

by Sean M. Burke
ISBN 0-596-00178-9
First Edition, published June 2002.
(See the catalog page for this book.)

Search the text of Perl & LWP.

Table of Contents

Copyright Page
Foreword
Preface
Chapter 1: Introduction to Web Automation
Chapter 2: Web Basics
Chapter 3: The LWP Class Model
Chapter 4: URLs
Chapter 5: Forms
Chapter 6: Simple HTML Processing with Regular Expressions
Chapter 7: HTML Processing with Tokens
Chapter 8: Tokenizing Walkthrough
Chapter 9: HTML Processing with Trees
Chapter 10: Modifying HTML with Trees
Chapter 11: Cookies, Authentication, and Advanced Requests
Chapter 12: Spiders
Appendix A: LWP Modules
Appendix B: HTTP Status Codes
Appendix C: Common MIME Types
Appendix D: Language Tags
Appendix E: Common Content Encodings
Appendix F: ASCII Table
Appendix G: User's View of Object-Oriented Modules
Index
Colophon

Copyright © 2002 O'Reilly & Associates. All rights reserved.

http://www.oreilly.com/catalog/perllwp
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Search

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between the image of blesbok and the
the topic of Perl and LWP is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

Table of Contents Foreword

Copyright © 2002 O'Reilly & Associates. All rights reserved.

http://safari.oreilly.com/
mailto:corporate@oreilly.com
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Foreword

I started playing around with the Web a long time ago—at least, it feels that way. The first versions of Mosaic had just
showed up, Gopher and Wais were still hot technology, and I discovered an HTTP server program called Plexus. What
was different was it was implemented in Perl. That made it easy to extend. CGI was not invented yet, so all we had were
servlets (although we didn't call them that then). Over time, I moved from hacking on the server side to the client side
but stayed with Perl as the programming language of choice. As a result, I got involved in LWP, the Perl web client
library.

A lot has happened to the web since then. These days there is almost no end to the information at our fingertips: news,
stock quotes, weather, government info, shopping, discussion groups, product info, reviews, games, and other
entertainment. And the good news is that LWP can help automate them all.

This book tells you how you can write your own useful web client applications with LWP and its related HTML
modules. Sean's done a great job of showing how this powerful library can be used to make tools that automate various
tasks on the Web. If you are like me, you probably have many examples of web forms that you find yourself filling out
over and over again. Why not write a simple LWP-based tool that does it all for you? Or a tool that does research for you
by collecting data from many web pages without you having to spend a single mouse click? After reading this book, you
should be well prepared for tasks such as these.

This book's focus is to teach you how to write scripts against services that are set up to serve traditional web browsers.
This means services exposed through HTML. Even in a world where people eventually have discovered that the Web
can provide real program-to-program interfaces (the current "web services" craze), it is likely that HTML scraping will
continue to be a valuable way to extract information from the Web. I strongly believe that Perl and LWP is one of the
best tools to get that job done. Reading Perl and LWP is a good way get you started.

It has been fun writing and maintaining the LWP codebase, and Sean's written a fine book about using it. Enjoy!

—Gisle Aas

Primary author and maintainer of LWP

Copyright Page Preface

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Index

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Preface

Perl soared to popularity as a language for creating and managing web content. Perl is equally adept at consuming
information on the Web. Most web sites are created for people, but quite often you want to automate tasks that involve
accessing a web site in a repetitive way. Such tasks could be as simple as saying "here's a list of URLs; I want to be
emailed if any of them stop working," or they could involve more complex processing of any number of pages. This
book is about using LWP (the Library for World Wide Web in Perl) and Perl to fetch and process web pages.

For example, if you want to compare the prices of all O'Reilly books on Amazon.com and bn.com, you could look at
each page yourself and keep track of the prices. Or you could write an LWP program to fetch the product pages, extract
the prices, and generate a report. O'Reilly has a lot of books in print, and after reading this one, you'll be able to write
and run the program much more quickly than you could visit every catalog page.

Consider also a situation in which a particular page has links to several dozen files (images, music, and so on) that you
want to download. You could download each individually, by monotonously selecting each link in your browser and
choosing Save as..., or you could dash off a short LWP program that scans for URLs in that page and downloads each,
unattended.

Besides extracting data from web pages, you can also automate submitting data through web forms. Whether this is a
matter of uploading 50 image files through your company's intranet interface, or searching the local library's online card
catalog every week for any new books with "Navajo" in the title, it's worth the time and piece of mind to automate
repetitive processes by writing LWP programs to submit data into forms and scan the resulting data.

0.1. Audience for This Book

This book is aimed at someone who already knows Perl and HTML, but I don't assume you're an expert at either. I give
quick refreshers on some of the quirkier aspects of HTML (e.g., forms), but in general, I assume you know what each of
the HTML tags means. If you know basic regular expressions and are familiar with references and maybe even objects,
you have all the Perl skills you need to use this book.

If you're new to Perl, consider reading Learning Perl (O'Reilly) and maybe also The Perl Cookbook (O'Reilly). If your
HTML is shaky, try the HTML Pocket Reference or HTML: The Definitive Guide (O'Reilly). If you don't feel
comfortable using objects in Perl, reading Appendix G, "User's View of Object-Oriented Modules" in this book should
be enough to bring you up to speed.

Foreword 0.2. Structure of This Book

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

G.8. The Gory Details

For sake of clarity of explanation, I had to oversimplify some of the facts about objects. Here's a few of the gorier
details:

● Every example I gave of a constructor was a class method. But object methods can be constructors, too, if the
class was written to work that way: $new = $old->copy, $node_y = $node_x->new_subnode, or the
like.

● I've given the impression that there's two kinds of methods: object methods and class methods. In fact, the same
method can be both, because it's not the kind of method it is, but the kind of calls it's written to accept—calls that
pass an object, or calls that pass a class name.

● The term "object value" isn't something you'll find used much anywhere else. It's just my shorthand for what
would properly be called an "object reference" or "reference to a blessed item." In fact, people usually say
"object" when they properly mean a reference to that object.

● I mentioned creating objects with constructors, but I didn't mention destroying them with destructor—a destructor
is a kind of method that you call to tidy up the object once you're done with it, and want it to neatly go away
(close connections, delete temporary files, free up memory, etc.). But because of the way Perl handles memory,
most modules won't require the user to know about destructors.

● I said that class method syntax has to have the class name, as in $session = Net::FTP->new($host).
Actually, you can instead use any expression that returns a class name: $ftp_class = 'Net::FTP';
$session = $ftp_class->new($host). Moreover, instead of the method name for object- or class-
method calls, you can use a scalar holding the method name: $foo->$method($host). But, in practice, these
syntaxes are rarely useful.

And finally, to learn about objects from the perspective of writing your own classes, see the perltoot documentation, or
Damian Conway's exhaustive and clear book Object Oriented Perl (Manning Publications, 1999).

G.7. So Why Do Some Modules Use
Objects?

Index

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animals on the cover of Perl and LWP are blesbok. Blesbok are African antelopes related to the hartebeest. These
grazing animals, native to Africa's grasslands are extinct in the wild but preserved in farms and parks.

Blesbok have slender, horselike bodies that are shorter than four feet at the shoulder. They are deep red, with white
patches on their faces and rumps. A white blaze extends from between a blesbok's horns to the end of its nose, broken
only by a brown band above the eyes. The blesbok's horns sweep back, up, and inward. Both male and female blesbok
have horns, though the males' are thicker.

Blesbok are diurnal, most active in the morning and evening. They sleep in the shade during the hottest part of the day,
as they are very susceptible to the heat. They travel from place to place in long single-file lines, leaving distinct paths.
Their life span is about 13 years.

Linley Dolby was the production editor and copyeditor for Perl and LWP, and Sarah Sherman was the proofreader.
Rachel Wheeler and Claire Cloutier provided quality control. Johnna VanHoose Dinse wrote the index. Emily Quill
provided production support.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image is a 19th-
century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1
using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book was converted to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that
uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by
Linley Dolby.

Index

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: Symbols & Numbers

There are no index entries for this letter.

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: A

Aas, Gisle: 0. Foreword
ABEBooks.com POST request examples: 5.6. POST Example: ABEBooks.com
absolute URLs

converting from relative: 4.4. Converting Relative URLs to Absolute
converting to relative: 4.3. Converting Absolute URLs to Relative

absolute_base URL path: 4.3. Converting Absolute URLs to Relative
ActivePerl for Windows: 1.3. Installing LWP
agent() attribute, User-Agent header: 3.4.2. Request Parameters
AltaVista document fetch example: 2.5. Example: AltaVista
analysis, forms: 5.3. Automating Form Analysis
applets, tokenizing and: 8.6.2. Images and Applets
as_HTML() method: 10. Modifying HTML with Trees
attributes

altering: 4.1. Parsing URLs
HTML::Element methods: 10.1. Changing Attributes
modifying, code for: 10.1. Changing Attributes
nodes: 9.3.2. Attributes of a Node

authentication: 1.5.4. Authentication
11.3. Authentication
Authorization header: 11.3. Authentication
cookies and: 11.3.1. Comparing Cookies with Basic Authentication
credentials() method: 11.3.2. Authenticating via LWP
security and: 11.3.3. Security
Unicode mailing archive example: 11.4. An HTTP Authentication Example:The Unicode Mailing Archive
user agents: 3.4.5. Authentication

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: B

Babelfish, POST query example: 2.7. Example: Babelfish
BBC headlines token example: 7.4.1. Example: BBC Headlines
BBC News headline extraction, HTML::TreeBuilder: 9.4. Example: BBC News
bookmark files, link extraction: 6.5. Example: Extracting Linksfrom a Bookmark File
brittleness: 1.1.2. Brittleness
browsers (see user agents)
buttons

radio buttons: 5.4.5. Radio Buttons
reset: 5.4.8. Reset Buttons
submit buttons: 5.4.6. Submit Buttons

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: C

can() method: 4.1.4. Components of a URL
canonical, calling: 4.1.2. Output
CGI (command gateway interface), formpairs.pl: 5.3. Automating Form Analysis
Check tags code: 7.3.1. Checking Image Tags
checkboxes: 5.4.4. Checkboxes
children elements, siblings: 9.1. Introduction to Trees
classes

HTTP::Cookies::Netscape: 11.1.2. Loading Cookies from a File
HTTP::Response: 3.1. The Basic Classes
LWP class model: 3.1. The Basic Classes
LWP::ConnCache: 3.4.1. Connection Parameters
LWP::UserAgent: 3.1. The Basic Classes
URI class: 4.1.1. Constructors

cleanup, HTML::TreeBuilder: 9.2.4. Cleanup
clone() method: 3.4. User Agents

4.1.1. Constructors
code

check tags: 7.3.1. Checking Image Tags
detaching/reattaching nodes: 10.3. Detaching and Reattaching
HTML::TreeBuilder: 9.2. HTML::TreeBuilder
modifying attributes: 10.1. Changing Attributes
tree example: 9.1. Introduction to Trees

command-line utilities, formpairs.pl: 5.3. Automating Form Analysis
comment tokens: 7.2.4. Comment Tokens
comments

access to, HTML::TreeBuilder: 10.4.2. Accessing Comments
content, adding: 10.4.3. Attaching Content
storage: 10.4.1. Retaining Comments

comparing URLs: 4.1.3. Comparison
components of regular expressions: 6.2.7. Develop from Components
conn_cache() method: 3.4.1. Connection Parameters
connection cache object: 3.4.1. Connection Parameters
connection parameters, LWP::UserAgent class and: 3.4.1. Connection Parameters
consider_response() function: 12.3.3. HEAD Response Processing

12.3.4. Redirects
constructors: 4.1.1. Constructors

HTML::TreeBuilder: 9.2.1. Constructors
LWP::UserAgent class: 3.4. User Agents
new(): 4.1.1. Constructors
new_from_lol(): 10.5.2. New Nodes from Lists
relative URLs and: 4.1.1. Constructors

content() method: 3.5.2. Content
content, adding to comments: 10.4.3. Attaching Content
cookies: 11.1. Cookies

authentication and: 11.3.1. Comparing Cookies with Basic Authentication
enabling: 11.1.1. Enabling Cookies
HTTP::Cookies

new method: 11.1.2. Loading Cookies from a File
loading from file: 11.1.2. Loading Cookies from a File
New York Times site example: 11.1.4. Cookies and the New York Times Site
saving to file: 11.1.3. Saving Cookies to a File
Set-Cookie line: 11.1. Cookies

copyrights, distributions: 1.4.2. Copyright
CPAN (Comprehensive Perl Archive Network): 1.3. Installing LWP
CPAN shell, LWP installation: 1.3.1. Installing LWP from the CPAN Shell
credentials() method: 3.4.5. Authentication
current_age() method: 3.5.4. Expiration Times

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: D

data extraction: 1.1.2. Brittleness
regular expressions: 6.1. Automating Data Extraction
troubleshooting: 6.3. Troubleshooting
walkthrough: 8. Tokenizing Walkthrough

data sources, Web as: 1.1. The Web as Data Source
DEBUG constant: 8.6.1. Debuggability
debug levels: 8.6. Rewrite for Features
debugging

HTML: 3.5.6. Debugging
regular expressions: 6.3. Troubleshooting

declaration tokens: 7.2.5. Markup Declaration Tokens
decode_entities() method: 7.2.3. Text Tokens
detach_content() method: 10.3.1. The detach_content() Method
diary-link-checker code, link extraction and: 6.6. Example: Extracting Linksfrom Arbitrary HTML
distributions

acceptable use policies: 1.4.3. Acceptable Use
copyright issues: 1.4.2. Copyright
LWP: 1.3.2.1. Download distributions

document fetching: 2.4. Fetching Documents Without LWP::Simple
AltaVista example: 2.5. Example: AltaVista

do_GET() function: 2.4. Fetching Documents Without LWP::Simple
3.3. Inside the do_GET and do_POST Functions

do_POST() function: 3.3. Inside the do_GET and do_POST Functions
dump() method: 9.2. HTML::TreeBuilder

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: E

elements
HTML::Element: 10.5. Creating New Elements
trees, attaching to other trees: 10.4. Attaching in Another Tree

elements, trees: 9.1. Introduction to Trees
children: 9.1. Introduction to Trees
li elements: 9.1. Introduction to Trees
tag comparison: 9.1. Introduction to Trees
ul elements: 9.1. Introduction to Trees

end-tag token: 7.1. HTML as Tokens
7.2.2. End-Tag Tokens

end-tags, get_trimmed_text() method and: 7.5.4.2. End-tags
env_proxy() method: 3.4.6. Proxies
eq() method: 4.1.3. Comparison
expressions (see regular expressions)
extracted text, uses: 7.6. Using Extracted Text
extracting data: 1.1.2. Brittleness

regular expressions: 6.1. Automating Data Extraction
extracting links, link-checking spider example: 12.3.5. Link Extraction

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: F

false negatives, data extraction and: 6.3. Troubleshooting
false positives, data extraction and: 6.3. Troubleshooting
files

bookmarks, link extraction: 6.5. Example: Extracting Linksfrom a Bookmark File
opening, HTML forms and: 5.4.9. File Selection Elements
parsing from: 9.2.3. Parsing
uploading: 5.7. File Uploads

filters, HTML::TokeParser as: 7.3.2. HTML Filters
firewalls, enabling proxies: 3.3. Inside the do_GET and do_POST Functions
fixed URLs, GET forms and: 5.2.1. GETting Fixed URLs
<form> HTML tag: 5.1. Elements of an HTML Form
formpairs.pl program: 5.3. Automating Form Analysis

adding features: 5.6.3. Adding Features
POST request examples: 5.5.2. Use formpairs.pl

forms: 1.5.2. Forms
5. Forms
analysis automation: 5.3. Automating Form Analysis
file uploads: 5.7. File Uploads
GET forms: 5.2. LWP and GET Requests
HTML elements: 5.1. Elements of an HTML Form
limitations: 5.8. Limits on Forms
POST request examples: 5.5.1. The Form

5.6.1. The Form
fragment() method: 4.1.4. Components of a URL

4.1.4. Components of a URL
fragment-only relative URLs: 4.2. Relative URLs
Fresh Air data extraction example, HTML::TreeBuilder: 9.5. Example: Fresh Air
freshness_lifetime() method: 3.5.4. Expiration Times
from() attribute: 3.4.2. Request Parameters
FTP URLs: 2.1. URLs
functions

consider_response(): 12.3.3. HEAD Response Processing
12.3.4. Redirects

do_GET(): 2.4. Fetching Documents Without LWP::Simple
3.3. Inside the do_GET and do_POST Functions

do_POST(): 3.3. Inside the do_GET and do_POST Functions
get(): 1.5. LWP in Action

2.3.1. Basic Document Fetch
getprint(): 2.3.3. Fetch and Print
getstore(): 2.3.2. Fetch and Store
head(): 2.3.4. Previewing with HEAD
mutter(): 12.3.2. Overall Design in the Spider
near_url(): 12.3.2. Overall Design in the Spider
next_scheduled_url(): 12.3.2. Overall Design in the Spider

note_error_response(): 12.3.3. HEAD Response Processing
parse_fresh_stream(): 8.6. Rewrite for Features
process_far_url(): 12.3.2. Overall Design in the Spider
process_near_url(): 12.3.2. Overall Design in the Spider
put_into_template(): 10.4.3. Attaching Content
say(): 12.3.2. Overall Design in the Spider
scan_bbc_stream(): 7.4.3. Bundling into a Program
schedule_count(): 12.3.2. Overall Design in the Spider
uri_escape(): 2.1. URLs

5.2.1. GETting Fixed URLs
url_scan(): 7.4.3. Bundling into a Program

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: G

get() function: 1.5. LWP in Action
2.3.1. Basic Document Fetch

GET forms: 5.2. LWP and GET Requests
fixed URLs and: 5.2.1. GETting Fixed URLs

GET query, HTTP: 2.5. Example: AltaVista
getprint() function: 2.3.3. Fetch and Print
getstore() function: 2.3.2. Fetch and Store
get_tag() method: 7.5. More HTML::TokeParser Methods

7.5.4. The get_tag() Method
parameters: 7.5.5. The get_tag() Method with Parameters

get_text() method: 7.5. More HTML::TokeParser Methods
7.5.1. The get_text() Method
applet elements and: 8.6.2. Images and Applets
img elements and: 8.6.2. Images and Applets
parameters: 7.5.2. The get_text() Method with Parameters

get_token() method: 8.5. Narrowing In
get_trimmed_text() method: 7.5. More HTML::TokeParser Methods

