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Preface 

A few years ago, I set my heart on researching and writing a truly advanced 
Oracle performance-tuning book. Soon, I had a detailed outline running to more 
than thirty pages. But when I started to write, I began to realize how much I had 
yet to learn about Oracle. Each chapter was going to require considerably more 
research than I had at first imagined. In particular, I began to realize that an 
understanding of some aspects of Oracle internals would be vital to my quest. So 
I began to learn what I could of Oracle internals, starting with the X$ tables. 

If I had known then what I know now, about how vast an undertaking I was 
commencing, I would probably never have attempted it. And many times I would 
have given up in despair, except for the encouragement of my friends. They 
always believed that I could comprehend the incomprehensible and construct a 
coherent understanding of how Oracle works and should be tuned. It has been 
somewhat like trying to determine the exact shape of an iceberg by walking all 
over it and taking careful measurements of subsurface vibrations. 

Why This Book? 

My advanced Oracle performance-tuning book is still a dream. This little book is 
something else: an introduction to Oracle internals. It builds the foundation 
necessary for advanced performance tuning by explaining some of the basic 
aspects of Oracle internals in detail. 

Here you will find many of the undocumented system statistics explained. You 
will learn how to gather additional statistics from the X$ tables. Your 
understanding of how Oracle works will be deepened with clear explanations of 
many of Oracle's internal data structures and algorithms. You will be alerted to 
potential performance problems that are not mentioned in the documentation. 
And you will expand your repertoire of tuning solutions and troubleshooting 
techniques by learning how to use numerous hidden parameters and other 
undocumented features. 

Warnings 

The kind of Oracle internals information I've included in this book is not readily 
available to customers. Because I have never been an Oracle insider, the material 
in this book has had to be compiled the hard way. I began by studying the 



structure and contents of the X$ tables, and poring over trace files. I then 
formulated hypotheses and tested them. Because of this approach, it is likely that 
some of my conclusions about how things work are wrong, and that some of my 
suggestions are misguided, or applicable only under limited conditions. So, the 
onus is on you to test everything for yourself. If you find any errors, please email 
me so that they can be corrected (see "Comments and Questions"). 

You should also note that this book goes boldly where Oracle Support fears to tread. 
I explain and at times recommend the use of various undocumented features that I 
find essential to advanced performance tuning. However, Oracle has chosen to leave 
those same features undocumented—presumably with valid reasons. So please don't 
expect Oracle to assist you in their use. Try them by all means, but if you have a 
problem, quit. Don't bother Oracle Support about it. 

Finally, please note that this book is oriented towards Oracle8i, release 8.1. 
Although most of the material is applicable to earlier releases as well, some of it is 
not. In particular, there have been major changes in Oracle Parallel Server in 
both the 8.0 and 8.1 releases, and a number of the parameters have been hidden 
in release 8.1. 

Audience for This Book 

This book is intended for Oracle database administrators (DBAs) and developers 
who need to understand Oracle performance in detail. Although the information 
is advanced, the presentation is easy to follow. Anyone who is familiar with the 
basics of the Oracle architecture and has an aptitude for performance tuning will 
be able to appreciate everything in this book. However, seasoned veterans will no 
doubt appreciate it the most. 

About the APT Scripts  

This book makes a number of references to APT scripts. APT stands for Advanced 
Performance Tuning. It is merely my personal toolkit of Oracle performance 
tuning scripts. The scripts referred to in this book can be obtained from O'Reilly's 
web site or from my own (see "Comments and Questions"). APT is not a 
commercial product, and I do not warrant that the scripts are error-free. But you 
are free to use them, or glean from them what you may. 

Conventions Used in This Book 

The following conventions are used in this book: 



Italic  
Used for the names of files, scripts, latches, statistics, and wait events; also 
used for emphasis and for new terms 

Constant width  
Used for examples and literals 

UPPERCASE  
Used for Oracle SQL keywords, initialization parameters, and the names of 
tables, views, columns, packages, and procedures 

Comments and Questions 

Please address comments and questions concerning this book to the publisher: 
O'Reilly & Associates, Inc.  
101 Morris Street  
Sebastopol, CA 95472  
800-998-9938 (in the U.S. or Canada)  
707-829-0515 (international or local)  
707-829-0104 (fax)  
You can also send us messages electronically (booktech@oreilly.com). For 
corrections and amplifications to this book, as well as for copies of the APT scripts 
referred to in the book, check out O'Reilly & Associates' online catalog at: 
http://www.oreilly.com/catalog/orinternals/  
The APT scripts can also be obtained from my web site at: 
http://www.ixora.com.au/  
You can also contact me directly at: 
steve.adams@ixora.com.au  
See the advertisements at the end of the book for information about all of O'Reilly & 
Associates' online services. 
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Chapter 1. Introduction 

Why are people so intensely interested in Oracle internals? Partly because 
internals information can be useful for tuning and troubleshooting. But also 
because Oracle Corporation has kept most of the internals secret, while revealing 
just enough to tantalize. 

In fact, Oracle internals information is needed only for advanced performance 
tuning. It's true that basic application tuning is the kind of tuning that's most 
often needed, and the kind that has the biggest impact. Nevertheless, there are 
times when advanced performance tuning is necessary, and that is when you 
need a deep understanding of how Oracle works. This book provides some of the 
foundations for that understanding. 

To appreciate the contribution that this book makes, and to put it in context, you 
need to have a basic understanding of the layers of the Oracle kernel. 

1.1 The Oracle Kernel Layers 

The Oracle kernel is comprised of layers; the main layers are shown in Figure 
1.1. Each layer depends upon the services of the layers below it, and may call any 
of them directly, in any order. However, control is never passed up the stack, 
except when returning from a call. 

The one apparent exception to this rule is that the data layer and the transaction 
layer sometimes need to perform recursive transactions for tasks such as index 
block splits or extent space management, and recursive calls are needed for tasks 
such as trigger execution or SQL statement execution from within stored 
program units. However, instead of calling back to the kernel execution or 
compilation layer from within the same session or call context, a separate context 
is established and the stack is reentered from the top layer. 

Figure 1.1. The Oracle kernel layers 



 

Each layer has a short name, or abbreviation, that is used as a prefix to the names 
of its modules. For example, KC is the short name for the kernel cache layer. 
These short names are shown in Figure 1.1 and in the following list. Similarly, 
each of the modules that comprise the layers has a short name too. For example, 
KCR is the redo management module within the cache layer. These module 
names are prefixed to the names of their data structures and function calls. For 
example, KCRFAL is the redo allocation latch. This naming convention makes 
Oracle's names seem rather cryptic and formidable at first, but they soon become 
surprisingly easy to recognize and a great aid to understanding. Nevertheless, you 
will be pleased to know that this book uses the verbose names in preference to 
their somewhat cryptic alternatives. 

The Oracle call interface (OCI)  
The Oracle call interface is the lowest level at which client programs are 
intended to interact with Oracle. This interface is well documented and 
provides access to most of the functionality of Oracle, including advanced 
features such as object navigation, and sophisticated transaction and 
session control. Applications with advanced requirements have to use OCI 
directly, in order to access the features that are not available in Oracle's 
other development tools. 

The user program interface (UPI)  
OCI is based on the user program interface. There are some UPI facilities 
that are not yet available via OCI, and so some of the Oracle tools actually 



call this interface directly. Precompiler programs also call the user 
program interface, but indirectly via the SQLLIB library, which is an 
undocumented alternative to OCI. 

The Oracle program interface (OPI)  
The user program interface is the lowest layer of the client-side call stack, 
and the Oracle program interface is the highest layer of the server-side call 
stack. In most configurations, Net8 bridges the gap between UPI and OPI. 
However, in single-task executables there is no gap, and the UPI calls 
correspond directly to OPI calls. 

The compilation layer (KK)  
This is the top layer of the Oracle kernel proper. This layer is responsible 
for the parsing and optimization of SQL statements and for the 
compilation of PL/SQL program units. 

The execution layer (KX)  
This layer handles the binding and execution of SQL statements and 
PL/SQL program units. It is also responsible for the execution of recursive 
calls for trigger execution, and for the execution of SQL statements within 
PL/SQL program units. 

The distributed execution layer (K2)  
The distributed execution layer establishes the transaction branches for 
distributed transactions, and handles the management of the two-phase 
commit protocol. 

The network program interface (NPI)  
When remote objects are referenced in a SQL statement, the network 
program interface sends the decomposed statement components to the 
remote database instances and receives the data in return. 

The security layer (KZ)  
This layer is called by the compilation and execution layers to validate the 
required object and system privileges. 

The query layer (KQ)  
This layer provides rows to the higher layers. In particular, the query layer 
is responsible for caching rows from the data dictionary, for use by the 
security and compilation layers. 

The recursive program interface (RPI)  
The recursive program interface is used to populate the dictionary cache 
from the data dictionary. Row cache recursive SQL statements are 
executed in a separate call context, but are not parsed and optimized in the 
compilation layer. 

The access layer (KA)  



The access layer is responsible for access to database segments. This is the 
first layer of the lower half of the kernel. 

The data layer (KD)  
This layer is responsible for the management and interpretation of data 
within the blocks of database segments such as tables, clusters, and 
indexes. 

The transaction layer (KT)  
This layer is responsible for the allocation of transactions to rollback 
segments, interested transaction list changes within data blocks, changes 
to rollback segment blocks for undo generation, transaction control 
facilities such as savepoints, and read consistency. The transaction layer is 
also responsible for space management, both at the level of segment free 
lists and at the level of tablespace extent allocation. 

The cache layer (KC)  
The cache layer manages the database buffer cache. It uses operating 
system dependent facilities for data file I/O, provides concurrency control 
facilities for local access to the cache buffers, and provides parallel cache 
management (PCM) instance locking facilities for Oracle parallel server. 
The other main responsibility of the cache layer is the control of redo 
generation into the log buffer, and the writing of redo to the log files. The 
cache layer also caches control file information. 

The services layer (KS)  
The services layer provides low-level services that are used by all the 
higher layers, such as error handling, debugging, and tracing facilities, as 
well as parameter control and memory services. In particular, the service 
layer is responsible for generic concurrency control facilities such as 
latches, event waits, enqueue locks, and instance locks. This layer is also 
responsible for the management of the data structures for background and 
user processes and sessions, as well as state objects, inter-process 
messages, and system statistics. 

The lock management layer (KJ)  
This layer is responsible for the locking used for synchronization and 
communication between the instances of a parallel server database. 

The generic layer (KG)  
The generic layer provides management for the generic data structures 
that are used by the higher layers, such as linked lists. Of particular 
interest are the library cache and the memory allocation heaps used for the 
shared pool and session memory. 

The operating system dependencies (S)  



Oracle uses operating system facilities for I/O, process scheduling, 
memory management, and other operations. The implementation details 
are operating system dependent, and so these details are isolated into a 
separate layer. 

1.2 The Kernel Services 

This book covers the kernel services for waits, latches, locks, and memory. 
Although there is relatively little you can do to tune these services themselves, 
you will need to understand them when you tune any other part of Oracle. 

Chapter 2  
The wait statistics are the most important Oracle statistics for advanced 
performance tuning. This chapter explains how to gather and use these statistics. 

Chapter 3  
Oracle makes extensive use of latches, and advanced performance tuning often 
involves the prevention of latch contention. This chapter provides a foundation 
for such tuning by explaining how latches are used. 

Chapter 4  
Oracle uses many types of locks. This chapter explains how locks are used, and 
how to diagnose locking problems. 

Chapter 5  
Oracle parallel server technology adds an extra dimension to Oracle tuning. This 
chapter explains how parallel server locking is implemented, and what the 
statistics mean. 

Chapter 6  
This chapter explains how Oracle's internal memory management works. I pay 
particular attention to the inner workings of the shared pool, and to assessing 
whether it is sized correctly. 

Although there is much more to Oracle internals than this small book covers, 
these chapters provide the foundation that you need for advanced performance 
tuning. 



Chapter 2. Waits 

In an Oracle instance many processes (or threads of a single process) work 
together. To work together, they must communicate, and one of main ways that 
they communicate is via semaphores. A semaphore is a signal. It is somewhat like 
a railway signal that tells trains whether to stop and wait, and when to go. Oracle 
server processes often need to stop and wait: 

?? Sometimes because a resource is not available 
?? Sometimes because they have no work to do 
?? Sometimes because they need to wait for another server process to 

perform a prerequisite task 

Semaphores allow Oracle server processes to stop and wait, and then to be notified 
when they should resume processing. 

2.1 Semaphores 

There is a semaphore for every Oracle server process. Processes wait on their 
semaphore when they need to wait for a resource, or need work to do, or need 
work to be done. When the resource has been freed, or when there is work to do, 
or when the prerequisite work has been done, then their semaphore is posted as a 
signal to stop waiting. 

For example, LGWR (the Log Writer process) may be waiting on its semaphore 
for work to do, while a user process may be copying redo information into the 
redo log buffer. When the user commits, LGWR must write the redo and commit 
marker to the log file while the user waits. To achieve this, the user process posts 
LGWR's semaphore to signal that it can stop waiting for work to do, as some 
work is now available. The user process then waits on its own semaphore. When 
the log file I/O has completed, LGWR posts the semaphore of the user process to 
signal that it can now begin its next transaction, because the commit operation 
has completed. LGWR then waits on its own semaphore again, because it has no 
more work to do. 

For another example, process A may need to update a row, but find that process 
B has not yet committed an earlier update to the same row. Process A must wait 
for process B to commit. To achieve this, process A will wait on its semaphore. 
When process B commits, it will post process A's semaphore to signal that it can 
now proceed with its update. 



2.1.1 Semaphore Facilities 

Semaphores are an operating system facility. When an Oracle process is waiting 
on its semaphore, the operating system will not schedule it to run on a CPU. In 
operating system terms, it is blocked, not runnable. When the semaphore is 
posted, the operating system status of the process is changed from blocked to 
runnable, and the process will be scheduled to run as soon as possible. 

Some operating systems support more than one type of semaphore. System V 
semaphores are the most common. The semaphore data structures for System V 
semaphores form a fixed array in kernel memory sized by the SEMMNS kernel 
parameter. To post a semaphore or wait on a semaphore, processes must use the 
semop( ) system call. Because they are implemented in the operating system 
kernel, System V semaphores suffer from unnecessarily high system call context 
switch overheads and poor scalability due to serialization requirements for access 
to the kernel data structures. 

For better performance and scalability, an alternative set of semaphore 
operations is supported on several operating systems. These are implemented in a 
pseudo device driver, called a post-wait driver. The data structures for these 
semaphores reside in user memory, rather than kernel memory, and can 
therefore be manipulated by the pseudo device driver running in user context. 
This reduces the number of system call context switches, and improves 
scalability, but it is operating system specific. 

The POSIX real-time extensions subcommittee has identified the need for a 
standards-compliant user memory semaphore facility. The POSIX.1b standard 
(formerly POSIX.4) defines both the interface and implementation requirements 
for such a semaphore facility that is elegant and efficient, not to mention 
portable. POSIX.1b semaphores are now available on many operating systems. 

Which semaphore facility Oracle uses is operating system and release specific. If 
your Oracle installation guide has instructions about setting the SEMMNS kernel 
parameter, that means System V semaphores will be used by default. 
Unfortunately, this is still the case on a large number of operating systems. 
Incidentally, the prevalent recommendation to set SEMMNS to 200, without 
regard for the projected number of Oracle processes, or the requirements of other 
system and application software, is ill-conceived. You must allow one semaphore 
for each Oracle server process, in addition to other requirements, as explained 
more fully in Table 2.1. 



You should also be aware that on some platforms each Oracle instance requires 
its semaphores to be allocated in a single semaphore set. So the SEMMNI 
parameter need only allow one semaphore identifier per instance, and SEMMSL 
(if defined) must be no less than the largest PROCESSES parameter that might be 
required for any instance. This is necessary to enable vector posts. Vector posts 
may be used, mainly by the key background processes, LGWR and DBWn, to post 
multiple waiting processes in a single semaphore operation. The use of vector 
posts is dependent on the setting of the _USE_VECTOR_POSTS parameter. 

Hidden Parameters 

Parameters that begin with an underscore, such as 
_USE_VECTOR_POSTS, are hidden parameters. You will not find 
them in V$PARAMETER, or see them with the SHOW PARAMETERS 
command, because they are hidden. You certainly will not find them 
explained in the Oracle documentation, because they are 
undocumented. You can, however, get their descriptions with the APT 
script hidden_parameters.sql and check their values with the script 
all_parameters.sql . 

Some hidden parameters are operating system specific. Some are 
needed only in unusual recovery situations. Some are used to disable 
or enable new features. And many are related to obscure performance 
issues. As with all undocumented features, hidden parameters may 
disappear or change in a future release. You should therefore use them 
as a last resort, and only after checking with Oracle Support, and 
documenting the issues fully for your successor. 

Further, if the SEMMNU kernel parameter is defined for your operating system, 
it should be greater than the projected number of concurrent semaphore 
operations system-wide. For systems with many semaphore client processes, the 
default may be inadequate. If so, semaphore operations will fail intermittently at 
periods of peak activity and return the ORA-7264 or ORA-7265 errors. To avoid 
this, the SEMMNU parameter must be at least equal to the number of CPUs plus 
the peak length of the CPU run queues. 

Table 2.1. System V Semaphore Parameters 

Parameter Description 

SEMMNS The number of semaphores in the system. In addition to the 



requirements of the operating system and other software, you should 
allow at least one semaphore for each Oracle server process—that is, 
the sum of the setting of the PROCESSES parameter for all instances 
on the system. If the semaphore clients are not always shut down and 
started up in strict sequence, then an extra allowance at least equal to 
the largest single requirement is recommended. 
Further, the kernel parameter controlling the maximum number of 
simultaneous processes owned by a single named user (often MAXUP) 
should be at least equal to the SEMMNS setting, with an allowance for 
other administrative processes owned by the "oracle" user that do not 
require semaphores. However, this parameter should not be so large 
as to allow the risk of another user creating so many processes that the 
kernel process table would be completely filled. Therefore, the kernel 
parameter controlling the maximum number of simultaneous 
processes for all users (often NPROC) should be at least three times 
the value of SEMMNS. 

SEMMSL 

The size limit for a single semaphore set. This parameter is not defined 
on some operating systems. Where it is defined, and where Oracle 
requires all the semaphores for an instance to be allocated in a single 
semaphore set, this parameter must be at least equal to the largest 
PROCESSES parameter required for any instance. 

SEMMNI 

The number of semaphore set identifiers in the system. In addition to 
the requirements of the operating system and other software, you 
should allow one identifier per instance, or more if the SEMMSL 
parameter is set such that multiple semaphore sets will be required for 
any instance. 

SEMMNU 

The number of semaphore undo structures in the system. Undo 
structures are used to recover the kernel semaphore data structures in 
the event of the unexpected death of a process during a semaphore 
operation. SEMMNU should be greater than the peak number of 
running and runnable processes. 

If Oracle uses System V semaphores on your operating system by default, but also 
supports the use of a post-wait driver, then you should use the post-wait driver 
instead. This normally involves setting the USE_POST_WAIT_DRIVER 
parameter to TRUE, and it is sometimes necessary to set the 
POST_WAIT_DEVICE parameter as well. Please consult your Oracle installation 
guide, because the instructions are operating system and release dependent. 



 

The semaphore parameters are operating system kernel 
parameters and cannot be set in the Oracle initialization 
parameter file (INIT.ORA). 

 

If your installation guide makes no mention of setting kernel semaphore 
parameters or of a post-wait driver, the selection and configuration of the 
semaphore facility for your operating system is automatic. 

2.1.2 Scheduling Latencies 

When a process is posted, its operating system status is changed from blocked to 
runnable. However, that does not mean it will be scheduled to run on a CPU 
immediately. It must wait at least until the operating system's process scheduler 
is next run, and possibly longer if there are higher priority processes waiting to 
run. The delay from when a process is posted until it begins running is called the 
scheduling latency. Scheduling latencies contribute to Oracle response times, as 
illustrated in Figure 2.1, and so minimizing scheduling latencies is an important 
part of performance tuning. 

Figure 2.1. The three scheduling latencies for a commit 

 

Many operating system scheduling algorithms adjust the execution priority of 
processes in proportion to the amount of CPU time that they have consumed 
recently. In very busy Oracle environments, this has the unfortunate effect of 
degrading the execution priority of key background processes, such as LGWR, 
DBWn, LCKn, and LMDn. This causes an increase in scheduling latencies for 



those processes, and can in the extreme make the entire instance bottleneck on 
the services of the affected background processes. 

Some operating systems support multiple scheduling algorithms. Where possible, 
you should choose a scheduling algorithm that does not degrade the execution 
priority of processes in this way. Failing that, your operating system may provide 
a priority fixing facility. If the execution priority of a process is fixed, it will not 
degrade. In some cases, priority fixing is available to all users, and Oracle uses it 
automatically. In other cases, it is only available to the system administrator, and 
specially privileged users. If so, the "oracle" user must be granted this privilege, 
or the system administrator must start the Oracle instance from a fixed priority 
command shell, so that all Oracle processes will run with fixed priority. 

Where priority fixing is not available, you may be able to obtain equivalent relief 
from the priority degradation mechanism by artificially raising the execution 
priority of the key background processes, or even running them in the real-time 
priority class. You may feel reluctant to do this, on the basis that Oracle has often 
recommended that all Oracle processes should run at the same priority. The 
rationale for this recommendation is to prevent the possibility of a low-priority 
process holding a critical resource but being unable to free it because of CPU 
starvation, while other high-priority processes try repeatedly to obtain that 
resource. However, this rationale scarcely applies to raising the priority of the 
background processes. These processes will soon sleep if the resources they 
require are not available, and beyond that will only consume CPU time in 
proportion to the amount of work being done by the rest of the instance. So, there 
is no risk of CPU starvation for other Oracle processes. 

2.1.3 Timeouts 

Oracle server processes are never willing to wait indefinitely, lest they never be 
posted and wait forever. Fortunately, semaphore waits can be interrupted. So 
before an Oracle process begins to wait on its semaphore, it arranges for its sleep 
to be interrupted by setting an alarm clock, or timeout. If the process is posted, it 
switches the alarm clock off and then continues processing. However, if the 
timeout expires, the wait is interrupted by a SIGALRM signal. The process then 
has the opportunity to reassess the situation and decide whether it wants to 
continue to wait. 

For example, a process waiting for an enqueue lock may perform deadlock 
detection when its wait times out. If a deadlock is discovered, the statement will 



be rolled back and an exception will be raised, but if not, the process will set a 
new timeout and will begin to wait on its semaphore again. 

It sometimes happens that a process is posted very shortly before its timeout is 
due to expire, and the alarm goes off just as the process is trying to switch it off. In 
this case, the Oracle process concerned will write a message to its trace file: 

Ignoring SIGALRM 

If you find some trace files with this message, it is nothing to be alarmed about. It 
merely tells you that waiting processes are sometimes not being posted as quickly 
as you might wish, and that is something you ought to be aware of anyway from 
the wait statistics. 

2.2 Wait Statistics 

The Oracle wait statistics are pure gold—but not to be overvalued. Many types of 
performance problems are easy to identify from the wait statistics. If Oracle is 
waiting extensively for resources such as latches, free cache buffers, enqueue 
locks, and so on, then the wait statistics can both identify and quantify the 
problem. With experience, you may also be able to use the wait statistics to 
identify network and disk performance problems. The wait statistics also provide 
valuable feedback on attempts to resolve such problems. 

But if your application is doing more parsing, or more disk I/O than necessary for 
its workload, then the wait statistics cannot help you. They will appear to give 
your instance a clean bill of health, and rightly so. The wait statistics are only able 
to reveal inefficiencies at the database server level and below. So they are silent 
about application-level performance problems that increase the load on the 
database server but do not cause it to work inefficiently. 

However, you should already have addressed all the application performance 
issues before considering database server tuning in detail. If so, the wait statistics 
can have full value for database server tuning. But they can only have full value if 
the waits are timed. 

2.2.1 Timed Statistics 

Waits are timed if and only if the TIMED_STATISTICS parameter is set to TRUE. 
Let me endorse what others have said before, that the overhead of timed statistics 
is negligible. If you need to convince yourself, use the SET TIMING ON command 



in SQL*Plus to measure the elapsed time of a benchmark query. Use an otherwise 
idle system and take ten or more measurements with and without timed 
statistics. You will be hard pressed to discern any significant difference. 

Without timed statistics, Oracle records the reason for each wait before it begins 
to wait, and when the wait is over, it records whether it timed out. But with timed 
statistics enabled, Oracle checks the time just before and after each wait, and also 
records the time waited. The time waited is recorded in hundredths of a second—
that is, centiseconds. 

2.2.2 Wait Types 

V$SYSTEM_EVENT shows the total number of waits and timeouts, and the total 
waiting time recorded for each type of event, accumulated for all processes over 
the life of the instance. It is normal to order the events waited for in descending 
order of the total time waited, as an indicator of the potential severity of each 
type of wait. 

However, the total time waited is really only meaningful for those that indicate 
waiting for resources. If processes have been waiting because they have no work 
to do, then the time waited is immaterial. If they have been waiting for routine 
operations, such as disk I/O, then the total time waited will depend on the 
workload. In such cases, the average time waited is much more interesting than 
the total time waited. 

This classification of wait types into idle waits, routine waits, and resource waits 
is vital to a correct understanding of the wait statistics. Accordingly, APT has 
separate scripts for resource waits and routine waits, and ignores idle waits 
altogether. The routine_waits.sql script shows only the average time waited for 
each type of routine wait. The resource_waits.sql script (see Example 2.1) shows 
the types of resources waited for in descending order of the total time waited, but 
also shows the average time waited. 

Example 2.1. Sample Output from resource_waits.sql  

SQL> @resource_waits 
---------------------------------------- ----------- ------------ 
write complete waits                         3816218       212.02 
buffer busy waits                            1395921        21.79 
enqueue                                       503217       529.15 
log file switch completion                    144263        90.11 
latch free                                     31173         0.61 
free buffer waits                              19352       302.38 



row cache lock                                   876        73.00 
library cache pin                                131        18.71 
library cache load lock                           29         2.64 
non-routine log file syncs                         0         2.32 

The average time waited reported by resource_waits.sql is not what you might 
expect. Because of timeouts, a single logical wait for a resource may be reported 
as a series of distinct waits, each of which would have timed out, except the last. 
The number of logical waits is approximately the number of times the waiting 
process was posted to end its wait—that is, the number of distinct waits, minus 
the number of waits that timed out. The average time waited for each logical wait 
is a better indication of the time taken to resolve resource waits, than the average 
time for each component wait. Therefore, that is what this script reports for all 
resource waits except latch free waits. It is normal for latch free waits to time out, 
because latch wait posting is the exception, not the rule. Also, apart from latch 
contention, it is normal for the latch to be obtained after a timeout. So the 
average time waited for each distinct wait is a better indication of the duration of 
latch free waits. 

