Creating & Programming Portable Network Graphics

PNG

The Definitive Guide

O’REILLY" Greg Roelofs

PREVIOUS CONTENTS NEXT

PREVIOUS

CONTENTS

NEXT

PNG

The Definitive Guide

Greg Roelofs

Greg Roelofs
San Jose
(Publisher)

- PREVIOUS CONTENTS NEXT o

PNG: The Definitive Guide
by Greg Roelofs

Copyright © 1999 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Relilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
Additions specific to the ""Second Edition" (HTML Version):
Copyright © 2002-2003 Greg Roelofs. All rights reserved.
Published by Greg Roelofs, roel ofs @ pobox.com.

Cover design, trade dress, Nutshell Handbook, the Nutshell Handbook logo, and the O'Rellly logo
are registered trademarks of O'Reilly & Associates, Inc. The association between the image of a
kangaroo rat and the topic of PNG is atrademark of O'Reilly & Associates, Inc. Used with
permission.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly & Associates,
Inc. was aware of atrademark claim, the designations have been printed in caps or initial caps.
While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the licenseisincluded in the section entitled "GNU Free Documentation License".

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

PREVIOUS CONTENTS NEXT

PREVIOUS CONTENTS NEXT

To Dad, who missed so much. You've always been my role model.

- PREVIOUS CONTENTS NEXT o

Preface

Contents:

About This Book

Part |, Using PNG

Part |1, The Design of PNG

Part 111, Programming with PNG
Conventions Used in This Book
How to Contact Us
About the " Second Edition" (HTML Version)
History

Version 1

Version 2
Acknowledgments

Once upon atime, the only images were those painted on the walls of caves. Then came papyrus,
stucco walls (and a chapel ceiling), the printing press, photography, television, and computers.
Whether it's progress or not is a question for philosophers, but there is no doubt that creating,
copying, modifying, and transmitting images has never been easier or faster than it is today.

PNG, the Portable Network Graphicsimage format, is one little piece of the puzzle. In PNG: The
Definitive Guide, | attempt to make PNG allittle less puzzling by explaining the motivations behind
PNG's creation, the ways in which it can be used, and the tools that can manipulate it. The intended
audience is anyone who deals with PNG images, whether as an artist, a programmer, or a surfer on
the World Wide Web.

About This Book

This book coversalot of ground, as one would expect from anything with the word " Definitive" in
itstitle. It isdivided into three main parts. As much as possible, each part iswritten so that it can be
read independently of the others. Even individual chapters are written this way, within reason; to
avoid too much repetition, I'll periodically refer to other chapters.

Part I, Using PNG

Part | isintended for designers, web site owners, casual image creators, and web surfers--anyone
who wants a quick start on using PNG images in avariety of applications. Such users may need

http://www.libpng.org/pub/png/book/part1.html

only abrief overview of PNG features, but they want to know what applications support the format
and to what extent, how to invoke PNG-specific features within the applications, and how to work
around certain bugs or incompatibilities in the applications. Of course, a book like this cannot
possibly stay current, particularly not when it comes to software, but every effort has been made to
ensure that the information is accurate as of the day thisiswritten (mid-April 1999).

Chapter 1, "An Introduction to PNG", covers some basic concepts of computer images and file

formats, explains how PNG fitsin and where using it is most appropriate (and most inappropriate!),
and ends with an in-depth look at an image-editing application with particularly good PNG support.

Chapter 2, "Applications. WWW Browsers and Servers', looks at PNG support in web browsers

and servers and shows how to usethe HTML OBJECT tag and server-side content negotiation to
serve PNG images to browsers capable of viewing them.

Chapter 3, "Applications. Image Viewers', lists more than 75 applications capable of viewing PNG

Images, with support for a dozen operating systems. Viewers that are additionally capable of
converting to or from other image formats are so noted.

Chapter 4, "Applications. Image Editors"’, looks at PNG support in five of the most popular image

editors, showing how to invoke such features as gamma correction and al pha transparency, and
indicating some of the problems unwary users may encounter.

Chapter 5, "Applications. Image Converters', covers five conversion applications in detail,
including one specifically designed to optimize PNG images and another designed to test PNG
images for conformance to the specification. In addition, the chapter lists another 16 dedicated
Image converters beyond those in Chapter 3, "Applications. Image Viewers'.

Chapter 6, "Applications. VRML Browsers and Other 3D Apps’, looks at PNG as arequired texture

format of the VRML 97 specification and investigates the level of conformance of seven browsers.
It also lists a dozen PNG-supporting applications designed for the editing or rendering of 3D scenes.

Part Il, The Design of PNG

Part Il looks at the PNG format from an historical and technical perspective, detailing its structure
and the rationale behind its design. Part |1 isintended for more technical readers who want to
understand PNG to its core.

Chapter 7, "History of the Portable Network Graphics Format”, looks at the events leading up to the

creation of PNG, some of the design decisions that went into the format, how it has fared in the
subsequent years, and what to expect for the future.

Chapter 8, "PNG Basics', coversthe basic * chunk” structure of PNG files and compares PNG's
level of support for various fundamental image types against that of other image formats.

http://www.libpng.org/pub/png/book/part2.html

Chapter 9, "Compression and Filtering", delves into the heart of PNG's compression engine,

provides the results of some real-world compression tests, and offers a number of tips for improving
compression to both users and programmers of the format.

Chapter 10, "Gamma Correction and Precision Color", discusses one of the least understood but

most important features of PNG, its support for platform-independent image display. That is, in
order for an image to appear the same way on different computer systems or even different print
media, it is necessary for both the user and the program to understand and support gamma and color
correction.

Chapter 11, "PNG Options and Extensions’, details the optional features supported by PNG,
including text annotations, timestamps, background colors, and other ancillary information.

Chapter 12, "Multiple-Image Network Graphics', isabrief look at PNG's multi-image cousin,

MNG, which supports animations, slide shows, and even highly efficient storage of some types of
single images.

Part Ill, Programming with PNG

Part 111 covers three working, libpng-based demo programs in detail, and lists a number of other
toolkits that offer PNG support for various programming languages and platforms. It isintended for
programmers who wish to add PNG support to their applications.

Chapter 13, "Reading PNG Images’, is adetailed tutorial on how to write abasic PNG-reading
display program in C using the official PNG reference library. The application is divided into a
generic PNG back end and platform-specific front ends, of which two are provided (for 32-bit
Windows and the X Window System).

Chapter 14, "Reading PNG Images Progressively”, inverts the logic of the previous chapter's demo

program, simulating the design of aweb browser's display-as-you-go PNG code. Progressive
display of interlaced, transparent PNG images over a background image is supported.

Chapter 15, "Writing PNG Images’, shows how to create a basic PNG-writing program. The

supplied code compiles into a simple command-line program under both Windows and Unix, and it
includes support for interlacing, gamma correction, alpha transparency, and text annotations.

Chapter 16, "Other Libraries and Concluding Remarks', lists anumber of alternative libraries and

toolkits, both free and commercial, including ones for C, C++, Java™, Pascal, tcl/tk, Python, and
Visual Basic. The chapter ends with alook back at what parts of the PNG design process worked
and what didn't, and also alook forward at what lies ahead.

The References section lists technical references and resources for further information, both printed
and electronic.

http://www.libpng.org/pub/png/book/part3.html

The Glossary defines a number of acronyms and technical terms used throughout the book.

Conventions Used in This Book

Italic is used for pathnames, filenames, program names, new terms where they are defined,
newsgroup names, and Internet addresses, such as domain names, URLS, and email addresses.

Const ant w dt h isused to show code, commands, HTML tags, and computer-generated output.

Constant w dt h bol disused in examplesto show commands or other text that should be
typed literaly by the user.

Constant width italic is used in code fragments and examples to show variables for which a context-
specific substitution should be made. The variable email address, for example, would be replaced
by an actual email address.

CAUTION

This type of boxed paragraph indicates atip, suggestion, general note, or
caution.

How to Contact Us

Any information in this section referring to O'Reilly & Associates was valid only for the original,
paper edition of the book. For this(HTML) version, the author may be contacted at:

roel ofs @ pobox.com

The original text follows.

We have tested and verified all of the information in this book to the best of our ability, but you may
find that features have changed (or even that we have made mistakes!). Please let us know about
any errors you find, as well as your suggestions for future editions, by writing:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

Y ou can also send us messages electronically. To subscribe to the mailing list or request a catal og,

mailto:newt@pobox.com

send email to:
nuts@oreilly.com

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

In addition, the author has set up a web page to support users of the book at:

http: //www.libpng.or g/pub/pna/pngbook. html

This web page includes the compl ete source code for the demo programs described in Part 111,
"Programming with PNG" and may include additional fixes, improvements, new ports, and

contributions. The page also includes an errata list. If the link ever breaks, check the following page
for a pointer to the new location:

http: //mwww.orellly.conycatal og/pngdefa/

About the "Second Edition" (HTML Version)

Despiteits public release more than four years after the publication of the first (paper) edition, this
electronic version is fundamentally still a1999 publication. That is, the updates and modifications
that go beyond basic formatting and legal issues have been limited almost entirely to details that
could have (or should have) been in the original. These include the addition of missing index entries
and the lists of figures and tables, correction of numerous typos and other errata, restoration of color
figures (using the original images!), and so forth. A handful of URL s have also been updated, but
only those associated with the PNG home site and its close relatives (such as the zlib home site).

More specifically, the lists of applications with PNG and MNG support are woefully out of date, as
are many (if not most) of the URL s and the specific nature of the support. Not only would updating
them have required a huge investment in time, it also would have been completely redundant; the
PNG and MNG home sites contain nearly complete lists of applications with PNG and MNG/ING
support, and they are updated regularly. Thus each chapter ssmply contains alink to the appropriate

“live" web pages on libpng.org.

Note that | (Greg Roelofs) do intend to perform further updates as time permits, but these will not
truly constitute a " "second edition™ in the usual sense. However, the Free Software Foundation is
interested in publishing a fully updated edition of the book, so keep an eye on their siteif you're
interested.

History

http://www.libpng.org/pub/png/pngbook.html
http://www.libpng.org/pub/png/book/part3.html
http://www.libpng.org/pub/png/book/part3.html
http://www.oreilly.com/catalog/pngdefg/
http://www.libpng.org/pub/png/pngapps.html
http://www.fsf.org/doc/gnupresspub.html

This section, added according to the requirements of paragraph 4.1 of the GNU FDL, describes the

history of the document, not of the PNG format. (It may be moved to a separate page if it grows too
unwieldy for the Preface.)

Version 1

. Titlee PNG: The Definitive Guide
. Year: 1999

. Author: Greg Roelofs

« Publisher: O'Reilly & Associates

The first edition was published in softcover (paper) format in June 1999.

Version 2

. Title: PNG: The Definitive Guide

. Year: 2003

. New Authors. -

. Publisher: Greg Roelofs

. Network Location: http://www.libpng.org/pub/png/book/

Thisisthefirst online version of the book, released under the GNU Free Documentation License
and published in July 2003. The original title and cover image are used with permission of the
original publisher (O'Reilly and Associates). The complete text may be downloaded from
SourceForge.net.

The principal change, obviously, isthe fact that Version 2 is an electronic (HTML) edition rather
than paper, intended to be read using any reasonably modern web browser. The original troff source
was automatically converted by Lenny Muellner to HTML, which was then modified as follows:

1. Filenamesand all internal HTML references (chapters, subsections, table numbers, figure
numbers) were off by one in the auto-conversion; fixed.

2. Expanded table of contents and navigation sections at the top of each chapter to include
subsections, not just chapters or top-level sections; added inter-chapter navigation bars
(previous/contents/next).

3. Converted ""Parts" from verbatim replications of multiple chapters to corresponding excerpts
from the table of contents.

4. Changed auto-converted " text images' back to plain text using Unicode and Latin-1 entities
(gamma, mu, Delta, delta, right arrow, a-with-ring, etc.).

5. Added cover page, title page, copyright page, dedication, list of tables, list of figures, pages

for original color plates (including captions), and license page.

Recreated index and linked page numbers to appropriate HTML anchors; added new entries.

Converted GIFs (from auto-conversion) to PNGs; rebuilt inlined, shrunken, grayscale figures

with original, color source images wherever possible; added links to full-scale source images

N o

http://www.libpng.org/pub/png/book/
http://prdownloads.sourceforge.net/png-mng/pngbook-20030720-html.zip?download

where necessary.
8. Converted four text-mode listings in Chapter 9 to tables and updated table references
accordingly; added mention of PNG chapter in the Lossless Compression Handbook.
9. Restored 99 lines of missing text(!) in Chapter 14 (lost in auto-conversion, apparently).
10. Corrected all errata noted on both O'Reilly's and the author's web pages, as well as several
others in the index and bibliography.
11. Updated web links associated with the book or its author (particularly cdrom.com).
12. Reverted some O'Reillyisms (Gimp, frontend, backend) to original text (GIMP, front end
[noun] or front-end [adjective], etc.).
13. Cleaned up various bits of formatting.
14. Added "About" and ""History" sections to preface. These sections (together with some other
additions) arein green text to distinguish them more easily from the original text.

As noted in the previous section, | intend to continue updating the HTML version, but this will
probably be limited to fixing broken links and tying some of the sections more closely to
appropriate pages on the PNG web site. Any such changes will be noted here in an ongoing

changelog.

Acknowledgments

Though this book has only one author's name on the cover, it is the result of work by literally
dozens of people. Glenn Randers-Pehrson's help was especially invaluable: he not only acted asa
technical reviewer, but also contributed the interlace figure in Chapter 1, "An Introduction to PNG"
and the haiku in Chapter 7, "History of the Portable Network Graphics Format"; he edited or co-
edited not just one but all five of the PNG-related specifications available from the web site given in
the previous section; and he authored virtually all of the MNG specification, wrote the incredibly
useful pngcrush utility, and maintained libpng for the last year. On top of all that, his wife, Nancy,
reviewed the book from alayperson's perspective; her insights were concise and invariably hit the
mark. And Glenn's nephew, Michael, kindly contributed the haiku at the end of Chapter 16, "Other
Libraries and Concluding Remarks'. Thanks to the whole family!

I'd also like to thank my two other reviewers and colleagues in the PNG Group, Adam Costello and
Tom Lane. Adam's help was absolutely indispensable in explaining the subtle and sometimes
complicated ramifications of gamma and color correction and of international text formats; he also
supplied code for one class of background patternsin the progressive PNG viewer. Tom, leader of
the Independent JPEG Group and a member of the TIFF advisory committee, supplied background,
corrections, and additional information on two of the image formats most relevant to PNG users,
and he provided the progressive JPEG images in the color insert.

Thanks to Pieter van der Meulen for providing the impressive icicles image and for generating the
alpha channel for it on short notice. Pieter also supplied code for another class of background
patterns in the progressive viewer and was an understanding colleague when book-related deadlines
occasionally took precedence over work.

http://www.oreilly.com/catalog/pngdefg/errata/
http://www.libpng.org/pub/png/book/errata.html
http://www.libpng.org/pub/png/

For the chapter on image editors, | enlisted the aid of several people to help test the level of PNG
support in various products: Anthony Argyriou for Paint Shop Pro; Chris Herborth for Photoshop 4;
and two fine Macromedia engineers, Steven Johnson and John Ahlquist, for Fireworks. Jim Bala
and Richard Koman provided additional assistance with Photoshop.

Thanks aso to Michael Stokes for information about the SRGB standard and ICC profiles; Chris
Lilley for additional information on gammaand color correction (including an incredibly well-
written tutorial distributed viathe University of Manchester) and for the chromaticity diagramin
Chapter 10, "Gamma Correction and Precision Color"; Jean-loup Gailly for an informal review of
Chapter 9, "Compression and Filtering" and, together with Mark Adler, the zlib compression engine
at the heart of PNG; and John Bowler for information about the private Windows clipboard for PNG
and how to access it.

Jas Sandu, Jed Hartman, and Francois Vidal provided timely and detailed information about PNG
support in 3D applications, and Mathew Ignash did so for Amiga applications and APIs. Thanksto
Delle Maxwell for providing the images she used in part of a VRML course; they not only prompted
me to do some serious and quantifiable comparisons of compression in PNG and related image
formats but also helped nail down some of the myriad ways in which bad PNG encoders can write
large PNG files,

Portions of Chapter 7, "History of the Portable Network Graphics Format" appeared in the April

1997 issue of Linux Journal; thanks to Marjorie L. Richardson and Specialized Systems Consultants
for permission to reuse the historical material here.

On the O'Rellly side, many, many thanks to editor Richard Koman for his help and patience with a
first-time author. He is also responsible for making sure that this book would be of interest to a
wider audience than just programmers. Thanks also to Lenny Muellner for being so very responsive
on all sorts of picky formatting questions, to Tara McGoldrick, to Rob Romano and Alicia Cech for
issues relating to the figures, to Nancy Kotary for her incredible patience during production, and to
Edie Freedman for doing her best to get me a " "pnguin” for the cover. For the online HTML version,
many thanks to executive editor Laurie Petrycki for all of her help and patience in dealing with the
legal and technical issues of the new format and the new license. And a very big thanks to O'Reilly
and Associates as awhole for agreeing to rerel ease the book under the GNU Free Documentation
License.

A special thanks goes to Jennifer Niederst, who, while working on Web Design in a Nutshell, first
suggested that | write this book. Many's the time over the past 10 months when |'ve debated whether
it was a good suggestion or bad, but now that the book is done, I'm glad she did so.

Of course, without the patience of my sainted wife, Veronica, none of this could have happened. To
little Lyra, | apologize for every time | uttered the phrase " Daddy isworking”; you'll see alot more
of me now. And to little Delenn--well, you aren't here yet, but | know someday you'll be miffed if
your sister is mentioned and you aren't. :-)

Finally, thanks to everyone in the PNG Development Group, the ISO/IEC standardization

committee, and all of the countless contributors to the PNG home site, who provided (and continue
to provide) information about new or updated PNG-supporting applications, broken links, and
suggestions for improvement. And without the continued support of Walnut Creek CD-ROM, the
site would not be nearly as accessible and complete asit is; avery special and ongoing thanksto
Christopher Mann and David Greenman.

If there's anyone I've missed, please rest assured it was not intentional! The brain cell isgoing, asa
certain compression colleague has been known to say.

-] PREVIOUS CONTENTS NEXT |

- PREVIOUS CONTENTS NEXT o

Chapter 1. An Introduction to PNG

Contents:

1.1. Overview of Image Properties
1.2. What Is PNG Good For?
1.2.1. Alpha Channels
1.2.2. Gammaand Color Correction
1.2.3. Interlacing and Progressive Display
1.2.4. Compression
1.2.4.1. Compression filters
1.2.4.2. Compression 0opers
1.2.5. Summary of Usage
1.3. Case Study of a PNG-Supporting Image Editor
1.3.1. PNG Feature Support in Fireworks
1.3.2. Invoking PNG Featuresin Fireworks
1.3.3. Analysis of Fireworks PNG Support
1.3.4. Concluding Thoughts on Fireworks

PNG,[1] short for " Portable Network Graphics," is acomputer file format for storing, transmitting,
and displaying images. Similar to the GIF and TIFF image formats--in fact, designed to replace
them in many applications--PNG supports |ossless compression, transparency information, and a
range of color depths. PNG also supports more advanced features such as gamma correction and a
standard color space for precise reproduction of image colors on awide range of systems and
embedded textual information for storing such things as atitle, the author's name, and explicit
copyright.

[1] PNG isofficialy pronounced " "ping” (at least in English) but never spelled that
way. Yes, thiswas amagjor topic of discussion during its design, and it is explicitly
noted in the specification. Believe it or not, in November 1998 the issue once again
came under discussion, thistime with greater emphasis on non-English pronunciation.
Though the ""three-letter” approach (i.e., P-N-G spoken as three separate | etters) was
not approved for inclusion in the spec, it may be considered an acceptable unofficial
aternative.

In this chapter, we'll consider PNG from the perspective of a user who has some familiarity with the
process of creating and using computer images, but insufficient knowledge of the technical
differences between various formats to be certain when to use what. | won't dwell on features that
are mostly of concern to developers; where | do bring up programming issues, it is principally to

explain to the user why some software may not perform as well as expected. I'll concentrate on two
areas to which PNG is particularly well suited: as an intermediate editing format for repeatedly
saving and restoring images without loss, and as afinal display format for the World Wide Web.
And I'll finish up with an in-depth look at one application that has particularly good PNG support:
Macromedias Fireworks 1.0, an image-editing program specifically designed for creating web
images.

1.1. Overview of Image Properties

Before we dive right into some of PNG's more interesting features, it might be helpful to introduce
(or review) some essential image concepts and take a quick look at afew older image formats.
Those who are already familiar with the most basic features of computer images can skip directly to
the next section.

There are two main formats for computer images. raster, based on colored dots, which are almost
aways stored in arectangular array and are usually packed so close together that individual dots are
no longer distinguishable, and vector, based on lines, circles, and other ~"primitive" elements that
typically cover asizable area and are easily distinguishable from one another. Many images can be
represented in either format; indeed, any vector-based image can be approximated by araster image
(lots of dots), and one could easily (though tediously) simulate araster image in vector format by
converting each dot to atiny box.

The whole point of having two classes of image formats--and, indeed, of having numerous
individual file formats--isimplicit in the old saying, = Use the best tool for the job." Vector formats
are appropriate for ssmple graphics and text, such as corporate logos, and their advantage is that
they can be extremely compact and yet maintain perfect sharpness regardless of the size at which
they are reproduced. But with the exception of pen-based plotters and some ancient vector-based
displays, the end result is almost always araster image.

For that reason, plus the fact that raster image formats are more common--and because PNG is one
of them--we'll take a closer ook at raster features. As| just noted, araster image is composed of an
array of dots, more commonly referred to as pixels (short for picture elements). One generally refers
to a computer image's dimensions in terms of pixels; thisis aso often (though slightly imprecisely)
known as its resolution. Some common image sizes are 640 x 480, 800 x 600, and 1024 x 768
pixels, which aso happen to be common dimensions for computer displays.

In addition to horizontal and vertical dimensions, araster image is characterized by depth. The
deeper the image, the more colors (or shades of gray) it can have. Pixel depths are measured in bits,
the tiniest units of computer storage; a 1-bit image can represent two colors (often, though not
necessarily, black and white), a 2-bit image four colors, an 8-bit image 256 colors, and so on. To
calculate the raw size of the image data before any compression takes place, one needs only to know
that 8 bits make abyte. Thus a 320 x 240, 24-bit image has 76,800 pixels, each of which is 3 bytes
deep, so its total uncompressed size is 230,400 bytes.

I'll return to the topic of compression in just a moment; first, let's take a closer look at the precise

relationship between pixels and colors. Within the broad class of raster formats, there are three main
Image types: indexed-color, grayscale, and truecolor. The indexed-color method, also known as
pseudocolor, colormapped, or palette-based, stores a copy of each color value needed for the image
in a palette. The main image is then composed of index values referring to different entriesin the
palette. For example, imagine an image composed entirely of red, white, and blue pixels; the palette
would have three entries corresponding to these colors, and each pixel would be represented by the
value 0, 1, or 2. (The natural starting point for numbers on a computer is 0, not 1.) Since an image 2
bits deep can represent up to four colors, each pixel in this example would require only 2 bits, even
though the precise shades of red, white, and blue might ordinarily require 24 bits each.

Grayscale and truecolor images are ssmpler in concept; the bytes used by each pixel correspond
directly to shades of gray or to colors. In a grayscale image of a particular pixel depth, a0 pixel
usually (though not always) means black, while the maximum value at that depth corresponds to
white. Intermediate pixel values are smoothly interpolated to shades of gray, though thisis often not
as straightforward as it might sound--gamma correction, away of adjusting for differencesin
computer display systems, comesin here. I'll give a brief overview of gamma correction later in this
chapter, and I'll discussit at length in Chapter 10, "Gamma Correction and Precision Color",
Gamma Correction and Precision Color; for now, I'll merely note that it isa Good Thing, and
Image formats that provide support for it can be viewed on different platforms without appearing
too light on one and too dark on another.

A truecolor image uses three separate values for each pixel, corresponding to shades of red, green,
and blue. Such images are often also referred to as RGB. In Chapter 8, "PNG Basics', I'll talk about
human vision and the reasons why mixtures of just three colors can appear to reproduce all colors,
or at least a sufficiently large percentage of them that one need not quibble over the difference. I'll
also mention some common alternatives to the RGB color space. To be considered truly truecolor
instead of merely “"high color," an image must contain at least 8 bits for each of the three colorsin
each pixel; thus, at a minimum, atruecolor image has a depth of 24 bits,

Two other concepts--samples and channels--are handy when speaking of images, and RGB images
are agood way to illustrate these concepts. A sample is one component of asingle color value. For
example, each pixel in atruecolor image consists of three samples: red, green, and blue. If the image
Is 24 bits deep, then each sample is 8 bits deegp. A 256-shade grayscale image also has 8-bit samples,
which means that one can speak of the ""bits per sample” for either image type to indicate the level
of precision of each shade or color. Note that | have been careful to distinguish between sample
depth and pixel depth. The two terms are directly related in grayscale and truecolor images, but in
indexed-color images they can be independent of each other. Thisis because the sample depth refers
to the color valuesin the palette, while the pixel depth refers to the index values of each pixel

(which reference the palette colors). To put it more concretely, the color values in the palette are
usually 24-bit values (8 bits per sample), but the pixel indices are usually 8 bits or less. Our
previous red, white, and blue example used only two bits per pixel.

A channel, on the other hand, refersto the collection of all samples of a given type in an image--for
example, the green components of every RGB pixel. Thus atruecolor image has three channels,
while a grayscale image has only one. (Ordinarily one does not speak of a palette-based image as

having channels.) And when discussing transparency, yet another channel type is often used: the
alpha channel. Thisisaspecial kind of channel in that it does not provide actual color information
but rather alevel of transparency for each pixel--or, more precisely, alevel of opacity, sinceitis
most common for the maximum sample value to indicate that the pixel is completely opaque and for
zero to indicate complete transparency. A truecolor image with an alpha channel is often called an
RGBA image; grayscale images with alpha channels are rarer and don't have a special abbreviation
(athough | may refer to them as *"gray+apha").

Pal ette-based images almost never have afull alpha channel, but another type of transparency is
possible. Rather than associate alpha information with every pixel, one can instead associate it with
specific palette entries. By far the most common approach isto specify that a single pal ette entry
represents complete transparency. Then when the image is displayed against some sort of
background, any pixel whose index refersto this particular palette entry will be replaced by the
background at the pixel's |ocation--or perhaps the pixel simply will not be drawn in the first place.
But there is no conceptual requirement that only one palette entry can have transparency, nor that it
must be fully transparent. Aswe'll see shortly, PNG effectively allows any number of palette entries
to have any level of transparency.

While we're on the subject of colormapped images, two other concepts are worth mentioning:
quantization and dithering. Suppose one has a 24-bit truecolor image, but it must be displayed on a
256-color, palette-based display. Since truecolor images typically use anywhere from 10,000 to
100,000 colors, the conversion to a colormapped image will involve substituting many of the color
values with a much smaller range of colors. This process is known as quantization. Because the
resulting images have such alimited palette of colors available to them, they often are unable to
represent fine color gradients such as the different shades of blue seen in the sky or the range of
facial tonesin a softly lit portrait. One way around thisisto dither the image, which is a means of
mixing pixels of the available colors together to give the appearance of other colors (though
generaly at the cost of some sharpness). For example, a checkerboard pattern of alternating red and
yellow pixels might appear orange. This effect is perhaps best illustrated with an example. Figure 1-

1 shows atruecolor photograph (here rendered in grayscale) together with two 256-color versions of

the same image--one simply quantized to 256 colors and the other both quantized and dithered. The
insets give amagnified view of one region, showing the relative effects of the two procedures,

Figure 1-1: (a) Original, 24-bit image; (b) same image after quantization, and (c) after
guantization and dithering. (Click on images for full-scale, color versions.)

I'll round out our review of image properties and concepts with a quick ook at compression. There
arereally only two flavors: lossless and lossy. Lossless compression preserves the exact image data
down to the last bit, so that what you get out after uncompressing is exactly the same as what you
started with. In contrast, lossy compression throws away some of the datain return for much better
compression ratios. For photographic images, the best |ossless methods may only manage a factor
of two or three in compression, whereas lossy methods typically achieve anywhere from 8 to 25
times reduction with very little visible loss of quality. I'll discuss the details of compression,
particularly the lossless variety, at greater length in Chapter 9, "Compression and Filtering".

Finally, in describing the advantages of PNG, | will necessarily compare it with some older image
formats. Although there are literally hundreds of different formats, we will be most concerned with
just three: GIF, JPEG, and TIFF. GIF, short for the Graphics Interchange Format, and JPEG, short
for the Joint Photographic Experts Group (which defined the format), are both very common image
types often seen on the Web. TIFF, on the other hand, short for Tagged Image File Format, is
almost never used on the Web but is quite popular as an output format from scanners and as an
intermediate " save format" while editing images. I'll touch on the properties of each of these
formats as we go.

1.2. What Is PNG Good For?

For image editing, either professional or otherwise, PNG provides a useful format for storing the

http://www.libpng.org/pub/png/book/figs/png.0101c.big.png
http://www.libpng.org/pub/png/book/figs/png.0101b.big.png
http://www.libpng.org/pub/png/book/figs/png.0101a.big.png

intermediate stages of an image. Since PNG's compression is fully lossless--and since it supports up
to 48-bit truecolor or 16-bit grayscale--saving, restoring, and resaving an image will not degrade its
quality, unlike standard JPEG (even at its highest quality settings). PNG also supports full
transparency information, unlike JPEG (no transparency at al), GIF (no partial transparency), or
even TIFF (full transparency is part of the specification but is not required for minimal
conformance). And unlike TIFF, which is probably the most popular intermediate format today, the
PNG specification leaves amost no room for implementors to pick and choose what features they'll
support. What allowances are made, such as optional support for gamma correction, are tightly
constrained. The result is that a PNG image saved in one application is readable and displayable in
any other PNG-supporting program.

For the Web, as of early 1999, there are two image formats with ubiquitous support: JPEG and GIF.
JPEG isvery well suited to the task for which it was designed--namely, the storage, transmission,
and display of photorealistic 8-bit grayscale and 24-bit truecolor images with good quality and
excellent compression--and PNG was never intended to compete with JPEG on its own terms. But
PNG, like GIF, is more appropriate than JPEG for images with few colors or with lots of sharp
edges, such as cartoons or bitmapped text. PNG also provides direct support for gamma correction
(loosely speaking, the cross-platform control of image ~"brightness®) and transparency. I'll discuss
these in more detail shortly.

GIF wasthe origina cross-platform image format for the Web, and it is still a good choice in many
respects. But PNG was specifically designed to replace GIF, and it has three main advantages over
the older format: alpha channels (variable transparency), gamma correction, and two-dimensional
interlacing (a method of displaying images at progressively higher levels of detail). PNG also
compresses better than GIF in almost every case, but the difference is generaly only around 5% to
25%, which is (usually) not alarge enough factor to encourage one to switch on that basis alone.
One GIF feature that PNG does not try to reproduce is multiple-image support, especially
animations; PNG was and isintended to be a single-image format only. A very PNG-like extension
format called MNG has been developed to address this limitation; it is discussed in Chapter 12,

"Multiple-lmage Network Graphics".

1.2.1. Alpha Channels

Also known as a mask channel, an alpha channel is simply away to associate variable levels of
transparency (sometimes referred to as " translucency,” though that may imply a diffuseness not
present with al pha transparency) with an image. Whereas GIF supports simple binary transparency--
any given pixel can be either fully transparent or fully opaque--PNG allows an additional 254 levels
of partial transparency for ~"normal” images. It also supports atotal of 65,536 transparency levels
for the special " "deeply insane" image types, but here we're concentrating on pixel depths that are
useful on the Web.

All three of the basic PNG image types--RGB, grayscale, and pal ette-based--can have alpha
information, but currently it's most often used with truecolor images. Instead of storing three bytes
for every pixel, now four are required: red, green, blue, and alpha, or RGBA. The variable
transparency allows one to create special effects that will look good on any background, whether

light, dark, or patterned. For example, a photo-vignette effect can be created for a portrait by

making a central oval region fully opaque (i.e., for the face and shoulders of the subject), the outer
regions fully transparent, and a transition region that varies smoothly between the two extremes.
When viewed with aweb browser such as Acorn Browse or Arena, the portrait would fade smoothly
to white when viewed against a white background or smoothly to black if against a black
background. Both cases are shown in Figure 1-2.

Figure 1-2: Portrait with an oval alpha mask (a) against a white background and (b)
against a black background. (Click on images for full-scale versions.)

Thisfeature is especially important for the small web graphics that are typically used on web pages,
such as colored (circular) bullets and fancy text. To avoid the jagged artifacts that really stand out
on such images, most applications support anti-aliasing, a method for creating the illusion of
smooth curves on arectangular grid of pixels by smoothly varying the pixels colors. The problem
with anti-aliasing in the absence of variable transparency isthat it must be done against a
predetermined background color, typically either white or black. Reusing the same images on a
different background usually resultsin an unpleasant ~"halo" effect, as shown in Figure 1-3. The
standard approach is to create separate images for each background color used on a site, but this has
negative implications both for the designer, who wastes time creating and maintaining multiple
copies of each image, and for visitorsto the site, who must download those copies.

http://www.libpng.org/pub/png/book/figs/png.0102b.big.png
http://www.libpng.org/pub/png/book/figs/png.0102a.big.png

Jagged-edged text
Anti-aliased text

Figure 1-3: Gray text anti-aliased against a white background, displayed against both
white and black backgrounds.

Alpha blending, on the other hand, effectively uses transparency as a placeholder for the
background color. Fully transparent regions will inherit the background color asis; fully opagque
regions will show up as the foreground images. Thisis no different from the usual case, exemplified
by transparent GIFs. But the anti-aliased regions in between the fully transparent and fully opague
areas are no longer pre-mixed with an assumed background color; instead, they are partially
transparent and can be mixed with whatever background on which the image happens to be placed.

Of course, effective replacements for GIF buttons and icons must not only be more useful but also
of comparable or smaller size, and that mostly rules out truecolor RGBA images. Fortunately, PNG
supports alphainformation with palette images as well; it's just harder to implement in a smart way.
A PNG alpha-palette image isjust that: an image whose pal ette also has a phainformation
associated with it, not a palette image with afull alpha mask. In other words, each pixel corresponds
to an entry in the palette with red, green, blue, and apha components. So if you want to have bright
red pixels with four different levels of transparency, you must use four separate pal ette entries to
accommodate them--all four entries will have identical RGB components, but the alpha values will
differ. If you want all of your colorsto have four levels of transparency, you've effectively reduced
your total number of available colors from 256 to 64. In general, though, only some of the colors
need more than one level of transparency, and recognizing which ones do is where things get tricky
for the programmer.[2]

[2] Asit happens, the same algorithm that allows one to quantize a 24-bit truecolor
image down to an 8-bit pal ette image also allows one to reduce a 32-bit RGBA image
to an 8-bit palette-alphaimage. So it's not really that tricky for programmers; it's just
not how they're used to thinking about such things.

1.2.2. Gamma and Color Correction

Gamma correction basically refersto the ability to correct for differencesin how computers (and
especially computer monitors) interpret color values. Web authors in particular are probably aware
that Macintosh-generated images tend to ook too dark on PCs, and PC-generated images tend to
look too light and washed out on Macs. An image that looks good on an SGI workstation won't ook
right on either a Macintosh or a PC, and even a PC-created image won't look right on all PCs.

Gamma information is apartial solution. It's ameans of associating a single number with a
computer display system, in an attempt to characterize the tricky physics lurking within a graphics
card's digital-to-analog converter (RAMDAC) and within a monitor's high-voltage el ectron gun and
display phosphors. Gammais only afirst approximation that accounts for overall ~"brightness,” but
itisgeneraly sufficient for casual users. More demanding users will additionally want to adjust for
differencesin the individual red, green, and blue channels--the so-called chromaticity values, which
are also supported by PNG. Even thisis merely a second approximation, however.

The absolute best solution currently available is to use a complete color management system, which
allows one to take into account things like the viewing environment (a *"dim surround,” for
example) and its interaction with the human visual system. The International Color Consortium has
defined a profile format that describes the relationship between an input color space (say, adigital
camera or scanner) and the output color space that the user sees. Thisisthe most general way to
account for cross-platform differences (and, of course, PNG supportsit viathe iCCP chunk), but its
flexibility comes at a cost: it tends to add at least 250 bytes and often 2,000 bytes or more to every
image.

Fortunately, a new proposal for operating systems and physical devices avoids the overhead of a
complete ICC profile. Called sSRGB, for Standard RGB color space, it defines just that: a standard,
unified color space that devices can support, thereby allowing true color management with minimal
file overhead and no need for the user to wade through a complicated end-to-end calibration
procedure. As of January 1999, the sSRGB proposal was in =~ Committee Draft for Voting," and it
should be approved as an international standard[3] by mid-1999; conformant devices should start

appearing shortly thereafter. PNG supports SRGB via a chunk called, logically enough, SRGB.

[3] SRGB is Part 2 of IEC 61966 (Colour Measurement and Management in
Multimedia Systems and Equipment), a proposed standard of Technical Committee
100 of the International Electrotechnical Commission. The IEC is a standards body
similar to the International Organization for Standardization (1SO); in fact,
international standards such as MPEG, VRML97, and the Latin-1 character set are al
joint ISO/IEC standards, and PNG is on track to join them.

Gamma, chromaticity, and color management are described in more detail in Chapter 10, "Gamma
Correction and Precision Color"; PNG's basic structure, including the means by which it can be
officialy or unofficialy extended, is covered in Chapter 8, "PNG Basics' and Chapter 11, "PNG
Options and Extensions'.

1.2.3. Interlacing and Progressive Display

By now, just about everyone has seen interlaced GlFsin action; they first show up with avery
stretched, blocky appearance and gradually get filled in until the full-resolution image is displayed.
Their big advantage is that an overall impression of the image is visible after only one-eighth of the
Image data has been transferred; gross features such as embedded buttons or large text are often
recognizable (and clickable) even at this stage.

But as useful as GIF'sinterlacing is, it has one big disadvantage: it is not symmetric. In other words,
while GIF's first pass consists of one-eighth of the image data, that factor of eight comes entirely at
the expense of vertical resolution. Horizontally, every lineis at full resolution as soon asit is
displayed, which means that each pixel in the first passis stretched by afactor of eight. Needless to
say, this does make text and other features much harder to recognize than they really need to be.

PNG's approach to interlacing is two-dimensional and involves no stretching at all on more than

half of its passes. Even-numbered passes are stretched, but only by afactor of two--similar to the
effect after GIF's third pass. Some applications display only the odd-numbered PNG passes, so their
pixels always appear square. In addition, PNG's interlacing consists of seven passes, as opposed to
GIF'sfour. This means that the user will see an overall impression of the image after only one- sixty-
fourth of the data has arrived, eight times faster than GIF.[4] In the time it takes GIF to display its
first pass, PNG displays four passes--and keep in mind that PNG's fourth passis only one-quarter as
stretched as GIF'sfirst pass, with " pixels” that are basically 2 x 4 blocksinstead of 1 x 8. Asa
genera rule, text embedded in an interlaced PNG image becomes readable roughly twice asfast as
in the identical interlaced GIF, as shown in Figure 1-4. The rows show the respective appearance
after one-sixty-fourth, one-thirty-second, one-sixteenth, one-eighth, one-fourth, half, and all of the
data has arrived. The first column shows GIF interlacing; the others show PNG interlacing, rendered
in various styles: standard blocky rendering, interpolated rendering, and sparse rendering,
respectively. Note that the word Interlacing has roughly the same readability in the fifth GIF row,
the fourth blocky PNG row, and the third interpolated PNG row. In other words, the GIF text takes
two to four times as long to become readable.

[4] | am implicitly assuming that one-sixty-fourth of the compressed data (the stuff
that can be said to ""arrive") corresponds to one-sixty-fourth of the uncompressed
Image data (what the user actually sees). Thisis not quite true for either PNG or GIF,
though the differenceis likely to be small in most cases--and other factors, such as
network buffering, will tend to wash out any differences that do exist. See Chapter 9,

"Compression and Filtering" for more details.

hfl="a L g hd='a o :'.

m Tl FE P aTFTaFw =
W Jeebvee fanarrgg reh fanaarny

I.:. Ul Rl g) 'l;- 1"'.Ir v IRY e
I b | Irrferacing Urrterdacing

B2 m1mens e sl ngl sy 1A e aheee

L by Interlacing Inferlacing |00
13" A AR ARALIERTLY nosw juier abanefl [y noaw jner ahone

Interlacing |Interlacing [Interlacing [interiacing

Ly nowe uer abant By now just aboutfBy now just about BESSREE IS i

Interlacing 'Interlacing Interlacing Iﬁter!acing

By now just about By now just about]By now just aboutBBy now just about

Interlacing Interlacing 'Interlacing Interlacing

By now just aboutf By now just about] By now just aboutf By now just about

Figure 1-4:. Comparison of GIF interlacing (far left), normal PNG interlacing (second
fromleft), PNG with interpolation (second fromright), and PNG with sparse display
(far right). (Click on image for full-scale version.)

JPEG doesn't support interlacing, per se, but it does support a method of progressive display that has
been implemented in most browsers since late 1996. In fact, progressive JPEG is atwo-dimensional
scheme that is not only visually similar to interlaced PNG but also somewhat superior. Loosely
speaking, progressive JPEG uses the ““average” color for any given block of pixels, whereas PNG
uses the color of asingle pixel in the corner of the block. Early JPEG passes also tend to be
somewhat softer (smoother) than early PNG passes; some users find that effect more pleasing.

Finaly, | should at least mention TIFF's potential for interlacing. Although no major browser
supports TIFF as a native image format, it does offer avery general, random-access approach to
image layout. Based either on groups of rows (" "strips") or on rectangular blocks of pixels (" tiles"),
aproperly constructed TIFF could be used for some form of progressive display. But aside from
complete lack of browser support (and very little interest from users), TIFF's compression works
only within individual strips or tiles, not across them. So either the interlacing effect would be
horrible or the compression would be (or quite possibly both), which is probably why no one seems
to havetried it.

1.2.4. Compression

PNG's compression is among the best that can be had without losing image data and without paying
patent or other licensing fees.[5] Patents are primarily of concern to application developers, not end

users, but the decision to throw away some of the information in an image is very much an end-user
concern. Thisinformation loss generally happens in two ways: in the use of alesser pixel depth than
Isrequired to represent al of the colorsin theimage, and in the actual compression method (hence

http://www.libpng.org/pub/png/book/figs/png.0104.big.png

“lossy" compression).

[5] The "Burrows-Wheeler block transform coding” method used in the bzip2 utility
Is also unpatented and achieves somewhat better compression than PNG's low-level
engine, but it wasn't publicly known at the time and is far, far lower for decoding.
JPEG-LS, the new lossless JPEG standard, isfairly fast and performs somewhat
better than PNG on natural images, but it does much worse on " artistic” ones. It's
covered by patents held by Hewlett-Packard and Mitsubishi, but both companies are
waiving license fees (i.e., allowing free use). And BitJazz has a new lossless
technique called ""condensation”; it appears to compress images 25% to 30% better
than PNG, but it is patented and completely proprietary.

PNG supports all three of the main image types discussed earlier: truecolor, grayscale, and pal ette-
based. TIFF likewise supports all three; JPEG only the first two; and GIF only the third, although it
can fake grayscale by using a gray palette. Both GIF and PNG palettes are limited to a maximum of
256 colors, which means that full-color images--which usually have tens of thousands or even
hundreds of thousands of colors--cannot be stored as GIFs or palette-based PNGs without l0ss.[6]

On the other hand, an image that does fit into a 256-color palette requires only one byte per pixel,
which leads to an immediate factor-of-three reduction in file size over afull RGB image before any
“real" compression isdone at all. Thisfact aloneis an important issue for PNG images, since PNG
allows an image to be stored either way.

[6] Technically that's not quite true in the case of GIF; it supports the concept of
multiple subimages, each of which may have its own palette and may be tiled side by
side with other subimages to form a truecolor mosaic. This mode is not widely
supported, however, particularly on 8-bit displays. Even where it is supported as
intended by its proponents, it is an incredibly inefficient way to store and display
truecolor image data.

It is worth mentioning that TIFF palettes support up to 65,536 colors, which is sufficient to handle
many full-color images without loss. Any palette with more than 256 colors will require two bytes
per pixel, eliminating much of the benefit of a palette-based image, but applications that support
TIFF are usually more concerned with reading and writing speed than with file sizes.

S0 let's assume that the image type has been decided; that brings us to the compression method
itself. Both GIF and PNG use completely 1ossless compression engines, and all but the most
recently specified forms of TIFF do so aswell. Standard JPEG compression is always lossy,
however, even at the highest quality settings.[7] Because of this, JPEG images are usually three to
ten times smaller than the corresponding PNG or TIFF images. This makes JPEG a very appealing
choice for the Web, where small file sizes are important, but JPEG's compression method can
introduce visible artifacts such as blockiness, color shifts, and " "ringing" or ~“echos' near image
features with sharp edges. The upshot is that JPEG is a poor choice for intermediate saves during
editing, and for web use it is best suited to smoothly varying truecolor images, especially
photographic ones, at relatively high quality settings. It is not well suited to simple computer
graphics, cartoons, and many types of synthetic images. Figure C-3 in the color insert demonstrates

http://www.libpng.org/pub/png/book/fig_C3.html

this: notice the dirty (or “"noisy") appearance of the blue-on-white text, the faint yellow spots above
and below it, the darker blue spots in the upper half, and the hints of pink in the white-on-blue text.

[7] There are two forms of truly lossless JPEG, which are discussed briefly in Chapter
8, "PNG Basics', but currently they are amost universally unsupported. Thereis aso

arelatively new TIFF variant that uses ordinary (lossy) JPEG compression, but it is
likewise supported by very few applications.

Among the popular |ossless image-compression engines, PNG's engine is demonstrably the most
effective--even leaving aside the issue of prefiltering, which I'll discussin the next section. TIFF's
best classic compression method and GIF's (only) method are both based on an algorithm known as
LZW (Lempel-Ziv-Welch), which is quite fast and was used in the Unix utility compress and in the
early PC archiver ARC. PNG's method is called deflate, and it is used in the Unix utility gzip (which
supplanted compress in the Unix world) and in PKZIP (which replaced ARC in the early 1990s as
the preeminent PC archiver). Unlike LZW, deflate supports different levels of compression versus
speed--adid, if you will. At itslowest setting,[8] deflateis as fast as or faster than LZW and
compresses roughly the same; at its highest setting, deflate is considerably slower but achieves
noticeably better compression. (Decompression speed is essentially unaffected by the compression
level, except insofar as aless compressed image may take more time to read from network or disk.)
The deflate algorithm is described in more detail in Chapter 9, "Compression and Filtering”.

[8] Actually I'm referring to deflate's second-lowest compression setting (" level 17);
the very lowest setting (" level 0") is uncompressed. Sadly, the dial only goesto 9, not
11.

1.2.4.1. Compression filters

Compression filters are away of transforming the image data (without loss of information) so that it
will compress better. Each row in the image can have one of five filter types associated with it;
choosing which of the five to use for each row is amost more of ablack art than a science.
Nevertheless, at least one reasonably good algorithm is not only known but is also described in the
PNG specification and isimplemented in freely available software. Other algorithms are likely to
perform even better, but so far this has not been an active area of research.

By way of example--admittedly an extreme case--a 512 x 32,768 image containing all 16,777,216
possible 24-bit colors compressed over 300 times better with filtering than without. The
uncompressed image was 48 MB in size; the compressed but unfiltered version was around 36 MB;
but the filtered version (using the " “reasonably good algorithm" referred to earlier) was only 115,989
bytes (0.1 MB). And aversion created by trying multiple filtering approaches was a mere 91,569
bytes, for atotal compression ratio of 550:1 and an improvement over the unfiltered version of more
than 400 times. Keep in mind that we're talking about completely |ossless compression here. Y ow.

Filtering is also described in more detail in Chapter 9, "Compression and Filtering".

1.2.4.2. Compression oopers

Despite PNG's potential for excellent compression, not all implementations take full advantage of
the available power. Even those that do can be thwarted by unwise choices on the part of the user.

The most harmful mistake from the perspective of file size and apparent compression level is
mixing up PNG image types. Specifically, forcing an application to save an 8-bit (or smaller) palette
Image as a 24-hit truecolor image is not going to result in asmall file. This may be unavoidable if
the original has been modified to include more than 256 colors (for example, if a continuous
gradient background has been added or another image pasted in), but many images intended for the
Web have 256 or fewer colors. These should aimost always be saved as pal ette-based images.

Another ssimple mistake is creating interlaced images unnecessarily. Interlacing is a great benefit to
users waiting for large images to download, but on small ones such as buttons and icons, it makes
little difference. From a compression perspective, on the other hand, interlacing can have a
significant impact, especially for small images. Compression works best where pixels are similar or
identical, which is often the case in localized regions, but PNG's two-dimensional interlacing
scheme mixes up pixelsin an “unnatural" order that can destroy any compressor-friendly patterns.

Another ““unnatural” image modification is standard JPEG compression. The echoes (or ringing) |
mentioned earlier are amost never a good thing from PNG's point of view, regardless of their visual
effect. For example, a blue image with white text could be saved natively as atwo-color (1-bit)
palette PNG. After JPEG compression, however, there will be awhole range of blues and whitesin
the image, and possibly even hints of some other colors. The image would then have to be saved as
an 8-bit or even a 24-bit PNG, with obvious consequences for the file size. Bottom line: don't
convert JPEGs to PNGs unless there is absolutely no alternative. Instead, start over with the original
truecolor or grayscale image and convert that to PNG.

On the programmer's side, one common mistake is to include unused palette entriesin aPNG
Image, which again inflates the file size. This error is most noticeable when converting tiny GIF
images (bullets, buttons, and so on) to PNG format; these images are typically only 1,000 bytes or
S0 in size, and storing 256 3-byte pal ette entries where only 50 are needed would result in over 600
bytes of wasted space. PNG's support for transparent palette images, which involves a secondary
“palette” of transparency values that mirrors the main color palette, can also be misused in this way.
Because all palette colors are assumed to be opaque unless explicitly given transparency, well-
written programs will reorder the palette so that any transparent entries come first. That allows the
remainder of the transparency chunk, containing only opague entries, to be omitted.

Another common programmer mistake is to use only one type of compression filter, or to vary them
incorrectly. As noted earlier, compression filters can make a dramatic difference in the
compressibility of theimage. However, thisis not afeature that users need to know much about. For
applications such as Adobe Photoshop that do allow users to play with filters, the best approach isto
turn off filters for palette-based images and to use dynamic filtersfor all other types.

Finally, the low-level compression engine itself can be tweaked to compress either better or faster.

Usually “"best compression” is the preferred setting, but an implementor may choose to use an
intermediate level of compression in order to boost the interactive performance for the user. In
genera, the difference in file size is negligible, but there are rare cases in which such a choice can
make a big difference.

A more detailed list of compression tips for both users and programmersis presented in Chapter 9,
"Compression and Filtering".

1.2.5. Summary of Usage
Table 1-1 summarizes the sorts of tasks for which PNG, JPEG, GIF, and TIFF tend to be best

suited; question marks indicate debatable entries. (Keep in mind that there are always exceptions,
though.)

Table 1-1. Comparison of Typical Usage for Four Image Formats

PNG |GIF [JPEG [TIFF
Editing, palette image, fast saves v v v
Editing, truecolor image, fast saves v v
“Final" edit, best compression v
Editing, maximal editor portability ? ? ?
Web, truecolor image, no transparency v
Web, palette image, no transparency v v
Web, image with ~“on/off" transparency v v
Web, image with partial transparency v
Web, cross-platform color consistency v
Web, animation v
Web, maximal browser portability ? v v
Web, smallest possible images v v

Several things are worth noting here. Thefirst isthat TIFF is not at all suited as aweb format,
simply because it is not supported by any major browser. (Thiswill not be a big surprise to the web
designersin the audience.) Even as an editing format, TIFF's main strength is its speed. With regard
to portability between image-editing apps, the facts are alittle murkier, however. GIF traditionally
has been the best-supported format due to its simplicity, but a number of shareware and freeware
applications have dropped support due to patent-licensing issues. TIFF has been widely supported,
too, but it has also been widely cursed for itsincompatibilities among apps. And PNG, of coursg, is
still relatively new. By now it is supported by most of the main image editors, but some of its
features (such as 48-bit truecolor) are often supported as read-only capabilities or ignored altogether.

The choice of aweb format depends amost entirely on what features are required in the image.
Transparency automatically rules out JPEG; partial transparency rules out GIF, as well. For
animation, GIF isthe only choice. For opaque, photographic images, JPEG is the only reasonable
choice--its compression can't be beat. The truly critical issue, however, is portability across
browsers. GIF and JPEG are relatively safe bets, but what about PNG? By late 1997, it was
supported (at least minimally) in virtually all browsers; Microsoft's Internet Explorer 4.0 and
Netscape's Navigator 4.04 finally got native PNG support in October and November 1997,
respectively.[9] But gamma correction was supported only by Internet Explorer, and PNG
transparency was almost unusable. At the time of thiswriting, Navigator 5.0 is still unreleased, and
|E 5.0 for Windows is unchanged from version 4.0. But there are strong indications that the Big
Two will finally support both gamma and full alpha-channel transparency in their next major
releases.

[9] Most other web browsers have supported PNG natively since 1995 or 1996.

Of course, that begs the question of when it is safe to start using PNG on the Web. In theory, the
extended OBJECT tag in HTML 4.0 provides the means to do so immediately. OBJECT isa
““container" in HTML parlance, similar to FONT tags or BLOCK QUOTE; it affects the stuff
inside it, between the <OBJECT> and </OBJECT > tags--including other (nested) OBJECTSs.
Unlike most container tags, however, OBJECT srefer to their own data (as part of the <OBJECT >
tag itself), and this can include images. In fact, one can think of an OBJECT as an extremely
enhanced |M G tag. Whereas IM G refersto a single datatype (just images) and can display a small
amount of plain text if the image can't be rendered (viathe AL T attribute), OBJECT s can refer to
numerous datatypes (images, VRML, Shockwave, Java applets, and so on) and can display arbitrary
HTML if their main datatype cannot be rendered (via the contents of the OBJECT container). Thus,
browsers peel OBJECT blocks like onions, first trying to render the outermost layer and moving
inward until they find something they can handle. As soon as they find something to render, the
remainder of the block is discarded. (Thisisthe sense in which the inner stuff is " affected”: it may
be completely ignored. Indeed, only one layer is not ignored...at least according to the HTML 4.0
specification.)

So the preferred approach for PNG imagesis ssimply to wrap an OBJECT tag around an old-style
IM G tag, where the OBJECT refersto the PNG and the IM G refers to a JPEG or GIF version of
the same image. I'll provide some concrete examples of thisin Chapter 2, "Applications. WWW
Browsers and Servers', Applications. WMV Browsers and Servers. Newer browsers that support
both PNG and OBJECT will render the PNG in the outer OBJECT, ignoring the IM G tag. Older
browsers will either ignore OBJECT as an unknown tag or else parse it but recognize that they
cannot render the PNG; either way, they will use the GIF or JPEG from theinner IM G tag, or the
text inthe ALT attribute if they do not support images.

At least, that's the theory. The main problem with this approach is that no version of Navigator or
Internet Explorer up through the latest 4.x releases handles OBJECT tags correctly. Both browsers
will attempt to find a plug-in to handle an OBJECT image; lacking that, they will either render the
inner IMG or fail entirely. I'll ook at thisin more detail in Chapter 2, "Applications. WWW

Browsers and Servers".

But plug-in oddities notwithstanding, the | M G-within-an-OBJECT approach works moderately
well now and will only get better as browsers improve their conformance with WWW standards and
asthe need for external PNG plug-ins diminishes. Indeed, most of the images on the Portable
Network Graphics home site are referenced in this manner. Asfor referring to PNG images directly
in old-style IM G tags, which is more commonly thought of as "using PNG on the Web"--that
depends on the images and on the target audience. For example, the Acorn home site already uses
PNG images in places; their audience islargely Acorn users, and Acorn Browse has perhaps the
best PNG support of any browser in the world. But sites targeted at the average user running
Navigator or Internet Explorer must keep in mind that any given release of the Big Two browsers
achieves widespread use only after ayear or so, and even then, alarge percentage of users continue
to use older versions. From a PNG perspective, this means that late 1998 was about the earliest it
would have been reasonable to begin using | M G-tag PNGs on general-purpose sites. Sites that
would like to make use of PNG transparency or gamma support will have to wait until about a year
after the 5.0 releases occur, which presumably means sometime in the year 2000. (PNG as the
Image Format of the New Millennium[10] has anice ring to it, though.)

[10] That would be the millennium of four-digit years beginning with the numeral
—2," which, of course, iswhat everyone will be celebrating on New Y ear's Eve, 1999.
(The Third Millennium is the one that starts on January 1, 2001.)

1.3. Case Study of a PNG-Supporting Image Editor

Software development tends to be a dynamic and rapidly changing field, and even periodicals have
trouble keeping up with what is current. To attempt to do so in a book--even one that uses the
phrase ""at the time of thiswriting" as often as | have here--borders on the ridiculous. Nevertheless,
given PNG's unique feature set and its unfamiliarity to many of those who could make the best use
of those features, | feel that it isworth the risk to explore in depth an application that appearsto
have, as of early 1999, the best PNG support of anything on the market: Macromedia's Fireworks
1.0, available for 32-bit Windows and Macintosh. (Version 2.0 was released while this book wasin
the final stages of production; information about it is noted wherever possible, but | did not have
timeto test it.)

Fireworks is an image editor with a feature set that rivals Adobe Photoshop in many ways, but with
far more emphasis on web graphics and less on high-end printing support. In this, it is closer to
Adobe ImageReady, a web-specific application intended to tune image colors and optimize file
sizes. I'll come back to Photoshop and ImageReady in Chapter 4, "Applications. Image Editors".

1.3.1. PNG Feature Support in Fireworks

Fireworks 1.0 supports a good range of PNG features and image types, and it truly shinesin its
handling of transparency--indeed, its native internal format is 32-bit RGBA (truecolor with afull 8-
bit alpha channel) for all images, and it can save this format, too. In addition, ordinary single-color
(GlF-like) transparency is supported in both pal ette-based and RGB image types, and PNG's unique

""RGBA palette" mode is also supported. Nor is this support limited to recognizing when an image
contains 256 or fewer color-transparency combinations; with a suitable choice of export options,
Fireworks can (within [imits) quantize and optionally dither even atruecolor image with a nontrivial
alphachannel to an 8-bit RGBA -pal ette image.

There are a couple of notable omissions from Fireworks's list of PNG features, however. The most
painful isthe lack of support for gamma and color correction; images created by the application will
vary in appearance between different display systemsjust as much as any old-style GIF or JPEG
image would, appearing too bright and washed out on Macintosh, SGI, and NeXT systems or too
dark on just about everything else. Version 1.0 also cannot write interlaced PNGs, even though it
provides a seemingly valid checkbox option for some PNG output types. Version 2.0 addresses this
problem, but only in avery limited way: the original planswere to include a ""hidden" preference
that can be changed so that all exported PNG images are interlaced (instead of none of them).[11]

[11] A tight release schedule was the main reason for the lack of areal fix in version
2.0; Macromedia engineers were fully aware of the deficienciesin the workaround
and are expected to address them in the next release.

As one would expect of a graphics application targeted at the Web, Fireworks doesn't preserve 16-
bit samples, athough it will read 16-bit PNG images (for example, from a medical scan) and
convert the samples to 8 bits. Slightly more surprising isits lack of support for true grayscale PNGs,
Fireworks saves these as pal ette-based files, with a palette composed entirely of grayscale entries.
Thisis aperfectly valid type of PNG file, but the required pal ette adds up to 780 bytes of
unnecessary overhead, a distinct liability for icons and other tiny images. On the other hand, a

pal ette-based grayscale image with transparency can include a colored pal ette entry to be used as the
background color, something that PNG does not support for true grayscale files.

In addition to supporting PNG as an output format, Fireworks actually uses PNG as its native file
format for day-to-day intermediate saves. Thisis possible thanks to PNG's extensible " chunk-
based" design, which allows programs to incorporate application-specific datain awell-defined
way. Macromedia has embraced this capability, defining at least four custom chunk types that hold
various things pertinent to the editor. Unfortunately, one of them (pRVW) violates the PNG naming
rules by claiming to be an officially registered, public chunk type, but this was an oversight and
should be fixed in version 2.0.

Although it is entirely possible to use the intermediate Fireworks PNG filesin other applications,
including on the Web (in fact, one of the "~ “frequently asked questions” on the Fireworks web site
specifically mentions Netscape, Internet Explorer, and Photoshop), they are not really appropriate
for such usage. One reason is that the native PNG format reflects Fireworks's internal storage
format, which, as mentioned earlier, is 32-bit RGBA. Even if the image contains only two colors
and no transparency, it is saved as a 32-bit PNG file. That certainly doesn't help the old compression
ratio any, but the potential for expansion due to the image depth is often overshadowed by that due
to the custom chunks, several of which are huge.[12] Thanks to these chunks (which are
meaningless to any application but Fireworks), the intermediate PNG files can easily be larger than
a completely uncompressed RGBA image would be.

[12] In a590k tutorial image from Macromedia's web site, 230k is due to image data;
360K is due to custom chunks.

Of course, Macromedia never intended for users to treat the native Fireworks PNG files as the fina
output format. The fully editable " “fat" PNGs are produced by the Save menu option; to make final,
highly compressed PNGs for web usage, use the Export option. While this might seem like an odd
approach to someone unfamiliar with modern image editors, its only real difference from that of
applications like Photoshop or Paint Shop Pro is the fact that the intermediate format is widely
readable even by low-end apps and browsers (which is not the case for Photoshop's native .psd
format or Paint Shop Pro's .psp format). For an in-house network with high-speed links--for
example, in adesign studio--this allows images to be easily browsable over the intranet, yet retain
al of their object-level editing attributes.

1.3.2. Invoking PNG Features in Fireworks

Because Fireworks'sinternal format is 32-bit (i.e., truecolor plus afull alpha channel), working with
transparency is as easy as opening an image and applying the Eraser tool to its background. For
example, suppose you have a photograph of someone and want to focus on the face by making
everything else transparent, leaving behind an oval (or at least roundish) portrait shot with a soft
border. There are several ways to accomplish this, but the following prescription is one of the
simplest:

1. Open the origina image (File — Open).

2. Pick the background image (M odify — Background I mage).

3. Double-click on the Lasso tool (right side of tool palette, second from top).

4. Inthe Tool Options pop-up, pick Feather and aradius, perhaps 25.

5. Draw aloop around the face of the subject.

6. Invert the lasso selection so that the part outside the loop gets erased (Select — Inver se).

7. Erase everything outside the loop via Edit — Clear (or do so manually with the Eraser tool).

Note that the Lasso tool's feathering radius is subtly different from that available via the Select
menu. The latter isa smoothing factor for the Lasso's boundaries/; in this example, with an inverted
selection so that the image's rectangular boundary is aso lassoed, changing the value through the
menu will round off the corners of the dashed Lasso boundary and may merge separated parts of it
together. The feathering radius on the Tool Options pop-up affects only the width of the partially
transparent region generated along the Lasso's boundary.

In any case, that's al thereisto creating an image with transparency. The next stepisto saveit asa
PNG file. As| just noted, the Save and Save As... menu items save the compl ete Fireworks

T project,” retaining information about the objects in the image and the steps used to create them, at
aconsiderable cost infile size. It is generally worthwhile to save a copy that way in case further
editing is needed later. But for publishing the image on the Web, it must be exported, and thisis
where it can be converted into a palette-based image with or without transparency--or left as a 32-
bit RGBA image, but without all of the extra editing information included.

First let's consider the case of exporting the image as afull RGBA file. Here are the available
options in the Export dialog box:

. Format: PNG
. Bit Depth: Millions +Alpha (32 bit)

Fireworks 1.0 provides no option to interlace the image, so the preceding steps represent the
complete list of possibilities for this case. Things get more interesting when it comes to pal ette-
based (or indexed-color) images. Then one has the option of choosing either single-color
transparency or the nicer RGBA -palette transparency, in addition to a number of other palette-
related options. Here are the options for the RGBA -palette case:

. Format: PNG

. Bit Depth: Indexed (8 bit) (thisis the default)

. Palette: WebSnap Adaptive (default) or Adaptive
. Dither: Check on or off

. Transparency: Alpha Channel

. Interlaced: Checkbox may be checked but does nothing in version 1.0

v [E gpoil Frayiaw

. o [PFre Savwd Tait
Dzl I File | dnimadion | Bl _!E&'ul:dul_'; | il s

: |H"-I|_’;. ;I = 2L T st Mtbps
F Dptimized

indes BT
LISrepatenty. | &pha Chovved =
F £ A4
™ Iniedacsd 4
[val =" [T Bl
| |w] wle]| = A Soved oo || Evomt | Coced |

Figure 1-5: Fireworks Export Preview window showing RGBA-palette options. (Click on
image for full-scale version.)

Note that the effects of the current options are reflected in the preview image to theright (asin
Figure 1-5), which shows a limitation in Macromedia's original implementation of RGBA-pal ette
mode. In particular, only four levels of alpha are used, two of which are either complete
transparency or complete opacity (the other two represent one-third and two-thirds transparency),
which results in very noticeable banding effectsin Figure 1-6.

http://www.libpng.org/pub/png/book/figs/png.0105.big.png

Figure 1-6: Example of Fireworks RGBA-palette image showing strong banding.

The four-level approach works quite well for anti-aliasing (that is, preventing “"jaggies" on curved
elements such as circles or text), which effectively involves a one-pixel-wide band of variable
transparency lying between regions of complete transparency and complete opacity. But the
previous example uses a 25-pixel-wide feathering radius, and the two partial-transparency bands
both show up extremely well and have sharply defined edges even if dithering is turned on.
Unfortunately, that rather defeats the purpose of alpha transparency in this case; the 32-bit versionis
the only alternative. Fortunately this was one of the areas that got fixed in version 2.0, and judging
by one test image, the results are spectacular.

Very nearly the same procedure works if you want to save the image with single-color, GIF-like
transparency; instead of picking Alpha Channel from the list of optionsin the Transparency pull-
down box, thistime pick Index Color. Doing so once will alocate a single palette entry, not used
elsawhere in the image, to act asthe fully transparent color. A strange feature of version 1.0 isthat
the Transparency pull-down will still indicate Alpha Channel the first time Index Color is chosen.
Choosing it again will causeit to " stick," but at a cost: the entry chosen for transparency, which
generaly seemsto be the last one (usually black), may now be used in the opague parts of the image
as well asthe transparent regions. It is not clear whether thisis abug or an intentional feature of
some sort, but it is fully reproducible. Figure 1-7 shows an example.

v Exnoil ey

Fhig Ereves i Saued Selinge

Opfians |Fie | Arimation | Piapehea ihcakes | |-
:F"E ﬂ _Ll ZAEN 7 men DI Eh b
F Opiimized
Bl Dot [l dlecsied 12 Bi) =l
Bk [eepie %] [5]
Dithes: = [=] 256
Y e ol

P00 GO0 B D02 Hew: OF0ED indey: 255

Tivapaency [[EATET SRR |
=5 & A A
T niedaced |
FEI [= |EEI|EE||
| "|H| “'l”l mp R Espott Cancel |

Figure 1-7: Fireworks Export Preview after choosing Index Color transparency twice,
showing transparency (white artifacts) in opaque regions. (Click on image for full-scale
version.)

As with transparent GIFs, single-color PNG transparency requires that the image be displayed
against a suitable background color--white, in our example--to look good. The opposite case,

displaying against black, is shown in Figure 1-8.

http://www.libpng.org/pub/png/book/figs/png.0107.big.png

Figure 1-8: Example of a Fireworks image with single-color transparency, displayed
against the “wrong" background.

1.3.3. Analysis of Fireworks PNG Support

| should note afew caveats about the implementation of indexed-color images and transparency in
Fireworks 1.0. For example, the dither checkbox seems to have very little effect in any of the palette
examples, and no effect at al on the alpha channel in RGBA images; in fact, the export ~ wizard"
explicitly notes this and actually recommends against its use. And the palette-size pull-down seems
to have been borrowed from the GIF user interface--it allows only power-of-two palette sizes (e.g.,
64, 128, 256) even though PNG's pal ette chunk can have any number of entries from 1 to 256. The
final jump is particularly abrupt; it may happen that 160 colorsis the perfect trade-off between
quality and image size, but such an image would have to be saved with either 128 or 256 colors.

With regard to transparency, the placement of transparent entries in the Export window's palette
view is directly reflected in the PNG fil€'s palette, whether Alpha Channel or Index Color is
selected. Thisisregrettable, since the transparent colors are scattered all over the palette in the alpha
case. The single-color case is even worse--the transparent color isthe very last entry in the palette.
As noted earlier, the preferred approach isto put al of the transparent entries at the beginning of the
pal ette so that the redundant information about opague colors can be eliminated from the
transparency chunk. For a photographic image saved in palette format with single-color
transparency, the cost is 127 or 255 bytes of wasted space.

PNG also supports asingle-color (or single-shade), — cheap" transparency mode that works with
truecolor and grayscale images and avoids the need for afull apha channel, but there is no way to
invoke this feature in Fireworks. The lack of any grayscale support other than pal ette-based means
that a gray image with an alpha channel must be saved either as RGBA, doubling its size, or asan
indexed image with transparent palette entries, generally with some dataloss. (The loss comes about
because there are only 256 possible gray+al pha combinations in palette mode, whereas a full gray
+al pha image supports up to 65,536 combinations.) There is also no support for a PNG background-
color chunk.

Images that already have transparency are preserved quite well (recall that everything is stored
internally as 32-bit RGBA), and Fireworks provides quite a number of options beyond what
described earlier for adding or modifying transparency. One in particular that could be used for
unsharp masking and other special effectsisinvoked viathe Xtras menu. With the background
Image selected, choose Other — Convert to Alpha, which first converts the image to grayscale and
then to an alpha mask. The lightest parts of the image become the most transparent, while the black
parts remain opagque.

Fireworks's compression is reasonably good. Even though there are no user options to adjust the
compression level, the default level isagood trade-off between speed and size. Truecolor images
tend to be compressed within afew percent of the best possible size, while indexed-color images
may see upward of 15% improvement when run through an optimization tool such as pngcrush

(discussed in Chapter 5, "Applications. Image Converters").

Fireworks also does a good job preserving PNG text annotations, albeit with a quirk: it removes all
of the line breaks (" "newlines"), for some reason. (Oddly enough, GIF and JPEG comments are not
preserved.) The program adds its own Software text chunk; as one might expect, any incoming
Image that already includes such a chunk will find it replaced. Thisisaminor breach of PNG
etiquette, but one that helps keep tiny image files from getting noticeably bigger because of text
comments.

Fireworks 1.0 also adds a Creation Time text chunk to most images it exports. Thisis not really a
problem, per se; what is unusual isthat the chunk's contents are invariably " Thu, May 7, 1998"--a
date that has nothing to do with any of the images or even with the release of Fireworks 1.0. See
also Chapter 11, "PNG Options and Extensions” for adiscussion of why "creation time" is afuzzy
concept. Version 2.0 was to have corrected this, replacing the Creation Time text chunk with PNG's
officially defined timestamp chunk, tIME, but | did not have a chance to verify that. ThetiIME
chunk indicates the time of last modification, which is amore precisely defined concept and one
that is appropriate for an image editor.

As noted earlier, the ability to save interlaced PNG images will first be implemented as a global
preference setting. As of January 1999, the plan was for this to require editing version 2.0's
preferences file. Under Windows, thisfile is called Fireworks Preferences.txt and isin the
Fireworks installation directory (C:\Program Files\Macromedia\Fireworks, by default); on the
Macintosh, it is called Fireworks Preferences and is found in the System Folder : Preferences folder.
Open the filein any text editor and find the line:

(Export PngW t hAdanv¥I nterl aci ng) (fal se)
Change this to the following to make all exported images interlaced:
(Expor t PngW t hAdan¥I nterl aci ng) (true)

This change will take effect only after Fireworks 2.0 is restarted. Fortunately, later releases are
expected to have anormal checkbox option.

1.3.4. Concluding Thoughts on Fireworks

L est the preceding detailed list of caveats and oddities |eave the reader with the impression that
Fireworks's PNG support isnot asgood as | initially suggested, let me reiterate that it is, in fact,
quite good overall. Version 2.0's improved support for RGBA -pal ette images puts Fireworks far
ahead of any other image editor. The inability to set PNG interlacing is regrettable but is being
addressed; lack of gamma support is the only truly unfortunate design choice, particularly for a
product with both Windows and Macintosh versions. With luck, both gamma and color correction
will become core features of the next major release.