7.5.3. The get_trimmed_text() Method
applet elements and: 8.6.2. Images and Applets
img elements: 8.6.2. Images and Applets

greedy matches, regular expressions: 6.2.4. Minimal and Greedy Matches

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: H

head() function: 2.3.4. Previewing with HEAD
HEAD request

link-checking spider example: 12.3.3. HEAD Response Processing
spider link-checking example and: 12.3.1. The Basic Spider Logic

header() method: 3.5.3. Headers
headers: 11.2. Adding Extra Request Header Lines

HTTP requests: 2.2.1. Request
HTTP responses: 2.2.2. Response
Referer header value: 11.2.2. Referer
WWW-Authentication: 11.3. Authentication

headline detector, Netscape imitator: 11.2.1. Pretending to Be Netscape
host() method: 4.1. Parsing URLs
HTML: 2. Web Basics

comments, HTML structure: 6.2.8. Use Multiple Steps
debugging: 3.5.6. Debugging
documents, relative URLs: 3.5.5. Base for Relative URLs
links, extracting from remote files: 6.6. Example: Extracting Linksfrom Arbitrary HTML
meta tags: 3.4.8. Advanced Methods
parsing: 1.5.3. Parsing HTML

HTML entities
decode_entities(): 7.2.3. Text Tokens

HTML forms
data extraction: 5.2.2. GETting a query_form() URL
elements: 5.1. Elements of an HTML Form
file opening: 5.4.9. File Selection Elements
option element: 5.4.11. Select Elements and Option Elements
select element: 5.4.11. Select Elements and Option Elements
textarea element: 5.4.10. Textarea Elements

HTML::Element: 9. HTML Processing with Trees
attributes, changing: 10.1. Changing Attributes
detach_content() method: 10.3.1. The detach_content() Method
element creation: 10.5. Creating New Elements
images, deleting: 10.2. Deleting Images
literals: 10.5.1. Literals
nodes

creating from lists: 10.5.2. New Nodes from Lists
deleting: 10.2. Deleting Images
detaching/reattaching: 10.3. Detaching and Reattaching

pseudoelements: 10.4.2. Accessing Comments
replace_with() method constraints: 10.3.2. Constraints

HTML::Parser: 6.4. When Regular Expressions Aren't Enough
HTML::TokeParser: 6.4. When Regular Expressions Aren't Enough

7. HTML Processing with Tokens
as filter: 7.3.2. HTML Filters

methods: 7.5. More HTML::TokeParser Methods
New York Times cookie example: 11.1.4. Cookies and the New York Times Site
streams and: 7.2. Basic HTML::TokeParser Use

HTML::TreeBuilder: 6.4. When Regular Expressions Aren't Enough
9.2. HTML::TreeBuilder
BBC News headline extraction: 9.4. Example: BBC News
cleanup: 9.2.4. Cleanup
comment access: 10.4.2. Accessing Comments
constructors: 9.2.1. Constructors
dump() method: 9.2. HTML::TreeBuilder
Fresh Air data extraction example: 9.5. Example: Fresh Air
parse() method: 9.2. HTML::TreeBuilder
parsing options: 9.2.2. Parse Options
searches: 9.3.1. Methods for Searching the Tree
store_comments(): 10.4.1. Retaining Comments
whitespace: 10.1.1. Whitespace

HTTP Basic Authentication: 11.3. Authentication
HTTP GET query: 2.5. Example: AltaVista
HTTP (Hypertext Transfer Protocol): 2. Web Basics

2.2. An HTTP Transaction
HTTP POST query: 2.6. HTTP POST

Babelfish example: 2.7. Example: Babelfish
HTTP requests: 2.2.1. Request
HTTP responses: 2.2.2. Response
HTTP URLs: 2.1. URLs
HTTP::Cookies: 11.1.2. Loading Cookies from a File
HTTP::Cookies::Netscape class: 11.1.2. Loading Cookies from a File
HTTP::Response class: 3.1. The Basic Classes
HTTP::Response object: 3.5. HTTP::Response Objects

content: 3.5.2. Content
expiration times: 3.5.4. Expiration Times
header values: 3.5.3. Headers

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: I

if statements, loops: 7.3. Individual Tokens
image tags, checking: 7.3.1. Checking Image Tags
images

deleting: 10.2. Deleting Images
inline images: 5.4.7. Image Buttons
tokenizing and: 8.6.2. Images and Applets

individual tokens: 7.3. Individual Tokens
inline images: 5.4.7. Image Buttons
input elements, HTML forms

type=checkbox: 5.4.4. Checkboxes
type=file: 5.4.9. File Selection Elements

5.7. File Uploads
type=hidden: 5.4.1. Hidden Elements
type=image: 5.4.7. Image Buttons
type=password: 5.4.3. Password Elements
type=radio: 5.4.5. Radio Buttons
type=reset: 5.4.8. Reset Buttons
type=submit: 5.4.6. Submit Buttons
type=text: 5.4.2. Text Elements

<input> HTML tag: 5.1. Elements of an HTML Form
installation, LWP: 1.3. Installing LWP

CPAN shell: 1.3.1. Installing LWP from the CPAN Shell
manual: 1.3.2. Installing LWP Manually

interfaces, object-oriented: 1.5.1. The Object-Oriented Interface

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: J

There are no index entries for this letter.

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: K

There are no index entries for this letter.

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: L

li elements: 9.1. Introduction to Trees
libwww-perl project: 1.2. History of LWP
license plate example: 5.5. POST Example: License Plates
link-checking spider example: 12.3. Example: A Link-Checking Spider
links

extracting
from bookmark files: 6.5. Example: Extracting Linksfrom a Bookmark File
from remote files: 6.6. Example: Extracting Linksfrom Arbitrary HTML
link-checking spider example: 12.3.5. Link Extraction

Weather Underground web site, extracting: 6.7. Example: Extracting Temperatures from Weather Underground
literals, HTML::Element: 10.5.1. Literals
look_down() method: 10.2. Deleting Images
loops, if statements and: 7.3. Individual Tokens
LWP

distributions: 1.3.2.1. Download distributions
Google search: 1.2. History of LWP
history of: 1.2. History of LWP
installation: 1.3. Installing LWP

CPAN shell: 1.3.1. Installing LWP from the CPAN Shell
manual: 1.3.2. Installing LWP Manually

sample code: 1.5. LWP in Action
LWP class model, basic classes: 3.1. The Basic Classes
LWP:: module namespace: 1.2. History of LWP
LWP::ConnCache class: 3.4.1. Connection Parameters
LWP::RobotUA: 12.2. A User Agent for Robots
LWP::Simple module: 2.3. LWP::Simple

document fetch: 2.3.1. Basic Document Fetch
get() function: 2.3.1. Basic Document Fetch
getprint() function: 2.3.3. Fetch and Print
getstore() function: 2.3.2. Fetch and Store
head() function: 2.3.4. Previewing with HEAD
previewing and: 2.3.4. Previewing with HEAD

LWP::UserAgent class: 3.1. The Basic Classes
3.4. User Agents
connection parameters: 3.4.1. Connection Parameters
constructor options: 3.4. User Agents
cookies: 11.1. Cookies

enabling: 11.1.1. Enabling Cookies
request header lines: 11.2. Adding Extra Request Header Lines

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: M

MacPerl: 1.3. Installing LWP
mailing archive authentication example: 11.4. An HTTP Authentication Example:The Unicode Mailing Archive
mailto:, host() method: 4.1.4. Components of a URL
Makefile.PL, distributions: 1.3.2.2. Unpack and configure
matches, regular expressions

anchors: 6.2.1. Anchor Your Match
capture: 6.2.5. Capture
repeated: 6.2.6. Repeated Matches

max_size() method: 3.4.1. Connection Parameters
meta tags, HTML: 3.4.8. Advanced Methods
method calls: 3.2. Programming with LWP Classes
methods: 4.1.4. Components of a URL

as_HTML(): 10. Modifying HTML with Trees
calling, no arguments: 3.4.3. Protocols
can(): 4.1.4. Components of a URL
clone(): 3.4. User Agents

4.1.1. Constructors
conn_cache(): 3.4.1. Connection Parameters
content(): 3.5.2. Content
credentials(): 3.4.5. Authentication

11.3.2. Authenticating via LWP
current_age(): 3.5.4. Expiration Times
detach_content(): 10.3.1. The detach_content() Method
dump(): 9.2. HTML::TreeBuilder
env_proxy(): 3.4.6. Proxies
eq(): 4.1.3. Comparison
freshness_lifetime(): 3.5.4. Expiration Times
get_tag(): 7.5. More HTML::TokeParser Methods

7.5.4. The get_tag() Method
parameters: 7.5.5. The get_tag() Method with Parameters

get_text(): 7.5. More HTML::TokeParser Methods
7.5.1. The get_text() Method
parameters: 7.5.2. The get_text() Method with Parameters

get_token(): 8.5. Narrowing In
get_trimmed_text(): 7.5. More HTML::TokeParser Methods

7.5.3. The get_trimmed_text() Method
header(): 3.5.3. Headers
host(): 4.1. Parsing URLs
HTML::TokeParser: 7.5. More HTML::TokeParser Methods
HTTP requests: 2.2.1. Request
look_down(): 10.2. Deleting Images
max_size(): 3.4.1. Connection Parameters
new_abs(): 4.4. Converting Relative URLs to Absolute
node attributes: 9.3.2. Attributes of a Node

no_proxy(): 3.4.6. Proxies
parse(): 9.2. HTML::TreeBuilder
parse_file(): 9.2.3. Parsing
path(): 4.1.4. Components of a URL
path_query(): 4.1.5. Queries
port(): 4.1.4. Components of a URL
post(): 5.2. LWP and GET Requests
protocols_allowed(): 3.4.3. Protocols
protocols_forbidden(): 3.4.3. Protocols
query(): 4.1.4. Components of a URL

4.1.5. Queries
query_form(): 4.1.5. Queries

5.2. LWP and GET Requests
5.2.2. GETting a query_form() URL

query_keywords(): 4.1.5. Queries
redirect_ok(): 3.4.4. Redirection
rel(): 4.3. Converting Absolute URLs to Relative
replace_with(): 10.3.2. Constraints
request methods: 3.4.7. Request Methods
scheme(): 4.1.4. Components of a URL
server(): 4.1.4. Components of a URL
status_line(): 3.5.1. Status Line
traverse(): 9.3.3. Traversing
unget_token(): 7.4. Token Sequences

8.5. Narrowing In
URI->new_abs: 4.1.1. Constructors
userinfo(): 4.1.4. Components of a URL

MIME types, file uploads and: 5.7. File Uploads
minimal matches, regular expressions: 6.2.4. Minimal and Greedy Matches
MOMspider: 1.2. History of LWP
mutter() function: 12.3.2. Overall Design in the Spider

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: N

named values, queries: 4.1.5. Queries
name=string attribute, option element and: 5.4.11. Select Elements and Option Elements
near_url() function: 12.3.2. Overall Design in the Spider
nested structures, regular expressions and: 6.4. When Regular Expressions Aren't Enough
Netscape, imitating in headline detector: 11.2.1. Pretending to Be Netscape
network load: 1.4.1. Network and Server Load
new() construction, user agents and: 3.4. User Agents
new() constructor: 4.1.1. Constructors
new() method, HTTP::Cookies: 11.1.2. Loading Cookies from a File
New York Times site cookies example: 11.1.4. Cookies and the New York Times Site
new_abs() method: 4.4. Converting Relative URLs to Absolute
new_from_lol() constructor: 10.5.2. New Nodes from Lists
newlines, regular expressions and: 6.2.3. Embedded Newlines
newspaper information cookie example: 11.1.4. Cookies and the New York Times Site
next_scheduled_url() function: 12.3.2. Overall Design in the Spider
nodes

attributes: 9.3.2. Attributes of a Node
callbacks: 9.3.3. Traversing
creating from lists: 10.5.2. New Nodes from Lists
deleting: 10.2. Deleting Images
detaching/reattaching, HTML::Element: 10.3. Detaching and Reattaching
traversal: 9.3.3. Traversing
trees: 9.1. Introduction to Trees

no_proxy() method: 3.4.6. Proxies
note_error_response() function: 12.3.3. HEAD Response Processing
NPR Fresh Air data extraction walkthrough: 8.1. The Problem

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: O

object-oriented interface: 1.5.1. The Object-Oriented Interface
objects

connection cache object: 3.4.1. Connection Parameters
HTTP::Response: 3.5. HTTP::Response Objects
URI: 4.1. Parsing URLs

Ogg Vorbis file, spider and: 12.3.1. The Basic Spider Logic
</option> HTML tag: 5.4.11. Select Elements and Option Elements
option element, HTML forms: 5.4.11. Select Elements and Option Elements
ora-temps code, web site link extraction: 6.7. Example: Extracting Temperatures from Weather Underground
output, URI objects as strings: 4.1.2. Output

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: P

parse() method: 9.2. HTML::TreeBuilder
parse trees: 1.1.1. Screen Scraping
parse_file() method: 9.2.3. Parsing
parse_fresh_stream() function: 8.6. Rewrite for Features
parsing

from files: 9.2.3. Parsing
HTML: 1.5.3. Parsing HTML
HTML::TreeBuilder: 9.2.2. Parse Options
from strings: 9.2.3. Parsing
URLs: 4.1. Parsing URLs

passwords: 5.4.3. Password Elements
security: 11.3.3. Security

path() method: 4.1.4. Components of a URL
path_query() method: 4.1.5. Queries
paths, HTTP requests: 2.2.1. Request
perlmodinstall document: 1.3.2. Installing LWP Manually
PIs (see processing instruction tokens)
port() method: 4.1.4. Components of a URL
post() method: 5.2. LWP and GET Requests
POST query: 2.6. HTTP POST

Babelfish example: 2.7. Example: Babelfish
POST request

examples: 5.5. POST Example: License Plates
5.6. POST Example: ABEBooks.com
formpairs.pl: 5.5.2. Use formpairs.pl
forms: 5.5.1. The Form

5.6.1. The Form
postorder traversals: 9.3.3. Traversing
preorder traversals: 9.3.3. Traversing
process_far_url() function: 12.3.2. Overall Design in the Spider
processing instruction tokens: 7.2.6. Processing Instruction Tokens
process_near_url() function: 12.3.2. Overall Design in the Spider
protocols, user agents: 3.4.3. Protocols
protocols_allowed() method: 3.4.3. Protocols
protocols_forbidden() method: 3.4.3. Protocols
proxies

settings, checking for: 3.2. Programming with LWP Classes
user agents: 3.4.6. Proxies

pseudoelements, HTML::Element: 10.4.2. Accessing Comments
put_into_template() function: 10.4.3. Attaching Content

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: Q

queries
named values: 4.1.5. Queries
URI class: 4.1.5. Queries

query() method: 4.1.4. Components of a URL
4.1.5. Queries

query_form() method: 4.1.5. Queries
5.2. LWP and GET Requests
5.2.2. GETting a query_form() URL

query_keywords() method: 4.1.5. Queries

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: R

radio buttons: 5.4.5. Radio Buttons
RealAudio URLs, data extraction example: 8.1. The Problem
redirection

link-checking spider example: 12.3.4. Redirects
user agents: 3.4.4. Redirection

redirect_ok() method: 3.4.4. Redirection
Referer header value: 11.2.2. Referer
regexps, query_form() method: 5.2.2. GETting a query_form() URL
regular expressions

components: 6.2.7. Develop from Components
data extraction: 6.1. Automating Data Extraction
debugging: 6.3. Troubleshooting
matches: 6.2.4. Minimal and Greedy Matches

anchoring: 6.2.1. Anchor Your Match
capture: 6.2.5. Capture
greedy: 6.2.4. Minimal and Greedy Matches
repeated: 6.2.6. Repeated Matches

multiple steps: 6.2.8. Use Multiple Steps
nested structures and: 6.4. When Regular Expressions Aren't Enough
newlines and: 6.2.3. Embedded Newlines
techniques for: 6.2. Regular Expression Techniques
whitespace and: 6.2.2. Whitespace

rel() method: 4.3. Converting Absolute URLs to Relative
relative URLs: 4.2. Relative URLs

constructors and: 4.1.1. Constructors
converting from absolute: 4.3. Converting Absolute URLs to Relative
converting to absolute: 4.4. Converting Relative URLs to Absolute
fragment-only: 4.2. Relative URLs
implicit information: 4.2. Relative URLs

repeated matches, regular expressions: 6.2.6. Repeated Matches
replace_with() method, constraints: 10.3.2. Constraints
request methods, user agents and: 3.4.7. Request Methods
request parameters: 3.4.2. Request Parameters
requests

adding: 11.2. Adding Extra Request Header Lines
header lines, adding: 11.2. Adding Extra Request Header Lines

requests_redirectable() attribute: 3.4.4. Redirection
reset button: 5.4.8. Reset Buttons

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: S

say() function: 12.3.2. Overall Design in the Spider
scan_bbc_stream() function: 7.4.3. Bundling into a Program
schedule_count() function: 12.3.2. Overall Design in the Spider
scheme() method: 4.1.4. Components of a URL
schemes, URLs: 4.2. Relative URLs
screen scraping: 1.1.1. Screen Scraping
searches, trees: 9.3.1. Methods for Searching the Tree
security: 11.3.3. Security
select element, HTML forms: 5.4.11. Select Elements and Option Elements
server() method: 4.1.4. Components of a URL
servers

load: 1.4.1. Network and Server Load
response time: 3.4.1. Connection Parameters

Set-Cookie line: 11.1. Cookies
SGML constructs, processing instructions: 7.2.6. Processing Instruction Tokens
SOAP: 1.1.3. Web Services
spiders: 12. Spiders

link-checking example: 12.3. Example: A Link-Checking Spider
MOMspider: 1.2. History of LWP
Type Four Requester: 12.1. Types of Web-Querying Programs

12.1. Types of Web-Querying Programs
Type One Requester: 12.1. Types of Web-Querying Programs

12.1. Types of Web-Querying Programs
Type Three Requester: 12.1. Types of Web-Querying Programs

12.1. Types of Web-Querying Programs
Type Two Requester: 12.1. Types of Web-Querying Programs

12.1. Types of Web-Querying Programs
start-tag tokens: 7.1. HTML as Tokens

7.2.1. Start-Tag Tokens
status line, HTTP response: 2.2.2. Response
status_line() method: 3.5.1. Status Line
steps, regular expressions and: 6.2.8. Use Multiple Steps
story URLs: 7.4.1. Example: BBC Headlines
streams, HTML::TokeParser and: 7.2. Basic HTML::TokeParser Use
strings

URI objects as, output: 4.1.2. Output
strings, parsing from: 9.2.3. Parsing
submit buttons: 5.4.6. Submit Buttons

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: T

tags
element comparison: 9.1. Introduction to Trees
image tags, checking: 7.3.1. Checking Image Tags

text, extracted: 7.6. Using Extracted Text
text nodes, trees: 9.1. Introduction to Trees
text token: 7.1. HTML as Tokens

7.2.3. Text Tokens
decoding: 7.2.3. Text Tokens

textarea element, HTML forms: 5.4.10. Textarea Elements
timeout() attribute: 3.4.1. Connection Parameters
tokens: 1.1.1. Screen Scraping

7. HTML Processing with Tokens
applets and: 8.6.2. Images and Applets
BBC headlines example: 7.4.1. Example: BBC Headlines
comment tokens: 7.2.4. Comment Tokens
declaration tokens: 7.2.5. Markup Declaration Tokens
end-tag tokens: 7.1. HTML as Tokens