2.2.3 Session Waits 

V$SESSION_EVENT shows the wait statistics for each live session. Although 
waits affect processes rather than sessions, they are recorded against sessions 
because sessions can migrate between processes (as in Multi-Threaded Server 
configurations). The cumulative session wait statistics have two main uses. 

First, if a particular user reports an episode of poor performance, then the wait 
statistics for that session can be examined to diagnose that user's problem. The 
APT script called session_times.sql (see Example 2.2) shows the waiting time 
accumulated by the session for each type of event waited for, together with the 
amount of CPU time consumed by that session. This makes it easy to see whether 
the session has been working or waiting, and if it has been waiting, what it has 
been waiting for. 

Example 2.2. Sample Output from session_times.sql  

SQL> @session_times 
Enter SID: 29 
EVENT                                                            
TIME_WAITED 
---------------------------------------------------------------- ------
----- 
SQL*Net message from client                                          
2954196 



CPU used by this session                                             
1657275 
db file sequential read                                               
246759 
write complete waits                                                  
139698 
buffer busy waits                                                      
61832 
log file sync                                                          
32601 
enqueue                                                                 
9576 
log file switch completion                                              
3530 
SQL*Net message to client                                               
2214 
db file scattered read                                                  
1879 
SQL*Net more data to client                                              
952 
SQL*Net more data from client                                            
908 
latch free                                                               
840 
free buffer waits                                                        
100 
buffer deadlock                                                           
57 
row cache lock                                                             
1 
SQL*Net break/reset to client                                              
0 

Second, if there has been extensive waiting for a particular type of resource, then 
the session wait statistics can be used to determine which of the sessions that are 
still connected have contributed to or been affected by the problem. The APT 
script for this job is called resource_waiters.sql . It shows the breakdown by 
session of the waiting time for the resource type in question. The total waiting 
time for sessions that are no longer active is also shown. For example, if there 
have been a large number of buffer busy waits, then looking at the session wait 
statistics may reveal whether the problem has been widespread, or confined to 
just a few sessions. 

2.2.4 Wait Parameters 

The wait statistics are very useful because they tell you which sessions have been 
waiting, and which types of resources they have been waiting for. They may have 
been waiting for latches, database blocks, enqueue locks, or other resource types. 
Knowing which type can direct your tuning efforts. But the wait parameters are 
even more valuable than the wait statistics. They can tell you exactly which 



resource—which latch, which database block, or which enqueue lock—is being 
waited for. The wait statistics merely put you in the right neighborhood, but the 
wait parameters can focus your attention on the right spot. 

Unfortunately, the wait parameters are hard to catch. They can be seen fleetingly 
in V$SESSION_WAIT . This view shows the wait parameters for the current or 
most recent wait for each session, as well as the duration of the wait, if known. 
However, querying V$SESSION_WAIT takes a long time relative to the length of 
most waits. If you query this view twice in quick succession and look at the SEQ# 
column, which is incremented for each distinct wait, it is not uncommon to notice 
that many event waits have been missed in each active session between the two 
queries. It is also rather expensive to query V$SESSION_WAIT repeatedly in 
quick succession, and so it is of limited usefulness for watching wait parameters. 

Fortunately, the wait parameters can also be seen in trace files produced by the 
new DBMS_SUPPORT package, or by the underlying event 10046. This trace is 
the same as that produced by the SQL_TRACE facility but also includes a line for 
each wait, including the wait parameters. 

For example, if there appears to be a problem with buffer busy waits, then you 
can enable this trace for a while in the most heavily affected sessions with the 
APT script trace_waits.sql . It is then just a matter of extracting the buffer busy 
wait lines from the trace files, and examining the wait parameters to find the file 
and block numbers of the blocks being waited for. In the case of buffer busy 
waits, the file and block numbers are parameters p1 and p2. This is illustrated in 
Example 2.3. 

Example 2.3. Sample Dialog from trace_waits.sql  

SQL> @trace_waits 
the top N sessions affected by waits for a particular resource. 
 
Select sessions waiting for: buffer busy waits 
Number of sessions to trace: 5 
Seconds to leave tracing on: 900 
 
Tracing ... Please wait ... 
 
PL/SQL procedure successfully completed. 
 
SQL> exit 
$ cd udump 
$ grep 'buffer busy waits' ora_*.trc | 
> sed -e 's/.*p1=/  file /' -e 's/ p2=/  block /' -e 's/ p3.*//' | 
> sort | 



> uniq -c | 
> sort -nr | 
> head -5 
  42    file 2    block 1036 
  12    file 24   block 3 
  10    file 2    block 1252 
   7    file 2    block 112 
   6    file 7    block 5122 
$ 

The meaning of the wait parameters for each type of wait event is visible in 
V$EVENT_NAME and is documented in an appendix to the Oracle8i Reference 
guide. However, this is a particularly weak section of the Oracle documentation. 
Much of the information is enigmatic, out-of-date, or inaccurate. Because the 
wait parameters are so vital to advanced performance tuning, this book explains 
the meaning of the wait parameters for each wait event discussed. 

2.3 Reference 

This section contains a quick reference to the parameters, events, statistics, and 
APT scripts mentioned in Chapter 2. 

2.3.1 Parameters 

Parameter Description 

_USE_VECTOR_POSTS 
Vector posts enable multiple waiting processes to be posted 
in a single semaphore operation. 

POST_WAIT_DEVICE 

The post-wait driver is a pseudo device driver. Its functions 
are invoked when operations are performed against a device 
special file of that device type. Where this parameter is used, 
it specifies the path to the device file for the post-wait driver. 

TIMED_STATISTICS 
Should be set to TRUE whenever timing information may be 
required for tuning purposes, which is always. 

USE_POST_WAIT_DRIVER 

If this parameter exists, it should be set to TRUE in order to 
use the post-wait driver, instead of regular semaphore 
operations. 

2.3.2 Events 

Event Description 

10046 

This is the event used to implement the DBMS_SUPPORT trace, which is a 
superset of Oracle's SQL_TRACE facility. At level 4, bind calls are included in the 
trace output; at level 8, wait events are included, which is the default level for 



DBMS_SUPPORT; and at level 12, both binds and waits are included. See the 
excellent Oracle Note 39817.1 for a detailed explanation of the raw information in 
the trace file. 

2.3.3 Statistics 

Statistic Source Description 

total_waits 
V$SYSTEM_EVENT 

V$SYSTEM_EVENT 
The number of distinct waits. 

total_timeouts 
V$SYSTEM_EVENT 

V$SESSION_EVENT 

The number of waits that timed out instead 
of being posted. 

logical_waits 
total_waits - 
total_timeouts 

A logical wait is a series of distinct waits for 
the same event. Each component wait times 
out, except the last, which is posted. 

time_waited 
V$SESSION_EVENT 

V$SESSION_EVENT 
The total time waited. 

average_wait 
V$SYSTEM_EVENT 

V$SESSION_EVENT 
The average time for each distinct wait. 

average_logical 
time_waited / 
logical_waits 

The average time for each logical wait. 

max_wait V$SESSION_EVENT 
The longest component wait by the session 
for the event. 

2.3.4 APT Scripts 

Script Description 

resource_waiters.sql 
Shows which sessions have waited for a particular resource 
type, and for how long. 

resource_waits.sql 
Shows all the resources waited for, and the total waiting time, 
over the life of the instance, in order of severity. 

routine_waits.sql Reports the average time waited for each routine wait. 

session_times.sql 
Shows how much time a particular session has used working 
or waiting, and what is has been waiting for. 

trace_waits.sql 
Enables the DBMS_SUPPORT trace (event 10046, level 8) for 
a period in the sessions most affected by a particular type of 



resource wait. Used to sample the wait parameters, in order 
to diagnose performance problems. 

 



Chapter 3. Latches 

There are numerous data structures in Oracle's System Global Area (SGA) that need to be 
accessed concurrently by many different database processes. It is essential that only one 
process be able to modify any particular data structure at one time, and that the data 
structure cannot be modified while it is being inspected. Oracle makes sure this does not 
happen by protecting all SGA data structures with either locks or latches. (See Chapter 6, 
for a description of the contents of the SGA and other memory areas.) 

3.1 Latches and Locks 

Latches are the more restrictive mechanism, because they do not allow multiple 
processes to inspect the protected data structure at the same time—they provide 
for exclusive access only.[1] Locks allow for better concurrency, because they may 
be held in a shared mode when the data structure is simply being inspected. 

[1] This is a simplification. The redo copy latches can be shared, but this is hardware 
dependent. 

Another significant difference between locks and latches is request queuing. 
Requests for locks are queued if necessary and serviced in order, whereas latches 
do not support request queuing. If a request to get a latch fails because the latch 
is busy, the process just continues to retry until it succeeds. So latch requests are 
not necessarily serviced in order. 

Because a latch can only be held by one process at a time, and because there is no 
inherent concept of queuing, the latch data structure itself is very simple—
essentially just a single location in memory representing the state of the latch. 
And because the latch data structure is so simple, the functions to get and release 
a latch have very little work to do. By contrast, the data structures for locks are 
much more sophisticated because of their support for queuing and concurrency. 
So the functions to get, convert, and release locks have correspondingly more 
work to do. 

Of course, it is necessary for Oracle to ensure that only one process at a time can 
modify the latch and lock data structures themselves. For latches this is easy. 
Because each latch is just a single location in memory, Oracle is able to use the 
TEST AND SET, LOAD AND CLEAR, or COMPARE AND SWAP instructions of 
the underlying hardware's instruction set for its latch get operations. Because 



these are simple machine instructions that are guaranteed to be atomic, no other 
locking mechanism is needed. This simplicity makes latch gets very efficient. 

Oracle's lock data structures, on the other hand, have several parts, and therefore 
cannot be modified atomically. For this reason, Oracle actually protects operations 
on locks with latches. The type of latch used varies depending on the type of lock. 
For example, the cache buffer locks are indirectly protected by the cache buffers 
chains latches, and the row cache enqueue locks are protected by the row cache 
objects latch. 

Because latches are efficient, Oracle often uses a latch, rather than a lock and latch 
combination, to protect data structures that are expected to be accessed only 
briefly and intermittently. 

3.2 Parent and Child Latches 

Most internal Oracle data structures that are protected by latches are protected 
by only one latch. However, in some cases more than one latch may be used. For 
example, there may be a number of library cache latches protecting different 
groups of objects in the library cache, and separate cache buffers chains latches 
are used to protect each of the database buffer cache hash chains. 

Whenever a number of latches may be used to protect different parts of a 
structure, or different equivalent structures, these latches are called child latches. 
For each set of child latches of the same type there is one parent latch. In general, 
both the parent and child latches may be taken. In practice, however, the library 
cache parent latch is the only parent latch you are likely to see being taken, and 
even then this is a relatively rare occurrence by comparison with the activity against 
its child latches. 

Somewhat confusingly, Oracle also refers to solitary latches that have no children 
as parent latches. So the V$LATCH_PARENT view contains one row for each of 
the solitary latches, as well as one row for each of the genuine parent latches. 
V$LATCH_CHILDREN has a row for each child latch. Thus, the union of these 
two views represents all latches. 

The types of latches used by Oracle, and whether they are solitary latches or 
parent and child sets, varies with different releases of Oracle and operating 
system ports. The APT script latch_types.sql can be used to see what latch types 
are in use in your database, whether they are parent and child sets, and if so, how 



many child latches there are. Example 3.1 shows an extract of the output of this 
script. 

Example 3.1. Sample Output from latch_types.sql  

SQL> @latch_types 
------ ------------------------------ ------ ------- 
     0 latch wait list                     1       1 
     1 process allocation                  1 
     2 session allocation                  1 
     3 session switching                   1 
     4 session idle bit                    1       1 
... 

APT Scripts and X$ Tables 

A number of the APT scripts referred to in this book, like latch_types.sql, 
are based directly on the X$ tables, rather than the V$ views. This is often 
necessary because the V$ views do not contain the required information, or 
because querying the V$ views would impose an unsatisfactory load on the 
instance. 

Because the X$ tables are only visible to the SYS schema, and because it 
would be bad practice to do anything as SYS unnecessarily, APT requires 
that you create a set of views that expose the X$ tables to other DBA 
schemata. This can be done with the create_xviews.sql script, which of 
course must be run as SYS. Unless these views exist, all APT scripts that are 
dependent on the X$ tables will fail. 

Note that the X$ tables change from release to release, and so these APT 
scripts are often release specific. Make sure that you use the right scripts for 
your release of Oracle. 

The V$LATCH view contains summary latch statistics grouped by latch type. 
V$LATCH should be your first point of reference when investigating a suspected 
latching problem. If the problem relates to a set of latches of the same type, you 
should consult V$LATCH_CHILDREN to investigate whether the distribution of 
activity across the child latches is even, and possibly V$LATCH_PARENT also to 
determine whether there has been any activity against the parent latch. 

3.3 Latch Gets 



When an Oracle process needs to access a data structure protected by a latch, it 
can request to get the latch in one of two modes—willing-to-wait mode or no-wait 
mode (also called immediate mode). 

3.3.1 Willing-to-Wait Mode 

Oracle expects latches to be held briefly and intermittently. So if a process 
attempts to get a latch in willing-to-wait mode and finds that the latch is not 
available, it will spin briefly and then try again. When a process spins, it executes 
a simple series of instructions a number of times, as a way of waiting before 
trying again. This is sometimes called an active wait because from the operating 
system's perspective, the process is still actively consuming CPU cycles, although 
it is really just waiting a while. 

The amount of CPU time that a process will burn before trying to get the latch 
once again is very small and fixed (although it was tunable in Oracle7 using the 
_LATCH_SPIN_COUNT parameter). If the next attempt to get the latch fails 
again, the procedure will be repeated up to the number of times specified by the 
_SPIN_COUNT parameter. This parameter normally defaults to 2000 iterations 
in multi-processor environments. 

3.3.1.1 Why spin? 

The idea of spinning is that another process executing on another CPU may 
release the latch, thereby allowing the spinning process to proceed. Of course, it 
makes no sense to spin on a machine with just one CPU, and so Oracle does not. 

The alternative to spinning is to relinquish the CPU and allow another process to 
use it. At first glance, this may seem like a good idea. However, for a CPU to stop 
executing one process and begin executing another, it must perform a context 
switch . That is, it must save the context of the first process, determine which 
process to schedule next, and then resume the context of the next process. The 
context of a process is essentially a set of CPU register values that describes the 
exact state of the process. 

The implementation of context switches is highly machine dependent. In fact, it 
is typically written in assembly language. System vendors make every effort to 
minimize the size of the context data and optimize context switching by using 
tricks such as remapping memory addresses rather than copying data. 
Nevertheless, context switching remains an expensive operation because various 
kernel data structures have to be searched and updated. Access to these 



structures is protected by spinlocks, which are the equivalent of latches for the 
operating system. On a large and busy system, context switching normally 
consumes between 1% and 3% of CPU time. So if a context switch can be avoided 
by spinning briefly, then some CPU time can be saved, and the waiting time to 
obtain the latch can be minimized. For this reason, spinning briefly is normally 
preferable to relinquishing the CPU immediately. 

3.3.1.2 Understanding the spin statistics 

The latch statistics in the V$LATCH family of views record a get whenever a 
process acquires a latch in willing-to-wait mode. If the process fails to get the 
latch without spinning, a miss is recorded. If the latch is obtained after one or 
more spin iterations, a spin get is recorded. If the latch cannot be obtained while 
spinning, the process relinquishes the CPU and enters a sleep. No matter how 
many times the process subsequently wakes up, spins, and sleeps again, no 
further gets or misses will be recorded, and neither will a spin get be recorded if 
the latch is finally obtained while spinning. So, the number of times that a latch 
was obtained without spinning at all is gets - misses. I call these simple gets. The 
APT script latch_gets.sql shows the breakdown of gets into simple gets, spin 
gets, and gets that slept, called sleep gets. Example 3.2 shows some sample 
output. 

Example 3.2. Sample Output from latch_gets.sql  

SQL> @latch_gets 
------------------------------ ------------------ -------------- ------
-------- 
archive control                       228 100.00%       0  0.00%       
0  0.00% 
cache buffer handles                67399 100.00%       0  0.00%       
0  0.00% 
cache buffers chains           2948282897 100.00%   11811  0.00%   
35999  0.00% 
cache buffers lru chain          56863812  99.60%   44364  0.08%  
182480  0.32% 
dml lock allocation               2047579  99.99%      36  0.00%     
199  0.01% 
enqueue hash chains              14960087  99.95%    1139  0.01%    
6603  0.04% 
enqueues                         24759299 100.00%     165  0.00%     
861  0.00% 
... 

Perhaps more interestingly, the APT script latch_spins.sql shows the 
effectiveness of spinning for each latch type, as illustrated in Example 3.3. 



Example 3.3. Sample Output from latch_spins.sql  

SQL> @latch_spins 
 
LATCH TYPE                   SPIN    GETS SLEEP GETS SPIN HIT RATE 
_________________________________________________________________ 
 
cache buffers lru chain             44752     182595        19.68% 
redo allocation                     29218      66781        30.44% 
library cache                       18997      43535        30.38% 
cache buffers chains                11812      36001        24.70% 
redo copy                             606      18245         3.21% 
messages                             3968       8315        32.30% 
enqueue hash chains                  1139       6603        14.71% 
system commit number                 2312       5548        29.41% 
undo global data                      252       1327        15.96% 
session idle bit                      256       1198        17.61% 
enqueues                              165        861        16.08% 
transaction allocation                 80        535        13.01% 
list of block allocation               47        353        11.75% 
shared pool                           272        295        47.97% 
dml lock allocation                    36        199        15.32% 
global tx hash mapping                 36        184        16.36% 
latch wait list                        27         95        22.13% 
session allocation                     13         78        14.29% 
row cache objects                      89         76        53.94% 
 
ALL LATCHES                        114080     372833        23.43% 

3.3.1.3 Tuning the spin count  

Clearly, increasing the _SPIN_COUNT parameter has the potential to improve 
the effectiveness of spinning, at the cost of using more CPU time on unsuccessful 
spins. Alternately, if many spins are unsuccessful, reducing the spin count will 
reduce the amount of CPU time spent spinning. In general, tuning the spin count 
is a matter of balancing the CPU time used spinning against the CPU time and 
elapsed time saved by avoiding context switches. A workable rule of thumb is to 
attempt to minimize the value of the following: 

_SPIN_COUNT * sleeps / misses  

which serves as an approximation of the cost of spinning. If in doubt, err in favor 
of a higher spin count rather than a lower one. In database instances with mild 
latching problems, it may be beneficial to increase the _SPIN_COUNT parameter 
significantly from its default value. This is particularly true if the number of 
active processes is of the same order of magnitude as the number of CPUs. In 
instances experiencing severe latch contention the optimum spin count is 
normally much less than the default, but more than one. 



The APT script tune_spin_count.sql can be used to try out alternate values for 
the _SPIN_COUNT parameter. It notes the spin statistics, then uses the ALTER 
SYSTEM SET "_SPIN_COUNT" command to change the spin count. After 
waiting for the specified period, it checks the spin statistics again and computes 
the effect of the new spin count over the interval. A sample dialog from this script 
is shown in Example 3.4. Be warned that no allowance is made for variations in 
load, so some variability in results is to be expected. Note also that trying a very 
high value for _SPIN_COUNT could upset your users! 

Example 3.4. Sample Dialog from tune_spin_count.sql  

SQL> @tune_spin_count 
 
SPIN_COUNT 
__________ 
2000 
 
SPIN HIT RATE  SPIN COST 
------------- ---------- 
       93.53%          6 
 
Enter new _spin_count value to try: 4000 
Enter time to wait (in seconds): 900 
 
SPIN HIT RATE  SPIN COST 
------------- ---------- 
       96.27%          4 
 
SQL> 

Of course, tuning the spin count should be the very last thing you do in response 
to latch contention. You should first identify which latches are subject to 
contention, and then attempt to understand why. You should then make every 
possible effort to prevent the contention. Only when you have completely run out 
of ideas should you attempt to minimize the effect of the contention by tuning the 
spin count. 

3.3.2 Sleeps 

If a willing-to-wait request fails, then before the process goes to sleep, it must 
arrange for itself to be woken up again. As described in Chapter 2, there are two 
mechanisms for a process that is sleeping to be woken up again. The normal 
mechanism for latch sleeps is a simple timeout. A process sleeping for a latch 
waits on its semaphore, but before it does so, it sets an alarm that will cause it to 
be signaled by the operating system at the end of a specified interval. The interval 
specified is variable. Initially the process will sleep for just one centisecond. If 



after waking up, the process again fails to obtain the latch, then the length of the 
second and any subsequent sleeps will be doubled under what is called the 
exponential backoff algorithm. The maximum sleep under the exponential 
backoff algorithm is set by the _MAX_EXPONENTIAL_SLEEP parameter, which 
defaults to 2 seconds in Oracle8. However, if the process is already holding other 
latches, then the maximum sleep time is reduced to the value of the 
_MAX_SLEEP_HOLDING_LATCH parameter, which defaults to 4 centiseconds, 
and possibly further, in proportion with the number of other latches already 
being held. 

Another task that the process performs before it goes to sleep is to update the 
session wait information visible in the V$SESSION_WAIT view to indicate that 
the process is waiting on a latch free wait . The wait parameters are shown in 
Table 3.1. 

Table 3.1. Wait Parameters (latch free waits) 
Parameter Description 

p1 
The SGA address of the latch required; corresponds to the ADDR column 
of the V$LATCH_PARENT and V$LATCH_CHILDREN views (but not 
V$LATCH itself) 

p2 
The type of the latch; corresponds to the LATCH# column of the 
V$LATCH family of views 

p3 
The number of times that the process has slept during this attempt to 
acquire the latch 

When the process wakes up again, it will update the session wait information to 
indicate that the wait is over, and if timed statistics are enabled, it will record the 
time for which it slept. The cumulative statistics for latch free waits that are 
visible in the V$SESSION_EVENT and V$SYSTEM_EVENT views are also 
updated at this time. Note that consecutive sleeps during a single attempt to 
acquire a latch are recorded as separate waits. However, the latching statistics 
visible in the V$LATCH family of views are only updated once the latch has been 
acquired. 

If a process fails to obtain a latch in either willing-to-wait or no-wait mode, then 
it updates the latch miss statistics which are visible in the V$LATCH_MISSES 
view. This update is not protected by a latch, and so these statistics may not tally 
with those in V$LATCH . Each row in V$LATCH_MISSES represents a location 
in the Oracle server code from which a latch may be held. The NWFAIL_COUNT 
and SLEEP_COUNT columns record the number of no-wait get failures and 



sleeps, respectively, that occurred while the latch was being held from that 
particular location in the code. Unfortunately, considerable familiarity with the 
Oracle server code is required to be able to interpret the significance of these 
statistics. For what it's worth, the APT script latch_where.sql shows the 
distribution of sleeps against code locations. 

3.3.3 Latch Wait Posting 

The second mechanism whereby a process sleeping on a latch may be woken up is 
called latch wait posting. In this case, the next process to free the required latch 
will wake up the sleeping process. The waiting process must request latch wait 
posting before it goes to sleep. It does this by putting itself on a list of processes 
waiting to be posted, known as the latch wait list. When a process frees a latch, it 
checks the latch wait list, and if there is a process waiting for that latch, it posts 
the semaphore of the waiting process, which acts as a signal to the operating 
system to schedule the waiting process to run. 

The benefit of latch wait posting is that there is a high probability of the waiting 
process obtaining the latch almost as soon as the latch is freed. Of course, there is 
also a significant cost to latch wait posting, namely maintaining the latch wait list 
data structure. This data structure is implemented as a set of singly linked lists 
through the process table in the SGA (visible as X$KSUPR. KSLLALAQ ). Of 
course, as with any other data structure, the lists have to be protected by latches. 
Where latch wait posting is used extensively, the latch wait lists can become 
relatively long, with the result that the latch wait list latches are held longer and 
more frequently than otherwise. Indeed, it is not uncommon to see secondary 
contention on one of the latch wait list latches, when there is severe contention 
for some other latch for which latch wait posting is enabled. 

By default, latch wait posting is enabled only for the library cache and shared 
pool latches. It can be disabled entirely by setting the _LATCH_WAIT_POSTING 
parameter to (the default is 1), or it can be enabled for all latches by setting the 
parameter to 2. Changes to latch wait posting need to be carefully benchmarked. 
Disabling latch wait posting can be beneficial where contention on the library 
cache latch is severe, and enabling it for all latches can improve performance in 
cases of moderate contention for other latches. Even when enabled for all latches, 
latch wait posting will not always be requested for sleeps on the cache buffers 
chains latches. 



The WAITERS_WOKEN column in the V$LATCH family of views shows the 
number of times that a waiter has been woken via the latch wait posting 
mechanism. This statistic can actually be greater than the number of misses, 
because it is possible for a process to be posted and yet fail to obtain the latch 
because some other process has taken it in the interim. 

3.3.4 Latch Contention 

We have already observed that Oracle expects latches to be held only briefly and 
intermittently. If the use of any latch is either not brief, or not intermittent, then 
contention for that latch is likely. An episode of latch contention begins when the 
latch is being held by one process and is required by two or more other processes. 
Until the backlog of demand is cleared, waiting processes must contend for the 
latch. This results in CPU time being ineffectively used, and in the extreme can 
have a disastrous effect on performance. 

The severity of contention for a particular latch may be characterized in terms of 
the frequency, duration, and intensity of latch contention episodes. This can be 
assessed using the histogram of sleep counts contained in the SLEEP1 to SLEEP4 
columns of V$LATCH. Note that no statistics are kept for sleep cycles longer than 
four iterations—the columns SLEEP5 to SLEEP11 are retained for compatibility 
with releases of Oracle prior to 7.3. 