- -

PREVIOUS CONTENTS NEXT

- PREVIOUS CONTENTS NEXT o

Chapter 2. Applications: WWW Browsers and
Servers

Contents:

2.1. WWW Browsers
2.1.1. Netscape Navigator
2.1.2. Microsoft Internet Explorer
2.1.3. Opera
2.1.4. Acorn Browse
2.1.5. Arena
2.1.6. Amaya
2.1.7. Other Browsers
2.1.7.1. Amiga
2.1.7.2. Acorn
2.1.7.3. BeOS
2.1.7.4. Macintosh
2.1.7.5. NeXTStep/OpenStep
2.1.7.6. OS2
2.1.8. Client-Side Workarounds: The OBJECT Tag
2.2. WWW Servers
2.2.1. "Standard" Servers
2.2.2. Internet Information Server
2.2.3. Server-Side Workarounds: Content Negotiation
2.2.3.1. Apache variantsfiles
2.2.3.2. Apache MultiViews

Since the Web is where some of PNG's more uncommon features--al pha, gamma and color
correction, two-dimensional interlacing--are most apparent and useful, it makes sense to begin our
coverage of PNG-supporting applications with alook at web browsers and web servers.

Like all of the application chapters, this one has aged a great deal since 1999--at least, the browser
part of it has. (The status of web serversis virtually unchanged.) With the exception of the final
rowsin Tables 2-1 and 2-3--which describe the level of PNG support in Netscape Navigator and
Microsoft Internet Explorer, respectively, something that continues to be of particular interest to
readers of this book--1 have not updated the text in any way. However, the PNG web site is updated

regularly and includes both a general summary of browser status and a complete list of PNG-

http://www.libpng.org/pub/png/

supporting browsers:

http://ww. | i bpng. org/ pub/ png/ pngst at us. ht m #br owser s
http://ww. | i bpng. org/ pub/ png/ pngapbr. ht m

It complements the more detailed and explanatory information presented in this chapter.

2.1. WWW Browsers

Although there are dozens of web browsers available, most of which have supported PNG since
1995 or 1996, for the vast mgjority of users and webmasters there are only two that count: Netscape
Navigator and Microsoft Internet Explorer. Collectively referred to as “"the Big Two," these
browsers' level of support for any given feature largely determines the viability of said feature. PNG
support is agood example.

2.1.1. Netscape Navigator

Netscape's Navigator browser, which originally shipped standalone but more recently has been
bundled as part of the Communicator suite, supplanted NCSA Mosaic late in 1994 as the standard
browser by which all others were measured. Version 1.1N was released in the spring of 1995, at
roughly the same time as the frozen PNG specification, but despite the hopes and efforts of the PNG
developers, the first Navigator 2.0 betas shipped later that year with animated GIF support rather
than PNG. Navigator 2.0 did offer the possibility of platform-specific, third-party PNG support via
Netscape's new plug-in interface, but only for Windows and Macintosh. Alas, even that was fatally
flawed from an image-support perspective: Navigator's native image-handling code (viathe HTML
I MG tag) had no provision for handing off unknown image types to plug-ins. That meant that even
iIf PNG plug-ins were written for both supported platforms, and even if amajority of users
downloaded and installed a plug-in, it would be useless for standard HTML--only pages using
Netscape's proprietary EM BED tag would invoke the custom code. Moreover, Navigator 2.0 plug-
INs were given no access to the existing page background, which meant that PNG transparency
would be completely ignored.

The Navigator 3.0 betas in 1996 extended plug-in support to include Unix platforms as well, but
they fixed none of the fundamental problemsin the plug-in API.[13] The interface was considerably
revamped in 1997 for the 4.0 betas, however, finally allowing transparency support via something
called a windowl ess plug-in--though only for the Windows and Macintosh platforms. Support was
also added for images referenced viathe new HTML OBJECT tag. But the basic lack of a
connection between plug-ins and the native | M G-tag code persisted, and this barrier extended to the
new OBJECT -handling code as well--even a JPEG or GIF imagein an OBJECT tag would fall
unless an appropriate plug-in were found. Should the outer OBJECT happen to be a PNG,
Navigator would fail to render even theinner GIF or JPEG in the absence of a PNG plug-in. Unlike
IM G tags, Navigator required OBJECT tags to include the otherwise optional HEIGHT and
WIDTH attributesto invoke aplug-in. In at least one version, the browser would ignore not only an
undimensioned OBJECT but also all subsequent dimensioned ones.

http://www.libpng.org/pub/png/pngstatus.html#browsers
http://www.libpng.org/pub/png/pngapbr.html

[13] Applications Programming Interface, the means by which one piece of code (in
this case, the plug-in) talks to another (in this case, the browser). APIs are also how
programs request services from the operating system or the graphica windowing
system.

But in November 1997, ayear after the World Wide Web Consortium (W3C) officially
recommended PNG for web use, Netscape released Navigator 4.04 with native PNG support--that
IS, it was at last capable of displaying PNG images referenced in HTML IM G tags without the need
for athird-party plug-in. Unfortunately, versions 4.04 through 4.51 had no support for any type of
transparency, nor did they support gamma correction, and their handling of OBJECT tags remained
broken. At least afew of these releases, including 4.5, had a bug that effectively caused any PNG
Image served by Microsoft Internet Information Servers to be rendered as the dreaded broken-image
icon. (I'll come back to thisin the server section later in this chapter, but the bug isfixed in
Navigator 4.51.) But the 4.x versions did support progressive display of interlaced PNGs, at least.

Concurrent with the later Communicator 4.0 releases, on March 31, 1998, Netscape released most
of the source code to its development version of Communicator, nominally a pre-betaversion "5.0."
Developers around the world promptly dug into the code to fix their favorite bugs and add their pet
features. One nice surprise was that the so-called Mozilla sources already contained a minimal level
of transparency support. There were two main problems with it, however: the transparency mask for
all but the final pass of interlaced images was scaled incorrectly--a minor bug, hardly unexpected
given the early stage of development--and the transparency was either fully off or fully on for any
given pixel, regardless of whether multilevel transparency information (an alpha channel) was
present. The latter problem proved to be more serious than it sounded. Because of the way Mozilla's
layout engine worked, at any given moment the code had no idea what the background looked like;
instead, it depended on the local windowing system to composite partly transparent foreground
objects with the background image(s). In other words, adding full support for alpha transparency
was not something that could be done just once in the image-handling code, but instead required
modifying the ““front end" code for each windowing system supported: at a minimum, Windows,
Macintosh, and Unix's X Window System, plus any new ports that got added along the way.

Difficult asit may sound, fixing Mozilla's (and therefore Navigator's) support for PNG alpha
channelsis by no means an insurmountable challenge. But in one of life'slittle ironies, the person
who initially volunteered to fix the code, and who thereafter nominally became responsible for it,
also somehow agreed to write this book. Alas, when push came to shove, the book is what got the
most attention. :-) But all is not lost; by the time this text reaches print, full alpha support should be
well on itsway into Mozillaand then into Navigator 5.0 as well.

Table 2-1 summarizes the status and level of PNG support in all of the major releases of Netscape's

browser to date. The latest public releases, Navigator 4.08 and 4.51, are available for Windows 3.x,
Windows 95/98/NT, Macintosh 68k and PowerPC, and more than a dozen flavors of Unix; the web
pageis at http://home.netscape.com/browsers/. Version 4.04 for OS/2 Warp is available only from

IBM's site, http://www.software.ibm.com/os/warp/netscape/.

http://home.netscape.com/browsers/
http://www.software.ibm.com/os/warp/netscape/

Table 2-1. PNG Support in Netscape Navigator and Mozlla

Version PNG Support? L evel of Support

NN 1.x No N/A

NN 2.x Plug-in (Win/Mac only) |[EM BED tag only; no transparency
NN 3.x Plug-in (al platforms) |EMBED tag only; no transparency

EMBED or OBJECT; transparency
possible on Windows and Macintosh

NN 4.04-4.8 Native (all platforms) |IMG; no transparency
Moz 4/1998 - 3/2000 |Native (al platforms) |IMG; binary transparency

NN 6.x, NN 7.x, Moz
1.x

NN 4.0-4.03 Plug-in (al platforms)

Native (al platforms) |IMG; full alpha transparency

Table 2-2 summarizes the PNG support in anumber of third-party plug-ins. Note that the Windows
QuickTime 3.0 plug-ininstallsitself in every copy of Navigator and Internet Explorer on the
machine, taking over the image/png mediatype in the process. This effectively breaks the browsers
built-in PNG support (if any) and may be true of other plug-ins as well. To remove the QuickTime
plug-in from a particular instance of a browser, find its plug-ins directory--usually called Plugins--
and delete or remove the file npgtplugin.dll (or move it elsewhere).

Table 2-2. PNG Support in Netscape Plug-ins

Plug-in
Name Platform(s) API Level of Support
L evel

No transparency, no gamma, no

PNG Live 1.0 Win 9x/NT, Mac PPC |2.0 L
progressive display

Full transparency if no
PNG Live 2.0b5 Win 9x/NT 4.0 background chunk, broken
gamma, progressive display

Win 9x/NT, Mac 68k/ No transparency, no progressive

QuickTime 3.0 PPC 2.0 display

PNG Magick 0.85 |Unix/X 30 |Notransparency, no progressive
display, requires ImageMagick

G. Costaplug-in 0.9 [0S/2 20 |Notransparency, progressive

display

Netscape's online programming documentation for plug-ins may be found at http://devel oper.
netscape.com/docs/manual s’‘communicator/plugin/. The PNG Live plug-in, versions 1.0 and 2.0b5,

http://developer.netscape.com/docs/manuals/communicator/plugin/
http://developer.netscape.com/docs/manuals/communicator/plugin/

Is available from http://codelab.siegel gal e.com/solutions/png_index.html and http://codel ab.

siegel gale.com/solutions/pnglive2.html, respectively.[14] Apple's QuickTime is downloadable from
http://www.apple.com/quicktime/. Rasca Gmelch's PNG Magick plug-inis available from http://
home.pages.de/~rasca/pngplugin/, and the ImageMagick home page is at http://www.wizards.
dupont.com/cristy/ImageMagick.html. And Giorgio Costa's OS2 plug-in can be downloaded
directly from http://hobbes.nmsu.edu/pub/os2/apps/internet/www/browser/npgpng09.zip.

[14] The codelab site went offline in March 1999, and there has been no word from
Siegel and Gale whether this is permanent.

2.1.2. Microsoft Internet Explorer

Microsoft's web browser lagged Netscape's in features and performance through its first two major
releases, but with the release of Internet Explorer 3.0, general consensus was that it had largely
caught up. 1E 3.0 was the first Microsoft release to include support for Netscape-style plug-ins and,
In that manner, became the first release to support PNG in any way--though only on the Windows
platform. But with the release of thefirst I1E 4.0 betain the spring of 1997, followed by the official
public release of version 4.0 in October 1997, Microsoft took the lead from Netscape, at least in
terms of PNG support. |E 4.0 for Windows incorporated native PNG support, including progressive
display, gamma correction, and some transparency. The latter was an odd sort of binary
transparency, however, and apparently applied only to RGBA -pal ette images; images with afull
alpha channel were rendered completely opaque, always against alight gray background. For palette
Images, |E's threshold for deciding which pixels were opague and which were transparent was not
set at 0.3%, as the PNG specification somewhat unfortunately recommends, nor at 50%, as one
might intuitively expect, but instead at something like 99.7% opacity. That is, unless a given pixel
were completely opague, |E 4.0 would render it completely transparent. Needless to say, this
resulted in some odd and unintended rendering effects that could have been mitigated by dithering
the alpha channel down to a binary transparency mask.

Internet Explorer's handling of PNG imagesin HTML 4.0 OBJECT tagsis decidedly buggy. Like
Navigator, it will fail to render an OBJECT PNG with its native code, instead preferring to seek an
ActiveX plug-in of some sort. But | E 4.0 does not necessarily limit itself to its own plug-ins; it has
been observed to adopt Netscape plug-ins from elsewhere on the computer, and since it apparently
doesn't support the Navigator 4.0 plug-in AP, it fails on newer plug-ins such as PNG Live 2.0.
Even worse, when two (or more) OBJECT s are nested, |E 4.0 will attempt to render both images.

It is also noteworthy that Internet Explorer 4.0 cannot be used to view standalone PNG images, even
though it can do so if the images are embedded within aweb page with IM G tags. Presumably this
was simply an oversight, but it has ramifications for setting up the PNG media type within the
Windows registry.

Internet Explorer 5.0 for 32-bit Windows was released in March 1999, and in most respectsits PNG
support was unchanged from version 4.0. The inability to view standalone PNGs was fixed
(allowing IE 5.0 to be used as an ordinary image viewer), but in all other regards PNG support

http://codelab.siegelgale.com/solutions/png_index.html
http://codelab.siegelgale.com/solutions/pnglive2.html
http://codelab.siegelgale.com/solutions/pnglive2.html
http://www.apple.com/quicktime/
http://home.pages.de/~rasca/pngplugin/
http://home.pages.de/~rasca/pngplugin/
http://www.wizards.dupont.com/cristy/ImageMagick.html
http://www.wizards.dupont.com/cristy/ImageMagick.html
http://hobbes.nmsu.edu/pub/os2/apps/internet/www/browser/npgpng09.zip

appears to have stagnated. OBJECT PNGs are till only displayed if the ""Run ActiveX Controls
and Plug-ins" setting is enabled (under Tools — Internet Options — Security), even though it ends
up using the same internal PNG code as it does for IMG PNGs. Even worse, OBJECT PNGs are
given afat border, which results in the appearance of horizontal and vertical scrollbars around each
one, and there is no transparency support at all for OBJECTs. Asin IE 4.0, nested OBJECTs are
all rendered, side by side. With ActiveX disabled, IE 5.0 does revert to whatever IMG tag isinside
the OBJECTS, but not before it pops up one or two warning boxes every time it displays such a
web page. Its transparency support is unchanged; only pal ette images are displayed with
transparency, and the threshold for complete transparency is still set at 99.7% opacity.

Fortunately for Mac users, the development of Internet Explorer for Macintosh is handled by a
separate group, and the yet-unreleased version 5.0 reportedly will have complete support for alpha
transparency in PNG images. Of course, in the meantime, Mac fans are stuck with version 4.5,
which has no PNG support at all.

Official releases of IE 5.0 exist for Windows 3.x, Windows 9x/NT, and two flavors of Unix (Solaris
and HP-UX). PNG support in the Unix and 16-bit Windows versionsis reported to be similar to that
in the 32-bit Windows version.

Table 2-3 summarizes Internet Explorer's level of PNG support to date. The Internet Explorer home
pageis currently at http://www.microsoft.com/windows/ie/.

Table 2-3. PNG Support in Internet Explorer

Version |PNG support? L evel of Support

IE1Xx [No N/A

IE2.X |No N/A

IE3.x |Plug-in EMBED tag only; no transparency

IMG; binary transparency (palette images only)
with skewed threshold

IE4.5 [Plug-in (Macintosh only) |[EM BED tag only; no transparency

IE4.0 [Native (Win32; Unix?)

IMG; binary transparency (palette images only)
with skewed threshold

IE5.x |Native (Macintosh) IMG; full alpha transparency

IM G; binary transparency (palette images only)
with skewed threshold

IE5.x |Native (Win32)

IE6.x |Native (Win32)

2.1.3. Opera

Opera, the small-footprint, high-speed browser from Norway, is by some measures[15] the third
most popular browser for the Windows 3.x and 95/98/NT platforms. Native ports to the Amiga,

http://www.microsoft.com/windows/ie/

BeOS, Macintosh, OS/2, Psion, and Unix are also underway. Version 3.0 had no PNG support at all,
while version 3.5 supported it only through old-style Netscape plug-ins (i.e., with no transparency
support). Version 3.51, released in December 1998, includes native PNG support. Opera displays
PNG images progressively and does gamma correction, but like Navigator, it does not invoke its
internal image handlers for imagesin OBJECT tags. Transparency, unfortunately, is only partly
supported. Truecolor and grayscale images with alpha channels are rendered compl etely opague;
most palette images are rendered with binary transparency, although at least one pal ette-based
example exists in which the image is rendered without any transparency.

[15] BrowserWatch statistics, anyway (http://browserwatch.internet.com/stats/stats.
html/).

Operais available from the Opera Software home page, http://www.operasoftware.com/. News on
the non-Windows ports can be found at http://www.operasoftware.com/alt_os.html.

2.1.4. Acorn Browse

At the other end of the popularity spectrum--at least to judge by overall statistics--lies a browser
uniquein its stellar support for PNG features: Acorn Browse. Available only for Acorn computers
running RISC OS, Browse has always supported PNG and has offered full gamma and alpha-
transparency support since version 1.25. Not only that, but (take a deep breath now) it actually
supports full alpha transparency while doing replicating (blocky) progressive display of interlaced
PNGs on top of arbitrary backgrounds. That's quite a mouthful, but in ssimple terms it means that the
browser can display, in avery elegant manner, transparent, interlaced PNGs as they download.
From a programmer’s perspective it's even more impressive: consider that an opague pixel from an
early interlacing pass may get replicated and thereby hide background pixels that, due to
transparency, should be visible when the image is completely displayed. So extrawork is necessary
to ensure that parts of the background covered up by early interlacing passes are till available for
compositing during later passes. As of early 1999, there was no web browser in the world with
better PNG support than Browse. Unfortunately, most development on Browse itself ended latein
1998, as aresult of restructuring at Acorn; version 2.07 isthe latest and possibly the final release,
although the web page (http://www.acorn.com/browser) indicates that development ~will continue...

asa sparetime activity."

2.1.5. Arena

Arenawas the World Wide Web Consortium's early test bed for HTML 3.0 and Cascading Style
Sheets (CSS1). It aso became one of the first browsers to support alphatransparency in PNG
Images (possibly the very first), although this feat was somewhat diminished by the fact that it didn't
support background images at the time--except for its own ~"sandy" background. Nevertheless, it
was a useful browser for testing PNG images under Unix.

Subsequent to the release of beta-3b in September 1996, Arena development was taken over by
Y ggdrasil Computing, which managed roughly 60 beta releases over the course of 16 months. The

http://browserwatch.internet.com/stats/stats.html
http://browserwatch.internet.com/stats/stats.html
http://www.operasoftware.com/
http://www.operasoftware.com/alt_os.html
http://www.acorn.com/browser

browser never achieved 1.0 status, however, and development essentially ended in March 1998
(though afinal 0.3.62 release with minimal changes showed up in November 1998). Y ggdrasil's
Arenaweb pageis at http://www.yggdrasil.com/Products/Arena/, and old versions are still available

from the W3C's page at http://www.w3.org/Arend.

2.1.6. Amaya

Amaya replaced Arena as the W3C's test-bed browser in 1996 and has always included PNG
support. Unlike Arena, it runs under not only various flavors of Unix, but also Windows 95, 98, and
NT. Although it supports transparency, its implementation was still somewhat broken as of version
1.4; under Linux, it appeared to support only binary transparency, and that only for palette-alpha
Images (that is, images whose pal ette effectively consists of red, green, blue, and apha values).
Amaya 1.4's support for gamma correction also appeared to be incorrect but at least partially
functional. On the positive side--and not surprisingly--it handled OBJECT image tags completely
correctly, including those with other OBJECT s nested inside. Amaya is freely available for
download from http://www.w3.org/Amayd/.

2.1.7. Other Browsers

PNG support in other browsers varies considerably by platform. On the Amiga, it is ubiquitous,
thanks to a technological marvel known as datatypes (a kind of super-DLL that, among other things,
provides generic image support); but under operating systems like BeOS or Atari TOS, it isvirtually
nonexistent. The following sections list many of the known PNG-supporting browsers, sorted by
platform.

2.1.7.1. Amiga

Two datatypes provide PNG support for virtually every Amiga browser in existence: Cloanto's
(http://www.aminet.org/pub/aminet/util/dtype/PNG dt.Ilha) and Andreas Kleinert's (http://www.
aminet.org/pub/aminet/util/dtype/akPNG-dt.Iha). Cloanto made their first version of available
within months of the PNG specification freeze, thereby making the Amigathe very first platform to
support PNG in web browsers. Andreas's datatype at one time was considered to have better overall
PNG support, but the two datatypes appear to have comparable features as of early 1999.
Unfortunately, the datatype architecture itself currently precludes alpha transparency and
progressive display, but an operating system upgrade due in the second quarter of 1999 is expected
to add at least alpha support.

In the meantime, there are three Amiga browsers with native PNG support in addition to basic
datatype support: AWeb (http://www.xs4all.nl/~yrozijn/aweb), iBrowse (http://www.hisoft.co.uk/

amigal/ibrowse), and VoyagerNG (http://www.vapor.com/voyager). The first two claim to support

transparency, possibly including full alpha support. AWeb also does gamma correction, and all
three display PNGs progressively as they download.

2.1.7.2. Acorn

http://www.yggdrasil.com/Products/Arena/
http://www.w3.org/Arena/
http://www.w3.org/Amaya/
http://www.aminet.org/pub/aminet/util/dtype/PNG_dt.lha
http://www.aminet.org/pub/aminet/util/dtype/akPNG-dt.lha
http://www.aminet.org/pub/aminet/util/dtype/akPNG-dt.lha
http://www.xs4all.nl/~yrozijn/aweb
http://www.hisoft.co.uk/amiga/ibrowse
http://www.hisoft.co.uk/amiga/ibrowse
http://www.vapor.com/voyager

In addition to Browse, PNG is aso supported on the Acorn platform by ANT Fresco (http://www.
ant.co.uk/prod/inetbroch/fresco2.html/), ArcWeb (http://www.dsse.ecs.soton.ac.uk/~snb94r/
arcweb), and DoggySoft's Termite (http://www.dogqgysoft.co.uk/trweb.html/) and Webite (http://
www.doggysoft.co.uk/prog4.html#web/) browsers, although the latter two do so via athird-party
hel per application called Progress from David McCormack (http://www.atlantic.oaktree.co.uk/
software/termite/progress.html/). Fresco is aso notable as the browser chosen by Oracle for its
network computer.

2.1.7.3. BeOS

As of thiswriting, the best bet for a PNG-capable web browser running under BeOS is a toss-up
between the upcoming Opera port to BeOS, which will presumably include Opera Software's
recently added PNG support, and the upcoming release of BeOS R4.5 and NetPositive 2.1 (http://
www.be.com/beware/Network/NetPositive.html/). The latter is Be's bundled web browser, whichin
its beta version already supports PNG--though not apha transparency or gamma correction. BeOS
R4.5 will ship with aPNG ""Trandator," which is the BeOS version of the Amiga datatype concept.

2.1.7.4. Macintosh

Surprisingly enough, given the Mac's popularity among graphic designers, there are only four PNG-
supporting browsers for the platform, as of early 1999. That Netscape Navigator is one of them, and
that Internet Explorer is also available (though without PNG support until version 5.0 is released)
presumably has a great deal to do with this lack of other PNG support. Aside from Navigator, the
only known PNG-supporting Macintosh browsers are iCab, Spyglass Mosaic, and versions 3.0A1
and later of NCSA MacMosaic, and development on both of the Mosaics ceased in 1996. iCabisa
promising new browser for both Classic and Power Macintoshes; as of thiswriting, itisstill in beta
(Preview 1.3a) and has no gamma support or progressive display of interlacing, but it is reported to
support alphatransparency. It is available from http://www.icab.de/.

There are also two or three plug-ins for Mac versions of Netscape prior to 4.04, depending on how
one counts. the PNG Live 1.0 plug-in for PowerMacs, Sam Bushell's (beta) plug-in, and Appl€e's
QuickTime 3.0 plug-in. Since Sam Bushell was also responsible for PNG support in QuickTime 3.0,
it may be considered the successor to his own plug-in.

2.1.7.5. NeXTStep/OpenStep

Only one currently available browser for NeX T Step and OpenStep supports PNG natively:
OmniWeb, versions 2.0 and later, available from http://www.omnigroup.com/Software/OmniWeb/.

OmniWeb displays interlaced images progressively and does full gamma correction, but version 2.0
has no support for aphatransparency. (Version 3.0 isstill in beta as of February 1999; itsrelease
notes do not mention PNG or alphatransparency.) Another NeXT browser, NetSurfer 1.1, once
supported PNG, but it is no longer available.

http://www.ant.co.uk/prod/inetbroch/fresco2.html
http://www.ant.co.uk/prod/inetbroch/fresco2.html
http://www.dsse.ecs.soton.ac.uk/~snb94r/arcweb
http://www.dsse.ecs.soton.ac.uk/~snb94r/arcweb
http://www.doggysoft.co.uk/trweb.html
http://www.doggysoft.co.uk/prog4.html#web
http://www.doggysoft.co.uk/prog4.html#web
http://www.atlantic.oaktree.co.uk/software/termite/progress.html
http://www.atlantic.oaktree.co.uk/software/termite/progress.html
http://www.be.com/beware/Network/NetPositive.html
http://www.be.com/beware/Network/NetPositive.html
http://www.icab.de/
http://www.omnigroup.com/Software/OmniWeb/

2.1.7.6. OS/2

Until mid-1998, the options for native OS/2 PNG-supporting browsers were almost nonexistent:
they included awidely distributed plug-in from Giorgio Costa and a beta plug-in from Panacea
Software that was available for only two weeks. These could be used with IBM's OS/2 port of
Netscape Navigator 2.02. (IBM's own WebExplorer browser never supported PNG in any way.) But
September 1998 saw the public release of IBM's Navigator 4.04 port (http://www.software.ibm.com/

os/warp/netscape), which includes native PNG support.

2.1.8. Client-Side Workarounds: The OBJECT Tag

Suppose that we would like to use PNGs wherever possible but still allow older browsers to see
JPEGs or GIFs. Isthere away to do this? The answer is either ““sort of” or “yes," depending on the
approach one takes. In Chapter 1, "An Introduction to PNG", An Introduction to PNG, | mentioned
a client-side approach involving the HTML 4.0 OBJECT tag, but | also noted that neither of the
Big Two yet handles such things correctly, and earlier in this chapter | enumerated some of the
specific problemsin the two browsers. The other approach is a server-side method involving content
negotiation. We'll come back to that one | ater.

First, let ustake a closer look at the client-side method. HTML 4.0's OBJECT tag was designed to
be a generalized replacement for the HTML 3.2 IMG and APPLET tags and for Netscape's
EMBED tag. Since OBJECT isacontainer, it can contain other elementsinside it, including nested
OBJECTSs. Therulesfor rendering them are simple: start with the outermost OBJECT; if you can
render that, do so, and ignore what's inside. Otherwise, continue peeling back the outer layers until
you find something that can be rendered.

In the case of images, the following two elements are equivalent:

<I MG SRC="f 00. png"
ALT="[This text is visible if the inmage is not
rendered.]">
<OBJECT TYPE="i mage/ png" DATA="f 0o0. png">

[This text is visible if the image is not rendered.]
</ OBJECT>

Because OBJECT s can be used for many things, the image/png MIME typein thisexampleis
strongly recommended so that the browser can unambiguously identify the data as an image (rather
than, say, a Java applet) and, if it knows it has no support for the type, avoid contacting the server
unnecessarily. For JPEGs or GIFs, the MIME type would be image/jpeg or image/qgif, respectively.
Both IMG and OBJECT tags may include optional HEIGHT and WIDTH attributes, but aswe
noted earlier, Netscape requires them in order to invoke an image-handling plug-in for an OBJECT

tag.[16]

[16] If Netscape ever modifies their plug-in code to work with M G tags, presumably

http://www.software.ibm.com/os/warp/netscape
http://www.software.ibm.com/os/warp/netscape

the HEIGHT and WIDTH attributes will be required there, aswell. Fortunately, this
IS not a very onerous requirement for content producers.

The trick that should allow both OBJECT -recognizing browsers and pre-OBJECT browsersto
render something sensibleisto wrap a GIF or JPEG version of an image, referenced viaan old-style
IMG tag, inside a new-style OBJECT tag that references a PNG version of the same image. In
other words, one does something like the following:

<OBJECT W DTH="160" HEI GHT="160" DATA="f 00. png"
TYPE="1 mage/ png" >
<I MG WDTH="160" HEI GHT="160" SRC="f 00.]j pg"
ALT="[rare photo of the incredible foo]">
</ OBJECT>

If we decide to accommodate only browsers that support either OBJECT or PNG (or both) but
don't care about older browsers that support neither, we can get alittle fancier with nested
OBJECTs:

<OBJECT W DTH="160" HEI GHT="160" DATA="f 0o. png"
TYPE="1 mage/ png" >
<OBJECT W DTH="160" HEI GHT="160" DATA="f 0o0.j pg"
TYPE="1 mage/ j peg" >

<| M5 W DTH="160" HEI GHT="160" SRC="f 00. png"

ALT="[rare photo of the incredible foo]">

</ OBJECT>
</ OBJECT>

A browser that implements both PNG and HTML 4.0 will render the outer OBJECT PNG; one that
implements HTML 4.0 but not PNG will render the inner OBJECT JPEG; and one that implements
PNG but not HTML 4.0 will render the innermost IMG PNG. (And, of course, a browser with no
Image support will render thetext inthe IMG tag's AL T attribute.)

The reason these tricks don't work in practice is that some browsers--particularly Netscape
Navigator and Microsoft Internet Explorer, but undoubtedly others as well--added incompl ete or
incorrect support for OBJECT before the HTML 4.0 specification was formally approved in
December 1997. As |'ve already noted, no released version of either of the Big Two browsers would
invoke its native image-handling code when it encountered an OBJECT image, even aslate as
February 1999. Navigator always renders the inner IM G unless aplug-in is available; MSIE either
pops up an error box claiming to need an ActiveX control or, in our tests, manages to crash while
invoking a Netscape PNG plug-in installed el sewhere on the system. (I've also noted that Internet
Explorer attempts to render all OBJECT sin a nested set, not just the outermost one.) Older
versions of both browsers, and, likewise, al versions of Operato date, behave as expected and
simply ignore OBJECT images.

2.2. WWW Servers

On the server side of things, PNG support is much less of an issue. With one notable exception,
server-side support involves, at most, adding asingle line to atext configuration file and restarting
the server to have it take effect. Smoothly upgrading web pages to use PNG images if possible--i.e.,
enabling content negotiation--requires additional effort, however.

2.2.1. "Standard" Servers

Thefirst requirement for aweb server to support PNG properly isto enable the correct MIME type,
image/png. On most servers, including CERN/W3C (http://www.w3.org/Daemon/Status.html/),

NCSA (http://hoohoo.ncsa.uiuc.edu), Apache (http://www.apache.org), Zeus (http://www.zeus.co.
uk/products) and various flavors of Netscape servers (http://home.netscape.com/servers), this can be
accomplished most easily by editing the mime.types file to include one of the following two lines:

| mage/ png png
or:
t ype=i mage/ png ext s=png

The latter format is used by Netscape servers, but for any server, the correct format should be
obvious from the other entriesin the file (search for the image/gif or image/jpeg lines and use one
of them as atemplate). Apache can also be configured viaits srm.conf file (or, if AllowOverride
Filel nfo has been specified, in .htaccess filesin individual directories) with the following line:

AddType i mage/ png png

Note that the original PNG media type, image/x-png, has been obsolete since image/png was
officially registered in October 1996. If the older typeis present in either configuration file, change
it to image/png or delete it altogether.

Once a change to the configuration files has been made, the server will need to be signaled to reread
them. For some Unix servers, this can be done viathe kill -HUP command, but restarting the server
Isamore portable method. Check the server's documentation for the recommended approach.

2.2.2. Internet Information Server

Microsoft's Internet Information Server (11S) marchesto its own drummer. Available as part of
Windows NT Server (http://www.microsoft.com/ntserver/web), 11S uses the Windows registry in
lieu of the traditional text-based configuration file for media (MIME) types. This part of the registry
can be modified via Explorer to add the image/png type as follows; type the text printed in italic:

1. Open Windows Explorer (Start button — Programs — Windows Explorer).
2. Select View - Options.

http://www.w3.org/Daemon/Status.html
http://hoohoo.ncsa.uiuc.edu/
http://www.apache.org/
http://www.zeus.co.uk/products
http://www.zeus.co.uk/products
http://home.netscape.com/servers
http://www.microsoft.com/ntserver/web

Click on the File Types tab.
Click on the New Type... button.
Enter the following information:
o Description of type: Portable Network Graphicsimage
o Associated extension: .png
o Content Type (MIME): image/png
Click on the New... button.
Enter the following information:
o Action: Open.
o Application used to perform action: your full path to an image viewer.
o Uncheck Confirm open after download box.
8. Click on the OK button.
9. Click on the Close button.
10. Click on the Close button.

ok ow

N o

Since this setup takes place on the server itself, the application associated with the media type is not
particularly important; it merely enables someone sitting at the server console to double-click on a
PNG image to view it. The app can be any PNG-aware image viewer, including Netscape
Navigator, but (as | noted before) not Microsoft's own Internet Explorer 4.0.

Setting up the mediatypeisall that isrequired for basic, standards-compliant operation, but dueto a
bug that appears to exist in all PNG-supporting versions of Netscape's browser prior to 4.51 (and
also due to particularly strict syntax checking on the part of Microsoft's server), 11S by default will
refuse to serve PNG images to versions of Navigator up through 4.5. Instead, it returns an error
("HTTP/1.1 406 No acceptable objects were found,” similar to the “"404 Not found" error that is
familiar to many web surfers), which Navigator renders as its broken-image icon. The causeis
apparently a broken header that Netscape clients send as part of their HT TP content negotiation with
the server:

Accept: image/gif, image/x-xbitmap, i1mage/jpeg, inmge/
pj peg i mage/ png

Note the missing comma after image/pj peg. Because of this error, |1S does not recognize that
Image/png is an acceptable mediatype, and it therefore returns an error message instead of the
Image.

Reportedly, there is some form of workaround that involves tweaking the [1S-related parts of the
Windows registry on the server, but as of early 1999, no one has yet come forth with the magic
information. Semi-informed guesses include the possibilities of relaxing the strict HT TP syntax
checking or of turning off content negotiation atogether, but it is not known whether either of these
options actually existsin the server.[17]

[17] Another possibility (albeit atruly ugly and brutal one) is to forego the setup of
the image/png media type that was described before--or, if the type aready exists,
eliminateit. Instead, register the .png file extension as belonging to another image

type, such asimage/qgif or image/jpeg. But not only isthislikely to break other
browsers, it may not even fix the problem with Navigator; | mention it only as alast
resort for desperate site administrators,

2.2.3. Server-Side Workarounds: Content Negotiation

Serving PNG images with the correct MIME type is one thing, but there remains the issue of when
to serve PNG images. As discussed earlier, the client-side method involving OBJECT tags really
doesn't work very well. The only option that works is content negotiation, and, unfortunately, this
only works for those who have control of the web server itself. Content negotiation is aso
dependent on the web server software being used. But it's conceptually a clean solution, and it has
been proven in the field: the World Wide Web Consortium has successfully implemented it at http://

www.w3.org since 1996. We'll take alook at how to enable and use content negotiation on the most
popular web server in the world: Apache.[18]

[18] The Zeus server is amost identical in configuration. See http://www.zeus.co.uk/
products/zeusl/docs/guide/features/content.html for details.

2.2.3.1. Apache variants files

Apache actually supports two methods of content negotiation. The first involves “variants' files and
Isimplemented in Apache's mod_negotiation module. To enable the module, the following line
must be added to the httpd.conf configuration file:

AddHandl er type-map var

The server must be restarted for this line to take effect. Then, for each image that is to be negotiated,
create a .var file corresponding to the filename and refer to that in the HTML file. For example, to
serve either tux.gif or tux.png, depending on each browser's capabilities, create afile called tux.var
in the same directory and refer to it in the IM G tag in place of the actual image filename:

<I MG SRC="i mages/tux.var" ALT="[H s Pengui nness, Tux]">
The contents of tux.var should look something like this:

URI: tux.png
Cont ent - Type: i mage/ png; qs=0.7

URI: tux.gif
Content - Type: image/gif;gs=0.4

Each variant has a corresponding block of information, separated from that of the other variants by
blank lines. The actual image filenames are given on the URI lines, and their corresponding MIME
types are given on the subsequent Content-Type lines. In addition, a quality of source parameter gs

http://www.w3.org/
http://www.w3.org/
http://www.zeus.co.uk/products/zeus1/docs/guide/features/content.html
http://www.zeus.co.uk/products/zeus1/docs/guide/features/content.html

Isincluded for each image type. Thisis anumber between 0.0 and 1.0 that indicates the relative
preferences of the author for each image type. In this example, I've indicated that the PNG image
(0.7) is preferred over the GIF (0.4). The default value of the gs parameter is 1.0.

A client browser requesting an image from the server also indicates its relative preferences, either
explicitly or implicitly, viathe HTTP Accept header. The web server then multipliesits quality
parameter for each MIME type by the client's quality parameter[19] to get a composite value--thisis

the resolution phase of the negotiation. The highest composite value determines which imageis
sent.

[19] Multiplication is specified inthe HTTP 1.1 spec; HTTP 1.0 said only to
““combine" the values.

In practice, things are a bit more complicated for the server, but thisis usually hidden from the user.
The problem arises when the client browser sends incomplete or even incorrect information. For
example, some browsers send Accept: image/* , indicating that they can render any type of image.
Others specify alist of image types but also include the catchall type */*. And only rarely does a
client include preference values for each type. As aresult, the server must assume preference values
for the client. By default, all types are given avalue of 1.0, but Apache "“fiddles" the values for
wildcard types: image/* or text/* are assigned the value 0.02 instead, and */* is assigned the value
0.01.

The variants file approach allows fine-grained control over every image in aweb site, and has the
distinct advantage that a site designer can use it at will, if the server administrator has enabled
content negotiation. But maintaining parallel sets of images can be enough trouble all by itself;
having to maintain a unique variants file for every image is enough to drive most site maintainers to
distraction. Fortunately, Apache provides a partial alternative: MultiViews, a directory-wide (and
potentially server-wide) method based on file extensions.

2.2.3.2. Apache MultiViews

Enabling MultiViews in Apache is accomplished by including it on an Options line in the httpd.conf
configuration file:

Options +Multi Vi ews

The option may appear inside a <Directory> container, in which case it applies only to the named
directory tree rather than the entire server; inside a<VirtualHost> container, in which case it
applies only to agiven virtual hostname; or, if AllowOverride Options has been specified, within .
htaccess filesin individual directories. Aswith variants, the server must be restarted before changes
to the main configuration file are noticed.

Once MultiViews is enabled for a given directory--say, /www/htdocs/images--a request for afile foo
in that directory will either return foo if it exists or el se negotiate between all foo.* files. So to serve
either tux.png or tux.gif, for example, simply include both in the directory and refer to them as

follows:
<I MG SRC="i mages/tux" ALT="[Hi s Pengui nness, Tux]">

Unfortunately, MultiViews has one great weakness: no version of Apache through 1.3.3 supports
multifile quality-of-source settings.[20] In particular, thereis no way to add aline or two to one of
the top-level configuration files to indicate that all PNGs on the site, or all in a particular directory
tree, should have a source quality of, say, 0.7. Individual variants files are still alowed, and if
found, their settings will override the Apache defaults. But the requirement to generate one variants
filefor every imageisjust as painful with MultiViews as with the standard variants file approach.
The only aternative for now isto hack the source, which is precisely what was done at http://www.
wa3.org/, the home of the W3C. The W3C programmers are working to get their patches cleaned up
and incorporated into the stock Apache source tree, but there is no word on when that will occur,
and in the meantime, the Apache developers "have no firm plans to add such functionality.” As
with many such things, multiple user requests for the feature would probably make a difference in
the development plans.

[20] Version 1.3.4 was released a few weeks before this book's deadline; the " New
Features in Apache 1.3" page (http://www.apache.org/docs/new features 1 3.html)

hinted at changes relevant to a global quality-of-source feature, but | did not have
time to investigate fully. Specifically, the three server configuration files were merged
(srm.conf and access.conf were absorbed into httpd.conf/), and the mod_negotiation
module was " completely overhauled.” A comment in the mod_negotiation source
code, however, indicates that the global setting still has not been implemented.

-y PREVIOUS CONTENTS NEXT |

http://www.w3.org/
http://www.w3.org/
http://www.apache.org/docs/new_features_1_3.html

- PREVIOUS CONTENTS NEXT o

Chapter 3. Applications: Image Viewers

Contents:

3.1. Windows 95/98/NT
3.2. Windows 3.x

3.3. VMS

3.4. Unix

3.5. 0S/2

3.6. Macintosh

3.7. Java

3.8. DOS

3.9. BeOS

3.10. Atari

3.11. Amiga
3.12. Acorn RISC OS

Unlike, say, image converters or editors, there is generally not a great deal to say about a PNG-
supporting image viewer other than that it does, in fact, display PNG images. Gamma correction is
the primary ~“special" feature one would like; color correction and the ability to view text
annotations would be nice as well, but the reality is that most image viewers concentrate more on
speed and breadth of support for different image formats and display depths than on features
specific to any one format.

Thelist of viewers presented hereis likewise long on breadth and short on specifics, smply because
testing every viewer for every platform--or even areasonable fraction of them--isimpractical.
Gamma and text support are noted wherever known, asis the ability to convert to or from other
formats, but thisis primarily alaundry list of viewers, sorted by platform. The current version of
each, as of thiswriting, is listed wherever possible.

It is even less practical to test every one in 2003 than it was in 1999; the PNG web site now lists

more than 90 additional viewersthat either did not support or were not known to support PNG
when the first edition went to press:

http://ww. |l ibpng. org/ pub/png/ pngapvw. ht m

The web page is updated regularly, but even so, it is guaranteed to be incomplete; PNG support is
no longer remarkable, and new viewers are released all the time, usually without any mention of
specific image formats. These days almost every image viewer (with the exception of some--but not

http://www.libpng.org/pub/png/
http://www.libpng.org/pub/png/pngapvw.html

all--viewers for embedded devices) can be assumed to support PNG.

In addition to the viewing applications listed in the following discussion, two demo viewers are
described in Chapter 13, "Reading PNG Images"’, and Chapter 14, "Reading PNG Images
Progressively”. They currently run under 32-bit Windows and Unix/X, and full source code is freely
available. One other viewing application is also worth mentioning: Aladdin's Ghostscript, currently
at version 5.50, which is (or hasin the past been) available for every platform listed here.
Ghostscript is aviewer for PostScript and Acrobat (PDF) files, but it can write PNG images and is
therefore a special case.

3.1. Windows 95/98/NT

ACDSee32

Version 2.3, ACD Systems. Full gamma support; progressive display of interlaced images
(sparse method); older versions ignored the background chunk and incorrectly displayed
grayscale images with alpha channels. Not tested recently.

http://www.acdsystems.com/pages/acdsee32.htm

Al Picture Explorer

Version 1.2, Applied Insights. Conversion capabilities; can autogenerate web pages with
thumbnail images.

http://users.aol.com/lgozum?2/

Al Picture Utility
Version 2.5, Applied Insights. Conversion capabilities.

http://users.aol.com/ai pi ct/aipict.html

Alter Image 32
Version 1.0a, Nun's Meadow Software. Conversion capabilities.

http://web2.airmail .net/nunnally/altimg.htm

CPIC

Version 1.80 (" "build 273"), Photodex. Conversion capabilities; claims gamma support.
CPIC is aso sometimes known as CompuPic.

http://www.acdsystems.com/pages/acdsee32.htm
http://users.aol.com/lgozum2/
http://users.aol.com/aipict/aipict.html
http://web2.airmail.net/nunnally/altimg.htm

http://www.photodex.com/products/cpic/cpic home.html

CryptaPix

Version 2.02, Briggs Softworks. Encryption capabilities. Versions prior to 2.0 were also
available for Windows 3.x.

http://www.briggsoft.com/cpix.htm

DeBabelizer Pro
Version 4.5, Equilibrium. Conversion capabilities; claims gamma support.

http://www.equilibrium.com/Productl nfo/DBPro/ProNewFeatures.html

Drag And View
Version 4.0c, Canyon Software. Conversion capabilities.

http://www.canyonsw.com/dnv.htm

FmView
Version 2.0, WinCorner. Integrates into Windows File Manager and Explorer.

http://www.wincorner.com/home/fmview.html

GIF Construction Set
Version 1.0Q, Alchemy Mindworks.

http://www.mindworkshop.com/al chemy/qgifcon.html

GrafCat
Alchemy Mindworks.

http://www.mindworkshop.com/al chemy/gctw.html

Graphic Viewer

Version 1.0, PrimaSoft PC.

http://www.photodex.com/products/cpic/cpic_home.html
http://www.briggsoft.com/cpix.htm
http://www.equilibrium.com/ProductInfo/DBPro/ProNewFeatures.html
http://www.canyonsw.com/dnv.htm
http://www.wincorner.com/home/fmview.html
http://www.mindworkshop.com/alchemy/gifcon.html
http://www.mindworkshop.com/alchemy/gctw.html

http://www.primasoft.com/32org/32gview.htm

Graphic Workshop

Version 1.1Y, Alchemy Mindworks. Conversion capabilities; no gamma support in older
versions. Not tested recently.

http://www.mindworkshop.com/a chemy/gww.html

HiJaak PRO

Version 4.5, IMSI. Conversion capabilities, but apparently not to PNG. HiJaak was
originally developed by Inset, which was acquired by Quarterdeck, which finally sold the
product to IMSI.

http://www.imsi soft.com/hijaak/hijaak.html

| magenation
Version 5.0, Spicer Corporation. Conversion capabilities.

http://www.spi cer.com/product/imagenation/imagenation home.htm

| mgViewer/32
Version 2.31, Arcata Pet Software.[21] Conversion capabilities; claims gamma support.
Related software includes WWPlus32 (multiformat wallpaper manager) and WW Saver32

(image-based screensaver).

[21] Wacky fact: Arcata Pet Software's name comes from the associated pet store and
supply shop.

http://www.arcatapet.com/imgv32.html

IrfanView32
Version 2.90, Skiljan Irfan. Conversion capabilities.

http://studl.tuwien.ac.at/~e9227474/

KeyView Pro

http://www.primasoft.com/32org/32gview.htm
http://www.mindworkshop.com/alchemy/gww.html
http://www.imsisoft.com/hijaak/hijaak.html
http://www.spicer.com/product/imagenation/imagenation_home.htm
http://www.arcatapet.com/imgv32.html
http://stud1.tuwien.ac.at/~e9227474/

Version 6.0, Verity. Conversion and Netscape plug-in capabilities. FTP Software sold
KeyView to Verity late in 1997.

http://www.keyview.com/

Makaha
Version 1.6, Brandyware Software. Conversion capabilities.

http://members.aol.com/brandyware/makaha.htm

Photonyx Viewer
Version 2.0, Chrome Imaging.

http://www.chrome-imaging.com/pview.html

PicaView32
Version 1.3, ACD Systems. Integrates into Windows Explorer menus.

http://www.acdsystems.com/pages/picaview32.htm

PicViewer
Version 1.81, Andrew Anoshkin.

http://www.strongsoftware.net/dronix/picview.html

PixelGraphicLibrary demo viewer

Version 1.0 beta 5, Peter Beyersdorf. Principally an imaging toolkit, but includes a demo
viewer app.

http://www.beyersdorf.com/pgraphe.html

PixFolio
Version 2, ACK Software. Conversion capabilities.

http://www.frontpageaccess.com/acksoft/

PolyView

http://www.keyview.com/
http://members.aol.com/brandyware/makaha.htm
http://www.chrome-imaging.com/pview.html
http://www.acdsystems.com/pages/picaview32.htm
http://www.strongsoftware.net/dronix/picview.html
http://www.beyersdorf.com/pgraphe.html
http://www.frontpageaccess.com/acksoft/

Version 3.10, Polybytes. Conversion capabilities.

http://www.polybytes.com/

QuickTime PictureViewer

Version 3.0, Apple Computer. Full gamma and color-correction support via ColorSync;
claims full alpha support (but not clear in what form). PictureViewer completely supersedes
the Tiny Viewer demo app that Sam Bushell included with his QuickTime 2.5 PNG-
Importer. Note that any QuickTime-aware application (even Apple's SimpleText) can be
used to view PNG imagesif QT3 isinstalled.

http://www.apple.com/qui cktime/

Quick View Plus

Version 5.0, Jasc Software. Thisis software with history. Originally developed by Mastersoft
as Viewer 95, both it and Mastersoft were acquired by Frame, which was almost
immediately acquired by Adobe. The program and associated technol ogies were rerel eased
as Adobe File Utilities by Mastersoft in 1996, then sold to Inso in 1997. Inso gave the
software its current name, but apparently sold or licensed the rights to the Windows version
to Jasc in 1998. Inso still sells the Unix version and possibly the Windows version, but
apparently only to government and " enterprise” customers.

http://www.jasc.com/gvp.html

Riptide Photo Studio
Version 1.0, Vorton Technologies. Conversion capabilities.

http://www.vorton.com/riptide.htm

Showcase
Version 1.2.00, CQuick Technologies.

http://www.cquick.com/Showcase/

ThumbsPlus

Version 3.30, Cerious Software. Conversion capabilities, but without the ability to write
interlaced or transparent PNGs; possibly full gamma support; can autogenerate web pages

http://www.polybytes.com/
http://www.apple.com/quicktime/
http://www.jasc.com/qvp.html
http://www.vorton.com/riptide.htm
http://www.cquick.com/Showcase/

with thumbnail images.

http://www.thumbspl us.com/

VidFun
Version 3.6, Lawrence Gozum. Conversion capabilities.

http://users.aol.com/lgozum/vidfun.htm

WebGraphics Optimizer

Version 4.0, Plenio Software Solutions. Conversion capabilities, Version 2.x had broken
support for two-bit images, no gamma support, and no control over compression level or
filtering (to the extent that it would happily write an output file larger than the input). Not
tested recently.

http://www.webopt.com/

3.2. Windows 3.x
ACDSeel6
Version 2.2, ACD Systems. (See also ACDSee32 earlier.)

http://www.acdsystems.com/pages/acdseel6.htm

CPIC

Version 1.80 (" "build 273"), Photodex. Conversion capabilities; claims gamma support.
CPIC is aso sometimes known as CompuPic.

http://www.photodex.com/products/cpic/cpic home.html

Drag And View

Gold" version (possibly 1.3), Canyon Software. If the download filename, dragvul3.zip,
can be trusted, and if the version numbering is the same as that for the 32-bit Windows
version discussed earlier, then the 16-bit version may not include PNG support after all.

http://www.canyonsw.com/dnv.htm

GIF Construction Set

http://www.thumbsplus.com/
http://users.aol.com/lgozum/vidfun.htm
http://www.webopt.com/
http://www.acdsystems.com/pages/acdsee16.htm
http://www.photodex.com/products/cpic/cpic_home.html
http://www.canyonsw.com/dnv.htm

Version 1.0Q, Alchemy Mindworks.

http://www.mindworkshop.com/al chemy/qgifcon.html

GrafCat
Alchemy Mindworks.

http://www.mindworkshop.com/a chemy/gctw.html

Graphic Workshop

Version 1.1Y, Alchemy Mindworks. Conversion capabilities; no gamma support in older
versions. Not tested recently.

http://www.mindworkshop.com/a chemy/gww.html

GraphX Viewer

Version 1.51 only, Group 42. Conversion capabilities; full gamma support. Group 42 is the
company for which Guy Schalnat worked while he wrote the first version of libpng.
Unfortunately, there has been no further PNG-related work since he left.

| magenation

Version 5.0, Spicer Corporation. Conversion capabilities,

http://www.spi cer.com/product/imagenati on/imagenation home.htm

KeyView Pro

Version 6.0, Verity. Conversion and Netscape plug-in capabilities. FTP Software sold
KeyView to Verity latein 1997.

http://www.keyview.com/

PicaViewl6
Version 1.6, ACD Systems. Integrates into Windows File Manager.

http://www.acdsystems.com/pages/picaview16.htm

PixFolio

http://www.mindworkshop.com/alchemy/gifcon.html
http://www.mindworkshop.com/alchemy/gctw.html
http://www.mindworkshop.com/alchemy/gww.html
http://www.spicer.com/product/imagenation/imagenation_home.htm
http://www.keyview.com/
http://www.acdsystems.com/pages/picaview16.htm

Version 2, ACK Software. Conversion capabilities.

http://www.frontpageaccess.com/acksoft/

QuickShow Lite
Alchemy Mindworks.

http://www.mindworkshop.com/al chemy/gshow.html

Quick View Plus

Version 5.0, Jasc Software. See its earlier listing in the 32-bit Windows section for a brief
history.

http://www.jasc.com/gvp.html

ThumbsPlus

Version 3.30, Cerious Software. Conversion capabilities, but without the ability to write
interlaced or transparent PNGs; possibly full gamma support; can autogenerate web pages
with thumbnail images.

http://www.thumbspl us.com/

VidFun
Version 3.6, Lawrence Gozum. Conversion capabilities.

http://users.aol .com/lgozum/vidfun.htm

Viewer Pro!
Version 4.2, Brandyware Software. Conversion capabilities.

http://members.aol.com/brandyware/viewer.htm

3.3. VMS

The selection of PNG-supporting image viewers for VMS (or OpenVM S nowadays) is rather
limited; indeed, | am aware of only two viewers, both ports of popular Unix/X viewers:

http://www.frontpageaccess.com/acksoft/
http://www.mindworkshop.com/alchemy/qshow.html
http://www.jasc.com/qvp.html
http://www.thumbsplus.com/
http://users.aol.com/lgozum/vidfun.htm
http://members.aol.com/brandyware/viewer.htm

| mageMagick display

Version 4.2.0, John Cristy. Conversion capabilities (mostly via accompanying convert
utility); full gamma support; reported to include chromaticity support; partial MNG support.
Thereis also a 32-bit Windows port, but it requires a third-party X server to run.

http://www .wizards.dupont.com/cristy/l mageM agick.html

XV

Version 3.10a, John Bradley. Conversion capabilities, including interlacing support but
without the ability to write transparent PNGs; full gamma support; preserves text
information. XV iswidely considered to be the preeminent image viewer for the X Window
System. The only major drawback isthat it was last released in December 1994, five days
before the CompuServe/Unisys GIF announcement that began the PNG saga, and therefore
does not include PNG support in the default distribution. Fortunately, it isavailable as C
source code, and the home page includes not only the PNG patch but also several others, so
it can be recompiled and tweaked at will. An upcoming patch will alow an image-
background color to be set, similar to the -bgcolor option in the demo viewersin Chapter 13,

"Reading PNG Images' and Chapter 14, "Reading PNG Images Progressively".

http://ww..trilon.com xv/

3.4. Unix

Cameleo

Version 3.0 beta, Caldera Graphics. Conversion capabilities; claims full 16-bit-per-sample
support and strongly implies full gammaand color correction, including ICC profiles.

http://www.cal dera.fr/en/camel eo/

Electric Eyes

Red Hat Advanced Development Labs. Electric Eyesis anew, Linux/GNOM E-based image
viewer by The Rasterman (who's perhaps better known for his spectacularly fancy
Enlightenment desktop). It is also one of the prototype applications for Imlib, an X-based
imaging toolkit described in Chapter 16, "Other Libraries and Concluding Remarks'.

http://ww. | abs. redhat. conl ee. shtm

GRAV

http://www.wizards.dupont.com/cristy/ImageMagick.html
http://www.trilon.com/xv/
http://www.caldera.fr/en/cameleo/
http://www.labs.redhat.com/ee.shtml

Version 3.5, Michael Knigge. Broken support for 24-bit images. GRAV is a non-X-based
image viewer for Linux, similar to Zgv, later in thislist; it uses svgalib to display on a Linux
console. It has not been updated since January 1996 and apparently is no longer under
development.

http://metal ab.unc.edu/pub/L i nux/apps/graphi cs/viewers/svga/grav-3.5.tar.qz

I mage Alchemy

Version 1.11, Handmade Software. Conversion capabilities (in fact, primarily a command-
line conversion tool); claims full alpha support, gamma support, and support for ICC profiles
via ColorSync. Note that only the versions for DOS and Macintosh and the commercial
versions for Sun, SGI, and HP workstations include viewing capability.

http://www.handmadesw.com/hsi/alchemy.html

| mageMagick display

Version 4.2.0, John Cristy. Conversion capabilities (mostly via accompanying convert
utility); full gamma support; partial MNG support. There is also a 32-bit Windows port, but
it requires athird-party X server to run.

http://www.wizards.dupont.com/cristy/l mageM agi ck.html

Photon Picture Viewer/pv

QNX Software Systems. No gamma support; QNX only. The Photon Picture Viewer is part
of the Photon microGUI and can be downloaded as part of QNX's 1.44 MB "Internet
Appliance" demo diskette.

http://www.gnx.com/products/photon/

PingPong

Version 1.28, Willem van Schaik. Conversion capabilities (PNG to TIFF only, apparently,
with preservation of aphaltransparency); NeXTStep and OpenStep only.

http://www.schai k.com/pingpong/

Quick View Plus

Version 4.5, Inso. Thereisaso aversion 5.0 for Windows, sold by Jasc Software; see the
listing in the 32-bit Windows section for at least part of the strange story.

http://metalab.unc.edu/pub/Linux/apps/graphics/viewers/svga/grav-3.5.tar.gz
http://www.handmadesw.com/hsi/alchemy.html
http://www.wizards.dupont.com/cristy/ImageMagick.html
http://www.qnx.com/products/photon/
http://www.schaik.com/pingpong/

http://www.inso.com/qvp/

ToyViewer

Version 3.02, Takeshi Ogihara. Conversion capabilities; transparency support; support for
writing text comments; NeX Tstep and OpenStep only. The latest NeXTStep version is 2.6a.

http://www.asahi-net.or.jp/~hg2t-oghr/next/toyv-eng.html

Viewpng

xli

XV

Version of May 9, 1997, Glenn Randers-Pehrson. Full apha and gamma support; partial (out-
of-date) MNG support; SGI IRIX only. Viewpng requires the separate pnggzip utility
(included) for its compression and decompression.

ftp://swrinde.nde.swri.edu/pub/mng/applications/sgi/

Version 1.16, Graeme Gill. Like XV, the next entry, xli (amodified version of xloadimage)
has not been updated since 1994, before PNG was born. But it is available as C source code
from ftp://ftp.x.org/ and elsewhere, and a PNG patch by Smarasderagd has been available for

years, so compiling a PNG-capable version is straightforward.

http://web. access. net.au/argyll/xli.htm
http://ww. reptiles.org/~smar/xli-png.tar.gz

Version 3.10a, John Bradley. Conversion capabilities, including interlacing support but
without the ability to write transparent PNGs; full gamma support; preserves text
information. XV iswidely considered to be the preeminent image viewer for the X Window
System.[22] The only major drawback isthat it was last released in December 1994, five
days before the CompuServe/Unisys Gl F announcement that began the PNG saga and
therefore does not include PNG support in the default distribution. Fortunately, it is available
as C source code, and the home page includes not only the PNG patch but also several

others, so it can be recompiled and tweaked at will. An upcoming patch will alow an image-
background color to be set, similar to the -bgcolor option in the demo viewers in Chapter 13,
"Reading PNG Images' and Chapter 14, "Reading PNG Images Progressively".

[22] Infact, it ismy preferred viewer.

http://www.trilon.com/xv/

http://www.inso.com/qvp/
http://www.asahi-net.or.jp/~hq2t-oghr/next/toyv-eng.html
ftp://swrinde.nde.swri.edu/pub/mng/applications/sgi/
ftp://ftp.x.org/
http://web.access.net.au/argyll/xli.html
http://www.reptiles.org/~smar/xli-png.tar.gz
http://www.trilon.com/xv/

Zgv

Version 3.0, Russell Marks. Zgv is a non-X-based image viewer for Linux, similar to
GRAV, earlier inthislist; it uses svgalib to display on aLinux console.

http://metal ab.unc.edu/pub/L inux/apps/ graphi cs/viewers/svgalzgv3.0-bin.tar.qgz

3.5. 0S/2

Galleria
Version 2.31, Bitware Australia. Conversion capabilitiesin registered version.

http://ourworld.compuserve.com/homepages/bitware/

PMJPEG

Version 1.9 only, PixVision Software. No alpha support; claims gamma support. Version
1.83 isthe last version available as shareware from the web site; it is not clear whether
version 1.9 was actually released or not.

http://www.pixvision.com/html/product info 1.html

PMView

Version 1.02, Peter Nielsen. Conversion capabilities; claims gamma support. Despite its
seemingly interminable pre-1.0 beta period, PMView was probably the most popular image
viewer for 32-bit 0S52.[23]

[23] It was definitely my preferred OS/2 viewer.

http://www.pmview.com/

3.6. Macintosh
CPIC

Version 1.80 (" "build 280"), Photodex. Conversion capabilities; claims gamma support.
CPIC is aso sometimes known as CompuPic.

http://www.photodex.com/products/cpic/cpic home.html

http://metalab.unc.edu/pub/Linux/apps/graphics/viewers/svga/zgv3.0-bin.tar.gz
http://ourworld.compuserve.com/homepages/bitware/
http://www.pixvision.com/html/product_info_1.html
http://www.pmview.com/
http://www.photodex.com/products/cpic/cpic_home.html

DeBabelizer
Version 3.0, Equilibrium. Conversion capabilities; claims gamma support.

http://www.equilibrium.com/Productl nfo/DB3/DB3NewFeatures.html

Gl FConverter

Version 2.4, Kevin Mitchell. Conversion capabilities; no transparency, gamma or text
support.

http://www.kamit.com/qgifconverter/

GraphicConverter
Version 3.4.1, Lemke Software. Conversion capabilities; claims apha and gamma support.

http://www.lemkesoft.de/us gcabout.html

| mage32
Version 1.4.0, Mark Sproul.

http://msproul .rutgers.edu/macintosh/l| mage32Docs.html

I mage Alchemy

Version 1.11, Handmade Software. Conversion capabilities (in fact, primarily a conversion
tool); claims full alpha support, gamma support and support for ICC profiles via ColorSync.
Note that only the versions for DOS and Macintosh and the commercial versions for Sun,
SGl, and HP workstations include viewing capability.

http://www.handmadesw.com/hsi/alchemy.html

QuickTime PictureViewer

Version 3.0, Apple Computer. Full gamma and color-correction support via ColorSync;
claims full alpha support (but not clear in what form). PictureViewer completely supersedes
the Tiny Viewer demo app that Sam Bushell included with his QuickTime 2.5 PNG-
Importer. Note that any QuickTime-aware application (even Apple's SimpleText) can be
used to view PNG imagesif QT3 isinstalled.

http://www.apple.com/qui cktime/

http://www.equilibrium.com/ProductInfo/DB3/DB3NewFeatures.html
http://www.kamit.com/gifconverter/
http://www.lemkesoft.de/us_gcabout.html
http://msproul.rutgers.edu/macintosh/Image32Docs.html
http://www.handmadesw.com/hsi/alchemy.html
http://www.apple.com/quicktime/

ThumbsPlus

Beta 11/version 3.10, Cerious Software. Conversion capabilities, but without the ability to
write interlaced or transparent PNGs; possibly full gamma support; can autogenerate web
pages with thumbnail images.

http://www.thumbspl us.com/http://www.thumbsplus.com/macbeta.htm

3.7. Java

As of January 1999 there were two Java viewers available, but with the recent addition of PNG
support to the Java Advanced Imaging API, PNG-viewing capability can be expected soon in
numerous Java applications and applets.

PNGI mageViewer
Neil Aggarwal. Requires Java (JDK) 1.1 or later.

http://www.anet-dfw.com/~neill/PNGIV Frame.html

PngThing
Sergey Kucherov. Requires Java (JDK) 1.1 or later.

http://users.luckynet.co.il/~serge3/pngthing/PngThing.html

3.8. DOS

CompuShow

Version 9.04, Bob Berry.[24] Conversion capabilities; gamma support; progressive display
of interlaced images. Related software includes CompuShow 2000.

[24] Contrary to the claim in the first edition of this book, Bob was not the inventor of
the GIF image format, so one should not consider him the grandfather of PNG. (It's
good to keep these things straight.)

ftp://ftp.simtel .net/pub/simtel net/msdos/ graphi cs/cshow904. zi pftp://ftp.simtel .net/pub/
simtel net/msdos/graphi cs/2show204.zip

Display

http://www.thumbsplus.com/http://www.thumbsplus.com/macbeta.htm
http://www.anet-dfw.com/~neil/PNGIVFrame.html
http://users.luckynet.co.il/~serge3/pngthing/PngThing.html
ftp://ftp.simtel.net/pub/simtelnet/msdos/graphics/cshow904.zipftp://ftp.simtel.net/pub/simtelnet/msdos/graphics/2show204.zip
ftp://ftp.simtel.net/pub/simtelnet/msdos/graphics/cshow904.zipftp://ftp.simtel.net/pub/simtelnet/msdos/graphics/2show204.zip

Version 1.90t5 beta or 1.89, Jih-Shin Ho. Conversion capabilities, gamma support.
Development apparently ended in June 1997.

ftp://ftp.edu.tw/Graphics/Display/http://fn2.freenet.edmonton.ab.ca/~crnel son/display.
html

Graphic Workshop

Version 7.0f, Alchemy Mindworks. Conversion capabilities. Version 7.0f was the first and

last DOS release to have PNG support. See aso the 16-bit and 32-bit Windows versions
earlier in this chapter.

http://www.mindworkshop.com/al chemy/gws.html

I mage Alchemy

Version 1.11, Handmade Software. Conversion capabilities (in fact, primarily a command-

line conversion tool); claims full alpha support, gamma support, and support for ICC profiles
via ColorSync. Note that only the versions for DOS and Macintosh and the commercial
versions for Sun, SGI, and HP workstations include viewing capability.

http://www.handmadesw.com/hsi/alchemy.html

NView
Version 1.5f, Jacques Nomssi Nzali. Development apparently ended in June 1996.

http://www .tu-chemnitz.de/~nomssi/nview.html

PictView
Version 1.80, Jan Patera. Conversion capabilities, but PNG support is read-only.

http://pascal .ffi.cvut.cz/~patera/pictview/http://www.geocities.com/SiliconValley/
Pines/9994/

QPV/386

Version 1.7e, Oliver Fromme. QPV/386 is a multipurpose image viewer known for its speed;

QPNG/386 isitsfree, PNG- and TGA-only sibling. Development on both apparently ended
in November 1996.

http://www.tu-clausthal .de/~inof/q.htmlftp://ftp.cs.tu-berlin.de/pub/msdos/mirrors/

ftp://ftp.edu.tw/Graphics/Display/http://fn2.freenet.edmonton.ab.ca/~crnelson/display.html
ftp://ftp.edu.tw/Graphics/Display/http://fn2.freenet.edmonton.ab.ca/~crnelson/display.html
http://www.mindworkshop.com/alchemy/gws.html
http://www.handmadesw.com/hsi/alchemy.html
http://www.tu-chemnitz.de/~nomssi/nview.html
http://pascal.fjfi.cvut.cz/~patera/pictview/http://www.geocities.com/SiliconValley/Pines/9994/
http://pascal.fjfi.cvut.cz/~patera/pictview/http://www.geocities.com/SiliconValley/Pines/9994/
http://www.tu-clausthal.de/~inof/q.htmlftp://ftp.cs.tu-berlin.de/pub/msdos/mirrors/stuba/pc/graph/qpng17e.zip

stuba/pc/graph/gpngl7e.zip

SEA

Version 1.34, Bart Wakkee, Ralph Gortzen, and Harold de Laat (distributed by Photodex).
Conversion capabilities.

http://www.photodex.com/products/dos/dos home.html#sea

3.9. BeOS

In addition to the following three viewers, Al Evanss BePNG and Jeremy Moskovich's BeShow
were once available. But incompatibilitiesin the development versions of BeOS took their toll, and
the two viewers were never updated to work with BeOS releases more recent than DR8 or DRY;
they have since been moved to the ““obsolete” area of Be's FTP site. BePNG was unique in having
native support for PNG; all of the others use the datatypes facility developed by Jon Watte and | ater
incorporated into the operating system as the BeOS trand ation kit. PNG support is provided via
Simon Clarke's BPNGHandler:

http://www.be.com/beware/Datatypes/PNGHandl er.html

It appeared in October 1998 that PNGHandler might have been renamed to PNGTranglator as of
version 1.20 (see aso the discussion in Chapter 16, "Other Libraries and Concluding Remarks'), but

as of February 1999, the web page still referred to the original name.

DTPicView
Version 3.1.0, Edmund Vermeulen.

http://www.xs4all .nl/~edmundv/#D T PicViewhttp://www.be.com/beware/ Graphics/
DTPicView.html

LiView
Version 1.2 beta 5, Philippe Thomas.

http://aria.u-strasbqg.fr/~thomasp/projets be.html

QuickPic

Version 0.90, Frank Fejes. Development apparently ended in February 1997; the app was
never updated to work with BeOS versions more recent than DR8.

http://www.tu-clausthal.de/~inof/q.htmlftp://ftp.cs.tu-berlin.de/pub/msdos/mirrors/stuba/pc/graph/qpng17e.zip
http://www.photodex.com/products/dos/dos_home.html#sea
http://www.be.com/beware/Datatypes/PNGHandler.html
http://www.xs4all.nl/~edmundv/#DTPicViewhttp://www.be.com/beware/Graphics/DTPicView.html
http://www.xs4all.nl/~edmundv/#DTPicViewhttp://www.be.com/beware/Graphics/DTPicView.html
http://aria.u-strasbg.fr/~thomasp/projets_be.html

http://yoss.canweb.net/~frank/QuickPic/

3.10. Atari
1stGuide
Version of June 10, 1997, Guido Vollbeding.

http://www.esc.de/homes/guivol/1stquide/

GEM-View

Version 3.18, Dieter Fiebelkorn. GEM-View can view and save PNG imagesif Eric
Prevoteau's PNG |oad/save modul es have been installed.

http://www.castrop-rauxel .netsurf.de/homepages/dieter.fiebelkorn/ GEM VI EW.
HTML ftp://ftp.lip6.fr/publ/atari/Graphics/gvw png.lzh

3.11. Amiga

The Amigaincludes alovely facility known as datatypes, basically an extension of normal shared
libraries (or DLLS) to provide generic data handling capabilities. With this facility, any datatypes-
aware program--whether viewer, web browser, or image editor--can be extended after the fact,
simply by adding the appropriate datatype for whatever new format comes along. In the case of
PNG, two datatypes are available: Cloanto's and Andreas Kleinert's:

http://www.aminet.org/pub/aminet/util/dtype/PNG dt.Ihahttp://www.aminet.org/pub/
aminet/util/dtype/akPNG-dt.lha

Except where noted, all of the Amigaimage viewers that follow require one of these datatypes for
PNG support. (Indeed, there are probably many other datatypes-based viewers that are not listed
here.)

| mage Engineer
Version 3.41, Simon Edwards. Conversion capabilities. Image Engineer uses the SuperView

Library (see Chapter 16, "Other Libraries and Concluding Remarks') for its image support
instead of datatypes.

http://am gaworl d. com support/i nageengi neer/

Multiview

http://yoss.canweb.net/~frank/QuickPic/
http://www.esc.de/homes/guivol/1stguide/
http://www.castrop-rauxel.netsurf.de/homepages/dieter.fiebelkorn/GEMVIEW.HTML
ftp://ftp.lip6.fr/pub/atari/Graphics/gvw_png.lzh
http://www.castrop-rauxel.netsurf.de/homepages/dieter.fiebelkorn/GEMVIEW.HTML
ftp://ftp.lip6.fr/pub/atari/Graphics/gvw_png.lzh
http://www.aminet.org/pub/aminet/util/dtype/PNG_dt.lhahttp://www.aminet.org/pub/aminet/util/dtype/akPNG-dt.lha
http://www.aminet.org/pub/aminet/util/dtype/PNG_dt.lhahttp://www.aminet.org/pub/aminet/util/dtype/akPNG-dt.lha
http://amigaworld.com/support/imageengineer/

Amiga. Multiview was apparently a standard, datatypes-aware viewer shipped as part of the
Amiga operating system.
PPShow

Version 4.0, Nico Frangois. Insofar asits last release was in February 1994--more than a year
before the PNG specification was frozen--PPShow is a fine example of the power of Amiga
datatypes.

http://www.aminet.org/pub/aminet/gf x/show/PPShow40. ha

SViewl |

Version 8.10, Andreas Kleinert. Conversion capabilities. Formerly known as SuperView,
SViewll includes the SuperView Library (discussed in Chapter 16, "Other Libraries and

Concluding Remarks") for al image 1/0O, instead of datatypes, despite the fact that Andreas
wrote one of the available datatypes.

http://hone.t-online.de/ hone/ Andreas_Kl ei nert/sview. htm

ViewDT

Cloanto. ViewDT isademo viewer included with Cloanto's PNG datatype; source codeis
included. Cloanto also once had a viewer called Personal View, but it no longer seemsto
exist.

http://www.aminet.org/pub/aminet/util/dtype/PNG dt.lha

ViewTEK
Version 2.1, Thomas Krehbidl.

http://www.aminet.org/pub/aminet/gfx/show/ViewTEK 21.lha

Visage
Version 39.21, Magnus Holmgren. Visage has had native PNG support since version 39.12.

http://www.al gonet.se/~lear/visage.html

3.12. Acorn RISC OS

Although there are undoubtedly other image viewers available for the Archimedes, discovering

http://www.aminet.org/pub/aminet/gfx/show/PPShow40.lha
http://home.t-online.de/home/Andreas_Kleinert/sview.htm
http://www.aminet.org/pub/aminet/util/dtype/PNG_dt.lha
http://www.aminet.org/pub/aminet/gfx/show/ViewTEK21.lha
http://www.algonet.se/~lear/visage.html

them istricky for those who are unacquainted with Acorn software sites. But at least one PNG-
capable viewer exists:

Trandlator
Version 8.00, John Kortink. Conversion capabilities.

http://web.inter.nl .net/users/J.K ortink/indexsw.htm

~ PREVIOUS CONTENTS NEXT

http://web.inter.nl.net/users/J.Kortink/indexsw.htm

- PREVIOUS CONTENTS NEXT o

Chapter 4. Applications: Image Editors

Contents:

4.1. Photoshop 5

4.2. Photoshop 4

4.3. ImageReady

4.4. Paint Shop Pro

4.5. The GIMP

4.6. Other Image Editors

To create a PNG image from scratch, one needs an image editor that understands PNGs. But there
are many levels of understanding, and only a handful of editors exercise PNG's most interesting
features. Hereisalist of the support one would like to see in the ideal image editor:

. Basicimagetypes. RGB, grayscale, and palette-based

. Images with fewer than 256 colors automatically saved as palette-based (or grayscale, if
appropriate)

« Option to quantize and dither images with many colors down to 256 or fewer
. Simple transparency with any basic image type (i.e., single color marked as fully transparent)
. Full aphatransparency (also known as alpha channel or alpha mask)

. Cheap" RGBA-palette transparency (i.e., where each palette entry has red, green, blue, and
apha components)

« Option to quantize and dither full RGBA images down to RGBA -pal ette images
. Option to enable interlacing

. Gamma correction, including calibration of display system

. Color correction: either chromaticity, sSRGB, or full ICC profiles

. Ability to read, modify, and write 16-bit grayscale or 48-bit RGB images without conversion
to lower bit depth

. Reasonable default compression settings. adaptive filtering turned on for all image types
except palette-based; "~ "medium" Zlib compression level (say, between 3 and 7); unused
pal ette entries omitted; if simple/cheap transparency, palette ordered so that opaque
transparency entries can be omitted

« Optionsfor both fast saves and best (slowest) compression
. Ability to preserve and store user-defined text information

Not every feature is vital, of course, and some users may want only a subset of these. But
particularly when it comes to web design, one would like full support for gamma correction and for
PNG's various transparency capabilities, preferably with an option for best (or at least good)
compression. On the other hand, when it comes to compression, one does not want to be
overwhelmed with the minutiae of PNG's many compression parameters, particularly when PNG-
specific optimization products exist (one of which will be covered in Chapter 5, "Applications:

Image Converters").

