contains values the shell parses to figure out
how to open or edit a file, or to create a new copy of a particular file type or
object.

Each application identifier key can have a number of values and subkeys. Which ones
a particular application's key has varies. Here are the most common subkeys:

CLSID

This subkey's default value contains the class ID, or CLSID, assigned to an
OLE object. OLE applications (including Explorer and the shell) can use this
CLSID to keep track of a file or object's type.

DefaultIcon

The default value of this subkey contains the path to an executable or DLL and
a resource ID. When it needs the icon for a file, the Explorer looks up the
application's class-definition key, gets the DefaultIcon value if it exists, and
loads that icon. By changing this value, you can alter the icons displayed for a
particular file type.

Shell\ Edit, Shell\Open, and Shell\Print

These subkeys each have a further subkey: Command. When the system sees
one of the Shell\XXX keys, it knows that this class type can be opened,
printed, or edited. The value of the Command subkey gives the actual
command that performs the requested action.

shellex

The shellex subkey makes it possible for clever programmers to add items to
the Properties dialog for a particular file type. The value of the
shellex\PropertySheetHandlers can specify a CLSID; when the shell looks up
the CLSID's key, it can figure out which property sheet or dialog to open for
that item.

11.6.3 HKCR\CLSID

This subkey contains all the CLSIDs for classes installed on the system. Each CLSID
key contains a value that provides a human-readable name for the class (which
appears in the Insert Object dialog of most OLE-compatible applications). There are a
variety of other subkeys that can be attached to a particular entry under
HKCR\CLSID\clsid. The most important ones are InprocServer32 and InprocServer.
These specify which DLL implements the code to create or edit objects of this
CLSID's type.

11.7 HKCU

We all like to customize our environments. We do it at home, at work, in our cars, and
pretty much anywhere else we can get away with it. When you customize your
Windows 2000 or NT environment and applications, the changes end up in subkeys of
HKCU, which is actually a link to your SID's subkey under HKU. Only a currently
logged-in user has access to HKCU. It can't be edited remotely (RegEdit disallows
remote user access to HKCU and HKCC), nor can a SID key under HKU be edited
while someone with a different SID is logged in.

The contents of HKCU vary more than any of the other root keys because applications
store their user-specific settings here too. If Ellen and Joe share a computer, their
respective HKCU subkeys can end up looking very different: Ellen might install and
use Netscape, Visual Studio, and BoundsChecker, while Joe might stick with Office
2000 and Internet Explorer. Accordingly, in this section I'll confine my discussion to
the most important subkeys of HKCU.

11.7.1 HKCU\ AppEvents

For better or worse, Microsoft included the capability in NT 4.0 (and Win95, too) to
associate sounds with system events such as opening or closing windows, logging out,
and so on. This feature certainly falls into the customization arena, and application
developers can add their own event classes. For example, if you install Microsoft's
Visual Studio, you can get audio alerts when your compilation succeeds, when the
debugger hits a breakpoint, and so on.

The event-to-sound mappings are stored in HKCU\AppEvents. Each event that has a
sound associated with it has the name of the .wav file to play as the content of its
default value. For a fun prank, write a Perl script that randomly assigns .wav files
from %systemroot%\media to random events.[6]

[6] The publisher and I jointly disclaim any liability arising from you doing this to your boss, spouse, or co-
workers.

11.7.2 HKCU\Console

MS-DOS command-line interface is, to put it politely, extremely limited. If you're
used to a powerful Unix shell such as bash, zsh, or tcsh, you know what I mean. The
really weak spot, though, is the appearance and behavior of the console window; after
all, you can always write command scripts in Perl, KixStart, or REXX, but you're
stuck looking at them through that old throwback 80x24 white-on-black ugly-font
DOS window!

Fortunately, the Windows 2000 and NT console is customizable, so you don't have to
suffer any longer. The customization settings all live under HKCU\Console, and
they're so self-explanatory (guess what FontSize does) I won't cover them here.

11.7.3 HKCU\Control Panel Items

Each installed control panel may have its own subkey and settings beneath
HKCU\Control Panels. HKU\.DEFAULT has default settings for all the control
panels, so HKCU\Control Panels may not contain as many values as you'd expect.
Additionally, many control panels (notably Network and Multimedia) store their
settings in other parts of the Registry.

11.7.4 HKCU\Environment

The Environment key contains whatever environment variables are set in the "User
Variables" list of the System control panel's Environment tab. They're stored as name-
value pairs. For some reason, some variables are stored as REG_SZ entries, while
others are stored as REG_EXPAND_SZ. It doesn't seem to matter what's in the value,
either; some nonexpandable strings are still tagged as REG_EXPAND_SZ. Weird.

11.7.5 HKCU\Printers

The system stores information about printers the current user may use in
HKCU\Printers. Each printer gets its own value entry directly under HKCU\Printers.

This entry specifies what the default printer for this particular user is. The printer
settings themselves (for all printers, not just the default one) are actually stored in
HKLM\SYSTEM\CurrentControlSet\Control\Print\Printers for Windows 2000
machines and HKLM\SYSTEM\CurrentControlSet\Services\Print\Printers for NT.

11.7.6 HKCU\Software\Microsoft

As you've no doubt inferred from the name, user-specific settings for Microsoft
components are stored under this key. Until you install Internet Explorer and/or
Microsoft Office on a machine, though, there are relatively few of these keys; most
system settings are stored under HKLM, and there aren't that many settings to hold
here.

11.7.6.1 Microsoft\ NtBackup

The bundled backup applications included with Windows 2000 and NT have a fairly
large number of settings in it. All these settings can be manipulated using the
program's standard user interface, but you may be interested in setting some of them
via group or system policies. For example, the NtBackup\UserInterface\UsePassword
flag can be set to require that backup tapes be password-protected. There are a
number of subkeys that fall under Microsoft\NtBackup:[7]

[7] And ntbackup doesn't even know it; it's using an INI file remapped to this key.

Backup Engine

The values under this subkey control the actual backup process: how many
buffers should be reserved for the tape drive, whether Mac files on an NTFS
volume should be backed up, and so forth.

Debug

If you're having problems getting a backup device to work, you can configure
debug logging through the values in this key.

Display

These settings store your choices of font size, window position, and other
display parameters.

Hardware

The settings you choose for whatever type of tape hardware your system has
are stored here.

Logging

You can turn on logging for individual backup jobs through the ntbackup user
interface. When you do, these values are used to figure out whether the log file
should be printed and what the root of its filename should be.

Translators

These settings store NT Backup translator information.

User Interface

The catch-all key, this holds values that don't have a place anywhere else, such
as whether the tape should be ejected when the backup completes or whether
the backup should be automatically verified when it's done.

For a more complete explanation of the ins and outs of NTBACKUP, see O'Reilly's
Windows NT Backup and Restore.

11.7.6.2 Microsoft\ RAS Autodial

The Dial-Up Networking autodialer's settings are stored under this key, which retains
its name for backward compatibility.

Addresses

Each time you establish an autodialed connection, DUN stores the address that
caused the dialing in a value under Addresses. The IP address or DNS name
serves as the value name for each entry. Entries under Addresses have three
values: Tag, LastModified, and Network.

Control

This subkey is where the actual control settings for the autodialer live. There
are only three of them:

DisabledAddresses

This REG_MULTI_SZ stores a list of IP addresses or DNS names for which
an autodialed connection will never be established. You can use this list as an
extremely low-rent blocking proxy by filling it with addresses of sites you
don't want to connect to.

LoginSessionDisable

I have no idea what this is for. It appears to be set by the RasGet-
AutodialParm() API routine. If you know what this does, I'd love to hear.

DisableConnectionQuery

Ordinarily, DUN pops up a little dialog asking you for permission to start a
connection when it needs one. This is annoying because if you start something
that requires a connection, you have to stay there to answer the dialog; its
default action button is "No, don't dial." You can subdue this annoyance by
setting DisableConnectionQuery (a REG_DWORD) to 1. This forces DUN to
always start a dialup connection when one is required.

Locations

There's one subkey of Locations for each dialing location you have defined.

Entries

Likewise, there is one subkey under Entries for each phonebook entry you've
used. The value for an entry is of the form NetworkX, where X is some small
integer. This indicates which DUN dialup adapter you used to make this
connection.

Networks

This key has subkeys named after the values of Entries' subkeys: Network0,
Network1, and so on. Each of these entries in turn has a value named "1" that
points back to an entry under Entries.

11.7.6.3 Microsoft\RAS Monitor

The RAS Monitor key stores settings for the Dial-Up Networking monitor. Nine of
the fourteen values stored here track the window size and position of various monitor
windows; the other five are flag and setting values whose structure isn't documented.

11.7.6.4 Microsoft\RAS Phonebook

The systemwide set of DUN phonebook entries is stored in
%systemroot%\system32\ras\rasphone.pbk. This file (or the personal phonebook files
you can create and use instead) holds the phone numbers, network settings, and login
credentials for each entry in your phonebook.[8] These settings can differ widely
between entries; you might have one entry for your ISP that tells DUN to use server-
supplied values for everything and another for dialing in to your office intranet that
uses a fixed set of IP, DNS, and gateway addresses.

[8] .pbk files are plain text, so you can inspect and edit them to your heart's content. You can also copy them from
one machine to another; this is an easy way to get a consistent set of phonebook entries for a group of machines.

The values beneath Microsoft\RAS Phonebook control DUN dialing for all entries in
the phonebook. As you can see, they provide a fairly rich set of options.

AllowLogonLocationEdits and AllowLogonPhonebookEdits

These two REG_DWORD s control whether users may change their dialing
location or phonebook entry during login. They're only effective if you've
enabled the option to allow logging on via DUN. Note that when you change
these parameters in the Appearance tab of the Logon Properties dialog from
within rasphone, these values are actually changed in
HKU\.DEFAULT\Software\Microsoft\RAS Phonebook, not in HKCU.

AlternatePhonebookPath

If you specify an alternate phonebook in the User Preferences dialog's
Phonebook tab, the path to that phonebook appears here.

AreaCodes

In the Basic tab of the Edit Phonebook Entry dialog, you can specify whether
you want to use the TAPI dialing properties or not. If you do, you can enter an
area code for the phonebook number. This REG_MULTI_SZ tracks the area
codes you've entered in the phonebook.

CallbackMode

DUN supports three callback modes via this value. They apply only if the
remote server offers to perform a callback. The first option, set if this
REG_DWORD is 0, tells the DUN client to refuse callback requests. A value
of 1 (the default) specifies that DUN should ask you whether you want to
accept it or not, and a value of 3 means "yes, always accept a callback if
requested."

CloseOnDial

When it's set to 1, as it is by default, this REG_DWORD tells DUN to close
the phonebook application when it's finished. Set this value to to keep the
phonebook application open after dialing completes.

DefaultEntry

This REG_SZ specifies which phonebook entry appears as the default entry
when you open the Dial-Up Networking phonebook. Adjust it to make a
particular entry appear.

ExpandAutoDialQuery

Before DUN autodials for you, it may ask you to confirm that you really want
to dial (unless you have "Always prompt before auto-dialing" unchecked in
the Appearance tab of the User Preferences dialog). When it does ask for
confirmation, the "Settings" button in the confirmation dialog shows
additional controls for choosing a location and turning off the confirmation
requests in the future. Setting ExpandAutoDialQuery to 1, its default, makes
these extra controls immediately visible. Setting it to requires users to hit the
Settings button to see them.

IdleHangUpSeconds

This value specifies the number of seconds a DUN connection may be idle
before the client hangs it up. The value should be in seconds; a value of tells
DUN to never hang up.

LastCallbackByCaller

I don't know what this is for either.

NewEntryWizard

As with so many other Windows 2000 and NT components, the DUN
phonebook features a wizard that ostensibly helps you create new entries. The
Appearance tab of the User Preferences dialog features a checkbox that lets
you specify whether you want to use the wizard or not; this REG_DWORD
reflects that value.

OperatorDial

You can toggle a DUN setting that tells it not to dial because you'll be dialing
manually. This REG_DWORD value reflects that option; when it's 1, that
means that the system waits for you to dial before attempting to connect.

PersonalPhonebookFile

Besides the alternate phonebook file, you may specify an individual
phonebook file for your own use (after all, this is HKCU !). If you specify a
personal phonebook in the User Preferences dialog's Phonebook tab, the path
to that phonebook appears here.

PhonebookMode

This REG_DWORD specifies which phonebook DUN uses. The default value
of means that %systemroot%\system32\ras\rasphone.pbk is used; a value of 1
means that the user's personal phonebook is used, and a 3 means that the value
in AlternatePhonebookPath is used.

Phonebooks

This REG_MULTI_SZ keeps a list of all the phonebooks you've ever
specified in AlternatePhonebookPath so it can build a combo box listing them
for your later reference.

Prefixes

This REG_MULTI_SZ contains a list of all the prefixes you've ever specified
for phone entries in your phonebook. This allows DUN to present a nice
combo box listing your previous choices.

PreviewPhoneNumber

This REG_DWORD reflects the setting of the "Preview Phone Number"
checkbox in the Appearance tab of the Edit Phonebook Entry dialog. When it's
set to 1, users may edit the phonebook entry's number before it's dialed.

RedialAttempts

By default, if a connection doesn't happen on the first attempt, DUN quits
trying. This happens because the default value of RedialAttempts is 0. You
can enable as many retries as you'd like, and DUN will patiently keep trying
until it connects or makes the specified number of attempts.

RedialOnLinkFailure

This value (a REG_DWORD) specifies whether DUN should automatically
resurrect a failed connection. Sometimes a connection drops for no good
reason; setting this value to 1 causes DUN to redial and restart the connection
if it fails.

RedialSeconds

This value specifies the number of seconds (15 is the default) to wait between
redial attempts, assuming you've set RedialAttempts to greater than 0.

ShowConnectStatus

This REG_DWORD has two possible values: 1 (the default) displays a
connection progress dialog that indicates what's happening on the connection,
and suppresses the dialog (useful when you're making connections via
command-line scripts).

ShowLights

In a nod to the Win95 way of doing things, NT's DUN can display some little
blinking lights in the system tray to duplicate the front-panel LEDs of most
external modems. The Dial-Up Networking Monitor is in charge of this vital
function. By default, this REG_DWORD's value is 1, meaning that the DUN
Monitor will be started before the connection is--therefore, the lights will be
present. If you don't enjoy seeing them (or, more likely, if you're not paying
any attention to the system tray), you can set this value to to hide them.

SkipConnectComplete

Until you tell it otherwise, DUN displays a dialog saying you've successfully
connected. One of the options in this dialog is a checkbox that says "Don't
show this dialog again." That checkbox controls the value of
SkipConnectComplete: when it's 1, that tells DUN to omit the dialog. By
default, its value is 0, so you'll see this dialog until you manually turn it off.

Suffixes

Like Prefixes, this value's a REG_MULTI_SZ. Its purpose is to store a list of
any suffixes you've ever specified for a DUN phone number.

UseLocation

By default, you can select any of the installed TAPI locations when making a
DUN connection. This is especially useful if you have a machine that
frequently moves between different area codes or countries. However, if you
want to keep users from changing their location from the DUN phonebook,
just set this REG_DWORD to instead of its default value of 1. (Note that users
can still use the Modems control panel to change locations.)

UseAreaAndCountry

I haven't been able to identify what this does.

WindowX and WindowY

These values specify the (x,y) location of the upper-left corner of the DUN
phonebook window.

Besides this cornucopia of values, Microsoft\RAS Phonebook has an additional
subkey, Callback. Every installed modem device on the system has its own subkey
under Callback, named after the device (e.g., Callback\Standard Modem (COM2)). If
you set the callback mode to "always call me back at this number," the number you
supply for that device goes in the subkey's Number value. This provides a convenient
way to preset a callback number, perhaps as part of a mass laptop installation.

11.7.6.5 Microsoft\Windows\CurrentVersion

A surprising amount of code originally developed for Win95 has found its way into
NT 4.0 and ultimately Windows 2000. In fact, Microsoft's eventual goal is to unify
the Win9x and NT lines until what's left is a nice Win9x interface over the security,
performance, and scalability of NT. To facilitate this merging, Microsoft included a
compatibility key, Microsoft\Windows\CurrentVersion, in the NT 4.0 and Windows
2000 Registries. This allows applications that use this key on Win95, like Explorer
and Internet Explorer, to run on NT and Windows 2000 systems without modification.

11.7.6.6 Microsoft\Windows NT\CurrentVersion

Much like the Microsoft\Windows subkey which holds information for applications
that were designed to run on Win95 machines, this Windows 2000 subkey contains
subkeys that represent different versions of Windows 2000, NT 4.0 and earlier. Most
notably, the CurrentVerions subkey stores user-specific configuration data for
programs that are designed to run on the latest version of Windows 2000.

The Microsoft\Windows NT key appears to be a migration of the previous NT key
HKCU\Microsoft\Windows NT. They both contain subkeys that represent the current
operating system versions (see the next section) and contain similar keys and values,
with the following Windows 2000 additions:

Event Viewer

Event Viewer is a Windows 2000 MMC snap-in that displays event logs
written to by Windows 2000 applications and services. The Event Viewer
subkey stores information about the configuration of this snap-in.

Extensions

Through Window Explorer (or the Registry), you can associate filename
extensions with programs that are run when you open the file. Values under
this subkey specify default command line executions for filename extensions
that are not associated with programs.

PrinterPorts

Entries under this subkey contain information about printers, such as name,
driver name, port, and timeout value, that the client is connected to.