The histogram of sleep counts can also be used to determine the effectiveness (or 
otherwise) of attempts to reduce contention for the latch. However, the ratio of 
sleeps to gets serves as a better indicator of the effectiveness of latch tuning, 
because it accounts for simple gets as well as misses. I call this ratio, expressed as 
a percentage, the sleep rate. The sleep rate is calculated by the APT script 
latch_sleeps.sql . See Example 3.5 for sample output. 

Example 3.5. Sample Output from latch_sleeps.sql  

SQL> @latch_sleeps 
 
LATCH TYPE                  IMPACT SLEEP RATE WAITS HOLDING   LEVEL 
----------------------------------------------------------------------- 
library cache                11224      0.03%           256       5 
cache buffers chains          1295      0.00%             0       1 
redo allocation                713      0.01%          9613       7 
system commit number           373      0.00%            66       8 
enqueue hash chains            221      0.00%             3       4 
redo copy                      210     22.30%             0       6 
shared pool                    166      0.01%          1434       7 
cache buffers lru chain        146      0.01%           336       3 



messages                       135      0.01%             0       8 
session allocation             113      0.02%             0       5 
row cache objects               86      0.00%             0       4 
enqueues                        75      0.00%           624       5 
latch wait list                 48      0.08%             1       9 
session idle bit                47      0.00%             0       1 
undo global data                14      0.00%             0       5 
multiblock read objects         13      0.00%             8       3 
sequence cache                  11      0.00%             0       8 
dml lock allocation             10      0.00%             0       3 
transaction allocation          10      0.00%             0       8 
list of block allocation         4      0.00%             0       3 
modify parameter values          2      0.03%             0       0 
process allocation               1      0.02%             0       0 

Note that there is an important difference between the sleep rate and the impact 
of a particular type of latch on overall performance. For example, in Example 3.5 
the sleep rate for the redo copy latches is high (as is normal). However, because 
there are very few willing-to-wait gets on these latches, the impact of these sleeps 
is not the highest. The impact shown is based on the number of sleeps. However, 
not all sleeps are equal because of the exponential backoff algorithm. So the 
number of sleeps per sleep get is used as an indicator of the average length of 
sleeps against each latch, and this is multiplied by the number of sleeps to 
estimate the impact. 

3.3.5 Latch Levels 

It is very common for an Oracle process to need to hold a number of latches 
concurrently. Therefore, there might be a possibility of latching deadlocks 
occurring—namely, one process holding latch A and another process holding 
latch B, and both processes spinning and waiting for the alternate latch. Oracle 
ensures that this cannot happen by ensuring that latches are always taken in a 
defined order, when more than one latch is required. To support this, every latch 
in Oracle has a level between and 15, and a 2-byte bitmap is maintained for every 
process representing the levels of the latches that the process is currently holding. 
When a process attempts to get a latch in willing-to-wait mode, a check is made 
to ensure that it is not already holding a latch at the same level or at a higher 
level. In general, if this rule is broken, an ORA-600 [504] internal error is 
raised.[2]  

[2] However, this latch level rule is sometimes relaxed to allow two library cache child latches 
to be held simultaneously. 

Contention for a high-level latch such as the redo allocation latch (level 6) can 
easily exacerbate contention for lower-level latches such as the cache buffers 



chains latches (level 1 in Oracle 8.1). This happens because processes needing the 
higher-level latch have to sleep while holding a lower-level latch. So the lower-
level latches are held for much longer than normal. An indication of this factor is 
available in the WAITS_HOLDING_LATCH column of the V$LATCH family of 
views. That statistic represents the number of times that a process waited while 
holding this latch. Those waits include, but are not limited to, waits for a higher-
level latch. For example, the waits holding latch statistic for the cache buffers 
chains latches could include sleeps while trying acquire the redo allocation latch. 
However, it could also include other waits such as log buffer space waits. If waits 
holding a latch appear to be a significant factor in contention for that latch, those 
waits should be addressed first. For that reason, it is generally wise to address 
latch contention issues in descending order of latch level, rather than merely in 
descending order of apparent impact, particularly if there are waits while holding 
a low-level latch. 

3.3.6 No-Wait Mode 

No-wait mode is used when Oracle is already holding one latch and needs to 
acquire another latch at the same level or at a lower level. A willing-to-wait 
request cannot be used in this case because of the deadlock prevention 
requirement. In this case, Oracle can request the latch in no-wait mode, as long 
as no more than one pair of latches would be held at the same level. If the no-wait 
request succeeds, there is no risk of deadlock and so all is well. However, if the 
request fails, there would be a risk of deadlock were the process to persist in its 
attempt to acquire the latch. Instead, the process releases all the higher-level 
latches that it holds, yields the CPU, and then immediately attempts to acquire 
them again in the correct order of level. 

The redo copy latches are a slightly special case. No-wait mode is used for most 
gets against these latches, because Oracle can use any one of them to protect the 
copy into the log buffer. If the request for one copy latch fails, Oracle can perform 
the copy on another latch instead. Willing-to-wait mode is only used to get the 
last copy latch if no-wait gets against all the other copy latches have failed. This is 
normally a symptom of waits while holding the copy latches, such as contention 
for a higher-level latch, and so increasing the number of copy latches with the 
_LOG_SIMULTANEOUS_COPIES parameter does not normally help. 

Other than the redo copy latches, there are only a few types of latches that Oracle 
sometimes attempts to get in no-wait mode. For all other types of latches, the 



IMMEDIATE_GETS and IMMEDIATE_MISSES columns in the V$LATCH 
family of views are always zero. 

From a performance point of view, immediate misses are not necessarily a 
problem. If the relinquished latches are reclaimed cheaply after the willing-to-
wait get is satisfied, then the cost of the immediate miss is not inordinate. 
However, if there is a degree of contention for those other latches, then 
immediate misses exacerbate the problem by increasing the workload on those 
latches. Therefore, when tuning any latch you should attempt to eliminate 
immediate misses as well as sleeps. However, don't lose too much sleep over 
immediate misses unless you are sleeping too much on higher-level latches. 

3.3.7 Latch Cleanups 

It is a fact of life that Oracle processes sometimes die unexpectedly, and can die 
when holding a latch. It is the task of the Oracle PMON process to detect the 
unexpected death of user processes and perform cleanup actions. Among the 
cleanup actions that PMON performs first is latch cleanup. Latch cleanup is 
completed for all newly deceased processes, before any work is begun to roll back 
uncommitted transactions. 

Latch cleanup is not merely a matter of freeing the latch. Latches are taken to 
manipulate data structures, and if a process dies holding a latch, there is every 
chance that the data structure protected by the latch may have been left in an 
inconsistent state. To support latch recovery, processes holding a latch in order to 
manipulate a structure write a record of their intended operation into the latch 
recovery area for that latch, prior to performing the operation. PMON's task is 
not just to free the latch, but first to recover the protected data structure. A latch 
is said to be in flux if latch recovery is necessary or in progress. 

However, because PMON normally wakes up only every 3 seconds, Oracle has 
another way of initiating latch cleanup. If a process has repeatedly failed to 
acquire a latch, it will perform a latch activity test to check whether latch cleanup 
may be necessary. If there is no activity on the latch for 5 centiseconds, the 
process will post PMON, and PMON will check whether the process holding the 
latch has died and needs to be cleaned up. 

When a process is performing a latch activity test, or waiting for PMON to check 
the process holding the latch, the V$SESSION_WAIT view shows that the 



process is waiting on a latch activity wait . The wait parameters are as shown in 
Table 3.2. 

Table 3.2. Wait Parameters (latch activity waits) 

Parameter Description 

p1 The SGA address of the latch required. 

p2 The type of the latch. 

p3 
0 for the latch activity test. Otherwise, the process number of the 
possibly deceased latch holder being checked by PMON. 

If latch contention is accompanied by numerous latch activity waits, the cause of 
both symptoms could be an operating system scheduling problem that is 
preventing the latch holder from releasing the latch quickly enough. 

3.3.8 DLM Latches 

Instance locks are used for inter-instance locking and communication between 
the instances of an Oracle parallel server database. A separate part of the SGA 
contains the structures needed for instance locks. A set of latches is used to 
protect these structures. In release 8.0, the latching statistics for these latches 
were reported separately in V$DLM_LATCH . From release 8.1, the Distributed 
Lock Manager (DLM) latching statistics have been merged into V$LATCH. 

LMON performs latch cleanup for DLM latches in cooperation with PMON. 

3.4 Advanced Latching Control 

Some operating systems support a facility called multi-processing control. This 
enables an authorized user process to influence its CPU scheduling in a variety of 
ways. Where available, Oracle can use certain multi-processing control features. 
The following features affect the latching mechanism. 

3.4.1 Preemption Control  

Preemption control enables Oracle to suspend the operation of the normal 
operating system process preemption mechanism during performance-critical 
operations—in particular, when holding a latch. This means that the Oracle 
process can continue to run on its CPU until it explicitly enables preemption 
again, or until it blocks on an operating system event such as an I/O request, 
semaphore operation, or page fault. The process will not be pre-empted at the 



end of its time-slice by a higher priority process of the time-sharing priority class. 
This means that operations protected by latches complete as quickly as possible, 
and so the risk of latch contention is greatly reduced. If preemption control is 
available to Oracle, it is used by default unless disabled using the 
_NO_PREEMPT parameter. 

3.4.2 CPU Yielding  

CPU yielding enables Oracle processes to offer to yield the CPU during a spin. If 
there is another runnable process of higher priority able to use the CPU, that 
process is scheduled, and the yielding process is placed at the end of its run 
queue, but it remains runnable. Otherwise, if there are no other higher-priority 
processes able to use the CPU, then the process will continue to spin for its latch. 
The frequency with which Oracle will offer to yield the CPU while spinning is 
controlled by the _SPIN_YIELD_CPU_FREQ parameter, which defaults to the 
default value of the _SPIN_COUNT parameter. If CPU yielding is available, and 
if these two parameters have the same value, the effect is that the process will 
begin a new spin without sleeping if there is no other process available to use the 
CPU. Thus, CPU yielding enables Oracle processes to obtain latches as quickly as 
possible without consuming otherwise usable CPU time. 

3.4.3 Affinity Control  

Affinity control enables Oracle processes to disable and re-enable the normal 
operating system affinity mechanism which attempts to weakly bind a process to 
the last CPU it ran on. If a process runs on the same CPU as before, many of the 
memory address and value pairs (cache lines) required for its execution may still 
be available in that CPU's cache. This can result in greatly reduced memory 
access by that CPU, and thus much faster execution. However, faster execution is 
not necessary when all the process is doing is spinning for a latch, and faster 
execution is less important than earlier execution when the process has been 
sleeping holding a latch that other processes may need. Where it is available, 
Oracle uses affinity control to optimize latching automatically. Incidentally, it is 
not recommended to use explicit processor binding for Oracle processes. 
Otherwise, runnable processes will not be migrated to idle CPUs. 

Oracle can use multi-processing control features to improve the performance of 
large, highly active instances significantly, and the biggest impact is in the area of 
latching. However, under many operating systems some or all of these features 
are not available, or are not available to the processes of ordinary users such as 



"oracle." Where these features are available, the "oracle" user must be specifically 
authorized to use them. In some cases, such authorizations are not persistent, 
and so the authorization commands must be placed in the system startup scripts 
to ensure that Oracle will always be able to use these features. Check your 
operating system documentation for an mpctl ( ) system call and related entries 
to determine whether your operating system supports multi-processing control 
features for ordinary user processes, and if so, how to enable them. 

3.5 Reference 

This section contains a quick reference to the parameters, statistics, waits, and 
APT scripts mentioned in Chapter 3. 

3.5.1 Parameters 

Parameter Description 

_LATCH_WAIT_POSTING 

Latch wait posting is a mechanism whereby a 
process can be woken (posted) when the latch that 
it requires becomes available. 

If this parameter is set to 0, latch wait posting is 
disabled. If this parameter is set to 1 (the default), 
latch wait posting is enabled for the library cache 
and shared pool latches only. Any other setting 
results in latch wait posting being enabled for all 
latches. 

_MAX_EXPONENTIAL_SLEEP 

Consecutive sleeps during a single attempt to 
acquire a latch become progressively longer, under 
an exponential backoff algorithm, up to the limit 
specified by this parameter. Defaults to 200 
centiseconds in Oracle8. 

_MAX_SLEEP_HOLDING_LATCH 

The maximum sleep allowed under the 
exponential backoff algorithm when the sleeping 
process is holding another latch. Defaults to 4 
centiseconds. 

_NO_PREEMPT 

If this parameter is set to TRUE (the default) 
Oracle will use the operating system's preemption 
control mechanism, if available, to minimize the 
risk of processes sleeping while holding a latch. 



_SPIN_COUNT 

The number of iterations to perform before 
sleeping when spinning to acquire a latch. Defaults 
to 1 on single CPU systems, and 2000 on multi-
processor machines. 

_SPIN_YIELD_CPU_FREQ 

This parameter controls the frequency with which 
an Oracle process will offer to yield the CPU if 
possible during a spin. If a higher-priority process 
is runnable, it will be scheduled, and the yielding 
process will be placed at the end of the run queue 
without sleeping. Defaults to the default value of 
_SPIN_COUNT. If _SPIN_COUNT is tuned, this 
parameter should normally be tuned as well. 

3.5.2 Statistics 

Statistic Source Description 

immediate 
gets  

V$LATCH family Successful latch get requests in no-wait mode 

immediate 
misses  

V$LATCH family Latch get requests in no-wait mode that failed 

gets V$LATCH family Completed willing-to-wait latch acquisitions 

misses V$LATCH family Gets that waited because the latch was in use 

simple gets gets - misses Gets completed without waiting at all 

spin gets V$LATCH family 
Gets that obtained the latch by spinning, but 
did not sleep 

sleep gets misses - spin gets Gets that required one or more sleeps 

spin get rate 
100 * spin gets / 
misses 

A measure of the effectiveness of spinning 

spin cost 
_SPIN_COUNT * 
sleeps / misses 

A measure of the cost of spinning 

sleeps V$LATCH family 
Total number of times that processes slept 
while waiting for the latch 

sleep1 V$LATCH family Gets that slept once 

sleep2 V$LATCH family Gets that slept twice 

sleep3 V$LATCH family Gets that slept three times 

sleep4 V$LATCH family Gets that slept four times 

sleep rate 100 * sleeps / gets 
A measure of the severity of contention for the 
latch 

sleep impact sleeps2 / sleep gets An estimate of the relative impact of latch 



sleeps on overall performance 

waiters woken V$LATCH family 
The number of times that waiters were posted 
due to latch wait posting 

waits holding 
latch 

V$LATCH family 
The number of times that a process waited on 
any event wait while holding the latch 

3.5.3 Waits 

Event Description 

latch activity 

A process that has repeatedly failed to acquire a latch will 
perform a latch activity test to check whether latch 
cleanup may be necessary. This wait occurs both during 
the activity test and while waiting for latch cleanup if 
necessary. 

latch free Latch free waits are just sleeps by another name. 

wait for DLM latch 
This wait corresponds to latch free waits, but for DLM 
latches. 

wait for influx DLM latch The DLM latch needed latch recovery. 

3.5.4 APT Scripts 

Script Description 

create_xviews.sql 
Some APT scripts are based on the X$ tables. Before those 
scripts can be used, this script must be run as SYS to create the 
required views on the X$ tables. 

latch_gets.sql 
Shows the breakdown of willing-to-wait gets into simple gets, 
spin gets, and sleep gets. 

latch_levels.sql  Like latch_types.sql, but shows the level for each latch type. 

latch_sleeps.sql 
Shows the sleep rate and impact for latch sleeps. Used to 
determine the priority of latch tuning issues. 

latch_spins.sql 
Shows the number of spin gets and sleep gets and calculates 
the spin hit rate for each latch and for all latches. 

latch_types.sql 

Shows all latch types ordered by number, whether they are 
solitary latches or parent/child sets, and how many children 
there are. For elegance and performance, this script is based 
directly on X$KSLLT. 

latch_where.sql 
Shows where in the Oracle server code latch gets have been 
failing. This code is based directly on the X$ tables in order to 
access a column not projected by the V$LATCH_MISSES view. 

tune_spin_count.sql Used to alter the spin count and then monitor spin statistics for 



an interval to determine whether there has been an 
improvement.  

 



Chapter 4. Locks 

Oracle uses latches to protect data structures that are accessed briefly and intermittently. 
However, latches are not suitable for protecting resources that may be needed for a 
relatively long time, such as database tables. In such cases, a lock must be used instead. 
Locks allow sessions to join a queue for a resource that is not immediately available. This 
avoids spinning. Locks also allow multiple sessions to share a resource if their activities 
are compatible. 

4.1 Lock Usage 

Oracle uses locks for many different purposes. The following are the most 
important ones to understand for performance tuning. 

4.1.1 Transaction Locks and Row-Level Locks  

Oracle's much vaunted row-level locks are subtle. When a transaction modifies a 
row, its transaction identifier is recorded in an entry in the interested transaction 
list (ITL) in the header of the data block itself, and the row header is modified to 
point to that ITL entry. Once these changes have been made, no lock is retained. 
The ITL entry for the uncommitted transaction, together with the row header that 
references it, constitutes an implicit lock on the row. 

When another transaction wants to modify the same row, and sees that an 
uncommitted transaction has modified that row, that transaction waits, not on a 
row-level lock, but on the transaction lock for the blocking transaction. 

When the blocking transaction commits or rolls back, its transaction lock will be 
released. Its implicit row-level locks are thereby released, and so the blocked 
transaction can then proceed. Note that rolling back to a savepoint does not free 
previously blocked transactions that were waiting for a row-level lock. 

4.1.2 Buffer Locks 

Row-level locks protect data integrity at the lowest feasible level of granularity, 
and remain in force for the duration of a transaction. However, Oracle also needs 
short-term block-level locks to be in force while accessing or modifying blocks in 
its cache. 



Buffer locks are used to provide simple read/write locking for blocks in the 
database buffer cache. Although they are often taken for granted and seldom 
mentioned, buffer locks are essential to data integrity, and can feature 
prominently in certain performance tuning scenarios. 

4.1.3 Data Dictionary Locks  

The definitions of database objects in the data dictionary must be protected while 
they are being referenced. This is necessary to prevent those objects from being 
dropped, and to prevent their definitions from being changed, while they are 
being used. Dictionary locks must be held while dependent SQL statements are 
being parsed or executed, and must be retained for the duration of dependent 
transactions. 

Several types of locks are used for dictionary locking. All of these are covered in 
some detail later in this chapter. The data dictionary rows themselves are locked 
with row cache enqueue locks. Dependent SQL statements are protected with 
library cache pins, and dependent transactions hold DML (Data Manipulation 
Language) locks. Logically, both DML locks and library cache pins are dependent 
on the corresponding row cache enqueue locks. However, this dependency is 
implicit in the code, rather than explicit in the structures. 

4.2 Lock Modes 

Locks are applied to both compound and simple objects. The classic example of a 
compound object and its component parts is a table and its rows. A cache buffer 
is an example of a simple object. Simple objects may only be locked in the 
following modes: 

Exclusive  
If a session needs to modify a simple object, then an exclusive lock is 
required on the resource to prevent any concurrent access. 

Shared  
If a session needs to inspect a simple object, then a shared lock on the 
resource is sufficient to ensure that the data structure will not be modified by 
another session, while allowing concurrent shared access. 

Null  
If a session has some information cached about an object, then a null mode 
lock may be held as a placeholder, even when the resource is not actively 
being used. A null mode lock does not inhibit any concurrent access, but if the 
resource is invalidated, the null mode lock acts as a trigger for the session to 



invalidate its private cached information. There is an important difference 
between holding a null mode lock, and not holding a lock at all. 

In addition to the modes above, compound objects may also be locked in the 
following modes: 

Sub-shared  
If a session needs shared access to part of a compound object, then a shared 
lock on the entire compound resource would be unduly restrictive, because it 
would prevent exclusive access to other parts of the compound resource. In 
such cases, a sub-shared lock is used instead. 

Sub-exclusive  
If a session needs exclusive access to part of a compound resource, then a 
sub-exclusive lock is sufficiently restrictive. 

Shared-sub-exclusive  
This lock mode is used when a session needs exclusive access to part of a 
compound resource and shared access to the entire compound resource at the 
same time. 

These lock modes apply both to local locks and to the instance locks that are used 
between parallel server instances. However, different terminology is used for 
instance locks. Table 4.1 shows the corresponding lock mode names together with 
the symbolic and numeric representations used in dumps and wait parameter 
values. 

Local Lock Modes     Instance Lock 
Modes 

Name 
Symbo

l 
Numbe

r 
Name 

Symbo
l 

Number 

(No lock) NLCK 0       
Null N 1 Null NL 0 

Sub-Shared SS 2 
Concurrent 
Read 

CR 1 

Sub-Exclusive SX 3 
Concurrent 
Write 

CW 2 

Shared S 4 Protected Read PR 3 

Shared-Sub-
Exclusive 

SSX 5 Protected Write PW 4 

Exclusive X 6 Exclusive EX 5 

It is important to understand which lock modes are compatible with one another. 
Table 4.2 shows the complete lock mode compatibility matrix. 



Table 4.2. Lock Mode Compatibility 

  N SS SX S SSX X 

N Yes Yes Yes Yes Yes Yes 

SS Yes Yes Yes Yes Yes No 

SX Yes Yes Yes No No No 

S Yes Yes No Yes No No 

SSX Yes Yes No No No No 

X Yes No No No No No 

4.3 Enqueue Locks 

Many of Oracle's locks are called enqueue locks. To enqueue a lock request is to 
place that request on the queue for its resource. So although the word "enqueue" 
is strictly speaking a verb, it is used adjectivally in the term enqueue lock. It is 
also used as a noun when referring to a particular enqueue resource, such as the 
CF (control file) enqueue. 

Oracle uses two classes of local locks—those for which the lock and resource data 
structures are dynamically allocated in the shared pool, and those that use fixed 
arrays for the lock and resource data structures. Although almost all types of lock 
requests may be enqueued, the term enqueue should be taken to refer exclusively 
to those locks that use the fixed arrays for the lock and resource data structures, 
unless otherwise qualified. 

4.3.1 Enqueue Resources 

The fixed array for enqueue resources is sized by the ENQUEUE_RESOURCES 
parameter. The number of slots in this array that are in use varies from time to 
time, and these can be seen in V$RESOURCE . Each row in V$RESOURCE 
represents a resource that is currently locked in any mode by one or more 
sessions. These resources are not persistent in that they are no longer defined 
once all locks on the resource have been released. 

Rows in V$RESOURCE are identified by a two-character code representing the 
type of resource, and two numeric fields used to encode either the resource 
identity or the activities protected by locks on the resource, depending on the 
resource type. For example, resources of type TX represent entries in the 
transaction table of a rollback segment. The high-order two bytes of the first 
identifier contain the rollback segment number, and the low-order two bytes 



contain the transaction table slot number, while the second identifier contains 
the rollback segment wrap or sequence number. 

All enqueue operations access the enqueue resource structure via a hash table. 
The hash value is based on the resource type and the numeric identifiers. The 
length of the enqueue hash table is set by the _ENQUEUE_HASH parameter. 
The default value of this parameter is derived directly from the PROCESSES 
parameter, as follows: 

45 + 2 * ( PROCESSES + PROCESSES/10  )  

Because _ENQUEUE_HASH is derived directly from PROCESSES rather than 
from ENQUEUE_RESOURCES, it may be necessary to tune _ENQUEUE_HASH 
explicitly if ENQUEUE_RESOURCES has been raised significantly from its 
default value. Otherwise lengthy enqueue hash chains may develop. As with all 
hash tables, if you have cause to tune the number of buckets, you should make it 
a prime number (see Hash Tables and Prime Numbers). 

The enqueue hash chains are accessed under the protection of the enqueue hash 
chains latches. The number of child enqueue hash chains latches is set by the 
_ENQUEUE_HASH_CHAIN_LATCHES parameter, which defaults to the 
CPU_COUNT. In a high concurrency environment, sleeps may be recorded 
against the enqueue hash chains latches if the hash chains are allowed to become 
unduly long. However, sleeps against these latches should normally be regarded 
as a secondary result of contention for a higher-level latch, rather than attributed 
to long hash chains. 

Hash Tables and Prime Numbers 

Oracle uses hash tables internally so that objects can be located 
efficiently. For example, a hash table is used to locate database blocks in 
the buffer cache, and another hash table is used to locate named objects 
in the library cache. 

To locate an object via a hash table, Oracle uses an algorithm to convert 
the object's name or identifier into a number. That number may be 
much larger than the size of the hash table, so it is converted to an index 
into the hash table using a simple modulus function. 



Multiple objects may map to the same hash table entry. This is called a 
hash collision. Oracle normally resolves hash collisions using collision 
chains. This means that objects that map to the same hash table entry 
are linked together using a chain of pointers. These objects are said to 
fall into the same hash bucket. 

The performance of hash-based access is sensitive to the length of the 
hash chains because they must be searched linearly. Therefore hash 
tables must be large enough to ensure that the average hash chain 
length remains short. 

Long hash chains can also develop if the distribution of objects to hash 
buckets is uneven. This happens if there is any pattern in the names of 
the objects being hashed that the hash function is not able to randomize. 
This is surprisingly common. 

By making the number of hash buckets a prime number, you can greatly 
reduce the risk of any pattern in the hash values resulting in hash 
collisions once the modulus function has been applied. 

4.3.2 Enqueue Locking 

In addition to the enqueue resources, a second fixed array is used for enqueue 
locking—namely, the enqueue locks themselves. The size of the enqueue locks 
fixed array is set by the _ENQUEUE_LOCKS parameter, and the active rows can 
be seen in V$ENQUEUE_LOCK . 

An enqueue lock structure is used by each session waiting for or holding a lock on 
a resource. If one or more sessions are waiting for locks on a resource, then their 
enqueue lock structures are linked together into a two-way linked list, with the 
enqueue resource structure as the list header. This linked list is maintained and 
serviced in the order in which the locks were requested. For example, if a lock is 
held in shared mode, and the first waiter requires access to the resource in 
exclusive mode, then other sessions that require shared access must queue for the 
resource behind the first waiter, despite the fact that their requests are 
compatible with the mode in which the resource is currently locked. 