In this chapter, | look at five of the most popular image-editing applications in detail, explaining
how to invoke PNG-specific features and pointing out the limitations of each product. Because
PNG's transparency options are among its most promising web-related capabilities, and because |
wish to provide a concrete demonstration of the similarities and differences between the various
editing programs, | will return to the sample editing task of Chapter 1, "An Introduction to PNG",
An Introduction to PNG--namely, the step-by-step procedure for creating a soft ~ portrait-style"
transparency mask in an existing image. At the end of the chapter, | list a couple of dozen other
editors with PNG support.

4.1. Photoshop 5

Photoshop 5.0.2, available for Macintosh and 32-bit Windows, is the latest version of Adobe's
flagship image editor, as of thiswriting. It supports colormapped, grayscale, and RGB PNGs at
sample depths of 8 bits, and images optionally can be saved asinterlaced. Alphatransparency is
supported in grayscale and truecolor images, but there appears to be no way to add any sort of
transparency to a pal ette-based image. Gamma and color correction are aso supported, with one
caveat; I'll come back to that shortly.

Photoshop 5 is modal, which isto say that images of a given type (e.g., RGB) remain of that type
until explicitly converted to something else--a process that must occur before one attempts to save
the image. For example, to convert an RGB or grayscale image to palette-based, follow this
prescription:

1. Choose Image - Mode - Indexed Color, which pops up a dialog box.

2. Choose an appropriate Palette type (typically Adaptive).

3. Set the number of colors, either viathe Color Depth selector or by entering the number
explicitly in the Colors entry field.

4. Select adithering method: None, Pattern, or Diffusion.

5. Choose Faster or Better color matching, and optionally check the Preserve Exact Colors
box (disabled if no dithering).

6. Click the OK button.

The Color Depth selector rather disingenuously indicates bits per pixel, but it is actually nothing
more than a shortcut for specifying a power-of-two number of colors--that is, 3 bits/pixel is 8 colors,
4 bits/pixel is 16, and so on. All settings result in 8-bit-per-pixel PNG files.

Note also that the Pattern dither type is known as ordered dithering in other contexts, while the
Diffusion choice corresponds to Floyd-Steinberg or something similar. The latter generally looks
much better, since human eyeballs are very good at noticing the regular patterns of an ordered dither.
Photoshop 5 includes awizard for creating transparent images, but we'll step through the procedure
manually. The key is not to rely on background transparency but instead to add a new layer

representing al pha transparency. More specificaly, given an image with or without background
transparency, do the following to add an alpha channel to it:

1. Inthe Channels palette, click on the arrow at the upper right and select New Channel...,
which pops up a dialog box.

2. Inthe Name: entry field, give the new channel a name (for example, Alpha) and click the
OK button; the other fields can be left with their default values.

3. Inthe Channels palette again, return to the original RGB or grayscale channel.
4. Click onthe Lasso tool (left side of tool palette, second from top).

5. Inthe Lasso Optionstab of thetool palette, set the Feather radius to some value, perhaps
13.

6. Draw aloop around the face of the subject.

7. Do not invert the Lasso selection; instead go back to the Channels pal ette and select the
alpha channel (the lassoed loop will still be visible on the blank channel).

8. Erase everything outside the loop via Edit — Clear.

9. Once again, return to the original RGB or grayscale channel viathe Channels palette, and
optionally click on the visibility box of the apha channel to show its effects overlaid on the
main image.

The preceding Lasso-related operations differ from those in every other image editor that |
investigated, including Adobe's own ImageReady 1.0. Specifically, the requirement not to invert the
selection in order to erase the outer part of the alpha channel seemed counterintuitive.[25]

[25] It should be noted, however, that | am by no means an expert with any of the
Image editors described here! It is entirely possible that there are settings or
alternative approaches that conform more closely to the " standard” Lasso procedure
used in the other programs.

Having added an appropriate al pha channel to the image, it may now be saved as a 16-bit gray
+alphaor 32-bit RGBA PNG:

1. Choose File — Save a Copy..., which pops up the usual file dialog box.

2. Pick an appropriate directory and filename for the image, choose PNG as the format, and
make certain the Exclude Alpha Channels checkbox is not checked.

3. Click the OK button, which triggers yet another dialog box.

4. Optionally create an interlaced PNG by selecting Adam7 as the interlacing type, and make
sure the filter type is Adaptive for grayscale or truecolor images.

5. Click the OK button.

If transparency isonly desired as an aid in creating the image, not as part of the actual file data,
check the Flatten I mage box in the Save dialog box.

Adobe made significant improvements to the overall handling of gamma and color correction in
Photoshop 5, with explicit support for the new sRGB color space (see Chapter 10, "Gamma
Correction and Precision Color") and a number of other standard color spaces, as well. Photoshop 5
also includes an option to enable Monitor Compensation (which requires that the monitor be
specified correctly first), and it always saves gamma and color-correction information with PNG
images.

Unfortunately, the gamma information PS5 savesin PNG imagesiswrong; it is always too small by
afactor of two, resulting in images that display much too darkly. Thisisasignificant problem,
because it appears only to affect PNG images. In other words, one cannot ssimply make the
appropriate compensation in Photoshop's RGB setup panel and forget about it; either PNG images
will be written incorrectly, or al other image types will be read and written incorrectly. The only
workaround within Photoshop 5 is to misadjust the display gamma setting just before saving a PNG

Image and to reset it just after saving. For example, in atypical Windows PC (or other SRGB
display system) with agamma value of 2.2, temporarily change the value to 1.1 in Photoshop's RGB
Setup box (shown in Figure 4-1):

1. Choose File - Color Settings — RGB Setup...
2. Halvethe Gamma: value (i.e, if it was 2.2, changeit to 1.1).
3. Click the OK button.

RGB Setup

— RGB:| CIERGB =1

Gamma: ..‘

White Point:[Std lluminantE | % |

Primaries:| CIE RGB :

Ll
o
ye]
=,
y-]
£ J

— Monitor: Apple 13" RGB Standard

[+ Display Using Monitor Compensation

Figure 4-1: Photoshop 5 RGB Setup window.

Then save the filein PNG format as before, but when finished, be sure to change the value back!
Clearly, thisis acrude and painful workaround.

An dternative, available at least to DOS, Windows, and Unix users, isto use athird-party utility to
change the gammavaluesin al of the PNG files after they're saved. One such utility is pngcrush,
which I'll discussin some detail in Chapter 5, "Applications. Image Converters'. For a system with
agammavalue of 2.2, which should correspond to a PNG file gamma of 0.454545 (or 1/2.2), the

following command will replace the incorrect gamma information and write the fixed PNGsinto a
directory called fixed/:

pngcrush -d fixed -replace_gama 0. 454545 f oo. png foo02.
png ...

Newer versions of pngcrush support a simpler approach, tailor-made for Photoshop 5:

pngcrush -d fixed -doubl e _gamma foo. png foo2.png ...

In addition to writing incorrect information in PNG files, Photoshop 5 appears to ignore any
existing color space information when reading PNG files. Although one could, in principle, read the
PNG gamma and chromaticity information and set up a custom RGB profile that matchesit, this
would have to be done manually and requires significant effort and knowledge on the part of the
user. In other words, only the most dedicated experts are likely to be able to accomplish it, or even
to bother with it in the first place.

Photoshop 5 has severa other quirks, aswell. As| mentioned earlier, palette-based images are
always saved with 8-bit pixels and 256 pal ette entries, regardless of how few colors are actually
used; for abicolor image, this can result in abloat factor of eight or more, compared to a properly
optimized image. Adobe's rationale seems to be that this sort of optimization should be handled in a
web-specific application like ImageReady. But leaving aside the fact that ImageReady 1.0 has
similar problems, one would expect a high-end editing application like Photoshop (with its high-end
price tag) to do much better.

Photoshop's PNG-related user options are overly technical and can also result in files that are larger
than necessary. For example, for most users a simple Interlaced checkbox would suffice; thereis no
need to know that PNG's interlacing method is formally known as Adam7. Similarly, the ability to
specify individual compression filtersis nice from atheoretical standpoint, but 99% of users are not
going to waste their time experimenting with the six choices Photoshop alows. Most will instead
stick with the default value, which is often None (but sometimes Adaptive) and israrely correct for
the given image type. As arule of thumb, pal ette-based images should always use None, and
grayscale and truecolor images should always use Adaptive. There are very rare cases in which
another choice will be better, but they are difficult to predict, and the differencein file size will
usually be minimal anyway. In fact, Photoshop should probably offer only these two optionsin the
first place. Oddly enough, Photoshop offers the user no control at all over the compression engine
itself, even though thisis much easier to understand conceptually and has a more predictable impact
on the file size. Photoshop's hardwired compression setting seemsto correspond to level 6 in most
other implementations.

Photoshop 4 had little or no support for 16-bit-per-sample images, this, together with improved
color management, was one of the major new featuresin version 5. Unfortunately, dueto a
programming oversight, 16-bit support was not extended to include PNG. On import, 16-bit PNG
Images are converted to 8-bit samples, and on export, PNG is not offered as an option for 16-bit
images. Adobe has indicated that thiswill be addressed in the next major release.

Photoshop also lacks support for embedded PNG text annotations, despite allowing the user to enter
an extensive set viathe File - FileInfo... dialog box; these can only be saved to an external file.
Thisis particularly surprising given the presence of checkboxes alowing one to Mark as
Copyrighted (in the File Info dialog box, shown in Figure 4-2) and Exclude Non-Image Data (in the
Save dialog box). The former option has to do with digital watermarking and the copyright symbol
in Photoshop's titlebar. Asto the latter option, text datais always excluded from thefile.

File Info

- Section:| Copyright & URL %6 | = |

[+ Mark As Copyrighted:
Copyright Notice:

ICnpgright 1999 Greg Foelofz. A1 wrongs reversed., | [Prev l
Image URL: | Go To LRL I MNe

the Irnage UEL is -
http :f Fwrvew cdrom.com A pub A prg Aimg_png £ prgniose prd

Save..

Append

i

Figure 4-2: Photoshop 5 File Info window.

Most critically, Photoshop has absolutely no support for transparency in colormapped PNG images.
When an RGBA or gray+al phaimage has been converted to indexed mode, only the non-al pha data
Is affected; that is, Photoshop still indicates two channels, one for the indexed color data and one for
the (unchanged) alpha channel. Attempting to save such an image is an exercise in frustration,
however: in the Save As dialog, PNG is grayed out even though GIF is allowed (and indeed, a GIF
saved in thisway will have binary transparency corresponding approximately to the alpha channdl).
In the Save a Copy dialog, PNG is allowed, but the Exclude Alpha Channels box is both checked
and grayed out.

Overdl, it isevident that Adobe's attention was devoted more to enhancing generic editing features
than to providing comprehensive support (or, in some cases, even basic support) for the three-year-
old PNG format. In fact, PNG support seems almost to have been an afterthought, even in version
5.0. This may be reasonable from a business perspective, but it is neverthel ess disappointing, given
that PNG's capabilities map so closely into Photoshop's.

Further information about Photoshop is available from Adobe's web pages at http://www.adobe.com/
prodindex/photoshop/.

4.2. Photoshop 4

http://www.adobe.com/prodindex/photoshop/
http://www.adobe.com/prodindex/photoshop/

Photoshop 4 is still in wide use and has adlightly different feature set from version 5, so we'll ook
at it in some detail, too. It supports the same basic PNG feature set the newer version does:
colormapped, grayscale, RGB, and RGBA PNGs at sample depths of 8 bits or less, optionally
interlaced, with no palette transparency or text support. Like PS5, it too has a gamma-related quirk,
though not as severe. I'll discussit in amoment.

Photoshop 4's support for PNG apha channels is sufficiently well hidden that Jordan Mendel son set
up aweb page describing the step-by-step procedure for creating one, http://jordy.wserv.com/

experiments/png.html. The approach is very similar to that in Photoshop 5, with the exception of the
steps needed to actually modify the alpha channel for a portrait-style mask:

1. Inthe Channels palette, click on the arrow at the upper right and select New Channel...,
which pops up a dialog box.

2. Inthe Name: entry field, give the new channel a name (for example, Alpha) and click the
OK button; the other fields affect only how the alpha channel is displayed, not the actual
image data, and can be left with their default values.

3. Inthe Channels palette again, |eave the alpha channel as the selected one, but make the

origina RGB or grayscale channel visible by clicking on the small box to its left (an eyeball

icon will appear in the box). The main image will now be visible under a50% red " haze"
that represents the alpha channel, assuming the default options in the previous step's dialog
box were left unchanged.

Double-click on the L asso tool (left side of tool palette, second from top).

In the Lasso Options tab of the tool palette, set the Feather radius to some value, perhaps

13.

6. Draw aloop around the face of the subject, but do not invert the selection.

7. Erase everything outside the loop via Edit — Clear; a soft-edged hole will appear in the red
overlay, indicating that everything but the face of the subject is masked out.

o &

Once the aphachannel is created, the whole image may be saved as a 16-bit gray+alpha or 32-bit
RGBA PNG just asin Photoshop 5:

1. Choose File —» Save a Copy..., which pops up the usual file dialog box.

2. Pick an appropriate directory and filename for the image, choose PNG as the format, and
make certain the Don't include alpha channels checkbox is not checked.

3. Click the OK button, which triggers yet another dialog box.

4. Optionally create an interlaced PNG by selecting Adam7 as the interlacing type, and make
sure the filter type is Adaptive for grayscale or truecolor images.

5. Click the OK button.

If transparency isdesired only as an aid in creating the image, not as part of the actual file data, go
to the Layer menu and select Flatten 1 mage before saving.

Gamma and color-correction information is always saved with PNG images, but in order for it to be
meaningful (that is, not wrong), the monitor settings must be entered correctly in the Monitor Setup

box, accessed viaFile - Color Settings — Monitor Setup (shown in Figure 4-3).

http://jordy.wserv.com/experiments/png.html
http://jordy.wserv.com/experiments/png.html

Monitor Setup |

[vlonitar: ||:|t|-.er = Tl

— Mlonitor Parameters

Cancel

Garmrna: |2.20

Load...
‘White Paoint: | £500°K -

J Save...
[

Phoszphors: | Hitachi/lkegari

— Foormn Parameters
Calibrate...
Arnbient Light: | Mediumn ll Lalibrate |

Lo |

| High |

Figure 4-3: Photoshop 4 Monitor Setup window.

The information can either be entered explicitly, by providing values for the display system's
““gamma’ value, white point, and phosphor types (see Chapter 10, "Gamma Correction and
Precision Color" for amore detailed explanation of these terms), or it can be done implicitly, by
selecting a monitor type from alist of calibrated models. The implicit approach may not work
exactly as intended, however; the default gamma value seems to be 1.8, whereas almost all PC
display systems are closer to 2.2. Either way, there is one more setting, and thisis where the caveat |
mentioned earlier comesin. For the Ambient Light setting, only the Medium value will cause
Photoshop to save correct gamma information in the PNG file. The High setting will result in a
PNG gamma value that is too small by afactor of two,[26] while the Low setting resultsin avalue
that is 50% too large. Of course, thisis still preferable to the case with Photoshop 5.0; at |east
Photoshop 4.0 has one setting that works correctly.

[26] Adobe's definition of ~"high" ambient light appears to involve something on the
order of a spotlight shining in the user's face.

In other respects, Photoshop 4 is no different from version 5. It lacks support for text annotations,
16-bit samples, low-bit-depth samples and pal ette transparency, and its compression settings and
interface are identical--that is, mediocre at best.

4.3. ImageReady

ImageReady is Adobe's Web-specific image editor for 32-bit Windows and the PowerPC-based

Macintosh. It provides a number of ways to optimize the size and content of images and can be used
either as a back end to Photoshop or as a standalone product. Its capabilities and structure are quite
similar to those of Macromedias Fireworks.

ImageReady 1.0 supports both 24-bit RGB PNGs and 8-hit palette-based PNGs, which it refersto as
TPNG-24" and ' PNG-8" files, respectively. Thereis no direct support for grayscale images, but it
IS possible to convert a color image to what is basically grayscale (Image — Adjust — Desatur ate)
and save it as an 8-bit colormapped image with nothing but shades of near-gray in the pal ette.
Interlacing, simple transparency, and full alpha transparency are supported, but the program appears
not to allow single-color transparency in RGB images, and its implementation of PNG's RGBA -
palette mode is almost useless. I'll take a closer 1ook at that in just a moment.

The procedure for adding portrait-style transparency to an existing RGB image is similar to that for
Fireworks and Photoshop. As before, open the file and use the Lasso tool to select the region of
interest:

1. Choose File —» Open.

2. Click onthe Lasso tool (left side of tool palette, second from top).

3. Draw aloop around the face of the subject.

4. Invert the selection so that the part outside the loop gets erased (Select - Inver se).
5. Select - Feather... and set the Feather Radius to some value, perhaps 13.

6. Erase everything outside the loop via Edit — Clear.

Note that, unlike Fireworks's feather radius, |mageReady's extends to both sides of the lassoed path;
that is, there will be partially transparent pixels both inside and outside the selection. Thus, we drew
our loop a bit bigger here and set the feather radius to roughly half of what it was in the Fireworks
example.

Saving the newly cropped image as a 32-bit RGBA PNG is straightforward:

1. Open the Optimize palette (subwindow), shown in Figure 4-4, if it isn't already popped up
(Window - Show Optimize).

Select PNG-24 from the pull-down list at the upper |eft.

In the Matte: pull-down list, select No M atte (which will then display in the box as " "None").
Check the Transpar ency checkbox.

Optionally check the I nterlaced checkbox to make an interlaced PNG.

Choose File - Save Optimized As... and pick an appropriate directory and filename.

o Uk wN

The PNG-24 Optimize palette is shown in Figure 4-4. The Transparency checkbox is rather

misleading; leaving it unchecked indeed creates a completely opague image, but | mageReady
nevertheless writes afull 32-bit RGBA file! That is, the alpha channel is still there, but it is
completely blank. One can only hope that thisis an oversight and that it will be corrected in the next
release; such files can hardly be considered " optimized."

Optimize “pfo “asso Options 3
|-z =]

F Transparency Matte: I | : |
[¥ Interlaced @,: Mo b atte

Foreground Calor
Backaground Color
Wi hite

Black

Metzcape Gray
B0 Gray

Other. ..

Figure 4-4: ImageReady Optimize palette for 24-bit PNG, with Matte pull-down menu.

Things get more interesting in the palette-based case. As before, the action takes place in the
Optimize palette, as shown in Figure 4-5:

1. Select PNG-8 from the format pull-down list.

2. Select an appropriate palette type from the pull-down list on the second line (Per ceptual is
the default).

3. Select No Matte from the Matte: pull-down list.

4. Set Colors: to 256 or Auto.

5. Set Levels: to 1 (which will reduce the Colors: setting to 255).

6. Optionally check the Interlaced checkbox.

7. Choose File - Save Optimized As... and pick an appropriate directory and filename.

I Optimize "«J!D !asm Cptions E| H

IF'I"-IG 5 _I Dither: 1IIIIII%

Adaptive ;I Caolars: Eﬂ
Lewvels: E1 Matte: I Mane - I
|_ Interlaced @: Create... I

Figure 4-5: ImageReady Optimize palette for 8-bit (colormapped) PNG.

Because the number of transparency levels was set to 1, this procedure will create an image with
binary transparency; there will be a sharp cutoff at the lassoed boundary. (If the main image window
Is showing the Optimized tab instead of Original, the effects of the Optimize palette will be
displayed in ““real time," more or less.) How about a nice RGBA -pal ette image? One might imagine
that between 4 and 16 transparency levels would suffice with dithering turned on, but the Levels
spin button actually indicates the number of palette entries with transparency, not the number of
transparency levels. Thus, even 160 “levels' isinsufficient in our portrait example. Thisislargely
due to ImageReady's strange optimization algorithm, which seemsto prefer dark colors for
transparency. Figure 4-6 shows the result; note the speckled appearance of the letters on the right

side and the odd banding appearance (almost like an edge-detection algorithm) on the | eft.

‘B portrait-orig.png @& 1003 [0 ptimized)
| Original | Optimized

|

R -

|| =
N EEER

||
=Sgm W

||
||
||
||
||
||
||
. p

e e ol ol el ol al ol el el ol el ol al ol

J I

| 100% W |44.84K /17 sec @ 258.% | ~2T0K / 44.54K FNG-2 w

al_ll

Figure 4-6: ImageReady optimized preview with 160 transparent entries, showing
artifacts.

For thisimage, a levels setting between 220 and 230 worked best, at least for transparency. The
drawback is that this leaves only 26 to 36 colors for the opaque regions. For facial tones, that is
simply not enough--one loses many of the saturated colors and most of the fine gradients and
shading, leaving skin tones flat and grainy. And on top of that, the transparent regions show distinct
banding, even with the large levels setting. See Figure 4-7 for an example with levels set at 224.

"!,-" portrait-orig.png @ 100% [0ptimized]
| Original | Optimized ™,

| 100% W 4.TEK /16 sec @ ZEEK.W | ~2TOK / 41.76K PNG-S w

1| | _"lJ
4

Figure 4-7: ImageReady optimized preview with 224 transparent entries, showing
degraded facial tones.

Overal, ImageReady's PNG support is adequate, but it seems probable that GIF and JPEG were
considerably higher priorities. The PNG-24 mode is excellent for images with full alpha channels,
but the 33% size penalty incurred by opaque RGB images (thanks to the extraneous al pha channel)
iIsunlikely to win friends in the web design crowd. PNG-8 isfine for opague images with more than
16 colors, but low-color images are aways saved at 8 bits per pixel, resulting in files that are too big
by afactor of anywhere from two to eight. PNG-8 images with transparency, in addition to suffering
the quantization problems noted previously, appear always to be saved with as many transparency
entries as palette entries, resulting in up to 255 wasted bytes per image.

On the positive side, ImageReady supports interlacing with no trouble, and it preserves existing

Copyright text chunks while allowing authors to change or add a new one. The procedure for adding
oneissimple:

1. Choose File - Image Info...

2. Fill inthe Copyright: field appropriately (e.g., Copyright 1999 O'Reilly and Associates.
All rights reserved.").

3. Click the OK button.

The only other supported text keyword is Software, which ImageReady always writes automatically
(""Adobe ImageReady"); it replaces any previous Software text chunk. All other text chunks are
discarded, and there is no provision for authors to add others.

What about gamma and color correction? At first glance, ImageReady appears to support gamma,
but thisis mostly illusory. It does allow one to adjust the image appearance with agamma slider
(Image - Adjust -~ Gamma...), but doing so modifies the pixels directly, and information about
the adjustment is not saved with the file. In other words, the same image will look different on
different systems. Nor isthe effect remembered, other than as part of |mageReady's Undo
capability--changes to the gamma setting become permanent as soon as the OK button is clicked.
PNG files that already have gamma chunks are treated the same as those without; the gamma
information is discarded.

ImageReady's compression of PNG imagesisfair but by no means optimal. | already noted that
colormapped images with just afew palette entries are saved at a higher bit depth than is necessary
and that palette-based transparency information is stored inefficiently. On top of that, though,
pngcrush (discussed in Chapter 5, "Applications. Image Converters') was able to achieve
compression improvements of between 6% and 45% on 22 variations of my test image, averaging
around 12% overall. The reasons for this are not immediately obvious, however; ImageReady's
compression settings seem reasonable, and it does use dynamic filtering on truecolor images.

The ImageReady home page is at http://www.adobe.com/prodindex/imageready/.

4.4. Paint Shop Pro

Jasc's Paint Shop Pro 5.0 is a capable and popular program for image editing; it is also quite
affordable. Version 5.0 supports only 32-bit Windows, but version 3.12 is still available for
Windows 3.x and NT 3.51 and also supports PNG. Well only be looking at the newer release,
however.

At the most basic level, PSP supports the three major PNG image types. colormapped, grayscale,
and RGB, both interlaced and noninterlaced. It provides options for converting between types, but it
does not do so automaticaly; if a 16-million-color" image happens to use only 200 colors, it will
still be saved as 24-bit RGB unless the user specifically asks for conversion to a palette image. Both

http://www.adobe.com/prodindex/imageready/

GIF-style transparency (one completely transparent pal ette entry) and full 32-bit RGBA are
supported, but RGBA-palette mode is not.

Paint Shop Pro's interface for adding an alpha mask to an image is quite elegant. First, open an
ordinary RGB image, then pop up the Add Mask From I mage dialog box, shown in Figure 4-8:

1. ChooseFile - Open.
2. ChooseMask — New — From Image.
3. Choose Mask - Edit.

The second step brings up the dialog box, shown in Figure 4-8. Setting the source to This Window
guarantees that the size is correct, and basing it on the Source Opacity, where the original image had
no transparency at all, will produce a blank slate on which gradients and other fills can be placed.
Choosing the Sour ce luminance button instead will generate transparency according to the light
and dark areas in theimage itself, and the areas that are considered transparent can be inverted by
checking the Invert mask data checkbox at the bottom. Either way, the mask can be edited as an
ordinary grayscale image after the third step.

Add Mask From Image

Figure 4-8: Paint Shop Pro alpha mask window.

Saving such an image is atwo-step procedure. First, the alpha mask must be “glued"” to the main
Image as its alpha channel, after which the standard save procedure applies:

1. Choose Mask — Save To Alpha Channel.
2. Choose File — Save As (or Save Copy As).

Converting an existing truecolor image to palette-based or creating a new palette-based image

involves essentially the same procedure:
1. Choose File - Open or New.
2. Choose Colors — Decrease Color Depth - 256 Colors.

Other depths are available, but most create the same size palette; indeed, the only other supported
palette sizes in the output file are 2 and 16 colors. For an existing image, adialog box will pop up
offering different quantization methods (in the Palette section) and dithering methods (in the
Reduction method section). Note that Nearest color means no dithering; Error diffusionis
generaly the nicest looking but slowest approach, sometimes known as Floyd-Steinberg or " FS'
dithering in other programs. To add and view transparency, use the Colors menu again:

1. Choose Colors — Set Palette Transparency.

2. Choose Set the transpar ency valueto the current background color.

3. Choose Colors — View Palette Transparency.

To set a color other than the background color as transparent, use the eyedropper tool to pick the
color and find itsindex. Then, in place of the second step, select Set the transparency valueto
palette entry and enter the index value of the color.

Paint Shop Pro currently does not support gamma correction, even though it does provide a Monitor
Gamma Adjustment window (viaFile — Preferences — Monitor Gamma) that could in theory be
used to supply the appropriate information. PSP does add a modification-time chunk, but itis
incorrectly written using the local time zone of the user rather than Universal Time as required by
the PNG specification.

Text annotations, including those found in other file formats, are preserved and converted as
needed. In addition, the user may add text chunks with the Title, Author, Copyright, and Description
keywordsviaView — Image Information option. The program stores DOS-style line endings
(both “"carriage return” and ""line feed" character codes) rather than following the PNG spec's
recommendation to use Unix-style line endings (line-feed characters only).

With regard to file sizes, Paint Shop Pro always uses near-optimal compression and filtering settings
on the image data. There is no option for faster compression, although PSP's own format istypically
used for intermediate saves. The program's only major failing in thisregard isthat it always writes
the maximum number of palette entries regardless of how many are used, and it doesn't reorder the
pal ette so that the single transparent entry comes first, which would allow the remainder of the
transparency chunk to be omitted. For a 50-color web icon with no transparency, this means the file
will be 618 bytes larger than it should be, solely due to the overhead required to store afull 256

pal ette entries. With transparency, an average of 25 additional bytes would be wasted for this
example, but the cost for true 256-color images may be as much as 255 bytes. As|'ve noted

elsewhere, that can be a serious penalty for small images. In addition, PSP doesn't support writing
three- or four-color images with 2 bits per pixel but instead will use 4 bits. Compression amost
never makes up the difference; the output file will be roughly twice as large as it should be.

More information about Paint Shop Pro is available at Jasc's web site, http://www.jasc.com/psp.
html.

4.5. The GIMP

The only offering in our roundup that is available for Linux, the GNU Image Manipulation
Program, is also unique in that it may be obtained for free, with complete source code, if desired.
Originally written for Unix and the X Window System, the GIMP (or Gimp) is also being ported to
0S/2 and 32-bit Windows.[27] | tested version 1.0.2, the latest nondevel opment release as of this

writing, under Linux 2.0. PNG support is handled via a plug-in with its own release schedule,
though. A considerably improved version (1.1.7) was released in late February 1999, after my tests;
I'll note its changes as we go.

[27] Not only that, but the Windows port even runs under the Windows emul ator
WINE, making it one of the few large applications that can be run simultaneously as a
native Linux application and as an emulated Windows program. Of course, that

would be afairly twisted thing to do.

Like Photoshop, the GIMP uses a modal approach to the basic image types, requiring an explicit
conversion between RGB, grayscale, and indexed-color images. Both alpha channels and gamma
correction are supported, albeit at arelatively basic level; I'll discuss the details shortly. Currently,
the standard GIMP release does not support sample depths greater than 8 bits, but a separate
development fork known as GIMP16 (or informally as "~ "Hollywood") has extended the GIMP's core
to operate on deep pixels and is expected to merge with the main development fork in the 2.0 time
frame. There was no support for text annotations in the stock 1.0.2 release, but version 1.1.7 of the
PNG plug-in appears to have added support for user-specified Title, Author, Description, Copyright,
Creation Time, Disclaimer, Warning, Source, and Comment keywords;, the Software keyword is
added automatically. The newer plug-in release also supports timestamps via PNG's tIME chunk
(described in Chapter 11, "PNG Options and Extensions').

The GIMP employs Photoshop's layer-based editing model and in general will be familiar to anyone
comfortable with Photoshop. The user interface does differ in one significant respect, however:
instead of alarge parent window with a main menu bar and various child windows inside, the GIMP
uses separate, standalone windows for everything, and the functions corresponding to Photoshop's
main menu are instead accessible via the righthand mouse button. At its most minimal, the GIMP
consists only of the small tool-pal ette window, which contains a truncated File menu from which
one can create a new image or open an existing file.

Conveniently enough, that leads us directly into our portrait example;

http://www.jasc.com/psp.html
http://www.jasc.com/psp.html

NP

© N~ ®

Choose File - Open and select an appropriate truecolor image.

Click the right mouse button over the image and select Layers — Add Alpha Channel, after
which the titlebar will indicate (RGB-alpha) instead of just (RGB).

Click on the L asso tool (upper right corner of the tool palette).

Hold the right mouse button and choose Dialogs — T ool Options....

Click on the Feather checkbox and set the Feather Radius slider to some value, perhaps 25.
Draw aloop around the face of the subject.

Invert the lasso selection: hold the right button and choose Select — Invert.

Erase everything outside the loop: hold the right button and choose Edit — Clear.

Aside from the use of the right mouse button instead of a menu bar, the procedure is amost

identical to that in each of the other applications I've investigated. Note that the GIMP's feathering
extends to both sides of the lassoed path, much as ImageReady's does. Unlike ImageReady,
however (but similar to Fireworks), GIMP's " radius" appears to indicate the total width of the apha
band, not just half of it. The Lasso options box, the tool palette, and the main image window are
shown overlapped in Figure 4-9. (Ordinarily, the first two float el sewhere on the desktop.)

To save the image as a 32-bit RGBA PNG, bring up the Save as dialog:

1.
2.

Hold the right mouse button and choose File — Save as.
Pick an appropriate directory and filename for the image, and either choose PNG explicitly
from the drop-down file type list or do so implicitly by typing the .png filename extension.

3. Click the OK button, which brings up the PNG Options dialog box.
4,

Set the Compression level slider to an appropriate value and optionally check the I nterlace
checkbox.
Click the OK button.

o
Ak

|||||I|I|||
-

=1-11

[=1-15]

Fria—hamid Selaction Opliors
[&ntzlzing

||I"|"|||I|

[=1-1"]

=

1_.

Figure 4-9: The GIMP's Lasso options window, tool palette, and main image window.
(Click onimage for full-scale version.)

The compression-level dlider actually allows noninteger values, but it appears to truncate the
fractional part. Thus, for maximum compression, the slider must be set at 9.0 exactly. For typica
usage, 6.0 isfine, and for quick saves with decent compression, use 3.0.

Conversion of an RGB image (with or without an alpha channel) to grayscale or to indexed-color is
accomplished viathe right mouse button's mage submenu, either the Grayscale or Indexed items.
Going from 32-bit RGBA to 16-hit gray+aphais quite fast, and the GIMP saves the result properly
asagray+aphaPNG file. Similarly, converting plain RGB or grayscale to indexed-color mode
works well and saves correctly. But conversion of RGBA or gray+alphato Indexed is problematic
with the stock 1.0.2 PNG plug-in. GIMP'sinternal palette model appears to be GIF-like in that
there's no evidence that it supports partial transparency in indexed images; the main image display
switches to a hard-edged mask with only fully transparent and fully opague regions visible. More
serious is the fact that even this much transparency results in atruncated file, a core dump (though
not atermination of the other GIMP windows), and a pop-up error box indicating that the save
failed. Perusal of the older PNG plug-in's source code strongly suggests that transparency support
for indexed images was never implemented. Fortunately, Y amahata Kenichiro addressed thisin
version 1.1.7 of the plug-in, but | did not have a chance to investigate how it works.

Aside from that and alack of support for text comments, the only other PNG-related problem seems
to be in the gamma chunk. Version 1.0.2 of the GIMP has no support for monitor settings or
calibration, and in the absence of those, it should assume a PC-like (or SRGB) environment on PCs

http://www.libpng.org/pub/png/book/figs/png.0409.big.png

and most workstations. That is, the gammavalue it writes to file should be the inverse of 2.2. But
the stock PNG plug-in actually writes 1.0, a value that causes images to appear extremely washed
out when viewed with a gamma-aware application (unless the originating machine was a NexXT
workstation). Fortunately, the devel opers addressed this problem within 24 hours of its having been
reported, and version 1.1.7 of the PNG plug-in includes the fix (as will the next full release of the
GIMP, presumably). Images saved under older versions can be corrected in a batch operation with a
tool such as pngcrush. The following example performs a batch correction and puts al of the fixed
Images into a subdirectory called fixed/:

pngcrush -d fixed -replace_gamma 0. 454545 foo. png foo02.
png ...

The GIMP's compression of PNG filesis excellent, with the program choosing the proper filtering
strategies for both palette-based and continuous-tone images. pngcrush, covered in Chapter 5,

"Applications. Image Converters', was unable to eke out any improvement in file size beyond that

due to eliminating the overhead of multiple image-data chunks, which amountsto a mere 12 bytes
per 8,204-byte chunk, or less than 0.15% of the overal file size.

The main GIMP home page s at http://www.gimp.org/, with extensions available from the plug-in
registry, http://registry.gimp.org/ (including the PNG plug-in at http://registry.gimp.org/detailview.
phtml ?plugin=PNG+for+GIMP+1.0/0.99.x). The GIMP16 project has a separate home page at http://
film.gimp.org/.

4.6. Other Image Editors

Many other editing applications also support PNG. All of the known ones are in the following list,
with the version number of the latest release (as of early 1999) given wherever possible.

ArtEffect

Version 2.6, Haage & Partner Computer. Available for Amiga; read/write support for PNGs,
full (32-bit) alpha support.

http://www.haage-partner.com/ae e.htm

Becasso

Version 1.1, Sum Software. Available for BeOS PPC/x86; read/write support for PNGs; full
(32-hit) alpha support; no gamma support.

http://www.sumware.demon.nl/products/becasso/

Canvas

http://www.gimp.org/
http://registry.gimp.org/
http://registry.gimp.org/detailview.phtml?plugin=PNG+for+GIMP+1.0/0.99.x
http://registry.gimp.org/detailview.phtml?plugin=PNG+for+GIMP+1.0/0.99.x
http://film.gimp.org/
http://film.gimp.org/
http://www.haage-partner.com/ae_e.htm
http://www.sumware.demon.nl/products/becasso/

Version 6.0, Deneba Software. Available for 32-bit Windows and Mac PPC; read/write
support for PNGs. Emphasi zes extensive support for transparency, alpha channels, and anti-
aliasing, but the demo version does not allow images to be saved, so itslevel of PNG
transparency support (if any) is not known.

http://www.deneba.com/dazroot/prodinfo/canvast/info.html

ColorWorks:WEB
Version 4, SPG. Available for 32-bit Windows;, read/write support for PNGs.

http://www.spg-net.com/product?2.html

Corel DRAW
Version 8, Corel. Available for 32-bit Windows and Mac PPC; read/write support for PNGs.

http://www.corel .com/products/graphi csandpubli shing/draw8/

Corel XARA
Version 1.5, Xara. Available for 16- and 32-bit Windows; read/write support for PNGs.

http://www .xara.com/noframes/corel xara/

Enhance

Version 4.0, MicroFrontier. Available for Mac 68k/PPC; read/write support for PNGs; no
gamma support.

http://www.microfronti er.com/products/enhance40/

FreeHand Graphics Studio

Version 8.0.1, Macromedia. Available for 32-bit Windows and Mac PPC; read/write support
for PNGs; full (32-hit) alpha support.

http://www.macromedia.com/software/freehand/

HoTMetaL PRO

Version 5.0, SoftQuad. Available for 32-bit Windows (version 3.0 was available for 16-bit

http://www.deneba.com/dazroot/prodinfo/canvas6/info.html
http://www.spg-net.com/product2.html
http://www.corel.com/products/graphicsandpublishing/draw8/
http://www.xara.com/noframes/corelxara/
http://www.microfrontier.com/products/enhance40/
http://www.macromedia.com/software/freehand/

Windows); read/write support for PNGs. Thisis actually an HTML editor, but versions 3.0

and later incorporate an image editor aswell. In version 5.0, the bundled image application is
Ulead's Photolmpact 3.02 SE.

http://www.sg.com/products/hotmetal/

[llustrator

Version 8.0, Adobe. Available for 32-bit Windows and Mac PPC; read/write support for
PNGs.

http://www.adobe.com/prodindex/illustrator/

| mage Composer

Version 1.5, Microsoft. Available for 32-bit Windows; read/write support for PNGs; full (32-
bit) alpha support. Thiswas originally known as Altamira Composer and was bundled with
FrontPage 98; it appears to have been superseded by PhotoDraw 2000.

http://www.mi crosoft.com/imagecomposer/

| mageF X

Version 3.2, NovaDesign. Available for Amiga; read/write support for PNGs.

http://www.novadesi gn.com/fxinfo.htm

MediaStudio Pro

Version 5.2, Ulead Systems. Available for 32-bit Windows; read/write support for PNGs.

http://www.ul ead.com/mspro5/

NetStudio

Version 1.0, NetStudio. Available for 32-bit Windows; read/write support for PNGs.

http://www.netstudi o.com/product.html

Personal Paint

Version 7.1, Cloanto. Available for Amiga; read/write support for PNGs.

http://www.sq.com/products/hotmetal/
http://www.adobe.com/prodindex/illustrator/
http://www.microsoft.com/imagecomposer/
http://www.novadesign.com/fxinfo.htm
http://www.ulead.com/mspro5/
http://www.netstudio.com/product.html

http://www.cloanto.com/amiga/programs ppaint.html

PhotoDraw 2000
Microsoft. Available for 32-bit Windows; read/write support for PNGs.

http://www.microsoft.com/office/photodraw/

Photol mpact

Version 4.2, Ulead Systems. Available for 32-bit Windows; read/write support for PNGs; no
gamma support in version 3.0 (unknown in 4.0).

http://www.ulead.com/pi/

PhotoLine

Version 4.57, Computerinsel. Available for 32-bit Windows; read/write support for PNGs,
version 2.x reportedly had problems saving apha channels.

http://www.pl 32.com/

Photonyx
Version 1.0, Chrome Imaging. Available for 32-bit Windows; read/write support for PNGs.

http://www.chrome-imaging.com/photonyx.html

Picnic

Version 0.4, Peder Blekken. Available for BeOS PPC; read/write support for PNGs (in fact,
PNG isthe only supported output format).

http://www.be.com/beware/ Graphics/Picnic.html

Picture Publisher
Version 8, Micrografx. Available for 32-bit Windows; read/write support for PNGs.

http://www.micrograf x.com/pi cturepublisher/

Satori

http://www.cloanto.com/amiga/programs_ppaint.html
http://www.microsoft.com/office/photodraw/
http://www.ulead.com/pi/
http://www.pl32.com/
http://www.chrome-imaging.com/photonyx.html
http://www.be.com/beware/Graphics/Picnic.html
http://www.micrografx.com/picturepublisher/

Version 2.5, Spaceward Graphics. Available for 32-bit Windows; read/write support for
PNGs; full (32-bit) alpha support; may include support for images with 16-bit sample depth.

http://www.satoripaint.com/

Shake

Version 2.03, Nothing Real. Available for SGI IRIX and 32-bit Windows; read/write support
for PNGs; full support for images with 16-bit sample depth; full apha support (32-bit and 64-
bit); partial (write-only) gamma support.

http://www.nothingreal .com/Products/

VideoStudio
Version 3.0, Ulead Systems. Available for 32-bit Windows; read/write support for PNGs.

http://www.ulead.com/vs/

Visio

Version 5.0, Visio. Available for 32-bit Windows (version 4.1 is still available for Windows
3.x); read/write support for PNGs.

http://www.visio.com/products/

Webl mage

Version 2.11, Group 42. Available for 32-bit Windows (version 1.72 is still available for
Windows 3.x); read/write support for PNGs.

http://www.group42.com/webimage.htm

WebPainter

Version 3.0.5, Totaly Hip Software. Available for Mac PPC and 32-bit Windows; read/write
support for PNGs.

http://www.totallyhip.com/Link/ProductsWP3.html

Winl mages

Version R5, Black Belt Systems. Available for 32-bit Windows;, read/write support for PNGs.

http://www.satoripaint.com/
http://www.nothingreal.com/Products/
http://www.ulead.com/vs/
http://www.visio.com/products/
http://www.group42.com/webimage.htm
http://www.totallyhip.com/Link/ProductsWP3.html

http://www.blackbelt.com/wi r5 dt.html

Xara Webster
Version 2.0, Xara. Available for 32-bit Windows; read/write support for PNGs.

http://www .xara.com/noframes/webster/

xart

Version of June 5, 1998, Rick Hohensee and others. Available for Unix/X; read/write
support for PNGs; no alpha support. Thisisa "mutant spawn™ of X Paint with emphasis on
mouse-based freehand drawing.

http://linux01.gwdg.de/~rhohen/linux.html http://www.ibiblio.org/pub/Linux/apps
graphics/draw/xart19980605.tgz

XPaint

Version 2.5.6, David Koblas, Torsten Martinsen, and others. Available for Unix/X; read/
write support for PNGs; no al pha support.

http://www.image.dk/~torsten/xpai nt/

XRes

Version 3.0, Macromedia. Available for 32-bit Windows and Mac 68k/PPC; read/write
support for PNGs; full (32-bit) alpha support; no gamma support.

http://www.macromedia.com/software/xres/

New image editors with PNG support and updated information on the editors in the preceding list
can be found at the Image Editors with PNG Support web page http://www.libpng.org/pub/png/

pngaped.html. This URL should remain valid for at least afew years, but there are never any

guarantees on the World Wide Web. Should the link ever break, use a search engine to look for the
page's title string or for one of the more oddly named utilities or companies listed.

-y PREVIOUS CONTENTS NEXT |

http://www.blackbelt.com/wi_r5_dt.html
http://www.xara.com/noframes/webster/
http://linux01.gwdg.de/~rhohen/linux.html
http://www.ibiblio.org/pub/Linux/apps/graphics/draw/xart19980605.tgz
http://www.ibiblio.org/pub/Linux/apps/graphics/draw/xart19980605.tgz
http://www.image.dk/~torsten/xpaint/
http://www.macromedia.com/software/xres/
http://www.libpng.org/pub/png/pngaped.html
http://www.libpng.org/pub/png/pngaped.html

- PREVIOUS CONTENTS NEXT o

Chapter 5. Applications: Image Converters

Contents:

5.1. pngcrush

5.2. pnmtopng

5.3. gif2png

5.4. Tiff2png

5.5. pngcheck

5.6. Other Conversion Programs

Conversion to PNG from other image formats (or even from PNG) remains a popular approach for
the ssmple reason that other formats have traditionally been better supported by applications. Even
with good, current application support for PNG, users typically have large archives of older images,
at least some of which may they desire to convert to PNG format.

Just as one would like to see certain basic PNG features supported in image editors (which may be
thought of as a special case of conversion utilities, converting and optionally modifying a previously
saved image file) one would like certain basic PNG features supported in converters. These include:

. Preservation of basic image types. RGB, grayscale, and pal ette-based

. Option to convert " truecolor" images with fewer than 256 colors to palette-based (or
grayscale, if appropriate)

. Preservation of ssimple transparency in palette images (e.g., when converting from GIF),
including the ability to reorder the palette so the transparent entry comes first, which avoids
wasting space in PNG's transparency chunk

. Preservation of unassociated alpha transparency (e.g., when converting from TIFF)

. Preservation of gamma, chromaticity, SRGB, or full ICC profile information (see Chapter 10,
"Gamma Correction and Precision Color", for details)

. Option to preserve deep" samples, such as from 12-bit JPEG or medical images or 16-bit-
per-sample TIFF images

. Preservation of text information (e.g., from JPEG, GIF, and TIFF images)

. Preservation of interlacing or * progressiveness"

. Option to scan for unused palette entries and eliminate any from the palette

. Reasonable default compression settings. adaptive filtering turned on for all image types

except palette-based; ""medium” Zlib compression level (say, between 3 and 7)
« Option for maximal (slowest) compression

Clearly, different users have different needs, but fundamental things that should be preserved when
converting between image formats include the basic pixel information, transparency, and text. Items
in the preceding list that involve optimization and compression of PNG images can be dealt with
after the initial conversion is complete, but restoring text or transparency information that was lost
in trandlation is tedious and to be avoided if at al possible.

In the next few sections, we will look at a number of conversion utilitiesin some detail. Most of
these are command-line programs--not because we want the reader to suffer,[28] but because
dedicated converters such as these typically do the best job and are often capable of batch
(automated) conversions. | have aso listed many image viewers with conversion capabilitiesin
Chapter 3, "Applications. Image Viewers' and several image editorsin Chapter 4, "Applications.
Image Editors"; thse are, by necessity, graphical and may be preferable for the casual user.

[28] For real suffering, write a book.

5.1. pngcrush

What may be the most useful conversion tool of all knows nothing of any image format other than
PNG,; it converts PNGs into other PNGs. pngcrush, by Glenn Randers-Pehrson, is a program for
optimizing PNG images--specifically, for reducing their size as much as possible, athough it can
also perform simple housekeeping tasks such as removing or replacing specific chunks,[29] or
adding gamma-correction information or ssimple transparency. It is an invaluable tool for usein
conjunction with other converters and with commercial image editors, which may not always
produce optimal PNG files.

[29] PNG's fundamental chunk structure is described in Chapter 8, "PNG Basics'.

pngcrush is currently available as a command-line, shareware program in DOS and Linux x86
flavors. The DOS version works under Windows 95/98/NT and can handle long filenames; it may
also runin an OS/2 DOS box, but without long-filename support. The current release, as of January
1999, isversion 1.1.3 which has a home page at http://pmt.sourceforge.net/pngcrush/.

The simplest pngcrush operation isabasic * crush” on asingle file, specifying the output filename:
pngcrush foo. png foo-crushed. png
Thisresults in output that looks something like the following:

pngcrush 1.1.3, Copyright (C 1998, d enn Randers-
Pehr son.
| This programwas built with |ibpng version 1.0. 3,

http://pmt.sourceforge.net/pngcrush/

| Copyright (c) Guy Eric Schalnat, Goup 42 Inc.,
| Copyright (c) 1996, 1997 Andreas D | ger,

| Copyright (c) 1998, 1999, d enn Randers-Pehrson,
| and zlib version 1.1.3, Copyright (c) 1998,

| Jean-loup Gailly and Mark Adl er.

foo.png IDAT length in input file = 148723

| DAT I ength with nmethod 1 (fmO zlI 4 zs 0)= 147533
| DAT length with nethod 2 (fm1 zl 4 zs 0)= 124710
| DAT I ength with nethod 3 (fm5 zl 4 zs 1)= 110589
| DAT length with nethod 9 (fm5 zl 2 zs 2)= 880073

| DAT I ength with nethod 10 (fm5 zI 9 zs 1)= 85820
best pngcrush nethod = 10 for foo-crushed. png (42. 36%
reducti on)

overall result: 42.36% reduction, 62903 bytes

pngcrush typically tries the five or six compression approaches that are, according to its heuristics,
the most likely to compress the best. Thisinvolves varying the different filter and compression
settings allowed by the PNG format (described in Chapter 9, "Compression and Filtering"). If

pngcrush finds a method that produces a smaller file than the original, it saves the new file with that
approach. (A 42% reduction as shown in the previous output is typical only of casesin which the
original file was compressed particularly poorly.) Note that pngcrush operates completely losslessly
with respect to the image data; the only loss of information it intentionally allows is the explicit
removal or replacement of chunks at the user's direction (though alimitation in versions of the PNG
reference library prior to 1.0.6 also caused the accidental deletion of unknown, safe-to-copy
chunks). We'll come back to that shortly.

pngcrush also supports atruly brute-force approach that currently tests 102 different methods but
may add more in the future. This rarely improves compression by more than a tenth of a percent
over the default approach, but for busy sites looking to conserve bandwidth, saving even adozen
bytes may be well worth the cost of avery lengthy--but one-time--pngcrush session. The brute-force
method is invoked with the -brute option, logically enough:

pngcrush -brute foo.png foo-crushed. png
In general, asite optimizing its content will want to crush all of its PNG images (by using batch-
mode conversion), and pngcrush includes two options to support batch conversion. Thefirst allows
one to specify a new extension for converted images, which will be created in the same directory as

the original:

pngcrush -e -crushed. png foo. png foo2. png foo03. png foo4.
png

This example crushes four images, foo.png through foo4.png, giving them the extension -crushed.

png; thus the output names are foo-crushed.png, foo2-crushed.png, and so on. Such an approach is
handy for casual use, since an alphabetical directory listing will (usually) list the origina and
crushed versionsin pairs, alowing quick, after-the-fact inspection of the changesin file sizes. But
because it involves renaming files, thisis probably not the preferred approach for aweb site. The
aternative is pngcrush's -d option, which allows one to specify an output directory in which to place
the crushed images:

pngcrush -d crushed_i mages foo. png foo2. png foo03. png
foo4. png

This example crushes the same four images, but leaves their filenames unchanged. The new
versions will go in the crushed _images subdirectory, which will be created if it does not already
exigt.

The -rem option allows one to remove PNG chunks. Thisis quite handy, and is often a great way to
trim afew dozen bytes from files (which can make a big difference in the case of small web
graphics), but it does require knowledge of PNG's chunk names. The following example removes
any timestamp chunks and both compressed and uncompressed text chunks from foo.png and places
the result in the crushed subdirectory:

pngcrush -d crushed -remtIME -rem zTXt -remtEXt -rem
| TXt foo.png

Note that this approach is somewhat akin to doing surgery with a hatchet: one has no control over
specific instances of the listed chunksin the case of those (like zTXt, tEXt, and iTXt) that may
appear more than once. In particular, the tEXt or iTXt chunk is where copyright info usually
appears, and that is usually not something one wants to remove.[30]

[30] Of course, if acopyright is also embedded in the image data itself, the text
version may be superfluous.

One last option isworth a quick look. pngcrush's -g option allows one to set the gamma value of the
image, which in turn provides for cross-platform consistency of the overall brightness of the image.
Chapter 10, "Gamma Correction and Precision Color" covers gamma and color correction in more
detail, but the effect will be familiar to any site that uses both Macintoshes and PCs. images that
look good on Macs tend to look too dark on PCs, and images that |ook good on PCs tend to look too
bright and washed out on Macs. The solution is to include information about the system on which
the image was created, and PNG's gAMA chunk is the simplest and most effective means of doing
so. Unfortunately, not all image editors support gamma in PNG, and as you saw in the previous
chapter, some of those that do support it store the wrong value. A site that has just received a batch
of PNG images from its Mac-based design department might do something like the following:

pngcrush -d crushed -replace_gamma 0. 65909 nac. png nac?2.
png nmac3. png

For images from a PC-based design group, the corresponding command is:

pngcrush -d crushed -replace_gamma 0. 45455 pc. png pc2.
png pc3. png

In addition to optimizing the sizes of the images, these examples strip any existing gamma
information out of the files, on the assumption that the values are known to be wrong and replace it
with values that are appropriate for stock Macs (with afactory-default = system gamma'* value of
1.8) or stock PCs. If it is known that the images that have gamma information are correct, use the -g
option instead; it will add agAMA chunk only to those images that do not already have one.

| should note that pngcrush is still arelatively new utility, and it does have a number of rough edges
yet. For example, if an output file already exists, it will be overwritten without warning. Thereis
also no recursion, no support for wildcards other than what the operating system provides (i.e., only
under Unix), and no way to set a default extension or directory for crushed files (say, viaan
environment variable). The program's extended options also assume a fairly advanced knowledge of
PNG files--for example, the official names of PNG chunks, in the case of the -rem option, or the
numerical color types used internally by PNG, or the precise palette index of the color to be made
transparent, in the case of the -trns option.[31] Nor isthere yet support for counting colors in
Images and automatically converting from, say, RGB to palette format, although thisis planned for
afuture version. But these are relatively minor user interface issues that will undoubtedly improve
as the application matures. Asregardsits primary purpose of squeezing PNG images astightly as
possible, pngcrush is quite capable, and islikely to become an indispensable addition to the
toolchest of any image-wrangler.

[31] Newer versions of pngcrush will print the palette, including indices, when given
both the -n (" "no crush™) and -ver bose options.

5.2. pnmtopng

Possibly the most complete conversion program in existence, at least with respect to support for
PNG features, is pnmtopng. In conjunction with itsinverse, pngtopnm, and the rest of the NetPBM
suite,[32] it is capable of handling basic conversions to and from virtually any image format. But

pnmtopng really shines as atool for adding and modifying PNG chunk information, including such
things as text annotations, pal ette optimization, and support for adding or removing alpha
(transparency) channels.

[32] NetPBM originated as the PBMplus package, last released in December 1991.
Subsequent third-party contributions from the Internet were gathered together and
released as NetPBM in 1993 and early 1994, containing some 200 utilities for
converting and manipulating images. The package has lain dormant since then, aside
from the occasional appearance of utilities to support new image formats like PNG,
but further news on this front is expected in 1999.

Currently, the latest version of pnmtopng is 2.37.2, released in March 1999; it can be found on the
PNG home site, http://www.libpng.org/pub/png/apps/pnmtopng.html, along with pointers to the

libraries on which it depends.

Written and maintained by Alexander Lehmann and Willem van Schaik with contributions and fixes
from others, pnmtopng is primarily a Unix-based tool, which unfortunately limitsits usefulnessto a
minority of computer users. But other parts of the NetPBM suite have been ported to OS/2 and
Windows, and it islikely that a future release of both pnmtopng and NetPBM will be more portable
and may even include ready-to-go executables.

To begin explaining some of pnmtopng's features, it is first necessary to describe a little about the
PBM format itself. If one wishes to be able to convert any of 100 possible image formats into any
other, there are two options: write 10,000 individual convertersto go directly from format A to
format B for al possible pairs of A and B; or write only 200 converters, 100 to go from each of the
Image formats into some intermediate representation and another 100 to convert back from that
intermediate format into the 100 target formats. Once the intermediate format exists, one need not
stop at conversion programs; generic utilities to manipul ate images suddenly become possible--for
example, quantization, smoothing, cropping, contrast enhancement, and so on.

PBMplus/NetPBM is that intermediate format. It was originally designed by Jef Poskanzer and
released as the PBM plus suite, with later ““interim™ packages released as NetPBM by Bill Davidsen.
Since there has never been another PBMplus release, | will henceforth refer to the format as
NetPBM, the name by which it is now most commonly known. The format is quite smple: three
lines of text header--which may additionally include one or more comment lines--followed by the
uncompressed image data. The image data may be stored as either text or binary values; the latter is
more efficient and far more commonly used, but the existence of the text format means that one can
actually create images or color palettesin an ordinary text editor. There are also three basic
NetPBM image flavors: bilevel (or black and white), which is referred to as a portable bitmap or
PBM file; grayscale, caled a portable graymap or PGM; and truecolor (RGB), referred to as a
portable pixmap or PPM file. Programs that can deal with more than one flavor usually have
“PNM" in their names; this stands for portable anymap. Thereis currently no " real” PNM format;
itisavirtual format and a convenient catchall name.

One notable feature missing from the NetPBM format is provision for apha channels; thisisa
known limitation[33] with implications for converting between formats that support transparency,

such as PNG, GIF, and TIFF. pnmtopng gets around this to some extent by the simple expedient of
storing transparency information in a separate grayscale file. Before we get into that, let's ook at
some simpler cases.

[33] Alpha support isamajor reason behind the expected NetPBM revisionsin 1999.

pnmtopng is a command-line program, and, thanks to its Unix heritage, it is designed to operate as
part of a multicommand pipeline. Unix pipes are a slick method of connecting the output of one
program into the input of another; in principle thereis no limit to how long such a chain can be,
although in practice the amount of system resources that are available may constrain things. Hereis

http://www.libpng.org/pub/png/apps/pnmtopng.html

asimple example that converts a GIF image into PNG:
giftopnmfoo.gif | pnntopng > foo0. png

Thefilefoo.qgif isread by giftopnm (part of the NetPBM suite) and converted to NetPBM format,
then piped into the input of pnmtopng, which converts the image to PNG format. Since there are no
more programs to be run, pnmtopng's output is redirected into afile--in this case, foo.png.

Observant readers will recall that GIF images are always palette-based, yet | didn't say anything
about palettes in describing the NetPBM format. In fact, NetPBM has no concept of palettes;
giftopnm usually converts GIF imagesinto PPM format (the RGB flavor). Fortunately, pnmtopng is
smart enough to count the colors in an image and automatically write a palette-based PNG image if
there are 256 or fewer colors. It will likewise detect if a color image is actually composed only of
gray values; in that case, it will write either a grayscale PNG or a palette-based one, depending on
which can be written with the fewest bits. This automatic checking comes at a cost, however:
because it requires inspection of every pixel, it can be quite slow for large images. pnmtopng
therefore includes a -for ce option to skip the checking. With this option, the previous example
would result in a 24-bit truecolor PNG:

giftopnm foo.gif | pnntopng -force > foo24. png
Here are examples for two other popular image formats, TIFF and JPEG:

tifftopnmfoo.tiff | pnntopng > foo-was-tiff.png
dj peg foo.jpg | pnntopng > foo-was-jpeg. png

But these are all trivial conversions. Suppose | would like to convert an existing NetPBM image
into an interlaced PNG, including gamma information, a timestamp, and some text--say, the author's
name, the title of the image, its copyright, and perhaps the date on which the original photograph
was taken. Thefirst thing we need to do is create a small text file containing the text information.
pnmtopng treats the first word on any line that does not begin with ablank (either a space or atab
character) as the keyword, with the actual text following. The text may stretch over severa lines,
and keywords with spaces in them must be quoted. Thus the following text file, containing four
keywords and their corresponding values, would suffice:

Title The Incredi ble and Rarely Seen Foo
Aut hor G eg Roel of s
Copyri ght This image is hereby placed in the

public domain by its author.
"Creation Time" 4 July 1976
Is the date on which this particular Foo was
phot ogr aphed.

Note that leading blanks (or ~"white space”), including any between the keywords and subsequent
text, will not be included in the PNG text chunks. But any newlines (or *carriage returns,” loosely

speaking) will be included exactly as typed; thus, there will be one in the Copyright text chunk,
right before the word ““public,” and another in the Creation Time text chunk, immediately after
71976." In addition, there is currently a bug in pnmtopng: when all of the text corresponding to a
keyword appears on aline following the keyword--that is, the keyword isimmediately followed by
a carriage return--the program will sometimes crash. The problem will almost certainly be fixed by
the time this book reaches print, but in the meantime, it can be avoided by adding a space after the
keyword.

So assuming the text file were named comments.txt (and contains no keywords followed
immediately by newlines), the following command would create the PNG image with the specified
text and other information:

pnntopng -interlace -gama 0.65909 -text comrents.txt \
-time 1998-10-25 21:00: 00 foo. ppm > foo0. png

Thefirst option is self-explanatory: the PNG image will be interlaced. For the -gamma option,
we've used a value that corresponds to atypical Macintosh; we're imagining that the original image
was scanned and tweaked on a Mac before being converted to PPM format (foo.ppm) on some other
system. The -time option requires alittle more explanation. First, note that it is distinct from the
“"Creation Time" text chunk we included; the -time option will write the special PNG tIME chunk,
which represents the time the image was last modified. But the last modification timeis clearly the
time the image was converted into PNG format, so pnmtopng really should not require the user to
specify the time information explicitly. Thisis particularly true, given that PNG's time chunk is
supposed to be in Coordinated Universal Time, and most users are unlikely to know how to convert
to that.[34] With luck, this oversight will also be corrected in the next release of the program.

[34] The example here correspondsto 1:00 p.m. in the US/Pacific time zone. But had
the conversion taken place at 1:00 p.m. on the previous day, it would have been
specified as 20:00:00 in Universal Time, thanks to the fact that daylight saving time
had not yet ended.

Trangparency is one of PNG's mgjor strengths, so let'stake alook at some of pnmtopng's options
there. Suppose that we wish to vignette our treasured foo image--that is, we would like to apply an
oval mask to it that gradually fades to complete transparency, in effect transforming our image from
rectangular to rounded. Thisis easily accomplished by creating the oval mask as a grayscale (PGM)
Image, where white represents the regions that will be completely opaque (i.e., the main subject
matter of the image) and black the outer, transparent regions. Then give the following command:

pnnt opng -al pha oval mask. pgm f oo. ppm > f 00. png

Thiswill ordinarily create a 32-bit RGBA image--in other words, truecolor with afull alpha
channel. But if it happens that the combination of the original RGB image and the mask produces at
most 256 RGBA combinations, pnmtopng is smart enough to detect that and write a pal ette-based
Image with transparency information instead. Moreover, it will automatically arrange the palette and
transparency entries so that all of the completely opaque colors are at the end of the palette; the

corresponding transparency entries may then be omitted, resulting in asmaller file.

In some cases, the transparency mask contains only fully opague and fully transparent values, and it
may happen (usually by design) that the parts of the underlying image that correspond to the
transparent region are all one color, even though there may be thousands of colorsin the opague
part. pnmtopng will again detect this, creating a pal ette-based image with just one transparency
entry if possible; if there are too many colors, it will instead write afull grayscale or RGB image
with a single color marked transparent. This resultsin a PNG file that's much more compact than
one with afull alpha channel.

Trangparent images intended for display only on web browsers will always have some sort of
background specified as part of the web page, but for images that may be rendered by a standalone
viewer, it is often desirable to include an explicit background color in the image. The -background
option provides that capability; it accepts a color argument in almost any format allowed by MIT's
X Window System, including English text (assuming the X color database file can be found). Thus,
the following three commands are equivalent (the -alpha ovalmask.pgm option has been omitted
for brevity):

pnnt opng - background rgbi:1.0/0.855/0.726 foo.ppm > foo.

png
pnnt opng - background "peach puff” f oo. ppm > f oo0.
png
pnnt opng - background " #ffdab9" f oo. ppm > f oo0.
png

For most users, the second form is probably the most easily understood but the least precise.
Making it precise requires the finely honed ability to find the X color-database file, which can be
difficult when it exists and impossible when it doesn't[35] (it is also explicitly platform-dependent;
that is, the same color name is allowed to have different RGB values on different machines).
Therefore, the first form islikely to be the most useful. It specifies the RGB values of the
background color as decimal fractions between 0.0 and 1.0. The values are separated by forward
slashes (/) and prefixed by rgbi:. The third form is the ol d-style hexadecimal format that is favored
by programmers but almost no one else. (It also happens to be the format used in the demo
programs | present in Chapter 13, "Reading PNG Images' and Chapter 14, "Reading PNG Images
Progressively” on reading PNG images. Oh, the embarrassment.) The hex value need not be placed

In quotation marks on acommand line, but within a shell script it should be quoted, or the hash
character (#) will be treated as the beginning of a comment.

[35] For the record, it livesin /usr/openwin/lib/X11/rgb.txt on Sun systems, /usr/
X11R6/lib/X11/rgb.txt on most Linux and FreeBSD systems, and /usr/lib/X11/rgb.txt
on "“generic" Unix/X11 systems.

pnmtopng also potentially supports the creation of 16-bit-per-sample images (that is, 16-bit
grayscale, 32-bit gray+alpha, 48-bit RGB or 64-bit RGBA), but only with text (ASCII) NetPBM
files, and only if the underlying NetPBM library supports 16-bit images, which is not the default

behavior. The requirement to use ASCII format for the 16-bit NetPBM image filesis a current
limitation of the NetPBM suite. Aswith transparency and pal ettes, pnmtopng detects if 16-bit
samples are redlly just scaled 8-bit samples; if so, it will automatically convert the image back to 8-
bit samples unless the -for ce option is given. It can aso be instructed to convert true 16-bit samples
to 8-bit with the -downsample option.

Other supported features include chromaticity information, histograms, compressed text, explicit
single-color transparency, physical pixel dimensions, and special compression options. Quantization
of truecolor images to 256 or fewer colorsis not supported by pnmtopng itself, but itisa
straightforward part of the standard NetPBM package. For example, to quantize a 24-bit TIFF
Image to the 256 best colors, dither the result, and save it as a pal ette-based PNG, one can use:

tifftopnmfoo.tiff | ppnmguant -fs 256 | pnntopng > foo.
png

The -fs option to ppmqguant instructs it to use Floyd-Steinberg dithering, which generally looks very
nice but does require afair amount of computation. The 256 parameter indicates the number of
colorsto be used in the final version; any value may be used (web-savvy designers might wish to
use a smaller number of colors), but only values of 256 or less will result in a palette-based PNG
image. What about images with an alpha channel? Unfortunately, those who wish to quantize 32-bit
RGBA images down to a 256-entry ~"RGBA palette” are stuck for now. The ppmquant algorithm
can easily be modified to support RGBA values in addition to ordinary RGB, but until NetPBM
itself is updated, there is no way to pipe transparency information from one NetPBM utility into
another.

For users of very large images, one other point isworth mentioning: pnmtopng currently reads the
entire image into memory buffers before doing anything with it, which means that a 4000 x 4000
RGBA image would require 64 megabytes of real and/or virtual memory just for the uncompressed
imageitself. But al isnot lost; in Chapter 15, "Writing PNG Images', | present avery smple-
minded NetPBM-to-PNG converter, and one of its design goals was the ability to convert images on
the fly, requiring only a very small memory footprint. (Of course, this only works if the PNG image
Is not interlaced.) The demo program also has a -time option that automatically records the current
time in the proper format, as well as one or two other potentially handy features.

5.3. gif2png

For ssmple batch conversion of GIF images into PNGs, pnmtopng is not only overkill but also
somewhat tricky to automate. Such atask is more readily handled by gif2png, a special-purpose
conversion program written by Alexander Lehmann. Besides the raw image pixels, there are three
GIF features that trandlate directly into PNG features: transparency, text (comments), and
interlacing. gif2png handles the first two automatically; only interlacing is not detected and
automatically applied to the output image, although the program does include a -i option to force
interlacing.

The simplest usage of gif2png isto give it the name of a GIF image:

gi f2png foo.qgif

The program will convert the image to a noninterlaced PNG, preserving any transparency,
comments, and " graphic control” or *application extension” information. It will also add its own
text chunk with the Software keyword, and it will automatically change the file extension from .gif
to .png. There is one important caveat, however: the current version, gif2png 0.6, does not check for
an existing file of the same name and will overwrite any such file without warning.

Because gif2png renames the files it converts without user input, it can be used to convert awhole
directory of GIF filesin a single command. Under Unix, where the shell expands wildcard
filenames (" "globbing™), thisisas simple as:

gif2png *.qgif

On other operating systems, the filenames must be specified explicitly:
gif2png a.gif b.gif c.gif d.gif e.gif foo.gif foo2. gif

To prevent gif2png from adding a Software text chunk to the output image(s), use the -s option:
gif2png -s foo.qgif

To do the same conversion but to an interlaced PNG, include the -i option:

gif2png -s -i foo.qgif
gif2png -si foo.gif

gif2png does have a few drawbacks, as might be expected given its pre-1.0 version number. In
addition to the problem of overwriting existing files, gif2png's conversion of GIF transparency
information is less than ideal; although it gets the job done, the program copies over the GIF palette
without modification, which can result in useless transparency entriesin the PNG file. For example,
a 256-color GIF image whose last palette entry is the transparent one would result in a 256-entry
transparency chunk in the PNG file, where one entry would suffice; in other words, it can waste up
to 255 bytes in the output file. gif2png is also rather verbose and provides no option to keep it quiet;
in fact, its progress meter (a simple percentage value, updated repeatedly) is supposed to be enabled
only when the -p option is given, but it actually is on by default and can only be turned off with -p.

Despite al this, the program is quite stable and useful. It even converts GIF comments from IBM
codepage 437 to PNG's Latin-1 format, and it will convert animated GlFs into multiple single-
Image PNGs. A planned option that would have automatically deleted the GIF input images after
conversion was never implemented, nor was the capability of converting GIF Plain Text Extensions
into PNG gl Ft chunks. But these are minor issues; in fact, the gl Ft chunk was officially declared
Bad (that is, deprecated) in October 1998, so itslack of support in gif2png turned out to be
prescient. Indeed, the only major problem with the program is the fact that it reads GIFsin the first

place. It istherefore (according to Unisys) subject to the LZW patent and its associated licensing
Issues. Unisysinitially claimed that freeware GIF programs would be granted afree LZW license,
but that |ater changed, which was directly responsible for the cessation of further development on

gif2png.