Task Manager

Task Manager is a performance tool that displays application, process, and
performance information (you've likely used it if you've ever had to terminate
a application that wasn't responding). This subkey contains Task Manager
preferences.

TrueType

This subkey contains information about the display of TrueType fonts.

11.7.7 HKCU\Microsoft\Windows NT\CurrentVersion

This key is pretty much a mixed bag: it holds user-specific settings that have no home
elsewhere. For example, NT's Server Manager applications store their settings in a
subkey of Windows NT\CurrentVersion\Network even though they might more
properly live under HKCU\Software\Microsoft\ServerManager or somesuch.

Devices

The Devices subkey contains one value entry for each installed printer on a
system. Apart from that, it doesn't seem to do anything else.

Network

The Event Viewer, Server Manager, and User Manager all keep their small
sets of user-specific settings here. The only other interesting item is the
PersistentConnections subkey, which contains a list of shares that NT should
reconnect when the user logs in again.

Program Manager

The entries under this key are retained for older applications that expect to
find things here.

Windows

Just as with Program Manager, this key primarily exists for backward
compatibility, especially with the WOW subsystem.

Winlogon

Alone among the subkeys of Windows NT\CurrentVersion, Winlogon actually
has three useful values beneath it. They duplicate similar entries in
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon, but
these entries apply only to the currently logged in user.

ParseAutoexec

This REG_DWORD specifies whether to parse autoexec.bat when the user
logs in, resulting in the autoexec.bat path statement being appended to the
system path created by Windows NT. 1 (the default) means yes; means no.

ProfileType

Specifies the profile type of the current user's profile. A 1 means it's a local
profile; other values indicate a cached, roaming, or mandatory roaming
profile.

RunLoginScriptSync

If this REG_DWORD is set to 1, any logon script for this user is run before
the desktop and shell are started. This is the default. Setting the value to allows
the logon script process to run in parallel with the shell as it starts.

11.8 HKCC

HKCC is just a pointer that links to the current hardware profile at
HKLM\SYSTEM\CurrentControlSet\Hardware Profiles (HKLM\SYSTEM\Hardware
Profiles\Current on NT). Under Win9x, HKCC is dynamically generated and filled
with the list of VxDs and other drivers that are currently active. Since NT has no
comparable way to load such a list, HKCC exists as a compatibility aid.

11.9 HKDD

HKDD exists primarily as a convenience for software developers whose programs
were originally designed for Win95. Applications written for Windows NT and
Windows 2000 (notably the Performance Monitor) don't get data out of HKDD;
instead, they use HKEY_PERFORMANCE_DATA. However, Win95 code that uses
subkeys of HKDD will still work, since the NT family remaps HKDD data into the
appropriate subkeys elsewhere in the Registry.

Appendix A. User Configuration Group Policy Objects

Chapter 7, detailed the process of creating, managing, and distributing group policy
settings. However, it's not enough to know how to do these things; you also have to
know which policy settings exist and what they do--hence this appendix. The GPO
settings listed in this appendix appear in the User Configuration node beneath each
domain and local policy object.

A.1 Administrative Templates
User Configuration\Administrative Templates

A.1.1 Windows Components
User Configuration\Administrative Templates\Windows Components

A.1.1.1 NetMeeting
User Configuration\Administrative Templates\Windows
Components\NetMeeting
Enable Automatic Configuration

This policy configures NetMeeting to download settings from the URL listed
in the Configuration URL text box each time it starts.

Disable Directory Services

Controls the directory feature of NetMeeting. If you enable this policy, users
can't log on to a directory (ILS) server when NetMeeting starts and users can't
view or place calls via a NetMeeting directory.

Prevent adding Directory servers

If you enable this policy, users can't add directory (ILS) servers to the list of
those they can use to place calls.

Prevent viewing Web directory

If you enable this policy, users can't view directories as web pages in a
browser.

Set the intranet support Web page

Controls the URL NetMeeting displays when users choose the Help Online
Support command.

Set the NetMeeting home page

Controls the URL NetMeeting displays when users choose the Microsoft
Home Page command under Help Microsoft on the Web.

Set Call Security options

Controls security levels for incoming/outgoing NetMeeting calls.

Prevent changing Call placement method

Controls how calls are placed--either directly or via a gatekeeper server--and
prevents users from changing how calls are placed once the policy is enabled.

Prevent automatic acceptance of Calls

When enabled, this policy stops users from turning on automatic acceptance of
incoming calls, which ensures that other users don't call and connect to
NetMeeting when the user isn't present.

Prevent sending files

When enabled, this policy stops users from sending files to others in a
conference.

Prevent receiving files

When enabled, this policy stops users from receiving files from others in a
conference.

Limit the size of sent files

This policy limits the size of files users send to others in a conference.

Disable Chat

Enabling this feature disables NetMeeting's Chat feature.

Disable NetMeeting 2.x Whiteboard

Enabling this feature disables NetMeeting's 2.x whiteboard feature (available
for compatibility).

Disable NetMeeting Whiteboard

Enabling this feature disables NetMeeting's T.126 whiteboard feature.

A.1.1.2 Internet Explorer
User Configuration\Administrative Templates\Windows
Components\Internet Explorer
Search: Disable Search Customization

Changes the appearance of the Customize button in the Search Assistant so
that it's dimmed. Enabling this policy prevents users from making changes to
the Search Assistant settings.

Search: Disable Find Files via F3 within the browser

When you enable this feature, users can't use the F3 key to search in Internet
Explorer or Windows Explorer. This policy pertains to situations where
administrators want to restrict users from searching the Internet or the hard
disk.

Disable external branding of Internet Explorer

Enabling this policy ensures that third parties (such as ISPs) can't customize
(or brand) the Internet Explorer and Outlook Express logos and title bars.

Disable importing and exporting of favorites

When you enable this policy, users can't export or import favorite links by
using the Import/Export wizard.

Disable changing Advanced page settings

When you enable this policy, users can't change settings on the Advanced tab
in the Internet Options dialog box. This policy prevents users from changing
advanced Internet settings.

Disable changing home page settings

Controls the home page. If you enable this policy, users can't change their
home page.

Use Automatic Detection for dial-up connections

When you enable this policy, Automatic Detection is used automatically to
configure dial-up settings for users. Automatic Detection customizes the
browser the first time it's started using a DHCP (Dynamic Host Configuration
Protocol) or DNS (Domain Name System) server.

Disable caching of Auto-Proxy scripts

When you enable this feature, automatic proxy scripts aren't stored in the
users' cache. These scripts interact with a server to automatically configure
users' proxy settings.

Display error message on proxy script download failure

Enabling this feature ensures that error messages are displayed to users if
problems occur with proxy scripts.

Disable changing Temporary Internet files settings

Controls the browser cache settings. If you enable this policy, users can't
change the browser cache settings such as the location of the Temporary
Internet Files folder. Note that the Disable the General page removes the
General tab from interface.

Disable changing history settings

Controls the history settings. If you enable this policy, users can't change the
history settings for the browser. Note that the Disable the General page
removes the General tab from interface.

Disable changing color settings

Controls the default web page colors. If you enable this policy, users can't
change the default background and text color of web pages. Note that the
Disable the General page removes the General tab from interface.

Disable changing link color settings

Controls the color of links on web pages. If you enable this policy, users can't
change the colors of their browser's web links. Note that the Disable the
General page removes the General tab from interface.

Disable changing font settings

Controls the font settings. If you enable this policy, users can't change the font
setting on their browsers. Note that the Disable the General page removes the
General tab from interface.

Disable changing language settings

Controls the language settings. If you enable this policy, users can't change the
language settings on their browsers. Note that the Disable the General page
removes the General tab from interface.

Disable changing accessibility settings

Controls the accessibility settings. If you enable this policy, users can't change
the accessibility settings on their browsers. Note that the Disable the General
page removes the General tab from interface.

Disable Internet Connection wizard

Controls the Internet Connection wizard. If you enable this policy, users can't
use the Internet Connection wizard. Note that this policy overlaps with the
Disable the Connections page, which removes the Connections tab from the
interface.

Disable changing connection settings

Controls the connection setting. If you enable this policy, users can't use the
connections settings on their browsers. Note that this policy overlaps with the
Disable the Connections page, which removes the Connections tab from the
interface.

Disable changing proxy settings

Controls the proxy settings. If you enable this policy, users can't change their
proxy settings. Note that this policy overlaps with the Disable the Connections
page, which removes the Connections tab from the interface.

Disable changing Automatic Configuration settings

Controls automatic configuration settings. Administrators can use automatic
configuration to update browser settings periodically. If enabled, this policy
prevents users from changing automatic configuration settings. Note that this
policy overlaps with the Disable the Connections page, which removes the
Connections tab from the interface.

Disable changing ratings settings

Controls the ratings that help determine the type of Internet content that can be
viewed. Enabling this policy prevents users from changing these ratings
settings. Note that the Disable the Content page policy removes the Content
tab from Internet Explorer in the Control Panel and takes precedence over this
policy.

Disable changing certificate settings

Controls the certificates that verify the identity of software publishers.
Enabling this policy prevents users from changing the certificate settings in
Internet Explorer. Note that the Disable the Content page policy removes the
Content tab from Internet Explorer in the Control Panel and takes precedence
over this policy.

Disable changing Profile Assistant settings

Controls the Profile Assistant settings. If you enable this policy, users can't
change the Profile Assistant settings. The Disable the Content page policy
removes the Content tab from Internet Explorer in the Control Panel and takes
precedence over this policy.

Disable AutoComplete for forms

Enabling this policy disables Internet Explorer's AutoComplete feature. This
features automatically completes information in forms for users, such as
names and addresses. Note that the Disable the Content page policy removes
the Content tab from Internet Explorer in the Control Panel and takes
precedence over this policy.

Do not allow AutoComplete to save passwords

If you enable this policy, usernames and passwords aren't completed
automatically for users. Additionally, users can't choose whether or not their
browser remembers passwords automatically. Note that the Disable the
Content page policy removes the Content tab from Internet Explorer in the
Control Panel and takes precedence over this policy.

Disable changing Messaging settings

If you enable this policy, users can't change their default programs for
messaging tasks such as email. Note that the Disable Programs page policy
removes the Programs tab and takes precedence over this policy.

Disable changing Calendar and Contact settings

Controls the default programs for managing schedules and contacts. If you
enable this policy, users can only use the default programs for managing their
schedules and contacts if they default programs are installed.

Disable the Reset Web Settings feature

If you enable this policy, users can't restore their default settings for their
home and search pages. Note that the Disable Programs page policy removes
the Programs tab and takes precedence over this policy.

Disable changing default browser check

Controls whether Internet Explorer checks to see if it is the default browser.
When Internet Explorer performs this check, users are prompted to choose a
default browser. This policy is suggested for companies that want to control
their organization's default browser.

Identity Manager: Prevent users from using Identities

Controls the ability to configure unique identities by using Identity Manager.
Enabling this policy prevents users from creating new identities, managing
existing identities, or switching identities.

A.1.1.2.1 Internet Control Panel
User Configuration\Administrative Templates\Windows
Components\Internet
Explorer\Internet Control Panel
Disable the General page

If you enable this policy, the General tab is removed from the Internet Options
dialog box. If you remove the General tab, users can't see and change settings
for the home page, the cache, history, web page appearance, and accessibility.

Disable the Security page

If you enable this policy, the Security tab is removed from the Internet Options
dialog box. If you remove the Security tab, users can't see and change settings
for security zones, such as scripting, downloads, and user authentication.

Disable the Content page

If you enable this policy, the Content tab is removed from the Internet Options
dialog box. If you remove the Content tab, users can't see and change ratings,
certificates, AutoComplete, Wallet, and Profile Assistant settings.

Disable the Connections page

If you enable this policy, the Connections tab is removed from the Internet
Options dialog box. If you remove the Connections tab, users can't see and
change connection and proxy settings.

Disable the Programs page

If you enable this policy, the Programs tab is removed from the Internet
Options dialog box. If you remove the Connections tab, users can't see and
change default settings for Internet programs.

Disable the Advanced page

If you enable this policy, the Advanced tab is removed from the Internet
Options dialog box. If you remove the Connections tab, users can't see and
change advanced Internet settings, such as security, multimedia, and printing.

A.1.1.2.2 Offline Pages
User Configuration\Administrative Templates\Windows
Components\Internet
Explorer\Offline Pages
Disable adding channels

If you enable this policy, users can't add channels to Internet Explorer or or
content that's based on a channel to their desktop. Channels are web sites that
are updated automatically by channel providers for users who have added the
channel to their web browsers.

Disable removing channels

If you enable this policy, users can't disable channel synchronization in
Internet Explorer. Channels are web sites that are updated automatically by
channel providers for users who have added the channel to their web browsers.
This policy is recommended for administrators who wish to ensure that users'
computers are being updated uniformly.

Disable adding schedules for offline pages

If you enable this policy, users can't specify web pages for offline viewing or
add new schedules for downloading offline content. This policy helps
administrators who wish to control their server load for downloading content.

Disable editing schedules for offline pages

If you enable this policy, users can't edit an existing schedule to download
web pages for offline viewing or display the schedule properties of pages that

have been set up for offline viewing. This policy helps administrators that
wish to control their server load for downloading content.

Disable removing schedules for offline pages

If you enable this policy, users can't clear the preconfigured settings for web
pages to be downloaded for offline viewing. It helps administrators who wish
to control their server load for downloading content.

Disable offline page hit logging

Enabling this policy disables any channel logging settings set by channel
providers in the channel definition format (.cdf) file; this prevents channel
providers from recording information about when their channel pages are
viewed by users who are working offline.

Disable all scheduled offline pages

Enabling this policy disables existing schedules for downloading web pages
for offline viewing. This policy helps administrators who wish to control their
server load for downloading content. Note that the Hide Favorites Menu
policy takes precedence over this policy.

Disable channel user interface completely

If you enable this policy, users can't view the Channel bar interface. Channels
are web sites updated automatically by channel providers for users who have
added the channel to their web browsers.

Disable downloading of site subscription content

If you enable this policy, subscription content from sites users have subscribed
to aren't downloaded. Note that the Hide Favorites Menu policy and the
Disable editing schedules for offline pages policy takes precedence over this
policy.

Disable editing and creating of schedule groups

If you enable this policy, users can't add, edit, or remove schedules for offline
viewing of web pages and groups of web pages they've subscribed to. Note
that the Hide Favorites Menu policy and the Disable editing schedules for
offline pages policy takes precedence over this policy.

Subscription Limits

Controls the amount of information downloaded for offline viewing. Enabling
this policy lets you set limits for the size and number of pages users can
download.

A.1.1.2.3 Browser Menus

User Configuration\Administrative Templates\Windows
Components\Internet
Explorer\Browser menus
File menu: Disable Save As... menu option

If you enable this policy, users can't save web pages from the browser File
menu to their hard disk or to a network share. Note that this policy takes
precedence over the File Menu: Disable Save As Web Page Complete policy.

File menu: Disable New menu option

If you enable this policy, users can't use the File menu to open a new browser.
While the File menu user interface remains the same, the New menu item
doesn't work for users; they are informed that the command is not available to
them.

File menu: Disable Open menu option

If you enable this policy, users can't open a file or web page by using the File
menu in Internet Explorer. While the File-menu user interface remains the
same, the Open menu item won't work for users; they are informed the
command isn't available to them.

File menu: Disable Save As Web Page Complete

If you enable this policy, users can't save the entire contents of a web page,
including graphics, scripts, linked files, and other elements. Users can save
content from a web page.

File menu: Disable closing the browser and Explorer windows

If you enable this policy, users can't close Internet Explorer and Windows
Explorer from either the File menu or the X (close) button in the upper-right
corner of the interface.

View menu: Disable Source menu option

If you enable this policy, users can't view the HTML source of web pages by
clicking the Source command on the View menu. In order to prevent users
from viewing source code at all, also refer to the Disable context menu policy.

View menu: Disable Full Screen menu option

If you enable this policy, users can't display their browsers in full-screen
(kiosk) mode, without the standard toolbar. This policy is useful for
organizations with many beginning users, because using the browser without
the toolbar can be confusing for beginners.

Hide Favorites menu

If you enable this policy, users can't add, remove, or edit the list of Favorite
links. This policy is useful for organizations that wish to keep a consistent list
of Favorites across their company.

Tools menu: Disable Internet Options... menu option

If you enable this policy, users can't open the Internet Options dialog box from
the Tools menu in Internet Explorer. This prevents users from changing
options such as default home page, cache size, and connection and proxy
settings from the Tools menu.

Help menu: Remove "Tip of the Day" menu option

If you enable this policy, users can't view or change the Tip of the Day; the
Tip of the Day command is removed from the Help menu.

Help menu: Remove "For Netscape Users" menu option

If you enable this policy, tips for users who are switching from Netscape aren't
displayed. This policy doesn't remove the tips for Netscape users from the
Internet Explorer Help file.

Help menu: Remove "Tour" menu option

If you enable this policy, users can't run the Internet Explorer Tour from the
Help menu in Internet Explorer; the Tour menu item is removed from the Help
menu.

Help menu: Remove "Send Feedback" menu option

If you enable this policy, users can't send feedback to Microsoft by clicking
the Send Feedback menu item on the Help menu; the Send Feedback menu
item is removed from the Help menu.

Disable Context menu

If you enable this policy, users don't see context menus when they right-click
their mouse while using the browser. This policy is useful if you need to make
certain that users don't run commands you have removed from other parts of
the interface.

Disable Open in New Window menu option

If you enable this policy, users can't open a link in a new browser window. In
order to prevent users from opening new browser windows further, also refer
to the File menu: Disable Menu option policy.