Similar two-way linked lists are used to link together the enqueue lock structures 
for sessions holding a lock on the resource, and for sessions waiting to change the 
mode of the lock that they are holding. 



The operation of changing the mode of a lock is called an enqueue conversion. 
For example, if a transaction holds a lock on a particular table in sub-share mode, 
and needs to update a row of that table, then the enqueue lock must be converted 
to sub-exclusive mode. However, if the resource is currently locked in an 
incompatible mode by another session, then the conversion cannot proceed 
immediately and the enqueue lock structure is placed in the conversion queue. 
Enqueue conversions are serviced in order before new enqueue requests. 

During enqueue operations, modifications to the enqueue resources and enqueue 
locks fixed array free lists (see the sidebar, "Fixed Array Free Lists") are made 
under the protection of the enqueues latch. There is only one enqueues latch, and 
it is often taken and released twice during the course of a single enqueue 
operation. However, the relevant enqueue hash chains latch is held for the 
duration of the operation. 

4.3.3 Enqueue Waits 

An enqueue wait occurs whenever an enqueue request or enqueue conversion 
cannot be granted immediately because another session is holding a lock on the 
resource in an incompatible mode. The blocked process records an enqueue wait. 
The wait parameters are shown in Table 4.3. 

Table 4.3. Wait Parameters (enqueue waits) 

Parameter Description 

p1 
The high-order 2 bytes contain the ASCII codes for the resource type. 
The low-order 2 bytes contain the mode in which a lock is required. 

p2 The id1 identifier for the resource. 

p3 The id2 identifier for the resource. 

Whenever a session releases an enqueue lock, it examines the lock request and 
conversion queues for the resource and, if appropriate, posts the next process 
that will be able to acquire a lock on the resource. 

Processes waiting in an enqueue wait also set an alarm before they begin to wait. 
The timeout duration is dependent on the type of resource. For most enqueues, 
the enqueue wait timeout is 3 seconds. 

Consecutive waits during a single attempt to acquire an enqueue lock are 
recorded as separate waits in the session and system wait statistics. However, the 
enqueue waits statistic in V$SYSSTAT is only incremented by one, after the lock 



has been acquired, as are the enqueue requests and enqueue conversions 
statistics. Note also that the enqueue timeouts statistic in V$SYSSTAT does not 
represent the number of enqueue wait timeouts. Rather, this statistic is 
incremented when an enqueue request or enqueue conversion is aborted entirely. 
This can be due to a distributed transaction timeout, but usually relates to locks 
requested in no-wait mode. 

Fixed Array Free Lists 

The free slots in each of Oracle's fixed arrays are maintained on a free list. 
For each of these arrays, there is a free list header pointer that points to 
one of the free slots in the array. That slot, in turn, holds a pointer to the 
next free slot in the free list, and so on. 

Free slots are always taken from the head of the free list, and are always 
returned to the head of the free list. This means that the tail of the free list 
normally remains unused, and the high-water mark is only advanced 
when necessary. This fact was used by the APT script 
fixed_table_hwms.sql under Oracle7 to extract the maximum usage of 
each fixed array from the corresponding X$ tables. This script is 
redundant in Oracle8, because the same functionality is now provided by 
the V$RESOURCE_LIMIT view. 

The free list for each fixed array must be protected by a latch. For 
example, the process allocation latch protects the free list for the array of 
processes, and the session allocation latch protects the free list for the 
array of sessions. 

If V$SYSSTAT shows a significant number of enqueue waits, then a breakdown of 
the resource types for which these waits have been sustained can be obtained 
from X$KSQST , or from the APT script enqueue_stats.sql . Unfortunately, 
X$KSQST does not contains any indication of the duration of the waits, so care is 
needed when interpreting these figures. 

It is sometimes suggested that ENQUEUE_RESOURCES should be increased to 
combat enqueue waits. But please note that there is absolutely no substance to 
this suggestion. Oracle will return an ORA-52 or ORA-53 error if it fails to find a 
free slot in the enqueue resources or enqueue locks fixed arrays respectively. 
Beyond that, the setting of the ENQUEUE_RESOURCES and 
_ENQUEUE_LOCKS parameters is unimportant. 



The V$RESOURCE_LIMIT view should be used to adjust your settings for the 
ENQUEUE_RESOURCES and _ENQUEUE_LOCKS parameters to ensure that 
you will not run out of slots in these arrays. You can afford to be generous, 
because slots in these arrays only take on the order of 72 bytes and 60 bytes 
respectively. I like to maintain headroom of at least 20% above the maximum 
utilization ever recorded. 

4.3.4 Deadlock Detection  

Oracle performs automatic deadlock detection for enqueue locking deadlocks. 
Deadlock detection is initiated whenever an enqueue wait times out, if the 
resource type required is regarded as deadlock sensitive, and if the lock state for 
the resource has not changed. If any session that is holding a lock on the required 
resource in an incompatible mode is waiting directly or indirectly for a resource 
that is held by the current session in an incompatible mode, then a deadlock 
exists. 

If a deadlock is detected, the session that was unlucky enough to find it aborts its 
lock request and rolls back its current statement in order to break the deadlock. 
Note that this is a rollback of the current statement only, not necessarily the 
entire transaction. Oracle places an implicit savepoint at the beginning of each 
statement, called the default savepoint, and it is to this savepoint that the 
transaction is rolled back in the first case. This is enough to resolve the technical 
deadlock. However, the interacting sessions may well remain blocked. 

An ORA-60 error is returned to the session that found the deadlock, and if this 
exception is not handled, then depending on the rules of the application 
development tool, the entire transaction is normally rolled back, and a deadlock 
state dump written to the user dump destination directory. This, of course, 
resolves the deadlock entirely. The enqueue deadlocks statistic in V$SYSSTAT 
records the number of times that an enqueue deadlock has been detected. 

Application developers can eliminate all risk of enqueue deadlocks by ensuring 
that transactions requiring multiple resources always lock them in the same 
order. However, in complex applications, this is easier said than done, 
particularly if an ad hoc query tool is used. To be safe, you should adopt a strict 
locking order, but you must also handle the ORA-60 exception appropriately. In 
some cases it may be sufficient to pause for three seconds, and then retry the 
statement. However, in general, it is safest to roll back the transaction entirely, 
before pausing and retrying. 



4.3.5 Blocking Locks  

Oracle resolves true enqueue deadlocks so quickly that overall system activity is 
scarcely affected. However, blocking locks can bring application processing to a 
standstill. For example, if a long-running transaction takes a shared mode lock on 
a key application table, then all updates to that table must wait. 

There are numerous ways of attempting to diagnose blocking lock situations, 
normally with the intention of killing the offending session. I will mention just a 
few. 

Blocking locks are almost always TX (transaction) locks or TM (table) locks . 
When a session waits on a TX lock, it is waiting for that transaction to either 
commit or roll back. The reason for waiting is that the transaction has modified a 
data block, and the waiting session needs to modify the same part of that block. 
In such cases, the row wait columns of V$SESSION can be useful in identifying 
the database object, file, and block numbers concerned, and even the row number 
in the case of row locks. V$LOCKED_OBJECT can then be used to obtain session 
information for the sessions holding DML locks on the crucial database object. 
This is based on the fact that sessions with blocking TX enqueue locks always 
hold a DML lock as well, unless DML locks have been disabled. 

It may not be adequate, however, to identify a single blocking session, because it 
may, in turn, be blocked by another session. To address this requirement, 
Oracle's utllockt.sql script gives a tree-structured report showing the relationship 
between blocking and waiting sessions. Some DBAs are loath to use this script 
because it creates a temporary table, which will block if another space 
management transaction is caught behind the blocking lock. Although this is 
extremely unlikely, the same information can be obtained from the 
DBA_WAITERS view if necessary. The DBA_WAITERS view is created by 
Oracle's catblock.sql script. 

Some application developers attempt to evade blocking locks by preceding all 
updates with a SELECT FOR UPDATE NOWAIT statement. However, if they 
allow user interaction between taking a sub-exclusive lock in this way and 
releasing it, then a more subtle blocking lock situation can still occur. If a user 
goes out to lunch while holding a sub-exclusive lock on a table, then any shared 
lock request on the whole table will block at the head of the request queue, and all 
other lock requests will queue behind it. 



Diagnosing such situations and working out which session to kill is not easy, 
because the diagnosis depends on the order of the waiters. Most blocking lock 
detection utilities do not show the request order, and do not consider that a 
waiter can block other sessions even when it is not actually holding any locks. The 
APT script enqueue_locks.sql shows the locks held and wanted for each resource 
in order, together with the number of seconds that the lock has been held or 
wanted. This is intended to supplement other blocking lock detection utilities, 
such as Oracle's utllockt.sql. 

Application developers can greatly reduce the risk of blocking lock problems by 
adopting an optimistic locking strategy (see the sidebar, "Optimistic Locking"), 
and by cultivating an aversion to coarse granularity locking and so designing 
their applications to run without DML locks. 

4.3.6 Distributed Transactions 

For distributed transactions, Oracle is unable to distinguish blocking locks and 
deadlocks, because not all of the lock information is available locally. To prevent 
distributed transaction deadlocks, Oracle times out any call in a distributed 
transaction if it has not received any response within the number of seconds 
specified by the _DISTRIBUTED_LOCK_TIMEOUT parameter. This timeout 
defaults to 60 seconds. If a distributed transaction times out, an ORA-2049 error 
is returned to the controlling session. Robust applications should handle this 
exception in the same way as local enqueue deadlocks. 

Similarly, under release 8.0, parallel transactions, which consist of multiple 
sibling transaction branches, could deadlock undetectably with other simple 
transactions. If a simple transaction was blocked by one branch of a global 
transaction, and was blocking another, then Oracle's normal deadlock detection 
mechanism in release 8.0 would fail to detect the deadlock. To prevent this, 
Oracle timed out any enqueue lock acquisition or conversion request in a branch 
of a parallel transaction as though it were a distributed transaction, and an   
ORA-99 error was returned. The 
PARALLEL_TRANSACTION_RESOURCE_TIMEOUT parameter, which 
defaulted to 300 seconds, was used to control this timeout. In release 8.1, the 
deadlock detection algorithm has been improved to detect these deadlocks, and 
so this timeout is no longer required. 



Optimistic Locking 

Consider an airline seat reservation application. Two different customers may 
simultaneously ask two different operators whether a seat is available on a 
particular flight. What should the application do? 

The application can use SELECT FOR UPDATE NOWAIT to retrieve the 
information. This guarantees that if a seat appears to be available, then it has 
already been locked, and a booking for that seat will be able to be successfully 
taken. This is called early locking, or pessimistic locking. 

The alternative is to defer the taking of a lock until the customer resolves to make 
a booking. This is called late locking, or optimistic locking. 

The choice of either pessimistic or optimistic locking affects the design of both 
business and application processes. So careful thought is needed. Pessimistic 
locking should be avoided where possible, despite being slightly easier to 
implement, because it increases the risk of blocking locks. 

4.3.7 ITL Entry Shortages 

There is an interested transaction list (ITL) in the variable header of each Oracle 
data block. When a new block is formatted for a segment, the initial number of 
entries in the ITL is set by the INITRANS parameter for the segment. Free space 
permitting, the ITL can grow dynamically if required, up to the limit imposed by 
the database block size, or the MAXTRANS parameter for the segment, 
whichever is less. 

Every transaction that modifies a data block must record its transaction identifier 
and the rollback segment address for its changes to that block in an ITL entry. 
(However, for discrete transactions, there is no rollback segment address for the 
changes.) Oracle searches the ITL for a reusable or free entry. If all the entries in 
the ITL are occupied by uncommitted transactions, then a new entry will be 
dynamically created, if possible. 

If the block does not have enough internal free space (24 bytes) to dynamically 
create an additional ITL entry, then the transaction must wait for a transaction 
using one of the existing ITL entries to either commit or roll back. The blocked 
transaction waits in shared mode on the TX enqueue for one of the existing 
transactions, chosen pseudo-randomly. The row wait columns in V$SESSION 



show the object, file, and block numbers of the target block. However, the 
ROW_WAIT_ROW# column remains unset, indicating that the transaction is 
not waiting on a row-level lock, but is probably waiting for a free ITL entry. 

The most common cause of ITL entry shortages is a zero PCTFREE setting. Think 
twice before setting PCTFREE to zero on a segment that might be subject to 
multiple concurrent updates to a single block, even though those updates may not 
increase the total row length. The degree of concurrency that a block can support 
is dependent on the size of its ITL, and failing that, the amount of internal free 
space. Do not, however, let this warning scare you into using unnecessarily large 
INITRANS or PCTFREE settings. Large PCTFREE settings compromise data 
density and degrade table scan performance, and non-default INITRANS settings 
are seldom warranted. 

One case in which a non-default INITRANS setting is warranted is for segments 
subject to parallel DML. If a child transaction of a PDML transaction encounters 
an ITL entry shortage, it will check whether the other ITL entries in the block are 
all occupied by its sibling transactions and, if so, the transaction will roll back 
with an ORA-12829 error, in order to avoid self-deadlock. The solution in this 
case is to be content with a lower degree of parallelism, or to rebuild the segment 
with a higher INITRANS setting. A higher INITRANS value is also needed if 
multiple serializable transactions may have concurrent interest in any one block. 

4.4 Row Cache Enqueues  

A cache of rows from the data dictionary is kept in the shared pool. This cache 
serves not only to reduce physical access to the data dictionary tables in the 
SYSTEM tablespace, but also enables fine-grained locking of individual data 
dictionary rows. The need for data dictionary locking was introduced at the start 
of this chapter (see Section 4.1.3). 

The locks on the data dictionary rows themselves are called row cache enqueue 
locks. These locks are implemented in much the same way as general enqueue 
locks. The cached data dictionary row acts as the resource structure, and enqueue 
lock structures are dynamically allocated from the shared pool as required. Locks 
can be requested, converted, and released, and requests can wait and time out, 
just like the general enqueue locks. However, row cache enqueue locks are not 
included in V$LOCK. In fact, they are not visible anywhere except in system and 
process state dumps. 



Depending on the operation, some row cache enqueue locks are requested in no-
wait mode and an ORA-54 error is returned if the lock is not immediately 
available. Otherwise, row cache lock requests are enqueued if necessary, and the 
process waits on a row cache lock wait. The parameters for this wait are shown in 
Table 4.4. 

Table 4.4. Wait Parameters (row cache lock waits) 

Parameter Description 

p1 
A number corresponding to the CACHE# column of V$ROWCACHE 
representing the data dictionary table for which a row lock is needed 

p2 The mode in which the lock is already held 

p3 The mode in which the lock is needed 

The numeric codes used for the lock modes in the parameters for this wait are 
those for instance locks, rather than local locks, even when running single-
instance Oracle. However, this wait is relatively rare in single-instance Oracle, 
resulting only from resource conflicts, whereas it is routine in parallel server 
because new lock requests must be socialized via the distributed lock manager. 

Oracle does not expect row cache enqueue lock acquisitions and conversions to 
block for more than a few seconds. Therefore, row cache lock waits time out 
every 3 seconds, and if the lock has still not been acquired after 100 timeouts (5 
minutes), an internal deadlock is assumed, and the operation is aborted. A 
message is written to the alert log saying that a process "WAITED TOO LONG 
FOR A ROW CACHE ENQUEUE LOCK," and a process state dump is written to a 
trace file. Except for DDL against a long-running, in-use function, procedure, or 
package, this error should be treated as an Oracle bug and reported to Oracle 
Support. 

4.5 Library Cache Locks and Pins  

The library cache is not one cache, but many. It contains the pseudo code for 
PL/SQL program units. It contains parse trees and execution plans for shareable 
SQL statements. It also contains abstract representations in a form called DIANA 
of the database objects referenced by the SQL statements. The information is 
needed in this form for PL/SQL program unit compilation and SQL statement 
parsing and execution, despite the fact that the dictionary cache contains the 
same information in a different form. The library cache also contains control 



structures such as synonym translations, dependency tracking information, and 
library cache locks and pins. 

Library cache locks are referred to as breakable parse locks in the Oracle 
documentation. They are applied to the library cache objects for SQL statements 
and PL/SQL program units, and recursively to the library cache objects for the 
database objects on which they depend. Library cache locks are held in shared 
mode during parse operations and are converted to null mode thereafter. If a 
DDL statement later modifies the definition of a database object, then the library 
cache information for that database object and all dependent library cache 
objects is invalidated by breaking the library cache locks. 

Library cache locks can only be broken, however, when the library cache object is 
not also pinned. A pin is applied to the library cache object for a PL/SQL program 
unit or SQL statement while it is being compiled, parsed, or executed. Pins are 
normally held in shared mode, but are also held in exclusive mode while the 
library cache information for the object is being changed. The library cache 
objects for pipes and sequences are most subject to change. When a library cache 
object is pinned, pins are applied to all referenced objects in turn. When a pin is 
applied to the library cache object for a database object, then a corresponding 
row cache enqueue lock is acquired on the underlying data dictionary row, 
thereby preventing conflicting DDL. 

Every object in the library cache has a handle that acts as the resource structure 
for library cache locks and pins. The handle, lock, and pin structures are all 
dynamically allocated within the shared pool. The handle implements two-way 
linked lists of locks held, locks waited for, pins held, and pins waited for. Sessions 
waiting for a lock or pin report a library cache lock or library cache pin wait 
respectively. The parameters for these waits are shown in Table 4.5. 

Table 4.5. Wait Parameters (library cache lock and library cache pin waits) 
Parameter Description 

p1 The address in memory of the library cache handle. 

p2 The memory address of the lock or pin structure. 

p3 

The mode of lock or pin required, and the namespace of the object, 
encoded as 10 * mode + namespace. In this case, the modes are: 
2 shared 
3 exclusive 
The namespaces are: 
0 cursor 



1 table, procedure, and others 
2 package body 
3 trigger 
4 index 
5 cluster 
6 object 
7 pipe 

If there are multiple readers of a single pipe, then library cache pin waits on the 
library cache object for that pipe will be routine, but brief. Other than that, 
library cache waits are relatively rare, although much more likely to be prolonged. 
These waits time out after three seconds and, if they do time out, deadlock 
detection is performed. If a deadlock is found, the lock or pin request is aborted 
and an ORA-4020 error is returned. This error is normally caused by ad hoc 
DDL. It should not be necessary to code your applications to handle this error. 

4.6 DML Locks  

Library cache pins and the associated row cache enqueue locks protect object 
definitions for the duration of parse and execute calls. However, for transactions 
that consist of a series of statements, equivalent locks need to be held for the 
duration of the transaction. 

More than that, the lock mode may need to be raised partway through the 
transaction. For example, a table may first be queried, and then updated. This, of 
course, is why lock conversions are necessary. If the existing lock were to be 
released, even momentarily, it would be possible for the referenced object to be 
dropped or changed, and the transaction would then be unable to either proceed 
or roll back. 

The possibility of rollback, particularly rollback to a savepoint, adds another 
dimension of complexity to dictionary locking. Namely, if a transaction is rolled 
back beyond the point at which a lock was upgraded, then the lock must be 
downgraded correspondingly, as part of the rollback operation, in order to reduce 
the risk of artificial deadlocks. 

The requirements of dictionary locking for transactions and, in particular, the 
maintenance of a history of lock conversions, is provided by DML locks in 
conjunction with TM enqueues. Every transaction holding a DML lock also holds 
a TM enqueue lock. The basic locking functionality is provided by the enqueue, 
and the DML lock adds the maintenance of the conversion history. 



The fixed array of DML lock structures is sized by the DML_LOCKS parameter. 
Its free list is protected by the dml lock allocation latch , and the active slots are 
visible in V$LOCKED_OBJECT . As with enqueue resources and locks, the 
number of slots in the DML locks fixed array is unimportant to performance, as 
long as you don't run out of free slots and get an ORA-55 error. Once again, 
V$RESOURCE_LIMIT can be used to adjust your setting for DML_LOCKS to 
ensure that this does not happen. Each slot only takes on the order of 116 bytes, 
so having a generous number of slots is not a problem. 

4.6.1 Disabling DML Locks 

DML locks and the associated TM enqueue locks can be disabled, either entirely, 
or just for certain tables. To disable these locks entirely, the DML_LOCKS 
parameter must be set to zero. In a parallel server database, it must be set to zero 
in all instances. To disable such locks against a particular table, the DISABLE 
TABLE LOCKS clause of the ALTER TABLE statement must be used. 

If locks are disabled for a table, then DML statements can still modify the table's 
blocks, and row-level locks are still held. However, the sub-shared mode table 
locks normally associated with queries, and the sub-exclusive mode table locks 
normally associated with DML, are not taken. Instead, transactions against the 
table are protected from conflicting DDL by simply prohibiting all attempts to 
take a lock on the entire table, and thus all DDL against the table. 

There are two reasons for disabling DML locks and table locks. The first is to 
avoid the lock acquisition overhead. This is particularly important in parallel 
server databases where the transactions are short. In such cases, it may take 
longer to acquire the TM instance lock than to complete the rest of the 
transaction. 

In single-instance Oracle, the lock acquisition overhead is relatively trivial. 
However, the disabling of table locks should still be considered to efficiently 
prevent blocking lock problems. A large class of blocking lock problems is caused 
by attempts to lock an entire table, sometimes for ad hoc DDL such as creating an 
index, but often for ad hoc DML against a referenced table where the relationship 
is not supported by a foreign key index. 

Foreign keys referring to tiny reference tables are often indexed to prevent such 
problems. However, the presence of such indexes adds a significant overhead to 
DML against the main table. It is better to do without these indexes, and prevent 



blocking locks by disabling table locks. Of course, table locks will need to be 
enabled temporarily for maintenance tasks such as updating the reference data or 
rebuilding indexes. However, that is no hardship, as such operations are 
normally performed during a special maintenance window. 

Of course, it is preferable to disable table locks on each table individually, rather 
than to disable them entirely by setting the DML_LOCKS parameter to zero. If 
DML_LOCKS is zero, you can create temporary tables but never drop them, and 
you have to shut down and start up the system twice for maintenance operations 
such as rebuilding indexes. 

4.7 Buffer Locks  

A form of enqueue locking is used to protect cached database blocks. For each 
buffer in the database buffer cache, there is a buffer header. The buffer headers 
constitute a fixed array in the permanent memory part of the shared pool. These 
buffer headers act as the resource structures for buffer locks. Sessions manipulate 
buffer headers, and thus buffers, via dynamically allocated structures known as 
buffer handles. The buffer handles act as the lock structures for buffer locks. 

Buffer locks are taken only in shared and exclusive modes.[1] The buffer headers 
implement a two-way linked list of the buffer handles for sessions that are using 
the buffer, and another for the buffer handles of sessions waiting for the buffer. 
Sessions waiting for a buffer lock report either buffer busy waits, or buffer busy 
due to global cache waits, or write complete waits. The parameters for buffer 
busy waits are shown in Table 4.6. 

[1] This is a simplification, but adequate for our purpose here. 

Table 4.6. Wait Parameters (buffer busy waits) 
Parameter Description 

p1 The file number of the database block. 

p2 The block number of the database block in its file. 

p3 

The reason for the wait. A or 1014 indicates that the buffer is locked 
exclusively by a session that is busy reading a block from disk into the 
buffer, and that the read has not yet completed. A reason of is used for 
consistent gets, whereas 1014 is used for current mode block gets. Any 
other number indicates that the buffer is locked exclusively for 
modification by another session. 



The timeout for buffer busy waits backs off from 1 to 3 seconds. If a buffer lock 
for a block that is in cache cannot be acquired within a certain number of 
timeouts, and if the session is holding buffer locks on one or more other buffers, 
then a buffer lock deadlock is assumed. The number of timeouts to wait before a 
buffer lock deadlock is assumed is dependent on the operation being attempted, 
and whether it is part of a discrete transaction. Because discrete transactions do 
not hold transaction locks, and thus row-level locks, they must acquire all the 
buffer locks they need before any modifications can be made, and hold them all 
until the transaction is ready to make its changes and commit. This means that 
discrete transactions hold more buffer locks than normal transactions, and hold 
them for much longer. 

If a buffer lock deadlock is suspected, the session that timed out trying to acquire 
a buffer lock releases the buffer locks that it is holding on other buffers, and 
immediately enqueues them again, thereby falling to the end of the queue of 
waiting sessions. It also posts the first process that was waiting for a lock on each 
of the buffers concerned, and then yields the CPU. Although yielding the CPU 
does not really constitute a wait, a buffer deadlock wait is recorded and the 
exchange deadlocks statistic is incremented. Assumed buffer lock deadlocks 
signal event 370, which can be caught to investigate such problems. 

In parallel server databases, buffers can be locked for global cache operations 
such as writes in response to ping requests, and consistent reads for direct 
memory transfers by the block server process. If a request for a buffer lock cannot 
proceed because the buffer is locked for a global cache operation, then a buffer 
busy due to global cache wait is recorded. 

Similarly, when buffer lock requests cannot proceed because the buffers are 
locked by DBWn as part of a batch of blocks to be written, then write complete 
waits are recorded . The timeout for these waits is 1 second, and the parameters 
are as shown in Table 4.7. 

Table 4.7. Wait Parameters (write complete waits) 

Parameter Description 

p1 The file number of the database block. 

p2 The block number of the database block in its file. 

p3 
The reason for the wait. The normal reason code is 1029; however, other 
values are seen at times. 



4.8 Sort Locks 

Sort locks apply to the disk space being used for disk sort operations. There are 
two types of sort locks: temporary table locks and sort segment locks. These 
correspond to temporary segments in PERMANENT tablespaces and 
TEMPORARY tablespaces respectively. There are fixed arrays in the SGA for each 
type of sort lock. Both arrays are sized by the SESSIONS parameter, which allows 
for the maximum possible usage of sort locks. 

Sort locks are used merely to track disk sort space usage, and do not suffer from 
lock conflicts, waits, or deadlocks. However, you should not confuse sort locks 
with the ST (space transaction) enqueue , which is extremely prone to lock 
conflicts, waits, and even deadlocks. Contention for the ST enqueue is often 
associated with disk sorts, because it is needed for the creation, extension, and 
deallocation of temporary segments. 

4.9 Reference 

This section contains a quick reference to the parameters, events, statistics, waits, 
and APT scripts mentioned in Chapter 4. 

4.9.1 Parameters 

Parameter Description 

_DISTRIBUTED_LOCK_TIMEOUT 
Timeout for assumed deadlocks on 
distributed transactions. Defaults to 
60 seconds. 