The gif2png source code and ready-to-go binaries for Linux can be found at http://www.tuxedo.org/
~esr/gif2png/. (Older binaries for DOS, OS/2, Amiga, and Macintosh may still exist elsewhere on

the Web.) A graphical port written by Nigel Stewart for 32-bit Windows, called The Exorcist,
supports drag and drop and is available from its own home page: http://www.nigels.com/exorcist/

Exorcist.html. Version 1.1 isthe latest rel ease.

5.4. Tiff2png

The corresponding special-purpose conversion program for TIFF images was written by Willem van
Schaik and is called, predictably, Tiff2png. By a strange coincidence, its latest version is also 0.6,
but the program is perhaps slightly less robust than gif2png. Thisis primarily due to the fact that the
TIFF format is hugely complex, supporting multiple forms of text annotations, both gammaand
color correction, severa flavors of transparency, many different sample depths, and numerous other
options that might conceivably be carried over into a PNG image with alittle effort (or, more likely,
alot of it).

Tiff2png's main features as a conversion program are its support for TIFF sample depths up to 16
bits and its support for transparency and alpha channels. Unlike gif2png, Tiff2png requires an
explicit output filename and is therefore somewhat less convenient for batch conversions:

tiff2png foo.tiff foo.png

It is also completely quiet by default, although it supports a-v option to turn on its verbose mode:

tiff2png -v foo.tiff foo.png

Tiff2png: foo.tiff
TIFF Directory at offset 0x10008

| mrage Wdth: 128 Inmage Length: 128

Resol ution: 72, 72 pixels/inch
Bits/Sanple: 8

Conpressi on Schene: None

Photonetric Interpretation: RGB col or
Extra Sanpl es: 1<assoc-al pha>
Sanpl es/ Pi xel : 4

Rows/ Strip: 16

Pl anar Configuration: single inmage plane

Ti ff2png: 128x128x32 i mage
Tiff2png: 8 bits/sanple, 4 sanples/pixel

http://www.tuxedo.org/~esr/gif2png/
http://www.tuxedo.org/~esr/gif2png/
http://www.nigels.com/exorcist/Exorcist.html
http://www.nigels.com/exorcist/Exorcist.html

Ti ff2png: maxval =255
Ti ff2png: color-type = truecol or + al pha
Tiff2png: bit-depth = 8

Unfortunately, Tiff2png does not distinguish between associated (premultiplied) alpha and
unassociated alpha. The latter isthe only form supported by PNG, but Tiff2png will happily store an
associated alpha channel without conversion, asin the previous example.

The program also appears not to handle Intel-format (" little-endian™: see the section entitled
"Implementation™ in Chapter 7, "History of the Portable Network Graphics Format") TIFF images
with 16-bit samples correctly, instead storing the samples as is--which effectively means they are
inverted, given that PNG samples must be stored in " "big-endian” format. But lacking any such
sample images, | was unable to verify this.

At any rate, Tiff2png is capable of converting at least some TIFF images with al pha transparency
correctly, which gives it an advantage over the current NetPBM suite and pnmtopng. Although
TIFF is subject to the same LZW licensing issues GIF is, it supports several other compression
methods (including no compression) and is therefore less of a problem for program authors. In
Tiff2png's case, all TIFF manipulations are handled via Sam Leffler's free libtiff library, which
means Tiff2png itself can be updated at will without worrying about the sorts of legal issues that
plagued gif2png. Source code for Tiff2png can be found on the PNG home site, http://www.libpng.

org/pub/png/apps/tiff2png.html, but there are presently no prebuilt executables.

5.5. pngcheck

Finally, we should take alook at an extremely useful PNG utility that is not usually considered a
conversion tool: pngcheck. pngcheck prints the chunksin a PNG file, aong with their contents, in
many cases; one can loosely think of it asa utility that “converts PNG images to text," although it
does so in such away that they could never be converted back to PNG format. (In particular, it
provides no way to print the actual pixel data, although it can print just about everything else.)

Originally written by Alexander Lehmann as a simple tool to check PNG images for corruption,
such as might occur if the file were transferred in text mode, pngcheck was subsequently extended
by Andreas Dilger, Greg Roelofs, and others, evolving into a nearly complete PNG syntax checker
and content dumper. The latest versions (1.99-grrl is current as of thiswriting) even include partial
support for MNG files, the multi-image PNG extension described in Chapter 12, "Multiple-Image
Network Graphics' (Multiple-lmage Network Graphics). pngcheck is most often used to understand

why a particular image is larger than expected--perhaps a 16-color image was saved in 24-bit RGB
format instead of palette format, or a truecolor image was saved with minimal compression and no
filtering. But it can also be used simply to test PNG files and print their dimensions, image types,
and approximate compression ratios.[36]

[36] The compression ratio is computed by dividing the total file size by the nominal
size of the uncompressed IDAT data, which means the presence of ancillary

http://www.libpng.org/pub/png/apps/tiff2png.html
http://www.libpng.org/pub/png/apps/tiff2png.html

information or even arequired palette can produce negative compression ratios--i.e.,
“expansion”--in small images. In other words, don't take it too seriously.

The most basic use of pngcheck involves giving it one or more filenames and no options, like so:
pngcheck foo.png foo2. png foo03. png

Thisresults in output similar to the following, except that here the lines have been wrapped to fit the
page:

No errors detected in

foo. png (578x802, 24-bit RGEB, interlaced, 54.7%.
No errors detected in

f002. png (32x32, 4-bit colormap, interlaced, 36.1%.
No errors detected in

f003. png (32x32, 64-bit RGB+al pha, non-interl aced,
58.19%.

An image that has been corrupted in some way might cause an error message such as the following:

food.png: File is CORRUPTED by text conversion.
foo4d.png: Chunk nanme 00 0d 49 48 doesn't conformto
nam ng rul es.

But pngcheck is most useful for seeing what's inside a PNG image. The -v option, for verbose
mode, prints the name of each chunk within the file, along with some basic information wherever
appropriate. Because it can be atad lengthy, it is often a good idea to pipe the program's verbose
output through a paging filter such as more. The following example works on both Unix-based
systems and DOS, 0S/2, and Windows command lines:

pngcheck -v ingconp.png | nore

File: ingconp.png (34163 bytes)
chunk I HDR at of fset 0x0000c, length 13
640 x 480 i mage, 32-bit RGB+al pha, non-interlaced
chunk gAMA at offset 0x00025, length 4: 0.45455
chunk | DAT at of fset 0x00035, |length 8192
zlib: deflated, 32K wi ndow, default conpression
chunk | DAT at offset 0x02041, |ength 8192
chunk | DAT at offset 0x0404d, |ength 8192
chunk | DAT at of fset 0x06059, |ength 8192
chunk | DAT at of fset 0x08065, |length 1274
chunk I END at of fset 0x0856b, length O
No errors detected in ingconp.png (97.2% conpressi on).

In this example, we see afairly basic PNG file, atruecolor image with an alpha channel, composed
of only four chunk types: the required IHDR, IDAT, and IEND chunks (described in Chapter 8,

"PNG Basics'), plus the optional but highly recommended gamma-correction chunk, gAMA
(Chapter 10, "Gamma Correction and Precision Color"). Because the image primarily consists of

solid-colored regions and simple gradients, it compressed unusually well; this probably indicates
that dynamic filtering was used, but there is no way to be certain, given the preceding information.

However, pngcheck can optionally use the zlib compression library in order to look inside the
compressed image data. In this case, it supportsa-vv option (" very verbose") that prints out all of
the preceding information plus filtering information. The filter output can be extremely long; for
just the first IDAT chunk in the preceding example, it lookslike this:

chunk | DAT at offset 0x00035, |ength 8192
zlib: deflated, 32K wi ndow, default conpression
zlib line filters (0 none, 1 sub, 2 up, 3 avg, 4
paet h):

~NNPFPPFPOOOO
NNNPEFEPOOORO
NNNPEFEPOOOO
NPANPFPPEFPOOO
NPANPFPPEFPOOO
NPANPFPPEFPOOO
NPANPFPPEFPLPOOO
NPANPFPPEFPOOO
NPANPFPPEFPLPOOO
NPANPFPPEFPOOO
NPANPFPPEFPOOO
NPANPFPPEFPOOO
NFNRPFPPFPOOO
NPANPFPPEFPLPOOO
NFNRPFPPFPOOO
NPANPFPPEFPOOO
A FPNPFPPFPLPOOO
A BRANPFPPFPLPOOO
A NNPFPPEFPLPOOO
NPANPFPPEFPOOO

0
0
0
0
1
2
2
2
0

ONPEANRFRPPFPLPOOO

2 8

)

The details are too complex to cover right now, but filtering and compression are discussed in
Chapter 9, "Compression and Filtering". All that matters hereis that different filters have been used
for different rows in the image, indicating that some sort of dynamic filtering was applied (whichis
generally good). Unfiltered images, on the other hand, will have al zeros for the filter numbers, and
statically filtered images will use only a single filter type. In most cases, that means the image is not
compressed aswell asit could be. One major exception, however, is palette-based images, they
rarely respond well to filtering, and most programs don't try.

pngcheck also supports more specific types of output. Its -p option, for example, is another rather
verbose casg; it prints the contents of the palette and optional transparency chunks for colormapped
Images.[37] This can be useful in conjunction with a program such as pngcrush, for example, when
one wishes to specify a particular color as transparent, but more commonly it is used to check
whether the transparency chunk isfull of needless opaque values. Consider the following example:

[37] It will aso print the contents of the optional histogram and suggested-palette
chunks; see Chapter 11, "PNG Options and Extensions', for details.

pngcheck -p foo5. png

File: foo5.png (146 bytes)
PLTE chunk: 4 palette entries
0: (0,255, 0 (0x00, oxf f, 0x00)
1. (255, 0, 0 (Oxff, 0x00, 0x00)
2: (255,255, 0) (Oxff, Oxff, 0x00)
3: (0, 0,255 (0x00, 0x00, Oxf f)
t RNS chunk: 3 transparency entries

0: 255 = Oxff
1: 255 = Oxff
2: 0 = 0x00

No errors detected in foo5.png (32x32, 2-bit col ormap,
non-interl aced,
43. 09 .

Here we have afour-color image: bright green, red, yellow, and blue. The colors of the palette are
listed as RGB triplets in both decimal and hexadecimal (base 16) for convenience. The palette itself
Is unremarkable; what is more interesting is the transparency chunk, tRNS. It includes three entries,
but the first two have the value 255, which indicates that the corresponding pal ette entries should be
treated as completely opaque. But all palette entries are considered opague unless explicitly given a
non-opague transparency value--in other words, any transparency entries with the value 255 are
redundant and represent wasted space. In this case, the only non-opague entry corresponds to the
third color, yellow; a smart PNG-writing program would have reordered the pal ette so that yellow
was the first entry, thus shaving two bytes off the file. It is not uncommon to be able to save 100 or
more bytes in this manner, which can represent 10% to 20% of the file size for small web graphics.
[38] In rare cases, it may be worthwhile to waste a few transparency entries so that the most
common pixelsin theimage are al at the beginning of the palette (i.e., so they al have index values
near zero); with filtering enabled, the compression engine may be able to make up the difference
and then some. But as of early 1999, filtering has yet to be demonstrated effective on essentially any
kind of palette-based image, so the possibility of recovering wasted transparency entries with
improved compression is arather tenuous one.

[38] One of the images used on the VRML98 web site had 211 transparency entries,
of which 210 were unnecessary.

The other type of verbose pngcheck output is more useful to ordinary users, not just content
developers trying to optimize things. The -t option prints not only text chunks' keywords but also
their contents:

pngcheck -t ct 1n0g04. png

File: ctl1ln0g04.png (796 bytes)

Title:PngSuite

Aut hor: Wllem A J. van Schaik

(gw | | em@it uvax. nt u. ac. sqg)

Copyri ght: Copyright WIlemvan Schai k, Singapore 1995

Description: A conpilation of a set of inmages created to
test the
various color-types of the PNG format. Included are
bl ack&whi te, color, paletted, with al pha channel, wth
transparency formats. Al bit-depths allowed according
to the spec are present.
Software: Created on a NeXTstation col or using "pnntopng".
Di scl ai ner: Freewar e.
No errors detected in

ct 1n0g04. png (32x32, 4-bit grayscale, non-interl aced,
-55.5% .

This example, using one of Willem van Schaik's test images from the PNG Suite, contains six text
chunks with keywords Title, Author, Copyright, Description, Software, and Disclaimer. The content
of each chunk immediately follows the keyword and colon; thisis not the most readabl e approach,
but the information is available and usually understandable with only alittle squinting. One
deficiency of the current version isthat it does not display the contents of compressed text chunks
(zTXt), even when using the zlib compression library. Thisis promised to be fixed in afuture
version, however.

The latest version of pngcheck can be found at the PNG home site, http://www.libpng.org/pub/png/
apps/pngcheck.html.

5.6. Other Conversion Programs

The converters we've discussed so far barely scratch the surface of what is available. If one includes
Image editors and viewers that can convert images in addition to dedicated conversion tools, there
are well over one hundred applications capable of converting to and from the PNG format.[38b]
Many of these were listed in the previous two chapters and are well worth considering, particularly
for users who may be uncomfortable dealing with command-line programs.

[38b] As of mid-2003, the number has more than doubled; the PNG home site lists all

of them. Perhaps not surprisingly, however, the five discussed above are still among
the best.

Hereisalist of some of the other dedicated (or nearly dedicated) image converters that support
PNG. The most recent version as of January 1999 is given wherever possible.

ColourEdit

Version of April 3, 1997, Julian Highfield. Available as an OpenDoc part for Mac 68k/PPC
(mostly tested with OpenDoc 1.1 and Mac OS System 7.1.2); read/write support for PNGs.

http://www.stile.lboro.ac.uk/~cojch/Col ourEdit/

http://www.libpng.org/pub/png/apps/pngcheck.html
http://www.libpng.org/pub/png/apps/pngcheck.html
http://www.libpng.org/pub/png/pngapcv.html
http://www.stile.lboro.ac.uk/~cojch/ColourEdit/

Creator

Version 3.22, John Kortink. Available for Acorn RISC OS; read/write support for PNGs; no
a pha or gamma support.

http://web.inter.nl .net/users/J.K ortink/indexsw.htm

dicom?2

Version 1.8, Sébastien Barré. Available for Windows 9x/NT, Linux x86, SunOS/Solaris
SPARC; write-only support for PNGs; supports conversion of 12-bit medical formatsto 16-
bit grayscale PNGs.

http://www.hds.utc.fr/~barre/medical/dicom2/

Ghostscript

Version 5.50, Aladdin Enterprises. Available for Unix, VMS, OS2, Windows 9x/NT, and
Mac 68k/PPC; older versions available for Windows 3.x, DOS, Amiga, Atari, and possibly
Acorn RISC OS; write-only support for PNGs.

http://www.cs.wisc.edu/~ghost/

gj2png

Version of February 13, 1997, Neil Aggarwal. Available for any platform supporting Java
1.1 or later; write-only support for PNGs.

http://www.anet-dfw.com/~nell/gj Frame.html

| cons Control 95

Version 7.02, Chris Doan. Available for Windows 9x/NT; read-only support for PNGs
(converts various image formats to Windows .ico format).

http://members.aol.com/doanc/icnctrl.html

| mage Arithmetic

Version 2.2a, Richard van Paasen. Available for Windows 9x/NT; read/write support for
PNGs.

http://web.inter.nl.net/users/J.Kortink/indexsw.htm
http://www.hds.utc.fr/~barre/medical/dicom2/
http://www.cs.wisc.edu/~ghost/
http://www.anet-dfw.com/~neil/gjFrame.html
http://members.aol.com/doanc/icnctrl.html

http://huizen.dds.nl/~buddha/imgart.html

LatinByrd

Version Il v6, Stefan Schneider Software. Available for NeX T Step/OpenStep on 68k/x86/

HP-PA/SPARC; write-only support for PNGs, can quantize 32-bit RGBA TIFF images to 8-
bit RGBA-palette PNGs.

http://members.ping.at/stefan/L atinByrdProductl nfo.html

PicCon

Version 2.50, Morten Eriksen. Available for Amiga; read-only; requires a PNG datatype
such as those from Cloanto or Andreas Kleinert.

http://www.aminet.org/pub/aminet/gf x/conv/PicCon250.lha http://www.aminet.org/
pub/aminet/util/dtype/PNG dt.lha http://www.aminet.org/pub/aminet/util/dtype/
akPNG-dt.Iha http://home.t-online.de/home/Andreas Klelnert/support.htm

PNG-Box

Version 3.25, Andreas Kleinert. Available for Amiga 68k/PPC; write-only support for PNGs;
supports interlacing and single-color transparency. PNG-Box isagraphical “any to PNG"
conversion utility that uses Andreas's own SuperView Library for its image support instead
of datatypes.

http://www.amigaworld.com/support/png-box/ http://home.t-online.de/home/

Andreas Klenert/support.htm http://www.aminet.org/pub/aminet/gf x/conv/PNG-Box.
lha

IPng2Spr

ptot

Version 1.14, Tom Tanner. Available for Acorn RISC OS; read-only support for PNGs
(convertsto Acorn sprite format).

http://www.argonet.co.uk/users/ttehtann/

Version of March 10, 1995, Lee Daniel Crocker. Available as portable source code (does not
require libpng or zlib); read-only support for PNGs (convertsto TIFF); full gamma support
(writes TIFF TransferFunction tag); full alpha support for true alpha channels (no pal ette-
alphaor " cheap transparency" support).

http://huizen.dds.nl/~buddha/imgart.html
http://members.ping.at/stefan/LatinByrdProductInfo.html
http://www.aminet.org/pub/aminet/gfx/conv/PicCon250.lha
http://www.aminet.org/pub/aminet/util/dtype/PNG_dt.lha
http://www.aminet.org/pub/aminet/util/dtype/PNG_dt.lha
http://www.aminet.org/pub/aminet/util/dtype/akPNG-dt.lha
http://www.aminet.org/pub/aminet/util/dtype/akPNG-dt.lha
http://home.t-online.de/home/Andreas_Kleinert/support.htm
http://www.amigaworld.com/support/png-box/
http://home.t-online.de/home/Andreas_Kleinert/support.htm
http://home.t-online.de/home/Andreas_Kleinert/support.htm
http://www.aminet.org/pub/aminet/gfx/conv/PNG-Box.lha
http://www.aminet.org/pub/aminet/gfx/conv/PNG-Box.lha
http://www.argonet.co.uk/users/ttehtann/

ftp://swrinde.nde.swri.edu/pub/png/applications/ptot.tar.qz

SmartSaver

Version 3.0, Ulead Systems. Available for 32-bit Windows; read/write support for PNGs,
full alpha support, including at least single-color palette transparency (not clear whether full
RGBA -palette transucency is supported); reportedly cannot write 1-bit (bilevel) images.

http://www.webutilities.com/ssaver/noslip.htm

Spr2Png

Version 0.04b, Darren Salt. Available for Acorn RISC OS; write-only support for PNGs; full
alpha support via secondary sprite that is used as a transparency mask or alpha channel;

supports interlacing and background color. An older version was reported to produce streaks
in conversions of newer (post-RPC) sprites, but this appears to be fixed in the current release.

http://www.youmustbe] oking.demon.co.uk/progs.html#spr2png

ThumbNailer

Version 5.2, Smaller Animals Software. Available for 32-bit Windows; read/write support
for PNGs; supports transparency, background color, and text; claims full gamma support.

http://www.small eranimals.com/thumb.htm

Ultraconv

Version 3.0pl, Felix Schwarz. Available for Amiga 68k/PPC; read/write support for PNGs
(natively since version 1.6, or viaa datatype for earlier versions); no alpha or gamma support.

http://home.pages.de/~uconv/

New conversion utilities and updated information on the ones listed here can be found at the Image-
Conversion Applications with PNG Support web page at the PNG home site, http://www.libpng.org/

pub/png/pngapcv.html. This URL is expected to be stable for years, but of course there are no

guarantees on the World Wide Web! Use a search engine to look for the title string or for one of the
more oddly named utilitieslisted if the link should ever break.

- PREVIOUS CONTENTS NEXT o

ftp://swrinde.nde.swri.edu/pub/png/applications/ptot.tar.gz
http://www.webutilities.com/ssaver/noslip.htm
http://www.youmustbejoking.demon.co.uk/progs.html#spr2png
http://www.smalleranimals.com/thumb.htm
http://home.pages.de/~uconv/
http://www.libpng.org/pub/png/pngapcv.html
http://www.libpng.org/pub/png/pngapcv.html

- PREVIOUS CONTENTS NEXT o

Chapter 6. Applications: VRML Browsers and
Other 3D Apps

Contents:

6.1. Cosmo Player

6.2. WorldView/MSVRML
6.3. blaxxun Contact

6.4. Viscape Universal

6.5. LibVRML97/L ookat
6.6. FreeWRL
6.7.VRMLView

6.8. Other VRML Browsers
6.9. Other 3D Applications

VRML, the Virtual Reality Modeling Language, is afile format and alanguage for defining three-
dimensional virtual objects, their appearances and their behaviors. As of early 1999, it has seen two
major versions, and the design of athird is currently underway. Version 1.0 included little more
than static geometry and never saw wide use. Version 2.0, released in August 1996 and approved as
an ISO/IEC international standard in December 1997, added animation, scripting, and a much more
rigorous specification of all aspects of the format. It also mandated PNG as one of two image
formats required for minimal conformance. (JPEG was the other.) No doubt due to PNG's rampant
popularity,[39] VRML 2.0--or VRML97, as the | SO standard is known--achieved dramatically

greater recognition and acceptance than VRML 1.0, with shipments of VRML97 browsers reaching
levels of between 25 million and 75 million units by the autumn of 1998.

[39] Wéll, in part, anyway...

How is PNG actually used in a 3D, text-based file format? A complete answer would require
considerable discussion of 3D rendering engines, CPU and memory performance, Moore's Law, and
so forth. But in anutshell, VRML is designed for interactive 3D--particularly Web-based,
iImmersive, interactive 3D. A truly realistic animated object, such as the dinosaursin the movie
"Jurassic Park" or the flying cow in "Twister," would require far more computational power to
render in “"real time" at reasonable frame rates (say, more than 15 frames per second) than even
today's fastest processors can manage. And that's just one object; imagine every rock, tree, bug,
cloud, and blade of grass rendered at the same level of realism, responding to dynamic effects like
wind, sunlight, and other moving objects. Doing all of that is likely to remain out of reach of typical
personal computers for a decade or more.

Asaresult, VRML isall about trickery, and one of the most efficient forms of 3D trickery is known
as texture-mapping. Instead of creating a highly detailed 3D object out of many tiny polygons, it is
often possible to create a very realistic approximation of it out of just afew polygons, with an
appropriate image (or texture) drawn over them. Anyone who has studied a 3D game like Quake or
Descent is probably familiar with the concept; the buildings and even the characters are actually
quite crude, but with stone or metal textures and lighting effects applied, the world suddenly
becomes arealistically gloomy dungeon or sewer system or a bright and shiny high-tech laboratory.

[40]

[40] In the case of characters, animation and sound effects also aid theillusion
tremendoudly.

PNG'sroleinthisisasaformat for the textures. VRML references PNG images in much the same
way that HTML pages do, viaa URL that points at the PNG file. A VRML viewer then fetches the
PNG image, appliesit to the polygons of the relevant object according to the rulesin the VRML
specification, and displays the result within the 3D scene.

Because both raw VRML objects and PNG textures support not only colors but also transparency
and partial transparency (loosely, " translucency"), a number of interesting effects are possible. On
the other hand, the potential number of interactions and combinations is immense, so the VRML97
spec defines some basic rules regarding VRML materials and how textures modify them:

« A one-component texture--i.e., grayscale--absorbs and modul ates the underlying polygon's
color and transparency. For example, an opague yellow triangle with a gray, gradient texture
applied to it will turn into an opague triangle with ayellow gradient. The orientation of the
gradient depends on how the author specified the coordinates of the texture.

. A two-component texture (grayscale plus an a pha channel) absorbs the underlying polygon's
color, but any transparency in the base polygon is replaced by the transparency of the texture.

. A three-component texture (RGB color) replaces the underlying polygon's color but inherits
its transparency (if any); a blue texture applied to ared polygon with 50% transparency turn
its into a 50% transparent blue polygon.

. A four-component texture (RGB plus an alpha channel, or RGBA) completely overrides the
color and transparency of the underlying polygon.

What about palette-based images? If every color in the palette is pure gray (that is, if the values for
red, green, and blue are equal for each entry), then the image is treated as grayscale. If even one
palette entry is not gray, theimage is treated as RGB color. And if the image includes a
transparency chunk (more on that in Chapter 8, "PNG Basics'), it is treated as though it has afull

alpha channel.[41]

[41] The transparency chunk rule also applies to true RGB or grayscale PNGs, in

which such a chunk indicates that a single color or shade of gray is to be considered
fully transparent.

These rules are worth keeping in mind because, alas, full support for PNG in VRML browsersis
Not Quite There Y et. Just as there are two main web browsers, prior to August 1998 there were just
three main VRML browsers. Cosmo Player, WorldView, and blaxxun CC3D.[42] Although PNG

support in each of them was better than that in either of the Big Two web browsers, VRML
applications are necessarily subject to quite afew more variables: different rendering engines, a
myriad of third-party hardware and even more versions of device drivers, various browser
performance options, and, of course, the list presented earlier of waysin which a PNG texture can
interact with the objectsto which it is applied. And texture support isjust one small part of aVRML
browser! In other words, because so many things can go wrong, quite afew things do go wrong...at
least in some situations.

[42] Platinum Technology bought Intervista (maker of WorldView) in June 1998 and
most of Cosmo Software (maker of Cosmo Player) in August. In September, they
publicly announced their intention to merge the two browsers within arelatively short
period, so for a brief period the VRML world appeared to be heading toward an even
greater similarity to the world of HTML. Alas, the best-laid plans sometimes go awry;
in February 1999, Platinum restructured and, among other things, shed its entire 3D
team. As of mid-March, it appeared that Platinum was well on it way to releasing the
source code to Cosmo Player under a completely open license (with somewhat more
restrictive licenses for other 3D tools, such as WorldView for Developers and Cosmo
Worlds). But in yet another unexpected twist, Computer Associates announced in late
March that it was acquiring Platinum. As of early April 1999, no one yet knew the
fate of any of the WorldView/Cosmo suite.

Despite that somewhat bleak disclaimer, PNG support in older VRML browsers has improved with
each new release, and several new browsers are under development as thisis being written. Most of
the major ones are listed in the following sections, with known problems indicated. Unless
otherwise noted, all are plug-ins to web browsers, which they typically use not only to enable the
downloading of files over the Web but also to provide support for Java, and JavaScript (the
standardized variant of which is known ECMAscript).

6.1. Cosmo Player

Cosmo Player, at least the completely rewritten 2.x version, was designed with conformance and
rendering accuracy as the primary goals and performance second. Currently, the latest release is
version 2.1, only available for Windows 9x/NT. (An early betais available for the PowerMac, but it
Is reported to be somewhat unstable; a more mature betais available for IRIX 6.5.) With Nice
Trangparency turned off, Cosmo's PNG support is exemplary--aside from the fact that all partia
transparency is achieved by dithering fully transparent and fully opaque pixels, an approach known
as screendoor transparency or stippled alpha, which is great for performance but cannot be
considered true alpha support. With Nice Transparency turned on, and regardless of whether the
rendering engine is OpenGL software, OpenGL hardware, or Direct3D hardware, Cosmo 2.x

displays an odd " "popping" behavior with respect to opaque textures on translucent materials. That
Is, from some viewing angles, the textures will be translucent, as they are supposed to be; but from
other angles, they will be completely opague. In addition, gray textures with transparency
sometimes also inherit the underlying material's transparency.

On the SGI/IRIX platform, Cosmo Player 1.0.3 isthe latest official release as of March 1999.[43]

Like the PC version, it has a Nice Transparency mode that incorrectly allows two-component
textures (grayscale with transparency) to absorb material transparency. In addition, if two polygons
with partly transparent textures intersect, it can render parts of the polygons that should be opaque
as transparent instead. This latter problem can be avoided by designing the VRML world without
Intersecting polygons (which are often a performance problem anyway).

[43] SGI retained rights to the IRIX version of Cosmo Player and was to release at
least one more version, corresponding to Cosmo Player 2.1 for Windows, early in
1999. Indeed, thefirst 2.1 betafor IRIX was released at the end of February.

Further information about the Windows and Macintosh versions of Cosmo Player is available from
http://www.cosmosoftware.com/products/player/brief.html. The web page for the IRIX versionisat

http://www .sgi .com/software/cosmo/player.htmil.

6.2. WorldView/MSVRML

WorldView is available not only as an Internet Explorer and Navigator plug-in from Intervista, but
also as adlightly modified Internet Explorer component from Microsoft. The latter is known as
Microsoft's MSVRML browser, and up through the June 1998 end-user release of Windows 98, it
corresponded to WorldView 2.0. Subsequent versions of Win98, at least on some new PCs, and
Internet Explorer 5.0 included a VRML browser corresponding to WorldView 2.1, which was
Intervista's final release.[44] (Intervista never released version 2.1 as a Navigator plug-in version,

however, for either Windows or PowerMac.)

[44] WorldView 2.1 was preinstalled on new machines that shipped with Intel's 740
3D accelerator.

Unlike Cosmo Software's approach, Intervista's design philosophy for WorldView appears to have
emphasized performance, particularly hardware-assisted performance. Thisis not necessarily a bad
thing--with Direct3D acceleration under Windows 95, WorldView was usually faster than Cosmo
Player in my tests, sometimes much faster--but it does mean that some design decisions adversely
affect PNG rendering. For example, WorldView apparently does not support texture sizes greater
than 256 x 256 pixels; instead, it automatically scales down large images. It also supports
screendoor transparency rather than true alpha blending (similar to Cosmo Player's behavior with
Nice Transparency disabled), and it defaults to a palette-like, limited-color rendering mode,
although this can be overridden by choosing Full Color graphics mode from the Options pop-up.

Beyond the intentional limitations in PNG support, WorldView suffers from some transparency

http://www.cosmosoftware.com/products/player/brief.html
http://www.sgi.com/software/cosmo/player.html

bugs similar to Cosmo's. For example, grayscale PNGs with transparency also inherit the underlying
material's transparency, just asin Cosmo Player 1.x for IRIX. Opague textures, on the other hand,
fail to absorb the underlying material transparency.

In addition, WorldView with hardware acceleration enabled is at the mercy of the user's graphics
hardware, the quality of the video drivers supplied with the hardware, and Microsoft's DirectX (of
which at least three major versions are available). Observed hardware-specific bugs include a lack
of support for material transparency (3Dfx Voodoo Rush-based card) and alack of support for
material or texture transparency or for non-palette-based textures (ATl Rage Pro card). Many of
these problems are likely to disappear as hardware manufacturers rel ease more mature versions of
their video drivers, but some of the limitations may simply be due to an overly aggressive use of
DirectX in WorldView itself.

Note that the older WorldView 2.0 also had problems with so-called ""RGBA-palette” PNGs, and
with hardware acceleration enabled under Windows, it failed to display RGBA PNG textures at all
(observed on a Rendition V érité-based card).

WorldView is currently still available from http://www.intervista.com/worldview/, but as with

cosmosoftware.com, the site may disappear when Computer Associates completes its acquisition of
Platinum.

6.3. blaxxun Contact

blaxxun's Contact browser (the unified, version 4.0 name for the older CC3D and CCpro browsers)
Isavailable only for the Windows 9x/NT platform and is optimized primarily for performance, like
WorldView. Unlike WorldView, however, CC3D also comesin an OpenGL version, and both that
and the Direct3D version can support full alphablending of PNG textures, at least in some modes.
The Direct3D modes that support only screendoor transparency also support only 8-bit, palette-
based rendering, however.

Because the selection of PC video cards with good, hardware-assisted OpenGL support was still
fairly sparsein 1998, only the Direct3D version of Contact 4.002 was tested. It did not support
transparency in RGBA-palette PNGs at all, regardless of the material transparency, and gray palette-
based PNG textures with transparency failed to inherit the underlying material color. On the other
hand, palette and grayscal e textures with binary (or single-shade) transparency additionally

inherited the underlying material transparency. Implementation problems were also probably to
blame for the incorrect rendering of overlapping transparent textures.

Unlike older versions of the browser, which failed to render large textures at all, Contact 4.0
appeared to resample them to smaller sizesif the hardware had insufficient texture memory. In High
Quality software-rendering mode, the newer release appeared not to have any size limitations--
indeed, its rendering of large, opague textures was distinctly better than that of Cosmo Player,
which is otherwise considered to have avery high quality renderer. On the other hand, transparent
textures reverted to stippled transparency in this mode. Contact 4.0 is available for download from
http://www.blaxxun.com/products/contact/.

http://www.intervista.com/worldview/
http://www.blaxxun.com/products/contact/

6.4. Viscape Universal

Superscape has been in the 3D business since before VRML existed, but the release of Viscape
Universal 5.60 late in 1998 was its first nonbeta attempt at a VRML97 browser. As with Cosmo
Player and CCpro, it supports both OpenGL and Direct3D rendering engines.

Version 5.60 comes reasonably close to achieving Superscape's claims of ~full VRML97
compliance," at least with regard to textures. Alphatransparency is supported, but single-shade PNG
transparency in grayscale or RGB texturesis not, and palette-alpha PNGs are rendered mostly
opague. Materia transparency has varying effects: with the OpenGL renderer, all textures are
composed with the underlying transparency; with Direct3D, none of them are. Both behaviors are
incorrect. Grayscale textures also fail to absorb the underlying material's color.

On amore amusing note, Viscape Universal has no support for GIF textures--which is allowed by
the VRML specification--but it fails to render the underlying material correctly in the absence of the
textures. The browser may be downloaded from http://www.superscape.com/download/

ViscapeUniversal/.

6.5. LibVRML97/Lookat

LibVRML97 is ChrisMorley's free VRML97 library, written in C++; Lookat is a simple browser
based on the library. As of version 0.7.9, the library was known to compile under Linux, Solaris,
and Windows 95; it should be portable to most platforms with a reasonably up-to-date C++
compiler. The Lookat sample browser (and its Motif- and GTK-based variants, xmLookat and
gtkLookat) was originally specific to Unix and the X Window System, but a 32-bit Windows port
was progressing quite rapidly as of January 1999.

Earlier versions had various minor texture problems, but version 0.7.9 earned a distinction shared by
no other VRML browser: perfect texture-rendering compliance with the VRML97 specification for
al combinations of texture types and material properties, as far as our tests can determine. The
browser may have other limitations, but its PNG support is without parallel.[45]

[45] There was actually atiny glitch: one pixel in the corner of one GIF texture was
the wrong color. Oops.

LibVRML97 isfreely available as C++ source code from http://www.vermontel.net/~cmorley/vrmil.
html under a BSD-like license. The Motif and GTK front ends are available under the GNU General
Public License.

6.6. FreeWRL

Another Open Source VRML97 browser is Tuomas Lukka's FreeWRL, a Perl-based effort that uses

http://www.superscape.com/download/ViscapeUniversal/
http://www.superscape.com/download/ViscapeUniversal/
http://www.vermontel.net/~cmorley/vrml.html
http://www.vermontel.net/~cmorley/vrml.html

OpenGL for 3D rendering and FreeType for font support. As such, it is one of the few VRML97
browsers that runs under Linux, but because of its dependence on a host of secondary Perl packages
and external libraries,[46] it is not for the meek. Version 0.13 supported PNG, but just barely: only

on primitive shapes (Box, Cylinder, and Sphere, not |ndexedFaceSet, Extrusion, or ElevationGrid
nodes), and in atest world with both PNGs and JPEGs, the two JPEG textures appeared to be used
on every textured surface, replacing all of the PNG textures. It also did not support material
transparency, had problems with nonconvex, textured polygons, and, as a script-based browser, was
rather slow.

[46] Perl 5.0; Perl modules libwww, libnet, MIME-Base64, MD5, HTML-Parser, and
Data-Dumper; Mesa or acommercial OpenGL library; FreeType; libjpeg, libpng, and
zlib; and optionally XSwallow, to enable its use in Netscape Navigator as an inline
VRML plug-in.

Version 0.17 was Tuomas's final release (December 1998); as of January 1999, John Stewart was
the maintainer, and the new web site was http://debra.dgbt.crc.ca/~luigi/FreeWRL/. Version 0.19

was the current release as of early April 1999.

6.7. VRMLView

VRMLView, from the Norwegian company Systemsin Motion, is available for Windows 9x/NT,
IRIX, Linux/Intel, and BeOS, with an HP-UX port underway. As of early 1999, two betas of version
2.0 had been released: “"2.0b1" in January 1998 and ~"2.0betal" in August, available for Linux,
Windows, and BeOS. Thefirst had afatal PNG bug, but support in the second was reasonably good
and included full alpha blending.

Nevertheless, VRMLView 2.0betal had several problems with PNG textures, many similar to those
seen in other browsers. Among them were the following:

. Gray palette-based textures do not inherit underlying material colors.
. Gray PNGs with transparency also inherit underlying material transparency.
. Gray non-palette-based PNG textures with transparency are rendered opague.

. Opaque palette-based and RGB textures on partially transparent materials are rendered
completely transparent.

. In some places, background polygons are rendered on top of foreground polygons.

The VRMLView 2.0 beta shipped with all texture support turned off, but textures could be enabled
by selecting the Texturesitem in the View menu. Subsequently, textures were enabled from the
outset. Also note that the Linux version required the 3.0 beta version of the Mesa OpenGL clone
(subsequently released), which was not immediately obvious from the README file. Finally, keep

http://debra.dgbt.crc.ca/~luigi/FreeWRL/

in mind that the browser still lacked support for some basic VRML nodes, such as Background and
Anchor. VRMLView's web pageis at http://www.sim.no/vrmlview.html.

6.8. Other VRML Browsers

Other VRML97 browsers that included some level of PNG support were Dimension X's Liquid
Reality, Netscape's Live3D, and Newfire's Torch. Dimension X was acquired by Microsoft in 1997,
and its 3D technology was absorbed into the Liquid Motion animation tool. The Java-based Liquid
Reality browser itself was discontinued, but since its PNG support was fairly buggy and usually
crashed the browser (under both Solaris and Windows 95), it was never atruly usable PNG-
supporting VRML browser.

Netscape's Live3D browser, based on aVRML 1.0 browser (WebFX) acquired from Paper
Software, had good PNG support, aside from reversing all red and blue color values and supporting
only screendoor transparency. The rights to version 2.0 were acquired by SGI early in 1997, and it
was renamed and released as Cosmo Player 1.0 for the PC. With the Cosmo Player 2.0 rewrite, most
traces of Live3D vanished, although it was still bundled with Netscape Communicator versions up
through 4.04.

Newfire's Torch browser was a special-purpose, games-oriented VRML engine. It was designed
purely for speed and interactive performance, but it nevertheless supported PNG, including a
dithered form of screendoor transparency that looked better than the usual flavor. Aside from using
an 8-bit color model regardless of display depth, its only known bug was afailure to compose
grayscale textures with the underlying material color. Unfortunately, it disappeared when Newfire
went bankrupt early in 1998.

In addition to the dead PNG-supporting browsers (let us hope there's no connection to PNG support
there!l), two other VRML97 browsers were still under active development in 1998: Sony's
Community Place 2.0 (http://www.community-place.com/) and VRwave 0.9 (http://www.iicm.edu/

vrwave/) from the Graz (Austria) University of Technology. Neither supported PNG as of early
1999, but PNG support was promised for both in upcoming rel eases.

6.9. Other 3D Applications

Quite afew other 3D applications support PNG, too. These range from VRML editors and high-end
modeling programs to artificial terrain generators and font-extrusion utilities. In the next few pages,
| list anumber of these applications, together with the version number of the latest release and the
current web site as of thiswriting.

3D Studio MAX
Version R2.5, Kinetix/Autodesk. Available for 32-bit Windows; read/write support for

PNGs. Thisisthe reference software for high-end 3D modeling, much like Adobe Photoshop
isthe reference for high-end image editing; release 2.0 (and later) supports export of VRML

http://www.sim.no/vrmlview.html
http://www.community-place.com/
http://www.iicm.edu/vrwave/
http://www.iicm.edu/vrwave/

2.0.

http://www.ktx.com/3dsmax/ http://www.ktx.com/3dsmaxr2/

Cosmo Worlds

Version 1.1 (IRIX) and 2.0 (Win32), SGI Cosmo Software, Platinum Technology, Computer
Associates, and/or Web3D Consortium. Available for SGI IRIX and 32-bit Windows; read/
write support for PNGs; full alpha support. This was Cosmo's flagship VRML 2.0 editing
program. SGI retained the rightsto the IRIX version; as of early April 1999, the fate of the
Windows version was up in the air. Platinum's plans to release it to the Web3D Consortium
(as open source code, free for noncommercial use) may go forward, or it may remain
proprietary software under Computer Associates control.

http://www.cosmosoftware.com/products/worlds/brief.html http://www.sgi.com/
software/cosmo/worlds.html http://www.web3d.org/

Extreme3D

Version 2.0, Macromedia. Available for 32-bit Windows and Mac PPC; read/write support
for PNGs as textures and backgrounds; write-only support for PNGs as output format for

rendered scenes, including interlacing and (32-bit) apha support. Thisisa 3D modeling and
animation tool.

http://www.macromedi a.com/software/extreme3d/

Font F/X

Version 2.0, DCSi/Electric Rain. Available for 32-bit Windows; write-only support for
PNGs. Thisisa 3D font-rendering program.

http://www.erain.com/

gforge

Version 1.3a, John Bedle. Available for Unix and DOS; write-only support for PNGs. Thisis
aterrain generator that uses *random fractal forgery" to produce realistic mathematical
representations of hills, mountains, and craters; its output must be fed into the POV-Ray ray
tracer for rendering. The included Tcl/Tk interface is called Xforge.

http://www.best.com/~bea e/gforge/

LightWave 3D

http://www.ktx.com/3dsmax/
http://www.ktx.com/3dsmaxr2/
http://www.cosmosoftware.com/products/worlds/brief.html
http://www.sgi.com/software/cosmo/worlds.html
http://www.sgi.com/software/cosmo/worlds.html
http://www.web3d.org/
http://www.macromedia.com/software/extreme3d/
http://www.erain.com/
http://www.best.com/~beale/gforge/

Version 5.6, NewTek. Available for 32-bit Windows, Mac PPC, IRIX, and Solaris. Read/
write support for PNGs and full (32-bit) alpha support if James G. Jones's PNG |loader/saver
Isinstalled as a plug-in. Thisis another 3D modeling and animation tool, with particular
emphasis on film and video output.

http://www.newtek.com/products/lightwave/description.html http://datausa.com/
pixelsys/plugins.htm

Mathematica

Version 3.0.2, Wolfram Research. Available for 32-bit Windows, Mac 68k/PPC, and most
flavors of Unix; version 2.2.3 isaso available for 16-bit Windows, OS/2, and OpenVMS.
Read/write support for PNGs, read-only support for 32-bit RGBA, and full 16-bit support if
Jens-Peer Kuska's PNGBitmap package isinstalled. Mathematicais a graphical environment
for interactive mathematics and technical computing; the add-on allows it to use PNGs for
textures on surfaces and to save rendered output and other graphics elementsin PNG format.

http://www.wri.com/mathematica/ http://www.mpae.qwdg.de/~kuska/mcpng.html

MathGL3d

Version 2.0, Jens-Peer Kuska. Available for 32-bit Windows, Linux, and Solaris; read/write
support for PNGs. Thisis a standalone, interactive viewer for Mathematica 3D elements; it
supports PNGs as textures on input and as an output format for rendered images. It can also
produce POV-Ray or VRML 2.0 models with PNG textures.

http://www.mpae.gwdg.de/~kuska/mview3d.html

Nendo

Nichimen Graphics. Available for 32-bit Windows and Solaris; read/write support for PNGs.
Thisisa 3D modeling and 2D painting application with support for PNGs as textures and
VRML 2.0 as both an input and output format. PNG images can be edited in the paint
portion of the program.

http://www.nichimen.com/nendo/

pf2wrl

Version 1.4, WareOnEarth. Available for SGI IRIX; write-only support for PNGs. Thisisa
simple (and free) command-line utility to convert IRIS Performer 3D filesinto VRML 2.0
format; it will optionally convert the SGI-specific texture formats into PNG and JPEG.

http://www.newtek.com/products/lightwave/description.html
http://datausa.com/pixelsys/plugins.htm
http://datausa.com/pixelsys/plugins.htm
http://www.wri.com/mathematica/
http://www.mpae.gwdg.de/~kuska/mcpng.html
http://www.mpae.gwdg.de/~kuska/mview3d.html
http://www.nichimen.com/nendo/

http://www.wareonearth.com/freesoft.html

POV-Ray

Version 3.1a, Persistence of Vision Development Team. Available for 16- and 32-bit
Windows, Unix, Mac 68k/PPC, DOS, and Amiga; read/write support for PNGs; full (32-bit)
alpha support; full gamma support; full 16-bit-per-sample support. Thisis probably the most
well known ray-tracing program; its file format has become an unofficial 3D standard.

http://www.povray.org/

Rational Reducer

Version 2.2, Systemsin Mation. Available for 32-bit Windows, Linux, and SGI IRIX; read-
only support for PNGs. Thisis a polygon-reduction tool for 3D modelsin VRML 1.0,
VRML 2.0, AutoCAD (DXF), and 3D Studio MAX (3DS) formats. It supports PNGs for
textures.

http://www.sim.no/reducer.html

trueSpace

Version 4.1, Caligari. Available for 32-bit Windows; read/write support for PNGs. Thisisa
3D modeling and rendering program with support for radiosity, NURBS, and so on. It
supports PNGs for textures and can write VRML 2.0 files.

http://www.caligari.com/products/

Xara3D

Version 3.0, Xara. Available for 32-bit Windows; write support for PNGs (may also support
reading PNGs as textures); full (32-bit) alpha support. Thisis a 3D font-rendering program.

http://www.xara.com/xara3d/

One other application is worth mentioning here. VermelGen, an al-Java VRML editor written by
Justin Couch and Cameron Gillies, relies on Java's built-in image-handling support for textures. The
most recent version of the app, beta 2, was released in mid-1997 when Java did not support PNG.
But with native PNG support in the new Java Advanced Imaging APl and in Justin's own Java
Image Content Handlers (see Chapter 16, "Other Libraries and Concluding Remarks' for both), it is
possible that Vermel Gen will inherit PNG support as well. (Of course, it's aso quite possible that
some modifications would have to be made in order to work with the updated Java code.)
VermelGen is available from http://www.vlc.com.au/VVermel Gen/; it requires the JVerge VRML

http://www.wareonearth.com/freesoft.html
http://www.povray.org/
http://www.sim.no/reducer.html
http://www.caligari.com/products/
http://www.xara.com/xara3d/
http://www.vlc.com.au/VermelGen/

classes, available from http://www.vlc.com.au/JV erge/.

As with the other application categories, new VRML browsers and 3D applications with PNG
support will be listed on the following two pages at the PNG home site:

http://ww.libpng. org/pub/png/pngvrm . htm
http://ww. |l ibpng. org/ pub/png/ pngap3d. ht m

As of 2003, the second page lists all known 3D applications with PNG support, including VRML
browsers and editors; thefirst isreserved for detailed test results for various VRML browsers. Note
also that the follow-on to the VRML97 specification is an XML-based format called X3D. It includes

several profiles of varying complexity, one of which is VRML97-compatible.

- PREVIOUS CONTENTS NEXT o

http://www.vlc.com.au/JVerge/
http://www.libpng.org/pub/png/pngvrml.html
http://www.libpng.org/pub/png/pngap3d.html
http://www.web3d.org/fs_specifications.htm

- PREVIOUS CONTENTS NEXT o

Chapter 7. History of the Portable Network
Graphics Format

Contents:

7.1. Anatomy of an Internet Working Group
7.2. Implementation

7.3. MNG

7.4. Mainstream Support and Present Status

Internet GIF tax,
January '95.
PNG to the rescuel

--Glenn Randers-Pehrson[47]

[47] Alternatively, " Unisys bombshell, / Christmas 1994. / PNG to the rescue!”

The Portable Network Graphicsimage format, or PNG for short, is the first general-purpose image
format to achieve wide, cross-platform acceptance[48] since JPEG/JFIF arrived in the early 1990s.

Almost every major feature in PNG exists in other general-purpose formats--specifically, GIF,
JPEG, and TIFF--yet in January 1995, a group of strangers felt compelled to band together and
design another image format from scratch. To understand why, it is necessary to delve even further
into history.

[48] The choice of adjectivesisintentional: there are other widely accepted formats,
such as Windows BMPs, but they're not cross-platform, and there are cross-platform
formats such as PostScript or the astronomical FITS format, but they're not general -

purpose.

In 1977 and 1978, Israeli researchers Jacob Ziv and Abraham Lempel published a pair of papers on
anew class of lossless data-compression algorithms in the journal |EEE Transactions on
Information Theory. These algorithms, now collectively referredtoas "LZ77" and " "LZ78," formed
the basis for an entire industry of software, hardware, and subsequent research papers. One of the
follow-up papers was by Terry Welch and was published in the June 1984 issue of IEEE Computer.
Entitled A Technique for High-Performance Data Compression,” it described his research at
Sperry into afast, efficient implementation of LZ78 called LZW.

By 1987, when CompuServe's Bob Berry was busy designing the GIF image format, LZW was well

established in the Unix world in the form of the compress command, and in the PC world in the
form of SEA's ARC. As afast algorithm with good compression and relatively low memory
requirements, LZW was ideally suited to the PCs of the day, and it became Berry's choice for aGIF
compression method, too. In turn, GIF became the image format of choice on the Internet,
particularly on the worldwide discussion forum known as Usenet.

And so things remained largely unchanged until 1994. The introduction (from a practical
standpoint) of JPEG around 1992 or 1993 may have slowed GIF'srising star slightly, but
computational requirements and the limitations of then-current graphics cards limited JPEG's
acceptance for severa years. With the advent of graphical browsers for the World Wide Web in
1992 and 1993, GIF's popularity only increased: simple graphics with few colors were the norm,
and those were ideally suited to GIF's palette-based format. With the release of Netscape Navigator
1.0in 1994, progressive rendering of images as they downloaded suddenly became widespread, and
GIF'sinterlacing scheme worked in its favor once more.[49]

[49] Progressive capability had for quite some time been part of the JPEG
specification, too, but since the Independent JPEG Group's free library didn't support
the progressive mode until August 1995, neither did any applications--including web
browsers.

Then, three days after Christmas 1994, CompuServe quietly dropped a small bombshell on an
unsuspecting world: henceforth, all Gl F-supporting software would require royalties. In fact, the
announcement was apparently the culmination of more than ayear of legal wrangling with Unisys,
which had inherited the Welch LZW patent in the 1986 merger of Sperry and Burroughs, and which
had by 1993 become considerably more aggressive about enforcing its patent in software-only
applications.

In any case, shortly after the holidays ended, word of the announcement reached the Internet--
specificaly, the ever-volatile Usenet community. As one might expect, the results were spectacular:
within days, afull-fledged conflagration of bluster, whining, flaming, vitriol, and general-purpose
noise had engulfed several of the Usenet newsgroups, among them comp.compression and comp.
graphics. But mixed in with the noise was the genesis of an informal Internet working group led by
Thomas Boutell. Its purpose was to design not only a replacement for the GIF format, but also a
successor to it: better, smaller, more extensible, and free.

7.1. Anatomy of an Internet Working Group

What would become known asthe "PNG Group" or "PNG Development Group” began as many
such groups do--as a collection of participantsin a Usenet newsgroup. When the discussion became
both more detailed and considerably more verbose, it became amailing list with an associated
CompuServe forum. Tom Boutell posted the very first PNG draft--then known as ~ PBF," for
Portable Bitmap Format--to comp.graphics,[50] comp.compression, and comp.infosystems.www.
providers on Wednesday, 4 January 1995. It had a 3-byte signature, chunk numbers rather than
chunk names, a maximum pixel depth of 8 bits, and no specified compression method, but even at
that stage it had more in common with today's PNG than with any other existing format.

[50] Also known by some as the Peanut Butter Format, a.k.a. Chunky GIF.

Within one week, most of the mgjor features of PNG had been proposed, though by no means yet
accepted: deltafiltering for improved compression (Scott Elliott and Mark Adler), deflate
compression (Tom Lane, the Info-ZIP Group and many others), 24-bit support (many folks), the
PNG nameitself (Oliver Fromme), internal CRCs (Greg Roel ofs), gamma chunk (Paul Haeberli),
and 48- and 64-bit support (Jonathan Shekter). That week also saw the first proto-PNG mailing list
set up, Tom Boutell's release of the second draft of the specification, and Greg's posting of some test
results that showed a 10% improvement in compression if GIF's LZW method were simply replaced
with the deflate (LZ77) algorithm.

One of the real strengths of the PNG group wasiits ability to weigh the pros and cons of various
Issues in a(mostly) rational manner, reach some sort of consensus, and then move on to the next
issue without prolonging discussion on " dead" topics indefinitely. In part this was probably due to
the fact that the group was relatively small, yet possessed of a sufficiently broad range of graphics
and compression expertise that no one felt unduly shut out when a decision went against him.[51] In

part it was also due to afrequently updated " scorecard,” which listed the accepted and rejected
features and summarized any issues that were still undecided.

[51] All of the PNG authors were male. Most of them still are. No doubt there'sa
dissertation in there somewhere.

But the most important factor in the group's progress was the position of Benevolent Dictator, held
by Tom Boutell. Aswith the very successful Linux development model, in which Linus Torvaldsis
trusted with the final say on anything having to do with the Linux kernel, so Tom, asthe initiating
force behind the PNG project, was granted this power. When consensus was impossible, Tom would
make a decision, and that would settle the matter. On one or two rare occasions he might later have
been persuaded to reverse the decision, but this generally happened only if new information came to
light.

In any case, the development model worked: by the beginning of February 1995, seven drafts had
been produced, and the PNG format was settling down. (The PNG name was adopted in Draft 5,
after agreat deal of fuss; GIF's indeterminate pronunciation[52] was the prime motivating factor,

but the allure of an unofficial recursive acronym--PNG's Not GIF--was what decided the matter.)
The next month was mainly spent working out the details: chunk-naming conventions, CRC size
and placement, choice of filter types, palette ordering, specific flavors of transparency and al pha-
channel support, interlace method, and so on. CompuServe was impressed enough by the design that
on February 7, 1995, they announced support for PNG as the designated successor to GIF,
supplanting what they had initially referred to as the GIF24 development project. By the beginning
of March, PNG Draft 9 was released and the specification was officially frozen--just over two
months from its inception. Although further drafts followed, they merely added clarifications, some
recommended behaviors for encoders and decoders, and atutorial or two. Indeed, Glenn Randers-
Pehrson has kept some so-called " "paleo PNGs' that were created at the time of Draft 9; they are
still readable by any PNG decoder today.

[52] The author of the GIF specification pronounces it with a soft G, as " jif."

Table 7-1 isatimeline listing many of the mgor eventsin PNG's history.

Table 7-1. PNG Time Line

Date ﬂEvent

4 Jan 1995
4 Jan 1995
4 Jan 1995
4 Jan 1995
5 Jan 1995
6 Jan 1995
7 Jan 1995
7 Jan 1995
7 Jan 1995
8 Jan 1995
8 Jan 1995
9 Jan 1995
10 Jan 1995
15 Jan 1995
16 Jan 1995
16 Jan 1995
16 Jan 1995
23 Jan 1995
24 Jan 1995
26 Jan 1995
1 Feb 1995
2 Feb 1995
7 Feb 1995
13 Feb 1995
7 Mar 1995
11 Mar 1995
13 Mar 1995
1 May 1995
1 May 1995

PBF Draft 1 (Thomas Boutell)

Deltafiltering (Scott Elliott, Mark Adler)

Deflate compression (Tom Lane and others)

24-bit support (many)

TeleGrafix LZHUF proposal

PNG name (Oliver Fromme)

PBF Draft 2 (Thomas Boutell)

ZIF early results (Greg Roelofs)

Internal CRC(s) (Greg Roelofs)

Gamma chunk (Paul Haeberli)

48-, 64-bit support (Jonathan Shekter)

FGF proposal, implementation (Jeremy Wohl)

First NGF/PBF/proto-PNG mailing list (Jeremy Wohl)
PBF Draft 3 (Thomas Boutell)

CompuServe announces GIF24 development (Tim Oren)
Spec available on WWW (Thomas Boutell)

PBF Draft 4 (Thomas Boutell)

PNG Draft 5 (Thomas Boutell)

PNG Draft 6 (Thomas Boutell)

Final 8-byte signature (Tom Lane)

PNG Draft 7 (Thomas Boutell)

Adam? interlacing scheme (Adam Costello)
CompuServe drops GIF24 in favor of PNG (Tim Oren)
PNG Draft 8 (Thomas Boutell)

PNG Draft 9 (Thomas Boutell)

First working PNG viewer (Oliver Fromme)

First valid PNG images posted (Glenn Randers-Pehrson)
pnglib 0.6 released (Guy Eric Schalnat)

zlib 0.9 released (Jean-loup Gailly, Mark Adler)

5 May 1995
13 Jun 1995
27 Jul 1995
20 Sep 1995
8 Dec 1995
23 Feb 1996
28 Mar 1996
22 May 1996
17 Jun 1996
1 Jul 1996
11 Jul 1996
24 Jul 1996
4 Aug 1996
1 Oct 1996
14 Oct 1996
6 Nov 1996
9 Dec 1996
15 Jan 1997
28 Jan 1997
5 Apr 1997
1 Oct 1997
11 Nov 1997
28 Feb 1998
9 Mar 1998
9 Jul 1998
17 Aug 1998
23 Oct 1998
21 Dec 1998
31 Dec 1998
14 Jan 1999
9 Feb 1999
22 Jun 1999

PNG Draft 10 (Thomas Boutell)

PNG web site (Greg Roel ofs)

NCSA X Mosaic 2.7b1 with native PNG support (Dan Pape)
Arena 0.98b with native PNG support (Dave Beckett)
PNG spec 0.92 released as W3C Working Draft

PNG spec 0.95 released as |ETF Internet Draft

Deflate and zlib approved as Informational RFCs (IESG)
Deflate and zlib released as Informational RFCs (IETF)
libpng 0.89c released (Andreas Dilger)

PNG spec 1.0 released as W3C Proposed Recommendation
PNG spec 1.0 approved as Informational RFC (IESG)

zlib 1.0.4 released (Jean-loup Gailly, Mark Adler)

VRML 2.0 spec released with PNG as requirement (VAG)
PNG spec 1.0 approved as W3C Recommendation
image/png approved (IANA)

SRGB chunk registered (PNG Development Group)

SPLT chunk registered (PNG Development Group)

PNG spec 1.0 released as Informational RFC 2083 (IETF)
PCAL chunk registered (PNG Development Group)
libpng 0.95b released (Andreas Dilger)

Internet Explorer 4.0 with native PNG support (Microsoft)
Navigator 4.04 with native PNG support (Netscape)
MHEG-5 UK profilefor digital TV released (UK DTG)
libpng 1.0 released (Glenn Randers-Pehrson)

zlib 1.1.3 released (Jean-loup Gailly, Mark Adler)

ICCP chunk registered (PNG Development Group)

PNG spec 1.1 approved (PNG Development Group)
Opera 3.51 with native PNG support (Opera Software)
PNG spec 1.1 released (PNG Development Group)

libpng 1.0.3 released (Glenn Randers-Pehrson)

ITXt chunk registered (PNG Development Group)

PNG: The Definitive Guide published

Perhaps equally interesting are some of the proposed features and design suggestions that ultimately
were not accepted: the Amiga | FF format; uncompressed bitmaps, either gzip'd or stored inside
zipfiles; thumbnail images and/or generic multi-image support; " little-endian"[53] byte order;
Unicode UTF-8 character set for text; YUV and other lossy (nonlossless) image-encoding schemes;
vector graphics; and so forth. Many of these topics produced an amazing amount of discussion--in

fact, the main proponent of the zipfile ideawas still arguing about it more than two years | ater.

[53] The name stems from areference in Gulliver's Travels to opposing factions of
silly people, some of whom (Lilliputians) broke their eggs at the little end before
eating them and some of whom (Blefuscudians) broke them at the big end. The
argument over PNG's byte order was almost equally silly, but in the end (so to speak)
big-endian was chosen for two reasons: it's easier for humansto read and debug in a
“"hex dump” (atextual rendering of a binary file), and it's the same as " network byte
order," which is something of an Internet standard.

7.2. Implementation

A frozen spec opens the door to implementations, and many people set about writing PNG encoders
and decoders as soon as Draft 9 appeared. The real glory, however, isreserved for the handful of
people who took it upon themselves to write the free programming libraries supporting PNG: Jean-
loup Gailly and Mark Adler, both of Info-ZIP and gzip fame, who rewrote the deflate compression
engine in aform suitable for general-purpose use and released it as Zlib; and Guy Eric Schalnat of
Group 42, who almost single-handedly wrote the initial version of libpng (then known as pnglib).
Thefirst truly usable versions of the libraries were released two months after Draft 9, on May 1,
1995. Although both libraries were missing some features required for full implementation, they
were sufficiently complete to be used in various freeware applications. Draft 10 of the specification
was released at the same time, with clarifications and corrections resulting from these first
Implementations.

The pace of development slowed at that point, at least to outward appearances. Partly this was due
to the fact that, after four straight months of intense development and many megabytes of email,
everyone was exhausted; partly it was due to the fact that Guy controlled the development of libpng,
and he became busy with other things at work. Often overlooked is the fact that, while writing the
spec was avery focused effort and writing the reference implementation was only slightly less so,
once the library had been released in a usable form there were literally hundreds of potential
applications pulling at developers' interests. And finally, there was the simple perception that PNG
was basically done--a point that was emphasized by a CompuServe press release to that effect in
June 1995.

Nevertheless, progress continued. June saw the genesis of the PNG web site, which has now grown
to more than two dozen pages, and Kevin Mitchell officially registered the "PNGf" Macintosh file
ID with Apple Computer. In August 1995, Alexander Lehmann and Willem van Schaik released a
fine pair of additions to the NetPBM image-manipulation suite: pnmtopng and pngtopnm version
2.0. And in December, at the Fourth International World Wide Web Conference, the World Wide
Web Consortium (W3C) released the PNG Specification version 0.92 as an official standards-track
Working Draft.

February 1996 saw the release of version 0.95 as an Internet Draft by the Internet Engineering Task
Force (IETF), followed in July by the Internet Engineering Steering Group's (IESG) approval of
version 1.0 as an official Informational RFC. (It wasfinally released by the IETF as RFC 2083 in

January 1997.) In early August, the Virtual Reality Modeling Language (VRML) Architecture
Group adopted PNG as one of the two required image formats for minimal VRML 2.0 conformance.
Meanwhile, the W3C promoted the spec to Proposed Recommendation status in July and then to
full Recommendeation status on the first of October. Finally, in mid-October 1996, the Internet
Assigned Numbers Authority (IANA) formally approved “image/png" as an officia Internet Media
Type, joining image/gif and image/jpeg as non-experimental image formats for the Web. Much of
this standardization would not have happened nearly as quickly without the tireless efforts of Tom
Lane and Glenn Randers-Pehrson, who took over editing duties of the spec from Thomas Boutell.

7.3. MNG

Also in 1996 came the revival of efforts to produce a multiple-image variant of PNG suitable for
dlide shows, animations, and very efficient storage of certain ssmple kinds of images. Multi-image
support had been left out of the PNG specification for several reasons. multi-image capability in
GIF was supported by virtually no one; multi-image Gl Fs were indistinguishable from single-image
GIFs(i.e., they had the same filename extension); including multi-image support in PNG would
have delayed both its development and its acceptance in the marketplace, due to the burden of extra
complexity, and creating a separate, PNG-based multi-image format not only would be alogical
extension of PNG but also would be more appropriate to a group with backgrounds in animation
and multimedia. Asit happened, however, this latter group never materialized, and with the early-
1996 release of Netscape Navigator 2.0 with support for GIF animations,[54] it became clear that

the PNG Group needed to produce some sort of response.

[54] Alas, Netscape's support of GIF animations probably did more to ensure the
format's longevity than any other event in GIF's history.

Unfortunately there was a fairly fundamental disagreement within the group over whether the new
format should be avery thin layer on top of PNG, capable of duplicating GIF animations but not
much more, or whether it should be a full-fledged multimedia format capable of synchronizing
Images, sound, and possibly video. Although the former would have been trivial (and fast) to design
and implement, proponents of the latter design held sway during the early discussionsin the
summer of 1996. In the end, however, something of a compromise was created--though possibly
due more to attrition than consensus. Called Multiple-image Network Graphics, the MNG format
design was largely shaped by Glenn Randers-Pehrson and included ssmple but general operations to
mani pul ate sections of images, but no direct sound or video support. As of November 1998 the
MNG specification was close to being frozen, but was also quite large and still awaiting
implementation in the form of areference library similar to libpng. Until such time as either a
reference library or some other form of complete implementation exists, the MNG spec will not be
approved as a standard, nor isit likely that more than a handful of third-party developerswill offer
support for it.

7.4. Mainstream Support and Present Status

If 1996 was the year of PNG's standardization, 1997 was the year of PNG applications. After having

taken over libpng development from Guy Eric Schalnat in June 1996, Andreas Dilger shepherded it
through versions 0.89 to 0.96, adding numerous features and finding and fixing bugs; application
developers seemed not to mind the library's "beta" version number, and increasingly employed it in
their mainstream apps. With native support in popular programs such as Adobe's Photoshop and
Illustrator, Macromedia's Freehand, JASC's Paint Shop Pro, Ulead's Photol mpact, and Microsoft's
Office 97 suite, PNG's star was clearly rising. But perhaps the crowning moment came in the
autumn, with fresh versions of the Big Two web browsers. Microsoft's Internet Explorer 4.0 in
October and Netscape's Navigator 4.04 in November both included native, albeit somewhat limited,
PNG support. At last, the widespread use of PNG on the Web came within the realm of possibility.

The theme for 1998 seems to have been maturity. Having been handed the reins of principal libpng
development at the beginning of the year, Glenn Randers-Pehrson fixed many bugs, finished the
documentation and generally polished libpng into a stable release worthy of a "~ 1.0" version number
by early March--three years to the day, in fact, after the PNG specification was frozen. In February,
the UK Digital Television Group released the MHEG-5 UK Profile for next-generation teletext on
digital terrestrial television; the profile included PNG as one of its bitmap formats, and as a resullt,
manufacturers such as Philips, Sony, Pace and Nokia were expected to be shipping digital
televisions and set-top boxes with built-in PNG support by the time this book reaches print. At the
very end of March 1998, Netscape released Mozilla, the pre-al pha source code to Communicator
5.0, which allowed interested third parties (like the PNG Group) to tinker with the popular browser
and make it work as intended. In October, the PNG Group approved some important additions and
clarifications to one of the more difficult technical aspects of the PNG spec, namely, gamma and
color correction; these changes defined the PNG 1.1 specification--the first official revision in three
and ahalf years. And at roughly the same time, ajoint committee of the International Organization
for Standardization (1SO) and the International Electrotechnical Commission (IEC) began the
yearlong process to make Portable Network Graphics an official international standard (to be known
as I1SO/IEC 15948 upon approval).

But a history bereft of darker eventsis perhaps not so interesting...and, sadly enough, for a brief
period in April 1998, it appeared that things might once again be percolating on the legal front.
Specifically, there were rumors that Stac, Inc., believed the deflate compression enginein zlib
(which is used by libpng) infringed on two of their patents. Careful reading of the patentsin
question, United States patents 4,701,745 and 5,016,009, suggests that although it is possible to
write an infringing deflate engine, the one actually used in zlib does not do so.[55] Moreover, as this
iswritten, afull year has passed with no public claims from Stac, no further private contacts, and no
confirmation of the original rumors. However, until thisistested in court or Stac makes a public
announcement clearing zlib of suspicion, at least a small cloud will remain over the Portable
Network Graphics format as awhole. The irony should be evident to one and all.

[55] It should go without saying--but lawyers like it to be said anyway--that thisis not
official legal advice. Consult a patent attorney to be (more) certain. But note that
deflate is also being standardized into open Internet protocols such as PPP.

PREVIOUS CONTENTS NEXT

- PREVIOUS CONTENTS NEXT o

Chapter 8. PNG Basics

Contents:

8.1. Chunks
8.2. PNG Signature
8.3. A Word on Color Representation
8.4. The Simplest PNG
8.5. PNG Image Types
8.5.1. Palette-Based
8.5.2. Palette-Based with Transparency
8.5.3. Grayscade
8.5.4. Grayscale with Transparency
8.5.5. Grayscale with Alpha Channel
8.5.6. RGB
8.5.7. RGB with Transparency
8.5.8. RGB with Alpha Channel
8.6. Interlacing and Progressive Display

The fundamental building block of PNG imagesis the chunk. With the exception of the first 8 bytes
in the file (and we'll come back to those shortly), a PNG image consists of nothing but chunks.

8.1. Chunks

Chunks were designed to be easily tested and manipulated by computer programs, easily detected
by human eyes, and reasonably self-contained. Every chunk has the same structure: a 4-byte length
(in "big-endian” format, as with all integer valuesin PNG streams), a 4-byte chunk type, between O
and 2,147,483,647 bytes of chunk data, and a 4-byte cyclic redundancy check value (CRC). Thisis
diagrammed in Figure 8-1.

Figure 8-1: PNG chunk structure.

The datafield is straightforward; that's where the interesting bits (if any) go; specific content will be
discussed later, as each chunk is described. The length field refers to the length of the data field
alone, not the chunk type or CRC. The CRC, on the other hand, covers both the chunk-type field
and the chunk data and is always present, even when there is no chunk data. Note that the
combination of length fields and CRC values is already sufficient to check the basic integrity of a
PNG file! The only missing information--not including the contents of the first 8 bytesin the file--is
the exact algorithm (or “"polynomia™) used for the CRC. That turns out to be identical to the CRC
used by gzip and many popular archiving programs; it is described in detail in Section 3.4 of the
PNG Specification, Version 1.1, available from http://www.libpng.org/pub/png/pngdocs.html.

The chunk type is possibly the most unusual feature. It is specified as a sequence of binary values,
which just happen to correspond to the upper- and lowercase ASCI| letters used on virtually every
computer in the Western, non-mainframe world. Sinceit is far more convenient (and readable) to
speak in terms of text characters than numerical sequences, the remainder of this book will adopt the
convention of referring to chunks by their ASCII names. Programmers of EBCDIC-based
computers should take note of this and remember to use only the numerical values corresponding to
the ASCII characters.

Chunk types (or names) are usually mnemonic, asin the case of the IHDR or image header chunk.
In addition, however, each character in the name encodes a single bit of information that shows up
in the capitalization of the character.[56] Thus IHDR and iHDR are two completely different chunk
types, and a decoder that encounters an unrecognized chunk can nevertheless infer useful things
about it. From left to right, the four extra bits are interpreted as follows:

[56] The ASCII character set was conveniently designed so that the case of aletter is
always determined by bit 5. To put it another way, adding 32 to an uppercase
character code gives you the code for its lowercase version.

. Thefirst character's case bit indicates whether the chunk is critical (uppercase) or ancillary; a
decoder that doesn't recognize the chunk type can ignoreit if it isancillary, but it must warn
the user that it cannot correctly display the image if it encounters an unknown critical chunk.
The tEXt chunk, covered in Chapter 11, "PNG Options and Extensions’, is an example of an

ancillary chunk.

http://www.libpng.org/pub/png/pngdocs.html

« The second character indicates whether the chunk is public (uppercase) or private. Public
chunks are those defined in the specification or registered as official, special-purpose types.
But a company may wish to encode its own, application-specific information in a PNG file,
and private chunks are one way to do that.

. The case bit of the third character isreserved for use by future versions of the PNG
specification. It must be uppercase for PNG 1.0 and 1.1 files, but a decoder encountering an
unknown chunk with alowercase third character should deal with it as with any other
unknown chunk.

. Thelast character's case bit isintended for image editors rather than simple viewers or other
decoders. It indicates whether an editing program encountering an unknown ancillary chunk
[57] can safely copy it into the new file (lowercase) or not (uppercase). If an unknown chunk

Is marked unsafe to copy, then it depends on the image datain some way. It must be omitted
from the new image if any critical chunks have been modified in any way, including the
addition of new ones or the reordering or deletion of existing ones. Note that if the program
recognizes the chunk, it may choose to modify it appropriately and then copy it to the new
file. Also note that unsafe-to-copy chunks may be copied to the new fileif only ancillary
chunks have been modified--again, including addition, deletion, and reordering--which
implies that ancillary chunks cannot depend on other ancillary chunks.