Disable Save this program to disk option

If you enable this policy, users can't save files or programs to the hard disk
Internet Explorer has downloaded.

A.1.1.2.4 Toolbars
User Configuration\Administrative Templates\Windows
Components\Internet
Explorer\Toolbars
Disable customizing browser toolbar buttons

Controls the buttons that appear on the Internet Explorer and Windows
Explorer standard toolbars. For more information on toolbar policies, refer to
the Disable customizing browser toolbars policy.

Disable customizing browser toolbars

Controls which toolbars are displayed in Internet Explorer and Windows
Explorer. For more information on toolbar policies, refer to the Disable
customizing browser toolbar buttons policy.

Configure Toolbar Buttons

Controls which buttons are displayed on the standard toolbar in Internet
Explorer. This policy allows you to select the buttons that are displayed on the
toolbar by checking or clearing a checkbox for each button.

A.1.1.2.5 Persistance Behavior
User Configuration\Administrative Templates\Windows
Components\Internet
Explorer\Persistance Behavior
File size limits for Local Machine zone

Controls the amount of storage a page or site using the DHTML Persistence
behavior can use for the Local Computer security zone. This policy allows you
to set the persistence storage amount per domain or per document for this
security zone.

File size limits for Intranet zone

Controls the amount of storage a page or site using the DHTML Persistence
behavior can use for the Local Intranet security zone. This policy allows you
to set the persistence storage amount per domain or per document for this
security zone.

File size limits for Trusted Sites zone

Controls the amount of storage a page or site using the DHTML Persistence
behavior can use for the Trusted Sites security zone. This policy allows you to
set the persistence storage amount per domain or per document for this
security zone.

File size limits for Internet zone

Controls the amount of storage a page or site using the DHTML persistence
behavior can use for the Internet security zone. This policy allows you to set

the persistence storage amount per domain or per document for this security
zone.

File size limits for Restricted Sites zone

Controls the amount of storage a page or site using the DHTML Persistence
behavior can use for the Restricted Sites security zone. This policy allows you
to set the persistence storage amount per domain or per document for this
security zone.

A.1.1.2.6 Administrator Approved Controls
User Configuration\Administrative Templates\Windows
Components\Internet
Explorer\Administrator Approved Controls

Databinding
User Configuration\Administrative Templates\Windows
Components\Internet
Explorer\Administrator Approved Controls\Databinding
RDS

This policy allows web developers to move data from a server to a client
application or web page, manipulate the data on the client, and return updates
to the server in a single round trip. If you enable this policy, it gives
administrator approval to the Remote Data Service (RDS) ActiveX control.

TDC

This policy allows data to be displayed in a delimited text file within tables or
within a form and allows data to be sorted and filtered by the browser without
interaction with the web server. You can run this control in security zones
where you specify that administrator-approved controls can be run if you
enable this policy.

XML

This policy marks the Extensible Markup Language (XML) Data Source
Object as administrator-approved. This control enables developers to use data-
binding functionality in Dynamic HTML to connect to XML data and provide
it to an HTML page. If you enable this policy, you can run this control in
security zones where you specify that administrator-approved controls can be
run.

Internet Explorer
User Configuration\Administrative Templates\Windows
Components\Internet
Explorer\Administrator Approved Controls\Internet Explorer
Active Setup

Enabling this policy marks Active Setup ActiveX control as administrator-
approved. If a connection is lost during setup, Active Setup recovers the setup

process. If you enable this policy, you can run this control in security zones
where you specify that administrator-approved controls can be run.

Media Player

Enabling this policy marks Media Player ActiveX control as administrator-
approved. Sounds, videos, and other media are made possible by the use of
this control.

Extras

Enabling this policy marks this group of Microsoft ActiveX controls (the
Extras) that extend browser functionality as administrator-approved. If you
enable this policy, you can run this control in security zones where you specify
that administrator-approved controls can be run.

Menu Controls

Enabling this policy marks a set of Microsoft ActiveX controls used to
manipulate pop-up menus in the browser as administrator-approved.

Microsoft Agent

Enabling this policy marks the Microsoft Agent ActiveX control as
administrator-approved. If you enable this policy, you can run this control in
security zones where you specify that administrator-approved controls can be
run.

Microsoft Chat

Enabling this policy marks the Microsoft Chat ActiveX control as
administrator-approved. Web authors can use this control to build text- and
graphical-based Chat communities for real-time conversations on the Web. If
you enable this policy, you can run this control in security zones where you
specify that administrator-approved controls can be run.

Webpost

Enabling this policy marks the WebPost ActiveX control as administrator-
approved. This control enables administrators to post web content to web
servers and is based on the Web Publishing wizard. If you enable this policy,
you can run this control in security zones where you specify that
administrator-approved controls can be run.

MSN
User Configuration\Administrative Templates\Windows
Components\Internet
Explorer\Administrator Approved Controls\MSN
Cache Preloader

Enabling this policy marks the Microsoft Network (MSN) Cache Preloader
ActiveX control as administrator-approved. This control enables
administrators to load a web page into the user's cache before the user views it.

Carpoint

Enabling this policy marks the Microsoft Network (MSN) Carpoint automatic
pricing control as administrator-approved. Users come to the Carpoint web
site to get information about vehicles and shop for vehicles. This control
enables users to benefit from enhanced pricing functionality on the Carpoint
web site.

Install

Enabling this policy marks the Microsoft Network (MSN) Install controls as
administrator-approved. Microsoft Network (MSN) Install controls install and
manage MSN services.

Investor

Enabling this policy marks Microsoft Network (MSN) Investor controls as
administrator-approved. Users can view updated lists of stocks on their web
pages with Microsoft Network (MSN) Investor controls. If you enable this
policy, you can run this control in security zones where you specify that
administrator-approved controls can be run.

MSNBC

Enabling this policy marks MSNBC controls as administrator-approved. Users
will benefit from enhanced browsing of news reports on the MSNBC web site
with MSNBC controls. If you enable this policy, you can run this control in
security zones where you specify that administrator-approved controls can be
run.

Music

Enabling this policy marks Microsoft Network (MSN) music controls as
administrator-approved. Users benefit from enhanced music services on the
MSN web site with Microsoft Network (MSN) music controls. If you enable
this policy, you can run this control in security zones where you specify that
administrator-approved controls can be run.

Quick View Access

Enabling this policy marks Quick View Access control as administrator-
approved. Quick View Access displays the number of email messages a user
has received on the user's taskbar and provides quick access to MSN sites. If
you enable this policy, you can run this control in security zones where you
specify that administrator-approved controls can be run.

A.1.1.3 Windows Explorer
User Configuration\Administrative Templates\Windows
Components\Windows Explorer
Enable Classic Shell

Enabling this policy prevents users from using Active Desktop, Web view,
and thumbnail views. The interface resembles and operates as Windows NT
4.0 does.

Remove the Folder Options menu item from the Tools menu

Enabling this policy prevents users from using the Folder Options dialog box,
which in turn prevents them from setting the properties of Windows Explorer,
including Active Desktop and Web view.

Remove File menu from Windows Explorer

Enabling this policy prevents users from using File menu but doesn't prevent
users from performing File menu tasks run with other methods.

Remove "Map Network Drive" and "Disconnect Network Drive"

Enabling this policy prevents users from connecting to other computers or
closing existing connections from Windows Explorer or My Network Places.
Note that users can still connect to other computers by typing the name of a
shared folder in the Run dialog box.

Remove Search button from Windows Explorer

Enabling this policy removes the Search button from Windows Explorer
toolbar in all the places the Windows Explorer toolbar is used.

Disable Windows Explorer's default context menu

If you enable this policy, users can't see or use shortcut menus when they
right-click on their desktop or in Windows Explorer.

Hides the Manage item on the Windows Explorer context menu

If you enable this policy, users can't see or use the Manage item in the
Windows Explorer context menu when they right-click Windows Explorer or
My Computer.

Only allow approved Shell extensions

If you enable this policy, Windows starts only user interface extensions the
system security or the users have approved. Administrators interested in
protecting their system from damage caused by programs that don't operate
correctly or are intended to cause harm may be interested in using this policy.

Do not track Shell shortcuts during roaming

Controls whether or not Windows 2000 traces shortcuts back to their sources
when it can't find the target on the user's system. If enabled, this policy
prevents the system from searching for the original path when it can't find the
target file in the current target path.

Hide these specified drives in My Computer

If you enable this policy, selected hard drives are removed from My
Computer, Windows Explorer, and My Network Places and the drive letters
representing the selected drives don't appear in the standard Open dialog.

Prevent access to drives from My Computer

If you enable this policy, users can't gain access to the content of selected
drives through My Computer. Users aren't prevented from using programs to
access local and network drives or from using the Disk Management snap-in
to view and change drive characteristics.

Hide Hardware tab

Enabling this policy removes the Hardware tab from the Mouse, Keyboard,
Sounds and Multimedia in Control Panel, and from the Properties dialog box
for all local drives.

Disable UI to change menu animation setting

Controls the Hide keyboard navigation indicators until the ALT key option in
Display in Control Panel is used. If you enable this policy, the underlining that
indicates a keyboard shortcut character (hot key) doesn't appear on menus
until you press ALT.

Disable UI to change keyboard navigation indicator setting

Enabling this policy marks Media Player ActiveX control as administrator-
approved. Sounds, videos, and other media are enabled with this control.

Disable DFS tab

When you enable this policy, the Distributed File System tab is removed from
Windows Explorer and from other programs that use the Windows Explorer
browser, such as My Computer.

No "Computers Near Me" in My Network Places

If you enable this policy, computers in the user's workgroup and domain are
removed from lists of network resources in Windows Explorer and My
Network Places. Note that users can still connect to computers in their
workgroup and domain with other methods, such as typing the share name in
the Run dialog box or using the Map Network Drive dialog box.

No "Entire Network" in My Network Places

If you enable this policy, computers outside the user's workgroup and domain
are removed from lists of network resources in Windows Explorer and My
Network Places. Note that users can still connect to computers in their
workgroup and domain with other methods, such as typing the share name in
the Run dialog box or using the Map Network Drive dialog box.

Maximum number of recent documents

Controls the number of shortcuts displayed in the Documents menu on the
Start menu. Note that the system displays 15 documents by default.

Do not request alternate credentials

If you enable this policy, users can't submit alternate logon credentials to
install a program.

Request credentials for network installations

Controls whether or not users are prompted for alternate logon credentials
during network-based installations. If you enable this policy, a Install Program
As Other User dialog box is displayed when files are being installed.

A.1.1.3.1 Common Open File Dialog
User Configuration\Administrative Templates\Windows
Components\Windows
Explorer\Common Open File Dialog
Hide the common dialog places bar

If you enable this policy, the shortcut bar is removed from the Open dialog
box. Administrators can use this policy to remove new features added in
Windows 2000, which causes the Open dialog box to resemble the Open
dialog box in Windows NT 4.0 and earlier versions.

Hide the common dialog back button

If you enable this policy, the Back button is removed from the Open dialog
box. Administrators can use this policy to remove new features added in
Windows 2000, which causes the Open dialog box to resemble the Open
dialog box in Windows NT 4.0 and earlier versions.

Hide dropdown list of recent files

If you enable this policy, the list of most recently used files is removed from
the Open dialog box. Administrators can use this policy to remove new
features added in Windows 2000, which causes the Open dialog box to
resemble the Open dialog box in Windows NT 4.0 and earlier versions.

A.1.1.4 Microsoft Management Console
User Configuration\Administrative Templates\Windows
Components\Microsoft
Management Console

Restrict the user from entering author mode

If you enable this policy, users can't enter author mode. This includes opening
the MMC in author mode, opening console files in author mode, and opening
any console files that open in author mode by default.

Restrict users to the explicitly permitted list of snap-ins

If you enable this policy, you can permit the use of Microsoft Management
Console (MMC) snap-ins on a select basis, which you determine, or not at all.
If you don't enable this policy, users can access all snap-ins.

A.1.1.4.1 Restricted/Permitted snap-ins
User Configuration\Administrative Templates\Windows
Components\Microsoft
Management Console\Restricted/Permitted snap-ins
Active Directory Users and Computers

Controls use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Active Directory Domains and Trusts

Controls use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Active Directory Sites and Services

Controls use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Certificates

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Computer Management

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

DCOM Config

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Device Manager

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Disk Management

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Disk Defragmenter

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Distributed File System

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Event Viewer

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can

prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

FAX Service

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Indexing Service

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Internet Authentication Service (IAS)

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

IAS Logging

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Internet Information Services

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

IP Security

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the

explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Local Users and Groups

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Performance Logs and Alerts

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

QoS Admission Control

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Removable Storage Management

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Routing and Remote Access

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Security Configuration and Analysis

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Security Templates

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Services

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Shared Folders

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

System Information

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Telephony

Controls the use of this snap-in. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Extension snap-ins
User Configuration\Administrative Templates\Windows
Components\Microsoft
Management Console\Restricted/Permitted snap-ins\Extension snap-ins
AppleTalk Routing

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Certification Authority

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Component Services

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Connection Sharing (NAT)

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Device Manager

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

DHCP Relay Management

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Event Viewer

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

IGMP Routing

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

IP Routing

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

IPX RIP Routing

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

IPX Routing

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

IPX SAP Routing

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Logical and Mapped Drives

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

OSPF Routing

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can

prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Public Key Policies

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

RAS Dialin - User Node

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Remote Access

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Removable Storage

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

RIP Routing

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Routing

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the

explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Send Console Message

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Service Dependencies

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

SMTP Protocol

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

SNMP

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

System Properties

Controls the use of this snap-in extension. This policy is affected by the setting
of the Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Group Policy
User Configuration\Administrative Templates\Windows
Components\Microsoft
Management Console\Restricted/Permitted snap-ins\Group Policy
Group Policy snap-in

Controls the use of this snap-in extension-allows or prohibits use of the Group
Policy snap-in. This policy is affected by the setting of the Restrict users to the

explicitly permitted list of snap-ins policy. You can prohibit users from
accessing any snap-ins by enabling the Restrict users to the explicitly
permitted list of snap-ins policy and not configuring any of the policies in this
folder.

Group Policy Tab for Active Directory Tools

Allows or prohibits use of Administrative Templates (Computers) Group
Policy folder. This policy is affected by the setting of the Restrict users to the
explicitly permitted list of snap-ins policy. You can prohibit users from
accessing any snap-ins by enabling the Restrict users to the explicitly
permitted list of snap-ins policy and not configuring any of the policies in this
folder.

Administrative Templates (Computers)

Allows or prohibits use of the Group Policy Tab for Active Directory Tools.
This policy is affected by the setting of the Restrict users to the explicitly
permitted list of snap-ins policy. You can prohibit users from accessing any
snap-ins by enabling the Restrict users to the explicitly permitted list of snap-
ins policy and not configuring any of the policies in this folder.

Administrative Templates (Users)

Allows or prohibits use of the Administrative Templates (Users) Group Policy
folder. This policy is affected by the setting of the Restrict users to the
explicitly permitted list of snap-ins policy. You can prohibit users from
accessing any snap-ins by enabling the Restrict users to the explicitly
permitted list of snap-ins policy and not configuring any of the policies in this
folder.

Folder Redirection

Allows or prohibits use of the Group Policies that use the Folder Redirection
client-side extension. This policy is affected by the setting of the Restrict users
to the explicitly permitted list of snap-ins policy. You can prohibit users from
accessing any snap-ins by enabling the Restrict users to the explicitly
permitted list of snap-ins policy and not configuring any of the policies in this
folder.

Remote Installation Services

Allows or prohibits use of the Group Policies that use the Remote Installation
Services client-side extension. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Scripts (Logon/Logoff)

Allows or prohibits use of the Group Policies that use the Logon/Logoff
Scripts client-side extension. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Scripts (Startup/Shutdown)

Allows or prohibits use of the Group Policies that use the Startup/Shutdown
Scripts client-side extension. This policy is affected by the setting of the
Restrict users to the explicitly permitted list of snap-ins policy. You can
prohibit users from accessing any snap-ins by enabling the Restrict users to the
explicitly permitted list of snap-ins policy and not configuring any of the
policies in this folder.

Security Settings

Allows or prohibits use of the policies in the Security Settings folder in Group
Policy. This policy is affected by the setting of the Restrict users to the
explicitly permitted list of snap-ins policy. You can prohibit users from
accessing any snap-ins by enabling the Restrict users to the explicitly
permitted list of snap-ins policy and not configuring any of the policies in this
folder.

Software Installation (Computers)

Allows or prohibits use of policies in the Software Installation (Computers)
folder in Group Policy. This policy is affected by the setting of the Restrict
users to the explicitly permitted list of snap-ins policy. You can prohibit users
from accessing any snap-ins by enabling the Restrict users to the explicitly
permitted list of snap-ins policy and not configuring any of the policies in this
folder.

Software Installation (Users)

Allows or prohibits use of policies in the Software Installation (Users) folder
in Group Policy. This policy is affected by the setting of the Restrict users to
the explicitly permitted list of snap-ins policy. You can prohibit users from
accessing any snap-ins by enabling the Restrict users to the explicitly
permitted list of snap-ins policy and not configuring any of the policies in this
folder.

A.1.1.5 Task Scheduler
User Configuration\Administrative Templates\Windows Components\Task
Scheduler
Hide Property Pages

When this policy is enabled, users can't view or change the properties of an
existing task, which simplifies task creation for beginning users. These

properties may include the program the task runs, details of its schedule, idle
time and power management settings, and its security context. Note that this
policy appears in both the Computer Configuration and User Configuration
folders, but the Computer Configuration folder takes precedence.