7.2.2. End-Tag Tokens
images and: 8.6.2. Images and Applets
individual: 7.3. Individual Tokens
live data: 8.6.4. Live Data
processing instructions: 7.2.6. Processing Instruction Tokens
start-tag tokens: 7.1. HTML as Tokens

7.2.1. Start-Tag Tokens
text tokens: 7.1. HTML as Tokens

7.2.3. Text Tokens
token sequences: 7.4. Token Sequences
types: 7.2. Basic HTML::TokeParser Use
walkthrough: 8. Tokenizing Walkthrough

trace levels: 8.6. Rewrite for Features
translate() subroutine: 2.7. Example: Babelfish
traversal, tree nodes: 9.3.3. Traversing
traverse() method: 9.3.3. Traversing
trees: 9. HTML Processing with Trees

code example: 9.1. Introduction to Trees
elements: 9.1. Introduction to Trees

attaching to other trees: 10.4. Attaching in Another Tree
HTML::Element: 9. HTML Processing with Trees
HTML::TreeBuilder: 9.2. HTML::TreeBuilder
nodes: 9.1. Introduction to Trees

callbacks: 9.3.3. Traversing
traversal: 9.3.3. Traversing

searches: 9.3.1. Methods for Searching the Tree
text nodes: 9.1. Introduction to Trees

Type Four Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs

Type One Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs

Type Three Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs

Type Two Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs

type=checkbox, HTML input element: 5.4.4. Checkboxes
type=file HTML input element: 5.7. File Uploads
type=hidden, HTML input element: 5.4.1. Hidden Elements
type=image, HTML input element: 5.4.7. Image Buttons
type=password, HTML input element: 5.4.3. Password Elements
type=radio, HTML input element: 5.4.5. Radio Buttons
type=reset, HTML input element: 5.4.8. Reset Buttons
type=submit, HTML input element: 5.4.6. Submit Buttons
type=text, HTML input element: 5.4.2. Text Elements

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: U

ul elements: 9.1. Introduction to Trees
unget_token() method: 7.4. Token Sequences

8.5. Narrowing In
Unicode mailing archive authentication example: 11.4. An HTTP Authentication Example:The Unicode Mailing Archive
uploading files: 5.7. File Uploads
URI class

characters, URL standard: 4.1.1. Constructors
component access, URLs: 4.1.4. Components of a URL
objects: 4.1.1. Constructors
queries: 4.1.5. Queries

URI->new_abs method: 4.1.1. Constructors
URI modules

URL brackets: 4.1.1. Constructors
URL quotes: 4.1.1. Constructors
URL whitespace: 4.1.1. Constructors

URI objects: 4.1. Parsing URLs
cloning: 4.1.1. Constructors
as strings: 4.1.2. Output

uri_escape() function: 2.1. URLs
5.2.1. GETting Fixed URLs

URI::Escape module: 2.1. URLs
URL encoded characters: 2.1. URLs
URLs (Uniform Resource Locators): 2. Web Basics

2.1. URLs
absolute

converting from relative: 4.4. Converting Relative URLs to Absolute
converting to relative: 4.3. Converting Absolute URLs to Relative

brackets, stripping: 4.1.1. Constructors
characters allowed: 2.1. URLs
comparing: 4.1.3. Comparison
components: 4.1.4. Components of a URL
extracting all in document: 4.1.4. Components of a URL
fixed, GET forms and: 5.2.1. GETting Fixed URLs
normalizing: 4.1.2. Output
parsing: 4.1. Parsing URLs
quotes, stripping: 4.1.1. Constructors
relative: 3.5.5. Base for Relative URLs

4.2. Relative URLs
constructors and: 4.1.1. Constructors
converting from absolute URLs: 4.3. Converting Absolute URLs to Relative
converting to absolute URLs: 4.4. Converting Relative URLs to Absolute
fragments: 4.2. Relative URLs
implicit information: 4.2. Relative URLs

scheduling: 12.3.6. Fleshing Out the URL Scheduling

schemes: 4.2. Relative URLs
story URLs: 7.4.1. Example: BBC Headlines
whitespace, stripping: 4.1.1. Constructors

url_scan() function: 7.4.3. Bundling into a Program
User-Agent header: 3.4.2. Request Parameters
user agents: 3.4. User Agents

authentication: 3.4.5. Authentication
imitating others: 11.2.1. Pretending to Be Netscape
LWP::RobotUA: 12.2. A User Agent for Robots
protocols: 3.4.3. Protocols
proxies: 3.4.6. Proxies
redirection: 3.4.4. Redirection
request methods: 3.4.7. Request Methods

userinfo() method: 4.1.4. Components of a URL

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: V

values, queries in named values: 4.1.5. Queries
value=string attribute, option element: 5.4.11. Select Elements and Option Elements

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: W

Weather Underground web site, link extraction: 6.7. Example: Extracting Temperatures from Weather Underground
Web as data source: 1.1. The Web as Data Source
web automation: 1.1. The Web as Data Source
web services: 1.1.3. Web Services
while loop, link extraction and: 6.6. Example: Extracting Linksfrom Arbitrary HTML
whitespace

HTML::TreeBuider: 10.1.1. Whitespace
regular expressions and: 6.2.2. Whitespace

WWW-Authentication header: 11.3. Authentication

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: X

XML-RPC: 1.1.3. Web Services

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: Y

There are no index entries for this letter.

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: Z

There are no index entries for this letter.

Symbols & Numbers | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

0.2. Structure of This Book

The book is divided into 12 chapters and 7 appendixes, as follows:

Chapter 1, "Introduction to Web Automation" covers in general terms what LWP does, the alternatives to using LWP,
and when you shouldn't use LWP.

Chapter 2, "Web Basics" explains how the Web works and some easy-to-use yet limited functions for accessing it.

Chapter 3, "The LWP Class Model" covers the more powerful interface to the Web.

Chapter 4, "URLs" shows how to parse URLs with the URI class, and how to convert between relative and absolute
URLs.

Chapter 5, "Forms" describes how to submit GET and POST forms.

Chapter 6, "Simple HTML Processing with Regular Expressions" shows how to extract information from HTML using
regular expressions.

Chapter 7, "HTML Processing with Tokens" provides an alternative approach to extracting data from HTML using the
HTML::TokeParser module.

Chapter 8, "Tokenizing Walkthrough" is a case study of data extraction using tokens.

Chapter 9, "HTML Processing with Trees" shows how to extract data from HTML using the HTML::TreeBuilder
module.

Chapter 10, "Modifying HTML with Trees" covers the use of HTML::TreeBuilder to modify HTML files.

Chapter 11, "Cookies, Authentication,and Advanced Requests" deals with the tougher parts of requests.

Chapter 12, "Spiders" explores the technological issues involved in automating the download of more than one page
from a site.

Appendix A, "LWP Modules" is a complete list of the LWP modules.

Appendix B, "HTTP Status Codes" is a list of HTTP codes, what they mean, and whether LWP considers them error or
success.

Appendix C, "Common MIME Types" contains the most common MIME types and what they mean.

Appendix D, "Language Tags" lists the most common language tags and their meanings (e.g., "zh-cn" means Mainland
Chinese, while "sv" is Swedish).

Appendix E, "Common Content Encodings" is a list of the most common character encodings (character sets) and the
tags that identify them.

Appendix F, "ASCII Table" is a table to help you make sense of the most common Unicode characters. It shows each

character, its numeric code (in decimal, octal, and hex), and any HTML escapes there may be for it.

Appendix G, "User's View of Object-Oriented Modules" is an introduction to the use of Perl's object-oriented
programming features.

0. Preface 0.3. Order of Chapters

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Appendix G. User's View of Object-Oriented Modules

Contents:

A User's View of Object-Oriented Modules
Modules and Their Functional Interfaces
Modules with Object-Oriented Interfaces
What Can You Do with Objects?
What's in an Object?
What Is an Object Value?
So Why Do Some Modules Use Objects?
The Gory Details

The following article by Sean M. Burke first appeared in The Perl Journal #17 and is copyright 2000, The Perl Journal.
It appears courtesy of Jon Orwant and The Perl Journal. This document may be distributed under the same terms as Perl
itself.

G.1. A User's View of Object-Oriented Modules

The first time that most Perl programmers run into object-oriented programming is when they need to use a module
whose interface is object-oriented. This is often a mystifying experience, since talk of "methods" and "constructors" is
unintelligible to programmers who thought that functions and variables was all there was to worry about.

Articles and books that explain object-oriented programming (OOP), do so in terms of how to program that way. That's
understandable, and if you learn to write object-oriented code of your own, you'd find it easy to use object-oriented code
that others write. But this approach is the long way around for people whose immediate goal is just to use existing object-
oriented modules, but who don't yet want to know all the gory details of having to write such modules for themselves.

This article is for those programmers—programmers who want to know about objects from the perspective of using
object-oriented modules.

F. ASCII Table G.2. Modules and Their Functional
Interfaces

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

G.7. So Why Do Some Modules Use Objects?

All these details of using objects are definitely enough to make you wonder—is it worth the bother? If you're a module
author, writing your module with an object-oriented interface restricts the audience of potential users to those who
understand the basic concepts of objects and object values, as well as Perl's syntax for calling methods. Why complicate
things by having an object-oriented interface?

A somewhat esoteric answer is that a module has an object-oriented interface because the module's insides are written in
an object-oriented style. This article is about the basics of object-oriented interfaces, and it'd be going far afield to
explain what object-oriented design is. But the short story is that object-oriented design is just one way of attacking
messy problems. It's a way that many programmers find very helpful (and which others happen to find to be far more of
a hassle than it's worth, incidentally), and it just happens to show up for you, the module user, as merely the style of
interface.

G.6. What Is an Object Value? G.8. The Gory Details

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

5.6. POST Example: ABEBooks.com

ABEBooks.com is a web site that allows users to search the database of the books for sale at hundreds of used
bookstores mostly in the U.S. and Canada. An eagle-eyed user can find anything from a $2 used copy of Swahili for
Travellers, to an 11,000 complete set of the 1777 edition of Diderot's Encyclopédie. The trick, as with any kind of
bargain hunting, is to always keep looking, because one never knows when something new and interesting will arrive.
The manual way of doing this is to fastidiously keep a list of titles, authors, and subjects for which you're keeping an eye
out, and to routinely visit the ABEBooks site, key in each of your searches into the HTML search form, and look for
anything new. However, this is precisely the kind of drudgery that computers were meant to do for us; so we'll now
consider how to automate that task.

As with the license plate form in the previous section, the first step in automating form submission is to understand the
form in question. ABEBooks's "Advanced Search" system consists of one form, which is shown in Figure 5-3.

Figure 5-3. ABEBooks query form

The process of searching with this form is just a matter of filling in the applicable fields and hitting "Start Search"; the
web site then returns a web page listing the results. For example, entering "Codex Seraphinianus" in the "Title" field
returns the web page shown in Figure 5-4.

Figure 5-4. ABEBooks results page

5.6.1. The Form

In the previous section, the form's source was simple enough that we could tell at a glance what form pairs it would
produce, and our use of formpairs.pl merely confirmed that we understood it. However, this ABEBooks form is
obviously much more complex, so let's start with using formpairs.pl and look to the details of the form source only as
necessary. Save a local copy of the form and change its form action attribute from this:

<FORM ACTION="BookSearch" METHOD=post>

to this:

<FORM ACTION="http://someserver.int/cgi-bin/formpairs.pl" METHOD=post>

or to whatever URL you've put a copy of formpairs.pl at. If you then open that newly altered HTML file in a browser,
fill in "Codex Seraphinianus" in the "Title" blank, set "Order results by" to "Newest," set "Results per page" to "100,"
and hit "Start Search," our formpairs.pl program shows the form pairs that the browser sends:

POST data:
(
 "ph" => "2",
 "an" => "",
 "tn" => "Codex Seraphinianus",
 "pn" => "",
 "sn" => "",
 "gpnm" => "ALL",
 "cty" => "",
 "bi" => "",
 "prl" => "",
 "prh" => "",
 "sortby" => "0",
 "ds" => "30",
 "bu" => "Start Search",
)

5.6.2. Translating This into LWP

These form pairs can be pasted into a simple program for saving the result of that search, using a call to $browser-
>post(url, pairs_arrayref) such as you'll recognize from the previous section. Example 5-4 demonstrates.

Example 5-4. seraph.pl

#!/usr/bin/perl -w
seraph.pl - search for Codex Seraphinianus on abebooks

use strict;
my $out_file = "result_seraph.html"; # where to save it

use LWP;
my $browser = LWP::UserAgent->new;
my $response = $browser->post(
 'http://dogbert.abebooks.com/abe/BookSearch',
 # That's the URL that the real form submits to.
 [
 "ph" => "2",
 "an" => "",
 "tn" => "Codex Seraphinianus",
 "pn" => "",
 "sn" => "",
 "gpnm" => "All Book Stores",
 "cty" => "All Countries",
 "bi" => "Any Binding",
 "prl" => "",
 "prh" => "",
 "sortby" => "0",
 "ds" => "100",
 "bu" => "Start Search",
]
);

die "Error: ", $response->status_line, "\n"
 unless $response->is_success;

open(OUT, ">$out_file") || die "Can't write-open $out_file: $!";
binmode(OUT);
print OUT $response->content;
close(OUT);
print "Bytes saved: ", -s $out_file, " in $out_file\n";

When run, this program successfully saves to result_seraph.html all the HTML that results from running a 100-newest-
items search on the title "Codex Seraphinianus".

5.6.3. Adding Features

A little more experimentation with the form would show that a search on an author's name, instead of the title name,
shows up in the an=author_name form pair, instead of the tn=title_name form pair. That is what we see if we
go sifting through the HTML source to the search form:

...
<TR><TH ALIGN=LEFT>Author</TH>
<TD><INPUT TYPE=text NAME=an VALUE="" SIZE=35 MAXLENGTH=254></TD></TR>
<TR><TH ALIGN=LEFT>Title</TH>

<TD><INPUT TYPE=text NAME=tn VALUE="" SIZE=35 MAXLENGTH=254></TD></TR>
...

We could alter our program to set the form pairs with something like this:

...
"an" => $author || "",
"tn" => $title || "",
...

Moreover, if we wanted to allow the search to specify that only first editions should be shown, some experimentation
with formpairs.pl and our local copy of the form shows that checking the "First Edition" checkbox produces a new form
pair fe=on, between the bi= and prl= pairs, where previously there was nothing. This jibes with the HTML source
code:

<INPUT TYPE=CHECKBOX NAME=fe>First Edition

This could be modeled in our program with a variable $first_edition, which, if set to a true value, produces that
form pair; otherwise, it produces nothing:

...
 "bi" => "",
 $first_edition ? ("fe" => "on") : (),
 "prl" => "",
...

This can all be bundled up in a single routine that runs a search based on three given parameters: author, title, and
whether only first editions should be shown:

sub run_search {
 my($author, $title, $first_edition) = @_;
 my $response = $browser->post(
 'http://dogbert.abebooks.com/abe/BookSearch',
 [
 "ph" => "2",
 "an" => $author || "",
 "tn" => $title || "",
 "pn" => "",
 "sn" => "",
 "gpnm" => "All Book Stores",
 "cty" => "All Countries",
 "bi" => "Any Binding",
 $first_edition ? ("fe" => "on") : (),
 "prl" => "",
 "prh" => "",
 "sortby" => "0",
 "ds" => "100",
 "bu" => "Start Search",
]
);
 return $response;
}

That run_search() routine takes all we know about how any new-books query to ABEBooks needs to be
performed and puts it all in a single place. From here, we need only apply initialization code and code to call the
run_search routine, and do whatever needs doing with it:

use strict;

use LWP;
my $browser = LWP::UserAgent->new;
do_stuff();

sub do_stuff {
 my $response = run_search(# author, title, first edition
 '', 'Codex Seraphinianus', ''
);
 process_search($response, 'result_seraph.html');
}

sub process_search {
 my($response, $out_file) = @_;
 die "Error: ", $response->status_line, "\n"
 unless $response->is_success;
 open(OUT, ">$out_file") || die "Can't write-open $out_file: $!";
 binmode(OUT);
 print OUT $response->content;
 close(OUT);
 print "Bytes saved: ", -s $out_file, " in $out_file\n";
 return;
}

5.6.4. Generalizing the Program

This program still just runs an ABEBooks search for books with the title "Codex Seraphinianus", and saves the results to
result_seraph.html. But the benefit of reshuffling the code as we did is that now, by just changing do_stuff slightly,
we change our program from being dedicated to running one search, to being a generic tool for running any number of
searches:

my @searches = (# outfile, author, title, first_edition
 ['result_seraph.html', '', 'Codex Seraphinianus', ''],
 ['result_vidal_1green.html', 'Gore Vidal', 'Dark Green Bright Red',
1],
 ['result_marchand.html', 'Hans Marchand', 'Categories', ''],
 ['result_origins.html', 'Eric Partridge', 'Origins', ''],
 ['result_navajo.html', '', 'Navajo', ''],
 ['result_navaho.html', '', 'Navaho', ''],
 ['result_iroq.html', '', 'Iroquois', ''],
 ['result_tibetan.html', '', 'Tibetan', ''],
);
do_stuff();

sub do_stuff {
 foreach my $search (@searches) {
 my $out_file = shift @$search;
 my $resp = run_search(@$search);
 sleep 3; # Don't rudely query the ABEbooks server too fast!
 process_search($resp, $out_file);
 }
}

Running this program saves each of those searches in turn:

% perl -w abesearch03.pl
Bytes saved: 15452 in result_seraph.html
Bytes saved: 57693 in result_vidal_1green.html
Bytes saved: 8009 in result_marchand.html

Bytes saved: 25322 in result_origins.html
Bytes saved: 125337 in result_navajo.html
Bytes saved: 128665 in result_navaho.html
Bytes saved: 127475 in result_iroq.html
Bytes saved: 130941 in result_tibetan.html

The user can then open each file and skim it for interesting new titles. Each book listed there comes with a working
absolute URL to a book detail page on the ABEBooks server, which can be used for buying the book. For some of the
queries that generate large numbers of results, it would be particularly convenient to have do_stuff() actually track
which books it has seen before (using the book-detail URL of each) and report only on new ones:

my $is_first_time;
my (%seen_last_time, %seen_this_time, @new_urls);
sub do_stuff {
 if (-e 'seen_last_time.dat') {
 # Get URLs seen last time.
 open(LAST_TIME, "<seen_last_time.dat") || die $!;
 while (<LAST_TIME>) { chomp; $seen_last_time{$_} = 1 };
 close(LAST_TIME);
 } else {
 $is_first_time = 1;
 }

 foreach my $search (@searches) {
 my $out_file = shift @$search;
 my $resp = run_search(@$search);
 process_search($resp, $out_file);

 foreach my $url ($resp->content =~
 # Extract URLs of book-detail pages:
 m{"(http://dogbert.abebooks.com/abe/BookDetails\?bi=[^\s\"]+)"}g
){
 push @new_urls, $url unless $seen_last_time{$url}
 or $seen_this_time{$url};
 $seen_this_time{$url} = 1;
 }
 }

 # Save URLs for comparison next time.
 open(LAST_TIME, ">seen_last_time.dat") || die $!;
 for (keys %seen_this_time) { print LAST_TIME $_, "\n" }
 close(LAST_TIME);

 if($is_first_time) {
 print "(This was the first time this program was run.)\n";
 } elsif (@new_urls) {
 print "\nURLs of new books:\n";
 for (@new_urls) { print $_, "\n" }
 } else {
 print "No new books to report.\n";
 }
}

A typical run of this will produce output as above, but with this addendum:

URLs of new books:
http://dogbert.abebooks.com/abe/BookDetails?bi=24017010
http://dogbert.abebooks.com/abe/BookDetails?bi=4766571
http://dogbert.abebooks.com/abe/BookDetails?bi=110543730

http://dogbert.abebooks.com/abe/BookDetails?bi=58703369
http://dogbert.abebooks.com/abe/BookDetails?bi=93298753
http://dogbert.abebooks.com/abe/BookDetails?bi=93204427
http://dogbert.abebooks.com/abe/BookDetails?bi=24086008

5.5. POST Example: License Plates 5.7. File Uploads

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

4.4. Converting Relative URLs to Absolute

By far the most common task involving URLs is converting relative URLs to absolute ones. The new_abs() method
does all the hard work:

$abs_url = URI->new_abs(relative, base);

If rel_url is actually an absolute URL, base_url is ignored. This lets you pass all URLs from a document through
new_abs(), rather than trying to work out which are relative and which are absolute. So if you process the HTML at
http://www.oreilly.com/catalog/ and you find a link to pperl3/toc.html, you can get the full URL like this:

$abs_url = URI->new_abs('pperl3/toc.html', 'http://www.oreilly.com/
catalog/');

Another example:

use URI;
my $base_url = "http://w3.thing.int/stuff/diary.html";
my $rel_url = "../minesweeper_hints/";
my $abs_url = URI->new_abs($rel_url, $base_url);
print $abs_url, "\n";
http://w3.thing.int/minesweeper_hints/

You can even pass the output of new_abs to the canonical method that we discussed earlier, to get the normalized
absolute representation of a URL. So if you're parsing possibly relative, oddly escaped URLs in a document (each in
$href, such as you'd get from an tag), the expression to remember is this:

$new_abs = URI->new_abs($href, $abs_base)->canonical;

You'll see this expression come up often in the rest of the book.