[57] Since any decoder encountering an unknown critical chunk has no idea
how the chunk modifies the image--only that it does so in a critical way--an
editor cannot safely copy or omit the chunk in the new image.

8.2. PNG Signature

So chunk names encode additional information that is primarily useful if the chunk is not
recognized. The remainder of this book will be concerned with known chunks, but before we turn to
those, there is one more component of PNG files that has to do with the unknown: the PNG file
signature. As noted earlier, the first 8 bytes of the file are not, strictly speaking, a chunk.[58] They
are acritical component of a PNG file, however, since they alow it to be identified as such
regardless of filename. But the PNG signature bytes are more than asimple identifier code: they
were cleverly designed to allow the most common types of file-transfer corruption to be detected.
Web protocols these days typically ensure the correct transfer of binary files such as PNG images,
but older transfer programs like the venerable command-line FTP (File Transfer Protocol) often
default to text-mode or ~"ASCII" transfers. The unsuspecting user who transfers a PNG image or
other binary file astext is practically guaranteed of destroying it. The same is true of the user who
extracts a PNG file from a compressed archive in text mode or who emails it without some form of
“ASCII armor” (such as MIME Base64 encoding or Unix uuencoding).

[58] They can be thought of as such, however, since their length is known (8 bytes),
their position and purpose are known (beginning of the file; signature), and their CRC
isimplied (the 8 bytes are constant, so effectively they are their own CRC).

The 8-byte PNG file signature can detect this sort of problem because it simulates atext file in some
respects. The 8 bytes are given in Table 8-1.

Table 8-1. PNG Sgnature Bytes

\?Zﬂgal ASCII Interpretation

137 A byte with its most significant bit set (""8-bit character")
80 P

78 N

71 G

13 Carriage-return (CR) character, ak.a. CTRL-M or "M

10 Line-feed (LF) character, ak.a. CTRL-Jor J

26 CTRL-Z or "Z

10 Line-feed (LF) character, ak.a. CTRL-Jor J

Thefirst byte is used to detect transmission over a 7-bit channel--for example, email transfer
programs often strip the 8th bit, thus changing the PNG signature. The 2nd, 3rd, and 4th bytes
simply spell "PNG" (in ASCII, that is). Bytes 5 and 6 are end-of-line characters for Macintosh and
Unix, respectively, and the combination of the two isthe standard line ending for DOS, Windows,
and OS/2. Byte 7 (CTRL-Z) isthe end-of-file character for DOS text files, which allows one to

TY PE the PNG file under DOS-like operating systems and see only the acronym “~"PNG" preceded
by one strange character, rather than page after page of gobbledygook. Byte 8 is another Unix end-
of-line character.

Text-mode transfer of a PNG file from a DOS-like system to Unix will strip off the carriage return
(byte 5); the reverse transfer will replace byte 8 with a CR/LF pair. Transfer to or from a Macintosh
will strip off the line feeds or replace the carriage return with aline feed, respectively. Either way,
the signature is atered, and in all likelihood the remainder of the fileisirreversibly damaged.

Note that the Sth, 10th, and 11th bytes are guaranteed to be O (that is, the ASCII NUL character) by
the fact that the first chunk is required to be IHDR, whose first 4 bytes are its length--avalue that is
currently 13 and, according to the spec, will never change. (Instead, " new chunk types will be
added to carry new information.") The fact that the O bytesin the length come first is another benefit
of the big-endian integer format, which stores the high-order bytesfirst. Since NUL bytes are also
often stripped out by text-mode transfer protocols, the detection of damaged PNG filesis even more
robust than the signature alone would suggest.

8.3. A Word on Color Representation

Before we start putting chunks together, however, a brief interlude on the representation and

terminology of color is useful. Color fundamentally refersto a property of light--namely, its
wavelength. Each color in the rainbow, from red to purple, isarelatively pure strain of wavelengths
of light, and none of these colors can be generated by adding together any of the others.[59]
Furthermore, despite what our eyeballs would have us think, the spectrum does not end at deep
purple; beyond that are the ultraviolet, X-ray, and gamma-ray domains. Nor doesit end at dull red--
smoke on the water glows in the infrared, if only we could seeiit, and still further down the spectrum
are radio waves.[60] Each of these wavelength regions, from radio on up to gamma, isacolor.

[59] Mathematically, thisis known as orthogonality and is the basis for Fourier
decomposition, among other things.

[60] It is probably not coincidence that the range of light visible to our water-filled
orbs just happens to be the precise range of wavelengths that is not strongly absorbed
by water.

So when someone refers to an RGB image--that is, containing only red, green, and blue values--as
““truecolor," what twisted logic lies behind such aclaim? The answer lies not in physicsbut in
physiology. Human eyes contain only three classes of color sensors, which trigger color sensations
in the brain in ways that are not yet fully understood. One might guess that these sensors (the cones)
are tuned to red, green, and blue light, but that turns out not to be the case, at least not directly.
Instead, signals from the three types of cones are added and subtracted in various ways, apparently
in more than one stage. The details are not especially important; what mattersis that the end result is
aset of only three signals going into the brain, corresponding to luminosity (or brightness), ared-
versus-green intensity level, and ayellow-versus-blue level. In addition, the cones are not narrow-
band sensors, but instead each responds to a broad range of wavelengths. The upshot is that the
human visual system isrelatively poor at analyzing colors, so feeding it different combinations of
red, green, and blue light sufficesto fool it into thinking it is seeing an entire spectrum. Keep in
mind, however, that while true yellow and a combination of red and green may look identical to us,
to spectrometers (or nonhuman eyes) they are quite different.

In fact, even printers ~"see" color differently. Since they employ pigments, which absorb light rather
than emit it, the RGB color space that works so well for computer monitors is inappropriate.
Instead, use a " "dual™ color space based on cyan, magenta, and yellow, or CMYK for short.[61] And
in video processing, television, and the JPEG image format, yet another set of color spacesis
popular: YUV, YIQ, and Y C,C,, all of which represent light as an intensity value (Y) and a pair of

orthogonal color vectors (U and V, or | and Q, or C, and C,). All of these color spaces are beyond

the scope of this book, but note that every single one of them has its basis in human physiology.
Indeed, if YUV and its brethren sound quite alot like the set of three signals going into the brain
that | just discussed, rest assured that it's not coincidence. Not a single color space in common use
today truly represents the full continuum of physical color.

[61] The K isfor black. Since black is the preferred color for a huge class of printed
material, including text, it is more efficient and considerably cheaper to use asingle
pigment for it than always to be mixing the other three. Some printing systems
actualy usefive, six, or even seven distinct pigments.

Finally, note that image files may represent the appearance of a scene not only as a self-contained
item, but also in reference to a background or to other images or text. In particular, transparency
information is often desirable. The ssimplest approach to transparency in computer graphicsisto
mark a particular color as transparent, but more complex applications will generally require a
completely separate channel of information. Thisis known as an alpha channel (or sometimes an
alpha mask) and enables the use of partial transparency, such asis often used in television overlays.
In the text that follows, | will refer to an RGB image with an alpha channel as an RGBA image.
PNG adheres to the usual convention that alpha represents opacity; that is, an dphavalueof Ois
fully transparent, and the maximum value for the pixel depth is completely opagque. PNG also uses
only unassociated alpha, wherein the actual gray or color values are stored unchanged and are only
affected by the alpha channel at display time. The alternative is associated or premultiplied alpha, in
which the pixel values are effectively precomposited against a black background; although this
allows dightly faster software compositing, it amounts to alossy transformation of the image data
and was therefore rejected in the design of PNG.

8.4. The Simplest PNG

We've looked at the fine details of a PNG file--the subatomic structure, if you will--so let us turn
now to afew of the basic atoms (chunks) that will allow usto create a complete ""molecule,” or
valid Portable Network Graphicsfile. The simplest possible PNG file, diagrammed in Figure 8-2, is
composed of the PNG signature and only three chunk types: the image header chunk, IHDR; the
image data chunk, IDAT; and the end-of-image chunk, IEND. IHDR must be the first chunk in a
PNG image, and it includes all of the details about the type of the image: its height and width, pixel
depth, compression and filtering methods, interlacing method, whether it has an alpha
(transparency) channel, and whether it's a truecolor, grayscale, or colormapped (pal ette) image. Not
all combinations of image types are valid, however, and much of the remainder of this chapter will
be devoted to a discussion of what is allowed.

Figure 8-2: Layout of the ssimplest PNG.

IDAT contains all of the image's compressed pixel data. Although single IDATs are perfectly valid
as long as they contain no more than 2 gigabytes of compressed data, in most images the
compressed datais split into several IDAT chunks for greater robustness. Since the chunk's CRC is
at the end, a streaming application that encounters alarge IDAT can either force the user to wait
until the complete chunk arrives before displaying anything, or it can begin displaying the image

without knowing if it'svalid. In the latter case, if the IDAT happens to be damaged, the user will see
garbage on the display. (Since the image dimensions were already read from a previously CRC-
checked chunk, in theory the garbage will be restricted to the region belonging to the image.)
Fortunately, small IDAT chunks are by far the most common, particularly in sizes of 8 or 32
kilobytes.

IEND isthe simplest chunk of all; it contains no data, just indicates that there are no more chunksin
theimage. IEND is primarily useful when the PNG image is being transferred over the network as a
stream, especially when it is part of alarger MNG stream (Chapter 12, "Multiple-lmage Network

Graphics'). And it serves as one more check that the PNG file is complete and internally self-
consistent.

These three chunk types are sufficient to build truecolor and grayscale PNG files, with or without an
alpha channel, but pal ette-based images require one more: PLTE, the palette chunk. PLTE simply
contains a sequence of red, green, and blue values, where avalue of O is black and 255 is full
intensity; anywhere from 1 to 256 RGB triplets are allowed, depending on the pixel depth of the
image. (That is, for a 4-bit image, no more than 16 palette entries are allowed.) The PLTE chunk
must come before the first IDAT chunk; the structure of a colormapped PNG is shown in Figure 8-

3.

Figure 8-3: Layout of the second-simplest PNG.

8.5. PNG Image Types

| noted earlier that not all possible combinations of PNG image types and features are allowed by
the specification. Let's take a closer look at the basic types and their features.

8.5.1. Palette-Based

Pal ette-based images, also known as colormapped or index-color images, use the PLTE chunk and
are supported in four pixel depths: 1, 2, 4, and 8 bits, corresponding to a maximum of 2, 4, 16, or
256 palette entries. Unlike GIF images, however, fewer than the maximum number of entries may
be present. On the other hand, GIF does support pixel depths of 3, 5, 6, and 7 bits; 6-bit (64-color)
Images, in particular, are common on the World Wide Web.

TIFF aso supports palette images, but baseline TIFF allows only 4- and 8-bit pixel depths. Perhaps
amore useful comparison iswith the superset of baseline TIFF that is supported by Sam Leffler's
free libtiff, which has become the software industry's unofficial standard for TIFF decoding. libtiff

supports palette bit depths of 1, 2, 4, 8, and 16 bits. Unlike PNG and GIF, however, the TIFF palette

always uses 16-bit integers for each red, green, and blue value, and as with GIF, al PItAEPN oryiries

must be present in the file. Nor is there any provision for compression of the palette data--so a 16-
bit TIFF palette would require 384 KB all by itself.

8.5.2. Palette-Based with Transparency

The PNG spec forbids the use of afull alpha channel with pal ette-based images, but it does allow
““cheap apha’ viathe transparency chunk, tRNS. Asits nameimplies--the first letter is lowercase--
tRNS is an ancillary chunk, which means the image is till viewable even if the decoder somehow
fails to recognize the chunk.[62] The structure of tRNS depends on the image type, but for palette-

based imagesiit is exactly analogous to the PLTE chunk. It may contain as many transparency
entries as there are pal ette entries (more than that would not make any sense) or as few as one, and it
must come after PLTE and before the first IDAT. In effect, it transforms the pal ette from an RGB
lookup table to an RGBA table, which implies a potential factor-of-four savingsin file size over a
full 32-bit RGBA image. Theicicleimage used as a basis for Figure C-1 in the color insert isan
RGBA-palette image; it is only" 3.85 times smaller than the 32-bit original due to dithering (which
hurts compression).

[62] Once again, the distinction between critical and ancillary chunksislargely
irrelevant for chunks defined in the specification, since presumably they are known
by all decoders. But even the names of standard chunks were chosen in accordance
with therules, asif they might be encountered by a particularly smple-minded PNG
decoder. In fact, thiswas done in order to test the chunk-naming rules themselves:
would a decoder that relied only on them behave sensibly? The answer was " yes."

By comparison, GIF supports only binary transparency, wherein a single palette color is marked as
completely transparent, while all others are fully opaque. GIF has atiny advantage in that the
transparent entry can live anywhere in the palette, whereas a single PNG transparency entry should
come first--all tRNS entries before the transparent one must exist and must have the value 255 (fully
opague), which would be redundant and therefore a waste of space. But the code necessary to
rearrange the pal ette so that all non-opaque entries come before any opague onesis simple to write,
and the benefits of PNG's more flexible transparency scheme far outweigh this minor drawback.

The TIFF format supports at least three kinds of transparency information, two involving an
interleaved alpha channel (extra samples) and the third involving a completely separate subimage
(or subfile) that is used as a bilevel transparency mask. Baseline TIFF does not require support for
any of them, but libtiff supports the two interleaved flavors directly, and could probably be
manhandled into some level of support for the subfile approach, although the transparency mask is
“typically at ahigher resolution than the main image if the main image is grayscale or color,"
according to the TIFF 6.0 specification. On the other hand, with the possible exception of user-

http://www.libpng.org/pub/png/book/fig_C1.html

designed TIFF tags, there is no support at al for *"cheap alpha,” i.e., marking one or more palette
entries as partially or completely transparent.

8.5.3. Grayscale

PNG grayscale images support the widest range of pixel depths of any image type. Depthsof 1, 2, 4,
8, and 16 bits are supported, covering everything from simple black-and-white scans to full-depth
medical and raw astronomical images.[63]

[63] Calibrated astronomical image datais usually stored as 32-bit or 64-bit floating-
point values, and some raw datais represented as 32-bit integers. Neither format is
directly supported by PNG, although one could, in principle, design an ancillary
chunk to hold the proper conversion information. Conversion of data with more than
16 bits of dynamic range would be alossy transformation, however--at least, barring
the abuse of PNG's apha channel or RGB capabilities.

Thereis no direct comparison with GIF images, although it is certainly possible to store grayscale
datain a palette image for both GIF and PNG. The only place a gray palette is commonly
distinguished from aregular color one, however, isin VRML97 texture maps. Baseline TIFF
images, on the other hand, support 1-bit ~bilevel” and 4- and 8-bit grayscal e depths. Nonbaseline
TIFF alows arbitrary bit depths, but libtiff accepts only 1-, 2-, 4-, 8-, and 16-bit images. TIFF aso
supports an inverted grayscale, wherein O represents white and the maximum pixel value represents
black.

The most common form of JPEG (the one that uses “"lossy" compression, in which some
information in the image is thrown away) likewise supports grayscale images in depths of 8 and 12
bits. In addition, there are two variants that use truly lossless compression and support any depth
from 2 to 16 bits: the traditional version, known simply as " "lossless JPEG," and an upcoming
second-generation flavor called " JPEG-L S."[64] But thefirst is extremely rare, and is supported by

almost no one, despite having been standardized years ago, and the second is also currently
unsupported (although that is to be expected for a new format). Lossy JPEG is very well supported,
thanks largely to the Independent JPEG Group's free libjpeg (which, like libtiff, has become the de
facto standard for JPEG encoding and decoding)--but, of course, it's lossy. Note that libjpeg can be
compiled to support either 8-bit or 12-bit JPEG, but not both at the same time. Thus, from a
practical standpoint, only 8-bit, lossy grayscale is supported.

[64] Be aware that even at the highest quality settings, the common form of JPEG is
never lossless, regardless of whether the setting claims 100% or something similar.

8.5.4. Grayscale with Transparency

PNG supports two kinds of transparency with grayscale and RGB images. Thefirst is a palette-style
““cheap transparency,” in which asingle color or gray value is marked as being fully transparent. |
noted earlier that the structure of tRNS depends on the image type; for grayscale images of any

pixel depth, the chunk contains a 2-byte, unscaled gray value--that is, the maximum allowed value

is il 2" de'Oth-l, even though it is stored as a 16-bit integer. This approach isvery similar to GIF-

style transparency in palette images and incurs only 14 bytes overhead in file size. Thereisno
corresponding TIFF image type, and standard JPEG does not support any transparency.

8.5.5. Grayscale with Alpha Channel

The second kind of transparency supported by grayscale imagesis an apha channel. Thisisamore
expensive approach in terms of file size--for grayscale, it doubles the number of image bytes--but it
allows the user much greater freedom in setting individual pixelsto particular levels of partial
transparency. Only 8-bit and 16-bit grayscale images may have an alpha channel, which must match
the bit depth of the gray channel.

The full TIFF specification supports two kinds of interleaved " extra samples" for transparency:
associated and unassociated alpha (though not at the same time). Unlike PNG, TIFF's apha channel
may be of adifferent bit depth from the main image data--in fact, every channel in a TIFF image
may have an arbitrary depth. TIFF also offers the explicit possibility of treating a " subfile,”" or
secondary image within the file, as a transparency mask, though such masks are only 1 bit deep, and
therefore support only completely opague or completely transparent pixels.

Baseline TIFF does not require support for any of this, however. Current versions of libtiff can read
an interleaved alpha channel as generic " extra samples,” but it is up to the application to interpret
the samples correctly. The library does not support images with channels of different depths, and
although it could be manipulated into reading a secondary grayscale subfile (which the application
could interpret as afull alpha channel), that would be a user-defined extension--i.e., specific to the
application and not supported by any other software.

As| just noted, standard JPEG (by which | mean the common JPEG File Interchange Format, or
JFIF files) has no provision for transparency. The JPEG standard itself does allow extra channels,
one of which could be treated as an apha channel, but this would be fairly pointless. Not only
would it require one to use a non-standard, unsupported file format for storage, there would also
tend to be visual artifacts, since lossy JPEG is not well suited to the types of alpha masks one
typically finds (unless the mask's quality setting were boosted considerably, at a cost in file size).
But see Chapter 12, "Multiple-lmage Network Graphics' for details on a MNG subformat called

JING that combines alossy JPEG image in JFIF format with a PNG-style, lossless alpha channel.

8.5.6. RGB

RGB (truecolor) PNGs, like grayscale with alpha, are supported in only two depths: 8 and 16 bits
per sample, corresponding to 24 and 48 bits per pixel. Thisisthe image type most commonly used
by image-editing applications like Adobe Photoshop. Note that pixels are stored in RGB order.
(BGR isthe other popular format, especially on Windows-based systems.)

Truecolor PNG images may also include a palette (PLTE) chunk, though the specialized suggested-
palette (SPLT) chunk described in Chapter 11, "PNG Options and Extensions' is often more

appropriate. But if present, the pal ette encodes a suggested set of colorsto which the image may be
quantized if the decoder cannot display in truecolor; the suggestion is presumed to be a good one, so
decoders are encouraged to use it if they can. Of course, multi-image viewers such as web browsers
often resort to afixed palette for ssmplicity and rendering speed.

Baseline TIFF requires support only for 24-bit RGB, but libtiff supports 1, 2, 4, 8, and 16 bits per
sample. Ordinary JPEG stores only 24-bit RGB,[65] though 36-bit RGB is possible with the seldom-

supported 12-bit extension. The also seldom-supported lossless flavor of JPEG can, in theory, store
any sample depth from 2 to 16 bits, thus 6 to 48 bits per RGB pixel.

[65] Technically, color JPEGs are almost always encoded internally in the Y C,C,
color space and converted to or from RGB by the decoder or encoder software.

8.5.7. RGB with Transparency

As mentioned previously, PNG supports cheap transparency in RGB images viathe tRNS chunk.
The format is similar to that for grayscale images, except now the chunk contains three unscaled, 16-
bit values (red, green, and blue), and the corresponding RGB pixel istreated as fully transparent.
This option adds only 18 bytes to the image, and there are no corresponding TIFF or JPEG image

types.

8.5.8. RGB with Alpha Channel

Finally, we have truecolor images with an alpha channel, also known as the RGBA image type. As
with RGB and gray+alpha, PNG supports 8 and 16 bits per sasmple for RGBA or 32 and 64 bits per
pixel, respectively. Pixels are always stored in RGBA order, and the alpha channel is not
premultiplied.

The use of PLTE for a suggested quantization palette is allowed here as well, but note that since the
tRNS chunk is prohibited in RGBA images, the suggested palette can only encode a recommended
quantization for the RGB data or for the RGBA data composited against the image's background
color (see the discussion of bKGD in Chapter 11, "PNG Options and Extensions'), not for the raw

RGBA data. Disallowing tRNS is arguably an unnecessary restriction in the PNG specification;
while a suggested RGBA pal ette would not necessarily be useful when compositing the image
against a varied background (the different background pixel values would likely mix with the
foreground pixels to form more than 256 colors), it would be helpful for cases where the
background isasolid color. In fact, this restriction was recognized and addressed by an extension to
the specification approved late in 1996: the suggested-pal ette chunk, sPLT, which is discussed in
Chapter 11, "PNG Options and Extensions'.

Although baseline TIFF does not require support for an alpha channel, libtiff supports RGBA
Images with 1, 2, 4, 8, or 16 bits per sample; both associated and unassociated alpha channels are
supported. JPEG has no direct support for alpha transparency, but MNG offers away around that
(see Chapter 12, "Multiple-Image Network Graphics").

8.6. Interlacing and Progressive Display

WEe'll wrap up our look at the basic elements of Portable Network Graphics images with a quick
consideration of progressive rendering and interlacing. Most computer users these days are familiar
with the World Wide Web and the method by which modern browsers present pages. Asarule, the
textual part of aweb page isdisplayed first, since it is transmitted as part of the page; then images
are displayed, with each one rendered as it comes across the network. Ordinary images are simply
painted from the top down, afew lines at atime; thisis the most basic form of progressive display.

Some images, however, arein aformat that allows them to be rendered as an overall, low-resolution
image first, followed by one or more passes that refine it until the complete, full-resolution imageis
displayed. For GIF and PNG images thisis known as interlacing. GIF's approach has four passes
and is based on complete rows of the image, making it a one-dimensional method. First every eighth
row is displayed; then every eighth row is displayed again, only this time offset by four rows from
the initial pass. The third pass consists of every fourth row, and the final pass includes every other
row (half of theimage).

PNG's interlacing method, on the other hand, is a two-dimensional scheme with seven passes,
known as the Adam7 method (after itsinventor, Adam Costello). If one imagines the image being
broken up into 8 x 8-pixél tiles, then the first pass consists of the upper left pixel in each tile--that is,
every eighth pixel, both vertically and horizontally. The second pass also consists of every eighth
pixel, but offset four pixelsto theright.

1 2 1 4 2 4
5 5 5 9
3 3 3 4 3 4
5 5 5 5

a h

Figure 8-4: Schematic of an 8 x 8tile (a) after the third pass and (b) after the fifth pass.

The third pass consists of two pixels per tile, offset by four rows from the first two pixels (see
Figure 8-4a). The fourth pass contains four pixelsin each tile, offset two columnsto the right of

each of thefirst four pixels, and the fifth pass contains eight pixels, offset two rows downward (see
Figure 8-4b). The sixth passfillsin the remaining pixels on the odd rows (if the image is numbered

starting with row one), and the seventh pass contains al of the pixels for the even rows. Note that,

although I've described the method in terms of 8 x 8tiles, pixelsfor any given pass are stored as
complete rows, not astiled groups. For example, the fifth pass consists of every other pixel in the
entire third row of the image, followed by every other pixel in the seventh row, and so on.

The primary benefit of PNG's two-dimensional interlacing over GIF's one-dimensional schemeis
that one can view a crude approximation of the entire image roughly eight times asfast.[66] That is,
PNG'sfirst pass consists of one sixty-fourth of the image pixels, whereas GIF'sfirst pass consists of
one-eighth of the data. Suppose one were to save a pal ette image as both an interlaced GIF and an
interlaced PNG. Assuming the compression ratio and download speeds were identical for the two
files, the PNG image would have completed its fourth pass as the GIF image completed itsfirst. But
most browsers that support progressive display do so by replicating pixelsto fill in the areas that
haven't arrived yet. For the PNG image, that means each pixel at this stage represents a2 x 4 block,
whereas each GIF pixel representsa 1 x 8 strip. In other words, GIF pixels have an 8-to-1 aspect
ratio, whereas PNG pixels are 2-to-1. At the end of the next pass for each format (GIF's second
pass, PNG's fifth; one-quarter of the image in both cases), the PNG pixels are square 2 x 2 blocks,
while the GIF pixels are still stretched, now as 1 x 4 strips. In practical terms, features in the PNG
Image--particularly embedded text--are much more recognizable than in the GIF image. In fact,
readability testing suggests that text of any given sizeis legible roughly twice asfast with PNG's
interlacing method.

[66] As| (foot)noted in Chapter 1, "An Introduction to PNG", thisimplicitly assumes

that one-eighth of the compressed data corresponds to one-eighth of the
uncompressed (image) data, which is not quite accurate. The differenceislikely to be
small in most cases, however. I'll discuss this further in Chapter 9, "Compression and

Filtering".

JPEG also supports aform of progressive display, but it is not interlacing in the usual sense of
reordering the pixels spatially. Rather, it involves reordering the frequency components that make
up a JPEG image, first displaying the low-frequency ones and working up to the highest frequency
band; thisis known as spectral selection. In addition, progressive JPEG can transmit the most
significant bits of each frequency component earlier than the less significant ones, afeature known
as successive approximation that is very nearly the same as turning up the JPEG quality setting with
each scan. The two approaches can be used separately, but in practice they are almost always used
in combination. Because JPEG operates on 8 x 8 blocks of pixels, progressive JPEG bears a strong
resemblance to interlaced PNG during the early stages of display, though it tends to have a softer,
fuzzier look due to the initial lack of high-frequency components (which is often deliberately
enhanced by smoothing in the decoder). Thisisvisiblein Figures C-4a and C-4b in the color insert,
which represent the second pass of a progressive JPEG image (26% of the compressed data), both
unsmoothed and smoothed. Note in particular the blockiness in the shadowed interior of the box and
the “"colored outside the lines" appearance around the child's arms and hands; the first effect is
completely eliminated in the smoothed version, and the second is greatly reduced. JPEG's first pass
Is actually more accurate than PNG's, however, since the low-frequency band for each 8 x 8 pixel
block represents an average for all 64 pixels, whereas each 8 x 8 block in PNG'sfirst passis
represented by asingle pixel, usually in the upper left corner of the displayed block. By its fifth
pass, which represents only 40% of the compressed data, the progressive JPEG version of this

http://www.libpng.org/pub/png/book/fig_C4.html#png.color.fig.4a
http://www.libpng.org/pub/png/book/fig_C4.html#png.color.fig.4b

Image (Figure C-4c) is noticeably sharper and more accurate than all but the final pass of the PNG
version. Keep in mind also that, since the PNG islossless and therefore 11 times as large as the
JPEG, 40% of the compressed JPEG datais equivalent to only 3.5% of the PNG data, which
corresponds to the beginning of PNG's third pass. This only emphasi zes the point made previously:
for non-transparent, photographic images on the Web, use JPEG.

Note that smoothing could be applied to the early passes of interlaced PNGs and GIFs, as well; tests
suggest that this looks better for photographic images but maybe not as good for simple graphics.
(On the other hand, recall that smoothing did seem to enhance the readability of early interlace
passes in Figure 1-4.) Asfor representing blocks by the pixel in the upper left corner, it would be
possible to replicate each pixel so that the original would lie roughly at the center of its clones, as
long as some care were taken near the edges of the image. This would prevent the apparent shift in
some features as later passes are displayed. But neither smoothing nor centered pixel replication is
currently supported by the PNG reference library, libpng, as of version 1.0.3.

It isworth noting that TIFF can also support akind of interlacing, although like everything about
TIFF, it ismuch more arbitrary than either GIF's or PNG's method. Baseline TIFF includes the
concept of strips, each of which may include one or more rows of image data though the number of
rows per strip is constant. A list of offsets to each strip is embedded within the image, so in
principle one could make each strip arow and do GIF-style line interlacing with any ordering one
chose. But since TIFF's structure is fundamentally random access in nature, this approach would
only work if one imposed certain restrictions on the locations of itsinternal directory, list of strip
offsets, and actual strip data--that is, one would need to define a particular subformat of TIFF.

In addition, libtiff supports a TIFF extension called tiles, in which the image data is organized into
rectangular regions instead of strips. Since the tile size can be arbitrary, one could defineit to be

1 x 1 and then duplicate PNG's Adam?7 interlacing scheme manually--or even extend it to 9, 11, or
more passes. However, since every tile must have a corresponding offset in the TIFF image
directory, doing something like thiswould at least double or triple the image size. Also, TIFF's
compression methods apply only to individual strips or tiles, so there would be no real possibility of
compression aside from reusing tiles in more than one location (that is, by having multipletile
offsets point at the same data). And, as with the strip approach, this would require restrictions on the
internal layout of the file. Nevertheless, the capability does exist, at least theoretically.

http://www.libpng.org/pub/png/book/fig_C4.html#png.color.fig.4c

PREVIOUS CONTENTS NEXT

- PREVIOUS CONTENTS NEXT o

Chapter 9. Compression and Filtering

Contents:

9.1. Filtering

9.2. The Deflate Compression Algorithm
9.2.1. A Final Word on Patents

9.3. Rea-World Comparisons

9.4. Practical Compression Tips
9.4.1. Tipsfor Users
9.4.2. Tips for Programmers

One of PNG's strengths, particularly in comparison to the GIF and TIFF image formats, is its
compression. As | noted in Chapter 1, "An Introduction to PNG", a primary motivation driving the
design of the Portable Network Graphics format was to create a replacement for GIF that was not
only free but also an improvement over it in essentially all respects. Asaresult, PNG compression
iscompletely lossless--that is, the original image data can be reconstructed exactly, bit for bit--just
asin GIF and most forms of TIFF.[67]

[67] And as acorollary, PNG file sizes are usually considerably larger than ordinary
JPEG, since the latter uses lossy compression--that is, it throws away some
information. TIFF also supports JPEG compression as one of its many options, but
the more common methods are |ossless and based on either run-length encoding
(RLE) or the same LZW agorithm used in GIF.

| wrote a longer, more technically detailed chapter on PNG compression for the Lossless
Compression Handbook, edited by Khalid Sayood and published in December 2002 by Academic

Press (now Elsevier Science). It includes more rigorous test data, as well. A near-final draft is
available in PDF format at the following link:

http://ww. | ibpng. org/pub/png/ book/LCH png-chapt er . pdf

| will update it to the final version and convert it to HTML format when time permits.

9.1. Filtering

WEe'l look at the compression engine itself shortly, but PNG's performance is not due solely to an
improved compression algorithm. PNG also supports a precompression step called filtering.

http://www.elsevier-international.com/catalogue/title.cfm?ISBN=0126208611
http://www.elsevier-international.com/catalogue/title.cfm?ISBN=0126208611
http://www.libpng.org/pub/png/book/LCH-png-chapter.pdf

Filtering is a method of reversibly transforming the image data so that the main compression engine
can operate more efficiently. As asimple example, consider a sequence of bytes increasing
uniformly from 1 to 255. Since there is no repetition in the sequence, it compresses either very
poorly or not at all. But atrivial modification of the sequence--namely, leaving the first byte alone
but replacing each subsequent byte by the difference between it and its predecessor--transforms the
sequence into an extremely compressible set of 255 identical bytes, each having the value 1.

Asared-life example of this (though still not particularly realistic), consider the image known as
16million.png. This 24-bit, 512 x 32,768 RGB image contains one pixel of every possible color--
more than 16 million of them altogether. As raw data, it therefore requires 48 MB to store. Simple
PNG-style compression with no filtering brings it down to 36 MB, only a 25% reduction in size. But
with filtering turned on, the same compression engine reduces it to 115,989 bytes, more than 300
times better than the nonfiltered case, for atotal compression factor of 434![68] Zowie.

[68] Actually, it gets even better. The dimensions of the image were chosen for
convenient web-browser scrolling, but a 4096 x 4096 version created by Paul
Schmidt is half the size--a mere 59,852 bytes (841 times compression). And just wait
until we get to the chapter on MNG!

Actual image dataisrarely that perfect, but filtering does improve compression in grayscale and
truecolor images, and it can help on some palette images as well. PNG supports five types of filters,
and an encoder may choose to use a different filter for each row of pixelsin theimage. Table 9-1

lists the five filter types.

Table 9-1. PNG Filter Types

Name |Description
None Each byte is unchanged.
Each byte is replaced with the difference between it and the " corresponding
Sub Wl
byte" to its left.
Each byte is replaced with the difference between it and the byte above it
Up :)) o
(in the previous row, as it was before filtering).
Average Each byte is replaced with the difference between it and the average of the
9 corresponding bytes to its left and above it, truncating any fractional part.
Pagth Each byte is replaced with the difference between it and the Paeth predictor
of the corresponding bytesto its left, above it, and to its upper |€ft.

The last method requires some explanation. Invented by Alan Paeth, the Paeth predictor is
computed by first calculating a base value, equal to the sum of the corresponding bytes to the | eft
and above, minus the byte to the upper left. (For example, the base value might equal 228 + 228 -
227 = 229.) Then the difference between the base value and each of the three corresponding bytesis
calculated, and the byte that gave the smallest absolute difference--that is, the one that was closest

to the base value--is used as the predictor and subtracted from the target byte to give the filtered
value. In case of ties, the corresponding byte to the left has precedence as the predicted value,
followed by the one directly above. Note that all calculations to produce the Paeth predictor are
done using exact integer arithmetic. The fina filter calculation, on the other hand, is done using
base-256 modular arithmetic; thisistrue for all of the filter types.

Though the concept is ssimple, there are quite a few subtleties in the actual mechanics of filtering.
Most important among these is that filtering always operates on bytes, not pixels. For images with
pixels smaller than eight bits, this means that the filter algorithms actually operate on more than one
pixel at atime; for example, in a 2-hit palette or grayscale image, there are four pixels per byte. This
approach improves the efficiency of decoders by avoiding bit-level manipulations.

At the other end of the spectrum, large pixels (e.g., 24-bit RGB or 64-hit RGBA) are also operated
on as bytes, but only corresponding bytes are compared. For any given byte, the corresponding byte
to itsleft is the one offset by the number of bytes per pixel. This means that red bytes in atruecolor
Image are compared with red bytes, green with green, and blue with blue. If there's an alpha
channel, the alpha bytes are always compared; if the sample depth is 16 bits, upper (most
significant) bytes are compared with upper bytesin the same color channel, and lower bytes are
compared with lower. In other words, similar values will always be compared and operated on, in
hopes of improving compression efficiency. Consider an RGB image, for example; the red, green,
and blue values of any given pixel may be quite different, but neighboring pairs of red, green, and
blue will often be similar. Thus the transformed bytes will tend to be close to zero even if the
original bytes weren't. Thisisthe real point of filtering: most of the transformed bytes will cluster
around zero, thus giving the compression engine a smaller, more predictable range of byte valuesto
cope with.

What about edges? If the " corresponding byte" to the left or above doesn't exist, the algorithm does
not wrap around and use bytes from the other side of the image; instead, it treats the missing byte as
zero. The wraparound method was, in fact, considered, but aside from the fact that one cannot wrap
the top edge of the image without completely breaking the ability to stream and progressively
display a PNG image, the designers felt that only a few images would benefit (and minimally, at
that), which did not justify the potential additional complexity.

Interlacing is also a bit of awrench in the works. For the purposes of filtering, each interlace passis
treated as a separate image with its own width and height. For example, in a 256 x 256 interlaced

Image, the passes would be treated as seven smaller images with dimensions 32 x 32, 32 x 32, 64 x
32, 64 x 64, 128 x 64, 128 x 128, and 256 x 128, respectively.[69] This avoids the nasty problem of

how to define corresponding bytes between rows of different widths.

[69] Yes, that adds up to the right number of pixels. (Go ahead, add it up.) Note that
things may not come out quite so cleanly in cases in which one or both image
dimensions are not evenly divisible by eight; the width of each passisrounded up, if
necessary.

So how does an encoder actually choose the proper filter for each row? Testing all possible

combinationsis clearly impossible: even a 20-row image would require testing over 95 trillion
combinations, where ""testing" would involve filtering and compressing the entire image. A simpler
approach, though still computationally expensive, isto incrementally test-compress each row, save
the smallest result, and repeat for the next row. This amounts to filtering and compressing the entire
Image five times, which may be a reasonable trade-off for an image that will be transmitted and
decoded many times.

But users often have barely enough patience to wait for a single round of compression, so the PNG
development group has come up with afew rules of thumb (or heuristics) for choosing filters
wisely. Thefirst ruleisthat filters are rarely useful on palette images, so don't even bother with
them. Note, however, that one has considerable freedom in choosing how to order entriesin the
palette itself, soit is possible that a particular method of ordering would actually result in image
data that benefits significantly from filtering. No one has yet proven this, however, and the most
likely approaches would involve doing statistics on every pair of pixelsin the image. Such
approaches would be quite expensive for larger images.

Filters are also rarely useful on low-bit-depth (grayscale) images, although there have been rare
cases in which promoting such an image to 8 bits and then filtering has been effective. In general,
however, filter type Noneis best.

For grayscale and truecolor images of 8 or more bits per sample, with or without apha channels,
dynamic filtering is almost always beneficial. The approach that has by now become standard is
known as the minimum sum of absolute differences heuristic and was first proposed by Lee Daniel
Crocker in February 1995. In this approach, the filtered bytes are treated as signed values--that is,
any value over 127 istreated as negative; 128 becomes -128 and 255 becomes -1. The absolute
value of each isthen summed, and the filter type that produces the smallest sum is chosen. This
approach effectively gives preference to sequences that are close to zero and therefore is biased
againgt filter type None.

A related heuristic--still experimental at the time of this writing--is to use the weighted sum of
absolute differences. The theory, to some extent based on empirical evidence, isthat switching
filters too often can have a deleterious effect on the main compression engine. A better approach
might be to favor the most recently used filter even if its absolute sum of differencesis slightly
larger than that of other filters, in order to produce a more homogeneous data stream for the
compressor--in effect, to allow short-term losses in return for long-term gains. The standard PNG
library contains code to enable this heuristic, but a considerable amount of experimentation is yet to
be done to determine the best combination of weighting factors, compression levels, and image

types.

One can also imagine heuristics involving higher-order distance metrics (e.g., root-mean-square
sums), sliding averages, and other statistical methods, but to date there has been little research in
this area. Lossless compression is a necessity for many applications, but cutting-edge research in
Image compression tends to focus amost exclusively on lossy methods, since the payoff thereis so
much greater. Even within the lossless domain, preconditioning the data stream is likely to have less
effect than changing the back-end compression algorithm itself. So let'stake alook at that next.

9.2. The Deflate Compression Algorithm

In some ways compression is responsible for the very existence of the Portable Network Graphics
format (recall Chapter 1, "An Introduction to PNG"), and it is undoubtedly one of the most
important components of PNG. The PNG specification defines a single compression method, the
deflate algorithm, for all image types.

Part of the LZ77 class of compression algorithms, deflate was defined by PKWARE in 1991 as part
of the 1.93a beta version of their PKZIP archiver. Independently implemented by Jean-loup Gailly
and Mark Adler, first for Info-ZIP's Zip and UnZip utilities and shortly thereafter for the GNU gzip
utility, the deflate algorithm is battle-tested and today is probably the most commonly used file-
compression algorithm on the Internet. Although it is not the best-compressing algorithm known,
[70] deflate has a very desirable mix of characteristics. high reliability, good compression, good
encoding speed, excellent decoding speed, minimal overhead on incompressible data, and modest,
well-defined memory footprints for both encoding and decoding.

[70] Arithmetic coding has been around for along time and significantly outperforms
deflate; the relatively recently published Burrows-Wheeler block transform coding
(implemented in bzip2, for example) shows considerable promise as well; and the
patented BitJazz condensation method is likewise quite impressive.

Asan LZ77-derived algorithm, deflate is fundamentally based on the concept of a sliding window.
One begins with the premise that many types of interesting data, from binary computer instructions
to source code to ordinary text to images, are repetitious to varying degrees. The basic idea of a
dliding window isto imagine awindow of some width immediately preceding the current positionin
the data stream (and therefore diding along as the current position is updated), which one can use as
akind of dictionary to encode subsequent data. For example, if the text of this chapter is the data
stream, then the current position at the very instant you read thisis here. Preceding that point isa
little more than 13,000 bytes of text, which includes, among other things, six copies of the fragment
““or example" (whoa, there's another one!). Instead of encoding such strings as literal text, deflate
replaces each with a pair of numbers indicating its length (in this case, 10 bytes) and the distance
back to one of the previous instances (perhaps 950 bytes between the fifth and sixth). The greater
the length of the string, the greater the savings in encoding it as a pointer into the window.

There are various ways to implement LZ77; the approach used by deflateisa "greedy"” algorithm
originally devised by James Storer and Thomas Szymanski--hence its name, LZSS. LZSS employs a
look-ahead buffer and finds the longest match for the buffer within the sliding window. If the match
exceeds a given threshold length, the string is encoded as a length/distance pair and the buffer is
advanced a corresponding amount. If the longest match is not sufficiently long, the first character in
the look-ahead buffer is output as aliteral value, and the buffer is advanced by one. Either way, the
algorithm continues by seeking the longest match for the new contents of the buffer.

The deflate algorithm is actually a bit more clever than the preceding description would suggest.
Rather than simply storing the length/distance pairs and literal bytesasis, it further compresses the

data by Huffman-encoding the LZ77 output. This approach is generically referred to as LZH;
deflate's uniqueness liesin its method of combining literals and lengths into a single Huffman tree,
its use of both fixed and dynamic Huffman codes, and its division of the output stream into blocks
so that regions of incompressible data can be stored asis, rather than expanding significantly, as can
happen with the LZW agorithm.

The PNG specification further dictates that the deflate data stream must conform to the zlib 1.0
format. In particular, the size of the sliding window must be a power of 2 between 256 bytes and 32
kilobytes, inclusive, and asmall zlib header and trailer are required. The latter includes a 32-bit
checksum on the uncompressed data; recall that the compressed stream is already covered by PNG's
32-bit CRC valuein each IDAT chunk.

More detailed explanation of the deflate algorithm and the zlib data format is beyond the scope of
this book, but the full zlib and deflate specifications are available from http://www.zlib.org/

zlib_docs.html . In addition, a reference such as The Data Compression Book, by Mark Nelson and

Jean-loup Galilly, isinvaluable for understanding many compression algorithms, including LZ77
and LZSS.

Practically speaking, independent implementation of the deflate algorithm is both difficult and
unnecessary. Almost every PNG implementation available today makes use of the freely available
zlib compression library, and the examplesin Part I11, Programming with PNG, do so aswell.[71]
For now | merely note that zlib supports ten compression levels (including one with no compression
at al), differing in the algorithms used to find matching strings and in the thresholds for terminating
the search prematurely.

[71] Nevertheless, at least one alternative (in C++) is available as part of Colosseum
Builders Image Library, and it is also described in abook by John Miano, The
Programmer's Guide to Compressed Image Files.

As an aside, note that the efficiency of the compression engine increases as more data is processed,
with peak efficiency being reached when there is sufficient datato fill the sliding window. This
occurs mainly because there are fewer strings available in the ““dictionary,” but also, initially,
because those strings that do exist are limited in length--obviously, they cannot be any longer than
the amount of datain the window. Thus, for example, when 25% of the compressed data has been
received, it may correspond to only 20% of the pixels. But because of data buffering in network
protocols and applications, any large disparities due to the truly low-efficiency encoding at startup
will tend to be washed out at the 512-byte level (or higher). That is, even though the first 50 bytes
might represent only 1% compression, those bytes generally will not be available until after the
512th byte has been received, by which point the compression efficiency may have reached 10% or
better. And since thisis generally true of most compression algorithms, including those used by
both GIF and PNG, it is reasonable to compare (as | did in Chapter 1, "An Introduction to PNG")
the appearance of the uncompressed pixels at an instant when equal amounts of compressed data
have been received.

9.2.1. A Final Word on Patents

http://www.zlib.org/zlib_docs.html
http://www.zlib.org/zlib_docs.html

As mentioned at the end of Chapter 7, "History of the Portable Network Graphics Format”, Stac has
reportedly claimed that the deflate algorithm is covered by two of their patents. In fact, there are a
number of patents that can be infringed upon by a compliant deflate implementation, including one
held by PKWARE itself that involves sorted hash tables. But the deflate specification includes a
section on implementing the algorithm without infringing,[72] and, of course, zlib itself follows that
prescription. While these things are never 100% certain unless and until they are tested in court,
developers and users can be reasonably confident that the use of zlib and its implementation of the
deflate algorithm is not subject to licensing fees.

[72] From Section 4 of the deflate specification, Compression algorithm details: "...it
Is strongly recommended that the implementor of a compressor follow the genera
algorithm presented here, which is known not to be patented per se.”

9.3. Real-World Comparisons

The only convincing way to demonstrate the compression benefits of one image format over another
Isto do an actual comparison of the two on a set of real images. The problem is choosing the set of
Images--what works for one person may not work for another. What 1've done here is to gather
together results from a number of real-world tests performed over the past few years. Readers can
expect to achieve similar results on similar sets of images, but keep in mind that one can always
choose a particular set of images for which the results will be dramatically different. I'll explain that
remark after we see afew cases.

For starters, let'slook at asmall, very unscientifically chosen set of images. seven nonanimated GIF

images that happened to be the only ones readily available on my machine one fine day in June
1998.

Table 9-2. Seven Non-Animated, Non-Scientifically Selected GIF Images

Name GIF Size
linux-penguins 38,280
linux-tinypeng 1,249
linux_bigcrash 298,529
linux_lgeorges 20,224
linux_rasterman 4,584
sun-tinylogo 1,226
techweb-scsi-compare 27,660
TOTAL 391,752

The images ranged in size from just over akilobyte to nearly 300 kilobytes (the exact byte sizes are

given in Table 9-2) and in dimension from 32 x 32 to 800 x 600. All but the first and last were
interlaced. When converted to PNG with the gif2png utility (Chapter 5, "Applications. Image
Converters"), preserving interlacing manually and introducing no new text annotations, things
improved somewhat; Table 9-3 shows the preliminary results.

Table 9-3. Same Seven GIF Images After Conversion to PNG

Name PNG Size | Change
linux-penguins 35,224 | -8.0%
linux-tinypeng 722 | -42.2%
linux_bigcrash 283,839 | -4.9%
linux_Igeorges 20,476 | +1.2%
linux_rasterman 4812 | +5.0%
sun-tinylogo 566 | -53.8%
techweb-scsi-compare 20,704 | -25.1%
TOTAL 366,343 | -6.5%

Five of the images shrank when converted to PNG--three of them quite significantly--while two
grew. Overall, the set achieved a 6.5% improvement in byte size. Since gif2png uses the standard
settings of the libpng reference code,[73] its results may be considered typical of “"good" PNG
encoders. But the owner of aweb site will often be willing to spend alittle more time up front on
compression in return for additional bandwidth savings in the long run. That's where pngcrush (also
discussed in Chapter 5, "Applications. Image Converters') comesin. Table 9-4 shows its results; the

percentages are again relative to the original GIF file sizes.

Table 9-4. Same Seven GIF Images After PNG Conversion and Optimization

Name %ﬁémgfg Change
linux-penguins 34,546 | -9.8%
linux-tinypeng 710 | -43.2%
linux_bigcrash 282,948 | -5.2%
linux_Igeorges 19,898 | -1.6%
linux_rasterman 4731 | +3.2%
sun-tinylogo 550 | -55.1%
techweb-scsi-compare 19,155 | -30.7%
TOTAL 362,538 | -7.5%

[73] libpng is discussed at length in Chapter 13, "Reading PNG Images’, Chapter 14,
"Reading PNG Images Progressively” and Chapter 15, "Writing PNG Images’, which
demonstrate how to use libpng to read and write PNG images.

So we see that the current state-of-the-art PNG encoder ekes out another percentage point in the
total size, with all but one of the images now smaller than the original. That lone holdout isworth a
closer look in this case. | already noted that linux_rasterman.gif was one of the interlaced images,
suppose it had not been? The noninterlaced GIF version is 4,568 bytes, only 16 bytes smaller than
the original. But the noninterlaced PNG version is either 4,067 bytes (gif2png) or 4,000 bytes
(pngcrush)--a savings of 11.0% or 12.4% over the noninterlaced GIF. In other words, PNG's two-
dimensional interlacing scheme can have a significant negative impact on compression, particularly
for small images. Thisis an important point to consider when creating images: is interlacing really
needed for a152 x 96 image (asin this case) when the penalty is more than 18% of the file size?

This example may have been instructive, but seven images do not constitute a statistically valid
sample.[74] So let's consider afew more data sets. One real-life example comes from the course
entitled ~" Authoring Compelling and Efficient VRML 2.0 Worlds" at the VRML98 conference in
Monterey, California. Though the content of the course was otherwise outstanding, one slide
comparing image formats for 3D textures was rather alarming from a PNG perspective. It showed
the information displayed in Table 9-5, together with the textures themselves (which are omitted
here):

Table 9-5. Original PNG, GIF, and JPEG Comparison from VRML98 Course

Name Dimensions Type JPEG Size |GIF Size | PNG Size
linoleuml1 128 x 128 grayscale 10,956 7,055 16,008
doggie 128 x 256 color 9,897 | 24,605 89,022
fog 128 x 128 grayscale + apha -- -- 26,732
circlefade 128 x 128 grayscale + apha -- -- 15,735
buttfly 128 x 128 | color + transparency -- 4,367 --

[74] That would be a small understatement.

Even with no more details than are shown here, at least one problem is apparent: in row 2, the JPEG
Image is 24 bits deep, while the GIF is only 8 bits. Judging by the size of the corresponding PNG,
one might assume (correctly) that the PNG is aso 24 bits. So on the one hand, PNG is being
compared with an image of the same depth that uses|ossy compression, while on the other it is
being compared with an image only one-third as deep, which also amounts to lossy compression.
That hurts.

Asit turned out, there were other problems: the PNG images were created with an image editor not

known for its compression capabilities, and some of the PNGs were interlaced even though their
GIF counterparts were not. (And since thiswas aVRML course, | should note that no VRML
browser in existence actually uses interlacing to render textures progressively, so thereis generaly
no point in creating such images.) The upshot isthat all of these factors--JPEG's lossy compression,
mixing 24-bit and 8-bit images, mixing interlaced and noninterlaced images, and using a
particularly poor encoder to compress the PNGs--worked against our favorite image format.

After evening the playing field by using the GIFs as the source images for the PNGs, turning off
interlacing, and using a combination of conversion and encoding tools (including pngcrush), the

results were considerably better for PNG, as shown in Table 9-6.

Table 9-6. Updated PNG, GIF, and JPEG Comparison for VRML98 Course Images

Name JPEG Size GIF Size PC‘)Nr Icglgiile ?Dﬁ(';mélzzes Cr:\gr?ge
linoleum1 10,956 7,055 16,008 6,753 -57.8%
doggie 9,897 24,605 89,022 22,555 -74.7%
fog -- -- 26,732 16,221 -39.3%
circlefade -- -- 15,735 6,638 -57.8%
buttfly -- 4,367 -- 3,965 --

Here, I've marked the smallest version of each image in boldface type; the only one that isn't aPNG
isthe color JPEG, which is hardly surprising. What isinteresting is that the grayscale JPEG
(linoleuml.jpg) is larger than both the GIF and optimized PNG versions, despite the presumed
benefits of lossy compression. There are at |east three reasons for this. First, GIF and PNG both get
an automatic factor-of-three savings from the fact that each pixel isonly 1 byte deep instead of 3
bytes. Second, JPEG is at arelative disadvantage when dealing with grayscale images, because most
of its compression benefits arise from how it treats the color components of an image. Third, this
particular image is more artificial than natural, with quite afew relatively sharp features, which
makes it particularly ill suited to JPEG-style compression.

But perhaps the most striking feature of Table 9-6 isjust how poorly the original encoder did on its

PNG images. Realizable savings of 40% to 75% are unusual, but thanks to poor encoding software,
they are not as unusual as one might hope.

As another real example (but one that is perhaps more representative of what atypical web site
might expect), the owner of http://www.feynman.com/ found that when he converted 54

nonanimated GIFs to PNGs, the collection grew in size from 270,431 bytes to 327,590 bytes.
Insofar as al of the original images had depths of 8 bits or less--and even the worst PNG encoder
will, on average, do as well or better than GIF on colormapped PNG images--the most likely
explanation for the 21% increase in size is that the conversion utility produced 24-bit RGB PNGs.
Indeed, the owner indicated that he had used ImageMagick's convert utility, older versions of which

http://www.feynman.com/

reportedly had the unfortunate habit of creating 24-bit PNGs unless explicitly given the -depth 8
option. (This problem seemsto have been fixed in more recent versions, but even current versions
include 160 bytes worth of text and background chunks per image.) When the original GIFs were
converted to PNG with gif2png instead, the total size dropped to 215,668 bytes, for a 20% overall
savings over GIF. Individually, the GIFs were smaller in 15 of the 54 cases, but never by more than
340 bytes. Of the 39 images in which the PNG version was smaller, one-third of them differed by
more than a kilobyte, and one was 14 KB smaller.

For the last GIF comparison, | downloaded the World Wide Web Consortium'sicon collection,
consisting of 448 noncorrupted GIF images. Of these, 43 had embedded text comments and 39 were
interlaced. Most of the images were icon-sized (as would be expected), at 64 x 64 or smaller, but
there were a handful of larger images, too. The total size of the files was 1,810,239 bytes.
Conversion to PNG via gif2png, handling the interlaced and noninterlaced images separately in
order to preserve their status, resulted in atotal PNG size of 1,587,337 bytes, or a 12.3% reduction.
Additional compression via pngcrush resulted in atotal of 1,554,965 bytes, or a 14.1% reduction
(relative to the GIF size). Out of the 448 images, PNG won the size comparison in 285 cases, lost in
161 cases, and tied in 2 cases. Asin the previous test, however, the magnitude of the differences
was the critical factor: GIF won by more than akilobyte in only 1 case, while PNG won by that
amount in 37 cases--4 of which were greater than 10 KB, 1 more than 64 KB. The average
difference for the 285 cases in which PNG was smaller was 940 bytes; for the 161 GIF cases, it was
amere 78 bytes.

Finally, I've mentioned an upcoming JPEG standard for |ossless compression a couple of times; it's
worth a quick look, too. JPEG-LS, as the standard will be known,[75] is based on Hewlett-Packard's

LOCO-I agorithm. Asthisiswritten, it isimplemented in version 0.90 of HP's locoe encoder,
available only in binary form for the HP-UX, Solaris, IRIX, and 32-bit Windows platforms. (An
independent implementation is available as C source code from the University of British Columbia.)
In a comparison performed by Adam Costello, the HP encoder was tested against pnmtopng and
pngcrush on the eight standard color images in the Waterloo BragZone's ColorSet. pnmtopng is of
interest only for speed reasons; even though it is moderately fast, locoe was considerably faster. |
have omitted its size results from the comparison since, as expected, pngcrush outperformed it in all
cases, though at a considerable cost in speed.

[75] In December 1998 it became an 1SO Draft International Standard, the final
voting stage before becoming afull International Standard. It will officially be known
as ISO/IEC 14495-1 upon approval. It has already been approved as International
Telecommunication Union (ITU) Recommendation T.87.

The results were fascinating. In the five test images categorized by the University of Waterloo as
“natural,” JPEG-L S beat PNG by between 5% and 11%--not a huge difference, but certainly
significant. However, in the three images marked "artistic,” PNG proved superior by wide margins,
with one image more than three times smaller than the corresponding JPEG-L S version. These
results are summarized in Table 9-7; once again, the byte size of the winning format for each image

is highlighted in boldface type.

Table 9-7. PNG and JPEG-LS Comparison for Waterloo BragZone Color Images

Classification Name Total JPEG-LS PNG Relative
Pixels Size IDAT Size | Difference
lena 262,144 445,799 475,430 +6.6%
monarch 393,216 555,012 615,260 +10.9%
“natural” peppers 262,144 385,047 425,560 +10.5%
sail 393,216 767,374 808,606 +5.4%
tulips 393,216 616,536 680,881 +10.4%
clegg 716,320 653,299 484,589 -25.8%
Tartistic” frymire 1,235,390 935,285 251,865 -73.1%
serrano 499,426 293,532 106,765 -63.6%

Note that in the final column | used the JPEG-L S size as the reference, which effectively works
against PNG--had | used PNG instead, the frymire image, for example, would show JPEG-LS as
271.3% larger, which looks much more impressive! Also note that | used the size of the PNG IDAT
data for comparison rather than the actual PNG file size; this was done because locoe appears to
encode raw JPEG data, with none of the overhead of standard JPEG file formats like JFIF and
SPIFF.

In any case, the results are only slightly more statistically valid than the first comparison of GIF
Images was. Eight samples, even if they are a carefully chosen set of standard research images,
cannot tell the full story. And results as intriguing as these certainly deserve more extensive testing,
which will no doubt happen in due course.

9.4. Practical Compression Tips

| could hardly end this chapter without some practical pointers on optimizing PNG compression,
both for users and for programmers. Herewith are some rough guidelines, arranged in descending
order of effectiveness. Note that, as with any set of rules, there will always be exceptions.

9.4.1. Tips for Users
Following isalist of tips for users of PNG-supporting software:
Use the correct image format

If you have photographic images and their quality as JPEGs is acceptable, use JPEG! JPEG
will almost always be smaller than PNG, especially for color images. Conversely, if you
have images with just afew colors and/or sharp edges (such as text and simple graphics),
JPEG is amost never the correct solution; use PNG or GIF instead. For binary transparency,

also use PNG or GIF; for partial transparency or lossless RGB, use PNG or TIFF; for
animations, use MNG or GIF.
Use the correct pixel depth

For example, don't convert a GIF (which, from a practical perspective, always has a depth of
8 bits or less) to a 24-hit PNG; that will automatically boost the file size by a factor of three.
Similarly, if given the option, don't save a grayscale image as RGB; save it as grayscale or,
at worst, as a palette-based PNG. Likewise, don't use afull alphachannel if single-color
transparency (ala GIF) would suffice; it doubles the size of grayscale images and adds 33%
to the size of RGB.

Corollary: Quantize and dither truecolor imagesto a palette if quality is acceptable

Likewise, quantize and dither RGBA or gray+apha PNGsto a palette, if possible. Thisis
something that only you, the user, can judge; no reasonable image application will ever
guantize (which is alossy transformation) unless instructed to do so by you. Thisis not an
issue for GIF, which realistically supports only colormapped images (i.e., your choice of GIF
as an output format amounts to an explicit instruction to quantize) nor isit an issue for JPEG,
which supports only grayscale and truecolor. Only PNG supports colormapped, grayscale,
and truecolor images, as well as alpha channels.

Useinterlacing with care

Interlacing is away to transmit the useful parts of an image more quickly, particularly on the
Web, so that the end user can click on a hot-linked region before the image is fully
downloaded, if she so chooses. But as | saw earlier, PNG's two-dimensional interlacing
scheme can degrade compression by 15% in some cases, especialy for small images. Since
small images are transmitted over the network fairly quickly anyway, they usually do not
need to be interlaced.

Use the correct tools

In thefirst six chapters, | discussed a number of PNG-supporting applications and noted their
limitations wherever possible; use that as a guide when choosing your tools, assuming you
have a choice. Even if your program generally compresses PNG images well, consider using
an optimizer such as pngcrush on everything when you're done;[76] definitely do so if your
program is not known for its compression performance. For converting GIFsto PNGs, the
dedicated gif2png is the most capable solution, even given its permanently beta version
number; it preserves both transparency and embedded text comments.

[76] It is one of my favoritetools, in case that wasn't already apparent. As of April
1999, there are still afew optimization tricks it doesn't do, but its author is addressing
those even as thisis written.

Don't include unnecessary information

A lengthy copyright message or other text can add 100 bytes or more, which isalot for icons
and other small images.

9.4.2. Tips for Programmers
Following isalist of tipsfor programmers:
Use the correct pixel depth

Count colors! Or at least do so when the compression setting is *best" and you don't know
that the image is grayscale--it doesn't take that long, and computers are good at that sort of
thing. If there are 256 or fewer colors, write a colormapped image; doing so will translate to
afactor-of-three savings in the PNG file size relative to an RGB image.

Use the correct pixel depth 1

If the image is colormapped, don't assume that the pixels must be 8 bits deep. If there are
only one or two colors, write a 1-bit image. If there are three or four colors, write a 2-bit
image. If there are between 5 and 16 colors, write a 4-bit image. (These are the only useful
cases for PNG.) The compression engine cannot compensate for bloated pixels! Choosing
the correct depth for a palette-based image will reduce the file size by afactor of anywhere
from two to eight relative to an 8-bit image.

Use grayscaleif possible

If you know the imageis gray, seeif it can be written more compactly as a grayscale PNG
than as a colormapped PNG--thisis automatically trueif there are more than 16 shades of
gray. Doing so will save up to 780 bytes by eliminating the palette. But don't assume that 16
or fewer shades automatically means the image can be written as 4-bit (or smaller) grayscale.
Grayscale necessarily implies that the shades are evenly distributed from black to white. If,
for example, the 16 shades are bunched up in one part of the gray spectrum, the image must
be written as 8-bit grayscale or 4-hit palette-based. For larger images, the pal ette-based
approach is amost certainly better; for small onesit depends, but the 8-bit grayscale case
may end up being smaller. Try both, if possible; it's very fast for small images.

Set the compression and filtering options intelligently

For programs that use libpng (discussed at length in Part 111, "Programming with PNG"), this
Isnot aseriousissue; it will automatically do the right thing if left to itself. But if you are
writing custom PNG code, follow the guidelines in the PNG specification for matching filter
strategies with image types. In particular, use filter type None for colormapped images and
for grayscale images less than 8 bits deep. Use adaptive filtering (the * minimum sum of
absolute differences" heuristic) for all other cases.

Truncate the palette

Unlike GIF, PNG's palette size is determined by the chunk size, so thereis no need to
include 256 entries if only 173 are used in the image. At 3 bytes per entry, wasted slots can
make a big difference in icons and other small images.

Truncate the transparency chunk

http://www.libpng.org/pub/png/book/part3.html

It is extremely rare for every palette entry to be partialy or fully transparent. If there are any
opague entries--in particular, if all but one are opague--reorder the pal ette so that the opaque
entries are at the end. The transparency entries corresponding to these opague colors can then
be omitted. The absolute worst possible approach is to put the single transparent entry at the
end of the palette! Those 255 extra bytes are alot for afile that would otherwise be 500 (or
even 150) bytes long.

Do transparency intelligently

Understand how PNG's alpha channels and tRNS chunk work. If the aphamask is binary
(that is, either fully transparent or fully opaque), seeif the transparent parts correspond to a
single color or gray shade; if so, eliminate the alpha channel from the PNG file and use the
tRNS chunk (" cheap transparency") instead. Alternatively, seeif the total number of color
+alpha combinations is 256 or fewer; if so, write a colormapped image with atRNS chunk. If
the user requests that an RGBA image be converted to indexed color, do so intelligently. The
combination of PNG's PLTE and tRNS chunks amounts to a palette whose entries are RGBA
values. The exact same algorithms that quantize and dither a 24-bit RGB image down to an 8-
bit pal ette-based image can be used to quantize and dither a 32-bit RGBA or 16-bit grayscae
+al pha image down to an 8-bit RGBA palette. In particular, you cannot treat color values and
transparency values asif they are separate, unrelated entities; attempting to partition the
palette into a " color part" and a " “transparent part" makes no more sense than attempting to
partition a standard RGB palette into red, green, and blue parts. If you do cheap transparency
poorly, the user will be forced to use afull alpha channel, quadrupling her file size. For
grayscale, an alpha channel ~"merely" doubles the size. Note that theicicle image in Figure C-

1inthe color insert is actually colormapped. Aside from the garish background--which was

actually generated by the viewing application--the full-resolution half looks pretty darned
good, doesn't it?
Don't include unnecessary chunksin small images

Gamma information (or the SRGB chunk) is aways good, but afull ICC profile may
guadruple the size of asmall image file. Consider not including a Software text chunk or
tIME chunk, or do so only for images larger than, say, 100 x 100 pixels. Include dots-per-
inch information (pHY s chunk) only if it is actually relevant to the image; but the user may
be the only one who can make that call.

Offer the user reasonable options

Don't overwhelm him with unnecessary detail about filters or other technical jargon. For
example, offer asimple checkbox to turn on interlacing. Offer asimple dial or even just two
or three choices for compression level--fastest, typical, and best, perhaps. Even though it will
make the file bigger, offer to include at least afew text annotations--Author, Title,
Description, and/or Copyright, for example. On the other hand, offer to omit certain optional
information, such as that described in the previous item.

Warn the user about data loss

If aregion is completely transparent, don't zero out the underlying color pixelsin order to
improve compression unless you've notified the user in some way. Make sure she

http://www.libpng.org/pub/png/book/fig_C1.html
http://www.libpng.org/pub/png/book/fig_C1.html

understands that quantization and dithering are lossy transformations, but don't make this an
overly scary issue.

PREVIOUS CONTENTS NEXT

- PREVIOUS CONTENTS NEXT o

Chapter 10. Gamma Correction and Precision
Color

Contents:

10.1. Transfer Functions and Gamma

10.2. The gAMA Chunk

10.3. Encoding Gamma

10.4. Gamma Gotchas

10.5. Chromaticity

10.6. Color Management Systems and sSRGB
10.7. ICC Profiles

Anyone who has transferred images between a PC and a Macintosh--or even ssimply viewed on one
platform an image created on another--has probably noticed one of the little gotchas of the computer
world: images don't ook the same on all systems. Images created on Macs tend to look too dark on
PCs; images created on PCs tend to look too bright and washed out on Macs. A pure yellow on one
machine may have an orange or greenish tint on another. Even on a single machine there are usually
obvious changes in brightness and color as the monitor (CRT) warms up, not to mention when the
user adjusts the screen controls. And in the absence of tedious calibration procedures and high-end
color-conversion software, what comes out of the printer is, at best, only a vague approximation of
what the screen shows.

PNG certainly doesn't solve all of these problems, but it does provide image authors with the means
to minimize many of them, as long as the editing and viewing software is written properly. As
recently proposed standards are approved and implemented in hardware, from graphics cards, to
monitors, to printers and scanners, there is reason to expect that platform-independent color will
become the norm, not the exception, in the new millennium.

10.1. Transfer Functions and Gamma

To understand the solutions, one must first become acquainted with the problems. | won't attempt to
cover the subject in detail; an entire book could be written on it--and, indeed, Charles Poynton has
donejust that. But | will give abrief overview of the main issues and explain how some of the
features of the Portable Network Graphics format fit into the picture. | may even mention some
physics and an equation or three, but you shouldn't need a technical degree to be able to understand
the basic ideas.

The ultimate goal of the entire processis for the light that leaves your monitor to produce the same
perception as the light that originally entered the camerawould have if it had entered your eyeballs
instead. Alternatively, for images created with an image-editing application, the goal is for your
display to produce the same perception (and basically the same light) as the artist's monitor
produced while he was creating the image. Clearly thisinvolves both the encoding process
performed by the editor or conversion program that writes the image file, and the decoding process,
perfromed by the viewer or browser that reads and displays the image, as well as aspects of human
physiology and psychology. WE'll refer to the combination of the encoding and decoding processes
as the end-to-end process. PNG'sroleisto provide away to store not only the image samples, that
IS, the color components of each pixel but also the information needed to relate those samples to the
desired output of the display. A decoder that has both that information and knowledge of how the
user's display system behaves can then deduce how the image samples must be transformed in order
to produce the correct outpui.

Storing the image samples themselves is easy. Thetricky part is figuring out the two additional
pieces of critical information: when encoding, how the original light is related to the samples, and
when decoding, how image samples are related to the display's actual output (i.e., the reproduced
light). The fundamental problem is that working with and storing light is nearly impossible; instead,
light istypically converted to electrical signals. Indeed, there are several more conversions along the
way, each of which potentially modifies the datain some way.

As aconcrete example, in an image captured via avideo or electronic camera, light entering the
cameraisfirst converted to analog voltages, which are in turn converted to other voltages
representing digital ones and zeros. These are stored in an image file as magnetic fields on a hard
disk or astiny pits on a CD-ROM. For display, the digital datain the fileis optionally modified by
the viewing application (this is where gamma correction and other tweaking is performed), then
possibly converted again according to alookup table (LUT), then generally converted by a graphics
card (" frame buffer") back to an analog electrical signal.[77] Thisanalog signal is then converted

by the monitor's electronics into a directed beam of electrons that excites various phosphors at the
front of the monitor and thereby is converted back into light. Clearly, thereisabit of complexity
here (no pun intended).

[77] Early PC graphics cards (the "CGA" and "EGA" adapters, for example)
communicated with the monitor digitally. Ironically, the burgeoning popularity of flat-
panel displays and digital television is driving manufacturers back to using digital
links between the frame buffer and display. As of early 1999, the standards and
products were rare to nonexistent, but they're coming.

But all isnot lost! One can simplify this model in severa ways. For example, conversions from
analog to digital and from digital to analog are well behaved--they introduce minimal artifacts--so
they can beignored. Likewise, the detailed physics of the monitor's operation, from electrical signa
to high-voltage electric fields to electrons to light, also can be ignored; instead, the monitor can be
treated as a black box that converts an electrical signal to light in awell-defined way. But the
greatest simplification is yet to come. Each of the conversions that remain, in the camera, lookup
table, and monitor, is represented mathematically by something called atransfer function. A transfer

function is nothing more than away to describe the relationship between what comes out of the
conversion and what went into it, and it can be afairly complex little beastie. The amazing thing is
that each of the preceding conversions can ailmost always be approximated rather well by avery
simple transfer function:

output = inputexponent

where the output and input values are scaled to the range between 0 and 1. The two scaling factors
may be different, even if “input" and "output™" both refer to light; for example, monitors are
physically incapable of reproducing the brightness of actual daylight. Even better, since the output

of one conversion is the input to the next, these transfer functions combine in atruly simple fashion:
final output = ((inputexponentl)exponent2yexponent3 = jnpytexponent1* exponent2* exponent3

This example happens to use three transfer functions, but the relation holds for any number of them.
And the best part of all isthat our ultimate goal, to have the final, reproduced output light be
perceived the same as the original input light, is equivalent to the following trivial equation:
exponent1* exponent2* exponent3 = constant

Or in English: all of the exponents, when multiplied together, must equal a single, constant number.
The value of the constant depends on the environments in which the image is captured and viewed,
but for movies and slides projected in adark room, it is usually around 1.5, and for video images
shown in typical television or computer environments, it is usually about 1.14. Since the viewing
application has the freedom to insert its own conversion with its own exponent, it could, in
principle, ensure that the equation holds--if it knew what all the remaining exponents were. But in
generd, it lacks that knowledge. We'll come back to that in a moment.

In practice, images may be created with any number of tools: an electronic camera; the combination
of aclassic film-based camera, commercia developing process, and electronic scanner; an image-
editing application; or even acompletely artificial source such as aray-tracing program, VRML
browser, or fractal generator. To aviewing application, afileisafile; thereisrarely any obvious
clue asto the true origins of the image. In other words, the decoder can have no reasonable
expectation of divining any of the transfer functions that came before the image data was saved to a
file, even if it asks the user for help. The decoder's sole concern must therefore be the conversion of
samplesin the image file to the desired output on the display.

WEe'll come back and deal with encodersin alittle while. For a decoder there are only two cases:
either the file contains the additional information about how the samples are related to the desired
output, or it doesn't. In the latter case, the decoder is no worse off than it would have been when
dealing with a GIF or JPEG image; it can only make a guess about the proper conversion, whichin
most cases means it does nothing special.

But the case in which the file does contain conversion information is where things finally get
interesting. Many types of conversion information are possible, but the simplest is a single number
that isusually referred to as gamma. Gammais a Greek letter (y) that traditionally represents the
exponent in the first equation | gave; the only problem is that, as we've seen, there are severa
exponents in the end-to-end process, and different people use the term "gamma" to mean different

things. | will use "gamma’ to refer to the exponent relating the image data and the desired display
output. Not surprisingly, thisis how PNG's gAMA chunk defines gamma, too.[78]

[78] Version 1.0 of the PNG specification discussed gammain terms of the end-to-
end transfer function from source to final display. This was deemed impractical and
not necessarily indicative of real-world practice, so version 1.1 of the specification
clarified all of the gammarrelated discussion and reserved the actual term ~"gamma”
solely for the usage described here.