_ENQUEUE_HASH The size of the enqueue hash table. 

_ENQUEUE_HASH_CHAIN_LATCHES 
The number of latches used for 
access to the enqueue hash table. 
Defaults to the CPU count. 

_ENQUEUE_LOCKS 
The number of enqueue lock 
structures. 

DML_LOCKS 

The size of the DML locks fixed 
array. Where possible, DML locking 
should be disabled to reduce locking 
overheads and the risk of blocking 
locks. 

ENQUEUE_RESOURCES 
The size of the enqueue resources 
array. 

PARALLEL_TRANSACTION_RESOURCE_TIMEOUT Timeout for assumed deadlocks 



between the branches of a parallel 
transaction and another transaction 
in release 8.0. 

TEMPORARY_TABLE_LOCKS 
This parameter is obsolete in 
Oracle8. It does still exist in release 
8.0, but setting it has no effect. 

4.9.2 Events 

Event Description 

60 
This is the enqueue deadlock detection error. In cases of recurrent, mysterious 
deadlock problems, you may need to take a systemstate dump on this event 
to diagnose the interactions causing the deadlocks. 

370 
This event is signaled for assumed buffer cache deadlocks, and can be used 
for investigating severe buffer locking contention, using processstate dumps. 

4020 
This is the library cache deadlock detection error. With a systemstate dump on 
this event, you will be able to see what happened. Without it, you will never 
know. 

4021 

This is the library cache assumed deadlock timeout error. This timeout is 
needed because the library cache deadlock detection mechanism is not 
exhaustive, lest it be too expensive. Once again, this error is normally caused 
by ad hoc DDL. 

4.9.3 Statistics 

Statistic Source Description 

enqueue 
conversions 

V$SYSSTAT Local enqueue conversions. 

enqueue 
deadlocks 

V$SYSSTAT Local enqueue deadlocks detected and broken. 

enqueue 
releases 

V$SYSSTAT Local enqueue releases. 

enqueue 
requests 

V$SYSSTAT Local enqueue requests. 

enqueue 
timeouts 

V$SYSSTAT Aborted local enqueue operations. 

enqueue waits V$SYSSTAT 
The number of enqueue operations that waited. Not the 
number of waits. 

exchange 
deadlocks 

V$SYSSTAT 
Number of local buffer deadlocks assumed. The statistic 
name reflects the fact that index block exchanges are 
one possible cause of such deadlocks. 



4.9.4 Waits 

Event Description 

buffer busy due 
to global cache 

Waits to acquire a local buffer lock on a buffer that is locked for a 
global cache operation, such as a ping. 

buffer busy 
waits 

Waits for a local buffer lock on a buffer that is locked in an 
incompatible mode. 

buffer deadlock Assumed deadlocks while waiting for a local buffer lock. 

enqueue These are waits for both local and global enqueues. 

library cache 
load lock 

This wait is seen if two sessions attempt to load (not reload) the 
library cache information for an object simultaneously. 
Simultaneous reloads cause library cache pin waits instead. 

library cache 
lock 

Waits to reference a library cache object that is in flux. 

library cache 
pin 

Waits to modify a library cache object that is in flux. 

row cache lock 
Waits to obtain either a local row cache enqueue or a row cache 
instance lock. 

write complete 
waits 

Waits for a buffer lock on a block that is part of a normal write 
batch. 

4.9.5 APT Scripts 

Script Description 

enqueue_locks.sql Shows enqueue locks held and wanted in the order requested. 

enqueue_stats.sql Shows the breakdown of enqueue gets and waits by type. 

fixed_table_hwms.sql 

Shows the high-water mark usage for the fixed tables under 
Oracle7. This can be used to check whether your settings for 
the corresponding initialization parameters are inadequate or 
overly generous. U nder Oracle8, use V$RESOURCE_LIMIT 
instead. 

 



Chapter 5. Instance Locks 

Instance locks are used for inter-instance locking and communication between the 
instances of an Oracle parallel server database. Although instance locks are scarcely used 
in single-instance Oracle, I encourage all readers to browse this chapter anyway. Single-
instance Oracle is really just a special case of parallel server, and there are some aspects 
of its operation that you will find difficult to grasp unless you understand the general 
case. If nothing else, rea 

5.1 The Lock Manager 

The part of Oracle that manages instance locks is called the lock manager. The 
lock manager is a layer of functionality that affects the operation of all processes. 
However, its most obvious manifestations are the presence of a set of lock 
management processes, and an in-memory database of instance lock information 
in each instance. 

The lock manager is said to be distributed. There is no central point of control. 
Each instance only maintains information about the instance locks in which it has 
an interest. The lock manager is also said to be integrated. This is because, prior 
to Oracle8, a separate product provided by the operating system vendors was 
required for lock management. In Oracle8, release 8.0, this functionality was 
incorporated into the Oracle kernel. 

5.1.1 The Instance Lock Database 

The lock and resource structures for instance locks reside in a dedicated area 
within the SGA called the instance lock database. The lock and resource arrays 
are dimensioned by the LM_LOCKS and LM_RESS parameters. A third 
parameter, LM_PROCS, dimensions the array of processes and instances that 
can own the locks. This array needs one slot for each local process and one slot 
for each remote instance. 

The instance lock database also includes an array of process groups. In some 
cases, instance locks may be owned by a group of processes, rather than a single 
process. Group lock ownership allows Multi-Threaded Server sessions to migrate 
between shared server processes, and allows OCI transactions to be detached 
from one process and resumed by a different process. All lock acquisition 
requests can specify either process or group ownership. The group membership 



of processes is inferred and tracked automatically in the instance lock database. 
Exchanges of group-owned instance locks within the process group do not 
require any further lock acquisition or conversion. The size of the process groups 
array is set by the _LM_GROUPS parameter, which defaults to 20. 

The instance lock database contains many other structures besides the resources, 
locks, processes, and process groups. There are hash tables for access to many of 
these arrays; structures for recording statistics, managing waits and timeouts, 
checking for deadlocks, and performing recovery; and also a large portion of 
memory to hold the message buffers used for inter-instance communication. The 
number of buffers is set by the _LM_SEND_BUFFERS parameter, which 
defaults to 10,000. 

Most parts of the instance lock database are fixed in size from instance startup. 
However, Oracle has the option of allocating memory from the shared pool for 
additional dynamically allocated resources and locks if necessary. If this occurs, a 
message is written to the alert log, and the corresponding parameter should be 
increased prior to the next database startup, unless the overrun was due to the 
recovery of another instance. The GV$RESOURCE_LIMIT view contains 
statistics about the number of dynamic resources and locks allocated, as does 
GV$DLM_MISC . Note that the dynamically allocated memory is never released 
back into the shared pool. 

5.1.2 Lock Mastering 

The instance lock database is a distributed database. No single node tracks all the 
locks on all the resources. For each resource there is a master node. The master 
node for a resource maintains complete information about all the locks on that 
resource. Other nodes need only maintain information about locally held locks on 
that resource. For dynamically allocated resources, the master node is normally 
the first node to take a lock on the resource. There is also a directory node for 
each resource, which maintains a pointer to the master node. The directory node 
is determined using a hash function based on the resource identification. For 
persistent resources, the master node is always the directory node. 

Whenever the set of active instances changes due to instance startup or 
shutdown, or due to the failure of an instance or node, then the distribution of 
resources to nodes must be changed. In general, both the directory node and the 
master node for each resource might change, and the required information must 
be reconstructed at each node. If an instance has failed, then the roll forward 



phase of instance recovery (called cache recovery) must also be completed before 
all instance lock information can be validated. 

The instance lock database is frozen during both resource redistribution and 
cache recovery, if applicable. During this time, local activity may continue, but 
only under the instance locks that were already held. However, if an instance has 
been lost, local activity is limited to read-only access to data already in memory, 
and for which an instance lock was already held. This is an extremely severe 
constraint. You should attempt to limit the time required for resource 
redistribution and instance recovery roll forward by using modest numbers of 
resources and locks, and by configuring checkpoint activity to ensure bounded 
recovery times. 

5.1.3 Lock Handle Acquisition 

Many instance locks are acquired in two steps. The first step is to obtain a lock 
handle, which is an identifier of the lock to be used in subsequent conversion or 
release operations. Some instance locks are held for the life of the instance and 
are never converted or released. These locks are acquired in a single step, and no 
lock handle is returned. 

Although the lock manager has been integrated into the Oracle kernel, processes 
needing a lock handle do not access the instance lock database to allocate a lock 
handle directly. Instead, they still construct and send a message to the LMDn 
background process, and wait for LMDn to return a lock handle. The message 
identifies the resource, and sets certain options that govern both the acquisition 
of the lock and its subsequent management. 

If the resource does not exist in the local instance lock database, then a slot is 
allocated from the instance lock resource table. The resource may be marked as 
persistent, if it is to be retained once all locks have been released. The directory 
node is computed from the resource identification, and the master node is 
marked as unknown (unless the resource is persistent). Once the resource exists 
in the local instance lock database, a slot in the instance lock table is allocated to 
the lock. Its process or group ownership is established, and deadlock detection 
parameters are set. The LMDn background process then constructs and sends a 
reply message to the client process. This message is called an acquisition 
asynchronous trap, or acquisition AST. The acquisition AST message includes a 
lock handle. 



Processes waiting for LMDn to return a lock handle wait on a DFS lock handle 
wait. DFS stands for Distributed File System, which is an old name for Oracle's 
instance lock management functionality. Lock handle waits should be brief, 
because they are resolved entirely locally. If these waits take longer than 1 
centisecond on average, then the LMDn process is overworked. 

5.1.4 Instance Lock Acquisition 

Once a lock handle has been obtained, the process needing an instance lock 
constructs and sends a second message to LMDn to convert the lock. This 
message identifies the lock handle, specifies the new lock mode required, and sets 
further options. If the master node for the resource is already known, this 
message may be sent directly to the LMDn process at the master node depending 
on the setting of the _LM_DIRECT_SENDS parameter which defaults to ALL in 
release 8.1, but just to LKMGR in release 8.0. 

If the master node for the resource is still unknown, the local LMDn sends a 
message to the directory node to find out which node is the master node for this 
resource. If a master node has not already been assigned, the directory node 
assigns a master node. Depending on the resource type, the lock mastering is 
either assigned to all active nodes cyclically, or to the originating instance if the 
resource is unlikely to be used from other instances. Once the master node is 
known, the acquisition or conversion request can be forwarded to the master 
node. 

If the lock information held at the master node indicates that the lock can be 
granted immediately, then the lock is linked into the granted queue at both the 
master node and locally, and a conversion AST message is returned to the client 
process via the LMDn process of the client instance. Otherwise, the lock is linked 
to the convert queue for the resource, and the client process continues to wait. 

When a lock request is blocked, the LMDn process at the master node may ask 
the blocking lock holders to downgrade the modes of their locks on the resource, 
in order to allow the new conversion request to be granted. This is done by 
sending a blocking asynchronous trap, or BAST, to the blocking processes and 
instances. Whether a lock holder is able to receive BAST messages, and the level 
to which it may be willing to downgrade its lock, are set during lock acquisition or 
conversion. When a blocking process has complied with a BAST, it sends a 
completion AST in reply. 



The GV$DLM_LOCKS view shows the details for all blocked and blocking locks 
in the instance lock database, including all the options set when acquiring and 
converting the locks. GV$DLM_ALL_LOCKS shows the same details, but for all 
instance locks, including those held in null mode. 

5.1.5 LCKn Processes 

Many instance locks are not obtained directly by the process requiring the lock. 
Instead, the LCKn processes obtain them on behalf of the entire instance. The 
LCKn processes operate asynchronously. That is, when they send requests to the 
LMDn process, they do not wait for an acquisition or conversion AST to be 
returned. Instead, they are available to handle further lock requests from other 
processes. This is why a distinction is made in the GV$SYSSTAT statistics 
between asynchronous and synchronous global lock gets and conversions. 

By default, only one LCKn process is started. This is normally sufficient, because 
it operates asynchronously. However, if LCK0 is very active, and if the operating 
system does not support priority fixing, then LCK0 may have to queue for the 
CPU, thereby degrading overall system performance. If so, multiple LCKn 
processes can be started using the _GC_LCK_PROCS parameter. 

5.1.6 Lock Value Blocks 

When a process acquires or converts an instance lock, it can read or write the 16-
byte lock value block which is maintained in the resource structure at the master 
node. For example, the lock value block of the SM (SMON) instance lock resource 
represents the last time an SMON process ran in any instance. The lock value 
block facility is also used to communicate System Change Numbers (SCNs) 
between instances, and to establish parallel execution communication paths. 
However, the lock value block is not used for most resource types. 

Incidentally, the resource structure for local enqueues also includes a lock value 
block, but it is scarcely ever used. 

5.2 Global Locks 

Many of the resources protected by local locks in single-instance Oracle require 
global exposure in a parallel server database. Whenever one of these local locks is 
needed, a corresponding instance lock must be held as well, to protect the 
resource across all instances. The instance locks used to protect local locks 



globally are called global locks . However, the term is sometimes used informally 
as a synonym for all instance locks generally. 

5.2.1 Row Cache Instance Locks  

Row cache instance locks correspond directly to local row cache enqueue locks. 
They do not supersede the local locks, but give them global exposure. 

When a process needs a row cache instance lock, it posts the LCK0 background 
process to obtain the lock on behalf of the instance, and waits on a row cache lock 
wait. This same wait is also recorded when waiting for the corresponding local 
lock. LCK0 obtains the instance lock asynchronously. When LCK0 receives the 
acquisition or conversion AST from LMDn, it posts the waiting process. 

When the local process releases its row cache enqueue lock, the dictionary row 
remains cached, and so the instance lock is not released but downgraded to null 
mode in the background by the LCK0 process. However, the row cache instance 
lock is released if the dictionary cache entry is flushed from the shared pool. 

Although dictionary cache entries and row cache enqueue locks are dynamically 
allocated in the shared pool, the lock state information for the corresponding 
instance locks is not. That information is maintained in a fixed array which is 
dimensioned by the _ROW_CACHE_INSTANCE_LOCKS parameter. The size of 
this array limits the number of null mode instance locks cached by each instance, 
and thus constrains the resource usage in the instance lock database for row 
cache instance locks. Consider increasing the size of this array to cache a working 
set of instance locks if the GV$ROWCACHE view shows ongoing 
DLM_RELEASES without many DLM_CONFLICTS. 

5.2.2 Global Enqueues  

Most of the resources protected by enqueue locks in single-instance Oracle have 
global exposure in a parallel server database. These are the global enqueues. 

Global enqueue locks are taken by the foreground and background processes 
taking the local locks. They are not taken by the LCKn processes on behalf of the 
instance. The instance lock resources for global enqueues are dynamically 
assigned, and like the local enqueue resources, they are not persistent. Most 
global enqueue resource types are mastered locally, because locks on these 
resources are seldom needed by other instances. 



The single most effective way to optimize global enqueue locking is to disable 
table locking. Indeed, this is strongly recommended for Oracle parallel server. 
The preferred way of doing this is to use the ALTER TABLE DISABLE TABLE 
LOCK command on all application tables, rather than setting the DML_LOCKS 
parameter to 0, as discussed in the previous chapter. 

5.2.3 Cross-Instance Calls 

One global enqueue type is worthy of particular mention because of its role in 
inter-instance communication. Some operations, such as changing the backup 
state of tablespaces, log file operations, global checkpoints, and others, need 
global coordination because all the instances must cooperate in performing the 
operation. 

This communication between instances is effected using CI (cross-instance call) 
enqueues . For each type of operation, the background processes of each instance 
hold instance locks on a set of resources. By manipulating the modes of these 
locks, it is possible to trigger global actions and wait for them to be completed. 

For example, prior to performing a direct read operation on a database segment, 
the reader process or parallel query coordinator uses a cross-instance call to the 
DBWn processes requesting a checkpoint of all dirty cached blocks belonging to 
that segment. The lock value block is used to communicate the database object 
number for the segment. Similarly, before truncating a segment, reuse block 
range cross-instance calls are used to ensure that dirty cached blocks within the 
affected range have been flushed to disk, and that clean cached blocks within the 
affected range have been invalidated. 

Despite their name, many cross-instance calls are used, and the corresponding CI 
enqueues are taken in single-instance Oracle as well as in a parallel server. 

5.2.4 Library Cache Instance Locks  

Some library cache locks and pins also have global exposure in a parallel server 
database. Remember that library cache locks are held during parse calls, and that 
pins are held during execute calls, to prevent conflicting DDL. In parallel server 
databases it is necessary to prevent such conflicting DDL in all instances. To 
achieve this, it is sufficient to globally expose the library cache locks and pins on 
database objects only. The local locks and pins on dependent objects such as 



cursors do not need global exposure, because they are indirectly protected if all 
the database objects on which they depend are protected. 

Remember further that local library cache locks are retained in null mode to 
invalidate cached library cache objects should the definition of an object on which 
they depend be changed. The same functionality is provided between instances, 
on database objects only, by the LCK0 processes holding an IV (invalidation) 
instance lock in shared mode on all database objects cached in the library cache. 
Any process that needs to invalidate an object definition globally merely takes an 
exclusive mode lock on the same resource, thereby causing the LCK0 processes to 
drop their shared lock and invalidate the object. 

The use of global library cache locks, pins, and invalidation locks can be disabled 
using hidden parameters. This is not recommended unless DML locks have also 
been completely disabled. 

5.3 PCM Instance Locks 

Parallel cache management (PCM) instance locks do not protect cache buffers—at 
least not directly. They protect data structures known as lock elements. Each lock 
element protects a set of data blocks, not cache buffers. However, any cache 
buffers containing those data blocks are linked to their lock element. 

Lock elements are also called global cache locks, but that term is unhelpful 
because they are neither locks nor resources. They are an intersection entity 
between PCM instance locks and cache buffers. 

5.3.1 Fixed Lock Elements  

Lock elements are either releasable or fixed. Releasable lock elements may be 
used for either hashed or fine-grained locking, but fixed lock elements are used 
only for hashed locking. In hashed locking, data blocks are mapped to lock 
elements using a hash algorithm, and a single lock element may protect any 
number of cached blocks at once. In fine-grained locking, lock elements are 
dynamically allocated to protect a single cached block at a time. 

The mapping of data blocks to hashed lock elements, and whether they are fixed 
or releasable lock elements, is established by the GC_FILES_TO_LOCKS and 
GC_ROLLBACK_LOCKS parameters. The number of fixed lock elements is 
derived from these strings. The number of releasable lock elements used for 
hashed locking in these strings must be less than the number of releasable lock 



elements specified with the GC_RELEASABLE_LOCKS parameter, which 
defaults to the number of buffers in the cache. The remaining releasable lock 
elements are available for fine-grained locking. 

Fixed and releasable hashed locking exhibit identical performance, except in one 
very important respect. During instance startup, the LCKn processes must 
acquire null mode instance locks on all fixed lock elements. This can take many 
minutes. Releasable hashed locking diffuses this cost over an initial ramp-up 
phase of instance activity. Thereafter, the performance of these two forms of 
hashed locking are identical. Note that the lock handles on releasable hashed lock 
elements are never actually released, despite the lock elements being releasable. 
In view of this, you should only use releasable lock elements for hashed locking, 
and should not use fixed lock elements at all. 

5.3.2 Hashed Locking 

When a block is brought into the cache, the lock element under which it will be 
protected must be determined, and the buffer must be linked to that lock 
element. How this is done depends on whether the block uses fine-grained or 
hashed locking, and in the case of hashed locking, it also depends on the class of 
the block. Rollback segment blocks and data blocks are treated separately. 

For data blocks subject to hashed locking , there is an index array that maps file 
numbers to lock element buckets, and a bucket header array that identifies the 
series of lock elements in each bucket. These arrays are visible as X$KCLFI and 
X$KCLFH . For rollback segment blocks, the corresponding arrays are X$KCLUI 
and X$KCLUH . These arrays are constructed from the GC_FILES_TO_LOCKS 
and GC_ROLLBACK_LOCKS parameters during instance startup. 

When a rollback segment block or data block is brought into cache, these arrays 
are used to look up the correct lock element bucket. No latching is necessary, 
because the arrays are static. The lock element chosen to protect a particular 
block from within its bucket is the block number minus two, divided by the 
blocking factor for the bucket, divided by the number of lock elements in the 
bucket, rounded down. This hash function subtracts two from the block number, 
rather than one, to allow for the file header block and to thereby ensure that if the 
blocking factor is chosen as an integer divisor of the extent size expressed in 
blocks, then lock element coverage will align to extent boundaries. Further, it is 
good practice to make the number of lock elements in each bucket a prime 



number to ensure an even distribution of blocks to lock elements, regardless of 
the data distribution within database segments. 

A heavier concentration of lock elements should be allocated to data files that 
may be subject to contention for hashed PCM instance locks. The risk of such 
contention is greatest on data files whose blocks are subject to change and whose 
blocks are accessed from multiple instances. 

5.3.3 Fine-Grained Locking 

Data files and rollback segments that are not assigned any hashed lock elements 
in GC_FILES_TO_LOCKS and GC_ROLLBACK_LOCKS, or that are explicitly 
given no lock elements, use fine-grained locking unless an alternative default 
bucket (bucket 0) has also been defined. In fine-grained locking each data block 
is protected by a dedicated lock element from the set of unassigned releasable 
lock elements. Because just one data block is protected by each lock element at 
any one time, fine-grained locking is also called DBA (data block address) 
locking. Fine-grained locking is also used for all block classes other than data 
blocks and rollback segment blocks. These minor block classes include segment 
header blocks, free list blocks, and extent map blocks. 

If fine-grained locking is being used for certain data files, and if important minor 
class blocks such as segment header blocks are often aged out of the buffer cache, 
then the lock elements for those blocks may be reused before their blocks are 
read in again. This results in unnecessary instance lock acquisition and resource 
allocation overhead. In this case, to improve the retention of instance locks, you 
should consider reserving a number of lock elements in a separate bucket for the 
minor class blocks by setting the _GC_CLASS_LOCKS parameter. 

5.3.4 The Lock Element Free List 

When a block subject to fine-grained locking is brought into the cache, a hash 
table is consulted to determine whether a lock element for the block has been 
preserved. This is done under the protection of the KCL name table latch . If 
necessary, a lock element is allocated from the LRU (least recently used) end of 
the lock element LRU chain under the protection of the KCL freelist latch . Note 
that despite the name of this latch, the data structure that it protects is an LRU 
chain of both free and in use (named) lock elements. The term, lock element free 
list, is just another name for the set of free lock elements at the end of the lock 
element LRU chain. 



In most instances, it is desirable to have lock elements available on the free list at 
all times. The X$KCLFX fixed table contains some free list statistics. In 
particular, the LWM column contains the low-water mark of the free list length. 
This can be seen with the APT script lock_element_lwm.sql . Lock elements are 
returned to the MRU (most recently used) end of the LRU chain when their 
protected buffer is reused. Lock elements may be reclaimed from the free list if 
the protected block is brought back into cache before the lock element has been 
reused. 

In very large memory (VLM) environments, it may be desirable to have fewer 
lock elements available than the number of cache buffers under fine-grained 
locking. It is not that there is not ample memory available for the lock elements 
and instance locks, but that having a large number of instance locks would greatly 
extend the period of reduced availability during instance lock redistribution when 
necessary. In such environments, named lock elements are reused in LRU order 
as required. If a process has to wait while a lock element is prepared for reuse, it 
waits on a global cache freelist wait . The only parameter to this wait is the lock 
element number. 

5.3.5 PCM Lock Acquisition 

When a block is brought into cache, a buffer from the buffer cache LRU chain is 
selected for reuse, and the session allocates a buffer handle to work with the 
buffer. First it must unlink the buffer header from the lock element under which 
the previous block cached in that buffer was protected, if any. Then it must link 
the buffer header to the lock element for the new block. These operations are 
performed under the protection of the KCL lock element parent latch for that 
lock element. 

If multiple LCKn processes have been configured, then the lock element array is 
partitioned between these processes, and a separate set of lock element parent 
latches is used for each partition. The number of latches in each set is determined 
by the _GC_LATCHES parameter, which defaults amply to two times the CPU 
count. 

Of course, more needs to be done than merely linking the buffer for a new block 
to its lock element. In particular, a PCM instance lock of the correct mode needs 
to be acquired on the lock element. The LCKn background processes perform this 
task. For fine-grained locks, they must also release the instance lock and resource 
previously held for that lock element. 



When a foreground process needs to acquire or convert a PCM instance lock on a 
particular lock element, it allocates a structure called a lock context object . The 
lock context object is linked to the lock element, and fully describes the operation 
to be performed. The foreground process then posts the LCKn process and waits 
for the LCKn process to complete the locking operation and clean up the lock 
context object. 

While the foreground process is waiting for LCKn to obtain a lock, it sleeps on 
one of the global cache lock waits. The timeout for these waits is 1 second. The 
parameters are as shown in Table 5.1. 

Table 5.1. Wait Parameters (global cache lock waits) 

Parameter Description 

p1 The file number of the database block. 

p2 The block number of the database block in its file. 

p3 
The lock element number, or the block class for minor class block lock 
acquisitions. 

While a process is waiting on a global cache lock wait because a blocking lock is 
held by a remote instance, the details can be seen in GV$DLM_LOCKS . The 
resource name is constructed from the lock type and the two lock identifiers. The 
lock type for PCM instance locks is BL (block lock) . The first identifier is the lock 
element number for hashed locking, and the data block address for fine-grained 
locking. The second identifier is the block class, as shown in Table 5.2. 

Table 5.2. Block Classes 

Block Class Class Description 

1 Data blocks 

2 Sort blocks 

3 Deferred rollback segment blocks 

4 Segment header blocks 

5 Deferred rollback segment header blocks 

6 Free list blocks 

7 Extent map blocks 

8 Space management bitmap blocks 

9 Space management index blocks 

10 Unused 

11 + 2r Segment header block for rollback segment r 



12 + 2r Data blocks for rollback segment r 

5.3.6 Block Pings 

If a remote instance needs a PCM instance lock in an incompatible mode with the 
lock held locally, then the LCKn process holding that lock will receive a BAST 
from the local LMDn process. If none of the blocks protected by that lock element 
are currently in the cache, or if they are in cache but in a compatible state, then 
the LCKn process can downgrade its lock mode immediately. However, if any 
blocks protected by the lock element are in cache in an incompatible state, then 
the lock cannot be downgraded until after the block states have been changed. 
Changing the state of a cached block in response to a BAST is called a ping. 