4.3. Converting Absolute URLs to
Relative

5. Forms

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

4.3. Converting Absolute URLs to Relative

A relative URL path assumes you're in a directory and the path elements are relative to that directory. For example, if
you're in /staff/, these are the same:

roster/search.cgi
/staff/roster/search.cgi

If you're in /students/, this is the path to /staff/roster/search.cgi:

../staff/roster/search.cgi

The URI class includes a method rel(), which creates a relative URL out of an absolute goal URI object. The newly
created relative URL is how you could get to that original URL, starting from the absolute base URL.

$relative = $absolute_goal->rel(absolute_base);

The absolute_base is the URL path in which you're assumed to be; it can be a string, or a real URI object. But
$absolute_goal must be a URI object. The rel() method returns a URI object.

For example:

use URI;
my $base = URI->new('http://phee.phye.phoe.fm/thingamajig/zing.xml');
my $goal = URI->new('http://phee.phye.phoe.fm/hi_there.jpg');
print $goal->rel($base), "\n";
../hi_there.jpg

If you start with normal strings, simplify this to URI->new($abs_goal)->rel($base), as shown here:

use URI;
my $base = 'http://phee.phye.phoe.fm/thingamajig/zing.xml';
my $goal = 'http://phee.phye.phoe.fm/hi_there.jpg';
print URI->new($goal)->rel($base), "\n";
../hi_there.jpg

Incidentally, the trailing slash in a base URL can be very important. Consider:

use URI;
my $base = 'http://phee.phye.phoe.fm/englishmen/blood';
my $goal = 'http://phee.phye.phoe.fm/englishmen/tony.jpg';
print URI->new($goal)->rel($base), "\n";
tony.jpg

But add a slash to the base URL and see the change:

use URI;
my $base = 'http://phee.phye.phoe.fm/englishmen/blood/';
my $goal = 'http://phee.phye.phoe.fm/englishmen/tony.jpg';
print URI->new($goal)->rel($base), "\n";
../tony.jpg

That's because in the first case, "blood" is not considered a directory, whereas in the second case, it is. You may be
accustomed to treating /blood and /blood/ as the same, when blood is a directory. Web servers maintain your illusion by
invisibly redirecting requests for /blood to /blood/, but you can't ever tell when this is actually going to happen just by
looking at a URL.

4.2. Relative URLs 4.4. Converting Relative URLs to
Absolute

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

1.3. Installing LWP

LWP and the associated modules are available in various distributions free from the Comprehensive Perl Archive
Network (CPAN). The main distributions are listed at the start of Appendix A, "LWP Modules", although the details of
which modules are in which distributions change occasionally.

If you're using ActivePerl for Windows or MacPerl for Mac OS 9, you already have LWP. If you're on Unix and you
don't already have LWP installed, you'll need to install it from CPAN using instructions given in the next section.

To test whether you already have LWP installed:

% perl -MLWP -le "print(LWP->VERSION)"

(The second character in -le is a lowercase L, not a digit one.)

If you see:

Can't locate LWP in @INC (@INC contains: ...lots of paths...).
BEGIN failed--compilation aborted.

or if you see a version number lower than 5.64, you need to install LWP on your system.

There are two ways to install modules: using the CPAN shell or the old-fashioned manual way.

1.3.1. Installing LWP from the CPAN Shell

The CPAN shell is a command-line environment for automatically downloading, building, and installing modules from
CPAN.

1.3.1.1. Configuring

If you have never used the CPAN shell, you will need to configure it before you can use it. It will prompt you for some
information before building its configuration file.

Invoke the CPAN shell by entering the following command at a system shell prompt:

% perl -MCPAN -eshell

If you've never run it before, you'll see this:

We have to reconfigure CPAN.pm due to following uninitialized
parameters:

followed by a number of questions. For each question, the default answer is typically fine, but you may answer otherwise
if you know that the default setting is wrong or not optimal. Once you've answered all the questions, a configuration file
is created and you can start working with the CPAN shell.

1.3.1.2. Obtaining help

If you need help at any time, you can read the CPAN shell's manual page by typing perldoc CPAN or by starting up

the CPAN shell (with perl -MCPAN -eshell at a system shell prompt) and entering h at the cpan> prompt:

cpan> h

Display Information
 command argument description
 a,b,d,m WORD or /REGEXP/ about authors, bundles, distributions,
modules
 i WORD or /REGEXP/ about anything of above
 r NONE reinstall recommendations
 ls AUTHOR about files in the author's directory

Download, Test, Make, Install...
 get download
 make make (implies get)
 test MODULES, make test (implies make)
 install DISTS, BUNDLES make install (implies test)
 clean make clean
 look open subshell in these dists' directories
 readme display these dists' README files

Other
 h,? display this menu ! perl-code eval a perl
command
 o conf [opt] set and query options q quit the cpan
shell
 reload cpan load CPAN.pm again reload index load newer indices
 autobundle Snapshot force cmd unconditionally
do cmd

1.3.1.3. Installing LWP

All you have to do is enter:

cpan> install Bundle::LWP

The CPAN shell will show messages explaining what it's up to. You may need to answer questions to configure the
various modules (e.g., libnet asks for mail hosts and so on for testing purposes).

After much activity, you should then have a fresh copy of LWP on your system, with far less work than installing it
manually one distribution at a time. At the time of this writing, install Bundle::LWP installs not just the libwww-
perl distribution, but also URI and HTML-Parser. It does not install the HTML-Tree distribution that we'll use in Chapter
9, "HTML Processing with Trees" and Chapter 10, "Modifying HTML with Trees". To do that, enter:

cpan> install HTML::Tree

These commands do not install the HTML-Format distribution, which was also once part of the LWP distribution. I do
not discuss HTML-Format in this book, but if you want to install it so that you have a complete LWP installation, enter
this command:

cpan> install HTML::Format

Remember, LWP may be just about the most popular distribution in CPAN, but that's not all there is! Look around the
web-related parts of CPAN (I prefer the interface at http://search.cpan.org, but you can also try http://kobesearch.cpan.
org) as there are dozens of modules, from WWW::Automate to SOAP::Lite, that can simplify your web-related tasks.

1.3.2. Installing LWP Manually

http://search.cpan.org/
http://kobesearch.cpan.org/
http://kobesearch.cpan.org/

The normal Perl module installation procedure is summed up in the document perlmodinstall. You can read this by
running perldoc perlmodinstall at a shell prompt or online at http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/
perlmodinstall.html.

CPAN is a network of a large collection of Perl software and documentation. See the CPAN FAQ at http://www.cpan.
org/misc/cpan-faq.html for more information about CPAN and modules.

1.3.2.1. Download distributions

First, download the module distributions. LWP requires several other modules to operate successfully. You'll need to
install the distributions given in Table 1-1, in the order in which they are listed.

Table 1-1. Modules used in this book

Distribution CPAN directory

MIME-Base64 authors/id/G/GA/GAAS

libnet authors/id/G/GB/GBAAR

HTML-Tagset authors/id/S/SBURKE

HTML-Parser authors/id/G/GA/GAAS

URI authors/id/G/GA/GAAS/URI

Compress-Zlib authors/id/P/PM/PMQS/Compress-Zlib

Digest-MD5 authors/id/G/GA/GAAS/Digest-MD5

libwww-perl authors/id/G/GA/GAAS/libwww-perl

HTML-Tree authors/id/S/SB/SBURKE/HTML-Tree

Fetch these modules from one of the FTP or web sites that form CPAN, listed at http://www.cpan.org/SITES.html and
http://mirror.cpan.org. Sometimes CPAN has several versions of a module in the authors directory. Be sure to check the
version number and get the latest.

For example to install MIME-Base64, you might first fetch http://www.cpan.org/authors/id/G/GA/GAAS/ to see which
versions are there, then fetch http://www.cpan.org/authors/id/G/GA/GAAS/MIME-Base64-2.12.tar.gz and install that.

1.3.2.2. Unpack and configure

The distributions are gzipped tar archives of source code. Extracting a distribution creates a directory, and in that
directory is a Makefile.PL Perl program that builds a Makefile for you.

% tar xzf MIME-Base64-2.12.tar.gz

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlmodinstall.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlmodinstall.html
http://www.cpan.org/misc/cpan-faq.html
http://www.cpan.org/misc/cpan-faq.html
http://www.cpan.org/SITES.html
http://mirror.cpan.org/
http://www.cpan.org/authors/id/G/GA/GAAS/
http://www.cpan.org/authors/id/G/GA/GAAS/MIME-Base64-2.12.tar.gz

% cd MIME-Base64-2.12
% perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for MIME::Base64

1.3.2.3. Make, test, and install

Compile the code with the make command:

% make
cp Base64.pm blib/lib/MIME/Base64.pm
cp QuotedPrint.pm blib/lib/MIME/QuotedPrint.pm
/usr/bin/perl -I/opt/perl5/5.6.1/i386-freebsd -I/opt/perl5/5.6.1
/opt/perl5/5.6.1/ExtUtils/xsubpp -typemap
/opt/perl5/5.6.1/ExtUtils/typemap Base64.xs > Base64.xsc && mv
 Base64.xsc Base64.c
cc -c -fno-strict-aliasing -I/usr/local/include -O -DVERSION=\"2.12
\"
 -DXS_VERSION=\"2.12\" -DPIC -fpic -I/opt/perl5/5.6.1/i386-freebsd/
CORE
Base64.c
Running Mkbootstrap for MIME::Base64 ()
chmod 644 Base64.bs
rm -f blib/arch/auto/MIME/Base64/Base64.so
LD_RUN_PATH="" cc -o blib/arch/auto/MIME/Base64/Base64.so -shared
 -L/opt Base64.o
chmod 755 blib/arch/auto/MIME/Base64/Base64.so
cp Base64.bs blib/arch/auto/MIME/Base64/Base64.bs
chmod 644 blib/arch/auto/MIME/Base64/Base64.bs
Manifying blib/man3/MIME::Base64.3
Manifying blib/man3/MIME::QuotedPrint.3

Then make sure everything works on your system with make test:

% make test
PERL_DL_NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/lib
-I/opt/perl5/5.6.1/i386-freebsd -I/opt/perl5/5.6.1 -e 'use Test::
Harness
 qw(&runtests $verbose); $verbose=0; runtests @ARGV;' t/*.t
t/base64..........ok
t/quoted-print....ok
t/unicode.........skipped test on this platform
All tests successful, 1 test skipped.
Files=3, Tests=306, 1 wallclock secs (0.52 cusr + 0.06 csys = 0.58
CPU)

If it passes the tests, install it with make install (as the superuser):

make install
Installing /opt/perl5/site_perl/5.6.1/i386-freebsd/auto/MIME/Base64/
Base64.so
Installing /opt/perl5/site_perl/5.6.1/i386-freebsd/auto/MIME/Base64/
Base64.bs
Files found in blib/arch: installing files in blib/lib into
architecture
 dependent library tree
Installing /opt/perl5/site_perl/5.6.1/i386-freebsd/MIME/Base64.pm

Installing /opt/perl5/site_perl/5.6.1/i386-freebsd/MIME/QuotedPrint.pm
Installing /usr/local/man/man3/MIME::Base64.3
Installing /usr/local/man/man3/MIME::QuotedPrint.3
Writing /opt/perl5/site_perl/5.6.1/i386-freebsd/auto/MIME/Base64/.
packlist
Appending installation info to /opt/perl5/5.6.1/i386-freebsd/perllocal.
pod

1.2. History of LWP 1.4. Words of Caution

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

3.4. User Agents

The first and simplest use of LWP's two basic classes is LWP::UserAgent, which manages HTTP connections and
performs requests for you. The new() constructor makes a user agent object:

$browser = LWP::UserAgent->new(%options);

The options and their default values are summarized in Table 3-1. The options are attributes whose values can be
fetched or altered by the method calls described in the next section.

Table 3-1. Constructor options and default values for LWP::UserAgent

Key Default

agent "libwww-perl/#.###"

conn_cache undef

cookie_jar undef

from undef

max_size undef

parse_head 1

protocols_allowed undef

protocols_forbidden undef

requests_redirectable ['GET', 'HEAD']

timeout 180

If you have a user agent object and want a copy of it (for example, you want to run the same requests over two
connections, one persistent with KeepAlive and one without) use the clone() method:

$copy = $browser->clone();

This object represents a browser and has attributes you can get and set by calling methods on the object. Attributes
modify future connections (e.g., proxying, timeouts, and whether the HTTP connection can be persistent) or the requests
sent over the connection (e.g., authentication and cookies, or HTTP headers).

3.4.1. Connection Parameters

The timeout() attribute represents how long LWP will wait for a server to respond to a request:

$oldval = $browser->timeout([newval]);

That is, if you want to set the value, you'd do it like so:

$browser->timeout(newval);

And if you wanted to read the value, you'd do it like this:

$value = $browser->timeout();

And you could even set the value and get back the old value at the same time:

$previously = $browser->timeout(newval);

The default value of the timeout attribute is 180 seconds. If you're spidering, you might want to change this to a lower
number to prevent your spider from wasting a lot of time on unreachable sites:

$oldval = $browser->timeout();
$browser->timeout(10);
print "Changed timeout from $oldval to 10\n";
Changed timeout from 180 to 10

The max_size() method limits the number of bytes of an HTTP response that the user agent will read:

$size = $browser->max_size([bytes])

The default value of the max_size() attribute is undef, signifying no limit. If the maximum size is exceeded, the
response will have a Client-Aborted header. Here's how to test for that:

$response = $browser->request($req);
if ($response->header("Client-Aborted")) {
 warn "Response exceeded maximum size."
}

To have your browser object support HTTP Keep-Alive, call the conn_cache() method to a connection cache
object, of class LWP::ConnCache. This is done like so:

use LWP::ConnCache;
$cache = $browser->conn_cache(LWP::ConnCache->new());

The newly created connection cache object will cache only one connection at a time. To have it cache more, you access
its total_capacity attribute. Here's how to increase that cache to 10 connections:

$browser->conn_cache->total_capacity(10);

To cache all connections (no limits):

$browser->conn_cache->total_capacity(undef);

3.4.2. Request Parameters

The agent() attribute gets and sets the string that LWP sends for the User-Agent header:

$oldval = $browser->agent([agent_string]);

Some web sites use this string to identify the browser. To pretend to be Netscape to get past web servers that check to see
whether you're using a "supported browser," do this:

print "My user agent name is ", $browser->agent(), ".\n";
$browser->agent("Mozilla/4.76 [en] (Windows NT 5.0; U)");
print "And now I'm calling myself ", $browser->agent(), "!\n";
My user agent name is libwww-perl/5.60.
And now I'm calling myself Mozilla/4.76 [en] (Windows NT 5.0; U)!

The from() attribute controls the From header, which contains the email address of the user making the request:

$old_address = $browser->from([email_address]);

The default value is undef, which indicates no From header should be sent.

The user agent object can manage the sending and receiving of cookies for you. Control this with the cookie_jar()
method:

$old_cj_obj = $browser->cookie_jar([cj_obj])

This reads or sets the HTTP::Cookies object that's used for holding all this browser's cookies. By default, there is no
cookie jar, in which case the user agent ignores cookies.

To create a temporary cookie jar, which will keep cookies only for the duration of the user agent object:

$browser->cookie_jar(HTTP::Cookies->new);

To use a file as a persistent store for cookies:

my $some_file = '/home/mojojojo/cookies.lwp';
$browser->cookie_jar(HTTP::Cookies->new(
 'file' => $some_file, 'autosave' => 1
));

Cookies are discussed in more detail in Chapter 11, "Cookies, Authentication,and Advanced Requests".

3.4.3. Protocols

LWP allows you to control the protocols with which a user agent can fetch documents. You can choose to allow only a
certain set of protocols, or allow all but a few. You can also test a protocol to see whether it's supported by LWP and by
this particular browser object.

The protocols_allowed() and protocols_forbidden() methods explicitly permit or forbid certain
protocols (e.g., FTP or HTTP) from being used by this user agent:

$aref_maybe = $browser->protocols_allowed([\@protocols]);
$aref_maybe = $browser->protocols_forbidden([\@protocols]);

Call the methods with no arguments to get an array reference containing the allowed or forbidden protocols, or undef if
the attribute isn't set. By default, neither is set, which means that this browser supports all the protocols that your
installation of LWP supports.

For example, if you're processing a list of URLs and don't want to parse them to weed out the FTP URLs, you could

write this:

$browser->protocols_forbidden(["ftp"]);

Then you can blindly execute requests, and any ftp URLs will fail automatically. That is, if you request an ftp URL,
the browser object returns an error response without performing any actual request.