Prevent Task Run or End

When this policy is enabled, users can't start or stop tasks manually. This
means that users can't force tasks to end before they are finished or start tasks
manually. Note that this policy appears in both the Computer Configuration
and User Configuration folders, but the Computer Configuration folder takes
precedence.

Disable drag-and-drop

When you enable this policy, users can't use the drag-and-drop method to add
or remove tasks in the Scheduled Tasks folder.

Disable New Task Creation

When you enable this policy, users can't create new tasks. This policy also
prevents the system from responding when users try to move, paste, or drag
programs or documents into the Scheduled Tasks folder. Note that this policy
appears in both the Computer Configuration and User Configuration folders,
but the Computer Configuration folder takes precedence.

Disable Task Deletion

When you enable this policy, users can't delete tasks from the Scheduled
Tasks folder. Additionally, the system doesn't respond if users try to cut or
drag a task from the Scheduled Tasks folder. Note that this policy appears in
both the Computer Configuration and User Configuration folders, but the
Computer Configuration folder takes precedence.

Disable Advanced Menu

When this policy is enabled, users can't view or change the properties of
newly created tasks, which simplifies task creation for beginning users. These
properties may include the program the task runs, details of its schedule, idle
time and power management settings, and its security context. Note that this
policy appears in both the Computer Configuration and User Configuration
folders, but the Computer Configuration folder takes precedence.

Prohibit Browse

When this policy is enabled, users' newly scheduled tasks are limited to items
on the user's Start menu, and users can't change the scheduled program for
existing tasks. Note that this policy appears in both the Computer
Configuration and User Configuration folders, but the Computer
Configuration folder takes precedence.

A.1.1.6 Windows Installer
User Configuration\Administrative Templates\Windows
Components\Windows Installer
Always install with elevated privileges

Enabling this policy directs Windows Installer to use system permissions
when it installs any program on the system. This allows a user to install
programs that require access to directories the user may not have permission to
view or change. Note that this policy appears in both the Computer
Configuration and User Configuration folders; the policy must be enabled in
both folders to make the policy effective.

Search order

This policy allows you to set the order Windows Installer uses to search the
installation files. Note that Windows Installer searches the network first, then
removable media (floppy drive, CD-ROM, or DVD), and finally, the Internet
(URL) by default.

Disable rollback

When this policy is enabled, Windows Installer doesn't generate and save the
files it needs to reverse an interrupted or unsuccessful installation; it's unable
to record the original state of the computer. This policy reduces the amount of
temporary disk space required to install programs.

Disable media source for any install

When this policy is enabled, users can't install programs from removable
media including CD-ROMs, floppy disks, and DVDs. If you enable this
policy, it continues to run when the installation is running in the user's security
context.

A.1.2 Start Menu & Taskbar
User Configuration\Administrative Templates\Start Menu & Taskbar
Remove user's folders from the Start Menu

When you enable this policy, users can't see the user-specific (top) section of
the Start menu. This policy works best with redirected folders, because they
appear on the main (bottom) section of the Start menu. Removing them from
the top of the Start menu means that users don't see them twice in the Start
menu, which can be confusing.

Disable and remove links to Windows Update

When you enable this policy, users can't connect to the Windows Update web
site. The Windows Update web site is the online extension of Windows. The
site provides software updates to keep a user's system up to date in addition to
other information.

Remove common program groups from Start Menu

This policy removes items in the All Users profile from the Programs menu on
the Start menu. If you enable this policy, users see only items in the user's
profile in the Programs menu.

Remove Documents menu from Start Menu

When you enable this policy, users can't access the Documents menu from the
Start menu; it's removed. This prohibits users from opening recently used files.

Disable programs on Settings menu

Controls the user's ability to run Control Panel, Printers, and Network and
Dial-up Connections. If you enable this policy, the Control Panel, Printers, and
Network and Dial-up Connections are removed from My Computer and
Windows Explorer, and programs represented by these folders won't run.

Remove Network and Dial-up Connections from Start Menu

Controls the user's ability to run Network and Dial-up Connections. If you
enable this policy, users can't utilize Network and Dial-up Connections.

Remove Favorites menu from Start Menu

Controls the Favorites menu on the Start menu. The Favorites menu doesn't
appear on the Start menu by default; if you enable this policy users can't add it
manually.

Remove Search menu from Start Menu

If you enable this policy, the Search item on the Start menu and some
Windows Explorer search elements are removed or disabled. Additionally,
users won't get a response if they press the Application key (the key with the
Windows logo) + F.

Remove Help menu from Start Menu

If you enable this policy, the Help menu is removed from the Start menu only;
it isn't removed or affected in other locations.

Remove Run menu from Start Menu

If you enable this policy, the Run command is removed from the Start menu,
and the New Task (Run) command is removed from Task Manager.

Add Logoff to the Start Menu

This policy adds the Log Off <username> item to the Start menu and prevents
users from removing it. Be aware that this policy affects only the Start menu;
it doesn't affect the Log Off item on the Windows Security dialog box.

Disable Logoff on the Start Menu

Enabling this policy removes the Log Off <username> item from the Start
menu and the Display Logoff item from Start Menu Options. Also, users can't
restore the Log Off <username> item.

Disable and remove the Shut Down command

When you enable this policy, users can't shut down or restart Windows. This
policy doesn't prevent users from running other programs to shut Windows
down, but it does prevent them from using the Windows interface to shut
down.

Disable drag-and-drop context menus on the Start Menu

When you enable this policy, users can't reorder or remove items from the
Start menu using the drag-and-drop method. This policy also removes the
context menus from the Start menu. Users can use other means to customize
the Start menu or to perform context menu tasks.

Disable changes to Start Menu & Taskbar Settings

Enabling this policy removes the Start Menu & Taskbar item from Settings on
the Start menu and prevents users from opening the Taskbar Properties dialog
box.

Disable context menu for taskbar

This policy eliminates the menus that appear when you right-click the taskbar
and items on the taskbar for users.

Do not keep history of recently opened documents

If you enable this policy, the system doesn't save shortcuts to the Documents
menu. Users use these shortcuts to quickly open their most recently used
documents.

Clear history of recently opened documents on exit

Controls whether the system deletes the contents of the Documents menu on
the Start menu when the user logs off. If you enable this policy, users will
have an empty documents menu when they log on.

Disable personalized menus

Enabling this policy turns off personalized menus for users. Personalized
menus work by moving recently used items to the top of the menu and hiding
the remaining items.

Disable user tracking

If you enable this policy, the system doesn't track the programs users run, the
paths they navigate, and the documents they open. Windows 2000 uses
tracking information to customize features.

Add "Run in Separate Memory Space" check box to Run dialog box

Allows users to run a 16-bit program in a dedicated (not shared) Virtual DOS
Machine (VDM) process. This policy lets users run a 16-bit program in its
own dedicated NTVDM process.

Do not use the search-based method when resolving shell shortcuts

If you enable this policy, the system doesn't perform a search of the target
drive when it can't find a target file for a shortcut (.lnk).

Do not use the tracking-based method when resolving shell shortcuts

If you enable this policy, the system doesn't try to locate a file by using its file
ID if a the system can't find a target file for a shortcut. Note that FAT
partitions don't have this ID tracking and search capability, as a result, this
policy doesn't apply.

Gray unavailable Windows Installer programs Start Menu shortcuts

If you enable this policy, Start menu shortcuts to partially installed programs
are displayed in gray text. This helps users quickly distinguish between fully
and partially installed programs.

A.1.3 Desktop
User Configuration\Administrative Templates\Desktop
Hide all icons on Desktop

If you enable this policy, icons, shortcuts, and other default and user-defined
items are removed from the desktop. These include Briefcase, Recycle Bin,
My Computer, and My Network Places. Removing these icons doesn't prevent
users from opening these items by other means.

Remove My Documents icon from desktop

If you enable this policy, the My Documents icon is removed from the
desktop, from Windows Explorer, from programs that use the Windows
Explorer windows, and from the standard Open dialog box. Removing these
icons doesn't prevent users from opening My Documents by other means and
doesn't remove My Documents from the Start menu.

Remove My Documents icon from Start Menu

If you enable this policy, the My Documents icon is removed from the Start
menu. Removing this icon doesn't prevent users from opening My Documents
by other means.

Hide My Network Places icon on desktop

If you enable this policy, the My Network Places icon is removed from the
desktop. Removing this icon doesn't prevent users connecting to the network
or browsing for shared computers on the network. Removing this icon doesn't
prevent users from starting Internet Explorer by other means.

Do not add shares from recently opened documents to the My Network Places folder

Enabling this policy prevents remote-shared folders from being added to My
Network Places when you open a document in the shared folder.

Prohibit user from changing My Documents path

If you enable this policy, users can't change the path to the My Documents
folder by typing a new path in the Target box of the Properties dialog box for
My Documents.

Disable adding, dragging, dropping and closing the Taskbar's toolbars

Controls the manipulation of desktop toolbars. This policy prevents users from
adding or removing toolbars from the desktop and dragging toolbars on to or
off of docked toolbars when enabled.

Disable adjusting desktop toolbars

Enabling this policy prevents users from adjusting the length of desktop
toolbars or repositioning items or toolbars on docked toolbars.

Don't save settings at exit

Enabling this policy prevents users from saving such changes as the positions
of open windows and the size and position of the taskbar. Note that shortcuts
placed on the desktop are always saved.

A.1.3.1 Active Directory
User Configuration\Administrative Templates\Desktop\Active Directory
Maximum size of Active Directory searches

With this policy, you can set the maximum number of objects the system
displays in response to a command to browse or search Active Directory. This
policy protects your network and domain controller from the sometimes
negative effects of expansive searches.

Enable filter in Find dialog box

If you enable this policy, the filter bar appears automatically above the results
of an Active Directory search. The filter bar allows users to quickly refine
their search results.

Hide Active Directory folder

If you enable this policy, the Active Directory folder doesn't appear in My
Network Places. The Active Directory folder displays Active Directory objects
in a browse window.

A.1.3.2 Active Desktop
User Configuration\Administrative Templates\Desktop\Active Desktop
Enable Active Desktop

Controls use of Active Desktop. If you enable this policy, Active Desktop is
enabled, and users can't disable it. Note that Active Desktop is disabled by
default, but users can choose to enable it if this policy isn't in effect.

Disable Active Desktop

Controls use of Active Desktop. If you enable this policy, it locks down the
configuration you establish by using other policies in this folder. Users can't
enable or disable the Active Desktop themselves.

Prohibit changes

This policy allows you to remove Active Desktop content and prevents users
from adding Active Desktop content. Note that this policy doesn't disable
Active Desktop.

Disable all items

This policy allows you to removes Active Desktop content and prevent users
from adding Active Desktop content. Note that this policy doesn't disable
Active Desktop.

Prohibit adding items

If you enable this policy, users can't add web content to their Active Desktop;
they can, however, remove web content from their Active Desktop. Note that
this policy will not remove any existing content from Active Desktop.

Prohibit editing items

If you enable this policy, users can't change the properties of web content
items on their Active Desktop.

Prohibit deleting items

If you enable this policy, users can only remove--not delete--web content from
their Active Desktop. Note that with this policy enabled, users can still add
content to their Active Desktop.

Prohibit closing items

If you enable this policy, users can't remove web content from their Active
Desktop. This means that items added to the Active Directory remain on the
desktop at all times; they can't be closed.

Add/Delete items

You can use this policy to add or delete certain items to or from users'
desktops. Note that if policies allow, users can still add or delete items from
their desktops.

Active Desktop Wallpaper

Controls the desktop background (or wallpaper) displayed on all users'
desktops. This policy allows you to specify users' wallpaper and the
characteristics of the wallpaper--whether it is centered, tiled, and so on.

Allow only bitmapped wallpaper

Limits users to only bitmap images for desktop backgrounds, or wallpaper.
Wallpaper doesn't load if it has another image format, such as JPEG, GIF,
PNG, or HTML.

A.1.4 Control Panel
User Configuration\Administrative Templates\Control Panel
Disable Control Panel

If you enable this policy, Control.exe doesn't run. Additionally, the Control
Panel menu item is removed from the Start menu, and the Control Panel folder
is removed from Windows Explorer.

Show only specified control panel applets

This policy lets you specify which Control Panel items and folders are visible
to users. Enabling this policy hides all the Control Panel items and folders,
except for the items and folders you specify. This policy can be overridden by
the Hide specified Control Panel applets policy.

Hide specified control panel applets

This policy lets you specify which Control Panel items and folders to hide
from users. This policy overrides the Show only specified Control Panel
applets policy.

A.1.4.1 Add/Remove Programs
User Configuration\Administrative Templates\Control Panel\Add/Remove
Programs
Disable Add/Remove Programs

Controls use of Add/Remove Programs. Users can install, uninstall, repair,
add, and remove features and components of Windows 2000 and a wide

variety of Windows programs with the Add/Remove Programs feature. This
feature is enabled for users by default.

Hide Change or Remove Programs page

Enabling this policy removes the Change or Remove Programs button from
the Add/Remove Programs bar, which prevents users from users uninstalling,
repairing, adding, or removing features of installed programs by this means.

Hide Add New Programs page

Enabling this policy removes the Add New Programs button from the
Add/Remove Programs bar, which prevents users from installing programs
published or assigned by a system administrator by this means.

Hide Add/Remove Windows Components page

Enabling this policy removes the Add/Remove Windows Components button
from the Add/Remove Programs bar, which prevents users from configuring
installed services and using the Windows Component wizard to add, remove,
and configure components of Windows 2000 from the installation files by this
means.

Hide the "Add a program from CD-ROM or floppy disk" option

Enabling this policy removes the "Add a program from CD-ROM or floppy
disk" section from the Add New Programs page, which prevents users from
installing media with Add/Remove Programs. Note that this doesn't prevent
users from installing media by other means.

Hide the "Add programs from Microsoft" option

Enabling this policy removes the "Add programs from Microsoft" section
from the Add New Programs page, which prevents users from connecting to
the Windows update using Add/Remove Programs. Note that this doesn't
prevent users connecting to the Windows update by other means.

Hide the "Add programs from your network" option

If you enable this policy, users can't add or install published programs. Users
can't tell which programs have been published by the administrator and they
can't use Add/Remove Programs to install published programs. Published
programs are those programs that administrators make available to users.

Go directly to Components wizard

If you enable this policy users can't use the Set Up Services section of the
Add/Remove Windows Components Page. Instead, the Windows Component
wizard runs.

Disable Support Information

When you enable this policy, hyperlinks to the Support Info dialog box from
programs on the Change or Remove Programs page are removed. The
programs on the Change or Remove Programs page sometimes include a
hyperlink called "Click here for support information."

Specify default category for Add New Programs

If you enable this policy, you can choose one category of programs to display
when users display the Add New Programs page. Users can view additional
programs by using the Category drop-down list on the Add New Programs
page.

A.1.4.2 Display
User Configuration\Administrative Templates\Control Panel\Display
Disable Display in control panel

When you enable this policy, users can't use Display in the Control Panel; it
won't run.

Hide Background tab

This policy prevents users from changing the pattern and wallpaper on the
desktop through the Control Panel by removing the Background tab from
Display in Control Panel.

Disable Changing Wallpaper

This policy prevents users from adding or changing the background design (or
wallpaper) of the desktop.

Hide Appearance tab

This policy prevents users from changing colors or color schemes of the
desktop and windows through the Control Panel, because it removes the
Appearance tab from Display in Control Panel.

Hide Settings tab

This policy prevents users from adding, configuring, or changing the display
settings on the computer through the Control Panel, because it removes the
Settings tab from Display in Control Panel.

Hide Screen Saver tab

This policy prevents users from adding, configuring, or changing the screen
saver on the computer through the Control Panel, because it removes the
Screen Saver tab from Display in Control Panel.

No screen saver

Enabling this policy ensures that all screen savers are disabled. Further, users
can't change screen-saver options through the Control Panel.

Screen saver executable name

Enabling this policy ensures that all the computers in your system will display
the specific screen saver you designate. Further, users can't change the screen
saver because this policy disables the drop-down list of screen savers on the
Screen Saver tab in Display in Control Panel.

Password protect the screen saver

If you enable this policy all screen savers must be password-protected. If you
disable it, passwords can't be set up for screen savers. If you don't configure it,
users can set up a password if they like, but it isn't required.

A.1.4.3 Printers
User Configuration\Administrative Templates\Control Panel\Printers
Disable deletion of printers

Enabling this policy also prevents users from deleting local and network
printers. Users can delete printers by other means.

Disable addition of printers

Controls the methods that add local and network printers. Enabling this policy
also prevents users from adding printers by dragging a printer icon into the
Printers folder. Note that this policy doesn't prevent users from adding printers
with the Add Hardware wizard or from running additional programs to add
printers.

Browse the network to find printers

This policy allows users to search the network for shared printers through the
Add Printer wizard. When enabled, this policy allows users to select a printer
from a list the Add Printer wizard displays if users click "Add a network
printer", but don't fill in a printer name while searching.

Default Active Directory path when searching for printers

This policy allows you to choose the Active Directory location where users'
searches for printers begin when they use the Add Printer wizard. If you
enable this policy, users start their search at the location you specify instead of
starting at the default location. The root of the Active Directory is the default.

Browse a common web site to find printers

This policy adds a web link to the Add Printer wizard. The web link directs
users to a web page that they can install printers from.

A.1.4.4 Regional Options
User Configuration\Administrative Templates\Control Panel\Regional
Options
Restrict selection of Windows 2000 menus and dialogs language

If you enable this policy, users are restricted to either a specified language or
the default language, which is English.