Cached blocks can be in three possible states.[1] First, they can be current or stale. 
Stale copies of blocks are kept in the cache to satisfy long-running queries. 
Queries need to perform consistent reads. That is, blocks that have been modified 
since the query started need to be rolled back, so that the information returned 
by the query will reflect a consistent snapshot of the database at the time that the 
query or transaction began. Retaining stale copies of blocks in cache for 
consistent reads reduces the need to roll back changes for queries. Because of 
this, stale copies of blocks that are still in the cache are said to be in consistent 
read (CR) state. Note that CR is also the abbreviation for the concurrent read lock 
mode, which can be cause for confusion at times. 

[1] Note that I am speaking here of block states. The states of the buffers containing those 
blocks are related, but different. 

Cached blocks that are not stale are current. Current blocks can be in two states, 
namely clean or dirty. A current block is dirty if it has been changed and still has 
to be written to disk. A current block is clean if it does not contain changes that 
still have to be written to disk. 

Pings only affect current blocks. If a remote instance requires a shared lock on a 
lock element, then any dirty blocks protected by that lock element locally need to 
be written to disk and thus cleaned. When these blocks have been cleaned, the 
local lock on that lock element can be downgraded to shared mode. However, if 
the remote instance needs to change a block, then it will request an exclusive lock 
on its lock element. Any dirty blocks protected by that lock element locally need 
to be written to disk, and clean blocks must be marked as stale; that is, they must 
be converted to consistent read state. The local lock on the lock element can then 
be downgraded to null mode. 



Pings that affect dirty blocks and cause them to be written to disk are called hard 
pings. Pings that only affect the state of blocks, by causing them to be marked as 
stale, are called soft pings. Hard pings are a form of forced write. Forced writes 
also occur in response to checkpoint object, reuse block range, and write buffer 
cross-instance calls. Soft pings are a form of cache invalidation, which is forcing a 
block to become stale. This term reflects the fact that the cache buffer no longer 
contains a valid current copy of the block. Cache invalidations also occur in 
response to reuse block range cross-instance calls. Forced reads, as shown in 
GV$BH , are cases when an instance had to read a block back into cache after it 
was invalidated. 

Under hashed locking, it is possible for multiple cached blocks to be affected by a 
single ping. Similarly, it is possible for blocks other than the block required by the 
remote instance to be affected by a ping. Pings of blocks other than the block 
required by the remote instance are called false pings . True pings are those in 
which the only block affected is the block required by the remote instance. Fine-
grained locking is not subject to false pings, because only one block is protected 
under each lock element. 

Pings are a major performance issue for parallel server databases. The fixed table 
GV$FILE_PING contains detailed statistics about pings that have occurred for 
each data file, as well as other forced writes and invalidations. This information is 
invaluable in pinpointing trouble spots while tuning a parallel server database to 
reduce pings. 

5.3.7 Consistent Read Requests 

Oracle uses several optimizations to reduce the number of pings and their impact. 
Queries only need consistent read copies of the data blocks, not necessarily the 
current block image. If a stale copy of the block that is more recent than the 
consistent read SCN for the query is available in the local cache, then that copy 
will be used. If the lock element is not locked in exclusive mode by another 
instance, then a shared mode lock is taken and the block is read from disk and 
rolled back as required. However, if an exclusive lock is held by another instance, 
Oracle must obtain a suitable read consistent copy of the block from that 
instance. How this is done depends on the Oracle release. 

In release 8.0, Oracle first attempts to ping the block. However, if the block is 
very hot in the remote instance, the ping request times out after 6 seconds (or the 
value of the _CR_DEADTIME parameter). In this case, Oracle uses a write buffer 



cross-instance call to trigger the remote DBWn to write the current buffer to disk. 
The block can then be read from disk and rolled back as required. However, the 
rollback operation commonly requires several more calls for rollback segment 
blocks from the remote instance. 

In release 8.1, Oracle uses an alternative cross-instance call to trigger the remote 
block server process to construct the required consistent read copy of the block 
and transfer it directly to the client instance. If, however, the remote instance no 
longer has a current copy of the block in its cache, then the client instance is 
given permission to read the current image of the block from disk and perform 
the required rollback itself. This is reflected in the global cache cr blocks received 
and global cache cr blocks read from disk statistics. 

Oracle plans to extend the block service feature to include transfers of current 
mode blocks in a later release. 

5.3.8 Deferred Ping Responses 

Another optimization that Oracle uses to reduce the impact of pings is to defer its 
response to hard pings by 10 centiseconds, or by the setting of the 
GC_DEFER_TIME parameter. This is often long enough to allow the active 
transaction to complete its current series of changes to the block, and mark them 
as complete within the block header, so that the remote instance will not have to 
check that transaction's status immediately after reading the block. Checking the 
status of a remote transaction is an expensive operation, because it requires a 
ping of the transaction's rollback segment header block, which is invariably a very 
hot block. 

Tuning GC_DEFER_TIME is a matter of balancing the number of pings against 
the response time for pings, and it can be tuned conveniently because it is a 
dynamic parameter with ALTER SYSTEM scope. However, local operations on a 
lock element may be delayed unduly if pings take too long to resolve. In this case 
global cache lock busy waits will be observed. The timeout for this wait is one 
second, and the wait parameters are the same as for the other global cache lock 
waits. 

Another optimization that Oracle uses to reduce the impact of pings is to 
automatically queue a conversion request to restore its lock mode after a ping. 
This can be disabled in release 8.0 using the _UPCONVERT_FROM_AST 
parameter. Similarly, Oracle sometimes takes an exclusive lock earlier than 



necessary to reduce the number of lock conversions. This can be disabled using 
the _SAVE_ESCALATES parameter. These parameter settings should not 
normally be changed. 

5.3.9 Workload Partitioning  

Of course, the best way to reduce pings is to partition the workload so the 
instances use mutually exclusive sets of data. With a little imagination, and a lot 
of hard work, it is possible to partition most workloads satisfactorily. One 
approach, for example, is to use a three-tier architecture with a TP monitor and 
Oracle's XA libraries to direct global transaction branches to distinct instances 
based on the data set required. 

Another approach worthy of extended consideration is to embrace distributed 
database technology, in preference to parallel server technology. The overheads 
of instance locking add significantly to application response times, even under 
ideal workload partitioning. Those overheads can be eliminated and replaced 
with more modest network latencies that affect distributed transactions only, as 
long as you can partition the data as well as the workload into distinct distributed 
databases. 

A parallel server architecture should only be adopted if scalability requirements 
demand it, and if such complete partitioning of both data and workload into a set 
of distributed databases is not feasible. The performance of a parallel server 
database will always be mediocre by comparison with an equivalent distributed 
or single-instance database. Parallel server is only superior in its scalability under 
vast workloads. 

You must realize, however, that parallel server scalability is not automatic. 
Careful workload partitioning is essential. Workload partitioning is the key not 
only to reducing pings, but also to reducing the instance lock acquisition 
overheads of a parallel server database—in particular, inter-instance message 
passing. 

5.3.10 Blocking Factor  

There is one way of improving parallel server scalability that is not immediately 
obvious, but can result in significant savings both in pings and in lock acquisition 
messages. 



In hashed locking, although each lock element covers multiple blocks, the default 
blocking factor is only one block. For multiblock reads, this means that a distinct 
PCM instance lock must be held for each consecutive block. However, if a 
blocking factor equal to the multiblock read count is adopted, then no more than 
one PCM instance lock will be acquired for each multiblock read. For globally 
visible data, this reduces PCM instance lock acquisition and thus inter-instance 
messages. This reduction in lock acquisition also reduces pings for data that is 
modified. This is because all the blocks covered by the lock that are cached in an 
incompatible state in a remote instance will be released in a single ping 
operation. 

Clearly, a large blocking factor is desirable for data files that contain tables that 
are subject to multiblock reads, particularly if they are globally visible and subject 
to modification. But if a very large blocking factor is used, then a large number of 
buffers will be linked to individual lock elements at times, introducing a risk of 
contention for the lock element parent latches covering those lock elements. Also, 
if there are hot spots within the table, a large blocking factor increases the risk of 
false pings. Nevertheless, a blocking factor of several times the multiblock read 
count is normally appropriate for such data files. A generous blocking factor is 
also appropriate for rollback segments. 

Indexes are much more problematic than tables and rollback segments—
particularly globally visible indexes that are subject to modification. First, it is 
imperative that reverse key indexes be used to index monotonically increasing 
primary keys, lest considerable contention arise for the PCM instance lock 
covering the right-hand leaf block of the index. Oracle knows few forms of 
contention so debilitating as this slow motion game of ping-pong. 

For the general case of globally visible and updated indexes, fine-grained locking 
is often suggested to combat the risk of false pings. Indeed, in my opinion, this is 
the only case in which fine-grained locking should be considered, and even then 
you should normally reject it in favor of heavy hashed locking. 

I will concede that heavy hashed locking requires many more lock elements and 
instance lock resources and locks. But memory is cheap. Somewhat more telling 
is the complaint that heavy hashed locking, because of its retention of large 
numbers of instance locks, extends the period of reduced availability during 
instance lock redistribution when necessary. On the other hand, the database is 
frozen by default for the transaction recovery phase of instance recovery if any 
data files use fine-grained locking. This default can be changed with 



_FREEZE_DB_FOR_FAST_INSTANCE_RECOVERY if relatively few fine-
grained locks are in use. But hashed locking is nevertheless to be preferred if 
lengthy transaction recovery may be required. However, the decisive argument in 
favor of heavy hashed locking is that the reduction in locking overhead from the 
retention of instance locks easily outweighs the performance impact of false pings 
in almost all cases. 

Indexes that are subject to fast full scans also stand to benefit from an increased 
blocking factor. However, indexes are also more sensitive to false pings than 
tables, and so a more modest blocking factor is recommended. 

In summary, my recommendation is that you use releasable hashed locking for 
all data files, with a heavier concentration of lock elements on globally visible and 
updated data. 

5.4 Other Instance Locks 

There are a number of other instance locks used for controlling certain 
operations in parallel server databases that have no counterpart in single-
instance Oracle. For example, the SM (SMON) instance lock is used to ensure 
that the SMON processes of multiple instances cannot be simultaneously active. 
This is not necessary in single-instance Oracle. Similarly, the DR (distributed 
recovery) instance lock is used to ensure that only one RECO process can be 
active at any one time. 

The DF (data file) instance locks are another group of locks that are not needed in 
single-instance Oracle. There is one DF resource for each data file, and each 
DBWn process holds a shared mode instance lock on each resource. If a data file 
is taken offline in one instance, then the remote DBWn processes are notified to 
no longer attempt to write to that data file by converting the mode of the instance 
lock on that resource. 

5.5 Reference 

This section contains a quick reference to the parameters, events, statistics, waits, 
and APT scripts mentioned in Chapter 5. 

5.5.1 Parameters 

Parameter Description 



_FREEZE_DB_FOR_FAST_INSTANCE_RECOVERY 

Whether to freeze database activity 
during the transaction recovery 
phase of instance recovery. Defaults 
to TRUE if any data files use fine-
grained locking. 

_GC_CLASS_LOCKS 
The number of releasable lock 
elements to reserve for fine-grained 
locking of the minor class blocks. 

_GC_LATCHES 

The number of lock element latches 
per partition of the lock elements 
fixed array. Defaults to two times 
the number of CPUs, which is 
ample. 

_GC_LCK_PROCS 
The number of LCKn processes. 
Defaults to 1, which is normally 
sufficient. 

_IGNORE_FAILED_ESCALATES 

Attempts to convert a PCM lock 
straight after a ping appears to fail 
because Oracle does not know 
which instance last modified the 
protected blocks. However, this 
merely means that the lock value 
block is invalid and cannot be used 
for SCN generation. The lock is 
usable in every other respect, and 
so the default setting of TRUE 
should be accepted. This parameter 
is not available in release 8.1. 

_KGL_MULTI_INSTANCE_INVALIDATION 
This can be set to FALSE to disable 
global library cache invalidation 
locks. 

_KGL_MULTI_INSTANCE_LOCK 
This can be set to FALSE to disable 
global library cache locks. 

_KGL_MULTI_INSTANCE_PIN 
This can be set to FALSE to disable 
global library cache pins. 

_LM_DIRECT_SENDS 

The processes that can send inter-
instance messages directly. The 8.0 
default of LKMGR means that all 
messages are sent via LMDn. The 
8.1 default value is ALL. 

_LM_DLMD_PROCS The number of LMDn processes. 

_LM_DOMAINS The number of domain structures in 



the instance lock database. 
Domains are used for lock 
redistribution and recovery. Defaults 
to 2. 

_LM_GROUPS 
The number of process group 
structures in the instance lock 
database. Defaults to 20. 

_LM_SEND_BUFFERS 
The number of message buffers in 
the instance lock database. Defaults 
to 10000. 

_LM_XIDS 

The number of transaction 
structures in the instance lock 
database. Defaults to 1.1 times the 
LM_PROCS value. 

_ROW_CACHE_BUFFER_SIZE 

The size of the circular buffer in the 
PGA of the LCK0 process used for 
row cache instance locking 
messages. 

_ROW_CACHE_INSTANCE_LOCKS 
The size of the row cache instance 
locks fixed array. 

_SAVE_ESCALATES 
The default setting of TRUE enables 
early acquisition of more restrictive 
PCM instance locks than necessary. 

_UPCONVERT_FROM_AST 

The default setting of TRUE enables 
the automatic reclamation of PCM 
instance lock modes lost due to 
pings. This parameter is not 
available in release 8.1. 

GC_DEFER_TIME 
How long to defer response to ping 
requests. Defaults to 10 
centiseconds. 

GC_FILES_TO_LOCKS 
A string establishing the mapping of 
files to lock element buckets for 
hashed locking. 

GC_RELEASABLE_LOCKS 
The number of releasable lock 
elements. 

GC_ROLLBACK_LOCKS 
A string establishing the mapping of 
rollback segments to lock element 
buckets for hashed locking. 

LM_LOCKS 
The number of lock structures in the 
instance lock database. Defaults to 



12000. 

LM_PROCS 
The number of process structures in 
the instance lock database. The 
default is operating system specific. 

LM_RESS 
The number of resource structures 
in the instance lock database. 
Defaults to 6000. 

PARALLEL_SERVER 

Virtually no memory is allocated to 
all the instance lock structures 
unless this parameter is set to 
TRUE. 

5.5.2 Events 

Event Description 

10706 
This is the trace event for instance lock operations. Level 1 lists the calls; 
level 5 includes the replies; and level 10 adds time stamps. Expect large trace 
files. 

29700 
This event enables the collection of statistics in GV$DLM_CONVERT_LOCAL 
and GV$DLM_CONVERT_REMOTE. 

5.5.3 Statistics 

Statistic Source Description 

cross instance 
CR read 

GV$SYSSTAT 

A block required for a query was held under an 
exclusive lock by another instance. After a ping 
request timed out, this instance made a cross-
instance call for the block. This statistic no longer 
exists in release 8.1 due to the introduction of cache 
fusion. 

DBWR flush 
object cross 
instance calls 

GV$SYSSTAT 
Number of checkpoint object and invalidate object 
cross-instance calls. 

DBWR forced 
writes 

GV$SYSSTAT 
Total number of blocks written for forced writes. This 
statistic was named DBWR cross instance writes prior 
to release 8.1. 

global cache 
convert time 

GV$SYSSTAT PCM instance lock conversion time. 

global cache 
converts 

GV$SYSSTAT PCM instance lock conversions. 

global cache cr GV$SYSSTAT The total time for consistent read block requests to be 



block receive 
time 

satisfied. 

global cache cr 
blocks read 
from disk 

GV$SYSSTAT 

Blocks read from disk for consistent reads because 
the block had already aged out of the cache of the 
remote instance holding an exclusive PCM instance 
lock covering that block. 

global cache cr 
blocks 
received 

GV$SYSSTAT 
Consistent read blocks received from remote 
instances via direct transfer. 

global cache 
defers 

GV$SYSSTAT The number of times a ping request was deferred. 

global cache 
freelist waits 

GV$SYSSTAT Waits to free a lock element for reuse. 

global cache 
get time 

GV$SYSSTAT PCM instance lock acquisition time. 

global cache 
gets 

GV$SYSSTAT PCM instance lock acquisitions. 

global cache 
queued 
converts 

GV$SYSSTAT 
PCM instance lock conversions that had to be queued, 
because another instance was holding the lock in an 
incompatible mode. 

global lock 
async converts 

GV$SYSSTAT Asynchronous instance lock conversions. 

global lock 
async gets 

GV$SYSSTAT Asynchronous instance lock acquisitions. 

global lock 
convert time 

GV$SYSSTAT Total instance lock conversion time. 

global lock get 
time 

GV$SYSSTAT Total instance lock acquisition time. 

global lock 
releases 

GV$SYSSTAT Instance lock releases. 

global lock 
sync converts 

GV$SYSSTAT Synchronous instance lock conversions. 

global lock 
sync gets 

GV$SYSSTAT Synchronous instance lock acquisitions. 

instance 
recovery 
database 
freeze count 

GV$SYSSTAT 
Global freezes for the transaction recovery phase of 
instance recovery. 

remote 
instance undo 

GV$SYSSTAT Forced writes of rollback segment data blocks. 



block writes 

remote 
instance undo 
header writes 

GV$SYSSTAT Forced writes of rollback segment header blocks. 

remote 
instance undo 
requests 

GV$SYSSTAT 
Rollback segment block write requests to remote 
instances needed while rolling back data blocks for 
consistent reads. 

dlm messages 
sent directly 

GV$DLM_MISC 
The number of lock management messages sent 
directly to the target instance by the process needing 
the lock. 

dlm messages 
flow controlled 

GV$DLM_MISC 
The number of lock management messages sent 
indirectly via the local LDMn processes. 

dlm messages 
received 

GV$DLM_MISC 
The number of lock management messages received 
by the local LDMn processes. 

5.5.4 Waits 

Event Description 

DFS lock handle 
Waits to obtain a lock handle for an instance 
lock other than a PCM instance lock. 

global cache freelist wait Waits to free a lock element for reuse. 

global cache lock busy 

This wait occurs when a PCM instance lock 
operation cannot proceed because the 
previous operation on that lock element has 
not yet completed. 

global cache lock open sglobal cache 
lock open xglobal cache lock null to 
sglobal cache lock null to xglobal 
cache lock s to x 

Acquiring a PCM instance lock or converting its 
mode upwards. 

global cache lock open ss 
Acquiring a PCM instance lock on a minor class 
block in release 8.0. 

5.5.5 APT Scripts 

Script Description 

lock_element_lwm.sql Shows the low-water mark of the lock element free list 

 



Chapter 6. Memory 

Many tuning issues involve making decisions about memory allocation. Those decisions 
are complicated by the fact that Oracle manages much of its memory dynamically. To 
tune Oracle effectively, you need to understand both what it uses memory for and how it 
manages that memory. 

6.1 The SGA 

The System Global Area (SGA), together with the essential background processes, 
is definitive of an Oracle instance. It is a global area in the sense that it contains 
global variables and data structures, and it is a system area in the sense that it 
contains data structures that must be accessible to the entire Oracle instance, 
rather than just a particular process. 

6.1.1 The SGA Areas 

The SGA contains four or five main areas: 

?? The fixed area 
?? The variable area 
?? The database block buffers 
?? The log buffer 
?? The instance lock database (for parallel server instances) 

In terms of memory size, the fixed area and the log buffer should be trivial. 

6.1.1.1 The fixed area 

The fixed area of the SGA contains several thousand atomic variables, small data 
structures such as latches and pointers into other areas of the SGA. These 
variables are all listed in the fixed table X$KSMFSV along with their data types, 
sizes, and memory addresses, as shown in Example 6.1. The names of these SGA 
variables are cryptic, and seldom of use to know. However, senior Oracle staff can 
obtain advanced diagnostic information by joining X$KSMFSV with 
X$KSMMEM to monitor the values of these variables or to probe the data 
structures that they point to. X$KSMMEM has one row for every memory 
address in the SGA, and one non-key column which exposes the contents of the 
memory locations. 



Example 6.1. The Redo Allocation Latch as Seen from X$KSMFSV  

SQL> select ksmfsnam, ksmfstyp, ksmfssiz, ksmfsadr 
  2> from x$ksmfsv where ksmfsnam = `kcrfal_'; 
 
KSMFSNAM            KSMFSTYP          KSMFSSIZ   KSMFSADR 
------------------- ----------------- ---------- -------- 
kcrfal_             ksllt                    120 C3F4D13C 

The size of each component of the fixed area of the SGA is fixed. That is, they are 
not dependent on the setting of any initialization parameters, or anything else. 
Thus the offset into the fixed SGA for each variable is fixed, as is the total size of 
the fixed area itself. 

6.1.1.2 The variable area 

The variable area of the SGA is made up of the large pool and the shared pool. All 
memory in the large pool is dynamically allocated, whereas the shared pool 
contains both dynamically managed memory and permanent memory. The 
SHARED_POOL_SIZE parameter actually specifies the approximate amount of 
memory in the shared pool available for dynamic allocation, rather than the total 
size of the shared pool itself. 

The permanent shared pool memory contains a variety of data structures such as 
the buffer headers, the process, session, and transaction arrays, the enqueue 
resources and locks, the online rollback segment array, and various arrays for 
recording statistics. 

The sizes of most of these arrays are dependent on the settings of one or more 
initialization parameters. These initialization parameters cannot be changed 
without shutting down the instance, and so the sizes of the permanent memory 
arrays are fixed for the life of each instance. For example, the size of the process 
array is set by the PROCESSES parameter. If all the slots in this array are in use, 
then any further attempts to create another process in the instance will fail, 
because the array cannot be dynamically resized. 

For many of the permanent memory arrays, there are X$ tables that export each 
array element as a row, and certain of the structure members as columns. These 
X$ tables are sometimes called fixed tables. There are also corresponding V$ 
views that expose the most useful columns of the X$ tables, but only for the rows 
representing array slots that are currently in use. For example, the V$PROCESS 
view is based on the X$KSUPR fixed table, which is in turn based on the process 
array in memory. V$PROCESS does not include all the rows and columns in 



X$KSUPR, and X$KSUPR does not expose all the members of the SGA process 
structure. 

Learning More About the X$ Tables 

People often ask how they can learn more about the X$ tables. My first 
answer is to say that there is not much of use in the X$ tables that is not 
also visible in the V$ views. Most of the few useful scraps of information 
that can be gleaned directly from the X$ tables, but not the V$ views, 
can be readily obtained using scripts such as those referred to in this 
book. 

But, for those with the passion to know and the hours to burn, the APT 
script fixed_table_columns.sql , which is based on V$FIXED_TABLES, 
will give you a list of all the X$ tables, their columns, and their data 
types. You can then use the APT script fixed_view_text.sql , which is 
based on V$FIXED_VIEW_DEFINITION, to get the SQL statement text 
for all the V$ view definitions. From this information it is easy to work 
out which X$ tables and which X$ table columns are visible in a V$ view 
and which are not. Then, working out what extra information the X$ 
tables contain is a matter of guesswork, trial, and probably some error. 

Remember that the X$ tables change significantly from release to 
release, so scripts should only be based on the X$ tables when it is really 
necessary. 

The size of the variable area of the SGA is equal to the LARGE_POOL_SIZE, plus 
the SHARED_POOL_SIZE, plus the size of the permanent memory arrays. The 
total size of the permanent memory arrays can, in theory, be calculated from the 
settings of the initialization parameters. However, you need to know the formulae 
used to derive the array sizes from the parameters, the size of each type of array 
element in bytes, and the sizes of the array headers where applicable. These all 
change from release to release, and there are also operating system dependent 
differences. You also need to be aware that each permanent memory array is 
aligned on a memory page boundary to optimize memory addressing, and so 
some space is left unused. Fortunately, it is seldom necessary to calculate the 
permanent memory size precisely. If you really need this information, you can 
start up a test instance with a dummy SID and measure the permanent memory 
size, without needing to mount a database. 



6.1.1.3 The database block buffers 

This area of the SGA buffers copies of the database blocks. The number of buffers 
is specified by the DB_BLOCK_BUFFERS parameter, and the size of each buffer 
is equal to the DB_BLOCK_SIZE for the database. This area of the SGA contains 
only the buffers themselves, not their control structures. For each buffer there is 
a corresponding buffer header in the variable area of the SGA. Similarly, the 
working set headers, the hash chain headers, and their latches reside in the 
variable area of the SGA. Therefore, you will notice that the size of the variable 
area of the SGA will change by approximately 1K for every four buffers in the 
database block buffers area of the SGA. 

6.1.1.4 The log buffer 

The size of the log buffer area of the SGA is based on the value specified by the 
LOG_BUFFER parameter. However, the log buffer will be silently enlarged if an 
attempt is made to set it to less than its minimum size. The minimum size is four 
times the maximum database block size supported for the platform. On operating 
systems that support memory protection, the log buffer is bracketed by two guard 
pages (or, more correctly, memory protection units) to prevent corruption of the 
log buffer by errant Oracle processes. Nevertheless, the log buffer area of the SGA 
should be trivial by comparison with the size of the variable area and the 
database block buffers. The log buffer is internally divided into blocks. For each 
log buffer block, there is an 8-byte header in the variable area of the SGA. 

6.1.1.5 The instance lock database 

In parallel server configurations, instance locks are used to serialize access to 
resources that are shared between instances. This area of the SGA maintains a 
database of the resources in which this instance has an interest, the processes and 
instances that may need those resources, and the locks currently held or 
requested by those processes and instances. The sizes of these three arrays are set 
by the LM_RESS, LM_PROCS, and LM_LOCKS parameters respectively. The 
instance lock database also includes message buffers and other structures. This 
area of memory is required even in single-instance Oracle. However, in this case 
its size is trivial. 

This area is not presently included by Oracle when reporting the composition and 
size of the SGA at instance startup; however, it can be seen in dumps taken with 
the ORADEBUG IPC command in svrmgrl. 



6.1.1.6 Overhead 

The last small area of the SGA is the shared memory overhead itself. This area 
contains information about the shared memory segments in use, and the SGA 
areas and sub-areas that they contain. 