10.2. The gAMA Chunk

PNG's gAMA chunk basically says: if your overall display system's exponent (generaly a
combination of the system LUT exponent and the monitor or CRT exponent) is the same as the
inverse of this gamma value, then the samplesin the file are ready to go and need no further
correction.[79] If not, the decoding correction can be computed from the product of the overall

display-system exponent and the stored gamma value.

[79] Practically speaking, values that are within about 5% of each other may be
considered ""the same."

More precisely (and here we get into a bit of mathematics that will mainly be of interest to
application developers), the stored gamma val ue represents the following relationship between the
Image samples and the desired output light intensity:

Image_sample = light_out9amma

or:
image_samplel/gamma = |ight_out

Once again, bear in mind that light_out and image_sample are scaled to the interval between 0 and
1; that is, if the sample depth is 8 bits, the file samples range between 0 and 255, so image _sample
Is obtained by dividing a given file sample by 255, in floating-point arithmetic.

The decoding pipeline is represented by this expression:
image sampledecoding_exponent * LUT_exponent * CRT_exponent = |jght_out

The decoding_exponent is simply the gamma correction that the application applies; the
combination of the other two exponentsisthe "“overall display system's exponent,” to use the
language with which we began this section. Notice that the preceding equation and the one before it
are very similar--in fact, they imply the following relationship between the exponents:

(1 / gamma) = decoding_exponent * LUT_exponent * CRT_exponent

or, equivalently:
decoding_exponent = 1/ (gamma* LUT_exponent * CRT_exponent)

The gamma relationship given in English at the beginning of this section simply saysthat if the
product on the right side of this equation equals one (which means decoding_exponent also equals
one), then no further conversion is necessary--the image samples are ready to go asis. On the other
hand, if the right-hand side of the equation differs from one, then that value is decoding_exponent
and is what the decoder uses to correct the image samples before sending them to the display system:
display_input = image sampl edecoding_exponent

Note that this procedure applies to each red, green, and blue value in a truecolor image or to each
palette value in a colormapped PNG. But it does not apply to transparency values in an image with
an apha channel or atRNS chunk; apha samples are always assumed to be linear. Implementors
should also be aware that there is no need to perform a computationally expensive exponentiation
for every pixel inthe image, or three times per pixel for an RGB image! At most, there are only
65,536 possible sample values (for a 16-bit grayscale or 48-bit RGB image) and usually no more
than 256, which means that gamma correction can be accomplished via a simple lookup table
computed when the gAMA chunk is read.

That brings us to the gAMA chunk itself. Its contents are quite simple: a 4-byte, unsigned integer
equal to gamma multiplied by 100,000 and rounded to the nearest integer. So if gammais 1/2.2 (or
0.45454545...), the value in the gAMA chunk is 45,455. There can be only one gAMA chunk, and it
must appear before any IDATs and aso before the PLTE chunk, if oneis present.

As apractical matter, there is one more piece to the decoder half of the gamma puzzle. The issue of
exponents for the lookup table and monitor on various systems is more complex than it should be,
mainly because different systems use the term ~"gamma" in strange and sometimes sneaky ways.
Table 10-1 summarizes the issue for some common platforms,

Table 10-1. Gamma Comparison Across Common Platforms

Default Default
Platform LUT_exponent LUT_exponent CRT_exponent gAMA
PC 1.0 1.0 2.2 45,455
Macintosh g/2.61 1.8/2.61 2.2 65,909
SGl /g 1.7 2.2 77,273
NeXT /g 1/2.2 2.2 100,000

The key thing to note, aside from the differences in default gAMA values across platforms, is that
both Mac OS and SGI IRIX allow the user to modify a ™ system gamma" setting that not only differs
from the gamma definition we're using but also differs between platforms. These ""gamma’ values
modify the lookup table, and SGl'sis straightforward: LUT_exponent is simply the inverse of the
SGI “"gamma' value, which isdenoted g in Table 10-1. (NeX T workstations use the same

convention as SGI, but the only way to modify their setting is with third-party utilities.) The
Macintosh, on the other hand, not only definesits "gamma" as directly proportional to
LUT_exponent but also dividesit by a constant factor (2.61). Thus, while the default Macintosh

““gamma’ of 1.8 appears closeto SGI's default of 1.7, the actual lookup table exponents
corresponding to these defaults are 1.8/2.61 and 1/1.7, respectively.

10.3. Encoding Gamma

That wraps up gamma correction on the decoding side of things, but what about encoders? After all,
they must put the proper information into the PNG filein the first place, so that decoders can do
their job correctly. The issue is more complex than for decoders, and not only because there are so
many ways to generate an image. Consider the process of creating an image in an editor, which
might seem the most straightforward case since it involves, in some sense, exactly the opposite
procedure from that employed by the decoder. That is, the artist manipulates the image so that the
displayed output has the desired appearance, then saves the result in afile with the proper gamma.
Ordinarily, the editing application would simply write a gamma value that corresponds to the artist's
display system. But if the image in question originated on another system, some editors will actually
preserve its gamma setting by using a decoding_exponent for all manipulations on the artist's
system--just as a normal viewer would. Thus the artist sees an image displayed in her own ~"gamma
space," but the underlying image samples actually remain in the gamma space of the original system.

The case of an electronic camera that writes image files directly turns out to be the simplest
possibility; as noted earlier, the camera has its own transfer function and exponent, and the camera's
manufacturer should know precisely what that exponent is. When the camera saves an image,
whether in PNG format or something else, the proper gamma value is ssimply the one that will make
the end-to-end product of exponents equal to the correct constant--which, you'll recall, is around
1.14 in the case of images captured in a TV studio environment and intended for display on a
computer system. But even under different lighting conditions, the camera knows what the
conditions are and can correct for them accordingly, perhaps via preset gamma settings for half a
dozen situations, for example: dimly lit, flash-illuminated, studio lighting, sunny day (high
contrast), bright cloudy day (lower contrast), and so on.

For images captured with atraditional camera and scanned from a print, the issue is slightly fuzzier.
If the scanner writes directly to an image file with no user control of brightness and contrast, the
case is exactly analogous to that of the electronic camera: the scanner manufacturer knows what its
transfer function is and can encode the proper gamma value in the file. But most scanners operatein
conjunction with editing software that allows the user to tweak not only gamma-related settings but
also color balance and saturation; this case is more like the first one considered (regardless of
whether the user considers himself an “"artist").

Ironically, images that are generated completely artificially are the most complicated case. Most
calculations on artificial scenes, including those for VRML and ray-traced worlds, are done with
“linear lighting" that would correspond to agamma of 1.0. But in creating the scene, the artist
usually makes adjustments based on how it displays on her system, and if she happensto use a
viewer that performs no gamma correction, her feedback to the software that generates the images
will be skewed--in effect, she will modify the colors, textures, lighting, and so forth, so that the
gamma value corresponds to her display system. The solution, of course, isto use only software that
supports gamma correction, both for generating the images and for viewing them.

10.4. Gamma Gotchas

Finaly, as a prelude to the following sections, I'll note afew caveats. First, although I've referred to
cathode-ray tube monitors (or CRTSs) throughout the discussion so far, not all computers use them;
in fact, notebook computers have long used liquid crystal displays, and LCDs are becoming
increasingly popular on desktop systems as lightweight and space-saving alternatives to traditional
monitors. Do the simple exponential (or power-law) transfer functions used earlier apply to LCDs as
well? Yes, they do, but | need to qualify that answer. Raw LCDs are actually characterized by an S
shaped transfer function technically referred to as “"sigmoid”, for which the best exponential fit
would have an exponent of 1.0. Thisisalousy approximation, but fortunately, all real-world LCDs
have corrective circuitry built in that makes them behave like monitors. So it is safe to use the same
exponential transfer functions we discussed earlier. If the extra circuitry did not exist, the only
reasonable-looking alternative would require support from both the encoding and decoding
software. Specifically, an image editor running on an uncorrected LCD would need to include with
the image afull International Color Consortium profile, which we'll discuss at the end of this
chapter, and the decoder would in turn need to use it to correct the image on other display systems.
Alternatively, the editor could precorrect the image samples to correspond to a normal CRT and
include only gamma information, but this would be alossy transformation of the image data.

A second caveat is that even when amonitor is the primary display device, other output devices
such as grayscale or color printers are often used as well. Because of the vast differencesin physics
and technology between an image reproduced by emitting light directly from a monitor versus one
reproduced as light reflected from printed paper, gamma correction is often of lesser relative
importance than color correction. A full color management system may no longer be merely
desirable but actually necessary. On the other hand, printers are sometimes calibrated to work
properly with the local display, so an image that is gamma-corrected to ook good on the monitor
will aso print properly.

A third caveat is that monitors are not perfectly described by exponential transfer functions, either.
A better approximation is a combination of alinear function near zero and an exponential function
elsewhere. But a simple exponential works well enough for most purposes.

The last thing to note is that even experts do not always agree, and the issue of what exponent to use
to describe CRTsis one of those areas of disagreement. We've used 2.2 in the preceding discussion,
that's the value used in the sSRGB specification (more on that later) and the consensus of the color
expertsin the PNG Group. It is aso the value used by manufacturers of professional, calibrated
display equipment, such as Sony and Barco. On the other hand, Charles Poynton, one of the Web's
leading color experts and the author of a number of technical papers and books, steadfastly
maintains that 2.5 is more correct. At the time of this writing, things seem to be at an impasse, but
there is hope for resolution as further test results become available in 1999.

In the meantime, Michael H. Brill has taken the initiative and written a poem that not only
summarizes the gamma disagreement rather nicely but also does so with enviable wit and
succinctness. It rhymes, too. The poem is entitled "Gamma and Its Bases' and may be found on the

PNG home site: http://www.libpng.org/pub/png/book/gamma-poem.html.

10.5. Chromaticity

Adjusting the overall brightness of an image via gamma correction is agood first step, but it does
not address the issue of color balance. Anyone who has visited atypical consumer electronics store
has probably noticed that not every model on the wall of televisions displays the same way. Some
may have areddish tinge, some green; some usually display very bright, saturated colors, while
others may opt for slightly paler but more realistic hues. Although one rarely sees a corresponding
wall of computer monitors and LCDs all displaying the same image, there are similar differences
between various manufacturers models and even between monitors in the same production run.

The main contribution to such variations comes from the manufacturers' choices of light-emitting
chemicals (phosphors) in monitors and of filters used in liquid crystal displays. In addition, some
higher-end monitors (and all color TVs) alow one to adjust the color balance manually in one or
more ways. The details are not particularly important; what mattersis that there are differences--or
to put it another way, the RGB color space is device-dependent. Understanding how one quantifies
and corrects for these differencesis most easily accomplished via a diagram.

Svstern: Custorr)
Frimory 1lluminants

Figure 10-1: Typical chromaticity diagram. (Click for full-scale version.)

http://www.libpng.org/pub/png/book/gamma-poem.html
http://www.libpng.org/pub/png/book/fig_C2.html
http://www.libpng.org/pub/png/book/fig_C2.html

Figure C-2 in the color insert, reproduced in grayscale as Figure 10-1, shows an interestingly shaped
color blob with a numbered curve and a brighter triangle embedded in it and some numbers around
its curved edge. The blob represents the complete range of hues and saturation levels that the human
eye can discern; atrue spectrum would wrap around the numbered edge[80] (albeit without the cyan
region near the upper left). The middle is composed of smoothly interpolated mixtures, including
“white." The numbers on the axes give the x and y values of each hue and are directly related to the
|nternational Commission on Illumination's (CIE, for Commission Internationale de I'Eclairage)
XY Z color space, a standard and device-independent color space for well over half a century. Well
come back to that shortly.

[80] The numbers give the wavelength (in nanometers) of the spectral colors along
the edge. Visible light lies within the range 400 nm to 700 nm, roughly.

The brighter triangle in the middle represents the colors that can be displayed by a particular
monitor (not including any brightness information) and is known as the color gamut of the display.
The corners of the triangle give the maximum-intensity red, green, and blue hues; these directly
correspond to the physical characteristics of the phosphors used in the display. LCDs, printers, color
film, and even textile dyes have ssimilar gamuts, though not always triangular. Perhaps the most
striking feature is the fact that the monitor's gamut covers less than half of the complete color range.
In other words, there are many colors that the human eye can perceive but that cannot be correctly
represented on amonitor. The fact that the chromaticity diagram can be displayed on a monitor at
all means that the region outside the triangle can be represented in some manner, just not the correct
one. Thisisthe source of the cyan error noted previously.

Because the diagram has been projected down from a three-dimensional color space (XY Z) to the
two-dimensional xy plane, information about the relative intensities of red, green, and blue has been
lost. That is, the X,y values for the red phosphor indicate what color it emits at any given intensity
level and similarly for the green and blue phosphors. But we still need to know the relative
intensities of the three phosphors when they are all at full power. Thisiswhere the concept of
“white" comesin. In fact, there are many candidates for " white," from the warm, yellowish whites
produced by incandescent lightbulbs to the cool, bluish whites of electrical arcs and lightning.[81]
The curved line in the middle represents all possible values of “"white" for a given monitor, only one
of which will be displayed as such. The associated numbers along the curve refer to the " blackbody
temperature” or color temperature of any given white value; among other things, a star whose
surface (photosphere) is at the given temperature will emit light of the given color most strongly.
[82] Our Sun's surface temperature is around 6,000 degrees Kelvin, for example; not coincidentally,

thisisthe color temperature most humans associate with ““average” or “true" white.

[81] Itisdlightly odd that humans perceive redder light as—“warm" and bluer light as
““cool" when, in fact, the opposite istrue. Lightning is far hotter than the filament in
an incandescent bulb.

[82] Keep in mind that we are still talking about human perception. A blackbody
emits a true continuum of light; a monitor emits a more limited continuum composed
of three broad, overlapping curves--corresponding to the red, green, and blue

http://www.libpng.org/pub/png/book/fig_C2.html

phosphors. Humans perceive the monitor's ~"white" output to be the same as that of a
blackbody at a particular temperature, but a spectrometer would say otherwise.

How does all of thisrelate to color correction in PNG? If the encoding software knows the locations
of the three corners of the triangle (the primary chromaticities) and of white point, it can save these
valuesin PNG's chromaticity chunk, cHRM. When the image is decoded on another system with a
different color range, the decoder can convert the x,y chromaticity values of both systemsinto XY Z
space, calculate any necessary adjustments between the two, and use that calculation to convert the
RGB values of theimage into XY Z space and then into the RGB space of the display system.

The simple way to deal with such conversionsis to feed the information to a color management
system (CMS), assuming one is present. All of the tricky details of conversion between different
color spaces and of mapping different monitor gamuts are handled by the CMS. Color management
systems are not yet in wide use on typical users platforms, however; a decoding application that
wishes to maintain optimal color fidelity will need to handle the conversions on itsown. The
calculations to do so are not terribly difficult, but they do involve a number of matrix operations.
These are detailed in of the University of Manchester's excellent tutorial, Colour in Computer
Graphics, and aso in the "Color Tutorial" section of the PNG Specification, Version 1.1.

The structure of cHRM isshown in Table 10-2.

Table 10-2. cHRM Chunk

Field Length and valid range
White point x 4 bytes (0-2,147,483,647)
White point y 4 bytes (0-2,147,483,647)
Red x 4 bytes (0-2,147,483,647)
Redy 4 bytes (0-2,147,483,647)
Green X 4 bytes (0-2,147,483,647)
Greeny 4 bytes (0-2,147,483,647)
Blue x 4 bytes (0-2,147,483,647)
Bluey 4 bytes (0-2,147,483,647)

Each of the eight valuesis an unsigned long integer, equal to the actual floating-point value
multiplied by 100,000 and rounded to the nearest integer. Like the gAMA chunk, cHRM must
precede all IDAT chunks and, if present, PLTE; only one cHRM chunk is allowed.

10.6. Color Management Systems and sRGB

The popularity of the RGB color spaceis at odds with its fundamentally device-dependent nature. In
order to address this problem, a number of manufacturers of computer-related equipment and the

International Color Consortium have cooperated to define a standard RGB space to which various
devices such as monitors, printers, scanners, and electronic cameras can be calibrated. This
specification, known as sSRGB, is expected to be approved as an international standard by the
International Electrotechnical Commission (IEC) by mid-1999; it will formally be known as |IEC
61966-2-1.

SRGB allows one to create a PNG image on one system and print or display it on another with full
color fidelity and without ever converting to XY Z or another device-independent color space. How
well it works in practice remains to be seen, but awell-specified international standard--and
manufacturers evident interest in it--will go along way toward ensuring that future devices are
compatible at the RGB level.

In addition, an image that was created under SRGB can be flagged as such with very little overhead.
Only one parameter, the rendering intent, isrequired; it is stored as asingle byte in PNG's SRGB
chunk. The rendering intent, also known as " artistic intent," indicates how the creator of the image
wishes the colors to be mapped when the output device's color gamut (recall the discussion in the
previous section) does not match that of the original device. For example, imagine that an artist
creates an image on an SRGB-compliant monitor and graphics system, and when he's finished he
sends it to an SRGB-compliant color printer. Because the light-emitting phosphors of the monitor
and the light-reflecting inks of the printer and its paper will be able to represent somewhat different
ranges of colors--ideally, mostly overlapping, but conceivably with only alittle overlap--itis
necessary for the artist to specify how he wishes the different color gamuts of the devicesto be
mapped to each other.

The simplest rendering intent (in concept) is known as absolute colorimetric. The word
““colorimetric" means color-measuring, and this intent indicates that, for the region of overlap
between source and destination gamuts, any given pixel will be measured to have identical colors on
the two devices. When the output device is not capable of reproducing some of the colors of the
input device (i.e., the gamut is more restricted in that region of color space), the colors are clipped
to the nearest color that can be reproduced. The result is that dynamic range will be lost in some
areas. For example, suppose that the image has a smoothly varying blue gradient and that the output
deviceisrestricted to only the darker blues. The output will show a smoothly varying gradient
progressing from darkest blue to medium blue, but then it will saturate and render all of the
remaining gradient as a constant, medium blue. Likewise, the intensity range may be clipped if the
output device is incapable of rendering absolute black or the brightest shades of white. This
rendering intent might be used in cases in which three or more profiles are involved--for example,
when an image created on a computer display isintended for a particular typesetter but first needs to
be proofed on alocal printer.

A similar intent is relative colorimetric. As with the absolute flavor, RGB values correspond to
precise CIE color measurements, but they are modified according to the intensity range and color
cast (i.e., the white point) of the output medium. Referring to our artist again, his monitor may be
capable of displaying true, 5,000K CIE white, but the paper in his printer generally will not
uniformly reflect all of the wavelengths that hit it, regardless of the source.[83] To put it another

way, the paper will have a different white point than the monitor. Asaresult, it may be desirable to

sacrifice perfect color correspondence in favor of asimilar dynamic range in intensities, by
referencing the RGB values to whatever paper or other output medium is used. The output image
may have an overall lighter or darker appearance or an overall color shift, but there will be no
clipping of grayscale gradients, and the colors will appear to match--thanks to the human visual
system's tendency to acclimate to an overall tint or, to put it another way, to the " prevailing white".
The relative colorimetric intent is the ICC's default; it might be desirable for displaying and printing
corporate logos.

[83] And if he's silk-screening white T-shirts, no amount of bleach will change that.
There are some detergents that infuse clothing with small amounts of phosphorescent
chemicalsin order to make ““whites whiter"; one's clothes are no longer strictly
reflective, but actually glow dlightly when exposed to blue or ultraviolet light. Such
detergents are generally not part of an sSRGB-compliant display system.

A still more approximate intent, but one that may capture more of the personality of the original
Image, is the perceptual rendering intent. Theideain this case isto map the full color ranges of
source and destination devices as well as possible. This may involve either expansion, compression,
or shifting of the color gamut. Even colors within the region where the gamuts overlap may be
modified; in other words, absolute color fidelity islessimportant than preserving the dynamic range
in both color and intensity of theimage. Thisis often the most appropriate intent for rendering
photographs.

Finally we have the saturation-preserving rendering intent, which is similar to perceptual rendering
in that it doesn't necessarily enforce completely accurate color reproduction. But rather than favor
overall gamut mapping like the perceptual intent does, this rendering intent specifies that the
saturation of each color should remain constant. Saturation can be thought of as the amount of gray
in acolor of agiven hue (say, greenish-aqua) and lightness. As the saturation approaches zero, the
color approaches gray; maximum saturation gives the purest shade of the given hue. Since a cheap
inkjet printer might have only two-thirds of the saturation range of an expensive dye-sublimation
printer, colorimetric rendering might induce another kind of clipping in the inkjet's outpui.
Saturation-preserving rendering would avoid that, but could possibly result in changes in hue and/or
lightness. It might be the preferred intent for printing business charts and graphs.

PNG's sSRGB chunk encodes the rendering intent with the same values specified by the International
Color Consortium for ICC profiles: that is, byte value O for perceptual, 1 for relative colorimetric, 2
for saturation-preserving, and 3 for absolute col orimetric.

Because the SRGB color space encompasses gamma and chromaticity information, it is not strictly
necessary for a PNG image to include gAMA and cHRM chunks in addition to the SRGB chunk.
But since not all applications will know how to interpret SRGB, encoders should nevertheless
include agAMA chunk that corresponds to SRGB, and possibly acHRM chunk as well. Decoders
that know how to deal with cHRM are likely to know how to deal with SRGB, too, which iswhy
cHRM may be omitted. The proper values for the two chunks arein Table 10-3.

An sRGB-aware decoder should ignore gAMA and cHRM whenever an SRGB chunk is present; the

latter takes precedence. L ess sophisticated applications can use gAMA and cHRM to render the
Image approximately as intended, even without knowledge of the SRGB color space. But note that
there is no excuse for any application written after the PNG 1.1 specification not to recognize
SRGB, at least; it is now part of the core spec, and new applications should know what gamma and
chromaticity values correspond to it, regardless of whether the corresponding chunks--or even
conflicting chunks--are actually present in the file. Aswith gAMA and cHRM, only one sRGB
chunk is allowed, and it must appear before any PLTE and IDAT chunks.

Table 10-3. sSRGB Gamma and Chromaticity Values

gAMA I mage gamma 45,455
White point x 31,270
White point y 32,900
Red x 64,000
Redy 33,000

cHRM
Green X 30,000
Greeny 60,000
Blue x 15,000
Bluey 6,000

10.7. ICC Profiles

For ultimate control over color fidelity and issues of device dependence, PNG supports the ability to
embed afull International Color Consortium profile viathe iCCP chunk. The ICC profile format, at
version 3.4 as of thiswriting, is arelatively mature specification that is itself headed toward 1SO
standardization. The format is capable of describing not only computer monitors, but also printers,
scanners, liquid crystal displays, film, transparencies, and so forth.

Though the profile format itself is understandably quite complex, given all of the devices and color-
Space conversions it must encompass, the format of PNG's iCCP chunk is independent of all that.
Similar to the zT Xt chunk (which will be described in Chapter 11, "PNG Options and Extensions'),

ICCP contains only four elements, as shown in Table 10-4. a printable name terminated by a null
byte; a byte indicating the compression method; and the compressed profile itself.

Table 10-4. iCCP Chunk

Field Length and Valid Range
Profile name 1-79 bytes (Latin-1 text)
Null separator 1 byte (0)

Compression method 1 byte
Compressed | CC profile n bytes

The profile name is for the convenience of the artist or user of the image; in practice, it will
probably be similar to the profile description tag, which is embedded in the profileitself. The
compression method byte currently must be zero, indicating a compressed stream in zlib format,
using the deflate compression method. As with zT Xt and the actual image data, a future major
revision of the PNG spec may define other compression methods, in which case this byte will be
allowed to take on other values.

Aside from uncompressing it, ordinary decoders will not be expected to know anything about the

| CC profile other than the fact that they can be large (i.e., more than 64 KB); instead, they will
simply hand it off to the local color management system for appropriate processing. Encoders
should ensure two things: that the profileisavalid ICC profile and that it refers either to an RGB
color space (for color images, including colormapped ones) or to agrayscale color space. CMYK
color spaces, for example, are disallowed. Likewise, multiple copies of iCCP are disallowed; if the
ICCP chunk is present, it must come before any PLTE or IDAT chunks.

By mid-1998, there were indications that something of a ™ TIFF effect” applied to the ICC profile
format; that is, profiles from different vendors were not necessarily interoperable with each other or
with different color management systems.[84] Presumably this will be worked out by the time the

| CC specification becomes an official standard, but in the meantime, it is something of which PNG
implementors should be aware.

[84] Thisis hardly surprising for aformat that attempts to deal with such athorny
problem.

-y PREVIOUS CONTENTS NEXT |

- PREVIOUS CONTENTS NEXT o

Chapter 11. PNG Options and Extensions

Contents:

11.1. Background Color (bKGD)

11.2. Timestamp (tIME)

11.3. Latin-1 Text Annotations (tEXt, ZT Xt)
11.4. International Text Annotations (1TXt)
11.5. Histogram (hIST)

11.6. Suggested Palette (sPLT)

11.7. Significant Bits (sBIT)

11.8. Physical Pixel Dimensions (pHY s)
11.9. Physical Scale (sSCAL)

11.10. Image Offset (oFFs)

11.11. Pixel Calibration (pCAL)

11.12. Fractal Parameters (fRAC)

11.13. GIF Conversion Info (gl Fqg, gl Fx)
11.14. GIF Plain Text (gl Ft)

11.15. Other Chunks

In addition to the core chunk types described thus far, the Portable Network Graphics format
supports awhole host of optional chunks for various purposes, from text annotations to conversion
information. These are described in the following sections, very roughly in order of importance to
the average user.

Background Color (bKGD)

. Status. PNG Specification
. Location: After PLTE, beforefirst IDAT
. Multiple: no

In some applications, notably web browsers, there is a natural background surrounding all images,
against which images can be composited with transparency information. But standal one image
viewers typically have no preferred background color or pattern and usually default to black, which
may not be appropriate for some images. PNG therefore supports the concept of a preferred
background color that can be used if nothing better is available.

The bK GD chunk is used for this purpose. Just as with the transparency chunk, tRNS (see Chapter

8, "PNG Basics"), the format of bKGD depends on the image type. For palette-based images it

contains a single byte, whose value is the pal ette index of the color to be used for the background.
For grayscale images, with or without alpha, the chunk contains a 2-byte, unscaled gray value, just

as with tRNS--that is, the maximum allowed valueis 2% %P1 even though it is stored as a 16-bit
integer. And for truecolor images, the background chunk is exactly analogous to the grayscale
version except that it contains three 16-bit, unscaled val ues representing the red, green, and blue
components of the background color. There is no requirement in any of the three cases that the
background color be present in the actual image data.

Note that colored backgrounds are not supported in grayscale images; while thisis certainly a
restriction, it appears not to be a particularly serious one, to judge by the lack of public comment to
date. Note also that the background color should always be considered fully opaque, even if it
happens to match a color marked by the tRNS chunk as partly or fully transparent.

Timestamp (tIME)

. Status. PNG Specification
. Location: anywherg[85]
. Multiple: no

[85] Chunks with no explicit restrictions (" anywhere") are nonetheless implicitly
constrained to come after the PNG signature and IHDR chunk, before the IEND
chunk, and not to fall between multiple IDAT chunks.

The timestamp chunk provides away for the author (or image-editing software) to record the time
and date the image was last modified. The chunk contains 7 bytes of data, shown in Table 11-1.

Table 11-1. tIME Chunk

Field Length and Valid Range
Y ear 2 bytes (0-65,535)

Month 1 byte (1-12)

Day 1 byte (1-31)

Hour 1 byte (0-23)

Minute 1 byte (0-59)

Second 1 byte (0-60)

Asthis book is being written before the Third Millennium begins, the first thing to notice is that
PNG is not merely Y 2K-compliant, but also Y 2038, Y 10K, and pretty much everything else on up
through Y 65K .[86] In addition, note that the seconds field is permitted to vary between 0 and 60;

this allows for leap seconds, of which there have been roughly two dozen since 1972. (There has

never been more than one leap second in any given minute, however.)

[86] Presumably humanity will have come up with another image format or two by
then.

On alesstechnical level, why does tIME store the modification time rather than creation time? On
the face of it, creation time would seem like a more useful piece of information, and indeed, it is
explicitly supported in PNG viathe text chunks described later. But whereas modification timeisa
well-defined quantity--even a computer program can determine whether the image data has been
modified--creation time is ambiguous. If a scanned photograph of the Mona Lisais converted to
PNG format, isits creation time the time of image conversion, the time of the original scan, the time
the photograph was taken, or even the time the painting was created? The case becomes even
muddier if an artist creates adigital work partly based on the scanned image. So creation time is
supported via one or more text chunks, which can also describe in precisely what sense the image
was created.

Latin-1 Text Annotations (tEXt, zTXt)

. Status: PNG Specification
. Location: anywhere
. Multiple: yes

That brings us to PNG's original text chunks, which are perhaps its most popular nonessential
chunks. Regardless of how many words a picture isworth, it is often useful or necessary to add a
few more in order to record pertinent information like title and author, store requisite legal notices
such as a copyright or disclaimer, or merely to transfer text from one image to another.

PNG supports two types of Latin-1-based text chunks, uncompressed (tEXt) and compressed
(zTXt). Thereisalso anew Unicode-based chunk (iTXt) that I'll discuss next. For the first two, the
format is basically the same: an uncompressed keyword or key phrase, a null (zero) byte, and the
actual text. In zT Xt the text is compressed; the first byte after the null indicates the compression
method, for which only deflate is currently defined (method zero). The remainder is the compressed
stream, which for method zero must bein zlib 1.x format, just as for image data. (The zlib 1.x
format is described by revision 3.3 of the zlib specification, which is available from http://www.zlib.

org/zlib_docs.html/.)

Both keyword and raw text should be encoded with the Latin-1 (ISO/IEC 8859-1) character set;
neither may contain null bytes. Since the keyword is intended to be recognizable by both humans
and computer programs, additional restrictions are placed on it: it may not contain leading, trailing,
or consecutive spaces, and it isrestricted to charactersin the range 32-126 and 161-255 (which, in
particular, rules out both control characters and the nonbreaking space, decimal value 160). The
only other restriction on the main text of the chunk is that newlines should be in Unix format, i.e.,
represented by a single line-feed character (decimal value 10).

http://www.zlib.org/zlib_docs.html
http://www.zlib.org/zlib_docs.html

| mentioned in Chapter 7, "History of the Portable Network Graphics Format”, that the Unicode
UTF-8 character set was one of the items in the design of PNG that was voted down. In retrospect
thiswas, perhaps, alamentable decision; it was finally addressed early in 1999 with the iTXt chunk.
But at the time, UTF-8 was very new and had not been extensively tested in the field. In particular,
it had little or no operating-system support and no support in standard programming libraries, either
for encoding and decoding or for the trandlation and display of UTF-8 charactersin the native
character set(s) of existing systems. Since PNG's design goals included both the use of well-tested
technologies and the avoidance of undue burdens on developers of PNG applications, support for
UTF-8 was dropped in favor of the more familiar Latin-1 character set.

The following list summarizes all of the keywords that are either included in the specification itself
or officially registered as extensions to the spec:

Author

The name of the author of the image. If the original image were a painting or other
nonelectronic medium, both the original artist and the person who scanned the image might
be listed.

Title

A one-linetitle or caption. Longer captions should generally use the Description keyword,
but see the end of this section for an unofficial alternative.
Description

A longer description of or caption for the image, perhaps including details about the tools
and settings used; the name, age, and/or location of the subject matter; or the mood the artist
was trying to convey. See aso the Software and Source keywords.

Creation Time

The time the image was created, in whatever sense is most appropriate. The recommended
format isthat prescribed by Internet RFC 822 (Section 5), as amended by RFC 1123 (Section
5.2.14); specifically:

day nmonth year hour:mnute tinezone

where day is either one or two digits; month is a three-letter English abbreviation such as Jun; year
istwo or four digits (though the latter is strongly recommended); hour and minute are two digits
each; and timezone is either athree-letter abbreviation (e.g., PST for Pacific Standard Time), or a
one-letter U.S. military designation, or afour-digit number with aleading positive or negative sign
indicating the hour:minute offset from Coordinated Universal Time (e.g., -0800 for Pacific Standard
Time, which is eight hours and zero minutes earlier than UTC). In addition, the entire string may
optionally be preceded by aweekday field, where weekday is a three-letter English abbreviation (e.
g., Fri). A colon and two-digit seconds field may also be appended to the time (that is, hour :
minute:second). Note that thisis merely a recommendation; strings such as " “circa 1492" are
allowed, asis explanatory text following an RFC-style date string.

Copyright

The legal copyright notice for the image. For example, " Copyright 1999 by Greg Roel of s.
Thisimage may be freely used and distributed provided that it is not modified in any way
and that this notice remains intact.”

Disclaimer

A legal disclaimer notice for the image. This might include a company's standard boilerplate
on all copyrighted works; in particular, it might be lengthy enough to store in a compressed
(zTXt) chunk, while the copyright notice remains uncompressed.

Warning

A warning about the content or effects of the image. For example, certain types of popular
material may not be suitable for minors, or a random-dot stereogram (" Magic Eye" 3D
image) may induce headaches in some people.

Software

The name and possibly the version of the software used to create the image. Thisis most
often generated automatically, but it need not be. More than one software application may be
listed.

Source

Information about the device used to generate the image, such asadigital cameraor a
scanner.
Comment

A miscellaneous comment, often converted from a GIF comment (which lacks keywords).

In addition to these official keywords, one of the technical reviewers of this book and | have been
known to make use of afew unofficial keywords. The Caption keyword is used to provide a brief
description of an image that is more specifically tailored for use as a publishable caption than the
generic Description keyword; it is also generally lengthier than is appropriate for the Title keyword.
The E-mail keyword stores the email address of the author in standard Internet format (RFC 822,
Section 6, as amended by RFC 1123, Sections 5.2.15 through 5.2.19); for example, roel ofs@pobox.
com . And the URL keyword isfor a standard WWW Uniform Resource Locator (RFC 2068,
Section 3.2); for example, http://www.oreilly.com/ . If the URL is reasonably self-explanatory, it is

recommended that the chunk consist of the single URL and nothing else, but thisisnot a
requirement. Multiple URLs should be separated by newline characters. Note that spaces and other
white space (tabs, newlines, and so forth) are considered unsafe by the URL standard and therefore
must be escaped within a conforming URL. For example, a space character must be encoded as %
20. This allows easy parsing of optional explanatory text after a URL: the URL ends when the first
white space (space, tab, or newline) is encountered.

International Text Annotations (ITXt)

http://www.oreilly.com/

. Status: PNG Extensions [87]

. Location: anywhere
. Multiple: yes

[87] Asthisbook went to press, the iITXt chunk had just been approved for inclusion
in the core PNG specification, but it was temporarily placed in the PNG extensions
document pending completion and approval of extensive | SO-related changes to the
core spec. (Note that these changes are almost entirely of an organizational or
editorial nature; the technical content of the specification is expected to change only
minimally from version 1.1.). Version 1.2 of the PNG specification is expected
around mid-1999 or later. In the meantime, iTXt can be found in version 1.1.1 (and
possibly later versions) of the extensions document, which is available electronically
from http://www.libpng.org/pub/png/pngdocs.html.

| previously noted that, as of early 1999, PNG was in the midst of joint | SO/IEC standardization.
One of the technical issuesin the first Committee Draft vote was the lack of support for non-
Western languages, specifically in the text chunks. In fact, the PNG Devel opment Group had
aready discussed a more general text chunk in mid-1998, but its vote was deferred until there was
externa interest in it. The ISO comments from Japan and the United States clearly fell into the
category of external interest, however, so the iTXt was voted on and approved as part of the PNG
specification in early February 1999.

The layout of iTXt isageneralization of tEXt and zTXt, as shown in Table 11-2.

Table 11-2. iTXt Chunk

Field Length and Valid Range
Keyword 1-79 bytes (Latin-1 text)

Null separator 1 byte (0)

Compression flag 1 byte (0, 1)

Compression method 1 byte (0)

Language tag k bytes (ASCII text)

Null separator 1 byte (0)

Tranglated keyword m bytes (Unicode UTF-8 text)
Null separator 1 byte (0)

Text n bytes (Unicode UTF-8 text)

Thefirst field is a keyword, with exactly the same restrictions and officially registered values
(Author, Description, and so on) as the tEXt and zZT Xt chunks. Latin-1 (1SO/IEC 8859-1) was
chosen so that existing PNG source code could be used without modification to parse and optionally

http://www.libpng.org/pub/png/pngdocs.html

recognize the keyword.

The keyword is followed by anull separator byte and two compression-related bytes. The first
indicates whether the main text is compressed (if itsvalueis 1) or not (if it's 0). If thetext is
compressed, the next byte indicates its compression method, which currently must be zero for the
zlib-encoded deflate algorithm. The two bytes could have been combined, but for historical reasons
relating to the method byte in IHDR, the split approach was favored.

After the compression bytesis an optional case-insensitive field indicating the (human) language
used in the remaining two text fields. Thisis necessary not only to render Unicode text properly but
also to alow decoders to distinguish between multiple iTXt chunks, which may consist of the same
text in different languages--but possibly identical keywords. Unlike both the keyword and the main
text, the language tag is plain ASCI| text (specifically, the ““invariant” ASCII subset of SO 646,
which isitself a subset of both Latin-1 and Unicode UTF-8) conforming to Internet Standard RFC
1766. It consists of hyphen-separated ““words" of between one and eight characters each, where the
first word is either atwo-letter SO language code (1SO 639), the letter i for tags registered by the
Internet Assigned Numbers Authority (IANA)[88] or the letter x for private tags. The second
“word" isinterpreted as an 1SO 3166 country codeif it is exactly two characters long or as an
|ANA-registered codeif it is between three and eight characters. Subsequent “words" may be
anything, as long as they conform to the general rules. Examples of language tags include cn
(Chinese), en- US (American English), no- bok (Norwegian bokmal or ““book language"), i -
navaj o (Navgo), and x- kl i ngon (Klingon, from the fictional Star Trek universe).

[88] Asthisiswritten, indications are that IANA will eventually be replaced by
ICANN, the Internet Corporation for Assigned Names and Numbers. This transition
may not occur until 2000, however.

A null separator byte terminates the language tag, which is followed by an optional translation of
the keyword into the given language. The translated keyword is represented in the UTF-8 encoding
of the Unicode character set, which is described in the International Standard 1SO/IEC 10646-1, in
Internet RFC 2279, and in the Unicode Consortium's reference, The Unicode Sandard. Like the
primary keyword, it should not contain any newline characters, and it is also followed by a null
byte.

The remaining chunk datais the main UTF-8 text, either zlib-compressed or not, according to the
compression flag. Since its length can be determined from the chunk length, it is not null-
terminated. As with the other two text chunks, newlines should be represented by single line-feed
characters (decimal 10), and al other control characters (1-9, 11-31, and 127-159) are discouraged.
Note, however, that UTF-8 encodings may contain any of the bytes between 128 and 159; what is
discouraged is the set of Unicode characters whose four-byte integer values are 128-1509.

That last point is confusing, so perhaps aquick primer on Unicode isin order. The Unicode
character set is a mapping between graphic characters (or glyphs) and integers. The simplest
representation is called UCS-4 and consists of 4-byte integers, potentially allowing more than two
billion characters to be defined. On top of that are a number of possible transformations or

encodings of the character set; UTF-8 is one of the more popular ones, encoding 4-byte UCS-4
characters into anywhere from 1 to 8 bytes. All Unicode characters below 128 are encoded as single
bytesin UTF-8, and because Unicode characters 1-127 are identical to US-ASCII characters 1-127,
the Unicode character set (and UTF-8 in particular) may be thought of as avery large superset of 7-
bit ASCII.

Multibyte UTF-8 encodings, on the other hand, are composed entirely of byte values between 128
and 253--which means that bytes 1-9, 11-31, and 127 will never be found in valid UTF-8-encoded
text except when representing the characters 1-9, 11-31, and 127. So about half of the control
characters that are discouraged in iTXt can be detected ssmply by checking for those single bytes.
The remaining half, characters 128-159, are al encoded with 2-byte sequences that happen to begin
with byte value 194: 194 128 through 194 159. The fact that character 128 is discouraged in iTXt's
UTF-8 text fields therefore means that the 2-byte encoding 194 128 is discouraged, but the 2-byte
encoding 195 128 (A or “Latin capital letter A with grave accent") is completely acceptable.

Histogram (hIST)

. Status. PNG Specification
. Location: after PLTE, beforefirst IDAT
. Multiples no

A histogram is nothing more than a frequency-of-occurrence table, and the PNG hIST chunk gives
the approximate frequencies of occurrence for pixels of various colors. Thisinformation istypically
used to decide which colors are the most important if the system is not capable of displaying all of
them. Rather than force the decoder to count pixels every time the image is displayed, the histogram
places the burden on the encoder, which performs the task only once.

PNG's hIST implementation istied to the PLTE chunk; if there is no palette, hIST is not allowed.
This and one or two other limitations were later recognized and addressed by the sPLT chunk,
which welll discuss next; it is generally favored over hiST, but the latter is smaller, and either may
be used. The histogram must contain exactly as many entries as PLTE contains, and each entry isa
16-bit unsigned integer. Since such integers can only represent numbers in the range 0-65,535 and
there may be millions of pixels of a given color, the histogram entries often must be scaled and are
therefore inexact. The sole exception is the value zero; it is guaranteed to mean that there are no
pixels of the corresponding color. A nonzero count that would otherwise be scaled and rounded to
zero must instead be rounded up to one.

Truecolor images that include a PLTE chunk as a suggested quantization are a special case. The
histogram counts are dependent on the algorithm used by the encoder for quantizing the pixels; if
the decoder happens to use a different algorithm, its counts would be different, too. The upshot is
that the histogram is particularly approximate in this case. Because truecolor images typically have
far more colors than pal ette entries, the pal ette entries that do appear should always represent at
least one pixel; thus there should be no zero countsin the histogram.

Suggested Palette (sPLT)

. Status. PNG Specification
. Location: beforefirst IDAT
. Multiple: yes

The suggested-pal ette chunk, sPLT, grew out of an acknowledgment of some limitationsin PNG's
PLTE, tRNS, and hIST chunks. | have already noted that PLTE is allowed only in palette, RGB, and
RGBA images and that hIST is allowed only inimages with PLTE; | also noted that tRNSis
disallowed in images with alpha channels, which rules out the use of PLTE plustRNS asa
suggested gray/apha or RGBA palette. sSPLT eliminates these restrictions by merging all three of
the older chunks into a general-purpose, suggested-RGBA -pal ette-plus-histogram chunk. In
addition, sSPLT may contain any number of entries (as long as it doesn't exceed the maximum chunk-
size limit of two gigabytes); its entries may have either 8-bit or 16-bit sample depths; and multiple
sPLT chunks encoding different suggested quantizations are allowed. A palette-based image may
even have an sPLT chunk, perhaps representing a reduced palette for a particular web browser. The
format of SPLT, givenin Table 11-3, is straightforward.

Table 11-3. sPLT Chunk

Field Length and Valid Range

Palette name 1-79 bytes (Latin-1 text)

Null separator 1 byte

Sample depth 1 byte (8 or 16)

Red value #1 1 byte (0-255) or 2 bytes (0-65,535)
Green value #1 1 byte (0-255) or 2 bytes (0-65,535)
Blue value #1 1 byte (0-255) or 2 bytes (0-65,535)
Alphavalue #1 1 byte (0-255) or 2 bytes (0-65,535)
Relative frequency #1 2 bytes (0-65,535)

The number of SPLT entriesisimplicitly given by the size of the chunk and the sample depth; in the
more common case of 8-bit samples, it is obtained by dividing the chunk size, less the length of the
pal ette name and the two subsequent bytes, by six. Entries are required to appear in decreasing order
of frequency, but there is no requirement that all of them be different nor that all of them be used by
the image. Furthermore, opague images may include nonopague sPLT entries, grayscale images
may include colored entries, and the sample depth of sPLT isindependent of that of the image.

Unlike the suggested practice for PLTE in RGBA images, the red, green, and blue valuesin sPLT
are neither premultiplied by the alpha values nor precomposited against a background color. An
encoder would still have to inspect every pixel if it wanted to compute an optimal palette for display

of an RGBA image against a patterned background, but sPLT would enable a statistical approach
based on the background image's own histogram in that case. And for solid backgrounds, sPLT
provides the means to build an optimal palette regardless of the choice of background color.

Aswith the hIST chunk, frequency values are scaled to the range 0-65,535 and therefore are likely
to be approximate. Inflating ~"important” colors based on the image's subject matter isallowed in
SPLT, too. But whereas hIST requires a 0 frequency to correspond exactly to O pixels, sPLT allows
the 0 value to represent infrequently used or unimportant colors. If al of the frequency values are 0,
however, the histogram is undefined.

Note that multiple sSPLT chunks are required to have different pal ette names.

Significant Bits (sBIT)

. Status: PNG Specification
. Location: before PLTE and first IDAT
. Multiple: no

The significant-bits chunk is used to indicate the nature of the source datain cases in which storing
it in PNG form required a conversion. For example, gray pixelsin medical images are often 12 bits
deep, but PNG requires them to be scaled up to 16 bits for portability. Scaling the pixels does not
ater the fact that they contain only 12 bits of real information, and the sBIT chunk stores thisfact in
aPNG file.

Aswith several other PNG chunks, the format of sBIT depends on the image type. Grayscale
Images are the simplest; sBIT then contains a single byte indicating the number of significant bitsin
the source data--in the preceding example, 12. For grayscale images with an alpha channel, sBIT
contains 2 bytes, one for the gray channel and one for alpha; RGB images require 3 bytes, and
RGBA images require 4. Palette-based images are treated like RGB except that the sSBIT
information refers to the pal ette entries, and the palette's effective sample depth is always 8,
regardless of how many bits are used to index the palette. Note that the number of significant bits
for any given channel must be greater than zero and less than or equal to the sample depth.

Ordinary PNG decoders need not worry about sBIT, but those that wish to recover the original
Image data can do so by right-shifting each image sample to leave only the number of bitsindicated
by sBIT. Thisimplies that the scaling procedure used by the PNG encoder must not change the
original bits; it can only append low-order bits to each sample.

Physical Pixel Dimensions (pHYS)

. Status. PNG Specification
. Location: beforefirst IDAT
. Multiple: no

The pHY s chunk encodes the absolute or relative dimensions of pixels. For example, an image
scanned at 600 dots per inch has pixels with known, absolute sizes--namely, one six-hundredth of an
inch in both x and y directions. Alternatively, an image created on a 1280 x 1024 display will have
nonsquare pixels, and the relative dimensions of each pixel, also referred to as the aspect ratio, may
be stored so the image can be displayed as it was intended to be seen.

The layout of the chunk is shownin Table 11-4.

Table 11-4. pHYs Chunk

Field Length and Valid Range
Pixels per unit, x axis 4 bytes (0-2,147,483,647)
Pixels per unit, y axis 4 bytes (0-2,147,483,647)
Unit specifier 1 byte (0, 1)

If the unit specifier byteis 1, the units are meters; if it is O, the units are unspecified, and only the
relative dimensions are known. Currently, no other values are valid. Note that the format of the
chunk precludes pixel sizes greater than one meter, which should not be a significant hardship for
most applications, but it allows pixels as small as 4.7 Angstroms, which is roughly the size of a
single atom.

For the previous scanning example, 600 dpi is equal to 23,622.05 pixels per meter, so both the x and
y values would be 23,622, and the unit specifier would be 1. The second example is dlightly trickier.
First, it is necessary to know that practically all current computer displays have a physical aspect
ratio of 4:3,[89] which means the viewable portion of the display (the glass) is three-quarters as high
asitiswide. Thus, the horizontal pixels-per-unit in the case of a 1280 x 1024 display is proportional
to (1280/4) or 320, while the vertical pixels-per-unit is proportional to (1024/3) or 341.333333.
Because we don't have an absolute scale, we are free to multiply these values by a common factor;
doing so will preserve some of the precision that would otherwise be lost due to truncation of the
decimal part of the second value (the .3333 part). One choice would be a power of 10, such as
1,000; then the stored values would be 320,000 and 341,333, respectively. But in this case, we can
do better: we know that the fractional part is simply one-third, so multiplying both values by 3 will
preserve the aspect ratio exactly. Thus the chunk would contain the values (3 x 1280/4) or 960, (3 x
1024/3) or 1,024, and O for the unit specifier. Values of 15, 16, and 0 would work equally well.

[89] Thiswill change with the convergence of computers and high-definition TV.
Displaysfor the latter have a 16:9 aspect ratio, which apparently is the geometric
mean of standard television and computer displays (4:3) and of modern, panoramic
films (typically 2.35:1, but it varies).

A decoder that encounters a pHY s chunk with different values for the x and y axes has several
options. The simplest and least correct approach is to ignore the chunk; most current viewers do
this. A better approach is to interpolate the pixelsin one of the dimensions; this gives the correct

overall appearance but introduces noticeable artifacts--for the preceding example, it involves either
duplicating every 15th column stretching the image horizontally, or deleting every 16th row
shrinking the image vertically. The best approach is to resample the image, a procedure that
amounts to converting the image to a continuous (or analog) representation and then overlaying the
desired pixel grid on that. Thisis, by far, the most expensive approach in terms of CPU usage, but
the results are excellent.

Physical Scale (sCAL)

. Status: officialy registered (PNG Extensions)
. Location: beforefirst IDAT
. Multiple: no

PNG's sCAL chunk issimilar to pHY's, except that instead of measuring the size of the image pixels
relative to each other or to an original, physical image, SCAL measurestheir size relative to the
actual subject matter of the image. For example, an astronomical image may span a certain number
of radians in each direction, or an aerial photograph of Earth may cover a given number of
kilometers.

Table 11-5 showsthe format of SCAL; it isquite ssimple.

Table 11-5. sCAL Chunk

Field Length and Valid Range

Unit specifier 1 byte (1, 2)

Units per pixel, x axis m bytes (positive floating-point)
Null separator 1 byte (0)

Units per pixel, y axis n bytes (positive floating-point)

Two units are defined: meters (unit specifier = 1) and radians (unit specifier = 2). The size of a pixel
in the given units, both horizontally and vertically, is given by a pair of positive floating-point
numbers encoded as ASCII strings and separated by a null byte. The most general form of a floating-
point string includes an optional leading sign (+ or -), zero or more decimal digits (0-9, the "integer
part"), an optional decimal point followed by zero or more decimal digits (the " “fractional part™), and
an optional e or E followed by an optional sign and one or more digits (the ~"exponent part™). Either
the integer part or the fractional part must contain at least one digit, but everything else may be
omitted. Thus, 1 and .1 are valid floating-point numbers, asis +123.4567e-089. Note that the
exponent isinterpreted as a power of 10 (10-89 in the third example) to be multiplied by the integer
and fractional parts; this isthe computer version of what is sometimes referred to as scientific
notation.

Image Offset (0FFSs)

. Status. officialy registered (PNG Extensions)
. Location: beforefirst IDAT
. Multiples no

For images that are available separately but envisioned as part of a greater whole, the image-offset
chunk, oFFs, can be used to specify the absolute positioning of each. The most common exampleis
positioning on a printed page, especially in conjunction with the pHY s chunk.

The layout of the chunk isgivenin Table 11-6.

Table 11-6. oFFs Chunk

Field Length and Valid Range

Image position, x axis 4 bytes (-2,147,483,647 to +2,147,483,647)
Image position, y axis 4 bytes (-2,147,483,647 to +2,147,483,647)
Unit specifier 1 byte (0, 1)

Valid units are either pixels (unit specifier = 0) or microns/90] (unit specifier = 1). Theimage
position is measured from the top and left edges of the page (whether real or virtual); an image that
Isintended to be partly cut off may have negative offsets.

[90] Microns are more properly known as micrometers (4 m); there are one million
of them in ameter, or 25,400 in an inch.

Pixel Calibration (pCAL)

. Status: officially registered (PNG Extensions)
. Location: after PLTE, beforefirst IDAT
. Multiple: no

The pCAL chunk is currently the only registered scientific-visualization extension to PNG, though
it was moved into the regular PNG Extensions document as part of the general PNG spec revision
process in October 1998. It is also the most mathematical of any approved chunk. Its purposeisto
efficiently encode the relevant conversions between the integer samplesin a PNG file and the
physical quantity being represented by the image. Two conversions are represented: alinear
conversion between the PNG samples and the original samples and a more general conversion from
the original samples to the physical values they represent. The first mapping is often the identity
mapping (i.e., the original samples are equal to the PNG samples), but it need not be.

The layout of the pCAL chunk is presented in Table 11-7.

Table 11-7. pCAL Chunk

Field Length and Valid Range
Calibration name 1-79 bytes (Latin-1 text)

Null separator 1 byte

Original zero, X 4 bytes (signed integer)

Original maximum, X4 4 bytes (signed integer)

Equation type 1 byte

Number of parameters, N 1 byte

Unit name n bytes (Latin-1 text)

Null separator 1 byte

Parameter O, P, Po bytes (ASCII floating-point text)
Null separator 1 byte

Parameter L, P, p. bytes (ASCII floating-point text)
(Note: L =N-1)

The unit nameisalabel, such as kg/(m” 3) or M pc, that applies to the physical quantity represented
by the image samples. Dimensionless data may either include a descriptive string (e.g., ~ fractal
iteration count") or leave the unit field a null string. There are no restrictions on the length of the
unit name.

The X and X parameters encode the linear conversion. For an 8-bit sample depth, the PNG

samples range from 0 to 255; more generally, they range from O to M, where M = PItdepth 1 Most
often, Xy will equal 0 and X4, will equal M, indicating that the PNG samples are the same as the

original samples. But this need not be the case, and either of X or X, may be positive or negative;

the only restriction is that they may not be equal to each other. The conversion is done using integer
arithmetic, according to the following equation:

original _sanple = (PNG sanple * (X-Xg) + M2) | M+ X,
The inverse mapping is:

PNG sanple = ((original _sample - Xg) * M+ (X;-Xg)/2) [/
(X1- Xo)

Note that integer arithmetic here means that fractional values are rounded toward minus infinity, not
toward zero; there's no difference for positive values, but for negative values, thereis. Also keep in

mind that the PNG samples are limited to the range [0,M] regardless of what the inverse mapping
might give.

The more general conversion, between original samples and actual physical values, can be
represented by one of four possible equation types: linear (type 0), exponentia (type 1), exponentia
with arbitrary base (type 2), or hyperbolic sinusoidal (type 3). The number of parameters required
by eachis 2, 3, 3, and 4, respectively, and the parameters are stored in the same ASCI| floating-
point format as described for the SCAL chunk earlier. The equations use floating-point arithmetic,
not integer, and are given by:

[O] physi cal _value = Py + P; * original _sanpl e/ (X;-Xp)
[1] physi cal _value = Py + P; * eP2 * original_sanple/(X;-Xo)
[2] physi cal _value = Py + P; * Pyoriginal_sanple/(X;-Xo)

[3] physi cal _value = Py + P; * sinh(P,*(original _sanple

- P3) 1 (X1-%o))

Equation types 1 and 2 are equivalent in the sense that the same types of functions can be
represented by either one; both are defined for convenience. For RGB or RGBA image types, the
equations are applied to each of the color sample values independently, while for palette images, the
eguations are applied to the color sample valuesin the palette, not to the index values.

Equation type 3 may seem odd, but it allows floating-point data to be reduced to integer datain such
away that the resolution of the integer datais roughly proportional to the magnitude of the original
floating-point data. That is, for 32-bit original data and 16-bit PNG samples, the resolution near zero
isaround 1033, and near +1031 it is around 1028, To put it another way, the resolution everywhere
is about 0.4% (or 1/256) of the magnitude.

Fractal Parameters (fRAc)

. Status: officialy registered (PNG Extensions)
. Location: anywhere
. Multiple: yes

The fRAc chunk isuniquein that it was officially registered as a PNG extension in 1995 but, as of
early 1999, still had not actually been specified. Intended to store parameters pertaining to the
generation of fractal images, the chunk is clearly useful only to avery specialized set of programs.
Asaresult, its design was left in the hands of experts--specifically, the authors of Fractint, whichis
one of the most general fractal programs ever written and probably the most popular. But for
technical reasons relating to Fractint's 16-bit origins, PNG support was not added as planned, so
design of the fRAc chunk was deferred pending arewrite of the program as a 32-bit application.

GIF Conversion Info (glFg, glFx)

. Status: officially registered (PNG Extensions)
. Location: anywhere
. Multiple: yes

Since PNG originated as an intended replacement for GIF, one requirement for the new format was
to be able to store all possible GIF information in one form or another. Part of that requirement is
addressed by chunks we've already described. Within GIF's Logical Screen Descriptor (the global
header that immediately follows the GIF signature bytes), the Pixel Aspect Ratio, Color Resolution,
and Background Color Index fieldsmap to pHY's, sBIT, and bKGD, respectively. Note that
Background Color Index only appliesif thereisa Global Color Table, however. Within the Image
Descriptor, the Image L eft Position and Image Top Position fields map to oFFs. And within the
Graphic Control Extension, the Transparent Color Index maps to tRNS. Thisis summarized in
Table 11-8.

Table 11-8. Correspondence Between GIF Fields and Sandard PNG Chunks

GIF Block GIF Variable Name PNG Chunk
Pixel Aspect Ratio pHY's

Logical Screen Descriptor Color Resolution sBIT
Background Color Index bKGD

_ Image Left Position oFFs

I mage Descriptor —
Image Top Position oFFs

Graphic Control Extension Transparent Color Index tRNS

The remainder of the requirement that PNG be able to store al GIF information is addressed by two
of PNG's three GIF extension chunks. Both correspond directly to GIF89a extensions: the Graphic
Control Extension (glFg) and the Application Extension (glFx). The third chunk, glFt, turns out to
be an unintended special case; it is discussed separately later.

GIF's Graphic Control Extension is most commonly used to indicate transparency, for which it
corresponds most closely to PNG's tRNS chunk. But it is also used in multi-image GlFs to provide
timing and compositing information. Although thisis more properly the realm of MNG, PNG's
multi-image cousin (which I'll discussin Chapter 12, "Multiple-lmage Network Graphics', PNG
also supports the conversion of a multi-image GIF into several single-image PNGs. The glFg chunk
Is used to encode the nontransparency information in the GIF extension block so that lossless
conversion back to an animated GIF is possible.

The glFg chunk, shown in Table 11-9, contains only three fields.

Table 11-9. glFg Chunk

Field Length and Valid Range
Disposal method 1 byte (0-3)

User input 1 byte (0, 1)

Delay time 2 bytes (0-65,535)

The interpretation and value of each field are identical to those in part 23 of the GIF89a
Specification, with the exception that the 2-byte delay timeis stored in big-endian order (most
significant byte first) in glFg, whereas GIF integers are stored in little-endian format. PNG decoders
may treat the delay time (measured in hundredths of a second) as the maximum amount of timeto
display the image before going on to the next one, if any, but it islikely that most decoders will
ignore the chunk entirely.

GIF's Application Extension is simply away for an application to include its own information in the

Image; it corresponds exactly to a private chunk in a PNG image. The format isgivenin Table 11-
10.

Table 11-10. glFx Chunk

Field Length and Valid Range
Application identifier 8 bytes (printable ASCII characters)
Authentication code 3 bytes

Application data n bytes

The contents of glFx are adirect transcription of the GIF data, with the sole exception that any GIF
sub-blocks are deblocked into aflat stream.

GIF Plain Text (glFt)

. Status: officially deprecated (PNG Extensions)
. Location: anywhere
. Multiple: yes

GIF's Plain Text Extension is away to define an image composed entirely of text without actually
storing the text as a bitmapped image. It defines arectangular grid of character cells into which text
characters of the specified foreground and background colors are placed, starting from the upper left
and proceeding left to right and top to bottom; the decoder chooses the font that is the closest match
to the specified size.

A casual reading of the GIF specification might suggest that the Plain Text Extension defines a
method for cheaply overlaying fixed-width text on top of ordinary pixel data--and, indeed, that was
probably the primary motivation behind the extension. But a more careful inspection reveals that the
Plain Text Extension is treated as a separate subimage within the GIF stream, on equal terms with
any block of bitmap data. It may, in fact, be the only graphic rendering block within the stream. And
since PNG images are required to include bitmap data (i.e., IDAT chunks), alowing GIF Plain Text
information to be included is perilously close to sanctioning multi-image PNGs. Largely because of
this, the glFt chunk was officially deprecated in October 1998. It is still allowed for backward
compatibility (the horses have aready |eft the barn, so to speak), but the current recommendation is
that all decoders ignore the chunk and that encoders not write it in the first place. In fact, it is quite
possible that no encoder or decoder ever did support glFt; the Plain Text Extension was rarely used
even in GIF's heyday, and even gif2png (see Chapter 5, "Applications. Image Converters') never
supported it.

In any case, the format of the glFt chunk is as shown in Table 11-11.

Table 11-11. glFt Chunk

Field Length and Valid Range

Text grid left position, pixels 4 bytes (0-2,147,483,647)

Text grid top position, pixels 4 bytes (0-2,147,483,647)

Text grid width, pixels 4 bytes (0-2,147,483,647)

Text grid height, pixels 4 bytes (0-2,147,483,647)

Character cell width, pixels 1 byte (0-255)

Character cell height, pixels 1 byte (0-255)

Text foreground color 3 bytes (R, G, B samples, 0-255 each)
Text background color 3 bytes (R, G, B samples, 0-255 each)
Plain text data n bytes

There are several differences from the GIF data structure. The actual text in the GIF block is divided
into sub-blocks of between 1 and 255 bytes; the PNG plain text datais a single stream. In addition
to the reversed order for integer values (big-endian in PNG), glFt's width and height fields for the
grid are 4 bytes each, twice ashig asin GIF. The position fields are also twice as wide, which
makes little sense from a preserve-the-Gl F-data standpoint, but apparently was chosen for
consistency with PNG's image-offset chunk. Both the Plain Text Extension and oFFs give positions
relative to alogical page, not relative to the main image; thus, in the presence of oFFs data, the glFt
positions should be adjusted accordingly. Note that this may not be possible if the PNG image uses
microns in the oFFs chunk and has no pHY s chunk--in that case, there is no conversion information
between pixels (the only unit defined for gl Ft) and microns.

Possibly the biggest difference, however, isthat the Plain Text Extension is affected by the Graphic

Control Extension, which means it implicitly includes transparency and timing effects. PNG's gl Ft
chunk does not include any transparency information, so effectively thereis no way to float the gl Ft
text over the main image by giving it atransparent background color. This limitation appears to
have been an oversight in the design of the PNG chunk and was another reason for its official
deprecation. On the other hand, if the gl Ft chunk appears before the first IDAT chunk, a
hypothetical gl Ft-aware PNG decoder might assume that the text amounts to a background image
and render the pixel data on top of it, applying any transparency effects the main image possesses.

Other Chunks

Several other chunks were proposed but never approved as official extensions, mainly due to the
perceived lack of need for them. The alignment chunk (aL1G, had it been approved) would have
provided centering and baseline information about an image so that it could be aligned more cleanly
with surrounding text; this would have been most useful for images with transparent edges. The
fingerprint chunk (fING) would have provided a 16-byte MD5 fingerprint of the raw image data, a
type of cryptographic signature that could be used to test whether two images were identical.
Neither aL1G nor fING was ever put up for avote, and both proposals have long since expired.

There were al so three proposed scientific-visualization chunks, all of which were rejected in formal
voting. The false-color chunk (fALS) would have provided false-color information for grayscale
Images, such as might be used to highlight atumor in amedical scan or a shock front in a
hydrodynamic simulation. The calibration chunks (xSCL and ySCL, but a'so known as xCAL and
yCAL inlater proposals) were similar to SCAL in providing information about the physical
characteristics of an image subject but would have allowed offsets and different units along the two
axes, they thus would have provided full calibration data, not just scaling information.

Note that any of these chunks may be resurrected in the future, as PNG becomes more widely used
and as the needs of various PNG-using communities evolve.

PREVIOUS CONTENTS NEXT

- PREVIOUS CONTENTS NEXT o

Chapter 12. Multiple-image Network Graphics

Contents:

12.1. Common Applications of MNG
12.2. MNG Structure
12.2.1. Image-Defining Chunks
12.2.2. Chunksfor Image Display, Manipulation, and Control
12.3. The Simplest MNG
12.4. An Animated MNG
12.5. An Algorithmic MNG
12.6. A JPEG Image with Transparency
12.7. MNG Applications
12.8. The Future?

The Multiple-image Network Graphics format, or MNG, is not merely a multi-image, animated
extension to PNG,; it can also be used to store certain types of single images more compactly than
PNG, and in mid-1998 it was extended to include JPEG-compressed streams. Conceivably, it may
one day incorporate audio or even video channels, too, although this is a more remote possibility.
Y et despite all of this promise--or, rather, because of it--MNG was still aslowly evolving draft
proposal nearly four years after it was first suggested.

Asnoted in Chapter 7, "History of the Portable Network Graphics Format", MNG's early
development was delayed due to weariness on the part of the PNG group and disagreement over
whether it should be a heavyweight multimedia format or avery basic “"glue" format. What it has
evolved into, primarily due to the willingness of Glenn Randers-Pehrson to continue working on it,
Isamoderately complex format for composing images or parts of images, either spatially or
temporally, or both. | will not attempt to describeit in full detail here--a complete description of
MNG could fill abook all by itself and probably will, one of these days--but | will give asolid
overview of its basic features and most useful applications. Further information on the format can
be found at the MNG web site, http://www.libpng.org/pub/mng/.

12.1. Common Applications of MNG

Perhaps the most basic, nontrivial MNG application is the slide show: a sequence of static images
displayed in order, possibly looping indefinitely (e.g., for akiosk). Because MNG incorporates not
only the concepts of frames, clipping, and user input but also al of PNG's features, aMNG slide
show could include scrolling, sideways transitions, fades, and pal ette animations--in other words,
most of the standard effects of a dedicated presentation package and maybe afew nonstandard ones.

http://www.libpng.org/pub/mng/

Such an approach would not necessarily produce smaller presentations than the alternative methods
(although the most popular aternatives tend to be rather large), and, as currently specified, it would
be limited to a particular resolution defined by the component raster images. But MNG offers the
potential of a more open, cross-platform approach to slide shows.

MNG also supports partial-frame updates, which not only could be used for further slide show
transitions (for example, dropping bulleted items into place, one at atime) but also are able to
support animated movies. Unlike animated GIFs, where moving atiny, static bitmap (or " sprite”)
around a frame requires many copies of the sprite, MNG can simply indicate that a previously
defined sprite should move somewhere else. It aso supports nested loops, so a sprite could movein
a zigzag path to the right, then up, then left, and finally back down to the starting position--all with
no more than one copy of the background image (if any) and one copy of the moving bitmap. In this
sense, MNG defines a true animation format, whereas GIF merely supports slightly fancy slide
shows.

Images that change with time are likely to be some of the most common types of MNG streams, but
MNG is useful in completely static contexts as well. For example, one could easily put together a
MNG-based contact sheet of thumbnail images without actually merging the images into asingle,
composite bitmap. Thiswould allow the same file to act both as an archive (or container) for the
thumbnails, from which they could easily be extracted later without loss, and as a convenient
display format.[91] If the number of thumbnails grew too largeto fit on asingle "page,” MNG's

slide show capabilities could be invoked to enable multipage display.

[91] A file format encapsulating both data and a display method? Egad, it's object-
oriented!

Other types of static MNGs might include algorithmic images or three-dimensional

“voxel" (volume-pixel) data such as medical scans. Images that can be generated by simple
algorithms are fairly rare if one ignores fractals. But 16million.png, which | discussed in Chapter 9,
"Compression and Filtering", is such an image. Containing al 16.8 million colors possible in a 24-

bit image, it consists of nothing but smooth gradients, both horizontally and vertically. While this
allowed PNG'sfiltering and compression engine to squeeze a 48 MB image into just over 100 KB,
asaMNG containing apair of loops, move commands, and afew odds and ends it amountsto a
mere 476 bytes. Of course, compression factors in excess of 100,000 times are highly atypical. But
background gradient fills are not, and MNG effectively allows one to compress the foreground and
background parts independently, in turn allowing the compression engine and the file format itself
to work more efficiently.

Ironically, one of the most popular nonanimated forms of MNG islikely to have no PNG image
datainside at all. I've emphasized in earlier chapters that PNG's lossless compression method is not
well suited to all tasks; in particular, for web-based display of continuous-tone images like
photographs, alossy format such as JPEG is much more appropriate, since the files can be so much
smaller. For a multi-image format such as MNG, support for alossy subformat--JPEG in particular--
iIsanatural extension. Not only does it provide for the efficient storage of photographic
backgrounds for composite frames (or even photographic sprites in the foreground), it also allows

JPEG to be enhanced with PNG-like features such as gammaand color correction and (ta da!)
transparency. Transparency has always been a problem for JPEG precisely because of its lossy
approach to compression. What MNG providesis ameans for alossy JPEG image to inherit aloss
less alpha channel. In other words, all of the size benefits of a JPEG image and all of the fine-tuned
anti-aliasing and fade effects of a PNG alpha channel are now possible in one neat package.

12.2. MNG Structure

So that's some of what MNG can do; now let's take a closer look at what the format |ooks like and
how it works. To begin with, MNG is chunk-based, just like PNG. It has an 8-byte signature similar
to PNG's, but it differsin the first two bytes, as shown in Table 12-1.

Table 12-1. MNG Sgnature Bytes

5:?:;26“ ASCII Interpretation

138 A byte with its most significant bit set (""8-bit character")
77 M

78 N

71 G

13 Carriage-return (CR) character, ak.a. CTRL-M or "M

10 Line-feed (LF) character, ak.a. CTRL-Jor *J

26 CTRL-Z or"Z

10 Line-feed (LF) character, ak.a. CTRL-Jor *J

So while a PNG-supporting application could be trivially modified to identify and parse a MNG
stream,[92] there is no danger that an older PNG application might mistake a MNG stream for a
PNG image. Since the file extensions differ as well (.mng instead of .png), ordinary users are
unlikely to confuse images with animations. The only cases in which they might do so are when an
allowed component type (e.g., aPNG or a ING) is renamed with a.mng extension; such files are
considered legal MNGs.

[92] Actually making sense of the MNG stream would require considerably more
work, of course.

With the exception of such renamed image formats, all MNG streams begin with the MNG
signature and MHDR chunk, and they all end with the MEND chunk. The latter, like PNG's IEND,
isan empty chunk that simply indicates the end of the stream. MHDR, however, contains seven
fields, all unsigned 32-bit integers: frame width, frame height, ticks per second, number of layers,
number of frames, total play time, and the complexity (or simplicity) profile.

Frame width and height are just what they sound like: they give the overall size of the displayable
region in pixels. A MNG stream that contains no visible images--say, a collection of palettes--
should have its frame dimensions set to zero.

The ticks-per-second value is essentially a scale factor for time-related fields in other chunks,
including the frame rate. In the absence of any other timing information, animations are
recommended to be displayed at arate of one frame per tick. For single-frame MNGs, the ticks-per-
second value is recommended to be O, providing decoders with an easy way to detect non-
animations. Conversaly, if the value is O for a multiframe MNG, decoders are required to display
only the first frame unless the user specifically intervenesin some way.

“"Number of layers' refersto the total number of displayable imagesin the MNG stream, including
the background. This may be many more than the number of frames, since a single frame often
consists of multiple images composited (or layered) on top of one another. Some of the layers may
be empty if they lie completely outside the clipping boundaries. The layer count is purely advisory;
if itis0, the count is considered unspecified. At the other end of the spectrum, avalue of 231-1
(2,147,483,647) is considered infinite.

The frame-count and play-time values are also basically what they sound like: on an ideal computer
(i.e., one with infinite processing speed), they respectively indicate the number of frames that
correspond to distinct instants of time[93] and the overall duration of the complete animation. As

with the layer count, these values are advisory; 0 and 231-1 correspond to " unspecified" and
“infinite,” respectively.

[93] MNG's concept of frames and subframes allows one to speak of two or more
distinct frames with precisely zero delay between them, but these are considered just
one frame for the purpose of counting the total number of framesin the stream.

Finally, MHDR's complexity profile provides some indication of the level of complexity in the
stream, in order to allow simple decoders to give up immediately if the MNG file contains features
they are unableto render. The profile field is also advisory; avalue of zero is allowed and indicates
that the complexity level is unspecified. But a nonzero value indicates that the encoder has provided
information about the presence or absence of JPEG (JNG) chunks, transparency, or complex MNG
features. The latter category includes most of the animation features mentioned earlier, including
looping and object manipulation (i.e., sprites). All possible combinations of the three categories are
encoded in the lower 4 bits of the field as odd values only--all even values other than zero are
invalid, which means the lowest bit is always set if the profile contains any useful information. The
remaining bits of the 2 lower bytes are reserved for public expansion, and all but the most
significant bit of the 2 upper bytes are available for private or experimental use. The topmost bit
must be zero.