A.1.5 Network
User Configuration\Administrative Templates\Network

A.1.5.1 Offline Files
User Configuration\Administrative Templates\Network\Offline Files
Disable user configuration of Offline Files

If you enable this policy, users can't enable, disable, or change the
configuration of Offline Files. This policy uses other policies in this folder to
lock down the configuration you set up.

Synchronize all offline files before logging off

Controls whether the system performs a quick or full synchronization of
offline files when users log off. Enabling this policy ensures that the system
performs a full synchronization.

Action on server disconnect

Controls whether network files remain available if the computer is suddenly
disconnected from the server hosting the files. Enabling this policy allows you
to use the Action box to specify whether or not users can work offline when
the server is inaccessible.

Non-default server disconnect actions

Controls how computers respond when they are disconnected from particular
offline file servers. This policy allows you to determine whether or not users
can access a server's files offline when they are disconnected from that
particular server. This policy takes precedence over default response, a user-
specified response, and the response specified in the Action on server
disconnect policy.

Disable "Make Available Offline"

Controls the ability to make network files and folders available offline. If you
enable this policy, users can't save files for offline use. The system isn't
prevented from saving local copies of files located on network shares
designated for automatic caching.

Prevent use of Offline Files folder

If you enable this policy, users can't access the Offline Files Folder to view or
open copies of network files stored on their computer. Users can still work
offline and save local copies of files available offline.

Administratively assigned offline files

Controls the specified files and folders available offline to users. This policy
provides a list of network files and folders users can access at any time for
offline use.

Disable reminder balloons

Enabling this policy removes the reminder balloons. Reminder balloons notify
users when they have lost the connection to a networked file and are working
on a local copy of the file.

Reminder balloon frequency

Controls when reminder balloon updates appear. You can use this policy to
change the default update interval, which displays a reminder balloon every 60
minutes for 15 seconds.

Initial reminder balloon lifetime

Controls how long the initial reminder balloon update appears onscreen. You
can use this policy to change the default display time for an initial reminder
balloon. Thirty seconds is the default time for the first reminder.

Reminder balloon lifetime

Controls how long reminder balloon updates appear for onscreen. You can use
this policy to change the default display time for an reminder balloon updates.
Fifteen seconds is the default time for the reminder balloon updates.

Event logging level

Controls the events that are recorded in the Offline Files feature records in the
event log. If you enable this policy, you can choose a number in between and
3 to determine the number of events you want recorded.

A.1.5.2 Network and Dial-up Connections
User Configuration\Administrative Templates\Network\Network and Dial-
up Connections
Enable deletion of RAS connections

Controls users' ability to delete private dial-up connections. Users can delete
their private RAS connections if you enable this policy. Users can also delete
their private RAS connections if you don't configure this policy.

Enable deletion of RAS connections available to all users

Controls users' ability to delete shared dial-up connections. Users can delete
their private RAS connections if you enable this policy. Note that the Enable
deletion of RAS connections policy overrides this policy if it's disabled.

Enable connecting and disconnecting a RAS connection

Controls users' ability to connect and disconnect from dial-up connections.
Enabling this policy allows users to connect and disconnect from dial-up
connections. Note that this doesn't prevent users from connecting and
disconnecting to a dial-up connection via the Status page.

Enable connecting and disconnecting a LAN connection

Controls users' ability to connect and disconnect local area connections.
Enabling this policy allows users to connect and disconnect from local area
connections. Note that this doesn't prevent users from connecting and
disconnecting to a dial-up connection via the Status page.

Enable access to properties of a LAN connection

Controls users' ability to view and change the properties of a local area
connection for users. Enabling this policy allows users to view and change the
properties of a local area connection. Note that this policy overrides any
policies that removes or disables parts of the Local Area Connection
Properties dialog box.

Allow access to current user's RAS connection properties

Controls users' ability to view and change the properties of private dial-up
connections. Private connections are only available to one user. Note that this
policy overrides other policies that remove or disable parts of the Dial-up
Connection Properties dialog box.

Enable access to properties of RAS connections available to all users

Controls users' ability to view and change the properties of dial-up
connections that are available to all users of the computer. Enabling this policy
allows users to view and change the properties. Note that this policy overrides
other policies that remove or disable parts of the Dial-up Connection
Properties dialog box.

Enable renaming of connections, if supported

Controls users' ability to rename dial-up and local area connections. Enabling
this policy allows users to rename all connections, including their private dial-
up connections.

Enable renaming of RAS connections belonging to the current user

Controls users' ability to rename their private dial-up connections. Enabling
this policy allows users to rename their private dial-up connection.

Enable adding or removing components of a RAS or LAN connection

Controls users' ability to add and remove network components. Enabling this
policy allows users to add and remove network components through the Install
and Uninstall buttons in Network and Dial-up Connections or through the
Windows Components wizard.

Allow connection components to be enabled or disabled

Controls users' ability to enable and disable the components used by dial-up
and local area connections. This policy adds a checkbox beside the name of
each component listed in each connection's Properties dialog box. Checking
the box enables the component.

Enable access to properties of components of a LAN connection

Controls users' ability to change the properties of components used by a local
area connection. Enabling this policy (or not configuring it at all) allows users
to change the properties. Note that some network components properties are
never configurable.

Enable access to properties of components of a RAS connection

Controls users' ability to view and change the properties of components used
by a dial-up connection. Enabling this policy (or not configuring it at all) will
allow users to change the properties. Note that some network components
properties are never configurable.

Display and enable the Network Connection wizard

Controls users' ability to create new network connections with the Network
Connection wizard. Enabling this policy allows users to utilize the Make New
Connection icon in Network and Dial-up Connections to start the Network
Connection wizard.

Enable status statistics for an active connection

Controls users' ability to view the Status page for an active connection.
Enabling this policy allows users to utilize the Status page to view information
about the connection and its activity and to disconnect and configure the
properties of the connection through buttons on this page.

Enable the Dial-up Preferences item on the Advanced menu

If you enable this policy, the Dial-up Preferences item on the Advanced menu
in Network and Dial-up Connections is enabled. This allows users to create

and change connections before logon and to configure AutoDialing and
callback features.

Enable the Advanced Settings item on the Advanced menu

If you enable this policy, the Advanced Settings item on the Advanced menu
in Network and Dial-up Connections are enabled. This allows users to view
and change bindings, the order that the computer accesses connections,
network providers, and print providers.

Allow configuration of connection sharing

Controls the ability to enable, disable, and configure the Internet Connection
Sharing feature of a dial-up connection. If this policy is enabled,
administrators and power users can manipulate the Internet Connections
Sharing feature. Internet Connection Sharing provides network services to the
network and allows users to configure their system as an Internet gateway for
a small network.

Allow TCP/IP advanced configuration

Controls users' ability to use Network and Dial-up Connections to configure
TCP/IP, DNS, and WINS settings. Enabling this policy allows users to open
the Advanced TCP/IP Settings Properties page and modify IP settings.

A.1.6 System
User Configuration\Administrative Templates\System
Don't display welcome screen at logon

If you enable this policy, the "Getting Started with Windows 2000" welcome
screen is hidden from users. Users can access this screen from the Start menu.
Note that this policy appears in both the Computer Configuration and User
Configuration folders, but the Computer Configuration folder takes
precedence.

Century interpretation for Year 2000

Controls how two-digit years are interpreted by programs. Two-digit numbers
greater than the number you specify (the default number is 29) are preceded
by 19, and two-digit numbers less than the number specified are preceded by
20.

Code signing for device drivers

Controls what happens when a user tries to install device driver files that aren't
digitally signed. You can set up the least secure response permitted on the
system with this policy. After you enable this policy, you can use the drop-
down box to specify the desired response: either Ignore, Warn, or Block.

Custom user interface

Controls the user interface for the system. With this policy, you can enable a
user interface other than the default Windows interface.

Disable the command prompt

If you enable this policy, users can't run the interactive command prompt,
Cmd.exe or run batch files (.cmd and .bat) on their computers. Keep in mind
that you don't want to disable batch files if your system uses logon, logoff,
startup, or shutdown batch file scripts, or if you have users that use Terminal
Services.

Disable registry editing tools

Enabling this policy disables the Windows registry editors, Regedt32.exe and
Regedit.exe. See the "Run only allowed Windows" applications policy for
more information.

Run only allowed Windows applications

If you enable this policy, you can control and limit the programs users run that
are started by the Windows Explorer process by creating a List of Allowed
Applications. After you enable this policy, the system allow users to run only
programs you have entered from your approved list.

Don't run specified Windows applications

If you enable this policy, you can prevent users from running programs that
are started by the Windows Explorer process by creating a List of Allowed
Applications. After you enable this policy, the system allows users to run only
programs you have entered from your approved list.

Disable Autoplay

Enabling this feature disables Autoplay. As a result, setup files for programs
and the music on audio media don't start immediately; users have to start the
setup files themselves. Note that this policy appears in both the Computer
Configuration and User Configuration folders, but the Computer
Configuration folder takes precedence.

Download missing COM components

If you enable this policy, your system searches the Active Directory for all
missing Component Object Model (COM) components a program requires.
Enabling this policy may cause programs to start or run slower, but the
programs won't suffer impaired functionality or stop functioning as a result of
missing COM components.

A.1.6.1 Logon/Logoff
User Configuration\Administrative Templates\System\Logon/Logoff
Disable Task Manager

Controls the Task Manager. If you enable this policy, users can't use the Task
Manager. The Task Manager's many functions include allowing users to start
and stop programs.

Disable Lock Computer

When you enable this policy, users can't lock the system.

Disable Change Password

When you enable this policy, users can't change their passwords on demand.
Users can still change their passwords when prompted by the system.

Disable Logoff

When you enable this policy, users can't log off the system using any method.

Run logon scripts synchronously

Enabling this policy ensures that logon script processing is complete before
the user starts working. If you enable this policy, the system waits for the
logon scripts to finish running before it starts the Windows Explorer interface
program and creates the desktop. Keep in mind that this policy can delay the
appearance of the desktop.

Run legacy logon scripts hidden

Enabling this policy ensures that the instructions in logon scripts written for
Windows NT 4.0 and earlier are hidden from users. By default, these scripts
run in a command window. This policy is recommended for beginning users.

Run logon scripts visible

Enabling this policy ensures that the instructions in logon scripts written for
Windows NT 4.0 and earlier run in a command window for users. This policy
is recommended for advanced users.

Run logoff scripts visible

Enabling this policy ensures that logoff scripts run in a command window for
users. This policy is recommended for advanced users.

Connect home directory to root of the share

Controls the definitions of the %HOMESHARE% and %HOMEPATH%
environment variables. Enabling this policy ensures that the system uses the
definitions for Windows NT. Disabling or not configuring this policy ensures
that the system uses the definitions that come with Windows 2000.

Limit profile size

This policy allows you to determine the maximum size of a roaming user
profile and the system's response when a roaming user profile reaches the
maximum size. The maximum size of a roaming user profile is unlimited if
you don't configure this policy.

Exclude directories in roaming profile

If you enable this policy, you can exclude folders normally included in the
user's profile. The History, Local Settings, Temp, and Temporary Internet
Files folders are excluded by default. Folders that you exclude aren't stored by
the network server on which the profile resides and won't follow users to other
computers.

Run these programs at user logon

Enabling this policy allows you to choose additional programs or documents
that Windows 2000 starts automatically when a user logs on to the system.
Note that this policy appears in both the Computer Configuration and User
Configuration folders and, if both are configured, the Computer Configuration
programs and documents starts first.

Disable the run once list

The system ignores the run-once list if you enable this policy. Note that this
policy appears in both the Computer Configuration and User Configuration
folders, but the Computer Configuration folder takes precedence.

Disable legacy run list

When you enable this policy, the system ignores any customized run lists for
Windows NT 4.0 and earlier. Thus, the items on these legacy lists aren't
started automatically by the system.

A.1.6.2 Group Policy
User Configuration\Administrative Templates\System\Group Policy
Group Policy refresh interval for users

Controls the background update rate for Group Policies in the User
Configuration folder. Enabling this policy allows you to change the update
rate from the default, which is an update in the background every 90 minutes,
with a random offset of to 30 minutes.

Group Policy slow link detection

Enabling this policy allows you to define a slow connection for purposes of
applying and updating Group Policy for your system. Connection speed is
determined by the rate at which data is transferred from the domain controller
providing a policy update to the computers in the group. After you define the
slow connection speed, the system interprets a slow connection as one that
exceeds your specification.

Group Policy domain controller selection

Enabling this policy allows you to choose which domain controller the Group
Policy snap-in uses. You can choose from three options: Use the Primary
Domain Controller, Inherit from the Active Directory Snap-ins, or Use any
available domain controller. The Group Policy snap-in uses the domain
controller designated as the PDC Operations Master for the domain by default
if you disable or don't configure this policy.

Create new Group Policy object links disabled by default

This policy creates new Group Policy object links in the disabled state. You
can then configure and test the new object links. If the links pass your testing,
you can enable them to use on the system.

Enforce Show Policies Only

This policy stops administrators from viewing or using Group Policy
preferences. Enabling this policy ensures that Group Policy displays only true
policies; preferences aren't displayed.

Disable automatic update of ADM files

Controls the systems' ability to update the Administrative Templates source
files automatically when you open Group Policy. If you enable this policy, you
have to update the .adm files manually, because the system loads the .adm
files you used the last time you ran Group Policy.

Appendix B. Computer Configuration Group Policy Objects

Chapter 7, detailed the process of creating, managing, and distributing group policy
settings. However, it's not enough to know how to do these things; you also have to
know which policy settings exist and what they do--hence this appendix. The GPO
settings listed in this appendix appear in the Computer Configuration node beneath
each domain and local policy object.

B.1 Windows Settings
Computer Configuration\Windows Settings

B.1.1 Security Settings
Computer Configuration\Windows Settings\Security Settings

There are seven areas of security settings: Account Policies, Local Policies, Event
Log Settings, Restricted Groups, System Services, Registry, and File System. You can
add security to any of these areas by defining security settings in a Group Policy
object (GPO) that is associated with a domain or an organizational unit (OU).

B.1.1.1 Restricted Groups
Computer Configuration\Windows Settings\Security Settings\Restricted
Groups

This is where administrators can define properties for restricted groups (security-
sensitive groups). Administrators can define two properties:

Members

Defines who belongs to the restricted group.

Member Of

Defines which other groups the restricted group belongs to.

When a restricted Group Policy is applied, members of a restricted group that are not
on the Members list are deleted. Users on the Members list who aren't currently
members of the restricted group are added.

B.1.1.2 System Services
Computer Configuration\Windows Settings\Security Settings\System
Services

Enabling this policy allows administrators to specify a start-up mode (the choices are
manual, automatic, or disabled).

Enabling this policy also allows administrators to specify access permissions for
system services (the ability to start, stop, or pause).

B.1.1.3 Registry
Computer Configuration\Windows Settings\Security Settings\Registry

Enabling this policy allows administrators to define access permissions (DACLs) and
audit settings (SACLs) for their systems' registry keys. Note that only Group Policy
objects associated with domains, OUs, and sites have an available Registry folder.

B.1.1.4 File System
Computer Configuration\Windows Settings\Security Settings\File system

Allows an administrator to define access permissions (DACLs) and audit settings
(SACLs) for filesystem objects. Note that only Group Policy objects associated with
domains, OUs, and sites have an available File System folder.

B.1.1.5 Account Policies
Computer Configuration\Windows Settings\Security Settings\Account
Policies

B.1.1.5.1 Password Policies
Computer Configuration\Windows Settings\Security Settings\Account
Policies\
Password Policy
Enforce password history

Enabling this policy allows you to specify the number of unique passwords a
user must utilize before a password can be repeated.

Maximum password age

Enabling this policy allows you to specify how long a password can be used
on your system before it must by changed by the user. Note that you can set
the number of days to 0, which allows users to use passwords indefinitely.

Minimum password age

Enabling this policy allows you to specify the minimum amount of time a
password can be used on your system before it must be changed by the user.
Note that you can set the number of days to 0, which allows users to change
passwords immediately. The number used for the minimum password age
must be less than that used for the maximum password age.

Minimum password length

Enabling this policy allows you to specify the minimum amount of characters
a user's password may contain. Setting the number to establishes that no
password is required. You can set this length for any number in between 1 and
14.

Passwords must meet complexity requirements of the installed password filter

If you enable this policy, all system passwords must meet the requirements of
the default password filter (passfilt.dll) included with Windows 2000. These
requirements include using passwords that are at least six characters long and
barring the use of user's account names in passwords. Note that the .dll

supplied by Microsoft can't be modified, but you can write or install your own
settings in your own passfilt.dll file.

Store password using reversible encryption for all users in the domain

Controls whether or not Windows 2000 stores passwords using reversible
encryption. Most administrators don't choose to enable this policy, as storing
passwords using reversible encryption closely resembles clear-text versions of
the passwords. Enable this policy only if your application requirements
surpass the need for protected password information.

User must log on to change password

Enabling this policy requires users to log on before they can change their
password. This policy results in users who can't logon to change their
password because it has expired; system administrators then have to make the
password change for these users. This policy is disabled by default.

B.1.1.5.2 Account Lockout Policy
Computer Configuration\Windows Settings\Security Settings\Account
Policies\
Account Lockout Policy
Account lockout threshold

Enabling this policy allows you to set up the number of failed logons a user
must make to be locked out of an account. You can choose a number between
1 and 999. This setting is disabled by default.