Instead of forbidden protocols, you can specify which to allow by using the protocols_allowed method. For
example, to set this browser object to support only http and gopher URLs, you could write this:

$browser->protocols_allowed(["http", "gopher"]);

To check if LWP and this particular browser support a particular URL protocol, use the is_protocol_supported
() method. It returns true if LWP supports the protocol, isn't in protocols_forbidden, and it has been allowed
in a protocols_allowed list set. You call it like this:

$boolean = $browser->is_protocol_supported(scheme);

For example:

unless ($browser->is_protocol_supported("https")) {
 warn "Cannot process https:// URLs.\n";
}

3.4.4. Redirection

A server can reply to a request with a response that redirects the user agent to a new location. A user agent can
automatically follow redirections for you. By default, LWP::UserAgent objects follow GET and HEAD method
redirections.

The requests_redirectable() attribute controls the list of methods for which the user agent will automatically
follow redirections:

$aref = $browser->requests_redirectable([\@methods]);

To disable the automatic following of redirections, pass in a reference to an empty array:

$browser->requests_redirectable([]);

To add POST to the list of redirectable methods:

push @{$browser->requests_redirectable}, 'POST';

You can test a request to see whether the method in that request is one for which the user agent will follow redirections:

$boolean = $browser->redirect_ok(request);

The redirect_ok() method returns true if redirections are permitted for the method in the request.

3.4.5. Authentication

The user agent can manage authentication information for a series of requests to the same site. The credentials()
method sets a username and password for a particular realm on a site:

$browser->credentials(host_port, realm, uname, pass);

A realm is a string that's used to identify the locked-off area on the given server and port. In interactive browsers, the
realm is the string that's displayed as part of the pop-up window that appears. For example, if the pop-up window says
"Enter username for Unicode-MailList-Archives at www.unicode.org," then the realm string is Unicode-MailList-
Archives, and the host_port value is www.unicode.org:80. (The browser doesn't typically show the :80 part
for HTTP, nor the :443 part for HTTPS, as those are the default port numbers.)

The username, password, and realm can be sent for every request whose hostname and port match the one given in
host_port, and that require authorization. For example:

$browser->credentials("intranet.example.int:80", "Finances",
 "fred", "3l1t3");

From that point on, any requests this browser makes to port 80 that require authentication with a realm name of
"Finances," will be tried with a username "fred" and a password "3l1t3."

For more information on authentication, see Chapter 11, "Cookies, Authentication,and Advanced Requests".

3.4.6. Proxies

One potentially important function of the user agent object is managing proxies. The env_proxy() method
configures the proxy settings:

$browser->env_proxy();

This method inspects proxy settings from environment variables such as http_proxy, gopher_proxy, and
no_proxy. If you don't use a proxy, those environment variables aren't set, and the call to env_proxy() has no
effect.

To set proxying from within your program, use the proxy() and no_proxy() methods. The proxy() method
sets or retrieves the proxy for a particular scheme:

$browser->proxy(scheme, proxy);
$browser->proxy(\@schemes, proxy);
$proxy = $browser->proxy(scheme);

The first two forms set the proxy for one or more schemes. The third form returns the proxy for a particular scheme. For
example:

$p = $browser->proxy("ftp");
$browser->proxy("ftp", "http://firewall:8001/");
print "Changed proxy from $p to our firewall.\n";

The no_proxy() method lets you disable proxying for particular domains:

$browser->no_proxy([domain, ...]);

Pass a list of domains to no_proxy() to add them to the list of domains that are not proxied (e.g., those within your
corporate firewall). For example:

$browser->no_proxy("c64.example.int", "localhost", "server");

Call no_proxy() with no arguments to clear the list of unproxied domains:

$browser->no_proxy(); # no exceptions to proxying

3.4.7. Request Methods

There are three basic request methods:

$resp = $browser->get(url);
$resp = $browser->head(url);
$resp = $browser->post(url, \@form_data);

If you're specifying extra header lines to be sent with the request, do it like this:

$resp = $browser->get(url, Header1 => Value1, Header2 => Value2, ...);
$resp = $browser->head(url, Header1 => Value1, Header2 => Value2, ...);
$resp = $browser->post(url, \@form_data,
 Header1 => Value1, Header2 => Value2, ...);

For example:

$resp = $browser->get("http://www.nato.int",
 'Accept-Language' => 'en-US',
 'Accept-Charset' => 'iso-8859-1,*,utf-8',
 'Accept-Encoding' => 'gzip',
 'Accept' =>
 "image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */
*",
);

3.4.7.1. Saving response content to a file

With normal requests, the body of the response is stored in the response object's $response->content() attribute
by default. That's fine when the response body is a moderately small piece of data such as a 20-kilobyte HTML file. But
a 6-megabyte MP3 file should probably be saved to disk without saving it in memory first.

The request methods support this by providing sort of fake header lines that don't turn into real headers in the request but
act as options for LWP's handling of the request. Each option/header starts with a ":" character, a character that no real
HTTP header name could contain. The simplest option is ':content_file' => filename.

$resp = $browser->get(url, ':content_file' => filename, ...);
$resp = $browser->head(url, ':content_file' => filename, ...);
$resp = $browser->post(url, \@form_data,
 ':content_file' => filename, ...);

With this option, the content of the response is saved to the given filename, overwriting whatever might be in that file
already. (In theory, no response to a HEAD request should ever have content, so it seems odd to specify where content
should be saved. However, in practice, some strange servers and many CGIs on otherwise normal servers do respond to
HEAD requests as if they were GET requests.)

A typical example:

my $out = 'weather_satellite.jpg';
my $resp = $browser->get('http://weathersys.int/',
 ':content_file' => $out,
);
die "Couldn't get the weather picture: ", $response->status_line
 unless $response->is_success;

This feature is also useful for cases in which you were planning on saving the content to that file anyway. Also see the
mirror() method described below, which does something similar to $browser->get($url, ':
content_file' => filename, ...).

3.4.7.2. Sending response content to a callback

If you instead provide an option/header pair consisting of ':content_cb' and a subroutine reference, LWP won't
save the content in memory or to a file but will instead call the subroutine every so often, as new data comes in over the
connection to the remote server. This is the syntax for specifying such a callback routine:

$resp = $browser->get(url, ':content_cb' => \&mysub, ...);
$resp = $browser->head(url, ':content_cb' => \&mysub, ...);
$resp = $browser->post(url, \@form_data,
 ':content_cb' => \&mysub, ...);

Whatever subroutine you define will get chunks of the newly received data passed in as the first parameter, and the
second parameter will be the new HTTP::Response object that will eventually get returned from the current get/head/
post call. So you should probably start every callback routine like this:

sub callbackname {
 my($data, $response) = @_;
 ...

Here, for example, is a routine that hex-dumps whatever data is received as a response to this request:

my $resp = $browser->get('http://www.perl.com'
 ':content_cb' => \&hexy,
);
sub hexy {
 my($data, $resp) = @_;
 print length($data), " bytes:\n";
 print ' ', unpack('H*', substr($data,0,16,'')), "\n"
 while length $data;
 return;
}

In fact, you can pass an anonymous routine as the callback. The above could just as well be expressed like this:

my $resp = $browser->get('http://www.perl.com/'
 ':content_cb' => sub {
 my($data, $resp) = @_;
 print length($data), " bytes:\n";
 print ' ', unpack('H*', substr($data,0,16,'')), "\n"
 while length $data;
 return;
 }
);

The size of the $data string is unpredictable. If it matters to you how big each is, you can specify another option, :
read_size_hint => byte_count, which LWP will take as a hint for how many bytes you want the typical $data
string to be:

$resp = $browser->get(url,
 ':content_cb' => \&mysub,
 ':read_size_hint' => byte_count,
 ...,
);
$resp = $browser->head(url,
 ':content_cb' => \&mysub,
 ':read_size_hint' => byte_count,
 ...,
);

$resp = $browser->post(url, \@form_data,
 ':content_cb' => \&mysub,
 ':read_size_hint' => byte_count,
 ...,
);

We can modify our hex-dumper routine to be called like this:

my $resp = $browser->get('http://www.perl.com'
':content_cb' => \&hexy,
':read_size_hint' => 1024,
);

However, there is no guarantee that's how big the $data string will actually be. It is merely a hint, which LWP may
disregard.

3.4.7.3. Mirroring a URL to a file

The mirror() method GETs a URL and stores the result to a file:

$response = $browser->mirror(url_to_get, filename)

But it has the added feature that it uses an HTTP If-Modified-Since header line on the request it performs, to
avoid transferring the remote file unless it has changed since the local file (filename) was last changed. The mirror
() method returns a new HTTP::Response object but without a content attribute (any interesting content will have
been written to the local file). You should at least check $response->is_error():

$response = $browser->mirror("http://www.cpan.org/",
 "cpan_home.html");
if($response->is_error()){
 die "Couldn't access the CPAN home page: " .
 $response->status_line;
}

3.4.8. Advanced Methods

The HTML specification permits meta tags in the head of a document, some of which are alternatives to HTTP
headers. By default, if the Response object is an HTML object, its head section is parsed, and some of the content of the
head tags is copied into the HTTP::Response object's headers. For example, consider an HTML document that starts
like this:

<html>
<head><title>Kiki's Pie Page</title>
 <base href="http://cakecity.int/">
 <meta name="Notes" content="I like pie!">
 <meta http-equiv="Description" content="PIE RECIPES FROM KIKI">
</head>

If you request that document and call print $response->headers_as_string on it, you'll see this:

Date: Fri, 05 Apr 2002 11:19:51 GMT
Accept-Ranges: bytes
Server: Apache/1.3.23
Content-Base: http://cakecity.int/
Content-Length: 204
Content-Type: text/html
Last-Modified: Fri, 05 Apr 2002 11:19:38 GMT

Client-Date: Fri, 05 Apr 2002 11:19:51 GMT
Description: PIE RECIPES FROM KIKI
Title: Kiki's Pie Page
X-Meta-Notes: I like pie!

You can access those headers individually with $response->header('Content-Base'), $response-
>header('Description'), $response->header('Title'), and $response->header('X-Meta-
Notes'), respectively, as we shall see in the next section.

The documentation for the HTML::HeadParser module, which LWP uses to implement this feature, explains the exact
details.

3.3. Inside the do_GET and do_POST
Functions

3.5. HTTP::Response Objects

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

2.5. Example: AltaVista

Every so often, two people, somewhere, somehow, will come to argue over a point of English spelling—one of them will
hold up a dictionary recommending one spelling, and the other will hold up a dictionary recommending something else.
In olden times, such conflicts were tidily settled with a fight to the death, but in these days of overspecialization, it is
common for one of the spelling combatants to say "Let's ask a linguist. He'll know I'm right and you're wrong!" And so I
am contacted, and my supposedly expert opinion is requested. And if I happen to be answering mail that month, my
response is often something like:

Dear Mr. Hing:

I have read with intense interest your letter detailing your struggle with the question of whether your favorite savory
spice should be spelled in English as "asafoetida" or whether you should heed your secretary's admonishment that all the
kids today are spelling it "asafetida."

I could note various factors potentially involved here; notably, the fact that in many cases, British/Commonwealth
spelling retains many "ae"/"oe" digraphs whereas U.S./Canadian spelling strongly prefers an "e" ("foetus"/"fetus," etc.).
But I will instead be (merely) democratic about this and note that if you use AltaVista (http://altavista.com, a well-known
search engine) to run a search on "asafetida," it will say that across all the pages that AltaVista has indexed, there are
"about 4,170" matched; whereas for "asafoetida" there are many more, "about 8,720."

So you, with the "oe," are apparently in the majority.

To automate the task of producing such reports, I've written a small program called alta_count, which queries AltaVista
for each term given and reports the count of documents matched:

% alta_count asafetida asafoetida
asafetida: 4,170 matches
asafoetida: 8,720 matches

At time of this writing, going to http://altavista.com, putting a word or phrase in the search box, and hitting the Submit
button yields a result page with a URL that looks like this:

http://www.altavista.com/sites/search/web?q=%22asafetida%22&kl=XX

Now, you could construct these URLs for any phrase with something like:

$url = 'http://www.altavista.com/sites/search/web?q=%22'
 . $phrase
 . '%22&kl=XX' ;

But that doesn't take into account the need to encode characters such as spaces in URLs. If I want to run a search on the
frequency of "boy toy" (as compared to the alternate spelling "boytoy"), the space in that phrase needs to be encoded as %
20, and if I want to run a search on the frequency of "résumé," each "é" needs to be encoded as %E9.

The correct way to generate the query strings is to use the URI::Escape module:

use URI::Escape; # That gives us the uri_escape function
$url = 'http://www.altavista.com/sites/search/web?q=%22'
 . uri_escape($phrase)
 . '%22&kl=XX' ;

http://altavista.com/
http://altavista.com/

Now we just have to request that URL and skim the returned content for AltaVista's standard phrase "We found
[number] results." (That's assuming the response comes with an okay status code, as we should get unless AltaVista is
somehow down or inaccessible.)

Example 2-6 is the complete alta_count program.

Example 2-6. The alta_count program

#!/usr/bin/perl -w
use strict;
use URI::Escape;
foreach my $word (@ARGV) {
 next unless length $word; # sanity-checking
 my $url = 'http://www.altavista.com/sites/search/web?q=%22'
 . uri_escape($word) . '%22&kl=XX';
 my ($content, $status, $is_success) = do_GET($url);
 if (!$is_success) {
 print "Sorry, failed: $status\n";
 } elsif ($content =~ m/>We found ([0-9,]+) results?/) { # like
"1,952"
 print "$word: $1 matches\n";
 } else {
 print "$word: Page not processable, at $url\n";
 }
 sleep 2; # Be nice to AltaVista's servers!!!
}

And then my favorite do_GET routine:
use LWP; # loads lots of necessary classes.
my $browser;
sub do_GET {
 $browser = LWP::UserAgent->new unless $browser;
 my $resp = $browser->get(@_);
 return ($resp->content, $resp->status_line, $resp->is_success, $resp)
 if wantarray;
 return unless $resp->is_success;
 return $resp->content;
}

With that, I can run:

% alta_count boytoy 'boy toy'
boytoy: 6,290 matches
boy toy: 26,100 matches

knowing that when it searches for the frequency of "boy toy," it is duly URL-encoding the space character.

This approach to HTTP GET query parameters, where we insert one or two values into an otherwise precooked URL,
works fine for most cases. For a more general approach (where we produce the part after the ? completely from scratch
in the URL), see Chapter 5, "Forms".

2.4. Fetching Documents Without
LWP::Simple

2.6. HTTP POST

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

5.3. Automating Form Analysis

Rather than searching through HTML hoping that you've found all the form components, you can automate the task.
Example 5-2 contains a program, formpairs.pl, that extracts the names and values from GET or POST requests.

Example 5-2. formpairs.pl

#!/usr/local/bin/perl -w
formpairs.pl - extract names and values from HTTP requests

use strict;
my $data;
if(! $ENV{'REQUEST_METHOD'}) { # not run as a CGI
 die "Usage: $0 \"url\"\n" unless $ARGV[0];
 $data = $ARGV[0];
 $data = $1 if $data =~ s/^\w+\:.*?\?(.+)//;
 print "Data from that URL:\n(\n";
} elsif($ENV{'REQUEST_METHOD'} eq 'POST') {
 read(STDIN, $data, $ENV{'CONTENT_LENGTH'});
 print "Content-type: text/plain\n\nPOST data:\n(\n";
} else {
 $data = $ENV{'QUERY_STRING'};
 print "Content-type: text/plain\n\nGET data:\n(\n";
}
for (split '&', $data, -1) { # Assumes proper URLencoded input
 tr/+/ /; s/"/\\"/g; s/=/\" => \"/; s/%20/ /g;
 s/%/\\x/g; # so %0d => \x0d
 print " \"$_\",\n";
}
print ")\n";

That program, when run as a command-line utility, takes a URL as its one argument, decodes the encoded GET query,
and prints it in more Perlish terms:

% perl formpairs.pl "http://www.census.gov/cgi-bin/gazetteer?city=IEG
&state=&zip="
Data from that URL:
(
 "city" => "IEG",
 "state" => "",
 "zip" => "",
)

Using a more complex URL (wrapped here for readability) illustrates the benefit of it:

% perl -w formpairs.pl http://www.altavista.com/sites/search/web?q=
pie+AND+rhubarb+AND+strawberry%0D%0AAND+NOT+crumb&kl=en&r=&dt=tmperiod
&d2=0&d0=&d1=&sc=on&nbq=30&pg=aq&search=Search
Data from that URL:
(
 "q" => "pie AND rhubarb AND strawberry\x0D\x0AAND NOT crumb",
 "kl" => "en",

 "r" => "",
 "dt" => "tmperiod",
 "d2" => "0",
 "d0" => "",
 "d1" => "",
 "sc" => "on",
 "nbq" => "30",
 "pg" => "aq",
 "search" => "Search",
)

The same program also functions as a CGI, so if you want to see what data a given form ends up submitting, you can
simply change the form element's action attribute to a URL where you've set up that program as a CGI. As a CGI, it
accepts both GET and POST methods.

For example:

<form method="post" action="http://myhost.int/cgi-bin/formpairs.pl">
Kind of pie: <input name="what pie" size=15>
<input type="submit" value="Mmm pie">
</form>

When you fill the one blank out with "tasty pie!" and press the "Mmm pie" button, the CGI will print:

POST data:
(
 "what pie" => "tasty pie\x21",
)

A more ad hoc solution that doesn't involve bothering with a CGI is to take the local copy of the form, set the form tag's
method attribute to get, set its action attribute to dummy.txt, and create a file dummy.txt consisting of the text
"Look at my URL!" or the like. Then, when you submit the form, you will see only the "Look at my URL!" page, but the
browser's "Location"/"Address"/"URL" window will show a URL like this:

file:///C%7C/form_work/dummy.txt?what+pie=tasty+pie%21

You can then copy that URL into a shell window as the argument to formpairs.pl:

% perl formpairs.pl "file:///C%7C/form_work/dummy.txt?what+pie=tasty
+pie%21"
Data from that URL:
(
 "what pie" => "tasty pie\x21",
)

5.2. LWP and GET Requests 5.4. Idiosyncrasies of HTML Forms

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

8.6. Rewrite for Features

My core approach in these cases is to pick some set of assumptions and stick with it, but also to assume that they will
fail. So I write the code so that when it does fail, the point of failure will be easy to isolate. I do this is with debug levels,
also called trace levels. Consider this expanded version of our code:

use strict;
use constant DEBUG => 0;

use HTML::TokeParser;
parse_fresh_stream(
 HTML::TokeParser->new('fresh1.html') || die($!),
 'http://freshair.npr.org/dayFA.cfm?todayDate=07%2F02%2F2001'
);

sub parse_fresh_stream {
 use URI;
 my($stream, $base_url) = @_;
 DEBUG and print "About to parse stream with base $base_url\n";

 while(my $a_tag = $stream->get_tag('a')) {
 DEBUG > 1 and printf "Considering {%s}\n", $a_tag->[3];
 my $url = URI->new_abs(($a_tag->[1]{'href'} || next), $base_url);
 unless($url->scheme eq 'http') {
 DEBUG > 1 and print "Scheme is no good in $url\n";
 next;
 }
 unless($url->host =~ m/www\.npr\.org/) {
 DEBUG > 1 and print "Host is no good in $url\n";
 next;
 }
 unless($url->path =~ m{/ramfiles/.*\.ram$}) {
 DEBUG > 1 and print "Path is no good in $url\n";
 next;
 }
 DEBUG > 1 and print "IT'S GOOD!\n";
 my $text = $stream->get_trimmed_text('/a') || "??";
 printf "%s\n %s\n", $text, $url;
 }
 DEBUG and print "End of stream\n";
 return;
}

Among the notable changes here, I'm making a URI object for each URL I'm scrutinizing, and to make a new absolute
URI object out of each potentially relative URL, I have to pass the base URL as a parameter to the
parse_fresh_stream() function. Once I do that, I get to isolate parts of URLs the proper way, using URI
methods such as host() and path(), instead of by applying regexp matches to the bare URL.