Note that any unset (0) bit guarantees that the corresponding feature is not present or the MNG
stream isinvalid. A set bit, on the other hand, does not automatically guarantee that the featureis
included, but encoders should be as accurate as possible to avoid causing simple decoders to reject
MNGs unnecessarily.

The stuff that goes between the MHDR and MEND chunks can be divided into afew basic
categories:

. Image-defining chunks

. Image-displaying chunks

. Control chunks

« Ancillary (optional) chunks

Note the distinction between defining an image and displaying it. Thiswill make sense in the
context of a composite frame made up of many subimages. Alternatively, consider a sprite-based
animation composed of several sprite " "poses’ that should be read into memory (i.e., defined) as part
of the animation'sinitialization procedure. The sprite frames may not actually be used until much
later, perhaps only in response to user input.

12.2.1. Image-Defining Chunks

The most direct way to define animage in MNG is simply to incorporate one. There are two
possibilities for thisin the current draft specification: a PNG image without the PNG signature, or
the corresponding PNG-like JPEG format, ING (JPEG Network Graphics).[94] Just as with
standalone PNGs, an embedded PNG must contain at least IHDR, IDAT, and IEND chunks. It may
alsoinclude PLTE, tRNS, bKGD, gAMA, cHRM, sRGB, tEXt, iTXt, and any of the other PNG
chunks we've described. The PLTE chunk is allowed to be empty in an embedded PNG, which
indicates that the global MNG PLTE dataisto be used instead.

[94] OK, that's a stretch, acronym-wise. But it's pronounceable, rhymes with PNG
and MNG, and has afile extension, .jng, that differs by only one letter from .jpg, .
png, and .mng.

An embedded JNG stream is exactly analogous to the PNG stream: it begins with a JHDR chunk,
includes one or more JDAT chunks containing the actual JPEG image data, and ends with an IEND
chunk. Standalone INGs are a so allowed; they must include an 8-byte ING signature before JHDR,
with the format that's shown in Table 12-2.

Table 12-2. ING Sgnature Bytes

\[;Zﬁlrgal ASCII Interpretation

139 A byte with its most significant bit set (""8-bit character")
74 J

78 N

71 G

13 Carriage-return (CR) character, ak.a. CTRL-M or "M

10 Line-feed (LF) character, ak.a. CTRL-Jor *J
26 CTRL-Z or "Z
10 Line-feed (LF) character, ak.a. CTRL-Jor *J

JDATs simply contain JFIF-compatible JPEG data, which can be either baseline, extended
sequential, or progressive--i.e., the same format used in practically every web site and commonly
(but imprecisely) referred to as JPEG files. The requirements on the allowed JPEG types eliminate
the less-common arithmetic and lossless JPEG variants, though the 12-bit grayscale and 36-bit color
flavors are still allowed.[95] To decode the JPEG image, ssmply concatenate all of the JDAT data
together and treat the whole as a normal JFIF-format file stream--typically, thisinvolves feeding the
data to the Independent JPEG Group's free libjpeg library.

[95] MNG optionally allows 12-bit-per-sample JPEG image data to follow the far
more common 8-bit flavor, giving decoders the freedom to choose whichever is most
appropriate. If both are included, it issignalled in JHDR by a bit-depth value of 20
instead of 8 or 12, and the 8-bit and 12-bit JDATSs are separated by a special JSEP
chunk. The 8-bit data must come first. Note that current versions of libjpeg can only
be compiled to handle either 8-bit or 12-bit JPEG data, not both simultaneously.

In order to accommodate an apha channel, a ING stream may also include one or more grayscale
IDAT chunks. The JHDR chunk defines whether the image has an alpha channel or not, and if so,
what its bit depth is. Unlike PNG, which restricts alpha channels to either 8 bits or 16 bits, aJNG
alpha channel may be any legal PNG grayscale depth: 1, 2, 4, 8, or 16 bits. The IDATs composing
the alpha channel may come before or after or be interleaved with the JDATs to allow progressive
display of an alpha-JPEG image, but no other chunk types are alowed within the block of IDATs
and JDATSs.

Although incorporating complete INGs or PNGsis conceptually the simplest approach to defining
imagesin a MNG stream, it is generally not the most efficient way. MNG provides two basic
aternatives that can be much better in many cases; the first of these is delta images.[96] A delta
Image is simply a difference image; combining it with its parent re-creates the original image, in
much the same way that combining an ~"up"-filtered row of pixels with the previous row resultsin
the original, unfiltered row. (Recall the discussion of compression filtersin Chapter 9,
"Compression and Filtering".) The difference of two arbitrary imagesislikely to be at least as large

as either parent image, but certain types of images may respond quite well to differencing. For
example, consider a pair of prototype images for aweb page, both containing the same background
graphics and much of the same text, but differing in small, scattered regions. Since 90% of the
Image areaisidentical, the difference of the two will be 90% zeros, and therefore will compress
much better than either of the original images will.

[96] Named for the Greek letter delta (A or &), which is often used in science and
engineering to denote differences.

Currently, MNG allows deltaimages to be encoded only in PNG format, and it delimits them with

the DHDR and IEND chunks. In addition to the delta options for pixels given in DHDR--whether
the delta applies to the main image pixels or to the alpha channel, and whether applying the delta
involves pixel addition or merely replacement of an entire block--MNG defines several chunks for
modifying the parent image at a higher level. Among these are the PROM chunk, for promoting the
bit depth or color type of an image, including adding an alpha channel to it; the DROP and DBY K
chunks, for dropping certain chunks, either by name alone or by both name and keyword; and the
PPLT chunk, for modifying the parent's palette (either PLTE or tRNS, or both). The latter could be
used to animate the pal ette of an image, for example; cycling the colorsis a popular option in some
fractal programs. PPLT could also be used to fade out an image by adding an opague tRNS chunk
and then progressively changing the values of all entries until the image is fully transparent.

The second and more powerful alternative to defining an image by including its complete pixel data
Is object manipulation. In this mode, MNG basically treats images as little pieces of paper that can
be copied and pasted at will. For example, a polka-dot image could be created from a single bitmap
of acircle with atransparent background, which could be copied and pasted multiple times to create
the complete, composite image. Alternatively, tileable images of afew basic pipe fittings and elbow
joints could be pasted together in various orientations to create an image of a maze. The three
chunks used for creating or destroying images in the object sense are CLON (" clone™), PAST

(" "paste"), and DISC (" "discard").

The CLON chunk isthe only one necessary for the first example; it not only copies an image object
In the abstract sense, but also givesit a position in the current frame--either as an absolute location
or as an offset from the object that was copied. In order to change the orientation of objects, asin
the maze example, the PAST chunk is required; as currently defined, it only supports 180° rotations
and mirror operations around the x and y axes. (90° rotations were ruled out since they are rarely
supported in hardware, and abstract images are intended to map to hardware and platform-specific
APIsas closely as possible.) PAST also includes options to tile an object, and not only to replace
the underlying pixel data but also to composite either over or under it, assuming either the object or
underlying image includes transparency information. Once component objects are no longer
needed--for example, in the maze image when the maze is completely drawn--the decoder can be
instructed to discard them viathe DISC chunk.

12.2.2. Chunks for Image Display, Manipulation, and Control

MNG includes nine chunks for manipulating and displaying image objects and for providing akind
of programmability of the decoder's operations. The most complex of these is the framing chunk,
FRAM. It is used not only to delimit the chunks that form a single frame, but also to provide
rendering information (including frame boundaries, where clipping occurs) and timing and
synchronization information for subsequent frames. Included in FRAM's timing and
synchronization information is a flag that allows the user to advance frames, which would be
necessary in a slide show or business presentation that accompanies alive speaker.

The CLIP chunk provides an alternate and more precise method for specifying clipping boundaries.
It can affect single objects or groups of objects, not just complete frames, and it can be given both as
absolute pixel coordinates and in terms of arelative offset from a previous CLIP chunk. Images that

are affected by a CLIP chunk will not be visible outside the clipping boundary, which alows for
windowing effects.

The LOOP and ENDL chunks are possibly the most powerful of all MNG chunks. They provide one
of the most fundamental programming functions, the ability to repeat one or more image-affecting
actions many times. | mentioned earlier that 16million.mng, the MNG image with al possible 24-bit
colorsin it, makes use of a pair of loops; those loops are the principal reason the complete image
can be stored in less than 500 bytes. Without the ability to repeat the same copy-and-paste
commands by looping several thousand times, the MNG version would be at least three times the
size of the original PNG (close to 1,000 times its actual size)--unless the PNG version were simply
renamed with a.mng extension.

In addition to a simple iteration count, which can go as high as two billion, the LOOP chunk can
provide either the decoder or the user discretionary control over terminating the loop early. It also
allows for control viasignals (not necessarily Unix-style signals) from an external program; for
example, this capability might be invoked by a program that monitors an infrared port, thus enabling
the user to control the MNG decoder via a standard television remote control.

Often used in conjunction with loops and clipping is the MOV E chunk, one of MNG's big
advantages over animated GIFs. As one might expect, MOV E alows one or more already defined
Image objects to be moved, either to an absolute position or relative to the previous position of each
object. Together with LOOP and ENDL, MOVE provides the basis for animating sprites. Thus, one
might imagine a small Christmas MNG, where perhaps half a dozen poses of a single reindeer are
cloned, positioned appropriately (with transparency for overlaps, of course!), and looped at slightly
different ratesin order to create the illusion of eight tiny reindeer galloping independently across the
winter sky.[97]

[97] Add afew more poses of awaving fat guy in asleigh, and you'll swear you hear
sleigh bells ringing and chestnuts roasting on an open fire.

Up until now, we've glossed over the issue of how or whether any given image is actually seen; the
implication has been that any image that gets defined isvisible, unlessit lies outside the image
frame or local clipping region. But an object-based format should have away of effectively turning
on and off objects, and that is precisely where the SHOW chunk comesin. It contains alist of
Images that are affected and a 1-byte flag indicating the "show mode." The show-mode flag has two
purposes: it can direct the decoder to modify the potential visibility of each object, and it can direct
the decoder to display each object that is potentially visible. Note that | say potential visibility; any
object outside the clipping region or frame or completely covered by another object will clearly not
be visible regardless of whether it is " on." Among the show modes SHOW supportsis one that
cycles through the images in the specified range, making one potentially visible and the rest not
visible. Thisisthe means by which a single sprite frame in a multipose animation--such as the
reindeer example--is displayed and advanced.

In order to provide a suitably snowy background for our reindeer example, MNG provides the
background chunk, BACK. Aswith PNG's bKGD chunk, BACK can specify asingle color to be

used as the background in the absence of any better candidates. But it also can point at an image
object to be used as the background, either tiled or not. And either the background color or the
background image (or both) may be flagged as mandatory, so that even if the decoder hasits own
default background, for example, in aweb browser, it must use the contents of the BACK chunk.
When both the background color and the background image are required, the image takes
precedence; the color is used around the edges if the image is smaller than the frame and not tiled,
orif itistiled but clipped to asmaller region, and it isthe ""true" background with which the image
Is blended if it has transparency.

Finally, MNG provides apair of housekeeping chunks, SAVE and SEEK. Together, they implement
aone-entry stack similar to PostScript's gsave and gr estor e commands; they can be used to store
the state of the MNG stream at a single point. Typically, this point would represent the end of a
prologue section containing such basic information as gamma and chromaticity, the default
background, any non-changeable images (the poses of our reindeer, for example), and so forth.
Once the SAVE chunk appears--and only one is allowed--the prologue information is effectively
frozen. Some of its chunks, such as gAMA, may be overridden by later chunks, but they will be
restored as soon as a SEEK chunk is encountered. Any images in the prologue are fixed for the
duration of the MNG stream, although one can always make a clone of any such image and move
that instead.

The SEEK chunk is allowed to appear multiple times, and it is where the real power lies. As soon as
a decoder encounters SEEK, it is allowed to throw out everything that appeared after the SAVE
chunk, flush memory buffers, and so forth. If a MNG were structured as along-form story, for
example, the SEEK chunks might be used to delimit chapters or scenes--any props used for only one
scene could be thrown away, thus reducing the memory burden on the decoder.

That summarizes the essential structure and capabilities of MNG. I've skipped over afew chunks,
mostly ancillary ones, but the basic ideas have been covered. So let us now take alook at afew
examples.

12.3. The Simplest MNG

Arguably the absolute simplest MNG isjust the ssmplest PNG (recall Chapter 8, "PNG Basics'),
renamed with a.mng extension. Another truly simple one would be the empty MNG, composed
only of MHDR, FRAM, and MEND chunks, which could be used as a spacer on web pages--it
would generate a transparent frame with the dimensions specified in MHDR. But if we consider
only nontrivial MNGs, the most basic one probably looks like Figure 12-1.

8-byte MNG signature
MHDR

IHDR IDAT IEND
IHDR IDAT IEND
MEMND

Figure 12-1: Layout of the simplest MNG.

Thisisavery basic, two-image slide show, consisting of apair of grayscale or truecolor PNG
Images (note the absence of PLTE chunks, so they cannot be colormapped images) and nothing else.
In fact, the MNG stream is alittle too basic; it contains no color space information, so the images
will not display the same way on different platforms. It includes no explicit timing information, so
the decoder will display the images at arate of one frame per tick. At the minimum value of
MHDR's ticks-per-second field, that translates to a duration of just one second for the first image
and one or more seconds for the second image (in practice, probably indefinitely). Thereis no way
to use this abbreviated method to define a duration longer than one second. To avoid those
problems, SRGB and FRAM chunks could be added after MHDR; the latter would specify an
interframe delay--say, five seconds worth. Thus the smplest reasonable MNG looks like Figure 12-
2.

8-byte MNG signature
MHDR

sAGB

FRAIV

IHDR IDAT IEMD
IHDR IDAT IEND
MEND

Figure 12-2: Layout of the second simplest MNG.

Of course, SRGB should only be used if the images are actually in the standard RGB color space
(see Chapter 10, "Gamma Correction and Precision Color"); if not, explicit gamma and chromaticity

chunks can be used. Note that SRGB is only 13 byteslong, so its overhead is negligible.

12.4. An Animated MNG

As amore complex example, let ustake a closer look at how we might create the animated reindeer
example | described earlier. | will assume that a single cycle of areindeer's gallop can be
represented by six poses (sprite frames), and I'll further assume that all but the first pose can be
efficiently coded as delta-PNGs. The complete MNG of a single reindeer galloping across the
screen might be structured as shown in Figure 12-3.

8-byte MNG signature
MHDR
qANA
FRAM
DEFI
IHDR PLTE IDAT IEND
CLON
DHDR IDAT IEND
CLON
DHDR IDAT IEND
CLON
DHDR IDAT IEND
CLON
DHDR IDAT IEMD
CLON
URDA IDAT IEND
LOOP

MOVE

SHOW
ENDL
MEND

Figure 12-3: Layout of an animated MNG.

As always, we begin with MHDR, which defines the overall size of theimage area. I've also
included a gamma chunk so that the (nighttime) animation won't ook too dark or too bright on other
computer systems. The animation timing is set by the FRAM chunk, and then we begin loading
sprite data for the six poses. The DEFI chunk (" define image”") isone | haven't discussed so far; it is
included here to set the potential visibility of the first pose explicitly--in this case, we want the first
pose to be visible. After the IHDR, PLTE, IDAT, and IEND chunks defining the first pose is a clone
chunk, indicating that the second object (the second pose in the six-pose sequence) is to be created
by copying the first object. The CLON chunk also indicates that the second object is not potentially

visible yet. It isfollowed by the delta-PNG chunks that define the second image; we can imagine
either that the IDAT represents a complete replacement for the pixelsin the first image, with the
delta part referring to the inheritance of the first image's palette chunk, or perhaps the second image
Istruly apixel-level deltafrom the first image. Either way, the third through sixth images are
defined similarly.

The heart of the animation isthe loop at the end. In this case, I've included a MOV E chunk, which
moves the animation objects to the left by afew pixels every iteration, and a SHOW chunk to
advance the poses in sequence. If there are 600 iterations in the loop, the animation will progress
through 100 six-pose cycles.

The complete eight-reindeer version would be very similar, but instead of defining full clones of the
sprite frames, each remaining reindeer would be represented by partial clones of the six original
poses. In effect, a partial cloneis an empty object: it hasits own object ID, visibility, and location,
but it points at another object for itsimage data--in this case, at one of the six existing poses. So the
seven remaining reindeer would be represented by 42 CLON chunks, of which seven would have
the potential-visibility flag turned on. The loop would now include atotal of eight SHOW chunks,
each advancing one of the reindeer sprite's poses; a single MOV E chunk would still suffice to move
all eight forward. Of course, thisis still not quite the original design; thisversion has al eight
reindeer galloping synchronously. To have them gallop at different rates would require separate
FRAM chunks for each one.[98]

[98] Note that Rudolph could be encoded as a set of six tiny delta-PNGs relative to
the six original poses. Of course, to get that realistic Rudolph glow would require a
semitransparent reddish region around his olfactory appendage, which necessarily
involves either an alpha channel or afull tRNS chunk. But now we're talking True
Art, and no sacrificeistoo great.

12.5. An Algorithmic MNG

Another good delta-PNG example, but one that creates only a single image algorithmically, is
16million.mng, which | mentioned once or twice already. Figure 12-4 shows its complete contents.

Figure 12-4: Layout of an algorithmic MNG.

Theinitial FRAM chunk defines the structure of the stream as a composite frame, and it is followed
by a DEFI chunk that indicates the image is potentially visible. The IHDR...IEND sequence defines
the first row of the image (512 pixels wide), with red changing every pixel and blue incrementing
by one at the halfway point. Then the outer loop begins--well return to that in a moment--followed
immediately by the inner loop of 255 iterations. The inner loop simply increments the green value
of every pixel in the row and moves the modified line down one. The DHDR, IDAT, and IEND
chunks represent this green increment; the delta pixels are ssmply a sequence of 512 "0 1 0" triples.
As one might guess, they compress extremely well; the 1,536 data bytes are packed into atotal of
20 zlib-compressed bytes, including six zlib header and trailer bytes.

The outer loop has the task of resetting the green valuesto 0 again (easily accomplished by
incrementing them by one more, so they roll over from 255 to 0) and of incrementing the blue
values by two--recall that the first block of rows had blue = 0 on the left side and blue = 1 on the
right. Thus the delta-PNG data at the bottom of the outer loop consists of 512 "0 1 2" triples, which
compress to 23 bytes. Because the blue increments by two, thisloop only needs to interate 128
times. It actually produces one extrarow at the very end, but because this appears outside the frame
boundary (as defined by the MHDR chunk), it is not visible.

12.6. A JPEG Image with Transparency

Finally, let's look at an example of a JPEG image with an interleaved alpha channel. The particular

example shown in Figure 12-5 is still wrapped inside a MNG stream, but it could as easily exist

standalone if the MHDR and MEND chunks were removed and the signature changed to the ING
signature.

Figure 12-5: Layout of an alpha-JNG MNG.

The JHDR chunk introduces the embedded JNG, defines its dimensions, and declaresit to have an
alphachannel. It isfollowed by an SRGB PNG chunk that indicates the image isin the International
Color Consortium's standard RGB color space; decoders without access to a color management
system should instead use the predetermined gamma and chromaticity values that approximate the
SRGB color space (see Table 10-3).

The color-space chunk isfollowed by the IDAT chunks that define the image's alpha channel and
the IDAT chunks that define its main (foreground) image. We've included atwo-way interleave
herein order to allow some possibility of progressive display, but in general one would want to
interleave the IDATs and JDATSs after perhaps every 16 or 32 rows--16 is a special number for
JPEG decoders, and 16 or 32 rows is usually a reasonable amount to display at atime unless the
Image is quite skinny. On the other hand, keep in mind that each interleave (interleaf) adds an extra
24 bytes of IDAT/IDAT wrapper code; this overhead should be balanced against the desired
smoothness of the progressive output.

Note that we've included an IDAT first. This may be a good idea since the decoder often will be
able to start displaying the image before all of the JDAT arrives, and we've assumed that the alpha
channel is ssmple enough that the PNG data compressed extremely well (i.e., the IDAT issmaller
than the JDAT of the same region). If the reverseistrue, the IDAT should come first so that the
Image can be displayed as each line of alpha channel arrives and is decoded.

Also note that, although I've referred to ~"progressive” display here, | am not necessarily referring
either to progressive JPEG or to interlaced PNG. In fact, MNG prohibits interlaced PNG alpha
channelsin NG streams, and progressive JPEG may not mix well even with noninterlaced alpha
channels, depending on how the application is written. The reason is that the final value of any
given pixel will not be known until the JPEG is almost completely transmitted, and "~ approximate
rendering" of partially transparent pixels (that is, rendering before the final values are known)
requires that the unmodified background image remain available until the end, so that the
approximated pixels can be recomputed during the final pass. Of course, a sophisticated decoder
could display such an image progressively anyway, but it would incur a substantially greater
memory and computational overhead than would be necessary when displaying a nonprogressive

JPEG interleaved with an alpha channel. Instead, most decoders are likely to wait for sections of the
Image (e.g., the first 32 rows) to be competely transmitted before displaying anything. If progressive
JPEG datais interleaved with the alpha channel, then such decoders will end up waiting for
practically the entire image to be transmitted before even starting to render, which defeats the
purpose of both interleaved ING and progressive JPEG.

12.7. MNG Applications

As of April 1999, there were atotal of six applications available that supported MNG in some form
or another, with at least one or two more under development. The six available applications are
listed; four of them were new in 1998.

Viewpng

The original MNG application, Viewpng was Glenn Randers-Pehrson's test bed for PNG-
and MNG-related features and modifications. It has not been actively developed since May
1997, and it runs only under IRIX on Silicon Graphics (SGI) workstations.

ftp://swrinde.nde.swri.edu/pub/mng/applications/sgi/

| mageMagick

Thisisaviewing and conversion toolkit for the X Window System; it runs under both Unix
and VM S and has supported a minimal subset of MNG (MHDR, concatenated PNG images,
MEND) since November 1997. In particular, it is capable of converting GIF animations to
MNG and then back to GIF.

http://www.wizards.dupont.com/cristy/l mageM agi ck.html

MNGeye

Probably the most complete MNG decoder yet written, MNGeye was written by Gerard Juyn
starting in May 1998 and runs under 32-bit Windows. Its author has indicated a willingness
to base aMNG reference library on the code in MNGeye.

http://www.3-t.com/3-T/products/mngi/Homepage.html

pngcheck

A simple command-line program that can be compiled for almost any operating system,
pngcheck simply prints the PNG chunk information in human-readable form and checks that
it conforms to the specification. Partial MNG support was added by Greg Roelofs beginning
in June 1998. Currently, the program does minimal checking of MNG streams, but it is still
useful for listing MNG chunks and interpreting their contents.

ftp://swrinde.nde.swri.edu/pub/mng/applications/sgi/
http://www.wizards.dupont.com/cristy/ImageMagick.html
http://www.3-t.com/3-T/products/mngi/Homepage.html

http://www.libpng.org/pub/png/apps/pngcheck.html

PaintShopPro

PSP 5.0 uses MNG as the native format in its Animation Shop component, but it is not clear
whether any MNG support is actually visible to the user. Paint Shop Pro runs under both 16-
bit and 32-bit Windows.

http://www.jasc.com/psp.html

XVidCap

Thisis afree X-based video-capture application for Unix; it captures a rectangular area of
the screen at intervals and saves the images in various formats. Originally XVidCap
supported the writing of individual PNG images, but as of its 1.0 release, it also supports
writing MNG streams.

http://home.pages.de/~rasca/xvidcap/

While support for MNG is undeniably still quite sparse, it is neverthel ess encouraging that a handful
of applications already provide support for what has been, in effect, a moving target. Once MNG
settles down (plans were to freeze the spec by May 1999) and is approved as a specification, and
once some form of free MNG programming library is available to ease the burden on application
developers, broader support can be expected.

New programs will be listed on the MNG applications page, http://www.libpng.org/pub/mng/
mngapps.html.

12.8. The Future?

MNG's devel opment has not been the same success story that PNG's was, primarily due to a lesser
interest in and need for a new animation format. Especially with the advent of the World Wide Web,
people from many different walks of life have direct experience with ordinary images, and, in
particular, they are increasingly aware of various limitations in formats such as GIF and JPEG. All
of thisworked (and continues to work) in PNG's favor. But when it comes to multi-image formats
and animation, not only do these same people have much less experience, what need they do have
for animation is largely met by the animated GIF format that Netscape made so popular. Animated
GIFs may not be the answer to all of the world's web problems, but they're good enough 99% of the
time. All of this, of course, works against MNG.

In addition, MNG is decidedly complex; objects may be modified by other objects, loops may be
nested arbitrarily deeply, and so on. While it is debatable whether MNG is too complex--certainly

http://www.libpng.org/pub/png/apps/pngcheck.html
http://www.jasc.com/psp.html
http://home.pages.de/~rasca/xvidcap/
http://www.libpng.org/pub/mng/mngapps.html
http://www.libpng.org/pub/mng/mngapps.html

there are some who feel it is--even its principal author freely admits that fully implementing the
current draft specification is a considerable amount of work.

On the positive side, animated GIFs often can be rewritten as MNG animationsin atiny fraction of
thefile size, and there are no patent-fee barriers to implementing MNG in applications. Moreover,
the Multiple-image Network Graphics format is making progress, both as a mature specification and
as a supported format in real applications, and versions released since March 1999 now include
implementor-friendly subsets known as MNG-LC and MNG-VLC (for Low Complexity and Very
Low Complexity, respectively). Its future looks good.

| PREVIOUS CONTENTS NEXT o

- PREVIOUS CONTENTS NEXT o

Chapter 13. Reading PNG Images

Contents:

13.1. A libpng-Based, PNG-Reading Demo Program
13.2. Preliminaries

13.3. readpng_init()

13.4. readpng_get bgcolor()

13.5. Design Decisions

13.6. Gamma and Color Correction

13.7. readpng_get image()

13.8. readpng_cleanup()

13.9. Compositing and Displaying the Image
13.10. Getting the Source Code

13.11. Alternative Approaches

Aswith aimost any kind of programming project, there are numerous alternatives one can take
when writing a PNG-supporting program. Complete or partial code for reading and/or writing PNGs
isavailable for the C, C++, Java, Pascal, tcl/tk, Python, and Visual Basic languages, at a minimum;
some of it isin the form of commercial libraries, some as free source code, and some as a
combination of both. Many of these in alternatives are listed in Chapter 16, "Other Libraries and

Concluding Remarks'. One can even read and write PNG images directly, in effect implementing

one'sown PNG library, but thisis arather large undertaking and is generally not recommended
except under special circumstances.

The granddaddy of all PNG librariesis libpng, the free reference library available as Standard
(ANSI) C source code and used by many, if not most, PNG-supporting applications. It usesthe
similarly free Zib library (portable C source code) for compression and decompression, and in these
next few chapters I'll provide detailed demonstrations of how to write programs with both.

13.1. A libpng-Based, PNG-Reading Demo Program

In order to provide a concrete demonstration of how to use libpng to read PNG images, | have
written acomplete (albeit basic) PNG viewer in Standard C. It consists of two main source files: a
platform-independent one that includes all of the PNG- and libpng-specific code (readpng.c), and a
platform-dependent file that contains all of the user interface and display code. Theideaisthat the
PNG code (the “"back end") is generic enough that it can be dropped into almost any image-reading
C program, whether a viewer, editor, converter, or something else; it isthe part that is of primary

interest to us. The platform-dependent code (" front end") is functional--yes, it really works!--but it
Is not complete or robust enough to be considered a final product.

The back-end code was written for libpng version 1.0.3, but it should work with any 1.x release of
thelibrary. Later releases of libpng may add new interfaces, but the functions used here are
expected to remain available more or less indefinitely, for backward compatibility. As for the front-
end code, two versions are currently available: one for the X Window System (rpng-x.c; mainly for
Unix systems, but also potentially VM S and OS/2), and one for Windows 95/98 and NT (rpng-win.
c). | will avoid getting into the details of these as much as possible, but whereit is unavoidable, |
will either use excerpts that are common to both or else point out the differences between the two
versions. Complete source listings for both flavors can be found at http://www.libpng.org/pub/png/

pngbook.html.

The basic PNG reader has the following features: it is file-based, it reads and displays a single
Image and then quits, and it is concerned only with reading and decoding that image--it has nothing
better to do and can afford to wait on file input/output (1/0O) and other potentially slow but non-CPU-
intensive tasks. In other words, its characteristics are typical of standalone image viewers,
converters, and many image editors, but not of web browsers. Browsers usually read from a
network, which is often extremely slow compared to disk access (for example, due to limited
modem bandwidth or just congested Internet sites), and they are usually busy formatting text and
decoding several images at the same time--they do have something better to do than to wait for the
rest of the file to show up. I'll address these issuesin Chapter 14, "Reading PNG Images

Progressively"”, with the second demo program.

13.2. Preliminaries

Before we get into the heart of our basic demo program, I'll touch on a couple of mundane but
nevertheless important details. Thefirst isthe libpng header file, png.h, which defines all of the
libpng datatypes, declares al of the public function prototypes, and includes some useful macros. It
must be included in any module that makes libpng function calls; in our case, we've segregated all
of those in readpng.c, so that's the only place we need to include png.h:

#i ncl ude "png. h"

Because png.h includes Zlib.h, we need not include it explicitly, and most programs need not even
worry about it, since thereisrarely aneed for the user's program to call zlib routines directly. But in
our case we do want to make sure Zlib.h is included somewhere. The reason for thisis the second
mundane detail: programs tend to be updated over time, and this often involves plugging in a newer
version of asupport library like libpng or zlib. When following up on a bug report, particularly with
regard to software for which the source code is available (like the demo programsin this book), it is
generaly useful to know as much as possible about the version that exhibits the bug. In the presence
of shared (dynamically linked) libraries, that's even more important. So as part of our demo
program'’s usage screen--the poor man's version of an * about box"--we call avery small routinein
readpng.c that indicates not only the versions of libpng and zlib with which it was compiled, but

http://www.libpng.org/pub/png/pngbook.html
http://www.libpng.org/pub/png/pngbook.html

also the versionsit is currently using:

voi d readpng_version_info()

{
fprintf(stderr, " Conpiled with Iibpng %; using
i bpng %.\n",
PNG_LI BPNG _VER _STRI NG png_|l i bpng_ver);
fprintf(stderr, " Conmpiled with zlib %; using
zlib %.\n",
ZLI B_VERSI ON, zlib_version),;
}

The uppercase values here are macros defined in the png.h and Zlib.h header files; they indicate the
compile-time versions. The lowercase variables are globals exported by the two libraries, so they
give the versions actually in use at the time the program is run. Ideally, each pair of version
numbers will match, but it is not unusual for the user, and sometimes even the programmer, to be
caught by an unsuspected mismatch.

13.3. readpng_init()

The real” code in the basic PNG reader begins when the image file is opened (in binary mode!)
and its stream pointer passed to our libpng-initialization routine, readpng_init(). readpng_init()
also takes two pointersto long integers representing the height and width of the image:

int readpng_init(FILE *infile, long *pWdth, |ong
*pHei ght)

We can get away with using longs instead of unsigned longs because the PNG specification
requires that image dimensions not exceed 231 - 1.[99] readpng_init() returns a status value; zero
will be used to indicate success, and various nonzero values will indicate different errors.

[99] Of course, an image with dimensions that big is likely to exhaust the real and
virtual memory on most systems, but we won't worry about that here.

Thefirst thing we do in readpng_init() isread the first 8 bytes of the file and make sure they match
the PNG signature bytes; if they don't, there is no need to waste time setting up libpng, allocating
memory and so forth. Ordinarily one would read a block of 512 bytes or more, but libpng does its
own buffered reads and requires that no more than 8 bytes have been read before handing of f
control. So 8 bytesitis:

uch sig[8];

fread(sig, 1, 8, infile);
if (!'png_check sig(sig, 8))

return 1; /* bad signature */

There are two things to note here. Thefirst is the use of the uch typedef, which stands for unsigned
char; we useit for brevity and will likewise employ ush and ulg for unsigned short and unsigned
long, respectively.[100] The second isthat png_check sig() and its slightly more general sibling
png_sig_cmp() are unique among libpng routines in that they require no reference to any structures,
nor any knowledge of the state of the PNG stream.

[100] Other typedefs, such asuchar and u_char, are more common and recognizable,
but these are sometimes also defined by system header files. Unlike macros, thereis
no way to test for the existence of a C typedef, and a repeated or conflicting typedef
definition is treated as an error by most compilers.

Assuming the file checked out with a proper PNG signature, the next thing to do is set up the PNG
structs that will hold all of the basic information associated with the PNG image. The use of two or
three structs instead of oneis historical baggage; a future, incompatible version of thelibrary is
likely to hide one or both from the user and perhaps instead employ an image ID tag to keep track of
multiple images. But for now two are necessary:

png_ptr = png_create_read_struct
(PNG LI BPNG_VER _STRI NG NULL, NULL,
NULL) ;
if (!png_ptr)
return 4; /* out of nmenory */

info ptr = png_create_info_struct(png _ptr);

I f (linfo_ptr) {
png_destroy read_struct(&ong ptr, NULL, NULL);
return 4; /* out of nmenory */

}

The struct at which png_ptr pointsis used internally by libpng to keep track of the current state of
the PNG image at any given moment; info_ptr isused to indicate what its state will be after all of
the user-requested transformations are performed. One can also allocate a second information struct,
usually referenced viaan end_ptr variable; this can be used to hold all of the PNG chunk
information that comes after the image data, in case it isimportant to keep pre- and post-IDAT
information separate (as in an image editor, which should preserve as much of the existing PNG
structure as possible). For this application, we don't care where the chunk information comes from,
so we will forego the end_ptr information struct and direct everything to info_ptr.

One or both of png_ptr and info_ptr are used in all remaining libpng calls, so we have simply
declared them global in this case:

static png_structp png_ptr;
static png_infop info ptr;

Global variables don't work in reentrant programs, where the same routines may get called in
parallel to handle different images, but this demo program is explicitly designed to handle only one
image at atime,

The Dark Side

Let'stake abrief break in order to make a couple of points about programming
practices, mostly bad ones. Thefirst isthat old versions of libpng (pre-1.0)
required one to allocate memory for the two structs manually, viamalloc() or a
similar function. Thisis strongly discouraged now. The reason is that libpng
continues to evolve, and in an environment with shared or dynamically linked
libraries (DLLS), a program that was compiled with an older version of libpng
may suddenly find itself using a new version with larger or smaller structs. The
png_create XXXX _struct() functions allow the version of the library that is
actually being used to allocate the proper structs for itself, avoiding many
problems down the road.

Similarly, old versions of libpng encouraged or even required the user to access
members of the structs directly--for example, the image height might be available
asinfo_ptr->height or png_ptr->height or even (asin this case) both! Thiswas
bad, not only because similar struct members sometimes had different values that
could change at different times, but also because any program that is compiled to
use such an approach effectively assumes that the same struct member is always at
the same offset from the beginning of the struct. Thisis not a serious problem if
the libpng routines are statically linked, although there is some danger that things
will break if the program is later recompiled with a newer version of libpng. But
even if libpng itself never changes the definition of the struct's contents, a user
who compiles anew DLL version with dlightly different compilation parameters--
for example, with structure-packing turned on--may have suddenly shifted things
around so they appear at new offsets. libpng can also be compiled with certain
features disabled, which in turn eliminates the corresponding structure members
from the definition of the structs and therefore alters the offsets of any later
structure members. And | already mentioned that libpng is evolving: new things
get added to the structs periodically, and perhaps an existing structure member is
found to have been defined with an incorrect size, which is then corrected. The
upshot isthat direct access to struct membersisvery, very bad. Don't do it. Don't
let your friends do it. We certainly won't be doing it here.

The pointers are now set up and pointing at allocated structs of the proper sizes--or else we've
returned to the main program with an error. The next step isto set up a small amount of generic
error-handling code. Instead of depending on error codes returned from each of its component
functions, libpng employs a more efficient but rather uglier approach involving the setjmp() and
longjmp() functions. Defined in the standard C header file setjmp.h (which is automatically
included in pngconf.h, itself included in png.h), these routines effectively amount to a giant goto

statement that can cross function boundaries. This avoids alot of conditional testing (if (error)
return error;), but it can make the program flow harder to understand in the case of errors.
Nevertheless, that's what libpng uses by default, so that's what we use here:

if (setjnmp(png_ptr->jnpbuf)) {
png_destroy _read_struct(&ong ptr, & nfo_ptr,
NULL) ;

}

return 2;

The way to read this code fragment is as follows: the first time through, the setjmp() call savesthe
state of the program (registers, stack, and so on) in png_ptr->jmpbuf and returns successfully--that
IS, with areturn value of zero--thus avoiding the contents of the if-block. But if an error later occurs
and libpng invokes longjmp() on the same copy of png_ptr->jmpbuf, control suddenly returns to
the if-block asif setjmp() had just returned, but this time with a nonzero return value. The if-test
then evaluates to TRUE, so the PNG structs are destroyed and we return to the main program.

But wait! Didn't | just finish lecturing about the evils of direct access to structure members? Y et
here | am, referring to the jmpbuf member of the main PNG struct. The reason isthat thereis
simply no other way to get a pointer to the longjmp buffer in any release of libpng through version
1.0.3. And, sadly, there may not be any clean and backward-compatible way to work around this
limitation in future releases, either. The unfortunate fact is that the ANSI committee responsible for
defining the C language and standard C library managed to standardize jmp_buf in such away that
one cannot reliably pass pointers to it, nor can one be certain that its size is constant even on asingle
system. In particular, if acertain macro is defined when libpng is compiled but not for alibpng-
using application, then jmp_buf may have different sizes when the application calls setjmp() and
when libpng calls longjmp(). The resulting inconsistency is more likely than not to cause the
application to crash.

The solution, which is aready possible with current libpng releases and will probably be required as
of some future version, isto install a custom error handler. Thisis simply a user function that libpng
callsinstead of its own longjmp()-based error handler whenever an error is encountered; like
longymp(), it is not expected to return. But there is no problem at al if the custom error handler
itself callslongjmp(): since this happens within the application’'s own code space, its concept of
jmp_buf is completely consistent with that of the code that calls setjmp() elsewherein the
application. Indeed, thereis no longer any need to use the jmpbuf element of the main libpng struct
with this approach--the application can maintain its own jmp_buf. | will demonstrate this safer
approach in Chapter 14, "Reading PNG Images Progressively".

Note the use of png_destroy read_struct() to let libpng free any memory associated with the PNG
structs. We used it earlier, too, for casesin which creating the info struct failed; then we passed
png_ptr and two NULLSs. Here we pass png_ptr, info_ptr and one NULL. Had we allocated the
second info struct (end_ptr), the third argument would point at it, or, more precisely, at its pointer,
so that end_ptr itself could be set to NULL after the struct is freed.

Having gotten al of the petty housekeeping details out of the way, we next set up libpng so it can
read the PNG file, and then we begin doing so:

png_init _io(png ptr, infile);
png_set _sig_bytes(png_ptr, 8);
png_read i nfo(png_ptr, info _ptr);

The png_init_io() function takes our file stream pointer (infile) and storesit in the png_ptr struct
for later use. png_set_sig_bytes() lets libpng know that we already checked the 8 signature bytes,
so it should not expect to find them at the current file pointer location.

png_read_info() isthefirst libpng call we've seen that does any real work. It reads and processes
not only the PNG file's IHDR chunk but also any other chunks up to the first IDAT (i.e., everything
before the image data). For colormapped images this includes the PLTE chunk and possibly tRNS
and bKGD chunks. It typically also includes agAMA chunk; perhaps cHRM, sRGB, or iCCP; and
often tIME and some tEXt chunks. All this information is stored in the information struct and some
in the PNG struct, too, but for now, al we care about is the contents of IHDR--specifically, the
image width and height:

png_get IHDR(png ptr, info_ptr, & dth, &height,
&bit _depth,
&col or _type, NULL, NULL, NULL);
*PWdth = wi dt h;
*pHei ght = hei ght;

return O;

Once again, since thisis a single-image program, I've been lazy and used global variables not only
for the image dimensions but aso for the image's bit depth (bits per sample--R, G, B, A, or gray--or
per palette index, not per pixel) and color type. The image dimensions are also passed back to the
main program viathe last two arguments of readpng_init(). The other two variables will be used
later. If we were interested in whether the image is interlaced or what compression and filtering
methods it uses, we would use actual valuesinstead of NULLsfor the last three arguments to
png_get IHDR(). Note that the PNG 1.0 and 1.1 specifications define only a single allowed value
(O) for either the compression type or the filtering method. In this context, compression type O is the
deflate method with a maximum window size of 32 KB, and filtering method 0is PNG's per-row
adaptive method with five possible filter types. See Chapter 9, "Compression and Filtering", for

details.

That wraps up our readpng_init() function. Back in the main program, various things relating to the
windowing system are initialized, but before the display window itself is created, we potentially
make one more readpng call to seeif the image includes its own background color. In fact, this
function could have been incorporated into readpng_init(), particularly if al program parameters
used by the back-end readpng functions and the front-end display routines were passed via an
application-specific struct, but we didn't happen to set things up that way. Also, note that this

second readpng call isunnecessary if the user has already specified a particular background color
to be used. In this program, a ssmple command-line argument is used, but a more sophisticated
application might employ a graphical color wheel, RGB dliders, or some other color-choosing
representation.

13.4. readpng_get_bgcolor()

In any case, assuming the user did not specify a background color, we call readpng_get _bgcolor ()
to check the PNG file for one. It takes as arguments pointers to three unsigned character values.

I nt readpng_get bgcol or(uch *red, uch *green, uch *bl ue)

As before, we start with a setjmp() block to handle libpng errors, then check whether the PNG file
had a bK GD chunk:

i f (!png_get valid(png ptr, info_ptr, PNG_|INFO bKGD))
return 1;

Assuming the png_get_valid() call returned a nonzero value, we next have libpng give us a pointer
to asmall struct containing the bK GD color information:

png_col or _16p pBackgr ound;
png_get bKA&(png ptr, info_ptr, &pBackground);

(pBackground was defined at the top of the function.) pBackground now points at a
png_color 16 struct, which is defined as follows:

t ypedef struct png _color_ 16 _struct
{

png_byte i ndex;

png_uint_16 red;

png_uint_16 green;

png_uint _16 bl ue;

png_uint_16 gray;
} png_col or 16;

As suggested by the struct members names, not all of them are valid with all PNG image types. The
first member, index, is only valid with palette-based images, for example, and gray isonly valid
with grayscale images. But it isone of libpng's handy little features (presently undocumented) that
thered, green, and blue struct members are always valid, and those happen to be precisely the
values we want.

The other thing to note, however, is that the elements we need are defined as png_uint_16, i.e, as

16-bit (or larger) unsigned integers. That suggests that the color values we get back may depend on
the bit depth of the image, which isindeed the case. In fact, thisis true regardless of whether the
calling program requested libpng to convert 16-bit values or 1-, 2-, and 4-bit values to 8-bit; thisis
another currently undocumented tidbit. We'll be feeding all of these little gotchas back to the libpng
maintainer, however, so one can assume that the documentation will be sightly more complete by
the time this book is published.

Since we'll be dealing only with 8-bit samples in this program, and, in particular, since the
argumentsto readpng_get_bgcolor () are pointers to unsigned (8-bit) characters, we need to shift
the high-order bits down in the case of 16-bit data or expand them in the case of low-bit-depth
values (only possible with grayscale images). And either way, we need to pass the values back to
the main program. Thus:

if (bit_depth == 16) {

*red = pBackgr ound- >r ed >> §8;
*green = pBackground->green >> §;
*bl ue = pBackground->blue >> 8§;

} else if (color _type == PNG COLOR TYPE GRAY &&
bit depth < 8) {
i f (bit_depth == 1)
*red = *green = *blue = pBackground->gray?
255 : O;
else if (bit _depth == 2) /[* i.e., max value is
3 */
*red = *green = *blue = (255/3) *
pBackgr ound- >gr ay;
else /* bit_depth

=4 */ [* i.e., max value is
15 */
*red = *green = *blue = (255/15) *
pBackgr ound- >gr ay;
} else {

*red = pBackgr ound- >r ed;

*green = pBackground- >green;

*bl ue = pBackground->bl ue;

}

return O;

With that, the main program now has enough information to create an image window of the proper
size and fill it with the background color, which it does. The top row of Figure C-5 in the color
insert shows the two cases. the middle image is displayed with the background color specified in the
PNG fileitself, while the image on the right is shown with a user-specified background color.

The main program next calls the heart of the readpng code: readpng_get_image(), which setsthe
desired libpng transformations, allocates a PNG image buffer, decodes the image, and returns a

http://www.libpng.org/pub/png/book/fig_C5.html#png.color.fig.5-row1

pointer to the raw data. Before we look at that in detail, we should first discuss some of the design
decisions that led to it.

13.5. Design Decisions

We decided at the outset that we didn't want to deal with alot of PNG bit depths; we have plenty of
that in the front-end code (at least for the X version...sigh). Being fond of alpha transparency and
the nice effects it can produce, we did want to retain full transparency information, however. In both
cases, we were willing to sacrifice aminimal memory footprint in favor of ssmplicity and, to some
extent, speed. Thus, we chose to expand or reduce all PNG image typesto 24-bit RGB, optionally
with afull 8-bit apha channel. In other words, the output would always be either three channels
(RGB) or four channels (RGBA).

Handling all alphablending on our own, in the front end, is not strictly necessary. In the case of a
flat background color, whichis al I've discussed so far, libpng can be instructed to blend the
background color (either from the PNG file or as supplied by the user) with the foreground pixels,
thereby eliminating the alpha channel; the relevant function is png_set_background(). The result
would have been a single output format to deal with: three-channel, 24-bit RGB. But we had in
mind from the outset the possibility of loading or generating a complete background image, not just
a background color, and libpng currently has no provision for blending two images.

13.6. Gamma and Color Correction

Since this routine is also where any gamma and color correction (recall Chapter 10, "Gamma
Correction and Precision Color") would take place, we should step back a moment and look at how

the main program deals with that. First | have a confession: | did not attempt any color correction.
(Truly, I am scum.) But this does not excuse you, the reader, from supporting it, at least in higher-
end applications! The X Window System's base library, Xlib, has included the X Color
Management System since X11R5; it is accessed viathe Xcms functions, an extensive AP
supporting everything from color-space conversion to gamut compression. Apple supports the
ColorSync system on the Macintosh and will be releasing a version for Windows. And Microsoft, if
not already supporting the SRGB color space natively in recent releases of Windows, certainly can
be assumed to do so in coming releases; they and Hewlett-Packard collaborated on the original
SRGB proposal.

But where color correction can be alittle tricky, gamma correction is quite straightforward. All one
needs isthe ""gamma’ value (exponent) of the user's display system and that of the PNG file itself.

If the PNG file does not include agAMA or sRGB chunk, there islittle to be done except perhaps
ask the user for a best-guess value; a PNG decoder is likely to do more harm than good if it attempts
to guess on its own. We will simply forego any attempt at gamma correction, in that case. But on
the assumption that most PNG files will be well behaved and include gamma information, we
included the following code at the beginning of the main program:

doubl e LUT_exponent;

doubl e CRT _exponent = 2. 2;
doubl e default_di spl ay_exponent;

#i f defi ned(NeXT)

LUT _exponent = 1.0 / 2.2;

/~k

I f (sone_next function_that returns_gamma
(&ext _ganmm))

LUT _exponent = 1.0 / next_ganms;

*/
#elif defined(sgi)

LUT _exponent = 1.0/ 1.7;

/* there doesn't seemto be any docunented function

to
* get the "gamm" value, so we do it the hard way */
infile = fopen("/etc/config/system gl Ganmaval ", "r");
if (infile) {
doubl e sgi _gammm;
fgets(fooline, 80, infile);
fclose(infile);
sgi _gamma = at of (fooline);
if (sgi _gamma > 0.0)
LUT _exponent = 1.0 / sgi _ganms;
}

#el i f defined(Maci ntosh)

LUT _exponent = 1.8 / 2.61;

/~k

i f (sone_nac_function_that returns_gamra(&rmac_ganmm))

LUT _exponent = mac_gamma / 2.61;

*/
#el se

LUT _exponent = 1.0; /* assunme no LUT: nost PCs */
#endi f

defaul t _di splay_exponent = LUT _exponent *
CRT_exponent ;

The goal hereisto make areasonably well informed guess asto the overall display system's
exponent (" 'gamma), which, as you'll recall from Chapter 10, "Gamma Correction and Precision

Color", isthe product of the lookup table's exponent and that of the monitor. Essentially all

monitors have an exponent of 2.2, so |'ve assumed that throughout. And amost al PCs and many
workstations forego the lookup table (LUT), effectively giving them a LUT exponent of 1.0; the
result isthat their overall display-system exponent is 2.2. Thisisreflected by the last linein the
ifdef block.

A few well-known systems have LUT exponents quite different from 1.0. The most extreme of
these isthe NeX T cube (and subsequent noncubic models), which has alookup table with a 1/2.2
exponent, resulting in an overall exponent of 1.0 (i.e., it hasa "linear transfer function™). Although
some third-party utilities can modify the lookup table (with a "gamma" value whose inverse is the
LUT exponent, as on SGI systems), there appears to be no system facility to do so and no portable
method of determining what value a third-party panel might have loaded. So we assume 1.0 in all
cases when the NeX T-specific macro NeXT is defined.

Silicon Graphics workstations and Macintoshes also have nonidentity lookup tables, but in both
cases the LUT exponent can be varied by system utilities. Unfortunately, in both casesthe valueis
varied viaa parameter called "gamma’ that matches neither the LUT exponent nor the other
system's usage. On SGI machines, the "gamma’” value is the inverse of the LUT exponent (as on the
NeXT) and can be obtained either viaa command (gamma) or from a system configuration file (/
etc/config/system.glGammaVal); there is no documented method to retrieve the value directly viaa
system function call. Here we have used the file-based method. If we read it successfully, the
overal system exponent is calculated accordingly; if not, we assume the default value used on
factory-shipped SGI systems: "gamma’ of 1.7, which implies a display-system exponent of 2.2/1.7,
or 1.3. Note, however, that what is being determined is the exponent of the console attached to the
system running the program, not necessarily that of the actual display. That is, X programs can
display on remote systems, and the exponent of the remote display system might be anything. One
could attempt to determine whether the display islocal by checking the DISPLAY environment
variable, but to do so correctly could involve several system calls (uname(), gethostbyname(), etc.)
and is beyond the scope of this demo program. A user-level work-around is to set the
SCREEN_GAMMA variable appropriately; I'll describe that in just a moment.

The Macintosh “"gamma’” value is proportional to the LUT exponent, but it is multiplied by an
additional constant factor of 2.61. The default gammaiis 1.8, leading to an overall exponent of
(1.8/2.61) x 2.2, or 1.5. Since neither of the two front ends (X or Windows) is designed to work on a
Mac, the code inside the Macintosh if-def (and the M acintosh macro itself) isintended for
illustration only, not as a serious exampl e of ready-to-compile code. Indeed, a standard component
of Mac OS 8.5 is Apple's ColorSync color management system (also available as an add-on for
earlier systems), which is the recommended way to handle both gamma and color correction on
Macs.

It is entirely possible that the user has calibrated the display system more precisely than is reflected
in the preceding code, or perhaps has a system unlike any of the ones we have described. The main
program also gives the user the option of specifying the display system's exponent directly, either
with an environment variable (SCREEN_GAMMA is suggested by the libpng documentation) or
by direct input. For the latter, we have once again resorted to the simple expedient of a command-
line option, but a more elegant program might pop up adialog box of some sort, or even provide a
calibration screen. In any case, our main program first checks for the environment variable:

if ((p = getenv("SCREEN_GAMVA")) != NULL)
di spl ay_exponent = atof (p);
el se
di spl ay_exponent = default _display_exponent;

If the variable isfound, it is used; otherwise, the previously calculated default exponent is used.
Then the program processes the command-line options and, if the -gamma option isfound, its
argument replaces all previously obtained values.

That turned out to be a moderately lengthy explanation of the demo program's approach to gamma
correction (or, more specifically, to finding the correct value for the display system's exponent),
mostly because of all the different ways the value can be found: system-specific educated guesses at
the time of compilation, system-specific files or API calls at runtime, an environment variable, or
direct user input. The actual code is only about 20 lines long.

13.7. readpng_get_image()

Once the display-system exponent is found, it is passed to the readpng code as the first argument to
readpng_get_image():

uch *readpng_get i nage(doubl e di spl ay_exponent, int
*pChannel s,
ul g *pRowbyt es)

Aswith the previous two readpng routines, readpng_get_image() first installs the libpng error-
handler code (setjmp()). It then sets up all of the transformations that correspond to the design
decisions described earlier, starting with these three:

if (color_type == PNG_COLOR _TYPE_PALETTE)
png_set expand(png_ptr);
I f (color_type == PNG COLOR_TYPE_GRAY && bit _depth <
8)
png_set expand(png_ptr);
I f (png_get _valid(png_ptr, info_ptr, PNG INFO tRNS))
png_set expand(png_ptr);

The astute reader will have noticed something odd in the first block: the same function,
png_set_expand(), is called several times, in different contexts but with identical arguments.
Indeed, thisis perhaps the single most confusing issue in al versions of libpng up through 1.0.3. In
thefirst case, png_set_expand() isused to set aflag that will force pal ette images to be expanded to
24-bit RGB. In the second case, it indicates that |ow-bit-depth grayscale images are to be expanded
to 8 bits. And in the third case, the function is used to expand any tRNS chunk datainto afull alpha
channel. Note that the third case can apply to either of the first two, aswell. That is, either a palette
Image or agrayscale image may have atransparency chunk; in each case, png_set_expand() would
be called twice in succession, for different purposes (though with the same effect--the function
merely sets aflag, independent of context). A less confusing approach would be to create separate
functions for each purpose:

/* These functions are FICTITIOQUS! They DO NOT
EXI ST in any
* version of libpng to date (through 1.0.3). */

i f (color_type == PNG COLOR _TYPE _PALETTE)
png_set palette to _rgb(png ptr);
if (color_type == PNG COLOR _TYPE _GRAY && bit _depth <
8)
png_set gray 1 2 4 to_8(png_ptr);
if (png_get valid(png _ptr, info_ptr, PNG INFO tRNS))
png_set tRNS to_al pha(png_ptr);

With luck, these functions will be accepted for libpng version 1.0.4 (and later).

Getting back to the real code, the next pair of transformations involves calls to two new functions,
one to reduce images with 16-bit samples (e.g., 48-bit RGB) to 8 bits per sample and one to expand
grayscale images to RGB. Fortunately these are appropriately named:

if (bit_depth == 16)
png_set _strip_16(png _ptr);

I f (color_type == PNG COLOR_TYPE_GRAY | |
color _type == PNG COLOR TYPE_GRAY_ALPHA)
png_set _gray to rgb(png ptr);

Thefinal transformation sets up the gamma-correction code, but only if the file contains gamma
information itself:

doubl e gammm;

I f (png_get gAMA(png_ptr, info_ptr, &ganma))
png_set gamma(png_ptr, display_exponent, ganma);

Once again, the declaration of gamma isincluded here for context; it actually occurs at the
beginning of the function. The conditional approach toward gamma correction is on the assumption
that guessing incorrectly is more harmful than doing no correction at all; alternatively, the user
could be queried for a best-guess value. This approach was chosen because a simple viewer such as
we describe here is probably more likely to be used for images created on the local system than for
Images coming from other systems, for which aweb browser might be the usual viewer. An
alternate approach, espoused by drafts of the SRGB specification, isto assume that all unlabeled
Images exist in the SRGB space, which effectively gives them gamma va ues of 0.45455. On a PC-
like system with no lookup table, the two approaches amount to the same thing: multiply the
Image's gamma of 0.45455 by the display-system exponent of 2.2, and you get an overall exponent
of 1.0--i.e., no correction is necessary. But on aMacintosh, SGI, or NeXT system, the SRGB
recommendation would result in additional processing that would tend to darken images. This
would effectively favor images created on PCs over (unlabeled) images created on the local system.

The upshot is that one is making assumptions either way; which approach is more acceptable is

likely to be a matter of personal taste. Note that the PNG 1.1 Specification recommends that the
viewer ~"choose a likely default gamma value, but allow the user to select a new oneif the result
proves too dark or too light."

In any case, once we've registered all of our desired transformations, we request that libpng update
the information struct appropriately viathe png_read update info() function. Then we get the
values for the number of channels and the size of each row in the image, allocate memory for the
main image buffer, and set up an array of pointers:

png_uint_32 i, rowoytes;
png_bytep row_pointers[height];

png _read update_ info(png ptr, info ptr);

*pRowbytes = rowbytes = png_get rowbytes(png ptr,
info_ptr);

*pChannel s
info_ptr);

(i nt)png_get channel s(png_ptr,

If ((image_data = (uch *)mal | oc(rowbytes*hei ght)) ==
NULL) {
png _destroy read struct(&png ptr, & nfo _ptr,

NULL) ;
return NULL;
}
for (i =0; 1 < height; ++i)

row pointers[i] = inmge_data + i*rowbytes,

The only dightly strange feature here isthe row_pointer] array, which is something libpng needs
for its processing. In this program, where we have allocated one big block for the image, the array is
somewhat unnecessary; libpng could just take a pointer to image data and calculate the row offsets
itself. But the row-pointers approach offers the programmer the freedom to do things like setting up
the image for line doubling (by incrementing each row pointer by 2*r owbytes) or even eliminating
theimage data array entirely in favor of per-row progressive processing on asingle row buffer. Of
course, it is aso quite a convenient way to deal with reading and displaying the image.

In fact, that was the last of the preprocessing to be done. The next step is to go ahead and read the
entire image into the array we just allocated:

png_read_i mage(png_ptr, row _pointers);

The readpng routine can return at this point, but we added one final libpng call for completeness.
png_read_end() checks the remainder of the image for correctness and optionally reads the

contents of any chunks appearing after the IDATSs (typically tEXt or tIME) into the indicated
information struct. If one has no need for the post-IDAT chunk data, asin our case, the second
argument can be NULL:

png_read_end(png_ptr, NULL);

return i mage_dat a;

13.8. readpng_cleanup()

With that, readpng_get_image() returns control to our main program, which closes the input file
and promptly calls another readpng routine to clean up al allocated memory (except for the image
dataitself, of course):

voi d readpng_cl eanup(int free_ i mge data)
{
If (free_inmage data &% i mage data) {
free(i mage_dat a) ;
| mage_data = NULL;
}

I f (png_ptr && info _ptr) {
png _destroy read struct(&png ptr, & nfo _ptr,
NULL) ;
png_ptr = NULL,
i nfo_ptr = NULL;

}

That is, the main program calls readpng_cleanup() with azero (FALSE) argument here so that
Image _data isnot freed. If it had waited to clean up until after the user requested the program to
end, it would have passed a nonzero (TRUE) argument instead. Setting png_ptr and info_ptr to
NULL isunnecessary here, since png_destroy read_struct() doesthat for us; but we do it anyway,
sinceit's a habit that tends to save on debugging time in the long run.

13.9. Compositing and Displaying the Image

What one does at this point is, of course, entirely application-specific. Our main program calls a
display routine that simply puts the pixels on the screen, first compositing against the desired
background color if the final image has four channels (i.e., if it includes an apha channel). Then it
waits for the user to quit the program, at which point it destroys the window, frees any allocated
memory, and exits.

The compositing step is perhaps interesting; it employs a macro copied from the png.h header file,

albeit renamed to avoid problems, should png.h ever be included in the main program file, and using
equivalent typedefs:

#defi ne al pha_conposite(conposite, fg, alpha, bg)
{ \

ush tenp = ((ush)(fg)*(ush)(al pha)
+ \

(ush) (bg) *(ush) (255 - (ush)(al pha)) +

(ush)128); \

(conposite) = (uch)((tenmp + (tenmp >> 8)) >>
8) ; \
}

The unique thing about this macro isthat it does exact apha blending on 8-bit samples (for
example, the red components of a foreground pixel and a background pixel) without performing any
division. This macro and its 16-bit-per-sample sibling have been tested on a number of PC and
workstation architectures and found to be anywhere from 2 to 13 times faster than the standard
approach, which divides by 255 or 65,535, depending on sample size. Of course, hardware-assi sted
alpha compositing will always be faster than doing it in software; many 3D accelerator cards
provide this function, and often they can be used even in 2D applications. Approximate methods
(which divide by 256 of 65,536 by bit-shifting) are another fast alternative when absolute accuracy
Is not important, but note that such an approach may |leave a visible border between opague and
dlightly transparent regions.

13.10. Getting the Source Code

All of the source files for the rpng demo program (rpng-x.c, rpng-win.c, readpng.c, readpng.h, and
makefiles) are available both in print and electronically, under a BSD-like Open Source license. The
fileswill be available for download from the following URL for the foreseeable future:

http://www.libpng.org/pub/png/pngbook.html

Bug fixes, new features and ports, and other contributions may be integrated into the code, time
permitting.

libpng source code is available from the following URLSs:

http://www.libpng.org/pub/pnag/libpng.html http://libpng.sourceforge.net/

zlib source code is available from the following site:

http://www.zlib.org/

13.11. Alternative Approaches

http://www.libpng.org/pub/png/pngbook.html
http://www.libpng.org/pub/png/libpng.html
http://libpng.sourceforge.net/
http://www.zlib.org/

It should go without saying that the program presented here is among the simplest of many
possibilities. It would also have been possible to write it monolithically, either as asingle readpng
function or even as inlined code within main(), which is precisely how the sample code in the
libpng documentation reads. Libpng allows user-defined I/O routines (in place of standard file 1/0),
custom memory allocators, and aternate error handlers to be installed, although there is currently no
provision for an error-handling function that returns control to the libpng routine that called it.

There are also other options for the platform-dependent front ends, of course; reading an image
from afileis often undesirable. One method in particular is worth mentioning, since it does not
appear to be documented anywhere else at the time of thiswriting. On the 32-bit Windows platform,
a private" clipboard may be used to transfer PNG images between applications. The dataformat is
simply the normal PNG stream, beginning with the signature bytes and ending with the IEND
chunk. An application like rpng-win would register the private clipboard and then read PNG data
from it in the usual way. The following code fragment outlines the essential steps:

U NT clipbd format = Regi sterd i pboardFormat ("PNG') ;

I f (clipbd_ format == 0) {
/* call failed: wuse GetlLastError() for extended
info */
} else if (Opend i pboard(NULL)) {
HANDLE handl e = Getd i pboardData(cli pbd format);

i f (handl e == NULL) {
/* call failed: wuse GetLastError() for info
*/
} else {
I nt data_l ength = G obal Si ze(handl e) ; /*
upper bound */

I f (data_length == 0) {
/* call failed: wuse GetLastError() for
info */
} else {
BYTE *data_ptr = G obal Lock(handl e);

I f (data_ptr == NULL) {
/* call failed: wuse GetLastError()
for info */
} else {

/* copy PNG data i medi atel y, but
don't flag an */

[* error If there are sone extra
bytes after | END */

I f (d obal Unl ock(handle) == 0) {
/* call failed: use GetlLastError
() for info */

}
}
I f (O osedipboard()) {
/* call failed: wuse GetLastError() for info
*/
}
} else {
/* anot her wi ndow has the clipboard open */
/* (can use Get Opend i pboardW ndow() to get
handle to it) */

}

That one can do something like thisin principle isn't new or unusual; what is new isthat the
"PNG" clipboard has already been implemented in some Microsoft apps, including Office 2000.
All any other application needs in order to interoperate viathis clipboard is its name and data
format, which I've just described. Thanks to John Bowler for providing thisinformation to the PNG
Development Group.

In the next chapter, I'll look at a more radical alternative to the basic PNG decoder: aversion that
feeds libpng data at its own pace, rather than letting libpng read (and possibly wait for) as much data
asit wants. Progressive viewers are at the heart of most online browsers, so we'll ook at how to
write one for PNG images.

-y PREVIOUS CONTENTS NEXT |

- PREVIOUS CONTENTS NEXT |

Chapter 14. Reading PNG Images Progressively

Contents:

14.1. Preliminaries

14.2. readpng?2_init()

14.3. readpng2 decode data()

14.4. readpng? info callback()

14.5. readpng2 row _callback()

14.6. Compositing and Displaying the Image
14.7. readpng2 end callback()

14.8. readpng2 _cleanup()

14.9. Getting the Source Code

As| noted in Chapter 13, "Reading PNG Images’, the basic style of PNG viewer that reads each image from a
fileinasingle gulp is appropriate to some applications, but not all. In particular, web browsers and the like
tend to read images from a network, and they often download more than one image at the sametime. It is
usually desirable for them to display whatever is available at regular intervals so the user can get some idea of
the contents of the page as quickly as possible. The aternative--waiting the minute or more that some web
pages take to download--went out of style amost as soon as Netscape Navigator became available late in 1994,

This style of display is known as progressive, and as one might imagine, it places strong constraints on the
structure of the program. In fact, in many ways a progressive reader is completely inverted from the basic
design showed in the last chapter: instead of giving the image library control for the duration of the decoding
process, in aprogressive reader, the main program retains control, effectively throttling the library by
restricting the amount of encoded image data it makes available per call. Thiswill become much clearer with a
concrete example, so let usjump right in.

14.1. Preliminaries

Asin thefirst demo program, | have divided this program into a PNG-specific file (readpng2.c thistime) and a
platform-dependent file whose filename, logically enough, depends on the platform. | refer to these two parts
asthe "back end" and "“front end," respectively; I'll once again concentrate on the libpng-specific back end.
Thistime through, I'll skim over many of the most basic libpng concepts, however. Indeed, most of the
individual blocks of PNG code are virtually identical to their counterpartsin the basic reader. What has
changed istheir overal order in the grand scheme of things.

I'll first note some of the things that haven't changed. As before, our overall design choices include a desire to
deal only with 24-bit RGB or 32-bit RGBA data; | will instruct libpng to transform the PNG image data
exactly as before. | will also make a game attempt at doing proper gamma correction; the main program not
only calculates reasonabl e defaults based on the platform but also gives the user a chance to specify things
precisely. The code for thisis unchanged and will not be presented again. Likewise, | will continue to use the
abbreviated typedefs uch, ush, and ulg in place of the more unwieldy unsigned char, unsigned short, and
unsigned long, respectively.

Within the PNG-specific module, | will once again begin with the inclusion of the libpng header file, png.h,
which in turn includes the Zlib.h header file. (The latest releases at the time of thiswriting are libpng 1.0.3 and
Zlib 1.1.3, which are the versions used by the demo programs.) The four-line readpng2_version_info() routine
is no different from that in the first demo program.

Because this style of PNG reader isintended for the kind of application that decodes multiple images
simultaneoudly (read: browsers), one difference from the first program is the lack of global or static variables
in the PNG code. Instead, all image-specific variables are embedded in a structure, which could be alocated
repeatedly for as many images as desired. Although some globals are still used in the front-end code, they are
all either truly global (that is, they could be used in a multi-image program without problems), or else they
could be moved into the per-image struct, too.

14.2. readpng2_init()

The serious PNG code once again begins with the main program opening the PNG file, and | emphasize that it
is opened in binary mode--hence the “"b" flag in the second argument to fopen() (" rb"). A real browser would
open an HTTP connection to aremote server and request the image instead of opening it asalocal file. Rather
than immediately jJumping into our PNG initialization routine, readpng2_init(), aswas the case in the first
demo, this version first reads a block of data from the file and checks the first eight bytes for the PNG
signature:

if (!'(infile = fopen(filenane, "rb")))
/* report an error and exit */

} else {
i ncount = fread(inbuf, 1, INBUFSIZE, infile);
if (incount < 8 || !readpng2_check_sig(inbuf, 8)) {
/* report an error and exit */
} else {
rc = readpng2_init (& png2_info);
[etc.]
}
}

Thereadpng2 check sig() function is nothing more than awrapper to call png_check_sig(). It would also
have been possible to call the libpng routine directly; libpng is unique in that it does not require any special
setup or datatypes, and it returns an integer value, which is the default for C functions. But that would violate
our separation of libpng and non-libpng code, if only in atiny way, and it would prevent the compiler from
checking the argument and return types against a prototype, in case the libpng function should ever change.

Sharp-eyed readers will have noticed that | call readpng2_init() with a different argument than last time:
I nt readpng2_init(mai nprog_i nfo *mai nprog_ptr)

The difference from the first version is that the function now has only one argument, a pointer to an object type
called mainprog_info. Thisisjust the per-image struct mentioned earlier. It is defined as follows:

t ypedef struct _mainprog info {
doubl e di spl ay_exponent;

ulg width;
ul g hei ght;
voi d *png_ptr;
void *info ptr;
void (*mai nprog_init)(void);
void (*mai nprog_display _row) (ulg row num;
voi d (*mai nprog_finish_display)(void);
uch *i mage_dat a;
uch **row _pointers;
j mp_buf j nmpbuf ;
i nt passes;
i nt rowbyt es;
I nt channel s;
i nt need_bgcol or;
I nt done;
uch bg red;
uch bg_green;
uch bg bl ue;
} mai nprog_info;

I'll explain each member as we need it, but it is clear that many of the variables that were formerly global or
passed as arguments to functions now reside in this struct. Note that similar variable types have been grouped,
with the smallest ones at the end, so that the larger types will be aligned on even memory boundaries by
default, minimizing the amount of padding the compiler hasto add to the structure.

readpng2_init() begins by calling libpng to allocate the two PNG structs:

png_structp png_ptr;
png_infop info_ptr;

png_ptr = png_create read_struct (PNG LI BPNG VER STRI NG
mai nprog_ptr, readpng2 error_handl er, NULL);
i f (!png_ptr)
return 4; /* out of nmenory */

info_ptr = png_create_info_struct(png_ptr);

if (linfo_ptr) {
png_destroy read _struct(&png ptr, NULL, NULL);
return 4; /* out of nmenory */

}

| have used a pair of local variables here, png_ptr and info_ptr, for convenience. The mainprog_info struct
also includes these variables, but because it's used in the main program, which has no knowledge of libpng
datatypes, the struct versions of the two variables are simply declared as pointersto void. To use them directly
in readpng?2_init(), we would need to typecast them repeatedly, which is annoying and makes the program
harder to read and somewhat slower. So | spent afew bytes on the temporary (local) variables to make life
easier.

readpng?2_error_handler()

In addition to the new local variables, | replaced two of the NULL arguments to
png_create read_struct() with meaningful pointers. This allows usto set up our own error handler
and thereby avoid the ugly problem discussed in the previous chapter, where the size of the setjmp
() buffer (jmp_buf) could differ between the application and the PNG library. All we've really done
Is duplicate libpng's error-handling code in the demo program: our mainprog_info struct now
includes ajmp_buf to replace the one in the main PNG struct, and we've created a
readpng2_error_handler () function that is almost identical to libpng's default error handler.
Because the jmp_buf problem doesn't affect libpng's warning handler, we left that alone; thus the
fourth argument to png_create read_struct() isstill NULL.

Our version of libpng's error handler looks like this:

static void readpng2_error_handl er(png_structp png_ptr,
png_const _charp nsg)

{

mai nprog_i nfo *mai nprog_ptr;

fprintf(stderr, "readpng2 |ibpng error: %\n", nsg);
fflush(stderr);

mai nprog_ptr = png_get_error_ptr(png_ptr);
if (mainprog_ptr == NULL) {

fprintf(stderr,

"readpng2 severe error: jnpbuf not
recoverabl e;

termnating.\n");

fflush(stderr);

exit(99);
}

| ongj np(mai nprog_ptr->j npbuf, 1);
}

The main difference isthat, unlike libpng, we have to retrieve the pointer to our error struct (which
happens to be the same as our main struct) as an additional step. And since we know something
went wrong (or we wouldn't be executing this code), it is particularly important to make sure the
pointer isvalid--or at least not NULL. If itisNULL, werein big trouble: we have no way to
retrieve our jmp_buf and therefore no way to return to the main application code and exit

somewhat cleanly. In that case, we simply print an error message and give up. Otherwise, we
retrieve mainprog_ptr->jmpbuf and longjmp() back to the most recently invoked setjmp(), just as
libpng would do.