Account lockout duration

Enabling this policy allows you set up the number of minutes that an account
is actually locked out. You can choose a number between 1 and 99999, or you
can specify that the account will be locked until an administrator sets the value
to 0. This setting isn't defined by default as it only pertains to systems that
have an Account lockout threshold policy set up.

Reset account lockout counter after

Enabling this policy allows you set the number of minutes that must pass
before a bad logon attempt counter is reset to bad logons. You can choose a
number between 1 and 99999. This setting defined by default as it pertains
only to systems that have an Account lockout threshold policy set up.

B.1.1.5.3 Kerberos Policy
Computer Configuration\Windows Settings\Security Settings\Account
Policies\Kerberos Policy
Enforce user logon restrictions

Enabling this policy ensures that the Kerberos Key Distribution Center (KDC)
validates every request for a session ticket against the user rights policy of the

target computer. You may choose not to enable this policy because it can slow
down network access to services.

Maximum lifetime for service ticket

Enabling this policy allows you to set the maximum number of minutes a user
can utilize a granted session ticket to access a particular service. Note that this
number must be higher than ten and must be less than or equal to the setting
for Maximum lifetime for user ticket.

Maximum lifetime for user ticket

Enabling this policy allows you to set the maximum number of hours a user's
ticket-granting ticket (TGT) may be utilized. A new user's ticket can be
requested or the ticket can be renewed in the event that it expires. The default
for this setting is ten hours.

Maximum lifetime for user ticket renewal

Enabling this policy allows you to set the number of days a user's ticket-
granting ticket (TGT) may be renewed. The default for this setting is seven
days.

Maximum tolerance for computer clock synchronization

Enabling this policy allows you to set the maximum number of minutes
Kerberos allows between a client's clock and the server's clock to still consider
the two clocks synchronous. This setting is important because Kerberos uses
timestamps that require both clocks to be in synch to work properly.

B.1.1.6 Local Policies
Computer Configuration\Windows Settings\Security Settings\Local
Policies

B.1.1.6.1 Audit Policy
Computer Configuration\Windows Settings\Security Settings\Local
Policies\Audit Policy
Audit account logon events

Controls a computer's ability to audit each instance of a user logging on or off
another computer when the primary computer was used to validate the
account. If you choose to define this policy, you have a choice of specifying
whether to audit successes, failures, or not to audit the event type at all.

Audit account management

Controls a computer's ability to audit each event of account management. An
example of an account management event is setting or changing a password.
This value is set to No auditing by default.

Audit directory service access

Controls whether or not the system audits the event of a user accessing an
Active Directory object that has specified its own system access control list
(SACL). This value is set to No auditing by default.

Audit logon events

Controls whether or not the system audits each instance of a user logging on,
logging off, or making a network connection to this computer. If you choose
to define this policy, you have a choice of specifying whether to audit
successes, failures, or not to audit the event type at all. This value is set to No
auditing by default.

Audit object access

Controls whether or not the system audits each instance of a user logging the
event of a user accessing an object -- a file or folder for instance -- that has
specified its own system access control list (SACL). If you choose to define
this policy, you have a choice of specifying whether to audit successes,
failures, or not to audit the event type at all. This value is set to No auditing by
default.

Audit policy change

Controls whether or not the system audits every incidence of a change to user
rights assignment policies, audit policies, or trust policies. If you choose to
define this policy, you have a choice of specifying whether to audit successes,
failures, or not to audit the event type at all. This value is set to No auditing by
default.

Audit privilege use

Controls whether or not the system audits each instance of a user exercising a
user right. If you choose to define this policy, you have a choice of specifying
whether to audit successes, failures, or not to audit the event type at all. This
value is set to No auditing by default.

Audit process tracking

Controls whether or not the system audits detailed tracking information for
events such as program activation, handle duplication, and indirect object
access. If you choose to define this policy, you have a choice of specifying
whether to audit successes, failures, or not to audit the event type at all. This
value is set to No auditing by default.

Audit system events

Controls whether or not the system audits when a user restarts or shuts down
the computer, or an event has occurred that affects either the system security
or the security log. If you choose to define this policy, you have a choice of

specifying whether to audit successes, failures, or not to audit the event type at
all. This value is set to No auditing by default.

B.1.1.6.2 User Rights Assignment
Computer Configuration\Windows Settings\Security Settings\Local
Policies\User Rights Assignment
Access this computer from the network

Controls which users and groups have permissions to connect to the computer
over the network. You can define this user right in the Default Domain
Controller Group Policy object (GPO) and in the local security policy of
workstations and servers.

Act as part of the operating system

If you enable this policy, a process can authenticate as any user, which allows
the process to gain access to the same resources as any user. The LocalSystem
account includes this privilege.

Add workstations to domain

Controls the groups or users who can add workstations to a domain. Note that
this policy is valid only on domain controllers. By default, all authenticated
users have this right.

Back up files and directories

This policy allows you to specify which users can back up the system by
circumventing file and directory permissions. You can define this user right in
the Default Domain Controller Group Policy object (GPO) and in the local
security policy of workstations and servers.

Bypass traverse checking

Controls which users can traverse directory trees, even if users don't have
permissions on the traversed directory. Note that users can't list the contents of
a directory as a result of this privilege. You can define this user right in the
Default Domain Controller Group Policy object (GPO) and in the local
security policy of workstations and servers.

Change the system time

This policy allows you to specify which users and groups can change the time
and date on the internal clock of the computer. You can define this user right
in the Default Domain Controller Group Policy object (GPO) and in the local
security policy of workstations and servers.

Create a pagefile

This policy allows you to specify which users and groups can create and
change the size of a pagefile. The default setting allows administrators to

create pagefiles. You can define this user right in the Default Domain
Controller Group Policy object (GPO) and in the local security policy of
workstations and servers.

Create a token object

Controls which accounts can be used by processes to create a token that can
then be used to gain access to any local resources when the process uses
NtCreateToken() or other token-creation APIs. Using the LocalSystem
account is recommended for processes that require this privilege. You can
define this user right in the Default Domain Controller Group Policy object
(GPO) and in the local security policy of workstations and servers.

Create permanent shared objects

If you enable this policy, you can specify which accounts can be used by
processes to create a directory object in the Windows 2000 object manager.
Only the LocalSystem account has this right by default. You can define this
user right in the Default Domain Controller Group Policy object (GPO) and in
the local security policy of workstations and servers.

Debug programs

If you enable this policy, you can specify which users can attach a debugger to
any process. Note that users with this capability will have powerful access to
sensitive and critical operating system components. You can define this user
right in the Default Domain Controller Group Policy object (GPO) and in the
local security policy of workstations and servers.

Deny access to this computer from the network

If you enable this policy, you can specify which users can't access a computer
over the network. You can define this user right in the Default Domain
Controller Group Policy object (GPO) and in the local security policy of
workstations and servers.

Deny logon as a batch job

If you enable this policy, you can specify which accounts can't log on as a
batch job. No users are denied logon as a batch job by default. You can define
this user right in the Default Domain Controller Group Policy object (GPO)
and in the local security policy of workstations and servers.

Deny logon as a service

Enabling this policy allows you to specify which service accounts can't
register a process as a service. No accounts are denied logon as a service by
default. You can define this user right in the Default Domain Controller Group
Policy object (GPO) and in the local security policy of workstations and
servers.

Deny logon locally

Enabling this policy allows you to specify which users can't log on at the
computer. No accounts are denied the ability to log on locally by default. You
can define this user right in the Default Domain Controller Group Policy
object (GPO) and in the local security policy of workstations and servers.

Enable computer and user accounts to be trusted for delegation

Enabling this policy allows you to specify which users can set the Trusted for
Delegation setting on a user or computer object. Note that users or objects
must have write access to the account control flags on the user or computer
object to utilize this privilege. You can define this user right in the Default
Domain Controller Group Policy object (GPO) and in the local security policy
of workstations and servers.

Force shutdown from a remote system

Enabling this policy allows you to specify which users can shut down a
computer from a remote location on the network. You can define this user
right in the Default Domain Controller Group Policy object (GPO) and in the
local security policy of workstations and servers.

Generate security audits

Enabling this policy allows you to specify the accounts that can be used by a
process to add entries to the security log. You can use the security log to trace
unauthorized access on your system. You can define this user right in the
Default Domain Controller Group Policy object (GPO) and in the local
security policy of workstations and servers.

Increase quotas

Enabling this policy allows you to specify which accounts can use a process
with write property access to another process to increase the processor quota
assigned to the other process. You can define this user right in the Default
Domain Controller Group Policy object (GPO) and in the local security policy
of workstations and servers.

Increase scheduling priority

Enabling this policy allows you to specify which accounts can use a process
with write property access to another process in order to increase the execution
priority assigned to the other process. You can define this user right in the
Default Domain Controller Group Policy object (GPO) and in the local
security policy of workstations and servers.

Load and unload device drivers

Enabling this policy allows you to specify which users can dynamically load
and unload device drivers, which is necessary for installing drivers for plug
and play devices. You can define this user right in the Default Domain
Controller Group Policy object (GPO) and in the local security policy of
workstations and servers.

Lock pages in memory

Enabling this policy can adversely affect your system's performance. This
policy is obsolete. This policy controls the accounts that can use a process to
keep data in physical memory.

Log on as a batch job

If you enable this policy, a user can be logged on through a batch-queue
facility. The LocalSystem account is the only account that has this privilege by
default. You can define this user right in the Default Domain Controller Group
Policy object (GPO) and in the local security policy of workstations and
servers.

Log on as a service

Enabling this policy allows you to specify which service accounts can register
a process as a service. No accounts have this privilege by default. You can
define this user right in the Default Domain Controller Group Policy object
(GPO) and in the local security policy of workstations and servers.

Log on locally

Enabling this policy allows you to specify which users can log on at the
computer. You can define this user right in the Default Domain Controller
Group Policy object (GPO) and in the local security policy of workstations
and servers.

Manage auditing and security log

Enabling this policy allows you to specify which users can specify object
access auditing options for individual resources such as files and Active
Directory objects. Only administrators can manage auditing by default. You
can define this user right in the Default Domain Controller Group Policy
object (GPO) and in the local security policy of workstations and servers.

Modify firmware environment variables

If you enable this policy, you can specify which users can modify systemwide
environment variables. Administrators and LocalSystem accounts have this
privilege by default. You can define this user right in the Default Domain
Controller Group Policy object (GPO) and in the local security policy of
workstations and servers.

Profile single process

Controls which users can use Windows NT and Windows 2000 performance
monitoring tools to monitor the performance of nonsystem processes.
Administrators and LocalSystem accounts have this privilege by default. You
can define this user right in the Default Domain Controller Group Policy
object (GPO) and in the local security policy of workstations and servers.

Profile system performance

Controls which users can use Windows NT and Windows 2000 performance
monitoring tools to monitor the performance of system processes.
Administrators and LocalSystem accounts have this privilege by default. You
can define this user right in the Default Domain Controller Group Policy
object (GPO) and in the local security policy of workstations and servers.

Remove computer from docking station

Enabling this policy allows you to specify which users can undock a laptop
computer from its docking station. You can define this user right in the
Default Domain Controller Group Policy object (GPO) and in the local
security policy of workstations and servers.

Replace a process level token

Enabling this policy allows you to specify which user accounts can initiate a
process to replace the default token associated with a launched subprocess.
LocalSystem accounts have this privilege by default. You can define this user
right in the Default Domain Controller Group Policy object (GPO) and in the
local security policy of workstations and servers.

Restore files and directories

Enabling this policy allows you to specify two settings: which users can
restore backed up files and directories by circumventing file and directory
permissions, and which users can set any valid security principal as the owner
of an object. You can define this user right in the Default Domain Controller
Group Policy object (GPO) and in the local security policy of workstations
and servers.

Shut down the system

Enabling this policy allows you to specify which users who are logged on
locally to the computer can use the Shut Down command to shut down the
operating system. You can define this user right in the Default Domain
Controller Group Policy object (GPO) and in the local security policy of
workstations and servers.

Synchronize directory service data

The initial release of Windows 2000 doesn't use this policy setting.

Take ownership of files or other objects

Enabling this policy allows you to specify which users can take ownership of
any secureable object in the system. These objects include Active Directory
objects, files and folders, printers, Registry keys, processes, and threads. You
can define this user right in the Default Domain Controller Group Policy
object (GPO) and in the local security policy of workstations and servers.

B.1.1.6.3 Security Options
Computer Configuration\Windows Settings\Security Settings\Local
Policies\
Security Options
Additional restrictions for anonymous access

If you enable this policy, you can set additional restrictions for anonymous
users. Anonymous users have the same privileges as the Everyone group for a
given resource by default.

Allow server operators to schedule tasks (domain controllers only)

If you enable this policy, members of the Server Operators group can submit
AT schedule jobs on Domain Controllers. The default setting requires
Administrator status to submit AT schedule jobs on Domain Controllers.

Allow system to be shut down without having to log on

If you enable this policy, users don't have to log on to Windows to shut down
the computer. This policy puts the Shut Down command on the Windows
logon screen.

Allowed to eject removable NTFS media

If you enable this policy, any interactive user can eject removable NTFS
media from the computer. The default setting requires Administrator status to
eject removable NTFS media from the computer.

Amount of idle time required before disconnecting a session

Enabling this policy allows administrators to define when a computer
disconnects an inactive Server Message Block session. The default time is 15
minutes before disconnecting.

Audit the access of global system objects

Controls auditing of global system objects. System objects are created with a
default system access control list (SACL) if this policy is enabled. Access to
these system objects are audited when the Audit object access is also enabled.

Audit use of Backup and Restore Privilege

Controls whether an audit of every use of user rights, including Backup and
Restore, occurs. Any instance of user rights being exercised is recorded in the
security log when the Audit object access is also enabled.

Automatically log off users when logon time expires (local)

Enabling this policy causes a client session with an SMB server to be forcibly
disconnected when the client's logon hours have expired. Note that this policy
is applied to all computers on the domain.

Automatically log off users when logon time expires (local)

Enabling this policy ensures that users are restricted to their valid logon hours.
If they try to access or continue accessing the system outside their valid logon
hours, they are forcibly disconnected.

Clear virtual memory pagefile when system shuts down

Controls whether or not your system clears the virtual memory pagefile when
it shuts down. This policy may be useful to your organization if your system is
configured to allow booting to other operating systems.

Digitally sign client communications (always)

Controls the computer's ability to digitally sign client communications.
Enabling this policy ensures that client communications are always signed.
This policy requires the Windows 2000 Server Message Block (SMB) client to
perform SMB packet signing.

Digitally sign client communications (when possible)

Enabling this policy ensures that the Windows 2000 Server Message Block
(SMB) client performs SMB packet signing when communicating with an
SMB server that is enabled or required to perform SMB packet signing. This
policy is enabled by default. You can find more information about using
digital signatures in client/server communications by looking at the Digitally
sign client communications (always) policy.

Digitally sign server communications (always)

The Windows 2000 Server Message Block (SMB) server must perform SMB
packet signing if this policy is enabled. This policy is disabled by default. You
can find more information about using digital signatures in client/server
communications by looking at the Digitally sign client communications (when
possible) policy.

Digitally sign server communications (when possible)

This policy will cause the Windows 2000 Server Message Block (SMB) to
perform SMB packet signing if this policy is enabled. This policy is disabled

by default. You can find more information about using digital signatures in
client/server communications by looking at the Digitally sign client
communications (always) policy.

Disable CTRL+ALT+DEL requirement for logon

Controls whether or not users must press CTRL+ALT+DEL to log on.
Enabling this policy allows customers to log on without pressing
CTRL+ALT+DEL but creates a situation where the user's password can be
intercepted by hackers.

Do not display last user name in logon screen

Enabling this policy ensures that the last user name accessed will not appear in
the logon screen. This policy is disabled by default.

LAN Manager authentication level

Enabling this policy allows you to choose the challenge/response
authentication protocol that is used for network logons on your system. You
need to review your options carefully, as the protocol you choose affects the
level of authentication protocol used by clients, the level of session security
negotiated, and the level of authentication accepted by servers as follows.

Message text for users attempting to log on

Enabling this policy allows you to specify a text message that is displayed to
users when they log on.

Message title for users attempting to log on

Enabling this policy lets you add the specification of a title that appears in the
title bar of the window that contains the Message text for users attempting to
log on.

Number of previous logons to cache (in case domain controller is not available)

If you enable this policy, you can specify the number of times a user can log
on to a system utilizing cached information. Cached information is used if a
domain controller isn't available to provide the information. The default
setting is 10.

Prevent system maintenance of computer account password

Windows 2000 generates a new password for the computer account once a
week by default. If you enable this policy, this functionality is suppressed;
new passwords aren't generated automatically.

Prevent users from installing printer drivers

Enabling this policy ensures that users can't install printer drivers. As a result,
users can't add printers that don't use printer drivers that are already installed.

Prompt user to change password before expiration

Enabling this policy allows you to specify how far in advance users should be
warned to change their password. The default setting is seven days.

Recovery Console: Allow automatic administrative logon

Enabling this policy allows users to log on to the Recovery Console without
providing a password. This policy is disabled by default.

Recovery Console: Allow floppy copy and access to all drives and folders

If you enable this policy, the Recovery Console SET command is enabled.
This allows you to choose to enable or ignore four Recovery Console
environment variables: AllowWildCards, AllowAllPaths,
AllowRemovableMedia, and NoCopyPrompt.

Rename administrator account

If you enable this policy, you can associate a different account name with the
security identifier (SID) for the account "Administrator." Enabling this policy
guards against hackers, who often search for Administrator accounts when
damaging systems.