8.6.1. Debuggability

The greatest change is the introduction of all the links with "DEBUG" in them. Because the DEBUG constant is declared
with value 0, all the tests of whether DEBUG is nonzero are obviously always false, and so all these lines are never run;

in fact, the Perl compiler removes them from the parse tree of this program, so they're discarded the moment they're
parsed. (Incidentally, there's nothing magic about the name "DEBUG"; you can call it "TRACE" or "Talkytalky" or
"_mumbles" or whatever you want. However, using all caps is a matter of convention.) So, with a DEBUG value of 0,
when you run this program, it simply prints this:

Listen to Current Show
 http://www.npr.org/ramfiles/fa/20011011.fa.ram
Listen to Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram
Listen to Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Listen to Casting director and actress Joanna Merlin
 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram

(That first link is superfluous, but we'll deal with that in a bit; otherwise, it all works okay.) So these DEBUG lines do
nothing. And when we deploy the above program with some code that harvests the pages instead of working from the
local test page, the DEBUG lines will continue to do nothing. But suppose that, months later, the program just stops
working. That is, it runs, but prints nothing, and we don't know why. Did NPR change the Fresh Air site so much that the
old program listings' URLs are no longer serve any content? Or has some part of the format changed? If we just change
DEBUG => 0 to DEBUG => 1 and rerun the program, we can see that parse_fresh_stream() is definitely being
called on a stream from an HTML page, because we see the messages from the print statements in that routine:

About to parse stream with base
http://freshair.npr.org/dayFA.cfm?todayDate=07%2F02%2F2001
End of stream

Change the DEBUG level to 2, and we get more detailed output:

About to parse stream with base
http://freshair.npr.org/dayFA.cfm?todayDate=07%2F02%2F2001
Considering {}
Host is no good in http://freshair.npr.org/index.cfm
Considering {<A HREF="http://www.npr.org/ramfiles/fa/20011011.fa.
prok">}
Path is no good in http://www.npr.org/ramfiles/fa/20011011.fa.prok
Considering {}
[...]
Considering {<A HREF="http://www.npr.org/ramfiles/fa/20010702.fa.
prok">}
Path is no good in http://www.npr.org/ramfiles/fa/20010702.fa.prok
Considering {<A HREF="http://www.npr.org/ramfiles/fa/20010702.fa.01.
prok">}
Path is no good in http://www.npr.org/ramfiles/fa/20010702.fa.01.prok
Considering {<A HREF="http://freshair.npr.org/guestInfoFA.cfm?
name=walterkirn">}
Host is no good in http://freshair.npr.org/guestInfoFA.cfm?
name=walterkirn
Considering {<A HREF="http://www.npr.org/ramfiles/fa/20010702.fa.02.
prok">}
Path is no good in http://www.npr.org/ramfiles/fa/20010702.fa.02.prok
Considering {<A HREF="http://freshair.npr.org/guestInfoFA.cfm?
name=joannamerlin">}
Host is no good in http://freshair.npr.org/guestInfoFA.cfm?
name=joannamerlin
Considering {}
Host is no good in http://freshair.npr.org/dayFA.cfm?todayDate=06%2F29%
2F2001
Considering {}
Host is no good in http://freshair.npr.org/dayFA.cfm?todayDate=07%2F03%

2F2001
End of stream

Our parse_fresh_stream() routine is still correctly rejecting index.cfm and the like, for having a "no good" host
(i.e., not www.npr.org). And we can see that it's happening on those "ramfiles" links, and it's not rejecting their host,
because they are on www.npr.org. But it rejects their paths. When we look back at the code that triggers rejection based
on the path, it kicks in only when the path fails to match m{/ramfiles/.*\.ram$}. Why don't our ramfiles paths
match that regexp anymore? Ah ha, because they don't end in .ram anymore; they end in .prok, some new audio format
that NPR has switched to! This is evident at the end of the lines beginning "Path is no good." Change our regexp to
accept .prok, rerun the program, and go about our business. Similarly, if the audio files moved to a different server, we'd
be alerted to their host being "no good" now, and we could adjust the regexp that checks that.

We had to make some fragile assumptions to tell interesting links apart from uninteresting ones, but having all these
DEBUG statements means that when the assumptions no longer hold, we can quickly isolate the problem.

8.6.2. Images and Applets

Speaking of assumptions, what about the fact that (back to our pre-.prok local test file and setting DEBUG back to 0) we
get an extra link at the start of the output here?

Listen to Current Show
 http://www.npr.org/ramfiles/fa/20011011.fa.ram
Listen to Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram
Listen to Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Listen to Casting director and actress Joanna Merlin
 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram

If we go to our browser and use the "Find in Page" function to see where "Listen to Current Show" appears in the
rendered page, we'll probably find no match. So where's it coming from? Try the same search on the source, and you'll
see:

 <IMG SRC="images/listen.gif" ALT="Listen to Current Show"
 WIDTH="124" HEIGHT="47" BORDER="0" HSPACE="0" VSPACE="0">

Recall that get_text() and get_text_trimmed() give special treatment to img and applet elements; they
treat them as virtual text tags with contents from their alt values (or in the absence of any alt value, the strings
[IMG] or [APPLET]). That might be a useful feature normally, but it's bothersome now. So we turn it off by adding
this line just before our while loop starts reading from the stream:

$stream->{'textify'} = {};

We know that's the line to use partly because I mentioned it as an aside much earlier, and partly because it's in the
HTML::TokeParser manpage (where you can also read about how to do things with the textify feature other than just
turn it off). With that change made, our program prints this:

??
 http://www.npr.org/ramfiles/fa/20011011.fa.ram
Listen to Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram
Listen to Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Listen to Casting director and actress Joanna Merlin
 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram

That ?? is there because when the first link had no link text (and we're no longer counting alt text), it caused
get_trimmed_text() to return an empty string. That is a false value in Perl, so it causes the fallthrough to ??
here:

my $text = $stream->get_trimmed_text('/a') || "??";

If we want to explicitly skip things with no link text, we change that to:

my $text = $stream->get_trimmed_text('/a');
unless(length $text) {
 DEBUG > 1 and print "Skipping link with no link-text\n";
 next;
}

That makes the program give this output, as we wanted it:

Listen to Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram
Listen to Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Listen to Casting director and actress Joanna Merlin
 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram

8.6.3. Link Text

Now that everything else is working, remember that we didn't want all this "Listen to" stuff starting every single link.
Moreover, remember that the presence of a "Listen to" at the start of the link text was one of our prospective criteria for
whether it's an interesting link. We didn't implement that, but we can implement it now:

unless($text =~ s/^Listen to //) {
 DEBUG > 1 and print "Odd, \"$text\" doesn't start with \"Listen to
\"...\n";
 next;
}
Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram
Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Casting director and actress Joanna Merlin
 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram

In other words, unless the link next starts with a "Listen to" that we can strip off, this link is rejected. And incidentally,
you might notice that with all these little changes we've made, our program now works perfectly!

8.6.4. Live Data

All it needs to actually pull data from the Fresh Air web site, is to comment out the code that calls the local test file and
substitute some simple code to get the data for a block of days. Here's is the whole program source, with those changes
and additions:

use strict;
use constant DEBUG => 0;
use HTML::TokeParser;

#parse_fresh_stream(
HTML::TokeParser->new('fresh1.html') || die($!),
'http://freshair.npr.org/dayFA.cfm?todayDate=07%2F02%2F2001'

#);

scan_last_month();

sub scan_last_month {
 use LWP::UserAgent;
 my $browser = LWP::UserAgent->new();
 foreach my $date_mdy (weekdays_last_month()) {
 my $url = sprintf(
 'http://freshair.npr.org/dayFA.cfm?todayDate=%02d%%2f%02d%%2f%
04d',
 @$date_mdy
);
 DEBUG and print "Getting @$date_mdy URL $url\n";
 sleep 3; # Don't hammer the NPR server!
 my $response = $browser->get($url);
 unless($response->is_success) {
 print "Error getting $url: ", $response->status_line, "\n";
 next;
 }
 my $stream = HTML::TokeParser->new($response->content_ref)
 || die "What, couldn't make a stream?!";
 parse_fresh_stream($stream, $response->base);
 }
}

sub weekdays_last_month { # Boring date handling. Feel free to skip.
 my($now) = time;
 my $this_month = (gmtime $now)[4];
 my(@out, $last_month, $that_month);

 do { # Get to end of last month.
 $now -= (24 * 60 * 60); # go back a day
 $that_month = (gmtime $now)[4];
 } while($that_month == $this_month);
 $last_month = $that_month;

 do { # Go backwards thru last month
 my(@then) = (gmtime $now);
 unshift @out, [$then[4] + 1 , $then[3], $then[5] + 1900] # m,d,yyyy
 unless $then[6] == 0 or $then[6] == 6;
 $now -= (24 * 60 * 60); # go back one day
 $that_month = (gmtime $now)[4];
 } while($that_month == $last_month);
 return @out;
}

Unchanged since you last saw it:
sub parse_fresh_stream {
 use URI;
 my($stream, $base_url) = @_;
 DEBUG and print "About to parse stream with base $base_url\n";

 while(my $a_tag = $stream->get_tag('a')) {
 DEBUG > 1 and printf "Considering {%s}\n", $a_tag->[3];
 my $url = URI->new_abs(($a_tag->[1]{'href'} || next), $base_url);
 unless($url->scheme eq 'http') {
 DEBUG > 1 and print "Scheme is no good in $url\n";
 next;

 }
 unless($url->host =~ m/www\.npr\.org/) {
 DEBUG > 1 and print "Host is no good in $url\n";
 next;
 }
 unless($url->path =~ m{/ramfiles/.*\.ram$}) {
 DEBUG > 1 and print "Path is no good in $url\n";
 next;
 }
 DEBUG > 1 and print "IT'S GOOD!\n";
 my $text = $stream->get_trimmed_text('/a') || "??";
 printf "%s\n %s\n", $text, $url;
 }
 DEBUG and print "End of stream\n";
 return;
}

8.5. Narrowing In 8.7. Alternatives

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 10. Modifying HTML with Trees

Contents:

Changing Attributes
Deleting Images
Detaching and Reattaching
Attaching in Another Tree
Creating New Elements

In Chapter 9, "HTML Processing with Trees", we saw how to extract information from HTML trees. But that's not the
only thing you can use trees for. HTML::TreeBuilder trees can be altered and can even be written back out as HTML,
using the as_HTML() method. There are four ways in which a tree can be altered: you can alter a node's attributes;
you can delete a node; you can detach a node and reattach it elsewhere; and you can add a new node. We'll treat each of
these in turn.

10.1. Changing Attributes

Suppose that in your new role as fixer of large sets of HTML documents, you are given a bunch of documents that have
headings like this:

<h3 align=center>Free Monkey</h3>
<h3 color=red>Inquire Within</h3>

that need to be changed like this:

<h2 class=scream>Free Monkey</h2>
<h4 class=mutter>Inquire Within</h4>

Before you start phrasing this in terms of HTML::Element methods, you should consider whether this can be done with a
search-and-replace operation in an editor. In this case, it cannot, because you're not just changing every <h3
align=center> to <h2 class=scream> and every <h4 color=red> to <h3 class=mutter> (which are
apparently simple search-and-replace operations), you also have to change </h3> to </h2> or to </h4>, depending on
what you did to the element that it closes. That sort of context dependency puts this well outside the realm of simple
search-and-replace operations. One could try to implement this with HTML::TokeParser, reading every token and
printing it back out, after having possibly altered it. In such a program, every time we see an <h3...> and maybe alter
it, we'd have to set a flag indicating what the next </h3> should be changed to.

So far, you've seen the method $element->attr(attrname) to get the value of an attribute (returning undef if
there is no such attribute). To alter attribute values, you need only two additional syntaxes: $element->attr
(attrname, newval) sets a value (regardless of whether that attribute had a previous value), and $element-
>attr(attrname, undef) deletes an attribute. That works even for changing the _tag attribute (for which the
$element->tag method is a shortcut).

That said, it's just a matter of knowing what nodes to change and then changing them, as in Example 10-1.

Example 10-1. Modifying attributes

use strict;

use HTML::TreeBuilder;
my $root = HTML::TreeBuilder->new;
$root->parse_file('rewriters1/in1.html') || die $!;

print "Before:\n";
$root->dump;

my @h3_center = $root->look_down('_tag', 'h3', 'align', 'center');
my @h3_red = $root->look_down('_tag', 'h3', 'color', 'red');
foreach my $h3c (@h3_center) {
 $h3c->attr('_tag', 'h2');
 $h3c->attr('style', 'scream');
 $h3c->attr('align', undef);
}

foreach my $h3r (@h3_red) {
 $h3r->attr('_tag', 'h4');
 $h3r->attr('style', 'mumble');
 $h3r->attr('color', undef);
}

print "\n\nAfter:\n";
$root->dump;

Suppose that the input file consists of this:

<html><body>

<h3 align=center>Free Monkey</h3>
<h3 color=red>Inquire Within</h3>
<p>It's a monkey! And it's free!</html>

When we run the program, we can see the tree dump before and after the modifications happen:

Before:
<html> @0
 <head> @0.0 (IMPLICIT)
 <body> @0.1
 <h3 align="center"> @0.1.0
 "Free Monkey"
 <h3 color="red"> @0.1.1
 "Inquire Within"
 <p> @0.1.2
 "It's a monkey! "
 @0.1.2.1
 "And it's free!"

After:
<html> @0
 <head> @0.0 (IMPLICIT)
 <body> @0.1
 <h2 style="scream"> @0.1.0
 "Free Monkey"
 <h4 style="mumble"> @0.1.1
 "Inquire Within"
 <p> @0.1.2
 "It's a monkey! "
 @0.1.2.1
 "And it's free!"

The changes applied correctly, so we can go ahead and add this code to the end of the program, to dump the tree to disk:

open(OUT, ">rewriters1/out1.html") || die "Can't write: $!";
print OUT $root->as_HTML;
close(OUT);
$root->delete; # done with it, so delete it

10.1.1. Whitespace

Examining the output file shows it to be one single line, consisting of this (wrapped so it will fit on the page):

<html><head></head><body><h2 style="scream">Free Monkey</h2><h4
style="mumble">Inquire Within</h4><p>It's a monkey! And it's
free!</body></html>

Where did all the nice whitespace from the original go, such as the newline after each </h3>?

Whitespace in HTML (except in pre elements and a few others) isn't contrastive. That is, any amount of whitespace is
as good as just one space. So whenever HTML::TreeBuilder sees whitespace tokens as it is parsing the HTML source, it
compacts each group into a single space. Furthermore, whitespace between some kinds of tags (such as between </h3>
and <h3>, or between </h3> and <p>) isn't meaningful at all, so when HTML::TreeBuilder sees such whitespace, it
just discards it.

This whitespace mangling is the default behavior of an HTML::TreeBuilder tree and can be changed by two options that
you set before parsing from a file:

my $root = HTML::TreeBuilder->new;

$root->ignore_ignorable_whitespace(0);
 # Don't try to delete whitespace between block-level elements.

$root->no_space_compacting(1);
 # Don't smash every whitespace sequences into a single space.

With those lines added to our program, the parse tree output file ends up with the appropriate whitespace.

<html><head></head><body>

<h2 style="scream">Free Monkey</h2>
<h4 style="mumble">Inquire Within</h4>

<p>It's a monkey! And it's free!</body>

</html>

An alternative is to have the as_HTML() method try to indent the HTML as it prints it. This is achieved by calling
as_HTML like so:

print OUT $root->as_HTML(undef, " ");

This feature is still somewhat experimental, and its implementation might change, but at time of this writing, this makes
the output file's code look like this:

<html>
 <head>
 </head>

 <body>
 <h2 style="scream">Free Monkey</h2>
 <h4 style="mumble">Inquire Within</h4>
 <p>It's a monkey! And it's free!</body>
</html>

10.1.2. Other HTML Options

Besides this indenting option, there are further options to as_HTML(), as described in Chapter 9, "HTML Processing
with Trees". One option controls whether omissible end-tags (such as </p> and) are printed.

Another controls what characters are escaped using &foo; sequences. Notably, by default, this encodes all characters
over ASCII 126, so for example, as_HTML will print an é in the parse tree as é (whether it came from a
literal é or from an é). This is always safe, but in cases where you're dealing with text with a lot of Latin-1 or
Unicode characters, having every one of those characters encoded as a &foo; sequence might be bothersome to any
people looking at the HTML markup output.

In that case, your call to as_HTML can consist of $root->as_HTML('<>&'), in which case only the minimum of
characters (<, >, and &) will be escaped. There's no point is using these options (or in preserving whitespace with
ignore_ignorable_whitespace and no_space_compacting) if you're reasonably sure nobody will ever be
looking at the resulting HTML. But for cases where people might need to look at the HTML, these options will make the
code more inviting than just one huge block of HTML.

9.5. Example: Fresh Air 10.2. Deleting Images

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 4. URLs

Contents:

Parsing URLs
Relative URLs
Converting Absolute URLs to Relative
Converting Relative URLs to Absolute

Now that you've seen how LWP models HTTP requests and responses, let's study the facilities it provides for working
with URLs. A URL tells you how to get to something: "use HTTP with this host and request this," "connect via FTP to
this host and retrieve this file," or "send email to this address."

The great variety inherent in URLs is both a blessing and a curse. On one hand, you can stretch the URL syntax to
address almost any type of network resource. However, this very flexibility means attempts to parse arbitrary URLs with
regular expressions rapidly run into a quagmire of special cases.

The LWP suite of modules provides the URI class to manage URLs. This chapter describes how to create objects that
represent URLs, extract information from those objects, and convert between absolute and relative URLs. This last task
is particularly useful for link checkers and spiders, which take partial URLs from HTML links and turn those into
absolute URLs to request.