6.1.2 Shared Memory  

The SGA resides in shared memory on most operating systems. To understand 
shared memory segments, you need some understanding of memory segments 
generally, and thus of virtual memory. 

6.1.2.1 Virtual memory addressing 

Today, virtual memory addressing is so prevalent that the alternative of direct 
memory addressing is almost only a memory. If you once programmed for the 
Z80 or 8086 CPUs, then you may remember direct memory addressing. You had 
to know exactly which memory addresses were available to you, so that you did 
not reference nonexistent memory or corrupt the BIOS. If you needed to write a 
big program, bigger than the available memory or address space, then you had to 
break it into sections that could be loaded or switched into memory as required. 
In fact, the Oracle two-task architecture was initially adopted for this very reason. 

Virtual memory addressing introduces a layer of abstraction between program 
code and physical memory. All memory references are dynamically translated 
from virtual memory addresses to physical memory addresses before each 
instruction is executed. The operating system maintains data structures, called 
page tables, to support virtual-to-physical memory address translation. The most 
recently used page table entries are cached in each CPU to optimize address 
translation. This cache is commonly called a translation lookaside buffer (TLB). 
To further optimize address translation, TLB lookups are performed in hardware. 
A TLB miss must be resolved by reference to the page tables in main memory. 
This operation is also performed by hardware in some cases. If hardware address 
translation fails, the CPU switches into a special execution context to ensure that 
a physical memory page is allocated for the virtual page and refreshed from disk 
if necessary. The page table entry is also copied into the TLB. Such hardware 
address translation failures are called page faults. If a page has to be read from 
disk, it is called a hard or major page fault—otherwise, it is a soft or minor page 
fault. After a minor page fault has been resolved, the CPU switches back into user 
mode and restarts the current instruction. However, while a major page fault is 
being resolved, the CPU time may be used to service other processes. 



Virtual memory addressing enables programs to run when not all of their 
program code or data is currently in physical memory. This means that relatively 
inactive virtual pages can be temporarily removed from physical memory if 
necessary. If these pages have been modified, they must be saved to a temporary 
storage area on disk, called a paging file or swap space. The operation of writing 
one or a cluster of inactive memory pages to disk is called a page out, and the 
corresponding operation of reading them in again later when one of the pages is 
referenced is called a page in. Paging is the aspect of virtual memory 
management that allows large programs to run. It is effective because programs 
typically use only a small proportion of their virtual memory pages actively at any 
one a time. The set of pages in active use by a process is called its working set. 

Virtual memory addressing also enables programs to run from almost any 
location in physical memory. This means that it is possible to have many 
programs and their data in memory at the same time, and to switch between 
them very quickly. CPU time is not wasted while a process performs disk I/O, or 
waits for user input, or to resolve a page fault. 

6.1.2.2 Memory access 

Heavy paging activity can have a major impact on system performance, as is 
discussed later in this chapter. But first, it's important to note that address 
translation itself and memory access generally, apart from paging, also affect 
system performance significantly. Main memory access is expensive in terms of 
CPU cycles. Memory operates at much lower hardware clock speeds than CPUs 
do, and there is also a recovery time component required after each memory 
access before that memory bank can service another memory access by either the 
same CPU or another one. This is why computer manufacturers put so much 
effort into their CPU caching technology. Not only are page table entries cached 
in the TLB, but portions of user memory (called cache lines) are cached in a 
general cache as well. Sophisticated mechanisms are used to maintain 
consistency between main memory and the CPU caches (called cache coherency 
mechanisms). Cache lines are retained as long as possible to maximize cache hits, 
with a distinction often being made between program code and data because of 
their different locality properties. At the operating system level, scheduling 
algorithms are biased towards scheduling processes to get a time slice on the CPU 
on which they ran most recently. This is intended to minimize the probability of 
hardware address translation failures and CPU cache misses, and thereby to 
reduce main memory access. 



Your control over memory access performance is limited to purchasing decisions. 
If you are lucky enough to have a say in such matters, here are the guidelines: 

1. Reduce the impact of cache coherency mechanisms by buying fewer, faster 
CPUs. 

2. Further reduce the risk of memory access contention between CPUs by buying 
a large number of small memory boards. 

3. Reduce the cost of memory access for each CPU by buying the fastest 
available memory. However, if fast memory implies only a few large memory 
boards, and if you expect to scale beyond six CPUs, then prefer slower 
memory in more, smaller boards. 

4. There are pitfalls associated with mixing different types of memory in the 
same system. Avoid this, unless your hardware vendor assures you that it is 
OK. 

6.1.2.3 Process memory segments  

One of the benefits of virtual memory addressing is that processes can use a large 
virtual memory address space regardless of the physical memory available. This 
enables process memory to be logically divided into distinct segments based on 
usage. These segments may be mapped to non-contiguous virtual memory 
addresses to allow for segment growth. Oracle uses the following segment types, 
as do programs generally: 

Program text  
The text segment contains the executable machine code for the program 
itself, excluding dynamically linked shared libraries. Text segments are 
normally marked read-only, so that they can be shared between multiple 
processes running the same program. For example, all Oracle processes 
execute the same oracle binary, albeit with different personalities. Regardless 
of how many processes are running in an instance, and regardless of how 
many instances are running that release of Oracle on the same server, only 
one copy of the program text is required in physical memory. 

Initialized global data  
This segment contains global data structures that are initialized by the 
compiler, such as text strings for use in trace output. Initialized data can 
theoretically be modified, and thus it is not shared between processes running 
the same program. Oracle makes little use of this segment. 

Uninitialized global data  
The uninitialized data segment is normally called the BSS (Block Started by 
Symbol) segment. This segment contains statically allocated global data 
structures that are initialized at runtime by the process itself. Oracle makes 
minimal use of the BSS segment. 

Data heap  



The heap is available to processes for the dynamic allocation of memory at 
runtime using the malloc ( ) or sbrk ( ) system calls. Oracle uses the heap for 
its PGA (process global area) which is discussed later in this chapter. 

Execution stack  
Whenever a function is called, the arguments and the return context are 
pushed onto the execution stack. The return context is essentially a set of 
CPU register values that describe the exact state of the process at the point of 
the function call. When the function call completes, the stack is popped and 
the context is resumed so that execution continues from the instruction 
immediately following the function call. The stack also holds variables that are 
local to a code block. Stack size is dependent on the depth of function call 
nesting, or recursion, and the memory requirements of the arguments and 
local variables. Oracle's stack space requirements are modest given its 
complexity. 

Shared libraries  
Shared libraries are collections of position-independent executable code 
implementing functions that may be required by a number of programs—in 
particular, collections of system call functions. Shared library segments are 
marked read-only and shared between all dependent processes, including 
Oracle processes. No more than one copy of each shared library is required in 
physical memory. Before a function in a shared library can be called, the 
process must open the shared library file, and map it into its address space 
using the mmap ( ) system call. 
The alternative to using shared libraries is to include the required system call 
functions in the program text segment itself. This is necessary on operating 
systems that do not support shared libraries, or where the implementation is 
problematic. On most operating systems, Oracle uses shared libraries for 
system call functions but not for the Oracle server code itself. However, Java 
class libraries are compiled and dynamically linked as shared libraries. 

Shared memory segments  
Shared memory allows associated processes to cooperatively read and write 
common data structures in memory. Each process that needs to address a 
shared memory segment must first attach that segment into its virtual 
address space. This is normally done using the shmat ( ) system call. Oracle 
uses shared memory segments for the SGA. 

The location of these segments in the virtual address space of a process is 
operating system specific. Some operating systems reserve certain virtual address 
ranges for particular types of segments. Others allocate the text, data, and BSS 
segments at the extremities of the virtual address space range, leaving a 
contiguous unused address space range in between. The stack and heap are 
allocated at the opposite ends of this range, and grow towards the center. Other 
segments, such as shared memory segments, must be located between the stack 
and heap at a location specified by the program itself. 



On such operating systems, it is sometimes necessary to control the address at 
which the SGA is attached, to prevent address range conflicts between the 
segments. In some cases, this can be done with the 
SHARED_MEMORY_ADDRESS and HI_SHARED_MEMORY_ADDRESS 
parameters, but on other systems it is necessary to use genksms and modify the 
attach address in the ksms.s file before relinking Oracle. Consult your Oracle 
installation guide for details. 

6.1.2.4 Intimate shared memory  

Each segment in the virtual address space of a process requires page table entries 
to support virtual-to-physical address translation. If two or more processes have 
mapped a single memory segment into the same location in their virtual address 
space, then they can theoretically share the same page table entries. This is called 
intimate shared memory. 

Intimate shared memory boosts Oracle performance in several ways. In 
particular, it greatly increases the TLB hit rate for page table entries and thus 
reduces main memory access and speeds up execution significantly. In instances 
with large shared memory requirements and large numbers of processes, it also 
results in a significant saving in page table memory—on the order of hundreds of 
megabytes. 

Under some operating systems intimate shared memory is used automatically for 
Oracle because there is no alternative. In some cases, it is not available because 
either the operating system or the hardware does not support it. However, in 
other cases, it is dependent on the _USE_ISM parameter or the size of the shared 
memory segments. 

If _USE_ISM is set to TRUE (the default) on an operating system that supports 
program-selectable intimate shared memory, then Oracle uses a flag to request 
intimate shared memory from the operating system for its shared memory 
segments. However, on some operating systems intimate shared memory is only 
available for segments for which the page table is itself an exact number of pages 
in size, and if so it is used automatically. For example, assuming a 32-bit address 
space and a 4KB memory page size, one page in the page table can address 4MB 
of memory. In this case shared memory segments must be an exact multiple of 
4MB in size if intimate shared memory is to be used. This is always possible to 
ensure by making small adjustments to the SHARED_POOL_SIZE, 



DB_BLOCK_BUFFERS, and LOG_BUFFER parameters, and then checking the 
sizes of the SGA segments using the ORADEBUG IPC command. 

A further optimization to address translation is possible on operating systems 
that allow some segments to use larger than normal memory page sizes. For 
example, you may be able to use the chatr command to request a large page size 
for the data or instruction segments for a particular executable. Using a large 
page size reduces the number of page table entries required for each segment, 
and thus improves the TLB hit rate for the segment, as well as reducing its load 
on the TLB. Oracle has some built-in dependencies on its memory page size, so 
check with Oracle Support as to whether it is safe to use a large page size for 
Oracle on your platform, before attempting to do so. 

6.1.2.5 SGA allocation 

When an Oracle instance is started, the sizes of the main SGA areas are first 
calculated based on the initialization parameters. These are the sizes shown by 
Oracle when reporting the SGA size. However, before shared memory segments 
are allocated, the size of each area is rounded up to a memory page boundary. 

The areas are then divided into sub-areas, if necessary, so that no sub-area is 
larger than the operating system limit on the size of a shared memory segment 
(SHMMAX for System V shared memory under Unix). In the case of the variable 
area, there is an operating system specific minimum sub-area size, and so the size 
of the variable area is rounded up further to a multiple of the minimum sub-area 
size. 

Oracle will allocate a single shared memory segment for the entire SGA if 
possible. However, if the SGA is larger than the operating system limit on the size 
of a single shared memory segment, then Oracle will use a best fit algorithm to 
group the sub-areas together into multiple shared memory segments no larger 
than the maximum size. 

Under Oracle7 the variable area of the SGA had to reside in contiguous memory. 
Therefore, if the operating system did not allow Oracle to specify the virtual 
memory address at which shared memory segments were to be attached, and 
thereby to attach them contiguously, then the variable segment had to be small 
enough to fit in a shared memory segment by itself. This constraint no longer 
applies in Oracle8, because of the introduction of sub-areas. 



It is commonly suggested that the operating system limit on the size of a single 
shared memory segment should be raised in order to allow Oracle to allocate the 
SGA in a single shared memory segment if possible. I follow this advice, but only 
for reasons of manageability. The performance difference is negligible at instance 
and process startup and is nil otherwise. 

6.1.2.6 Paging 

The operating system allocates physical memory pages for the SGA and Oracle 
processes from its page pool. The page pool comprises all physical system 
memory excluding that reserved for the operating system itself. A page is 
allocated from the page pool's free list whenever a virtual memory page that is 
not in physical memory is referenced. Pages are returned to the head of the free 
list when memory is deallocated. 

If the number of pages on the free list falls below a configurable threshold 
(LOTSFREE in Unix System V based systems) then the operating system begins 
to look for inactive pages to page out. Pages are regarded as inactive if they have 
not been referenced for a certain amount of time. Inactive pages are moved to the 
end of the free list, but if they have been modified then their contents must first 
be saved to disk. Paging stops as soon as the number of free pages rises back 
above the threshold. 

If the number of pages on the free list continues to fall, then the operating system 
steps up the pace of paging by regarding pages as inactive more quickly. 
However, under extreme memory pressure it is possible for the majority of 
physical memory to remain very active, so that the operating system searches in 
vain for sufficient inactive pages. In this case, some low-priority processes will be 
selected and deactivated entirely to ensure that inactive pages will be able to be 
found. Although many aspects of this operating system paging behavior are 
highly tunable, such tuning is seldom beneficial. 

Heavy paging activity can have a disastrous effect on system performance. 
However, high memory usage with intermittent light paging is of no concern. 
Most systems have plenty of inactive memory that can be paged out with very 
little performance impact. However, consistent light paging is of some concern 
because some moderately active pages in the SGA will be paged out repeatedly. 
Most operating systems provide a mechanism for Oracle to lock the SGA into 
physical memory to prevent it from paging. If paging is consistent then the 
LOCK_SGA parameter should be set to TRUE to prevent the SGA from paging. 



On some operating systems, Oracle needs a special system privilege to be able to 
use this facility. 

How do you determine whether your operating system is paging and, if it is, 
whether it's paging consistently or heavily? If you have plenty of free memory, 
then your system will not page at all. If free memory seems scarce, then you can 
monitor the number of pages paged out per second. This metric is available from 
the Performance Monitor under NT, or from the vmstat command under Unix. If 
this metric is constantly nonzero, then your system is paging consistently and the 
SGA should be locked into physical memory if possible. This applies particularly 
to operating systems with a paged file system buffer cache, such as NT and 
Solaris. 

Note, however, that the page out rate is not a good indication of the intensity of 
paging activity on operating systems with a paged buffer cache. This is because 
buffered file system writes are handled by the paging subsystem and thus 
exaggerate the page out rate. A better indication of the intensity of paging activity 
on such systems is the scan rate. The scan rate is the number of pages that the 
operating system has searched per second while looking for inactive pages. The 
scan rate is reported by vmstat on Unix systems under the sr column heading. 
Paging may be regarded as light if the scan rate is below 10 pages per second. 

If paging activity is moderate or heavy, then memory pressure must be reduced 
either by reducing the demand for memory, or by buying more. In particular, 
beware of oversizing the SGA and then locking it into memory. 

6.2 The Shared Pool 

The part of the SGA that is most commonly oversized is the shared pool. Many 
DBAs have little understanding of what the shared pool is used for, and how to 
determine whether it is correctly sized. So they just make it "BIG!" Sometimes 
that is not big enough, but more often it is wasteful and can also impair 
performance. 

6.2.1 Chunks 

To understand the shared pool better, you need to do little more than take a 
careful look at X$KSMSP . Each row in this table represents a chunk of shared 
pool memory. Example 6.2 shows some sample rows. 

Example 6.2. Sample Chunks in the Shared Pool  



SQL> select ksmchcom, ksmchcls, ksmchsiz from x$ksmsp; 
KSMCHCOM         KSMCHCLS   KSMCHSIZ 
---------------- -------- ---------- 
KGL handles      recr            496 
PL/SQL MPCODE    recr           1624 
dictionary cach  freeabl        4256 
free memory      free           1088 
library cache    freeabl         568 
library cache    recr            584 
multiblock rea   freeabl        2072 
permanent memor  perm        1677104 
row cache lru    recr             48 
session param v  freeabl        2936 
sql area         freeabl        2104 
sql area         recr           1208 
... 

When each shared pool chunk is allocated, the code passes a comment to the 
function that is called to perform the allocation. These comments are visible in 
the KSMCHCOM column of X$KSMSP, and describe the purpose for which the 
memory has been allocated. 

Each chunk is a little larger than the object it contains because there is a 16-byte 
header to identify the type, class, and size of the chunk and to contain linked-list 
pointers used for shared pool management. 

There are four main classes of memory chunks. These can be seen in the 
KSMCHCLS column of X$KSMSP. 

free  
Free chunks do not contain a valid object, and are available for allocation 
without restriction. 

recr  
Recreatable chunks contain objects that may be able to be temporarily 
removed from memory if necessary, and recreated again as required. For 
example, many of the chunks associated with shared SQL statements are 
recreatable. 

freeabl  
Freeable chunks contain objects that are normally needed for the duration of 
a session or call, and are freed thereafter. However, they can sometimes be 
freed earlier, either in whole or in part. Freeable chunks are not available for 
temporary removal from memory, because they are not recreatable. 

perm  
Permanent memory chunks contain persistent objects. The large permanent 
memory chunk may also contain internal free space, which can be released 
into the shared pool as required. 



The APT script called shared_pool_summary.sql shows a useful summary of the 
type, class, and size of all chunks in the shared pool. Example 6.3 is a sample of its 
output. The total size of the chunks for each type of memory is also visible in the 
shared pool rows of V$SGASTAT , except that some of the structures in the main 
permanent memory chunk are also broken out and shown separately. 

Example 6.3. Sample Output of shared_pool_summary.sql  

SQL> @shared_pool_summary 
KSMCHCOM             CHUNKS       RECR    FREEABL      TOTAL 
---------------- ---------- ---------- ---------- ---------- 
KGFF heap                 6       1296       2528       3824 
KGK contexts              2                  2400       2400 
KGK heap                  2       1136                  1136 
KGL handles             571     178616                178616 
KQLS heap               404      87952     524888     612840 
PL/SQL DIANA            274      42168     459504     501672 
PL/SQL MPCODE            57      14560      88384     102944 
PLS cca hp desc           1                   168        168 
PLS non-lib hp            1       2104                  2104 
character set m           5                 23504      23504 
dictionary cach         108                223872     223872 
fixed allocatio           9        360                   360 
free memory             185                           614088 
kzull                     1                    48         48 
library cache          1612     268312     356312     624624 
multiblock rea            1                  2072       2072 
permanent memor           1                          1677104 
reserved stoppe           2                               48 
row cache lru            24       1168                  1168 
session param v           8                 23488      23488 
sql area                983     231080    1303792    1534872 
table columns            19      18520                 18520 
table definiti            2        176                   176 

6.2.2 Free Lists 

Free chunks in the shared pool are organized into free lists or buckets, based on 
their size. The bucket numbers and free chunk sizes are as shown in Table 6.1. 

Table 6.1. Free List Buckets and Chunks 
Bucket Number Free Chunk Sizes 

0 Up to 79 bytes 

1 80 bytes to 143 bytes 

2 144 bytes to 271 bytes 

3 272 bytes to 527 bytes 

4 528 bytes to 1039 bytes 



5 1040 bytes to 2063 bytes 

6 2064 bytes to 4111 bytes 

7 4112 bytes to 8207 bytes 

8 8208 bytes to 16399 bytes 

9 16400 bytes to 32783 bytes 

10 32784 bytes and larger   

You may notice that the lower bound on the free chunk sizes for each free list is a 
binary power plus the 16-byte header. The APT script shared_pool_free_lists.sql 
uses this fact to be able to report the number of chunks and the amount of free 
space on each free list. Example 6.4 shows some interesting output. 

Example 6.4. Sample Output of shared_pool_free_lists.sql  

SQL> @shared_pool_free_lists 
    BUCKET FREE_SPACE FREE_CHUNKS AVERAGE_SIZE    BIGGEST 
---------- ---------- ----------- ------------ ---------- 
         0     166344        3872           42         72 
         1      32208         374           86         96 
         4        928           1          928        928 
         6      11784           4         2946       3328 

When a process needs a chunk of shared pool memory, it first scans the target 
free list for the chunk of best fit. If a chunk of exactly the right size is not found, 
then the scan continues to the end of that free list, looking for the next largest 
available chunk. If the next largest available chunk is 24 or more bytes larger 
than required, then that chunk is split and the remaining free space chunk is 
added to the appropriate free list. If, however, the free list does not contain any 
chunks of the required size, then the smallest chunk is taken from the next 
nonempty free list. If all of the remaining free lists are empty, then an LRU chain 
scan will be attempted, as explained in the next section. 

Free list scans, management, and chunk allocations are all performed under the 
protection of the shared pool latch. Clearly, if the shared pool contains a large 
number of very small free chunks, as illustrated in Example 6.4, then the shared 
pool latch will be held for a relatively long time when searching these particular 
free lists. It is, in fact, normal to have a large number of very small free chunks 
like this, and this is the major cause of contention for the shared pool latch. DBAs 
often respond to shared pool latch contention by increasing the size of the shared 
pool. Unfortunately, this merely delays the onset of shared pool latch contention, 
and in the end exacerbates it. 



6.2.3 LRU Lists 

If a process fails to find a free memory chunk of the required size on the shared 
pool free lists, then it will attempt to remove chunks containing recreatable 
objects from the shared pool in order to free a large enough chunk. 

There are two categories of recreatable chunks—those that are pinned, and those 
that are not pinned. The concept of chunks in the shared pool being pinned is 
often confused with the concept of marking the objects that they contain to be 
kept using the DBMS_SHARED_POOL.KEEP procedure. Keeping applies only to 
library cache objects, and is a DBA responsibility. However, all chunks are pinned 
automatically while the objects that they contain are in use. Recreatable chunks 
cannot be freed while they are pinned. However, unpinned recreatable chunks 
can normally be freed. 

Unpinned recreatable chunks are organized in the shared pool on two lists, each 
of which is maintained in LRU (least recently used) order. These are called the 
transient and recurrent LRU lists. Transient objects are unlikely to be required 
again, whereas recurrent objects may be. The composition of these lists changes 
rapidly. Chunks are added to the MRU (most recently used) ends whenever they 
are unpinned, and they are removed from the lists whenever they are pinned 
again. 

Chunks are also removed from the LRU ends of the lists when a process needs to 
free shared pool memory for a new allocation. Chunks are flushed in sets of eight 
chunks alternately—first from the transient list, and then from the recurrent list. 
Chunks are flushed in LRU order regardless of their size. However, some chunks 
cannot be flushed. For example, chunks containing library cache objects that 
have been marked for keeping with DBMS_SHARED_POOL.KEEP cannot be 
flushed. These chunks are instead removed from the LRU lists by being pinned. 

The length of the transient and recurrent LRU lists of unpinned recreatable 
chunks can be seen in X$KGHLU , together with the number of chunks that have 
been flushed, and the number of chunks that have been added to or removed 
from the LRU lists due to pinning and unpinning. X$KGHLU also shows the 
number of times that the LRU lists were flushed completely but unsuccessfully, 
and the size of the most recent such request failure. All these statistics can be 
checked with the APT script shared_pool_lru_stats.sql . See Example 6.5 for 
sample output. 



Example 6.5. Sample Output of shared_pool_lru_stats.sql  

SQL> @shared_pool_lru_stats 
 RECURRENT  TRANSIENT    FLUSHED   PINS AND   ORA-4031  LAST ERROR 
    CHUNKS     CHUNKS     CHUNKS   RELEASES     ERRORS        SIZE 
---------- ---------- ---------- ---------- ---------- ----------- 
       121        164     148447    4126701          0           0 

Beware how you interpret these figures, because they are only part of the story. 
The lengths of the LRU lists and the rate of flushing are both heavily dependent 
of the memory requirements of the application, and variations in its workload. 
Neither long nor short LRU lists are necessarily a problem, and the flushing of 
dead chunks is an important part of healthy memory management. However, 
based on my experience, if the transient list is more than three times longer than 
the recurrent list, then the shared pool is probably oversized, and if the ratio of 
chunk flushes to other LRU operations is more than 1 in 20, then the shared pool 
is probably too small. 

6.2.4 Spare Free Memory 

If a large memory request cannot be satisfied either directly from the free lists or 
from the LRU lists by flushing, then Oracle has one more strategy to try. 

Surprisingly, the last resort is not to coalesce contiguous free chunks. When 
chunks are freed, they may be coalesced with the following chunk, if that chunk is 
also free. However, Oracle only fully coalesces shared pool free space when the 
ALTER SYSTEM FLUSH SHARED_POOL command is executed explicitly. So 
memory allocation requests can and do fail even when the shared pool contains 
enough contiguous free memory. If that free memory is fragmented into multiple 
small chunks, then it cannot be used to satisfy large memory allocation requests. 

Rather, Oracle's last resort for satisfying large memory allocation requests is to 
release more memory into the shared pool. Oracle actually keeps aside about half 
the shared pool memory at instance startup. This memory is then released 
gradually under memory pressure. Oracle does this to limit fragmentation. 

Oracle's spare free memory is concealed in the main permanent memory chunk 
in the shared pool, together with the fixed tables and other genuine permanent 
memory structures. This memory is not on the shared pool free lists, and is 
therefore not available for immediate allocation. It is, however, included in the 
free memory statistic shown in V$SGASTAT . 



Chunks of spare free memory are released into the shared pool when necessary. 
An ORA-4031 error, "unable to allocate x bytes of shared memory," will not be 
raised for the shared pool until all of this spare free memory has been exhausted. 

If an instance still has a fair amount of spare free memory after it has been 
working at peak load for some time, then that is an indication that the shared 
pool is considerably larger than necessary. The amount of spare free memory 
remaining can be checked with the APT script shared_pool_spare_free.sql . 

6.2.5 The Reserved List  

Since the introduction of paged PL/SQL code in release 7.3, the vast majority of 
shared pool memory chunks are less than 5000 bytes in size. So much so, that in 
a mature instance it would be almost futile to search the shared pool free lists and 
LRU lists for chunks of that size or greater. So, Oracle does not. 

Instead, Oracle reserves part of the shared pool for large chunks. The size of this 
reserved area defaults to 5% of the shared pool, and may be adjusted using the 
SHARED_POOL_RESERVED_SIZE parameter. As the parameter name 
indicates, this memory is taken out of the shared pool. The informal term, the 
reserved pool, should be thought of as a contraction for a longer term, the 
reserved part of the shared pool. There is just one shared pool, part of which is 
reserved for large chunks. 