Rename guest account

If you enable this policy, you can associate a different account name with the
security identifier (SID) for the account "Guest." Enabling this policy guards
against hackers, who often search for Guest accounts when damaging systems.

Restrict CD-ROM access to locally logged-on user only

Enabling this policy makes CD-ROMs accessible first to an interactively
logged-on user. If there is no interactively logged-on user, the CD-ROM can
be shared across the network. If this policy is disabled, local and remote users
can both access the CD-ROM at the same time.

Restrict floppy access to locally logged-on user only

Enabling this policy makes floppy media accessible first to an interactively
logged-on user. If there is no interactively logged-on user, the floppy media
can be shared across the network. If this policy is disabled, local and remote
users can both access the floppy media at the same time.

Secure channel: Digitally encrypt or sign secure channel data (always)

Enabling this policy ensures that the system digitally encrypts or signs all
outgoing secure channel traffic. Signing and encryption is negotiated if this
policy is disabled, which it is by default.

Secure channel: Digitally encrypt secure channel data (when possible)

Enabling this policy ensures that the system digitally encrypts all outgoing
secure channel traffic whenever possible. No encryption takes place if this
policy is disabled. This policy is enabled by default.

Secure channel: Digitally sign secure channel data (when possible)

Enabling this policy ensures that the system signs all outgoing secure channel
traffic whenever possible. No signing takes place if this policy is disabled.
This policy is enabled by default.

Secure channel: Require strong (Windows 2000 or later) session key

Enabling this policy ensures that a strong encryption key is required for all
outgoing secure channel traffic. The key strength is negotiated if this policy is
disabled. This policy is disabled by default.

Secure system partition (for RISC platforms only)

Enabling this policy ensures that administrative access is required to access a
RISC-based system partition (which must be FAT) while the operating system
is running.

Send unencrypted password to connect to third-party SMB servers

Enabling this policy allows the Server Message Block (SMB) redirector to
send clear-text passwords to non-Microsoft SMB servers. These servers don't
support password encryption during authentication.

Shut down system immediately if unable to log security audits

Enabling this policy ensures that your system will shut down if a security audit
can't be logged. Only an administrator can restart the system in the event that
this policy is enabled, and a shut down occurs.

Smart card removal behavior

Enabling this policy allows you to define what happens when the smart card
for a logged-on user is removed from the smart-card reader. You can choose
from three options: No Action, Lock Workstation, or Force Logoff.

Strengthen default permissions of global system objects (e.g., symbolic links)

Controls the strength of the default discretionary access control list (DACL)
for objects. If you enable this policy, non-admin users can read shared objects

(they can't modify shared objects they didn't create) because the default DACL
is stronger. This policy is enabled by default.

Unsigned driver installation behavior

Enabling this policy allows you to specify how your system reacts when an
attempt is made to install a device driver (by means of the Windows 2000
device installer) that isn't certified by the Windows Hardware Quality Lab
(WHQL). You can choose from three options: Silently succeed, Warn but
allow installation, and Do not allow installation. Warn but allow installation is
the default setting.

Unsigned non-driver installation behavior

Enabling this policy allows you to specify what should happen when an
attempt is made to install any nondevice driver software that isn't certified.
You can choose from three options: Silently succeed, Warn but allow
installation, and Do not allow installation. Silently succeed is the default
setting.

B.1.1.7 Event Log
Computer Configuration\Windows Settings\Security Settings\Event Log

B.1.1.7.1 Settings for Event Logs
Computer Configuration\Windows Settings\Security Settings\Event
Log\Settings for Event Logs
Maximum application log size

Enabling this policy allows you to define the maximum size for the application
event log. The maximum size is 4 GB, and the default setting is 512 KB. The
policy can be enabled only in Group Policy objects associated with domains,
OUs, and sites, because only these objects contain the necessary Event Log
folder.

Maximum security log size

Enabling this policy allows you to define the maximum size for the security
event log. The maximum size is 4 GB, and the default setting is 512 KB. The
policy can be enabled only in Group Policy objects associated with domains,
OUs, and sites because only these objects contain the necessary Event Log
folder.

Maximum system log size

Enabling this policy allows you to define the maximum size for the system
event log. The maximum size is 4 GB, and the default setting is 512 KB. The
policy can be enabled only in Group Policy objects associated with domains,
OUs, and sites because only these objects contain the necessary Event Log
folder.

Restrict guest access to application log

If you enable this policy, guests can't view the application event log. This
policy is disabled by default. The policy can be enabled only in Group Policy
objects associated with domains, OUs, and sites because only these objects
contain the necessary Event Log folder.

Restrict guest access to security log

If you enable this policy, guests can't view the security event log. This policy
is disabled by default. The policy can be enabled only in Group Policy objects
associated with domains, OUs, and sites because only these objects contain the
necessary Event Log folder.

Restrict guest access to system log

If you enable this policy, guests can't view the system event log. This policy is
disabled by default. The policy can be enabled only in Group Policy objects
associated with domains, OUs, and sites because only these objects contain the
necessary Event Log folder.

Retain application log

Enabling this policy allows you to specify how many days of events should be
retained for the application log, if the retention method for the application log
is "By Days." The policy can be enabled only in Group Policy objects
associated with domains, OUs, and sites because only these objects contain the
necessary Event Log folder.

Retain security log

Enabling this policy allows you to specify how many days of events should be
retained for the security log, if the retention method for the application log is
"By Days." The policy can be enabled only in Group Policy objects associated
with domains, OUs, and sites because only these objects contain the necessary
Event Log folder.

Retain system log

Enabling this policy allows you to specify how many days of events should be
retained for the system log, if the retention method for the application log is
"By Days." The policy can be enabled only in Group Policy objects associated
with domains, OUs, and sites because only these objects contain the necessary
Event Log folder.

Retention method for application log

Enabling this policy allows you to specify which "wrapping" method you use
for the application log -- either Overwrite events as needed, Overwrite events
by days, or Do not overwrite events. The policy can be enabled only in Group

Policy objects associated with domains, OUs, and sites because only these
objects contain the necessary Event Log folder.

Retention method for security log

Enabling this policy allows you to specify which "wrapping" method you will
use for the security log -- either Overwrite events as needed, Overwrite events
by days, or Do not overwrite events. The policy can be enabled only in Group
Policy objects associated with domains, OUs, and sites because only these
objects contain the necessary Event Log folder.

Retention method for system log

Enabling this policy allows you to specify which "wrapping" method you will
use for the system log-- either Overwrite events as needed, Overwrite events
by days, or Do not overwrite events. The policy can be enabled only in Group
Policy objects associated with domains, OUs, and sites because only these
objects contain the necessary Event Log folder.

Shut down the computer when the security audit log is full

The earlier "Shut down system immediately if unable to log security audits"
policy should be used instead of this policy.

B.2 Administrative Templates
Computer Configuration\Administrative Templates

B.2.1 Windows Components
Computer Configuration\Administrative Templates\Windows Components

B.2.1.1 NetMeeting
Computer Configuration\Administrative Templates\Windows
Components\NetMeeting
Disable remote desktop sharing

If you enable this policy, users can't set up the remote desktop sharing feature
of NetMeeting. Thus, they also can't use it to control their computers remotely.

B.2.1.2 Internet Explorer
Computer Configuration\Administrative Templates\Windows
Components\Internet Explorer
Security Zones: Use only machine settings

If you enable this policy, when a user makes changes to a security zone, those
changes apply to all users of that computer. If this policy is disabled, each user
can set up their own security zone settings. A group of web sites with the same
security level is a security zone.

Security Zones: Do not allow users to change policies

If you enable this policy, users can't change security zone settings the
administrator has set up. A group of web sites with the same security level is a
security zone.

Security Zones: Do not allow users to add/delete sites

If you enable this policy, users can't add or remove sites from security zones.
A group of web sites with the same security level is a security zone.

Make proxy settings per-machine (rather than per user)

If you enable this policy, all users on a single computer can use the same
proxy settings. If this policy is disabled, users can set their own proxy settings.

Disable Automatic Install of Internet Explorer components

Enabling this policy ensures that Internet Explorer components aren't
automatically downloaded. This policy is recommended for administrators
who wish to control the components that are downloaded onto their system.

Disable Periodic Check of Internet Explorer software updates

Enabling this policy ensures that users aren't notified if Microsoft Software
Distribution Channel installs new components on their computer. This policy
allows administrators to utilize the Software Distribution Channels to update
their users' programs without user intervention.

Disable software update shell notifications on program launch

Enabling this policy ensures users can't download new version of Internet
Explorer components because they will not be automatically downloaded. This
policy allows administrators to have version control across their system.

Disable showing the splash screen

Enabling this policy ensures that the splash screen doesn't appear for users on
your system. The splash screen displays the program name, licensing, and
copyright information.

B.2.1.3 Task Scheduler
Computer Configuration\Administrative Templates\Windows
Components\Task Scheduler
Hide Property Pages

When this policy is enabled, users can't view or change the properties of an
existing task, which simplifies task creation for beginning users. These
properties may include the program the task runs, details of its schedule, idle
time and power management settings, and its security context. Note that this
policy appears in both the Computer Configuration and User Configuration
folders, but the Computer Configuration folder takes precedence.

Prevent Task Run or End

When this policy is enabled users can't start or stop tasks manually. This
means that users can't force tasks to end before they are finished or start tasks
manually. Note that this policy appears in both the Computer Configuration
and User Configuration folders, but the Computer Configuration folder takes
precedence.

Disable drag-and-drop

When you enable this policy users can't use the drag-and-drop method to
move or copy programs in the Scheduled Tasks folder. This policy removes
Cut, Copy, Paste, and Paste shortcut items on the context menu and the Edit
menu in Scheduled Tasks. Note that this policy appears in both the Computer
Configuration and User Configuration folders, but the Computer
Configuration folder takes precedence.

Disable New Task Creation

When you enable this policy, users can't create new tasks. This policy also
prevents the system from responding when users try to move, paste, or drag
programs or documents into the Scheduled Tasks folder. Note that this policy
appears in both the Computer Configuration and User Configuration folders
but the Computer Configuration folder takes precedence.

Disable Task Deletion

When you enable this policy, users can't delete tasks from the Scheduled
Tasks folder. Additionally, the system doesn't respond if users try to cut or
drag a task from the Scheduled Tasks folder. Note that this policy appears in
both the Computer Configuration and User Configuration folders, but the
Computer Configuration folder takes precedence.

Disable Advanced Menu

When this policy is enabled, users can't view or change the properties of
newly created tasks, which simplifies task creation for beginning users. These
properties may include the program the task runs, details of its schedule, idle
time and power management settings, and its security context. Note that this
policy appears in both the Computer Configuration and User Configuration
folders, but the Computer Configuration folder takes precedence.

Prohibit Browse

When this policy is enabled, users' newly scheduled tasks are limited to items
on the user's Start menu, and users can't change the scheduled program for
existing tasks. Note that this policy appears in both the Computer
Configuration and User Configuration folders, but the Computer
Configuration folder takes precedence.

B.2.1.4 Windows Installer
Computer Configuration\Administrative Templates\Windows
Components\Windows Installer
Disable Windows Installer

If you enable this policy, Windows Installer is disabled or restricted. You can
use this policy to set up one of three installation policies: Never, For non-
managed apps only, or Always.

Always install with elevated privileges

Enabling this program directs Windows Installer to use system permissions
when it installs any program on the system. This allows a user to install
programs that require access to directories the user might not have permission
to view or change. Note that this policy appears in both the Computer
Configuration and User Configuration folders; the policy must be enabled in
both folders to make the policy effective.

Disable rollback

When this policy is enabled, Windows Installer doesn't generate and save the
files it needs to reverse an interrupted or unsuccessful installation; it is unable
to record the original state of the computer. This policy reduces the amount of
temporary disk space required to install programs.

Disable browse dialog box for new source

If you enable this policy, users can't search for installation files when they add
features or components to an installed program. Thus, users' only option is to
choose an installation file source from the Use features from list. This list is
configured by the system administrator.

Disable patching

If you enable this policy, users can't install patches by using Windows
Installer. Patches are program updates or upgrades that replace specific files.

Disable IE security prompt for Windows Installer scripts

If you enable this policy, a user on your system isn't notified when web-based
programs install software the user's computer. By default, when web-based
programs install software, users are warned and asked to select or refuse the
installation.

Enable user control over installs

Enabling this policy allows users to change installation options that are usually
available only to system administrators. Note that this policy bypasses some
Windows Installer security settings.

Enable user to browse for source while elevated

Enabling this policy allows users to search for installation files during
privileged installations (installations with elevated privileges). System
administrators usually perform this task because the default setting grants
permission only to administrators.

Enable user to use media source while elevated

If you enable this policy, users can use removable media, such as floppy disks
and CD-ROMs, to install programs during privileged installations. System
administrators usually perform this task because the default setting grants
permission only to administrators.

Enable user to patch elevated products

If you enable this policy, users can upgrade programs during privileged
installations. System administrators usually perform this task because the
default setting grants permission only to administrators.

Allow admin to install from Terminal Services session

If you enable this policy, Terminal Services administrators can install and
configure programs remotely. This policy enhances only the capabilities of
system administrators; users can't install and configure programs remotely.

Cache transforms in secure location on workstation

Enabling this policy ensures that the transform file is saved in a secure
location on the user's computer. Usually transform files are saved into the user
profile. This policy protects larger organizations that must safeguard transform
files from unauthorized editing.

Logging

If you enable this policy, you can define which types of events the Windows
Installer record. The list of events can be typed in any order and can include as
many events as you choose.

B.2.2 System
Computer Configuration\Administrative Templates\System
Remove security option from Start menu (Terminal Services only)

If you enable this policy, the Windows Security item is removed from the
Settings menu on a Terminal Services client. This policy ensures that users
don't log on to Terminal Services inadvertently.

Remove Disconnect item from Start menu (Terminal Services only)

If you enable this policy, the Disconnect item is removed from the Shut Down
Windows dialog box on Terminal Services clients. This prevents Terminal

Services users from disconnecting their client from a Terminal Services server
using this method.

Disable Boot/Shutdown/Logon/Logoff status messages

If you enable this policy, status messages -- such as the messages that remind
users to wait while their system starts -- aren't displayed.

Verbose vs normal status messages

If you enable this policy, highly detailed status messages -- messages that
include each step in a process -- are displayed to users.

Disable Autoplay

Enabling this feature disables Autoplay. As a result, setup files for programs
and the music on audio media don't start immediately; users have to start the
setup files themselves. Note that this policy appears in both the Computer
Configuration and User Configuration folders, but the Computer
Configuration folder takes precedence.

Don't display welcome screen at logon

If you enable this policy, the Getting Started with Windows 2000 welcome
screen is hidden from users. Users can access this screen from the Start menu.
This policy appears in both the Computer Configuration and User
Configuration folders, but the Computer Configuration folder takes
precedence.

Run these programs at user logon

Enabling this policy allows you to specify additional programs or documents
that Windows 2000 starts automatically when a user logs on to the system.
You will have to specify the fully qualified path to each file you wish to use.
This policy can be set in the Computer Configuration and User Configuration
folders; the Computer Configuration folder overrides the User Configuration
folder setting.

Disable the run once list

If you enable this policy, the computer ignores the customized run-once list,
which details additional programs and documents that are started
automatically the next time the system starts. The run once list isn't started the
next time the system runs. This policy can be set in the Computer
Configuration and User Configuration folders; the Computer Configuration
folder overrides the User Configuration folder setting.

Disable legacy run list

If you enable this policy, the computer ignores the legacy run list, a
customized list of additional programs and documents that the system starts
automatically on startup. This policy can be set in the Computer Configuration
and User Configuration folders; the Computer Configuration folder overrides
the User Configuration folder setting.

Do not automatically encrypt files moved to encrypted folders

If you enable this policy, Windows Explorer doesn't encrypt files that are
moved to an encrypted folder. Note that this policy applies only to files moved
within a volume.

Download missing COM components

If you enable this policy, your system searches the Active Directory for the
missing Component Object Model (COM) components a program requires.
Enabling this policy might cause programs to start or run slower, but the
programs don't suffer from impaired functionality or stop functioning as a
result of missing COM components.

B.2.2.1 Logon
Computer Configuration\Administrative Templates\System\Logon
Run logon scripts synchronously

Enabling this policy ensures that logon script processing is complete before
the user starts working. If you enable this policy, the system waits for the
logon scripts to finish running before it starts the Windows Explorer interface
program and creates the desktop. Keep in mind that this policy can delay the
appearance of the desktop.

Run startup scripts asynchronously

If you enable this policy, the startup scripts' (which are batch files) run
simultaneously before the user is invited to log on to the system.

Run startup scripts visible

If you enable this policy, the startup scripts' (which are batch files) instructions
appear in a command window so that users can view them. This setting is
recommended for advanced users only.

Run shutdown scripts visible

If you enable this policy, the shutdown scripts' (which are batch files)
instructions appear in a command window so that users can view them. This
setting is recommended for advanced users only.

Maximum wait time for Group Policy scripts

If you enable this policy, you can set the total time the system allows for all
logon, startup, and shutdown scripts applied by Group Policy to finish
running. The default setting lets scripts run for a total of 10 minutes.

Delete cached copies of roaming profiles

If you enable this policy, the system doesn't save a copy of a user's roaming
profile on the local computer's hard drive when the user logs off. Be aware
that you don't want to use this policy if you are using the slow link detection
feature of Windows 2000; that feature requires local copies of users' roaming
profiles.