The next step isto set up one of those setjmp() calls. This differs from the previous version only in that now
we're using our own struct's jmpbuf member instead of the one in the main PNG struct:

i f (setjnp(minprog_ptr->jnpbuf)) {
png_destroy read_struct(&png_ptr, & nfo_ptr, NULL);

return 2;

}

The second big difference from the basic PNG reader is what comes next:

png_set progressive_read_fn(png_ptr, mainprog_ptr,
readpng2_i nfo_cal | back, readpng2_row cal |l back,
readpng2_end_cal | back);

Here we get a glimpse of the inversion of the program logic. The original approach wasto call libpng and wait
for it to return the requested image data, whether header information or actual pixels. That doesn't really work
in aprogressive program--if you give the library a hunk of data and wait for it to return, you may end up with
nothing if the hunk was too small, or you may get the entire image back. More commonly, it isimpossible to
return a completely sensible result, due to the way compression works. The end of a buffer of compressed data
may correspond to the first two bits of the red sample of asingle pixel, for example, or it may cut off a piece of
a compressed token that is therefore meaningless. Either way, what we really want isaway for the decoding
library to provide us with datain a more controlled manner. Callbacks are the answer.

A callback isjust what it soundslike: if our main routine calls the library with a chunk of data, the library will
call us back when a certain amount has been processed--say, one row of image pixels. The function it calls
(back in the main program, presumably) can then handle the decoded data, return, possibly get called again,
and so forth. Eventually the library will exhaust the data it was given and return to the original routine. That
routine can then read some more data from the network and pass it back to libpng, go and decode part of
another image, respond to user input, or do anything else that needs doing.

The progressive handler in libpng is set up to work with three callback functions: one to be called when all of
the header information has been read (i.e., everything prior to the first IDAT), one for when each row of the
image is decoded (which includes "“short" rows if the image is interlaced), and one for when the complete
PNG stream has been read. These are the last three arguments to png_set_progressive read fn(), and our
versions are called readpng2_info_callback(), readpng2_row_callback(), and readpng2_end_callback(),
respectively. They are al required to have the same two arguments: png_ptr and info_ptr, the pointers to the
two standard PNG structs. But in order for the application to associate image-specific data with each callback,
libpng makes available a user-specified pointer, embedded somewhere within the PNG structs; it can be
retrieved viaalibpng function. In our case, we provide a pointer to the mainprog_info struct for the image.
Thisisthe second argument to png_set_progressive read_fn(). (Thefirst argument isjust the png_ptr itself.)

Asit turns out, the call to png_set_progressive read_fn() is essentially the whole point of our readpng2

initialization routine. The only remaining detail isto save the two temporary pointers into the mainprog_info
struct before returning to the main program:

mai nprog_ptr->png_ptr = png_ptr;
mai nprog_ptr->info_ptr = info_ptr;

return O;

These pointers will be used in the readpng2 decoding routine that calls libpng, which in turn sends the pointers
back to the callback functions.

14.3. readpng2_decode data()

Back in the main program, after dealing with various windowing-system chores, the code sets afew variables
in the mainprog_info struct. The following excerpt is from the X version of the code, but the Windows code is
the same, aside from prefixing function names with rpng2_win_instead of rpng2_x_:

I f (user _did not _specify a background col or _or_pattern)
rpng2_i nfo. need_bgcol or = TRUE;

rpng2_info.mainprog_init = rpng2 x init;
rpng2_i nf o. mai nprog_di splay_row = rpng2_x_di spl ay_r ow,
rpng2_i nfo. mai nprog_finish_display = rpng2_x_finish_display;

Unlike the basic viewer, where the main program called a special function to check for and retrieve the image's
background color, the progressive viewer simply sets the need_bgcolor flag in the struct. It also sets three
function pointers corresponding to the three readpng?2 callbacks. The reason for this apparent duplication will
become clear when we look at the callbacks in detail.

Having prepared everything for decoding, the main program begins the data loop that is at its core, reading file
datainto a buffer and passing it to the PNG-decoding function:

for (5;) {

i f (readpng2_decode_dat a(& png2 info, inbuf, incount))
++error;

if (error || feof(infile) || rpng2_info.done)
br eak;

if (timng)
sl eep(1);

i ncount = fread(inbuf, 1, INBUFSIZE, infile);

}

Note the call to readpng2_decode data() at the beginning of the loop, before fread(); it handles the initial
chunk of datawe read prior to calling readpng2_init().

The only remarkable feature of the loop itself is the conditional call to the sleep() function. Because thisisa
demo program, and because it is intended to be a rough simulation of how aweb browser functions, | chose to
give the user the option of simulating how an image download over afast modem would appear. The sleep()
function is an extremely crude method of doing this--it has only one-second precision, which istoo coarse to
allow for asmooth simulation--but it is relatively portable and ubiquitous. Less portable but more precise
aternatives include usleep() and various Windows API calls. But since no sane programmer would
intentionally add adelay like this to the inner loop of a program except for demonstration purposes, | judged
that sleep() was good enough for this. The combination of a one-second sleep interval and the default buffer
size of 4096 bytes resultsin an apparent download speed that is 10% to 20% faster than a 33.6K modem can
manage. In fact, it's close to the average connection speed of a 56K modem over typical phone lines.

Astoreadpng2 decode data() itsalf, it islittle more than awrapper function for the libpng routine
png_process data(). Its arguments include a pointer to our mainprog_info struct, a pointer to the input
buffer, and the number of bytes of input data; the only things it does besides calling libpng are copy the struct
pointers and set up the usual error-handling code:

I nt readpng2_decode_dat a(mai nprog_i nfo *mai nprog_ptr, uch
*rawbuf ,

ul g | ength)

{
png_structp png_ptr = (png_structp)mai nprog _ptr->png_ptr;
png infop info_ptr = (png_i nfop)mai nprog_ptr->info ptr;
i f (setjnp(minprog_ptr->jnpbuf)) {
png_destroy_read_struct(&png_ptr, & nfo_ptr, NULL);
mai nprog_ptr->png_ptr = NULL;
mai nprog_ptr->info_ptr = NULL
return 2;
}
png_process_data(png_ptr, info_ptr, rawbuf, |ength);
return O;
}

The struct pointers are copied merely because the alternative is to typedef them; the latter may be more
efficient (though not necessarily, due to the extra level of indirection inherent in the -> operator), but it is also
uglier and makes the code somewhat |ess readable.[101]

[101] Clarity and expediency, that's what we like. Well, we like efficiency, too, but not at the
cost of clarity when writing abook on programming PNG.

14.4. readpng?2_info_callback()

png_process_data() is, in some sense, the last real libpng function that the main program calls--yet so far we
haven't set any transformations and have virtually no information about the PNG image except that its
signature is correct. The solution to these little mysteries lies within the first of the callback routines,
readpng2_info_callback(). In most respects, it functions as the second half of our libpng initialization routine:
it gets the PNG image's header information, including the image dimensions and perhaps the background
color; it sets al of the transformations, including gamma correction; and it calls aroutine in the main program
to initialize the viewing window. In short, it does everything except handle actual pixels.

One important thing it does not do, however, is set up the usual error-handling code viathe setjmp() function.
The reason for thisis simple: libpng requires that control never return to it when an error occurs; ordinarily, it
longjumps to a user routine, which then returns an error value to the main program. But in this caseit islibpng
itself that callsreadpng2_info_callback(), so alongjump back to here would make no sense--the only things
we could do would beto return to libpng or call exit() without cleaning up, which is arather brutal method of
handling an error. (Well, actually we could do our own longjump back to the main program, but that's
effectively what we are already doing. And in the last chapter | noted my dislike of big goto statements.) By
not calling setjmp() within the callback, any errors will return to the location of the previous setjmp() call,
which wasin readpng2 _decode data(). It can then return a proper error value to the main program.

Thereis afeature in the callback routine that has no analogue in the basic PNG reader, however:
mai nprog_info *mai nprog_ptr;

mai nprog_ptr = (mai nprog_info *)png_get progressive ptr
(png_ptr);

if (mainprog_ptr == NULL) {
fprintf(stderr, "readpng2 error:
“main struct not recoverable in info_callback.\n");
fflush(stderr);
return;

}

Thisisthe way we retrieve our image-specific pointer from the bowels of the PNG structs. (If it'sinvalid, we're
in big trouble already, but there's no need to compound the problem by dereferencing a NULL pointer and
crashing immediately.) Having done so, we can now stuff the image dimensionsinto it, where they'll be used
by the main program very shortly:

int color_type, bit_depth;

png_get | HDR(png_ptr, info_ptr, &mai nprog_ptr->w dth,
&mai nprog_ptr->hei ght, &bit_ depth, &color_type, NULL, NULL,
NULL) ;

As before, we called alibpng utility routine to retrieve information about the image. There are also so-called
easy access functions to retrieve each item separately; the choice of one function call or several is purely a
matter of taste.

CAUTION

Thisis an appropriate point at which to comment once again on the evils of
accessing PNG structures directly, so let us all repeat our favorite mantra:

Friends don't let friends access elements of PNG structs directly. Bad, bad,
bad!

See Chapter 13 for the detailed explanation, but trust me: it's not good karma.

As soon as we know the bit depth and color type of the image (viathe png_get IHDR() call we just made),
we can check for a PNG bKGD chunk and, if it'sfound, adjust its values in exactly the same way as before:

i f (mai nprog_ptr->need_bgcol or &&
png_get _valid(png_ptr, info_ptr, PNG_|NFO bKGD))

{
/* do the sane png_get bKG)) call and scale the RGB
val ues as
* required; put results in mainprog ptr->bg_red,
bg green,
* and bg_blue */
}

Thistime, instead of passing the red, green, and blue values back through the arguments to a readpng2
function, we place them into the bg_red, bg_green, and bg_blue elements of our mainprog_info struct.

The next step isto set up the desired libpng transformations; thisis completely identical to the code in the first

demo program. It is followed by the gamma-correction setup, but here we depart dlightly from the previous
example:

i f (png_get gAVMA(png ptr, info _ptr, &ganm))
png_set ganma(png_ptr, mai nprog_ptr->di spl ay_exponent,
ganme) ;
el se
png_set ganma(png_ptr, nai nprog_ptr->di spl ay_exponent,
0. 45455) ;

Because this program is intended to provide an example of how to write a PNG reader for aweb browser, we
imagine that the filesit will be viewing are coming from the Internet--even though the front ends we provide
only read from local files, just asin the basic version. Because images from the Internet are more likely to have
been either created on PC-like systems or intended for display on PC-like systems, we follow the
recommendation of the SRGB proposal (see Chapter 10, "Gamma Correction and Precision Color") and
assume that all unlabeled imageslive in the SRGB color space--which, among other things, means they have a
gamma of 1/2.2 or 0.45455, the same as most PCs and workstations. This does mean that unlabeled images
created on a Macintosh, SGI, or NeXT workstation and intended for display on one of these systems will
appear too dark. But that, of course, iswhy including agammavalue in the image file is so vitally important.

Thereisonelast " "transformation” to register after the gamma handling is out of the way; we want libpng to
expand interlaced passes for us. Thisissignaled by calling png_set_interlace _handling(). It returnsthe
number of passes in the image, which we save in case the main program wants to report to the user whether the
image is interlaced (seven passes) or not (one pass):

mai nprog_ptr->passes = png_set _interlace_handling(png ptr);

Then we have libpng update the PNG struct information and return to us the final number of channelsin the
image and the size of each row:

png _read update_info(png _ptr, info _ptr);

mai nprog_pt r - >r onbyt es
mai nprog_ptr->channel s

png_get rowbytes(png _ptr, info_ptr);
png_get channel s(png _ptr, info _ptr);

The very last thing readpng2_info_callback() doesis call its corresponding function in the main program,
which allocates the image memory, initializes the windowing system, and creates the display window with the
proper dimensions:

(*mai nprog_ptr->mainprog_init)();

return;
Recall that we saved pointers to three functions in the mainprog_info struct; this calls the first of the three. If

we didn't care about separating PNG code from the main program routines, we could use just one routine per
callback. But thisway is abit cleaner, and the performance hit is minimal.

14.5. readpng2_row_callback()

The heart of the progressive reader is the row-callback function. Aswith the other two callbacks, it is called by
png_process_data() after some amount of image datais read; unlike them, it gets called multiple times, at
least once for every row in theimage.[102] readpng2_row_callback() has four arguments: the main PNG
struct pointer, a pointer to the row of image data, the row number, and the pass number. Its structure is actually
guite smple; most of the action occurs within libpng or back in the main program:

[102] For interlaced images, it gets called (with real data) an average of 1.875 times per row and
at most 4 times per row (for a one-row image that is more than four pixels wide). Once per row
Isstill apossibility, however, if the image has only one column.

static void readpng2_row cal | back(png_structp png_ptr,
png_bytep new_row,
png_ui nt _32 row_num

I nt pass)

{

mai nprog_info *mai nprog_ptr;

1 f (! new_row)

return;

mai nprog_ptr = (mai nprog_info *)png_get progressive_ptr
(png_ptr);

png_progressi ve_conmbi ne_row png ptr,

mai nprog_ptr->row_poi nters[row_nun], new_row);

(*rmai nprog_ptr->mai nprog_di splay_row) (row_num ;

return;
}

The first thing the routine does is check whether libpng provided any row data; if not, it returns immediately.
Otherwise the function needs access to our mainprog_info struct, so it retrieves the pointer to that. Recall that
the definition of this struct included two members that should ook familiar: image data and row_pointers.
Thefirst is the pointer to our image buffer; the second is an array of pointers giving the locations of every row
within the buffer. Both were allocated and initialized when readpng2_info_callback() called its
corresponding function in the main program. libpng does not require a row-pointers array in a progressive
reader, but it happensto be a convenient and reasonably efficient way to access the image buffer.

In any case, the row-callback function calls png_progressive_combine row() to combine the new image data
with the existing pixels or, in the case of a noninterlaced image, to copy the row of data into the image buffer.
Then it transfers control to its counterpart in the main program in order to composite the new pixels with the
background, convert the row to a platform-dependent format, and optionally display it.

14.6. Compositing and Displaying the Image

The main-program code to do all of thisis almost identical to that in the first demo program, but thistime
around we've added a small twist: the code now supports not only a user-defined background color but al'so a
background image of sorts. Specificaly, the user has the option of choosing one of a set of predefined
background patterns that simulate a tiled background image. The patterns currently include gradient-filled

checkerboards (three of which are shown in the second row of Figure C-5 in the color insert), smoothly
interpolated diamonds (third row of Figure C-5), and radial waves (Figure C-1 and fourth row of Figure C-5);
eventually, other patterns may be defined. This approach is simple enough that it could be generated on the fly,
asthe imageis displayed, but in the interests of speed and simplicity, | chose to define a second complete
image buffer in the mainprog_init() function. The background buffer isfilled as follows for the diamond
pattern (contributed by Adam M. Costello):

hmax

col or */

= (bgscale-1)/2

mx = 2*hnmax;

; /* half the max wei ght of a

/* the max wei ght of a color */

for (row=0; row < rpng2_info.height; ++row {
yi dx = row % bgscal e;
i f (yidx > hmax)
yi dx = bgscale-1 - vyidx;
dest = bg data + row*bg_rowbytes;
for (i =0; i < rpng2_info.width; ++i) {
xidx =1 % bgscal e;
if (xidx > hnmax)
Xxi dx = bgscal e-1 - xi dx;
k = xidx + yidx;
*dest++ = (k*rl1 + (max-k)*r2) / max;
*dest++ = (k*gl + (max-k)*g2) / max;
*dest++ = (k*bl + (max-k)*b2) / nmax;
}
}

With this approach, the inner display loop requires only atiny change to support the background image instead
of just abackground color:

r = *src++;
g = *Src++,;
b = *src++;
a = *src++,
if (bg_imge) { [* NEW */
bg red = *Src2++, [* NEW */
bg green = *src2++; [* NEW */
bg blue = *src2++; [* NEW */
} /* NEW */
if (a == 255) {
red =r;
green = g;
blue = b;
} elseif (a==0) {
red = bg_red;
green = bg_green;
bl ue = bg_bl ue;
} else {
/* this macro (copied from png. h) conposites

* the foreground and background val ues and

* puts the result

into the first argunent */

http://www.libpng.org/pub/png/book/fig_C5.html#png.color.fig.5-row2
http://www.libpng.org/pub/png/book/fig_C5.html#png.color.fig.5-row3
http://www.libpng.org/pub/png/book/fig_C1.html
http://www.libpng.org/pub/png/book/fig_C5.html#png.color.fig.5-row4

al pha_conposi te(red, r, a, bg_red);

al pha_conposite(green, g, a, bg green);

al pha_conposite(blue, b, a, bg_blue);
}

In other words, the background color used for compositing is now changed once per pixel. (Note that the src2
pointer isinitialized just once per call. That's the only other change to the display routine to support the
background image.) The cases in which the alpha component is either 255 or 0 are handled separately for
performance reasons only; using the alpha_composite() macro would produce identical results. But because
the macro employs multiplication, addition, and bit-shifting for every pixel (in fact, three times per pixel) and
because fully opague and fully transparent pixels are generally by far the most numerous, the differencein
speed would probably be noticeable. It therefore makes sense to handle the two special cases separately.
Whether full opacity or full transparency is handled first isless obvious; | guessed that opague pixels are likely
to be more common in images with transparency, so the 255 case is checked first.

The results, using one of the more exotic radia-wave patterns as the background, are shown in Figure C-1in
the color insert. The base image consists of partially transparent icicles hanging from opaque tree branches,
seen against a completely transparent sky. The figure is a composite of the appearance after the first PNG pass
(left half) and the final pass (right half).

14.7. readpng2_end_callback()

Once the last row-callback has been made, the program is basically done. Because of the way the main
program's row-display code was written to deal with interlaced images, when the last row of pixelsissent, itis
guaranteed to be flushed to the display immediately. Thus, when libpng calls our final callback routine,
readpng2_end_callback(), it does nothing more than retrieve the pointer to our mainprog_info struct and call
the corresponding mainprog_finish_display() function, which in turn merely setsa " "done" flag and lets the
user know that the image is complete:

static void rpng2_x_finish_display()
{
rpng2_i nfo. done = TRUE;
printf("Done. Press Q Esc or nouse button 1 to quit.\n");

}

It would also have been reasonable to free both the image_data and bg_data buffers at this point, and a
memory-constrained application certainly would do so--or, more likely, it would never have allocated full
buffersin the first place, instead handling everything on a per-row basis and cal culating the background

pattern on the fly. Regardless, | chose to free all front-end buffersin the front-end cleanup routine, which isthe
last function called before the program exits.

14.8. readpng?2_cleanup()

Before that happens, though, the mainprog_finish_display() routine returns control through
readpng2_end_callback() to libpng and eventually back to the main program loop, which is now finished.
The main program then closes the PNG file and calls readpng2_cleanup() to deallocate the PNG structs:

voi d readpng2_cl eanup(mai nprog_i nfo *mai nprog_ptr)

{

http://www.libpng.org/pub/png/book/fig_C1.html

}

png_structp png_ptr = (png_structp)mai nprog _ptr->png_ptr;
png infop info_ptr = (png_i nfop)mai nprog_ptr->info _ptr;

if (png_ptr && info_ptr)
png_destroy read struct(&ng ptr, & nfo_ptr, NULL);

mai nprog_ptr->png_ptr = NULL;
mai nprog_ptr->info_ptr = NULL;

Once that is done, the program waits for user input to terminate, then it exits.

14.9. Getting the Source Code

All of the source files for the rpng2 demo program (rpng2-x.c, rpng2-win.c, readpng2.c, readpng2.h, and
makefiles) are available viathe web, under a BSD-like Open Source license. The files will be available for
download from the following URL for the foreseeable future:

http://www.li bpng.org/pub/pna/pngbook.html

Bug fixes, new features and ports, and other contributions may be integrated into the code, time permitting.

http://www.libpng.org/pub/png/pngbook.html

PREVIOUS CONTENTS NEXT

| PREVIOUS CONTENTS NEXT |

Chapter 15. Writing PNG Images

Contents:

15.1. A libpng-Based, PNG-Writing Demo Program
15.2. Gamma Correction

15.3. Text Chunks

15.4. writepng version info()

15.5. writepng_init()

15.6. Interlaced PNG: writepng encode image()
15.7. Noninterlaced PNG: writepng_encode row()
15.8. writepng_cleanup()

15.9. Getting the Source Code

Writing PNG images is both simpler and more complex than reading them. Weighing in on the side of simplicity is the fact
that thereisno need for alot of platform-specific code, particularly platform-specific graphical code--unless, of course, the
application already is graphical. In general, thereis also no need for a special progressive mode; writing a PNG file, or
almost any image format, for that matter, is more or less progressive by nature, although some complexity creepsin when
the image isinterlaced.

Writing PNGs is more explicitly complex when it comes to dealing with ancillary information like text annotations,
timestamps, and so forth. A simple PNG viewer can ignore al of that; its only concern is with displaying the pixels
correctly and in atimely manner. But a PNG-writing application should be prepared to preserve any existing textual
information and to give the user the option of adding new information--for example, atitle, the author's name, and
copyright information. One wants to avoid adding too much baggage to the image, but the user should also be given the
option of adding atimestamp (e.g., the tiIME chunk for time of last modification, or perhaps atEXt chunk indicating the
creation time).

When it comes to the actual image data, at a minimum, the application should be able to detect when there are no more
than 256 colors or color-transparency pairs, including a possible background color, and write a palette-based image if that
isthe case. Ideally, it should also be able to write a grayscale image as grayscale instead of RGB, but unlessthereis
already information available that indicates the pixels are gray, or the user indicates that the image is to be converted to
grayscale, detecting such images can be both CPU- and memory-intensive.

It should go without saying that any such application should include gamma-correction information with the image
whenever possible, and that it should be correct information; this may entail providing the user with a calibration screen.
And image converters must be much more careful, since most images lacking explicit gamma information also lack any
information from which one can infer the gamma val ue unambiguously; guessing incorrectly is worse than omitting the
gammainfo in the first place.

High-end, professiona applications should also provide chromaticity information, if it is known, and mark any images
created in the standard RGB color space with an appropriate SRGB chunk. They may also want to include a complete
International Color Consortium embedded profile (iCCP chunk), but given the size of such profiles, this should always be
an option given to the user, and generally it should not be the default option. See Chapter 10, "Gamma Correction and

Precision Color", for amore detailed discussion of gamma correction and color spaces.

Applications such as image editors, which usually include the generation of web-friendly graphics as one of their features,
should also provide the user with the option of converting truecolor images into colormapped ones. Thisis known as
guantization, and it should include images with an apha channel. As| described in Chapter 8, "PNG Basics', PNG'StRNS

chunk effectively transforms a palette from RGB samplesinto RGBA; thus, any program that can quantize a 24-bit RGB
image down to a 256-color pal ette-based image should also be capable of quantizing a 32-bit RGBA or 16-bit gray/apha
image down to a 256-entry PL TE/tRNS-based image. But because quantization is alossy procedure, it should never be the
default--unless, of course, the entire purpose of the application isthe lossy conversion of truecolor images into
colormapped ones.

Special-purpose applications that deal with sampled data from scientific or medical apparatus will often encounter odd bit
depths or oddly calibrated data, at least compared with standard computer images. For example, medical tomographic (CT)
images are usually stored as 16-hit integer samples, but the implied upper bound of 65,535 is misleading. Such images
rarely use more than 10 to 12 bits of each sample, their maximum intensity value is typically less than 4,096 and
sometimes less than 1,024, though rarely less than 256. When stored as PNG images, their samples should be scaled up so
that the maximum value is near 65,535. For example, an image whose raw data has a maximum value of 1,891 isusing
only 11 bits of each sample--i.e., the next power of two is 2,048, or 211, |t should be scaled up either by afactor of 32 (25),
which corresponds simply to shifting the bits five to the left, or more properly by afactor of 65,535/2,047, which happens
to be very closely approximated by what the PNG spec calls "l €ft bit replication.” These two approaches are more easily
understood as C code:

/* how to scale 11-bit data up to 16 bits */
#i f def LEFT_BI T_REPLI CATI ON

new _sanple = (old_sanple << 5) | (old_sample >> 3);
#el se

new sanple = (ol d_sanple << 5); /* sinmple shift nmethod */
#endi f

Either way, the application should write an sBIT chunk into the file to indicate the number of significant bitsin the original
data; in this case, the sBIT value would be 11. It might also want to write a pCAL chunk indicating the calibration of the
sample values relative to the physical quantity being measured. It is not intuitively obvious how one would alow the user
to provide information for the pCAL chunk interactively, however; more likely, a programmer would hardcode things like
the pCAL equation type directly into the application, given advance knowledge of the type of data being collected or

mani pul ated.

15.1. A libpng-Based, PNG-Writing Demo Program

The demo program | present here is intentionally more limited than it should beif it werea "real" program, in order that
the basic concepts of writing PNG images with libpng not be lost in the details. For ssmplicity's sake, | chose to write a
basic command-line image-conversion program in ANSI C, with the PNG-specific ~"back end" code in one file (writepng.
¢) and the single, cross-platform ““front end" in another file (wpng.c). As with the PNG-reading demo programs, this uses
libpng, which is very complete, well-tested, and by far the most commonly used PNG library. This program also keeps all
image-related variables in a single struct; as with the one described in Chapter 14, "Reading PNG Images Progressively",
this approach would enable a multithreaded program to handle several images at the same time. Finally, wpng uses
NetPBM (or PBMplus) binary files for input, since there are few image formats that are simpler to read (or write, for that
matter).

But recall from Chapter 5, "Applications. Image Converters', that there is already an extremely capable NetPBM
conversion program called pnmtopng, by Alexander Lehmann and Willem van Schaik. It supports practically all PNG
chunks and all possible variants of image data, and its source code is freely available and reusable, subject to minimal
restrictions. Rather than duplicate many of its functions, we chose to stick to aminimal subset and instead concentrate on a
few features not currently supported[103] by the larger program: incremental (or progressive) conversion, automatic
timestamping, interactive input of text fields, and support for a very unofficial NetPBM extension format: type P8 files,
containing 32-bit RGBA data. Supported PNG output types include basic 8-bit-per-sample grayscale, RGB and RGBA
images, either interlaced or not. The program will write agamma chunk if the user supplies an explicit value, but not
otherwise; it cannot know apriori in what color space the original NetPBM image was created. The background chunk is
also supported if the user supplies a background color, but it isignored if the input image has no alpha channel.

[103] The most recent release as of thiswriting isversion 2.37.2.

Readers with more advanced needs should study pnmtopng, which can be found on the PNG home site: http://www.libpng.
org/pub/png/apps/pnmtopng.html. It includes such features as rescaling low-bit-depth samples, reordering the pal ette so

that opague entries of the tRNS chunk may be omitted, and support for explicitly specifying a separate PGM file as the
alpha channel. libpng and zlib can both be found in the same location.

15.2. Gamma Correction

Before diving into the PNG-specific code, there are a couple of itemsin the main program (front end) that are worth a
quick look. Thefirst hasto do with our old friend, gamma correction (see Chapter 10, "Gamma Correction and Precision
Color"). As| noted earlier, in genera thereis no way to know what the gamma value of the input file is, so the output PNG
file's gamma cannot be set automatically. But we do know that if the input file looks OK when displayed on the user's
display system--which is presumed to be the one in use when the conversion program is run--then the file gammais
roughly equal to the inverse of the display system's exponent. So wpng calcul ates a default value for the display-system
exponent just as our two PNG-reading demo programs did; the difference isthat its calculated value is purely advisory.
Hereisthe code to calculate the default gamma value:

doubl e default_gamma = 0. 0;

#i f defi ned(NeXT)

def aul t _exponent = 1.0; [* 2.2/ next_gamm for 3rd-party utils */
#el i f defined(sgi)
def aul t _exponent = 1. 3; [* default == 2.2/ 1.7 */

/* there doesn't seemto be any docunented function to get the

* "gamm" value, so we do it the hard way */

if (tnmpfile = fopen("/etc/config/systemgl Gammaval ", "r")) {
doubl e sgi _ganmms;

fgets(fooline, 80, tnpfile);
fclose(tnpfile);
sgi _gamma = at of (fooline);
if (sgi_ganma > 0.0)
def aul t _exponent = 2.2 / sgi_ganmmg;
}
#el i f defined(Maci nt osh)
def aul t _exponent = 1.5; [* default == (1.8/2.61) * 2.2 */
/*
if (mac_gamm = sonme_nac_function_that _returns_gamma())
def aul t _exponent = (mac_ganma/2.61) * 2.2;
*/
#el se
def aul t _exponent = 2. 2; /* assunme std. CRT, no LUT: nobst PCs */
#endi f

default_gamma = 1.0 / defaul t _exponent;

if ((p = getenv("SCREEN GAMMVA")) != NULL) {
doubl e exponent = atof(p);

if (exponent > 0.0)
default _gamma = 1.0 / atof(p);
}

The first section calculates a platform-dependent exponent for the display system, which isthen inverted to give a default
fileegammavalue. But it is possible that the user has calibrated the display system more precisely and has defined the
SCREEN_GAMMA environment variable as suggested by the libpng documentation. If so, this valueis used instead.

http://www.libpng.org/pub/png/apps/pnmtopng.html
http://www.libpng.org/pub/png/apps/pnmtopng.html

Note that the Macintosh code isincomplete. The M acintosh macro, presumed to be defined already, most likely would
need to be set on the basis of compiler-specific macros. For example, the following preprocessor code would work for
Metrowerks CodeWarrior and the Macintosh Programmer's Workbench, athough MPW is not terribly specific and might
be defined on non-Macintosh systems, too:

#i f ! defined(Mcintosh)

if defined(__MAERKS) && defined(nacintosh)

defi ne Maci nt osh

elif defined(MPW /* && defined(MCH MACI NTOSH) */
defi ne Maci nt osh

endif

#endi f

In any case, the calculated file gammais presented as part of wpng's usage screen but thereafter ignored.

15.3. Text Chunks

The other item worth looking at is the interactive text-entry code. Most windowing systems will have more elegant ways to
read in text than | use here, but even they should ensure that the entered text conforms to the recommended format for
PNG text chunks. PNG text isrequired to use the Latin-1 character set; strictly speaking, that does not restrict the use of
control characters (character code 127 and any code below 32 decimal), but in practice only line feeds (code 10) are
necessary. The use of carriage-return characters (code 13) is explicitly discouraged by the spec in favor of singleline
feeds; this hasimplications for DOS, 0OS/2, Windows, and Macintosh systems. Horizontal tabs (code 9) are discouraged as
well since they don't display the same way on all systems, but there are legitimate uses for tabs in text. The section of the
spec dealing with security considerations implicitly recommends against the use of the escape character (code 27), which
is commonly used to introduce ANSI escape sequences. Since these can include potentially malicious macros, encoders
should restrict the use of the escape character for the sake of overly ssmple-minded decoders. That leaves codes 9, 10, 32-
126, and 160-255 as valid from a practical standpoint, with use of the first (tab) discouraged. Note that codes 128-159 are
not valid Latin-1 characters, at least not in the printable sense. They are reserved for specialized control characters.

The specification also recommends that lines in each text block be no more than 79 characters long; I've chosen to restrict
mine to 72 characters each, plus provide for one or two newline characters and atrailing NULL. The spec does not
specifically address the issue of the final newline, but does require omitting the trailing NULL ; logically, one might extend
that to include trailing newlines, so | have.

Finally, | have arbitrarily alowed only six predetermined keywords: Title, Author, Description, Copyright (al officially
registered), and E-mail and URL (unregistered). Description islimited to nine lines, mainly so that the little line-counter
prompts for each line are single digits and therefore line up nicely; the others are limited to one line each. Thus the code
for reading the Title keyword, once the text buffer (textbuf) has been allocated, looks like this:

do {
valid = TRUE
p = textbuf + TEXT_TI TLE OFFSET;
fprintf(stderr, " Title: ");
fflush(stderr);
if (FGETS(p, 74, keybd) && (len = strlen(p)) > 1) {
if (p[len-1] == "\n")
p[--len] ="\0"; /* renove trailing newine */
wpng_info.title = p;
wpng_i nfo. have_text | = TEXT_TI TLE;

if ((result = wpng_isvalid_ latinl((uch *)p, len)) >= 0) {
fprintf(stderr, ™ " PROGNAME " warning: character”
" code % is Y%di scouraged by the PNG n"

specification [first occurrence was at
" character position #%]\n", (unsigned)p[result],
(p[result] == 27)? "strongly " : "", result+1);
fflush(stderr);
#i f def FORBI D_LATI N1_CTRL
wpng_i nf o. have_text &= ~TEXT_TI TLE;
valid = FALSE;

#el se
if (p[result] == 27) { /| * escape character */
wpng_i nfo. have_text &= ~TEXT_TI TLE
val id = FALSE;
}
#endi f

}
}
} while (!valid);

Aside from some subtlety with the keybd stream that | won't cover here (it has to do with reading from the keyboard even
if standard input is redirected), the only part of real interest is the test for nonrecommended Latin-1 characters, which is
accomplished in the wpng_isvalid_latin1() function:

static int wong_isvalid_ latinl(uch *p, int Ien)

{

int i, result = -1;

for (i =0; i <len; ++i) {
if (p[i] == 10 || (p[i] > 31 && p[i] < 127) || p[i] > 160)
conti nue;
if (result <0 || (p[result] !'= 27 && p[i] == 27))
result =i;

}

return result;

}

If the function finds a control character that is discouraged by the PNG specification, it returns the offset of the first one
found. The only exception isif an escape character (code 27) isfound later in the string; in that case, its offset is what gets
returned. The main code then tests for a non-negative value and prints a warning message. What happens next depends on
how the program has been compiled. By default, the presence of an escape character forces the user to re-enter the text, but
all of the other discouraged characters are alowed. If the FORBID_LATIN1 CTRL macro is defined, however, the user
must re-enter the text whenever any of the ““bad" control charactersis found. The default behavior results in output similar
to the following:

Enter text info (no nore than 72 characters per line);
to skip a field, hit the <Enter> key.
Title: L'"Arc de Trionphe
Aut hor: Greg Roel of s
Description (up to 9 lines):
[1] This line contains only normal characters.
[2] This line contains a tab character here: *I
[3]
wpng warni ng: character code 9 is discouraged by the PNG
specification [first occurrence was at character position #85]
Copyright: W attenpt an escape character here: [
wpng war ni ng: character code 27 is strongly discouraged by the PNG
specification [first occurrence was at character position #38]

Copyright: Copyright 1981, 1999 G eg Roel of s
E-mai |l : roel of s@obox. com
URL: http://ww.libpng.org/ pub/png/ pngbook. ht n

Note that the Copyright keyword had to be entered twice since the first attempt included an escape character. The
Description keyword also would have had to be reentered if the program had been compiled with
FORBID_LATINL1 CTRL defined.

Returning to more mundane issues, wpng_info is the struct by which the front end communicates with the PNG-writing
back end. It is of type mainprog_info, and it is defined as follows:

typedef struct _mainprog_info {
doubl e ganmm;
| ong wi dt h;
| ong hei ght;
time_t nodtine;
FILE *infile;
FILE *outfil e;
void *png_ptr;
void *info_ptr;
uch *i mage_dat a;
uch **row poi nters;
char *title;
char *aut hor;
char *desc;
char *copyright;
char *enmil;
char *url;
int filter;
i nt pnntype;
i nt sanpl e_dept h;
int interlaced,
i nt have_bg;

int have_ti ne;
i nt have_text;
j mp_buf j npbuf;
uch bg_red,;
uch bg_green;
uch bg_bl ue;

} mai nprog_i nfo;

Asin the previous programs, we use the abbreviated typedefs uch, ush, and ulg in place of the more unwieldy unsigned
char, unsigned short, and unsigned long, respectively. Thetitle element is simply a pointer into the text buffer, and the
struct contains similar pointers for the other five keywords. have_text is more than a simple Boolean (TRUE/FAL SE)
value, however. Because the user may not want all six text chunks, the program must keep track of which ones were
provided with valid data. Thus, have text isabit flag, and TEXT_TITLE setsthe bit corresponding to the Title
keyword--but only if the length of the entered string is greater than one.

The user indicates that a field should be skipped by hitting the Enter key, and the fgets() function includes the newline
character in the string it returns; thus a string of length one contains nothing but the newline.

15.4. writepng_version_info()

WEe'll turn now to the PNG-specific back-end code in writepng.c. Aswith any module that calls libpng functions, it begins
by including the png.h header file, which in turn includes Zlib.h. This particular program also includes writepng.h, which
defines our mainprog_info struct, various text-related macros, and prototypes for the externally visible functions that welll

be discussing in detail. Indeed, the first of these functionsisamost trivial:

#i ncl ude "png. h" /* 1ibpng header; includes zlib.h */
#include "witepng. h" [/* typedefs, common nacros, public prototypes */

void witepng_version_info()

{
fprintf(stderr, " Conpiled with libpng %; using libpng %.\n",
PNG_LI BPNG_VER_STRI NG png_I| i bpng_ver);
fprintf(stderr, " Conpiled with zlib %; using zlib %.\n",
ZLI B_VERSI ON, zlib_version);
}

writepng_version_info() smply indicates the versions of libpng and zlib with which the application was compiled, as
well asthe versionsit happensto be using at runtime. Ideally the two pairs of version numbers will match--in the case of a
statically linked executable, they always will--but if the program was dynamically linked, it is possible that the program
loader has found either an older or a newer version of one or both libraries, in which case strange problems may arise later.
Making thisinformation easily available to the user, whether in a simple text-mode usage screen as| do here or viaa
windowed "“about box" or even afancy, automated, troubleshooting function, can be helpful in dealing with the bug
reports that inevitably show up sooner or later.

15.5. writepng_init()

Back in the main program we conditionally fill in various elements of our mainprog_info struct based on the user's
command-line options: interlaced, modtime, have_time, gamma, bg_red, bg_green, bg_blue, and have_bg. Note that
have bgisset only if the user provides a background color and the PNM image type is the experimenta "“type 8" binary
RGBA file. Also, whereas pnmtopng currently requires the user to provide atext version of the current time for usein the
tIME chunk, wpng automatically determines the current time if the -time option is given:

if (user_specified_ tinme_option) {
wpng i nfo. nmodtinme = tinme(NULL);
wpng_i nfo. have_tinme = TRUE;

}

After finishing the command-line options, we next open the input file (in binary mode!), verify that it's in the proper
format, and read its basic parameters: image height, width, and depth. We also generate an output filename based on the
input name and verify both that the output file does not already exist and that it can be opened and writtento (alsoin
binary mode!). That provides enough information to fill in most of the rest of mainprog_info: infile, pnmtype, have bg,
width, height, sample_depth, and outfile.

If any errors have occurred by this point, wpng prints the usage screen--including the libraries version information--and
exits. Otherwise it optionally prompts the user for PNG text information and then, finally, calls our PNG initialization
routine, writepng_init(). It isdeclared as follows:

int witepng_init(mainprog_info *mai nprog_ptr)

where mainprog_ptr just points at the mainprog_info struct we filled in in the main program. writepng_init() begins
with some fairly standard libpng boilerplate:

png_structp png_ptr;
png_infop info_ptr;

png_ptr = png_create_wite_struct (PNG LI BPNG VER STRI NG
mai nprog_ptr, witepng_error_handl er, NULL);

if ('png_ptr)

return 4, /* out of nmenory */

info_ptr = png_create_info_struct(png_ptr);
if ('info_ptr) {
png destroy wite struct(&ng ptr, NULL);
return 4,

}

This fragment allocates memory for the two internal structures that libpng currently requires and sets up a custom error
handler. Note that while the structs have the same names and types as those used in our PNG-reading demo programs,
libpng provides separate functions to create and destroy them. The first function, png_create write_struct(), also checks
that the compile-time and runtime versions of libpng are reasonably compatible. Of course, any change to the library may
create unforeseen incompatibilities, so passing this test does not absolutely guarantee that everything will work. Failing it,
on the other hand, is a pretty good indication that things will break.

The second and third arguments to png_create write struct() are the keysto installing a custom error handler. The
second argument is a pointer to application data (mainprog_ptr, in this case) that will be supplied to the error handler; the
third argument is the custom error-handling routine itself. | will explain why it isimportant to use a custom routine as soon
aswe take alook at the next section of code.

Once the structs have been allocated, it is necessary to set up the ““receiving end” of the error-handling code for this
particular function. Essentially every user function that calls alibpng routine will need code like this; it amounts to more
standard boilerplate, and in general, the only difference between applications will be where the jmpbuf member is stored.
In this program, as with the one in the previous chapter, we store jmpbuf in our own struct instead of relying on the one in
the main PNG struct:

if (setjnp(minprog_ptr->jnmpbuf)) {
png_destroy_wite_struct(&png_ptr, & nfo_ptr);
return 2,

}

I discussed the semantics of setjmp() and longjmp() in Chapter 13, "Reading PNG Images'; effectively they amount to a

really big goto statement. The problem is not so much with the precise storage location of jmpbuf, but rather that its type,
jmp_buf, can be different sizes depending on whether certain sytem macros have been defined. When one uses the default
libpng error handler, setjmp() is called from the application, but longjmp() is called from within libpng. Sinceit is not
uncommon for the library to be compiled separately from the application--indeed, it may not even have been compiled on
the same system--there is no guarantee that the jmp_buf sizesin libpng and the application will be consistent. If they are
not, mayhem ensues. See the sidebar for a solution.

writepng_error_handler()

The solutionisa ™ custom" error handler, though that's a slight misnomer in our case. Completely custom
error handlers can certainly be installed, but libpng currently assumes that its error-handling routine will
never return. This rather drastically limits the options for alternatives--basically, one can use longjmp()
or exit(), which amounts to an even larger goto statement.[104] Here, asin Chapter 14, "Reading PNG
Images Progressively", | have merely taken libpng's default error handler and modified it slightly to use
mainprog_ptr instead of png_ptr:

static void witepng_error_handl er(png_structp png_ptr,
png_const _charp mnsg)

{

mai nprog_info *mainprog ptr;

fprintf(stderr, "witepng libpng error: %\n", nsg);
fflush(stderr);

mai nprog_ptr = png_get _error_ptr(png_ptr);
i f (mainprog_ptr == NULL) {
fprintf(stderr, "witepng severe error:
"j mpbuf not recoverable; termnating.\n");
fflush(stderr);
exi t(99);
}

| ongj np(mai nprog_ptr->j npbuf, 1);
}

Because we have to use alibpng function, however trivial, to retrieve our pointer, there is an extra block
of code in our version that makes sure the pointer isnot NULL. If it is, we are completely stuck, and our
only real option isto exit. But assuming the pointer seemsvalid (it may have been overwritten with an
invalid but non-NULL address, in which case we're going to " exit" whether we want to or not), we use
our saved jmp_buf and longjump back to the part of our application that most recently invoked setjmp
(). The key difference from using libpng's error handler is simply the location of the longjmp() call. Here
we call both setjmp() and longjmp() within the same application--indeed, from within the same source
file. They are therefore guaranteed to have consistent notions of how ajmp_buf is defined, so we have
eliminated one more potential source of very-difficult-to-debug crashes.

[104] Ford'sModel T was also renowned for its wide range of color options.

Aslong as we're on the subject of aternatives, libpng aso supports user-defined input/output functions. But its default is
to read from or write to PNG files, and since that is precisely what we want to do here, | chose to stick with the standard I/
O-initialization call and pass the output file's pointer to libpng:

png_init_io(png_ptr, mainprog_ptr->outfile);

Next we deal with compression. libpng has pretty good defaults, and many programs (possibly most) will not need to do
anything here. But in our case we're converting from an uncompressed image format to PNG; for any given image, we're
unlikely to do so more than once, and even if we convert many images, wpng is a command-line program and can easily be
incorporated into a script for batch processing. Thus | chose to override libpng's default compression setting (zlib level 6--
see Chapter 9, "Compression and Filtering") with the Slower ~"maximum” setting (zlib level 9):

png_set _conpression_| evel (png_ptr, Z BEST_COVPRESSI ON) ;

Note that a good PNG-writing program should let the user decide whether and how to override the default settings; options
for very fast saves and/or for maximal compression might be reasonable, in addition to the default. In fact, pnmtopng
provides options to do just that.

Tweaking Compression

Closely related to compression isfiltering, one areain which it is ailmost always better to leave the decision|up
to libpng. Repeated tests have shown that filtering is almost never useful on pal ette-based images, but on
everything elseit is quite beneficial. Though libpng allows oneto restrict its filter selection, thisisrarely a good
idea; dynamic filtering works best when the encoder can choose from the five defined filter types. But for
programmers who want to play with the alternatives, here's an example:

/*
>>> this is pseudo-code
if (palette inmage, i.e., don't want filtering) {

png_set _filter(png_ptr, PNG_FILTER TYPE BASE,
PNG_FI LTER_NONE) ;
png_set _conpression_strategy(png_ptr, Z DEFAULT_STRATEGY);
} else {
>>> | eave default filter selection alone
png_set _conpression_strategy(png_ptr, Z_FILTERED);

}
*/

The calsto png_set_compression_strategy() actually alter zlib's behavior to work better with the filtered
output. Other zlib parameters can also be tweaked, at least in theory; these include the sliding window size,
memory level, and compression method. For the last, only method 8 is currently defined, but zlib 2.0 islikely to
introduce at least one or two new methods when it is eventually released. Of course, unless and until the PNG
specification is revised accordingly, no new compression method can be used within a PNG file without
invalidating it.

The window sizeis the only thing anormal PNG encoder should consider changing, and then only when the
total size of the image data, plus one extra byte per row for the row filters, amounts to 16 kilobytes or less. I
such a case, the encoder can use a smaller power-of-two window size without affecting compression, which
allows decoders to reduce their memory usage. The following fragment shows how to modify these zlib
parameters; the values shown are the defaults used by libpng (consult the libpng documentation, specifically
““Configuring zlib" and " Controlling row filtering"):

/*
>>> second arg i s power of two; 8 through 15 (256-32768) valid
png_set _conpressi on_w ndow bits(png_ptr, 15);
png_set _conpression_nmem | evel (png _ptr, 8);
png_set _conpressi on_net hod(png_ptr, 8);
*/

The next step isto convert our notion of the image type into something libpng will understand. In this case, because we
support only three basic image types--grayscale, RGB, or RGBA--we have a one-to-one correspondence between input and
output types, so setting the PNG color type is easy. For more general programs, libpng provides severa
PNG_COLOR_MASK _* macrosthat can be combined to get the color type, with the exception that
PNG_COLOR_MASK_PALETTE and PNG_COLOR_MASK_ALPHA areincompatible. We also set the appropriate
PNG interlace type if the user so requested:

int color_type, interlace_type;

i f (mainprog_ptr->pnntype == 5)

col or _type = PNG COLOR TYPE_GRAY;
else if (mainprog_ptr->pnntype == 6)

col or _type = PNG COLOR _TYPE_RGE;
el se if (mainprog_ptr->pnntype == 8)

col or _type = PNG_COLOR_TYPE _RGB_ALPHA;

el se {
png _destroy wite struct(&png ptr, & nfo_ptr);
return 11;

}

interlace_type = mainprog_ptr->interlaced? PNG_| NTERLACE ADAM/
PNG_| NTERLACE_NONE;

At this point, we can set the basic image parameters. We have the option of using several functions, each of which setsa

single parameter, but thereisreally no point in doing so. Instead we set all of them with asingle call to png_set IHDR():

png_set | HDR(png_ptr, info_ptr, mainprog_ptr->w dth,
mai nprog_ptr->hei ght, mai nprog_ptr->sanpl e_dept h,
col or _type, interlace_type,
PNG_COWPRESSI ON_TYPE_DEFAULT, PNG_FI LTER TYPE_DEFAULT) ;

If we supported palette-based images, thisis the point at which we would define the palette for libpng, viathe

png_set PLTE() and possibly png_set tRNS() functions. We can aso set any optional parameters the user specified,
starting with the gamma value, background color, and image modification time. In the case of the background color, we
know that have _bg will be true only if the image has an apha channel; in this program, that necessarily impliesthat it's an
RGBA image, not grayscale with alpha or palette-based with transparency. Thus we only fill in the red, green, and blue
elements of the png_color 16 struct:

i f (mainprog_ptr->gama > 0.0)
png_set gAMA(png ptr, info_ptr, nainprog_ptr->gama);

i f (mai nprog_ptr->have_bg) {
png_col or _16 background;

background. red = mai nprog_ptr->bg_red,

background. green = nmi nprog_ptr->bg_green;

background. bl ue = mai nprog_ptr->bg_bl ue;

png_set bKGA&(png ptr, info_ptr, &background);
}

i f (mai nprog_ptr->have_tine) {
png_time nodtine;

png convert fromtine t(&odtinme, nmainprog ptr->nodtine);
png_set tINME(png_ptr, info_ptr, &rodtine);
}

It is also worth noting that libpng copies most of the data it needs into its own structs, so we can get away with using
temporary variables like backgr ound and modtime without worrying about their values being corrupted before libpng is
ready to write them to the file. The only exceptions are things involving pointers, in which case libpng copies the pointer
itself but not the buffer to which it points. In fact, libpng's text-handling code is an excellent example of that:

i f (mainprog_ptr->have_text) {
png_text text[6];
int numtext = O;

i f (mainprog_ptr->have_text & TEXT_TITLE) {
text[num text].conpressi on = PNG_TEXT_COVPRESSI ON_NONE;
text[numtext].key = "Title";
text[numtext].text = mainprog ptr->title;
++num t ext ;
}
i f (mai nprog_ptr->have_text & TEXT_AUTHOR) {
text[num text].conpression = PNG _TEXT_COVPRESSI ON_NONE;
text[numtext].key = "Author";
text[numtext].text = mai nprog_ptr->aut hor;
++num t ext ;
}
i f (mai nprog_ptr->have_text & TEXT_DESC) {
text[num text].conpressi on = PNG _TEXT_COVWPRESSI ON_NONE;

text[num text].key = "Description"
text[numtext].text = mai nprog_ptr->desc;
++num_t ext ;
}
i f (mai nprog_ptr->have_text & TEXT_COPY) {
text[numtext].conpression = PNG TEXT_ COVPRESSI ON_NONE;
text[numtext].key = "Copyright";
text[numtext].text = mai nprog_ptr->copyright;
++num t ext ;
}
if (mai nprog _ptr->have text & TEXT_EMAIL) {
text[num text].conpressi on = PNG _TEXT_COVPRESSI ON_NONE;
text[numtext].key = "E-mail"
text[numtext].text = mai nprog_ptr->emil;
++num t ext ;
}
i f (mainprog_ptr->have_text & TEXT_URL) {
text[num text].conpressi on = PNG TEXT_COVPRESSI ON_NONE
text[numtext].key = "URL";
text[numtext].text = mainprog_ptr->url;
++num t ext ;
}
png_set _text(png_ptr, info_ptr, text, numtext);

}

Here | have declared atemporary array of six png_text structs, each of which consists of four elements. compression,
key, text, and text_length. The first of these simply indicates whether the text chunk is to be compressed (ZTXt) or not
(tEX1). key and text are pointers to NUL L-terminated strings containing the keyword and actual text, respectively. These
pointers are what libpng copies, but the text buffers to which they point must remain valid until either png_write_info() or
png_write_end() is called--we'll return to that point in amoment. The final member of the struct, text_length, is used
internally by libpng; we need not set it ourselves, since libpng will do so regardless.

Anywhere from one to six of the structsisfilled in, depending on whether the main program set the appropriate bit for
each of the six supported keywords. Then png_set_text() is called, which triggers libpng to allocate its own text structs
and copy our struct data into them. Alternatively, we could have used a single png_text struct, repeatedly filling it in and
calling png_set_text() for each keyword; libpng merely chains the copied text structs together, so the net result would
have been the same.

Text Buffers, PNG Structs, and Core Dumps

Theissue of libpng's allocation of its own text buffersis worth a closer ook, becauseit indirectly led to a
subtle but fatal bug in a popular PNG viewer. The program in question was John Bradley's XV, an
elegant and powerful image viewer/converter for the X Window System. Version 3.10a, released latein
1994 and still the most recent release as of thiswriting, had no native PNG support. But because it was
available in source-code form, it was one of the first applications to support the reading and writing of
PNGs, thanks to a patch created by Alexander Lehmann in June 1995 and later modified by Andreas
Dilger and the author of this book.

This patch was originally written to work with libpng 0.71 and zlib 0.93, beta versions so old they were
arguably alpha-level software. At the time, major functionality was still being added to libpng, and the
so-called modern " convenience functions' for modifying libpng parameters did not exist. As aresult, the
patch was designed to access the two PNG structs directly, and later updates to the patch did not
completely eliminate this behavior. In particular, all versions of the patch through 1.2d, released in June
1996, allocated their own text structs and plugged them directly into one of the main PNG structs for
libpng's use.

Now fast-forward to January 1998, when the final libpng betas were being released. By thistime, libpng
provided functions not only to allocate and destroy the PNG structs, but also to read from them and write
to them. In particular, png_set_text() already existed in its present form; i.e., it allocated its own text
structs and copied the user-supplied data into them. But one of the changesin libpng 0.97 involved
plugging some small memory leaks by freeing these libpng-allocated text structs as part of
png_destroy_write_struct(). Unfortunately, libpng had no way to track whether it had actually
allocated the structs in the first place, and...well, one can see where thisis going. First libpng freed the
text structs, then the XV patch--which had allocated them--did so again. Boom: segmentation fault, core
dump, an incomplete PNG file, and no more XV.

The moral of thislittle story is simple: 1995-era programs had no choice but to access libpng structs
directly, because that was how libpng was originally written. But modern programs should never do so,
not only because of this particular problem, but also for the several other reasons detailed in the previous
two chapters. Let's say it again: Accessing libpng structures directly isjust plain evil. Don't do it!

Y e have been warned.

The setting of the text chunksis our last piece of non-pixel-related PNG information, so our next step isto write all chunks
up to thefirst IDAT:

png wite_info(png_ptr, info_ptr);

Doing this flushes any time or text chunks to the output file, and the corresponding datain the PNG structs is marked so
that it is not written to the file again later. | mentioned earlier that text buffers must remain valid until either
png_write_info() or png_write_end() is called, which implies that either one can be used to write text chunks to the PNG
file. Thisisindeed the case. Had we wished to put all of our text chunks (or the time chunk) at the end of the PNG file, we
would have called png_write info() first, followed by one or both of png_set tIME() and png_set_text().

In the case of the latter function,[105] we could do both--that is, call it with one or more text structs before calling
png_write_info() and then call it again with one or more new text structs (perhaps a lengthy legal disclaimer to be stored
in azTXt chunk) afterward. Any callsto png_set_text() occurring before png_write_info() will be written to the PNG file
before the IDATS; any callsto it after png_write_info() but before png_write_end() will be written to the PNG file after
the IDATs. And any png_set_text() or png_set_tIME() calls after png_write_end() will be ignored.

[105] Recall from Chapter 11, "PNG Options and Extensions’, that only one tIME chunk is allowed.

Having completed our pre-IDAT housekeeping, we can now turn to our image-data transformations. But unlike our PNG-
reading demos, most programs that write PNGs will not require many transformations. In fact, we only call one, and
technically there's no point even in that:

png_set _packi ng(png_ptr);

This function packs low-bit-depth pixelsinto bytes. There are no low-bit-depth RGB and RGBA images; only grayscale
and palette images support bit depths of 1, 2, or 4. But our main program neither counts colors to see whether a pal ette-
based representation would be possible, nor checks for valid low-bit-depth grayscale values, and it always sets
sample_depth to 8, so there is currently no possibility of libpng actually being able to pack any pixels. However,
pnmtopng does both, and perhaps a subsequent revision of wpng will, too.

The only remaining thing for our initialization function to do isto save copies of the two PNG-struct pointers for passing
to libpng functions | ater:

mai nprog_ptr->png_ptr = png_ptr;
mai nprog_ptr->info_ptr = info_ptr;

return O;

Once again, we could have used global variables instead, but this program is intended to demonstrate how a multithreaded
PNG encoder might be written.

15.6. Interlaced PNG: writepng_encode _image()

Back in the main program, the first thing we do after returning is to free the text buffer, since all of its data has aready
been written to the PNG file. Then we calculate the number of bytes per row of image data; since we accept only three
basic file types, there are only three possibilities for this: either one, three, or four times the image width.

What happens next depends on whether the user requested that the PNG image be interlaced. If so, there'sreally no good
way to read and write the image progressively, so we ssimply allocate a buffer large enough for the whole thing and read it
in. We also allocate and initialize arow_pointers array, where each element points at the beginning of arow of pixels, and
then call writepng_encode_image():

int witepng_encode_i mage(nmai nprog_i nfo *mai nprog_ptr)

{
png_structp png_ptr = (png_structp)mai nprog_ptr->png_ptr;
png_infop info_ptr = (png_infop)minprog ptr->info_ptr;

if (setjnp(mainprog_ptr->j npbuf)) {
png_destroy_wite_struct(&png_ptr, & nfo_ptr);
mai nprog_ptr->png_ptr = NULL;
mai nprog_ptr->info_ptr = NULL;
return 2;

}
png_wite_inmage(png_ptr, mainprog_ptr->row_pointers);
png wite _end(png_ptr, NULL);

return O;

}

One can see that the actual process of writing the image datais quite simple. We first restore our two struct pointers, we
could simply use them asiis, but that would require some ugly typecasts. Next we set up the usual PNG error-handling
code, followed by the call that really matters: png_write image(). This function writes all of the pixel datato thefile,
reading from the row_pointers array we just set up in the main program. Once that is complete, there is nothing left to do
but to write out the end of the PNG file with png_write_end(). As discussed earlier, thiswill write any new text or time
chunks, but not ones that have already been written; in our case, that means it does nothing but write the final IEND
chunk. The second parameter to png_write_end() is ordinarily info_ptr, but since we have no extra chunks to write,
passing aNULL value isatiny optimization.

15.7. Noninterlaced PNG: writepng_encode_row()

If the user did not request interlacing, we can read and write the image progressively, allowing very large images to be
converted to PNG without incurring a huge memory overhead. In this case, we forego the row_pointers array and simply
allocate image_data large enough to hold one row. Then we start looping over al of the rowsin theimage (i.e., height
rows), reading the pixel data into our buffer and passing it to writepng_encode _row():

int witepng_encode_row mai nprog i nfo *mai nprog _ptr)

{
png_structp png_ptr = (png_structp)mainprog_ptr->png_ptr;
png_infop info_ptr = (png_infop)minprog_ptr->info_ptr;

if (setjnp(mainprog_ptr->j npbuf)) {
png_destroy_wite_struct(&png_ptr, & nfo_ptr);
mai nprog_ptr->png_ptr = NULL;
mai nprog_ptr->info_ptr = NULL;
return 2;

}
png_ wite row png_ptr, mainprog _ptr->i nage_data);

return O;

}

Astute readers will perceive that this function is almost identical to the previous one for interlaced images; the differences
arethelack of apng_write end() call (for obvious reasons) and the call to png_write row() instead of png_write image
(). image_data now acts as our single row pointer.

Once the loop over rows completes, we call one last function to close out the PNG file:

int witepng_encode_finish(mainprog_info *mai nprog_ptr)

{
png_structp png_ptr = (png_structp)mai nprog_ptr->png_ptr;
png_infop info_ptr = (png_infop)minprog_ptr->info_ptr;
if (setjnp(mainprog_ptr->jnmpbuf)) {
png_destroy_wite_struct(&png_ptr, & nfo_ptr);
mai nprog_ptr->png_ptr = NULL;
mai nprog_ptr->info_ptr = NULL;
return 2;
}
png_wite_end(png_ptr, NULL);
return O,
}

Again, the function is exactly like what we've seen before except that it calls png_write_end(). Alternatively, it could
have been combined with writepng_encode _row() had we included in our mainprog_info struct aflag indicating whether
the given row was the last one in the image.

15.8. writepng_cleanup()

The last tasks for the main program are to clean up the PNG-specific allocations and the main-program-specific ones,
which is accomplished viathe writepng_cleanup() and wpng_cleanup() functions. The former is very similar to the
analogous routine in Chapter 14, "Reading PNG Images Progressively”, except that this one calls
png_destroy write struct(), which has only two arguments:

void witepng_cl eanup(mai nprog_i nfo *mai nprog_ptr)

{
png_structp png_ptr = (png_structp)mai nprog_ptr->png_ptr;
png_infop info_ptr = (png_infop)mainprog ptr->info_ptr;

if (png_ptr &% info_ptr)
png destroy wite struct(&ong ptr, & nfo_ptr);

wpng_cleanup() closes both input and output files and frees theimage data and row_pointer s arrays, assuming they
were allocated. Since both cleanup functions are also called as aresult of various error conditions, they check for valid
pointers before freeing anything and set NULL pointers for anything they do free.

15.9. Getting the Source Code

All of the source files for the wpng demo program (wpng.c, writepng.c, writepng.h, and makefiles) are available on the
Web, under a BSD-like Open Source license. The files will be available for download from the following URL for the
foreseeable future:

http://www.libpng.org/pub/png/pngbook.html

Bug fixes, new features and ports, and other contributions may be integrated into the code, time permitting.

| PREVIOUS CONTENTS NEXT |

http://www.libpng.org/pub/png/pngbook.html

- PREVIOUS CONTENTS NEXT o

Chapter 16. Other Libraries and Concluding
Remarks

Contents:

16.1. Cross-Platform Libraries
16.2. Windows-Specific Libraries
16.3. Concluding Remarks

As| mentioned at the beginning of Chapter 13, "Reading PNG Images', libpng is not the only

option for adding PNG support to an application. There are numerous other possibilities,
particularly for the Windows platforms; a number of these use libpng themselves.

16.1. Cross-Platform Libraries

In the next two sections, | list roughly two dozen PNG-supporting libraries and toolkits, with
particular emphasis on those with the greatest cross-platform support or support for some of the less
common platforms. For an up-to-date list of PNG toolkits and related code, please check the
Toolkits web page and the Source Code and Libraries page at the PNG home site:

http://www.libpng.org/pub/pna/pngaptk.html http://www.libpng.org/pub/png/pngcode.
html

Note that | have not personally tested any of the libraries or toolkits listed here.
| mageMagick

John Cristy's ImageMagick isa C library that provides a uniform interface to afew dozen
image formats. It not only includes a standard C API but also has Perl and Python interfaces.
It also provides several powerful utilities, including an X-based viewer called display, for
which it is probably better known. ImageMagick is freely available in source and binary
formats for Unix, VMS, Macintosh, and 32-bit Windows platforms, albeit without the
display and animate tools on the Mac. (An X server isrequired for those two programs on
the other platforms.) It uses libpng and zlib for PNG support and may be modified and
distributed freely aslong asits copyright is acknowledged.

http://www.wizards.dupont.com/cristy/l mageM agi ck.html

http://www.libpng.org/pub/png/pngaptk.html
http://www.libpng.org/pub/png/pngcode.html
http://www.libpng.org/pub/png/pngcode.html
http://www.wizards.dupont.com/cristy/ImageMagick.html

Image Library

Colosseum Builders Image Library isa C++ library that supports reading and writing PNGs,
JPEGs, and severa other image formats. The distribution includes demo apps for encoding,
decoding, and viewing images, the accompanying documentation indicates that the library is
an alpharelease. Also, much of the code is described at length in The Programmer's Guide
to Compressed Image Files, by John Miano, Image Library's principal author. Borland C++
Builder and Microsoft Visual C++ are explicitly mentioned on the web page, which also
clamsthat the library iswritten in standard C++, implying that it should work with most
compilers. Full source codeis freely available, including an independent implementation of
the deflate and inflate algorithms, i.e., the core routines of zlib. Image Library may be used
without fee in software that is likewise free and distributed with source; otherwise, licensing
fees apply. The latest release as of thiswriting was on 22 July 1998; this version incorrectly
rejects PNG images with a zlib window size other than 32 KB.

http://www.col osseumbuil ders.com/sourcecode.htm

PaintLib

Ulrich von Zadow's PaintLib is a C++ class library for decoding and manipulating several
image formats, including PNG; version 2.0 adds an ActiveX control to the Win32 port. Like
several of the available imaging toolkits, PaintLib actually useslibpng and zlib for its PNG
support and provides a higher-level, unified interface to its supported formats. Source codeis
available, and it compiles under at least DOS, Unix, and both 16-bit and 32-bit Windows.
The library may be freely used and distributed as long as its use is acknowledged.

http://user.cs.tu-berlin.de/~uzadow/paintlib/

QHTM

QHTM isa32-hit Windows control from Russell Freeman and Gipsysoft that lies
somewhere between an image toolkit and an HTML browser. Specifically, it provides a
programming interface that allows one to add HTML support, including PNG images, to an
application. (PNG is actually supported via code from PaintLib.) QHTM 1.0 does not yet
handle transparency, but support for that is planned. Like PaintLib, QHTM may be freely
used and distributed aslong asits use is acknowledged.

http://www.gipsysoft.com/ghtm/features.html

I mageVision Library

SGl'sImageVision Library is "atoolkit for creating, processing and displaying images on all
Silicon Graphics workstations," to quote from the web page. It actually does not read or write
image filesitself; al file 1/O is handled by SGI's Image Format Library, which isalso

http://www.colosseumbuilders.com/sourcecode.htm
http://user.cs.tu-berlin.de/~uzadow/paintlib/
http://www.gipsysoft.com/qhtm/features.html

available for 32-bit Windows (Microsoft Visual C++ 5.0 only). According to the IRIX 6.5
documentation, IFL is still based on libpng 0.88 and zlib 1.0, but the Windows version may
be more up-to-date. IRIX users compiling applications for use with current versions of
libpng and zlib should take care that they don't accidentally load the older IFL code.

http://www.sgi .com/Technology/lmageVision/

Imlib

Imlib is another high-level, multiformat image library, currently under development by Red
Hat Advanced Development (RHAD) Labs. Though developed under and mainly supported
for Linux, it iswritten as portable Unix/X code, and source code is available for compiling
on other platforms. Imlib supports programs based on both plain Xlib and on the GIMP
Toolkit (GTK+). Unlike the X front ends for the demo programs presented in Chapter 13,
"Reading PNG Images' and Chapter 14, "Reading PNG Images Progressively”, Imlib has the
great advantage of supporting most X displays, including monochrome, pseudocolor (all bit
depths from 2 through 8), static color, and truecolor. On the other hand, it treats all images as
24-bit RGB, optionally with a single color marked as transparent. As of thiswriting, the
current release is version 1.9.4, which includes a placeholder pointer for future 8-bit apha-
channel support but no indication of what level of support may eventually show up. The
authorsindicated in early March 1999 that apha support was alow priority.

http://ww. | abs. redhat.comimib/

QuickTime

Apple's QuickTimeis a high-level, multiformat image (and multimedia) library for Mac OS
System 7.0 and later and for 32-bit Windows. Version 3.0, which natively supports reading
PNG images, isincluded as a standard part of Mac OS 8.5, making Mac OS the first
operating system for which PNG support is built in.[106] PNG is also supported unofficially
in QuickTime 2.5 viaaread-only PNG importer written by Sam Bushell. A future
QuickTime release is expected to support writing PNG images.

[106] A developer's release of Apple's next-generation Rhapsody OS also had PNG
support, but it has not yet been released as a shipping product.

http://www.apple.com/qui cktime/

| mageGear

Accusoft's ImageGear is a commercial imaging library that supports several dozen formats,
including PNG. It isavailable for Unix, OS/2, Macintosh, 16-bit and 32-bit Windows
(including a Visual Basic interface), and Java (both as Java classes and as Beans). The web
page strongly implies that full alphatransparency is supported, too.

http://www.sgi.com/Technology/ImageVision/
http://www.labs.redhat.com/imlib/
http://www.apple.com/quicktime/

http://www.accusoft.com/Digital | maging/lmageGear/|G98 Fr.htm

Java Advanced I maging API

In November 1998 Sun's Javasoft subsidiary finally added native PNG support to Java. As of
the betarelease in April 1999, the Java Advanced Imaging API included both read and write
support for PNG. The Advanced Imaging API requires the Java 2 SDK (formerly known as
JDK 1.2) or later and will presumably be available under the same terms as Java itself.

http://www.javasoft.com/products/java-media/jai/ http://www.javasoft.com/products/
java-media/jai/forDevel opers/jai-apidocs http://www.javasoft.com/productsjava-
media/jai/forDevel operdjal-quide/

Sixlegs PNG

Six-Legged Software's Java package reads and displays PNG images as a Java
ImageProducer. It supports full alpha transparency, gamma correction, progressive display,
and conversion to grayscale, plus quite afew ancillary chunk types. Write support is
expected in a separate, yet-to-be-released package. The current read-only release, as of early
April 1999, isversion 1.0aand requires JDK 1.1 or later (for zlib). Chris Nokleberg released
version 1.0a under the GNU LGPL--formerly the Library General Public License, recently
renamed the Lesser General Public License since it allows linking to proprietary code. Full
source code is included.

http://www.si x|l egs.com/png/

Java I mage Content Handlers

The Java Image Content Handlers were originally developed by Justin Couch for his
employer, ADI Limited, but the code was subsequently released as free software and is now
distributed by Justin's own company, The Virtual Light Company. Several other image
formats are supported in addition to PNG, including JPEG, TIFF, NetPBM, BMP, TGA, and
GIF. The current release, version 0.9.1, is read-only, but write support is coming. The
handlers are written for Java 2 (JDK 1.2) but will work with JDK 1.1 with only minor
changes. Full source code isincluded; as with Sixlegs PNG, the licenseisthe GNU LGPL.

http://www.vlc.com.au/imagel oader/

Java PNG

Visual Tek's Java PNG library is, as the name suggests, alibrary for use in Java programs
with support for reading and writing PNG images. Its license is somewhat less than clear,
however; the web page claimsit is distributed under the GNU General Public License, but no

http://www.accusoft.com/Digital_Imaging/ImageGear/IG98_Fr.htm
http://www.javasoft.com/products/java-media/jai/
http://www.javasoft.com/products/java-media/jai/forDevelopers/jai-apidocs/
http://www.javasoft.com/products/java-media/jai/forDevelopers/jai-apidocs/
http://www.javasoft.com/products/java-media/jai/forDevelopers/jai-guide/
http://www.javasoft.com/products/java-media/jai/forDevelopers/jai-guide/
http://www.sixlegs.com/png/
http://www.vlc.com.au/imageloader/

JIMI

source code is available, and another web page refers to a 30-day evaluation period.
Apparently it may be freely used in GPL'd programs but must be licensed commercially in
other programs.

http://www.visualtek.com/PNG/

Activated Intelligence's image toolkit supports a number of image formats, either “"natively"”
or via Java's ImageProducer/lmageConsumer model, with both read and write support for
PNG. The web site claimsit is quite fast and can handle extremely large images (100 MB or
more), subject only to available disk space. The package, currently version 2.0, is
commercial, but the Standard edition is royalty-free; i.e., it requires no payment beyond the
initial purchase.

http://www.activated.com/products/jimi/jimi.html

Java Vector Graphics (JVG)

Faidon Oy-Ab's Java Vector Graphics package supports reading and writing PNG images, as
well as afew other formats. The current release, version 1.0, is shareware, but the older 1.0
beta 1 (with read-only PNG support) isfree. A company representative promised in
November 1998 that at |east the PNG portion of VG 1.0 "will be freeware soon,” mainly
due to the fact that Sun isincluding PNG support in the Java Advanced Imaging API.

http://web.avo.fr/faidon/JV G.htm

Pnglets

Pnglets was a late addition; created by Roger E. Critchlow, Jr., and first released in April
1999, it iswritten entirely in JavaScript and is capable of creating palette-based PNG images
on thefly. Thusit can be included on web pages, alowing the client browser (rather than the
web server) to render PNG bitmaps dynamically. The author considered the initial release to
be "“pre-alpha,” but it already appeared to be relatively feature-complete; the main problems
noted on the web page included a JavaScript incompatibility with Microsoft's Internet
Explorer and the lack of PNG transparency support in current releases of Netscape
Navigator. Pngletsis available under the GNU General Public License (GPL), which is more
restrictive than the GNU LGPL. The initial version did not appear to include any special
wording about how the license might affect user-written JavaScript embedded in aweb page
that uses Pnglets, but that will probably be clarified in a subsequent release. (The Pnglets
code itself livesin aseparate file, Pnglet.js, and is ""linked in" viathe HTML SCRIPT tag.)

http://www.elf.org/pngl ety

http://www.visualtek.com/PNG/
http://www.activated.com/products/jimi/jimi.html
http://web.avo.fr/faidon/JVG.htm
http://www.elf.org/pnglets/

Jan Nijtmans's Img is afree image-processing extension to the Tcl/Tk scripting language; it
uses libpng and zlib for its PNG support. It works with Tcl 7.5 and Tk 4.1 and later versions
[107] on both Unix/X and 32-bit Windows platforms. Both reading and writing are supported
inversions 1.1.4 and 1.2b2, but a patch to Tk isrequired in order to write PNG images with
an aphachannel. Version 1.2 is expected to be released just after the Tcl/Tk 8.1 release,
currently scheduled for early May, 1999. Unfortunately, Scriptics was unwilling to
incorporate Jan's Tk patch into the official 8.1 release (Tk 8.1 is thread-safe, but the patch is
not), so manual patching will remain necessary for some time to come