Chunks larger than 5000 bytes are placed into the reserved part of the shared 
pool. This threshold can be set with the 
_SHARED_POOL_RESERVED_MIN_ALLOC parameter but should not be 
changed. Small chunks never go into the reserved pool, and large chunks never 
go into the rest of the shared pool, except during instance startup. 

Free memory in the reserved part of the shared pool is not included on the 
general shared pool free lists. Instead, a separate reserved free list is maintained. 
The reserved pool does not, however, have its own LRU lists for unpinned 
recreatable chunks. Nevertheless, large chunks are not flushed when freeing 
memory for the general free lists, and small chunks are not flushed when freeing 
memory for the reserved free list. 

Reserved pool statistics are visible in the V$SHARED_POOL_RESERVED view. 
In particular, the REQUEST_MISSES column shows the number of times that 
requests for a large chunk of memory were not able to be satisfied immediately 



from the reserved free list. This metric should be zero. That is, there should be 
enough free memory in the reserved part of the shared pool to satisfy short-term 
demands for freeable memory, without needing to flush unpinned recreatable 
chunks that would otherwise be cached for the long term. 

You can configure your monitoring software to watch the USED_SPACE column 
of V$SHARED_POOL_RESERVED in an attempt to determine whether the size 
of the reserved part of the shared pool is appropriate. Alternatively, you can use 
the APT script reserved_pool_hwm.sql to obtain a high-water mark for reserved 
shared pool usage since instance startup. This script relies upon the fact that, in 
the absence of reserved list request misses, the first chunk of the reserved list has 
never been used, and all other chunks have been. Example 6.6 shows some sample 
output. In many cases you will find that the reserved pool is scarcely used, if at 
all, and that the default reservation of 5% of the shared pool for large chunks is 
unduly wasteful. I recommend that you run this script routinely prior to 
shutdown, and also check the maximum utilization of other resources as shown 
in V$RESOURCE_LIMIT. 

Example 6.6. Sample Output of reserved_pool_hwm.sql  

SQL> @reserved_pool_hwm 
RESERVED_SIZE HIGH_WATER_MARK   USAGE 
------------- --------------- ------- 
       256000           15080      6% 

6.2.6 Marking Objects for Keeping 

In a well-sized shared pool, dead chunks will be flushed out. However, any 
flushing introduces a risk that valuable objects will be flushed out as well. This 
applies particularly to recreatable objects that are used only intermittently, but 
are expensive to recreate, because they are large or require complex processing. 
You may also not want cached sequences to be flushed out, because this results in 
the remaining cached sequence numbers never being used. 

Of course, the way to mitigate this risk is to mark known valuable objects for 
keeping in the shared pool using DBMS_SHARED_POOL.KEEP . This procedure 
loads the object and all subordinate objects into the library cache immediately, 
and marks them all for keeping. So far as possible, this should be done directly 
after instance startup to minimize shared pool fragmentation. 

It is sometimes mistakenly claimed that large objects such as packages do not 
have to be marked for keeping, because they will be placed in the reserved part of 



the shared pool and thus be much less likely to be flushed out. However, most 
large objects are actually loaded into the shared pool in multiple small chunks, 
and therefore get no special protection by virtue of their size. 

It is also unwise to rely on a high frequency of use to prevent objects from being 
aged out of the shared pool. If your shared pool is well sized, the LRU lists will be 
fairly short during periods of peak load, and unpinned objects will age out very 
quickly, unless they are marked for keeping. 

If you don't already have your own scripts to do the job, take a look at APT; it 
includes a set of scripts that you can use for keeping. The keep_sys_packages.sql 
script keeps some key packages in the SYS schema. You will need to customize 
this script to include any other SYS packages that may be required by your 
application. The keep_cached_sequences.sql script can be used to mark all 
cached sequences in the database for keeping. And the keep_schema.sql script 
can be used to mark all candidate objects in your key application schemata for 
keeping. 

Keeping should also be used to protect repeatedly executed cursors, once again, 
regardless of their size. The APT script keep_cursors.sql marks all cursors that 
have been executed five or more times for keeping. 

For completeness, I should also mention that the X$KSMLRU fixed table can also 
be used to help you identify additional library cache objects that should be kept. 
X$KSMLRU records statistics about up to ten shared pool chunk allocations that 
have required flushes. Not all chunk allocations are captured, however. In fact, 
only the largest candidate allocation is guaranteed to be captured. Another, most 
unusual aspect of this fixed table is that it is cleared entirely whenever it is 
queried, so it should not be queried casually. 

6.2.7 Flushing the Shared Pool 

The only way to coalesce contiguous free chunks in the shared pool is to explicitly 
flush the shared pool using the ALTER SYSTEM FLUSH SHARED_POOL 
command. The question of whether you should, or should not do so, tends to 
divide DBAs. 

In practice, flushing the shared pool can relieve shared pool latch contention and 
greatly reduce the risk of ORA-4031 errors, with much less immediate impact on 
performance than is commonly believed, particularly if key objects have been 



marked for keeping. On the other hand, if all key objects have been marked for 
keeping, and if your shared pool is not oversized, then you should scarcely need 
to flush the shared pool, unless your instance has very demanding, long-term 
uptime requirements. 

My personal preference is to flush the shared pool nightly (after backups) and at 
other times if shared pool free space is becoming too scarce or too fragmented. 
However, you may need to ensure that flushing the shared pool does not leave 
unwanted gaps in cached sequences. This can be done either by marking the 
sequences for keeping, or, in single-instance Oracle, by temporarily unloading the 
sequences using the ALTER SEQUENCE NOCACHE command. There are APT 
scripts to do both. The first has already been mentioned, and the second is called 
nice_shared_pool_flush.sql . The two methods work rather well together. 
Unloading the sequences does not affect their kept status, but protects them even 
if they were not kept. Also, using nice_shared_pool_flush.sql before instance 
shutdown prevents sequence number loss even if a SHUTDOWN ABORT is 
necessary. 

6.2.8 Heaps and Subheaps 

You may have noticed that the names of the X$ tables for the shared pool begin 
with either KSM or KGH. These are the names for the Oracle memory manager 
and heap manager modules, respectively. These two modules work together in 
very close cooperation. The memory manager is responsible for interfacing with 
the operating system to obtain memory for use by Oracle, and for static 
allocations of memory. Dynamic memory management is performed by the heap 
manager. This is why the shared pool is also called the SGA heap. 

A heap consists of a heap descriptor and one or more memory extents. A heap 
can also contain subheaps. In this case, the heap descriptor and extents of the 
subheap are seen as chunks in the parent heap. Heap descriptors vary in size 
depending on the type of heap and contain list headers for the heap's free lists 
and LRU lists. An extent has a small header for pointers to the previous and next 
extents, and the rest of its memory is available to the heap for dynamic allocation. 

Except for the reserved list feature, subheaps within the shared pool have exactly 
the same structure as the shared pool itself. Memory is allocated in chunks. Free 
chunks are organized on free lists according to size. And unpinned recreatable 
chunks are maintained on two LRU lists for recurrent and transient chunks, 
respectively. Subheaps even have a main permanent memory chunk that may 



contain spare free memory. Subheaps may also contain further subheaps, up to a 
nesting depth of four. 

The concept of subheaps is important to understand because most of the objects 
that are cached in the shared pool actually reside in subheaps, rather than in the 
top-level heap itself. Finding space for a new chunk within a subheap is much like 
finding space for a new chunk within the shared pool itself, except that subheaps 
can grow by allocating a new extent, whereas the shared pool has a fixed number 
of extents. The allocation of new extents for subheaps is governed by a minimum 
extent size, so it is possible to search for a small chunk in a subheap and fail, 
because none of the parent heaps could allocate a chunk of the required 
minimum extent sizes. 

6.2.9 The Large Pool 

If the LARGE_POOL_SIZE parameter is set, then the large pool is configured as 
a separate heap within the variable area of the SGA. The large pool is not part of 
the shared pool, and is protected by the large memory latch . The large pool only 
contains free and freeable chunks. It does not contain any recreatable chunks, 
and so the heap manager's LRU mechanism is not used. 

To prevent fragmentation of the large pool, all large pool chunks are rounded up 
to _LARGE_POOL_MIN_ALLOC, which defaults to 16K. This parameter should 
not be tuned. It does not affect whether or not certain chunks will be allocated in 
the large pool. Rather, if a large pool is configured, chunks are allocated explicitly 
in the large pool based on their usage, and rounded up to the required size if 
necessary. 

It is recommended that you configure a large pool if you use any of the following 
Oracle features: 

?? Multi-Threaded Server (MTS ) or Oracle*XA 
?? Recovery Manager (RMAN ) 
?? Parallel Query Option (PQO) 

6.3 Process Memory 

In addition to the SGA, or System Global Area, each Oracle process uses three 
similar global areas as well: 

?? The Process Global Area (PGA) 



?? The User Global Area (UGA) 
?? The Call Global Area (CGA) 

Many DBAs are unclear about the distinction between the PGA and the UGA. The 
distinction is as simple as that between a process and a session. Although there is 
commonly a one-to-one relationship between processes and sessions, it can be 
more complex than that. The most obvious case is a Multi-Threaded Server 
configuration, in which there can be many more sessions than processes. In such 
configurations there is one PGA for each process, and one UGA for each session. 
The PGA contains information that is independent of the session that the process 
may be serving at any one time, whereas the UGA contains information that is 
specific to a particular session. 

6.3.1 The PGA 

The Process Global Area, often known as the Program Global Area, resides in 
process private memory, rather than in shared memory. It is a global area in the 
sense that it contains global variables and data structures that must be accessible 
to all modules of the Oracle server code. However, it is not shared between 
processes. Each Oracle server process has its own PGA, which contains only 
process-specific information. Structures in the PGA do not need to be protected 
by latches because no other process can access them. 

The PGA contains information about the operating system resources that the 
process is using, and some information about the state of the process. However, 
information about shared Oracle resources that the process is using resides in the 
SGA. This is necessary so those resources can be cleaned up and freed in the 
event of the unexpected death of the process. 

The PGA consists of two component areas, the fixed PGA and the variable PGA, 
or PGA heap. The fixed PGA serves a similar purpose to the fixed SGA. It is fixed 
in size, and contains several hundred atomic variables, small data structures, and 
pointers into the variable PGA. 

The variable PGA is a heap. Its chunks are visible to the process in X$KSMPP , 
which has the same structure as X$KSMSP. The PGA heap contains permanent 
memory for a number of fixed tables, which are dependent on certain parameter 
settings. These include DB_FILES, LOG_FILES (prior to release 8.1), and 
CONTROL_FILES. Beyond that, the PGA heap is almost entirely dedicated to its 
subheaps, mainly the UGA (if applicable) and the CGA. 



6.3.2 The UGA 

The User Global Area contains information that is specific to a particular session, 
including: 

?? The persistent and runtime areas for open cursors 
?? State information for packages, in particular package variables 
?? Java session state 
?? The roles that are enabled 
?? Any trace events that are enabled 
?? The NLS parameters that are in effect 
?? Any database links that are open 
?? The session's mandatory access control (MAC) label for Trusted Oracle 

Like the PGA, the UGA also consists of two component areas, the fixed UGA and 
the variable UGA, or UGA heap. The fixed UGA contains about 70 atomic 
variables, small data structures, and pointers into the UGA heap. 

The chunks in the UGA heap are visible to its session in X$KSMUP , which has 
the same structure as X$KSMSP. The UGA heap contains permanent memory for 
a number of fixed tables, which are dependent on certain parameter settings. 
These include OPEN_CURSORS, OPEN_LINKS, and MAX_ENABLED_ROLES. 
Beyond that, the UGA heap is largely dedicated to private SQL and PL/SQL areas. 

The location of the UGA in memory depends on the session configuration. In 
dedicated server connections where there is a permanent one-to-one relationship 
between a session and a process, the UGA is located within the PGA. The fixed 
UGA is a chunk within the PGA, and the UGA heap is a subheap of the PGA. In 
Multi-Threaded Server and XA connections, the fixed UGA is a chunk within the 
shared pool, and the UGA heap is a subheap of the large pool or, failing that, the 
shared pool. 

In configurations in which the UGA is located in the SGA, it may be prudent to 
constrain the amount of SGA memory that each user's UGA can consume. This 
can be done using the PRIVATE_SGA profile resource limit . 

6.3.3 The CGA 

Unlike the other global areas, the Call Global Area is transient. It only exists for 
the duration of a call. A CGA is required for most low-level calls to the instance, 
including calls to: 



?? Parse an SQL statement 
?? Execute an SQL statement 
?? Fetch the outputs of a SELECT statement 

A separate CGA is required for recursive calls. Recursive calls to query data 
dictionary information may be required during statement parsing, to check the 
semantics of a statement, and during statement optimization to evaluate 
alternative execution plans. Recursive calls are also needed during the execution 
of PL/SQL blocks to process the component SQL statements, and during DML 
statement execution to process trigger execution. 

The CGA is a subheap of the PGA, regardless of whether the UGA is located in the 
PGA or SGA. An important corollary of this fact is that sessions are bound to a 
process for the duration of any call. This is particularly important to understand 
when developing applications for Oracle's Multi-Threaded Server. If some calls 
are protracted, the number of processes configured must be increased to 
compensate for that. 

Of course, calls do not work exclusively with data structures in their CGA. In fact, 
the most important data structures involved in calls are typically in the UGA. For 
example, private SQL and PL/SQL areas and sort areas must be in the UGA 
because they must persist between calls. The CGA only contains data structures 
that can be freed at the end of the call. For example, the CGA contains direct I/O 
buffers, information about recursive calls, stack space for expression evaluation, 
and other temporary data structures. 

Java call memory is also allocated in the CGA. This memory is managed more 
intensively than any other Oracle memory region. It is divided into three spaces, 
the stack space, the new space, and the old space. Chunks within the new space 
and old space that are no longer referenced are garbage collected during call 
execution with varying frequency based on their length of tenure and size. New 
space chunks are copied to the old space once they have survived a certain 
number of new space garbage collection iterations. This is the only garbage 
collection in Oracle's memory management. All other Oracle memory 
management relies on the explicit freeing of dead chunks. 

6.3.4 Process Memory Allocation 

Unlike the SGA, which is fixed in size at instance startup, the PGA can and does 
grow. It grows by using the malloc ( ) or sbrk ( ) system calls to extend the heap 
data segment for the process. The new operating system virtual memory is then 



added to the PGA heap as a new extent. These extents are normally only a few 
kilobytes in size, and Oracle may well allocate thousands of them if necessary. 

There are, however, operating system limits on the growth of the heap data 
segment of a process. In most cases the default limit is set by an operating system 
kernel parameter (commonly MAXDSIZ). In some cases that default can be 
changed on a per-process basis. There is also a system-wide limit on the total 
virtual memory size of all processes. That limit is related to the amount of swap 
space[1] available. If either of these limits is exceeded, then the Oracle process 
concerned will return an ORA-4030 error. 

[1] Please read paging file space for swap space in this discussion, if that is the correct term on 
your operating system. 

This error is only rarely due to the per-process resource limit, and normally 
indicates a shortage of swap space. To diagnose the problem, you can use the 
operating system facility to report swap space usage. Alternatively, on some 
operating systems Oracle includes a small utility called maxmem which can be 
used to check the maximum heap data segment size that a process can allocate, 
and which limit is being hit first. 

If the problem is a shortage of swap space, and if paging activity is moderate or 
heavy, then you should attempt to reduce the system-wide virtual memory usage 
either by reducing the process count or by reducing the per-process memory 
usage. Otherwise, if paging activity is light or nil, you should increase the swap 
space or, preferably, if your operating system supports it, you should enable the 
use of virtual or pseudo swap space. 

This operating system facility allows system-wide total virtual memory to exceed 
swap space by approximately the amount of physical memory that is not locked. 
Some system administrators are unreasonably opposed to the use of this feature 
in the mistaken belief that it causes paging to memory. It does not. It does, 
however, significantly reduce the amount of swap space required on large 
memory systems. Incidentally, the truism that swap space should exceed physical 
memory by a factor of at least two is not true. It depends on the operating system, 
memory size, and memory usage, but many systems need virtually no swap space 
at all. 

6.3.5 Process Memory Deallocation 



Oracle heaps grow much more readily than they shrink, but contrary to popular 
belief they can and do shrink. The session statistics session uga memory and 
session pga memory visible in V$MYSTAT and V$SESSTAT show the current 
size of the UGA and PGA heaps respectively, including internal free space. The 
corresponding statistics session uga memory max and session pga memory max 
show the peak size of the respective heaps during the life of the session. 

The UGA and PGA heaps only shrink after certain operations, such as the merge 
phase of a disk sort, or when the user explicitly attempts to free memory using 
the DBMS_SESSION.FREE_UNUSED_USER_MEMORY procedure. However, 
only entirely free heap extents are released to the parent heap or to the process 
data heap segment. So some internal free space remains, even after memory has 
been explicitly freed. 

Although it is technically possible to do so, on most operating systems Oracle 
does not attempt to reduce the size of the process data heap segment and release 
that virtual memory back to the operating system. So from an operating system 
point of view, the virtual memory size of an Oracle process remains at its high-
water mark. Oracle relies on the operating system to page out any unused virtual 
pages if necessary. For this reason, operating system statistics about the virtual 
memory sizes of Oracle processes should be regarded as misleading. The internal 
Oracle statistics should be used instead, and even these tend to overstate the true 
memory requirements. 

The DBMS_SESSION.FREE_UNUSED_USER_MEMORY procedure need only 
be used in Multi-Threaded Server applications. It should be used sparingly and 
only to release the memory used by large package array variables back to the 
large pool or shared pool. However, that memory must first be freed within the 
UGA heap, either by assigning an empty array to the array variable, or by calling 
the DBMS_SESSION.RESET_PACKAGE procedure. 

Please disregard the comments in the DBMS_SESSION package specification to 
the effect that memory, once used for a purpose, can only ever be reused for the 
same purpose, and that it is necessary to free unused user memory after a large 
sort. What is intended is that memory, once allocated to a subheap, is normally 
only available within that subheap, until the entire subheap has been freed. 
However, many subheaps, such as the CGA, are freed so quickly that the 
statement is, at best, misleading. Moreover, it is not normally necessary to free 
unused user memory after a sort, not even in Multi-Threaded Server applications, 
because the majority of sort memory is, in fact, freed automatically. 



Taking Heapdumps 

Oracle Support may sometimes ask you to take heapdumps to help to diagnose a 
potential memory problem. Heapdumps may be taken in the current process 
using the ALTER SESSION SET EVENTS command, or in another session using 
the ORADEBUG EVENT command. Heapdumps are written to a trace file in the 
process's dump destination directory, and contain largely the same information 
as the corresponding X$ tables. 

The event syntax for heapdumps of the primary heaps is IMMEDIATE TRACE 
NAME HEAPDUMP LEVEL n. The level number is a bit pattern representing 
which heaps should be dumped: 1 for the PGA, 2 for the SGA, 4 for the UGA, 8 
for the CGA, and 32 for the large pool. 

The event syntax for heapdumps of arbitrary subheaps is IMMEDIATE TRACE 
NAME HEAPDUMP_ADDR LEVEL n, where n is the decimal equivalent of the 
hexadecimal address of the heap descriptor. Subheap heap descriptor addresses 
are visible in the KSMCHPAR column of the KSM X$ tables, and in heapdumps 
of their parent heaps alongside the ds= string. 

6.4 Reference 

This section contains a quick reference to the parameters, events, statistics, and 
APT scripts mentioned in Chapter 6. 

6.4.1 Parameters 

Parameter Description 

_LARGE_POOL_
MIN_ALLOC 

Large pool chunk allocations are rounded up to this size. This parameter 
defaults to 16K, and should not be changed. 

_USE_ISM 
Intimate shared memory is used by default where possible. However, 
the implementation is problematic on some operating systems, and so it 
is sometimes necessary to set this parameter to FALSE. 

DB_BLOCK_BUF
FERSDB_BLOCK
_SIZE 

The product of these two parameters dictates the size of the SGA area 
for the database block buffers. 

DB_FILESLOG_F
ILES (prior to 
8.1)CONTROL_FI
LES 

These parameters affect the size of the fixed PGA. They should not be 
any larger than reasonably necessary. 



LARGE_POOL_SI
ZE 

Certain demands for large chunks of memory are satisfied from the 
large pool, if a large pool has been configured. This parameter sets the 
size of the large pool in bytes. 

LOCK_SGA 
If operating system paging is consistent, this parameter should be set to 
TRUE, to prevent the SGA from paging. 

LOG_BUFFER 
Although the log buffer has a separate area in the SGA, it should 
nevertheless be trivial in size. 

OPEN_CURSORS
OPEN_LINKSMA
X_ENABLED_RO
LES 

These parameters affect the size of the fixed UGA. They should not be 
any larger than necessary. 

PRE_PAGE_SGA 

If set to TRUE, this causes all Oracle server processes to page in the 
entire SGA on process startup if necessary. This may yield a marginal 
improvement in performance during the period shortly after instance 
startup, but only at the considerable cost of slowing down all process 
startups. 

SESSIONS 
This is the parameter that has the greatest effect on the total size of the 
fixed tables in the permanent memory chunk of the shared pool. 

SHARED_MEMOR
Y_ADDRESSHI_
SHARED_MEMOR
Y_ADDRESS 

On some platforms, these parameters may be used to specify the virtual 
memory address at which the SGA should be attached. 

SHARED_POOL_
RESERVED_SIZE 

Shared pool chunk allocations larger than 5000 bytes are satisfied from 
the shared pool reserved list. This parameter sets the size of the 
reserved list in bytes. The threshold size for reserved list allocation, 
which is set by the _SHARED_POOL_RESERVED_MIN_ALLOC parameter, 
should not be changed. 

SHARED_POOL_
SIZE 

This parameter sets the approximate amount of memory in the shared 
pool available for dynamic allocation, expressed in bytes. 

SORT_AREA_SIZ
E 

This parameter can have a big impact on memory usage and 
performance. 

6.4.2 Events 

Event Description 

4030 

This is the out of process memory error event. To take PGA, UGA, and CGA 
heapdumps at the exact time of this error, set the following event in your 
parameter file: 

event = "4030 trace name heapdump level 13" 
4031 This is the out of shared memory error event. If you are struggling with repeated 



ORA-4031 errors, you may wish to take an SGA heapdump at the exact time of the 
error by setting the following event in your parameter file: 
event = "4031 trace name heapdump level 2" 
In Multi-Threaded Server environments, you may wish to use level 6 instead, to 
include a UGA heapdump as well. 

10235 

This event causes the Oracle server code to continually check the integrity of the 
memory and heap management data structures. This is sometimes necessary to 
diagnose suspected memory corruption issues. Unfortunately, this event can only 
be set instance-wide. It cannot be set on a single process. 
Only set this event under direction from Oracle Support, and then only as a last 
resort. Even the minimal checking at level 1 has a severe impact on performance. 

6.4.3 Statistics 

Statistic Source Description 

free 
memory 

V$SGASTAT 
Free memory in the SGA heap. This includes chunks on the free 
lists and spare free memory in the permanent memory chunk, 
but does not include unpinned recreatable chunks. 

session 
uga 
memory 

V$MYSTAT 
and 
V$SESSTAT 

The current size of the UGA heap for the session, excluding the 
fixed UGA. 

session 
uga 
memory 
max 

V$MYSTAT 
and 
V$SESSTAT 

The UGA heap size high-water mark. 

session 
pga 
memory 

V$MYSTAT 
and 
V$SESSTAT 

The current size of the PGA heap for the session, excluding the 
fixed PGA. 

session 
pga 
memory 
max 

V$MYSTAT 
and 
V$SESSTAT 

The PGA heap size high-water mark. 

6.4.4 APT Scripts 

Script Description 

fixed_table_columns.sql Gets a description of all the X$ tables. 

fixed_view_text.sql Extracts the SQL statement text for all the V$ views. 

keep_cached_sequences.sql Marks all cached sequences for keeping in the shared pool. 

keep_cursors.sql 
Marks cursors that have been executed five or more times for 
keeping in the shared pool. 



keep_schema.sql 
Marks all candidate objects in an application schema for 
keeping in the shared pool. 

keep_sys_packages.sql Marks some key packages in the SYS schema for keeping. 

nice_shared_pool_flush.sql 
Flushes the shared pool, but unloads all cached sequences 
first, to prevent gaps lest they were not kept. 

reserved_pool_hwm.sql 
Shows the high-water mark usage of the reserved pool. This 
can be used to check whether the reserved pool is too large. 

shared_pool_free_lists.sql Shows the composition of the shared pool free lists. 

shared_pool_lru_stats.sql Shows key statistics for the shared pool LRU lists. 

shared_pool_spare_free.sql Shows how spare free memory remains in the shared pool. 

shared_pool_summary.sql 
Shows a summary of the shared pool by chunk usage, class, 
and size. 

 



Colophon 

Our look is the result of reader comments, our own experimentation, and 
feedback from distribution channels. Distinctive covers complement our 
distinctive approach to technical topics, breathing personality and life into 
potentially dry subjects. 

The animal on the cover of Oracle 8i Internal Services is a bumblebee. Only three 
types of bees are social insects: bumblebees, honeybees, and tropical stingless 
bees. There are approximately 200 species of bumblebee, most of which reside in 
temperate zones, where their thick layer of hair protects them from cool 
temperatures. In early spring the queen bee emerges from underground 
hibernation and searches for a nesting site, often in a deserted rodent nest. She 
then makes a honey pot of secreted wax, and a cell into which she places pollen 
and lays the first of her eggs. When these eggs hatch, the larvae grow into small 
worker bees. Later broods of eggs grow into bigger bees, as the queen now has 
help gathering food for the larvae. Toward the end of the breeding season, males 
and young queens are produced. By late autumn, the entire colony has died, with 
the exception of the young queens, who scatter to find places to hibernate until 
the following spring, when they will begin their own colonies. 

The disproportionate appearance of bumblebees is deceptive. Despite their large, 
apparently clumsy bodies and delicate wings, they move swiftly and efficiently, 
pollinating flowers as they go. Bumblebees play an important role in pollinating 
flowers such as the red clover, in which the nectar is too deep down for most bees 
to reach. This is because the bumblebee's tongue is, on average, 2.5 mm longer 
than other that of other bees. In New Zealand, English settlers discovered that 
the red clover that they transported and planted did not thrive until they 
imported bumblebees to aid with pollination. 
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