Do not detect slow network connections

If you enable this policy, the slow link detection feature is disabled. This
feature measures the speed of the connection between a user's computer and
the remote server that stores the roaming user profile. Enabling this feature
disables any system responses to a slow connection.

Slow network connection timeout for user profiles

Enabling this policy allows you to set a threshold for slow connections for
roaming user profiles. Note that if the "Do not detect slow network
connections" policy is enabled it, this policy has no effect.

Wait for remote user profile

If you enable this policy, the system waits for the remote copy of the roaming
user profile to load, regardless of how long loading takes. If you don't enable
this policy, the system loads the local copy of the roaming user profile when
loading is slow.

Prompt user when slow link is detected

Enabling this policy allows users to choose between two options when loading
is slow: using a local copy of their user profile or waiting for the roaming user
profile. If you don't enable this policy, the local copy of the user profile is
loaded automatically.

Timeout for dialog boxes

This policy allows you to specify how long the system should wait for a user
response to a dialog box before the system uses a default value. The system's
default time is 30 seconds.

Log users off when roaming profile fails

If you enable this policy, users are automatically logged off if the system can't
load their roaming user profile. This policy goes into effect if the system can't
find the roaming user profile, or if the profile has errors.

Maximum retries to unload and update user profile

This policy allows you to specify how many times the system tries to unload
and update the Registry portion of a user's profile. The system's default
number of retries is 60. Setting the number to tells the system to try only once.
This policy should be used with Terminal Services.

B.2.2.2 Disk Quotas
Computer Configuration\Administrative Templates\System\Disk Quotas
Enable disk quotas

Enabling this policy provides disk quota management on all NTFS volumes of
the computer. Administrators can't change this setting if you enable the Enable
disk quotas policy.

Enforce disk quota limit

Enabling this policy ensures that users' disk quota limits are enforced. The
system responds as though the physical space on the volume were exhausted
when a user reaches his or her disk quota limit. User settings that enable or
disable quota enforcement on their volumes are superseded by this policy.

Default quota limit and warning level

Enabling this policy allows you to set the default disk quota limit and the
warning level for new users of the volume. The disk space users have at their
disposal isn't limited if you don't configure this policy, or if you disable it.
User settings that enable or disable quota enforcement on their volumes are
superseded by this policy.

Log event when quota limit exceeded

This policy ensures that when users reach their disk quota limit on a volume,
an event is recorded in the Application log. If you don't configure this policy,
or if you disable it, the user's disk quota status in the Quota Entries window
changes, but an event isn't recorded when the disk quota limit is met.

Log event when quota warning level exceeded

This policy ensures that when users reach their disk quota warning level on a
volume, an event is recorded in the Application log. If you don't configure this
policy, or if you disable it, the user's disk quota status in the Quota Entries
window changes, but an event isn't recorded when the disk quota warning
level is met.

Apply policy to removable media

If you enable this policy, the disk quota policies in this folder also applies to
NTFS filesystem volumes on removable media. The disk quota policies in this

folder apply to fixed-media NTFS volumes only if you don't configure this
policy, or if you disable it.

B.2.2.3 DNS Client
Computer Configuration\Administrative Templates\System\DNS Client
Primary DNS Suffix

Enabling this policy allows you to define primary Domain Name System
(DNS) suffix for all affected computers. This suffix is used in DNS name
registration and name resolution. If you enable this policy, users and
administrators can't change the suffix you choose.

B.2.2.4 Group Policy
Computer Configuration\Administrative Templates\System\Group Policy
Disable background refresh of Group Policy

If you enable this policy, Group Policy isn't updated while the computer is in
use. When the user logs off, the system updates the computer and user
policies. If you disable it, updates can be applied while users are working.

Apply Group Policy for computers asynchronously during startup

If you enable this policy, the system can invite users to log on before Group
Policy updates complete. Thus, the Windows interface could appear to be
ready before computer Group Policy is applied.

Apply Group Policy for users asynchronously during logon

If you enable this policy, the system can display the Windows desktop before
user Group Policy complete. Thus, the Windows interface can appear to be
ready before computer Group Policy is updated.

Group Policy refresh interval for computers

Enabling this policy allows you to set how often the Group Policy is updated
on domain controllers while the computer is in use (the update occurs in the
background). This policy's updates occur in addition to the updates that occur
on system startup. The default rate for updates is every five minutes.

Group Policy refresh interval for domain controllers

Enabling this policy allows you to set how often the Group Policy for
computers updates while the computer is in use (the update occurs in the
background). This policy applies only to Group Policies in the Computer
Configuration folder. The default rate for updates is every 90 minutes, with a
random offset of to 30 minutes.

User Group Policy loopback processing mode

Enabling this policy allows you to direct the system to apply the set of Group
Policy objects for the computer to any user who logs on to a computer affected
by this policy. This policy is designed for computers used by many users, such
as computers in libraries, classrooms, and so on.

Group Policy slow link detection

Enabling this policy allows you to define a slow connection for purposes of
applying and updating Group Policy for your system. Connection speed is
determined by the rate at which data is transferred from the domain controller
providing a policy update to the computers in the group. After you define the
slow connection speed, the system interprets a slow connection as one that
exceeds your specification.

Registry policy processing

Enabling this policy allows you to define when the policies in the
Administrative Templates folder and any other policies that store values in the
Registry are updated. This policy lets you select or ignore two options: Do not
apply during periodic background processing and Process even if the Group
Policy objects have not changed.

Internet Explorer Maintenance policy processing

Enabling this policy allows you to define when disk quota policies are
updated. This policy supersedes any customized settings the Internet Explorer
Maintenance policy set when it was installed. This policy lets you select or
ignore three options: Allow processing across a slow network connection, Do
not apply during periodic background processing, and Process even if the
Group Policy objects have not changed.

Software Installation policy processing

Enabling this policy allows you to define when software installation polices
are updated. This policy supersedes any customized settings the program
implementing the software installation policy set when it was installed. This
policy lets you select or ignore two options: Allow processing across a slow
network connection and Process even if the Group Policy objects have not
changed.

Folder Redirection policy processing

Enabling this policy allows you to define when folder redirection policies are
updated. This policy lets you select or ignore two options: Allow processing
across a slow network connection and Process even if the Group Policy
objects have not changed.

Scripts policy processing

Enabling this policy allows you to define when policies that assign shared
scripts are updated. This policy lets you select or ignore three options: Allow
processing across a slow network connection, Do not apply during periodic
background processing, and Process even if the Group Policy objects have not
changed.

Security policy processing

Enabling this policy allows you to define when security policies are updated.
This policy lets you select or ignore three options: Allow processing across a
slow network connection, Do not apply during periodic background
processing, and Process even if the Group Policy objects have not changed.

IP Security policy processing

Enabling this policy allows you to define when IP security polices are
updated. This policy lets you select or ignore three options: Allow processing
across a slow network connection, Do not apply during periodic background
processing, and Process even if the Group Policy objects have not changed.

EFS recovery policy processing

Enabling this policy allows you to define when encryption polices are updated.
This policy lets you select or ignore three options: Allow processing across a
slow network connection, Do not apply during periodic background
processing, and Process even if the Group Policy objects have not changed.

Disk Quota policy processing

Enabling this policy allows you to define when disk quota policies are
updated. This policy lets you select or ignore three options: Allow processing
across a slow network connection, Do not apply during periodic background
processing, and Process even if the Group Policy objects have not changed.

B.2.2.5 Windows File Protection
Computer Configuration\Administrative Templates\System\Windows File
Protection
Set Windows File Protection scanning

Enabling this policy ensures that Windows File Protection enumerate and scan
all system files for changes. This policy allows you to set up Windows File
Protection to scan files more often. Files are scanned only during setup by
default.

Hide the file scan progress window

Enabling this policy ensures that the file scan progress window is hidden to
users. This policy is recommended for organizations with beginning users;
they are sometimes confused by this window.

Limit Windows File Protection cache size

You can use this policy to define the maximum amount of disk space the
Windows File Protection file cache uses. You can select 4294967295 as the
maximum amount of disk space if you wish to have an unlimited cache size.

Specify Windows File Protection cache location

You can use this policy to set up a location for the Windows File Protection
cache that is different than the default. The default location is in the
Systemroot\System32\Dllcache directory.

B.2.3 Network
Computer Configuration\Administrative Templates\Network

B.2.3.1 Offline Files
Computer Configuration\Administrative Templates\Network\Offline files
Enabled

Controls whether the Offline Files feature is enabled or disabled. Once the
Offline Files feature is set, users can't change whether the feature is enabled or
disabled.

Disable user configuration of Offline Files

This feature locks down the configuration you establish because it prevents
users from disabling, enabling, or changing the configuration of the offline
files.

Synchronize all offline files before logging off

Controls whether offline files are fully synchronized or quickly synchronized
each night. If you don't configure this policy, the system performs a quick
synchronization by default, and users can change this setting.

Default cache size

Allows you to set the percentage of disk space that can store automatically
cached offline files. If you don't set this policy, by default the system limits
the space that automatically cached files occupy to 10%.

Action on server disconnect

Allows you to determine whether or not a network computer has access to
network files if the computer is disconnected from the server. You can use the
Action box to set the number of computers this policy applies to.

Non-default server disconnect actions

Controls how specific computers respond when they are disconnected from
particular offline file servers. This policy supersedes the Action on server
disconnect policy. Also, this policy can be set in the Computer Configuration

and User Configuration folders; the Computer Configuration folder overrides
the User Configuration folder setting.

Disable "Make Available Offline"

Enabling this policy ensures that users can't make network files and folders
available offline. Be aware that this policy doesn't prevent the system from
saving local copies of files that reside on network shares designated for
automatic caching. This policy appears in both the Computer Configuration
and User Configuration folders; the Computer Configuration folder takes
precedence.

Prevent use of Offline Files folder

Enabling this policy disables the Offline Files folder, and users can't view or
open copies of network files stored on their computer via the Offline Files
Folder. This policy appears in both the Computer Configuration and User
Configuration folders; the Computer Configuration folder takes precedence.

Files not cached

Enabling this policy allows you to list the types of files that can't be used
offline and exclude certain types of files from automatic and manual caching
for offline use. This policy ensures that files that can't be separated, such as
database components, are safe.

Administratively assigned offline files

Enabling this policy allows you to list the types of network files and folders
that are always available for offline use. Also, users can access the specified
files and folders offline. This policy appears in both the Computer
Configuration and User Configuration folders; the Computer Configuration
folder takes precedence.

Disable reminder balloons

Enabling this policy removes reminder balloons, which are enabled by default
if offline files are enabled. This policy appears in both the Computer
Configuration and User Configuration folders; the Computer Configuration
folder takes precedence.

Reminder balloon frequency

Enabling this policy allows you to specify how often reminder balloon updates
appear. This policy allows you to change the update interval for reminders.
This policy appears in both the Computer Configuration and User
Configuration folders; the Computer Configuration folder takes precedence.

Initial reminder balloon lifetime

Enabling this policy allows you to specify how long the first reminder balloon
for a network status change is displayed. The first reminder is 30 seconds long
by default. This policy appears in both the Computer Configuration and User
Configuration folders; the Computer Configuration folder takes precedence.

Reminder balloon lifetime

Enabling this policy allows you to change the duration of the update reminder
from the default of 30 seconds for the first reminder and 15 seconds thereafter.
This policy appears in both the Computer Configuration and User
Configuration folders; the Computer Configuration folder takes precedence.

At logoff, delete local copy of user's offline files

If you enable this policy, local copies of the user's offline files are deleted
when the user logs off. Be aware that files aren't synchronized before they're
deleted. Changes to local files since the last synchronization are lost as a
result.

Event logging level

Enabling this policy allows you to specify which events are recorded in the
event log by the Offline Files feature. This policy allows you to add events to
those recorded by default. Offline Files records an event only when the offline
files storage cache is corrupted by default. This policy appears in both the
Computer Configuration and User Configuration folders; the Computer
Configuration folder takes precedence.

Subfolders always available offline

Enabling this policy ensures that subfolders are always available offline when
their parent folder is made available offline. When you make a folder available
offline, this policy makes all folders within that folder available offline. New
folders that you create within a folder that is available offline are available
offline after the parent folder is synchronized.

B.2.3.2 Network & Dial-Up Connections
Computer Configuration\Administrative Templates\Network\Network &
Dial-up Connections
Allow configuration of connection sharing

This policy determines whether administrators and power users can enable,
disable, and configure the Internet Connection Sharing feature of a dial-up
connection. Users can configure their system as an Internet gateway for a
small network through Internet Connection Sharing. This policy appears in
both the Computer Configuration and User Configuration folders; the
Computer Configuration folder takes precedence.

B.2.4 Printers
Computer Configuration\Administrative Templates\Printers

Allow printers to be published

Controls whether or not the computer's shared printers can be published in the
Active Directory. Enabling or not configuring the policy ensures that users
have this capability.

Automatically publish new printers in Active Directory

Controls whether or not the Add Printer wizard publishes the computer's
shared printers automatically in the Active Directory. Enabling or not
configuring the policy ensures that users have this capability.

Allow pruning of published printers

Controls whether or not the domain controller can prune the printers published
by this computer. Enabling or not configuring the policy ensures the domain
controller prunes, or deletes, this computer's printers if there is no response
from the computer.

Printer browsing

Allows you to announce the presence of shared printers to print browse master
servers for the domain. When you enable this policy, shared printers appear in
the domain list in the Browse for Printer dialog box of the Add Printer wizard.

Prune printers that are not automatically republished

Controls whether or not printers that aren't automatically republished are
pruned (deleted from the Active Directory). Note that this policy doesn't apply
to printers published by using Printers in Control Panel. It does apply to
printers that run operating systems other than Windows 2000 and to Windows
2000 printers that are published outside of their domain.

Directory pruning interval

Controls when the pruning service on a domain controller contacts computers
to verify that their printers are operational. The domain controller contacts
computers every eight hours by default. By enabling this policy, you can
change the number of hours in between contacts.

Directory pruning retry

Allows you to choose how many times the domain controller contacts a
computers to verify that their printers are operational before it prunes the
computer.

Directory pruning priority

Controls the pruning thread's priority. The pruning thread actually deletes
printer objects from the Active Directory if the printer that published the

object doesn't respond to contact attempts. Adjusting the pruning thread
priority can improve the performance of this service.

Check published state

Ensures that the system periodically verifies that the printers published by this
computer still appear in the Active Directory. You can also determine how
often the system repeats the verification through this policy.

Web-based printing

Controls Internet printing on the server. Internet printing lets you display
printers on web pages. As a result, printers can be viewed, managed, and used
across the Internet or an intranet. Internet printing is supported by default and
remains supported if you enable or don't configure this policy.

Custom support URL in the Printers folder's left pane

Allows you to add a customized web page link to the Printers folder. The web
link you include can be tailored to best suit your organization. Default links
include a Microsoft web link and a link to the printer vendor.

Computer location

Controls the default location criteria the system uses when it's searching for
printers. You must enable Location Tracking to use this policy, as the
Computer Location policy is a component of the Location Tracking feature of
Windows 2000 printers.

Prepopulate printer search location text

Controls the Location Tracking feature of Windows 2000 printers. Enabling
this policy ensures that the Location Tracking feature of Windows 2000
printers is enabled.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Managing the Windows 2000 Registry is a female or
juvenile orangutan. The word "orangutan" comes from the Malay word for "man of
the woods." Ancient legend has it that orangutans have the ability to speak, but
choose not to because they are afraid that if humans find out, they will put the
orangutans to work.

Orangutans are native to the forests of Borneo and Sumatra. Male adults have long
beards and mustaches and highly developed cheek pads and throat pouches. The
throat pouches are used as resonators for mating calls and calls to mark territory.
Human males have a similar throat pouch, called the "Morgagnitic pouch," but it is
very small in most men. It becomes well developed in trumpet players, bass singers,
and Muslim prayer callers.

These great apes are almost completely arboreal. They move by swinging from one
tree branch to the next, and descend to the ground only when there is no branch to
swing to, or occasionally to gather branches for building sleeping nests. Because of
the orangutans' method of locomotion, their arms are very strong and long, measuring
up to 7.8 feet when outspread and reaching to the ankles when standing upright. Their
legs, in contrast, are relatively weak. They eat primarily fruit, but will also eat bark,
leaves, flowers, and eggs. They get their drinking water by scooping it out of holes in
the trees.

Orangutans mate while swinging from tree branches. Infants weigh approximately 3.5
pounds at birth. For about the first year the infant is completely dependent on its
mother and clings to her by entwining its fingers in her fur. If orangutan babies are
orphaned, they need to be given a substitute to cling to, and they usually display great
affection for their surrogate mothers. Development in the first year is similar to that of
human babies.

Other than humans, orangutans have no natural enemies. However, as a result of
hunting and habitat destruction, they are in danger of becoming extinct.

Mary Anne Weeks Mayo was the copyeditor and production editor for Managing the
Windows 2000 Registry. Ellie Cutler proofread the book. Jeff Holcomb, Madeleine
Newell, and Jane Ellin provided quality control. Mary Sheehan and Emily Quill
provided production support. Bruce Tracy wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from
the Dover Pictorial Archive. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

Alicia Cech and David Futato designed the interior layout based on a series design by
Nancy Priest. Mike Sierra implemented the design in FrameMaker 5.5.6. The text and
heading fonts are ITC Garamond Light and Garamond Book. The illustrations that

appear in the book were produced by Robert Romano and Rhon Porter using
Macromedia FreeHand 8 and Adobe Photoshop 5. This colophon was written by
Clairemarie Fisher O'Leary.