4.1. Parsing URLs

Rather than attempt to pull apart URLs with regular expressions, which is difficult to do in a way that works with all the
many types of URLs, you should use the URI class. When you create an object representing a URL, it has attributes for
each part of a URL (scheme, username, hostname, port, etc.). Make method calls to get and set these attributes.

Example 4-1 creates a URI object representing a complex URL, then calls methods to discover the various components
of the URL.

Example 4-1. Decomposing a URL

use URI;
my $url = URI->new('http://user:pass@example.int:4345/hello.php?
user=12');
print "Scheme: ", $url->scheme(), "\n";
print "Userinfo: ", $url->userinfo(), "\n";
print "Hostname: ", $url->host(), "\n";
print "Port: ", $url->port(), "\n";
print "Path: ", $url->path(), "\n";
print "Query: ", $url->query(), "\n";

Example 4-1 prints:

Scheme: http
Userinfo: user:pass
Hostname: example.int
Port: 4345
Path: /hello.php

Query: user=12

Besides reading the parts of a URL, methods such as host() can also alter the parts of a URL, using the familiar
convention that $object->method reads an attribute's value and $object->method(newvalue) alters an
attribute:

use URI;
my $uri = URI->new("http://www.perl.com/I/like/pie.html");
$uri->host('testing.perl.com');
print $uri,"\n";
http://testing.perl.com/I/like/pie.html

Now let's look at the methods in more depth.

4.1.1. Constructors

An object of the URI class represents a URL. (Actually, a URI object can also represent a kind of URL-like string called
a URN, but you're unlikely to run into one of those any time soon.) To create a URI object from a string containing a
URL, use the new() constructor:

$url = URI->new(url [, scheme]);

If url is a relative URL (a fragment such as staff/alicia.html), scheme determines the scheme you plan for
this URL to have (http, ftp, etc.). But in most cases, you call URI->new only when you know you won't have a
relative URL; for relative URLs or URLs that just might be relative, use the URI->new_abs method, discussed below.

The URI module strips out quotes, angle brackets, and whitespace from the new URL. So these statements all create
identical URI objects:

$url = URI->new('<http://www.oreilly.com/>');
$url = URI->new('"http://www.oreilly.com/"');
$url = URI->new(' http://www.oreilly.com/');
$url = URI->new('http://www.oreilly.com/ ');

The URI class automatically escapes any characters that the URL standard (RFC 2396) says can't appear in a URL. So
these two are equivalent:

$url = URI->new('http://www.oreilly.com/bad page');
$url = URI->new('http://www.oreilly.com/bad%20page');

If you already have a URI object, the clone() method will produce another URI object with identical attributes:

$copy = $url->clone();

Example 4-2 clones a URI object and changes an attribute.

Example 4-2. Cloning a URI

use URI;
my $url = URI->new('http://www.oreilly.com/catalog/');
$dup = $url->clone();
$url->path('/weblogs');
print "Changed path: ", $url->path(), "\n";
print "Original path: ", $dup->path(), "\n";

When run, Example 4-2 prints:

Changed path: /weblogs
Original path: /catalog/

4.1.2. Output

Treat a URI object as a string and you'll get the URL:

$url = URI->new('http://www.example.int');
$url->path('/search.cgi');
print "The URL is now: $url\n";
The URL is now: http://www.example.int/search.cgi

You might find it useful to normalize the URL before printing it:

$url->canonical();

Exactly what this does depends on the specific type of URL, but it typically converts the hostname to lowercase,
removes the port if it's the default port (for example, http://www.eXample.int:80 becomes http://www.example.int),
makes escape sequences uppercase (e.g., %2e becomes %2E), and unescapes characters that don't need to be escaped (e.
g., %41 becomes A). In Chapter 12, "Spiders", we'll walk through a program that harvests data but avoids harvesting the
same URL more than once. It keeps track of the URLs it's visited in a hash called %seen_url_before; if there's an
entry for a given URL, it's been harvested. The trick is to call canonical on all URLs before entering them into that
hash and before checking whether one exists in that hash. If not for calling canonical, you might have visited http://
www.example.int:80 in the past, and might be planning to visit http://www.EXample.int, and you would see no
duplication there. But when you call canonical on both, they both become http://www.example.int, so you can tell
you'd be harvesting the same URL twice. If you think such duplication problems might arise in your programs, when in
doubt, call canonical right when you construct the URL, like so:

$url = URI->new('http://www.example.int')->canonical;

4.1.3. Comparison

To compare two URLs, use the eq() method:

if ($url_one->eq(url_two)) { ... }

For example:

use URI;
my $url_one = URI->new('http://www.example.int');
my $url_two = URI->new('http://www.example.int/search.cgi');
$url_one->path('/search.cgi');
if ($url_one->eq($url_two)) {
 print "The two URLs are equal.\n";
}
The two URLs are equal.

Two URLs are equal if they are represented by the same string when normalized. The eq() method is faster than the
eq string operator:

if ($url_one eq $url_two) { ... } # inefficient!

To see if two values refer not just to the same URL, but to the same URI object, use the == operator:

if ($url_one == $url_two) { ... }

For example:

use URI;
my $url = URI->new('http://www.example.int');
$that_one = $url;
if ($that_one == $url) {
 print "Same object.\n";
}
Same object.

4.1.4. Components of a URL

A generic URL looks like Figure 4-1.

Figure 4-1. Components of a URL

The URI class provides methods to access each component. Some components are available only on some schemes (for
example, mailto: URLs do not support the userinfo, server, or port components).

In addition to the obvious scheme(), userinfo(), server(), port(), path(), query(), and
fragment() methods, there are some useful but less-intuitive ones.

$url->path_query([newval]);
The path and query components as a single string, e.g., /hello.php?user=21.

$url->path_segments([segment, ...]);
In scalar context, it is the same as path(), but in list context, it returns a list of path segments (directories and
maybe a filename). For example:

$url = URI->new('http://www.example.int/eye/sea/ewe.cgi');
@bits = $url->path_segments();
for ($i=0; $i < @bits; $i++) {
 print "$i {$bits[$i]}\n";
}
print "\n\n";
0 {}
1 {eye}
2 {sea}
3 {ewe.cgi}

$url->host_port([newval])
The hostname and port as one value, e.g., www.example.int:8080.

$url->default_port();
The default port for this scheme (e.g., 80 for http and 21 for ftp).

For a URL that simply lacks one of those parts, the method for that part generally returns undef:

use URI;
my $uri = URI->new("http://stuff.int/things.html");
my $query = $uri->query;
print defined($query) ? "Query: <$query>\n" : "No query\n";
No query

However, some kinds of URLs can't have certain components. For example, a mailto: URL doesn't have a host

component, so code that calls host() on a mailto: URL will die. For example:

use URI;
my $uri = URI->new('mailto:hey-you@mail.int');
print $uri->host;
Can't locate object method "host" via package "URI::mailto"

This has real-world implications. Consider extracting all the URLs in a document and going through them like this:

foreach my $url (@urls) {
 $url = URI->new($url);
 my $hostname = $url->host;
 next unless $Hosts_to_ignore{$hostname};
 ...otherwise ...
}

This will die on a mailto: URL, which doesn't have a host() method. You can avoid this by using can() to see
if you can call a given method:

foreach my $url (@urls) {
 $url = URI->new($url);
 next unless $uri->can('host');
 my $hostname = $url->host;
 ...

or a bit less directly:

foreach my $url (@urls) {
 $url = URI->new($url);
 unless('http' eq $uri->scheme) {
 print "Odd, $url is not an http url! Skipping.\n";
 next;
 }
 my $hostname = $url->host;
 ...and so forth...

Because all URIs offer a scheme method, and all http: URIs provide a host() method, this is assuredly safe.[1]
For the curious, what URI schemes allow for what is explained in the documentation for the URI class, as well as the
documentation for some specific subclasses like URI::ldap.

[1]Of the methods illustrated above, scheme, path, and fragment are the only ones that are always
provided. It would be surprising to find a fragment on a mailto: URL—and who knows what it would
mean—but it's syntactically possible. In practical terms, this means even if you have a mailto: URL,
you can call $url->fragment without it being an error.

4.1.5. Queries

The URI class has two methods for dealing with query data above and beyond the query() and path_query()
methods we've already discussed.

In the very early days of the web, queries were simply text strings. Spaces were encoded as plus (+) characters:

http://www.example.int/search?i+like+pie

The query_keywords() method works with these types of queries, accepting and returning a list of keywords:

@words = $url->query_keywords([keywords, ...]);

For example:

use URI;
my $url = URI->new('http://www.example.int/search?i+like+pie');
@words = $url->query_keywords();
print $words[-1], "\n";
pie

More modern queries accept a list of named values. A name and its value are separated by an equals sign (=), and such
pairs are separated from each other with ampersands (&):

http://www.example.int/search?food=pie&action=like

The query_form() method lets you treat each such query as a list of keys and values:

@params = $url->query_form([key,value,...);

For example:

use URI;
my $url = URI->new('http://www.example.int/search?
food=pie&action=like');
@params = $url->query_form();
for ($i=0; $i < @params; $i++) {
 print "$i {$params[$i]}\n";
}
0 {food}
1 {pie}
2 {action}
3 {like}

3.6. LWP Classes: Behind the Scenes 4.2. Relative URLs

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

9.3. Processing

Once you have parsed some HTML, you need to process it. Exactly what you do will depend on the nature of your
problem. Two common models are extracting information and producing a transformed version of the HTML (for
example, to remove banner advertisements).

Whether extracting or transforming, you'll probably want to find the bits of the document you're interested in. They
might be all headings, all bold italic regions, or all paragraphs with class="blinking". HTML::Element provides
several functions for searching the tree.

9.3.1. Methods for Searching the Tree

In scalar context, these methods return the first node that satisfies the criteria. In list context, all such nodes are returned.
The methods can be called on the root of the tree or any node in it.

$node->find_by_tag_name(tag [, ...])
Return node(s) for tags of the names listed. For example, to find all h1 and h2 nodes:

@headings = $root->find_by_tag_name('h1', 'h2');

$node->find_by_attribute(attribute, value)
Returns the node(s) with the given attribute set to the given value. For example, to find all nodes with
class="blinking":

@blinkers = $root->find_by_attribute("class",
"blinking");

$node->look_down(...)
$node->look_up(...)

These two methods search $node and its children (and children's children, and so on) in the case of
look_down, or its parent (and the parent's parent, and so on) in the case of look_up, looking for nodes that
match whatever criteria you specify. The parameters are either attribute => value pairs (where the special
attribute _tag represents the tag name), or a subroutine that is passed a current node and returns true to indicate
that this node is of interest.

For example, to find all h2 nodes in the tree with class="blinking":

@blinkers = $root->look_down(_tag => 'h2', class => 'blinking');

We'll discuss look_down in greater detail later.

9.3.2. Attributes of a Node

Four methods give access to the basic information in a node:

$node->tag()
The tag name string of this element. Example values: html, img, blockquote. Note that this is always
lowercase.

$node->parent()
This returns the node object that is the parent of this node. If $node is the root of the tree, $node->parent

() will return undef.
$node->content_list()

This returns the (potentially empty) list of nodes that are this node's children.
$node->attr(attributename)

This returns the value of the HTML attributename attribute for this element. If there is no such attribute for
this element, this returns undef. For example: if $node is parsed from <img src="x1.jpg"
alt="Looky!">, then $node->attr("src") will return the string x1.jpg.

Four more methods convert a tree or part of a tree into another format, such as HTML or text.

$node->as_HTML([entities [, indent_char [, optional_end_tags]]]);
Returns a string consisting of the node and its children as HTML. The entities parameter is a string
containing characters that should be entity escaped (if empty, all potentially unsafe characters are encoded as
entities; if you pass just <>&, just those characters will get encoded—a bare minimum for valid HTML). The
indent_char parameter is a string used for indenting the HTML. The optional_end_tags parameter is a
reference to a hash that has a true value for every key that is the name of a tag whose closing tag is optional. The
most common value for this parameter is {} to force all tags to be closed:

$html = $node->as_HTML("", "", {});

For example, this will emit tags for any li nodes under $node, even though tags are technically
optional, according to the HTML specification.

Using $node->as_HTML() with no parameters should be fine for most purposes.

$node->as_text()
Returns a string consisting of all the text nodes from this element and its children.

$node->starttag([entities])
Returns the HTML for the start-tag for this node. The entities parameter is a string of characters to entity
escape, as in the as_HTML() method; you can omit this. For example, if this node came from parsing <TD
class=loud>Hooboy</TD>, then $node->starttag() returns <td class="loud">. Note that the
original source text is not reproduced exactly, because insignificant differences, such as the capitalization of the
tag name or attribute names, will have been discarded during parsing.

$node->endtag()
Returns the HTML for the end-tag for this node. For example, if this node came from parsing <TD
class=loud>Hooboy</TD>, then $node->endtag() returns </td>.

These methods are useful once you've found the desired content. Example 9-4 prints all the bold italic text in a
document.

Example 9-4. Bold-italic headline printer

#!/usr/bin/perl -w

use HTML::TreeBuilder;
use strict;

my $root = HTML::TreeBuilder->new_from_content(<<"EOHTML");
<i>Shatner wins Award!</i>
Today in Hollywood ...
<i>End of World Predicted!</i>
Today in Washington ...
EOHTML
$root->eof();

print contents of <i>...</i>
my @bolds = $root->find_by_tag_name('b');
foreach my $node (@bolds) {

 my @kids = $node->content_list();
 if (@kids and ref $kids[0] and $kids[0]->tag() eq 'i') {
 print $kids[0]->as_text(), "\n";
 }
}

Example 9-4 is fairly straightforward. Having parsed the string into a new tree, we get a list of all the bold nodes. Some
of these will be the headlines we want, while others will simply be bolded text. In this case, we can identify headlines by
checking that the node that it contains represents <i>...</i>. If it is an italic node, we print its text content.

The only complicated part of Example 9-4 is the test to see whether it's an interesting node. This test has three parts:

@kids
True if there are children of this node. An empty would fail this test.

ref $kids[0]
True if the first child of this node is an element. This is false in cases such as Washington, where the
first (and here, only) child is text. If we fail to check this, the next expression, $kids[0]->tag(), would
produce an error when $kids[0] isn't an object value.

$kids[0]->tag() eq 'i'
True if the first child of this node is an i element. This would weed out anything like <img
src="shatner.jpg">, where $kids[0]->tag() would return img, or Yes,
Shatner!, where $kids[0]->tag() would return strong.

9.3.3. Traversing

For many tasks, you can use the built-in search functions. Sometimes, though, you'd like to visit every node of the tree.
You have two choices: you can use the existing traverse() function or write your own using either recursion or
your own stack.

The act of visiting every node in a tree is called a traversal. Traversals can either be preorder (where you process the
current node before processing its children) or postorder (where you process the current node after processing its
children). The traverse() method lets you both:

$node->traverse(callbacks [, ignore_text]);

The traverse() method calls a callback before processing the children and again afterward. If the callbacks
parameter is a single function reference, the same function is called before and after processing the children. If the
callbacks parameter is an array reference, the first element is a reference to a function called before the children are
processed, and the second element is similarly called after the children are processed, unless this node is a text segment
or an element that is prototypically empty, such as br or hr. (This last quirk of the traverse() method is one of the
reasons that I discourage its use.)

Callbacks get called with three values:

sub callback
 my ($node, $startflag, $depth,
 $parent, $my_index) = @_;
 # ...
}

The current node is the first parameter. The next is a Boolean value indicating whether we're being called before (true) or
after (false) the children, and the third is a number indicating how deep into the traversal we are. The fourth and fifth
parameters are supplied only for text elements: the parent node object and the index of the current node in its parent's list
of children.

A callback can return any of the following values:

HTML::Element::OK (or any true value)
Continue traversing.

HTML::Element::PRUNE (or any false value)
Do not go into the children. The postorder callback is not called. (Ignored if returned by a postorder callback.)

HTML::Element::ABORT
Abort the traversal immediately.

HTML::Element::PRUNE_UP
Do not go into this node's children or into its parent node.

HTML::Element::PRUNE_SOFTLY
Do not go into the children, but do call this node's postorder callback.

For example, to extract text from a node but not go into table elements:

my $text;
sub text_no_tables {
 return if ref $_[0] && $_[0]->tag eq 'table';
 $text .= $_[0] unless ref $_[0]; # only append text nodex
 return 1; # all is copacetic
}

$root->traverse([\&text_no_tables]);

This prevents descent into the contents of tables, while accumulating the text nodes in $text.

It can be hard to think in terms of callbacks, though, and the multiplicity of return values and calling parameters you get
with traverse() makes for confusing code, as you will likely note when you come across its use in existing
programs that use HTML::TreeBuilder.

Instead, it's usually easier and clearer to simply write your own recursive subroutine, like this one:

my $text = '';
sub scan_for_non_table_text {
 my $element = $_[0];
 return if $element->tag eq 'table'; # prune!
 foreach my $child ($element->content_list) {
 if (ref $child) { # it's an element
 scan_for_non_table_text($child); # recurse!
 } else { # it's a text node!
 $text .= $child;
 }
 }
 return;
}
scan_for_non_table_text($root);

Alternatively, implement it using a stack, doing the same work:

my $text = '';
my @stack = ($root); # where to start

while (@stack) {
 my $node = shift @stack;
 next if ref $node and $node->tag eq 'table'; # skip tables
 if (ref $node) {
 unshift @stack, $node->content_list; # add children
 } else {
 $text .= $node; # add text
 }

}

The while() loop version can be faster than the recursive version, but at the cost of being much less clear to people
who are unfamiliar with this technique. If speed is a concern, you should always benchmark the two versions to make
sure you really need the speedup and that the while() loop version actually delivers. The speed difference is
sometimes insignificant. The manual page perldoc HTML::Element::traverse discusses writing more complex
traverser routines, in the rare cases where you might find this necessary.

9.2. HTML::TreeBuilder 9.4. Example: BBC News

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

1.5. LWP in Action

Enough of why you should be careful when you automate the Web. Let's look at the types of things you'll be learning in
this book. Chapter 2, "Web Basics" introduces web automation and LWP, presenting straightforward functions to let you
fetch web pages. Example 1-1 shows how to fetch the O'Reilly home page and count the number of times Perl is
mentioned.

Example 1-1. Count "Perl" in the O'Reilly catalog

#!/usr/bin/perl -w
use strict;
use LWP::Simple;

my $catalog = get("http://www.oreilly.com/catalog");
my $count = 0;
$count++ while $catalog =~ m{Perl}gi;
print "$count\n";

The LWP::Simple module's get() function returns the document at a given URL or undef if an error occurred. A
regular expression match in a loop counts the number of occurrences.

1.5.1. The Object-Oriented Interface

Chapter 3, "The LWP Class Model" goes beyond LWP::Simple to show larger LWP's powerful object-oriented interface.
Most useful of all the features it covers are how to set headers in requests and check the headers of responses. Example 1-
2 prints the identifying string that every server returns.

Example 1-2. Identify a server

#!/usr/bin/perl -w
use strict;
use LWP;

my $browser = LWP::UserAgent->new();
my $response = $browser->get("http://www.oreilly.com/");
print $response->header("Server"), "\n";

The two variables, $browser and $response, are references to objects. LWP::UserAgent object $browser makes
requests of a server and creates HTTP::Response objects such as $response to represent the server's reply. In
Example 1-2, we call the header() method on the response to check one of the HTTP header values.

1.5.2. Forms

Chapter 5, "Forms" shows how to analyze and submit forms with LWP, including both GET and POST submissions.
Example 1-3 makes queries of the California license plate database to see whether a personalized plate is available.

Example 1-3. Query California license plate database

#!/usr/bin/perl -w
pl8.pl - query California license plate database

use strict;
use LWP::UserAgent;
my $plate = $ARGV[0] || die "Plate to search for?\n";
$plate = uc $plate;
$plate =~ tr/O/0/; # we use zero for letter-oh
die "$plate is invalid.\n"
 unless $plate =~ m/^[A-Z0-9]{2,7}$/
 and $plate !~ m/^\d+$/; # no all-digit plates

my $browser = LWP::UserAgent->new;
my $response = $browser->post(
 'http://plates.ca.gov/search/search.php3',
 [
 'plate' => $plate,
 'search' => 'Check Plate Availability'
],
);
die "Error: ", $response->status_line
 unless $response->is_success;

if($response->content =~ m/is unavailable/) {
 print "$plate is already taken.\n";
} elsif($response->content =~ m/and available/) {
 print "$plate is AVAILABLE!\n";
} else {
 print "$plate... Can't make sense of response?!\n";
}
exit;

Here's how you might use it:

% pl8.pl knee
KNEE is already taken.
% pl8.pl ankle
ANKLE is AVAILABLE!

We use the post() method on an LWP::UserAgent object to POST form parameters to a page.

1.5.3. Parsing HTML

The regular expression techniques in Examples Example 1-1 and Example 1-3 are discussed in detail in Chapter 6,
"Simple HTML Processing with Regular Expressions". Chapter 7, "HTML Processing with Tokens" shows a different
approach, where the HTML::TokeParser module turns a string of HTML into a stream of chunks ("start-tag," "text,"
"close-tag," and so on). Chapter 8, "Tokenizing Walkthrough" is a detailed step-by-step walkthrough showing how to
solve a problem using HTML::TokeParser. Example 1-4 uses HTML::TokeParser to extract the src parts of all img
tags in the O'Reilly home page.

Example 1-4. Extract image locations

#!/usr/bin/perl -w

use strict;
use LWP::Simple;
use HTML::TokeParser;

my $html = get("http://www.oreilly.com/");
my $stream = HTML::TokeParser->new(\$html);

my %image = ();

while (my $token = $stream->get_token) {
 if ($token->[0] eq 'S' && $token->[1] eq 'img') {
 # store src value in %image
 $image{ $token->[2]{'src'} }++;
 }
}

foreach my $pic (sort keys %image) {
 print "$pic\n";
}

The get_token() method on our HTML::TokeParser object returns an array reference, representing a token. If the
first array element is S, it's a token representing the start of a tag. The second array element is the type of tag, and the
third array element is a hash mapping attribute to value. The %image hash holds the images we find.

Chapter 9, "HTML Processing with Trees" and Chapter 10, "Modifying HTML with Trees" show how to use tree data
structures to represent HTML. The HTML::TreeBuilder module constructs such trees and provides operations for
searching and manipulating them. Example 1-5 extracts image locations using a tree.

Example 1-5. Extracting image locations with a tree

#!/usr/bin/perl -w

use strict;
use LWP::Simple;
use HTML::TreeBuilder;

my $html = get("http://www.oreilly.com/");
my $root = HTML::TreeBuilder->new_from_content($html);
my %images;
foreach my $node ($root->find_by_tag_name('img')) {
 $images{ $node->attr('src') }++;
}

foreach my $pic (sort keys %images) {
 print "$pic\n";
}

We create a new tree from the HTML in the O'Reilly home page. The tree has methods to help us search, such as
find_by_tag_name(), which returns a list of nodes corresponding to those tags. We use that to find the img tags,
then use the attr() method to get their src attributes.

1.5.4. Authentication

Chapter 11, "Cookies, Authentication,and Advanced Requests" talks about advanced request features such as cookies
(used to identify a user between web page accesses) and authentication. Example 1-6 shows how easy it is to request a
protected page with LWP.

Example 1-6. Authenticating

#!/usr/bin/perl -w

use strict;
use LWP;

my $browser = LWP::UserAgent->new();
$browser->credentials("www.example.com:80", "music", "fred" =>
"l33t1");
my $response = $browser->get("http://www.example.com/mp3s");
...

The credentials() method on an LWP::UserAgent adds the authentication information (the host, realm, and
username/password pair are the parameters). The realm identifies which username and password are expected if there are
multiple protected areas on a single host. When we request a document using that LWP::UserAgent object, the
authentication information is used if necessary.

1.4. Words of Caution 2. Web Basics

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

11.3. Authentication

HTTP Basic Authentication is the most common type of authentication supported at the level of HTTP. The exchange
works like this:

1. The browser makes a request for a URL.

2. The page is protected by Basic Authentication, so the server replies with a 401 Unauthorized status code. The
response has a WWW-Authenticate header that specifies the authentication method ("basic") and the realm.
"Realm" here is jargon for a string that identifies the locked-off area, which the browser is about to use in the next
step.

3. The browser displays an "enter your username and password for realm" dialog box. Figure 11-1 shows the
dialog box for a part of www.unicode.org whose realm name is "Unicode-MailList-Archives."

4. The browser requests the URL again, this time with an Authorization header that encodes the username and
password.

5. If the username and password are verified, the server sends the document in a normal successful HTTP response.
If the username and password aren't correct, we go back to step 2.

Figure 11-1. Authentication dialog box

11.3.1. Comparing Cookies with Basic Authentication

Like cookies, LWP implements HTTP Basic Authentication with attributes of an LWP::UserAgent object. There are
basic differences, however.

There's no such thing as an explicit HTTP error message that means "you needed to send me a proper cookie, so try
again!". The "Register Now!" page that the New York Times site returned is not an error in any HTTP sense; as far as the
browser is concerned, it asked for something, and got it.

LWP's interface for HTTP cookies and HTTP Basic Authentication is different. To get an LWP::UserAgent browser
object to implement cookies, one assigns it an object of class HTTP::Cookies (or a subclass), which represents a little
database of cookies that this browser knows about. But there is no corresponding class for groups of username/password
pairs, although I informally refer to the set of passwords that a user agent can consult as its "key ring."

11.3.2. Authenticating via LWP

To add a username and password to a browser object's key ring, call the credentials method on a user agent object:

$browser->credentials(
 'servername:portnumber',
 'realm-name',
 'username' => 'password'
);

In most cases, the port number is 80, the default TCP/IP port for HTTP. For example:

my $browser = LWP::UserAgent->new;
$browser->name('ReportsBot/1.01');

$browser->credentials(
 'reports.mybazouki.com:80',
 'web_server_usage_reports',
 'plinky' => 'banjo123'
);

my $response = $browser->get(
 'http://reports.mybazouki.com/this_week/'
);

One can call the credentials method any number of times, to add all the server-port-realm-username-password keys
to the browser's key ring, regardless of whether they'll actually be needed. For example, you could read them all in from
a datafile at startup:

my $browser = LWP::UserAgent->new();
if(open(KEYS, "< keyring.dat")) {
 while(<KEYS>) {
 chomp;
 my @info = split "\t", $_, -1;
 $browser->credential(@info) if @info == 4;
 };
 close(KEYS);
}

11.3.3. Security

Clearly, storing lots of passwords in a plain text file is not terribly good security practice, but the obvious alternative is
not much better: storing the same data in plain text in a Perl file. One could make a point of prompting the user for the
information every time,[5] instead of storing it anywhere at all, but clearly this is useful only for interactive programs (as
opposed to a programs run by crontab, for example).

[5]In fact, Ave Wrigley wrote a module to do exactly that. It's not part of the LWP distribution, but it's
available in CPAN as LWP::AuthenAgent. The author describes it as "a simple subclass of LWP::
UserAgent to allow the user to type in username/password information if required for authentication."

In any case, HTTP Basic Authentication is not the height of security: the username and password are normally sent
unencrypted. This and other security shortcomings with HTTP Basic Authentication are explained in greater detail in
RFC 2617. See the the Preface for information on where to get a copy of RFC 2617.

11.2. Adding Extra Request Header
Lines

11.4. An HTTP Authentication
Example:The Unicode Mailing Archive

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

11.4. An HTTP Authentication Example:The Unicode Mailing Archive

Most password-protected sites (whether protected via HTTP Basic Authentication or otherwise) are that way because the
sites' owners don't want just anyone to look at the content. And it would be a bit odd if I gave away such a username and
password by mentioning it in this book! However, there is one well-known site whose content is password protected
without being secret: the mailing list archive of the Unicode mailing lists.

In an effort to keep email-harvesting bots from finding the Unicode mailing list archive while spidering the Web for
fresh email addresses, the Unicode.org sysadmins have put a password on that part of their site. But to allow people
(actual not-bot humans) to access the site, the site administrators publicly state the password, on an unprotected page, at
http://www.unicode.org/mail-arch/, which links to the protected part, but also states the username and password you
should use.

The main Unicode mailing list (called unicode) once in a while has a thread that is really very interesting and you really
must read, but it's buried in a thousand other messages that are not even worth downloading, even in digest form.
Luckily, this problem meets a tidy solution with LWP: I've written a short program that, on the first of every month,
downloads the index of all the previous month's messages and reports the number of messages that has each topic as its
subject.

The trick is that the web pages that list this information are password protected. Moreover, the URL for the index of last
month's posts is different every month, but in a fairly obvious way. The URL for March 2002, for example, is:

http://www.unicode.org/mail-arch/unicode-ml/y2002-m03/

Deducing the URL for the month that has just ended is simple enough:

To be run on the first of every month...
use POSIX ('strftime');
my $last_month = strftime("y%Y-m%m", localtime(time - 24 * 60 * 60));
Since today is the first, one day ago (24*60*60 seconds) is in
last month.
my $url = "http://www.unicode.org/mail-arch/unicode-ml/$last_month/";

But getting the contents of that URL involves first providing the username and password and realm name. The Unicode
web site doesn't publicly declare the realm name, because it's an irrelevant detail for users with interactive browsers, but
we need to know it for our call to the credential method. To find out the realm name, try accessing the URL in an
interactive browser. The realm will be shown in the authentication dialog box, as shown in Figure 11-1.

In this case, it's "Unicode-MailList-Archives," which is all we needed to make our request:

my $browser = LWP::UserAgent->new;
$browser->credentials(
 'www.unicode.org:80', # Don't forget the ":80"!
 # This is no secret...
 'Unicode-MailList-Archives',
 'unicode-ml' => 'unicode'
);
print "Getting topics for last month, $last_month\n",
 " from $url\n";
my $response = $browser->get($url);
die "Error getting $url: ", $response->status_line

http://www.unicode.org/mail-arch/

 if $response->is_error;

If this fails (if the Unicode site's admins have changed the username or password or even the realm name), that will die
with this error message:

Error getting http://www.unicode.org/mail-arch/unicode-ml/y2002-m03/:
401 Authorization Required at unicode_list001.pl line 21.

But assuming the authorization data is correct, the page is retrieved as if it were a normal, unprotected page. From there,
counting the topics and noting the absolute URL of the first message of each thread is a matter of extracting data from
the HTML source and reporting it concisely.

my(%posts, %first_url);
while(${ $response->content_ref }
 =~ m{(.*?)}g
 # Like: Klingon
) {
 my($url, $topic) = ($1,$2);

 # Strip any number of "Re:" prefixes.
 while($topic =~ s/^Re:\s+//i) {}

 ++$posts{$topic};
 use URI; # For absolutizing URLs...
 $first_url{$topic} ||= URI->new_abs($url, $response->base);
}

print "Topics:\n", reverse sort map # Most common first:
 sprintf("% 5s %s\n %s\n",
 $posts{$_}, $_, $first_url{$_}
), keys %posts;

Typical output starts out like this:

Getting topics for last month, y2002-m02
 from http://www.unicode.org/mail-arch/unicode-ml/y2002-m02/
Topics:
 86 Unicode and Security
 http://www.unicode.org/mail-arch/unicode-ml/y2002-m02/0021.html
 47 ISO 3166 (country codes) Maintenance Agency Web pages move
 http://www.unicode.org/mail-arch/unicode-ml/y2002-m02/0390.html
 41 Unicode and end users
 http://www.unicode.org/mail-arch/unicode-ml/y2002-m02/0260.html
 27 Unicode Search Engines
 http://www.unicode.org/mail-arch/unicode-ml/y2002-m02/0360.html
 22 Smiles, faces, etc
 http://www.unicode.org/mail-arch/unicode-ml/y2002-m02/0275.html
 18 This spoofing and security thread
 http://www.unicode.org/mail-arch/unicode-ml/y2002-m02/0216.html
 16 Standard Conventions and euro
 http://www.unicode.org/mail-arch/unicode-ml/y2002-m02/0418.html

This continues for a few pages.

11.3. Authentication 12. Spiders

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

2.7. Example: Babelfish

Submitting a POST query to Babelfish is as simple as:

my ($content, $message, $is_success) = do_POST(
 'http://babelfish.altavista.com/translate.dyn',
 ['urltext' => "I like pie", 'lp' => "en_fr", 'enc' => 'utf8'],
);

If the request succeeded ($is_success will tell us this), $content will be an HTML page that contains the
translation text. At time of this writing, the translation is inside the only textarea element on the page, so it can be
extracted with just this regexp:

$content =~ m{<textarea.*?>(.*?)</textarea>}is;

The translated text is now in $1, if the match succeeded.

Knowing this, it's easy to wrap this whole procedure up in a function that takes the text to translate and a specification of
what language from and to, and returns the translation. Example 2-8 is such a function.

Example 2-8. Using Babelfish to translate

sub translate {
 my ($text, $language_path) = @_;

 my ($content, $message, $is_success) = do_POST(
 'http://babelfish.altavista.com/translate.dyn',
 ['urltext' => $text, 'lp' => $language_path, 'enc' => 'utf8'],
);
 die "Error in translation $language_path: $message\n"
 unless $is_success;

 if ($content =~ m{<textarea.*?>(.*?)</textarea>}is) {
 my $translation;
 $translation = $1;
 # Trim whitespace:
 $translation =~ s/\s+/ /g;
 $translation =~ s/^ //s;
 $translation =~ s/ $//s;
 return $translation;
 } else {
 die "Can't find translation in response to $language_path";
 }
}

The translate() subroutine constructs the request and extracts the translation from the response, cleaning up any
whitespace that may surround it. If the request couldn't be completed, the subroutine throws an exception by calling die
().

The translate() subroutine could be used to automate on-demand translation of important content from one
language to another. But machine translation is still a fairly new technology, and the real value of it is to be found in

translating from English into another language and then back into English, just for fun. (Incidentally, there's a CPAN
module that takes care of all these details for you, called Lingua::Translate, but here we're interested in how to carry out
the task, rather than whether someone's already figured it out and posted it to CPAN.)

The alienate program given in Example 2-9 does just this (the definitions of translate() and do_POST() have
been omitted from the listing for brevity).

Example 2-9. The alienate program

#!/usr/bin/perl -w
alienate - translate text
use strict;
my $lang;
if (@ARGV and $ARGV[0] =~ m/^-(\w\w)$/s) {
 # If the language is specified as a switch like "-fr"
 $lang = lc $1;
 shift @ARGV;
} else {
 # Otherwise just pick a language at random:
 my @languages = qw(it fr de es ja pt);
 # I.e.: Italian, French, German, Spanish, Japanese, Portugese.
 $lang = $languages[rand @languages];
}

die "What to translate?\n" unless @ARGV;
my $in = join(' ', @ARGV);

print " => via $lang => ",
 translate(
 translate($in, 'en_' . $lang),
 $lang . '_en'
), "\n";
exit;

definitions of do_POST() and translate() go here

Call the alienate program like this:

% alienate [-lang] phrase

Specify a language with -lang, for example -fr to translate via French. If you don't specify a language, one will be
randomly chosen for you. The phrase to translate is taken from the command line following any switches.

Here are some runs of alienate:

% alienate -de "Pearls before swine!"
=> via de => Beads before pigs!

% alienate "Bond, James Bond"
=> via fr => Link, Link Of James

% alienate "Shaken, not stirred"
=> via pt => Agitated, not agitated

% alienate -it "Shaken, not stirred"
=> via it => Mental patient, not stirred

% alienate -it "Guess what! I'm a computer!"

=> via it => Conjecture that what! They are a calculating!

% alienate 'It was more fun than a barrel of monkeys'
=> via de => It was more fun than a barrel drop hammer

% alienate -ja 'It was more fun than a barrel of monkeys'
=> via ja => That the barrel of monkey at times was many pleasures

2.6. HTTP POST 3. The LWP Class Model

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

7.4. Token Sequences

Some problems cannot be solved with a single-token approach. Often you need to scan for a sequence of tokens. For
example in Chapter 4, "URLs", we extracted the Amazon sales rank from HTML like this:

Amazon.com Sales Rank: 4,070

Here we're looking for the text Amazon.com Sales Rank: , an end-tag for b, and the next token as a text token with
the sales rank. To solve this, we need to check the next few tokens while being able to put them back if they're not what
we expect.

To put tokens back into the stream, use the unget_token() method:

$stream->unget_token(@next);

The tokens stored in @next will be returned to the stream. For example, to solve our Amazon problem:

while (my $token = $stream->get_token()) {
 if ($token->[0] eq 'T' and
 $token->[1] eq 'Amazon.com Sales Rank: ') {
 my @next;
 push @next, $stream->get_token();
 my $found = 0;
 if ($next[0][0] eq 'E' and $next[0][1] eq 'b') {
 push @next, $stream->get_token();
 if ($next[1][0] eq 'T') {
 $sales_rank = $next[1][1];
 $found = 1;
 }
 }
 $stream->unget_token(@next) unless $found;
 }
}

If it's the text we're looking for, we cautiously explore the next tokens. If the next one is a end-tag, check the next
token to ensure that it's text. If it is, then that's the sales rank. If any of the tests fail, put the tokens back on the stream
and go back to processing.

7.4.1. Example: BBC Headlines

Suppose, for example, that your morning ritual is to have the help come and wake you at about 11 a.m. as they bring two
serving trays to your bed. On one tray there's a croissant, some pain au chocolat, and of course some café au lait, and on
the other tray, your laptop with a browser window already open on each story from BBC News's front page (http://news.
bbc.co.uk). However, the help have been getting mixed up lately and opening the stories on The Guardian's web site, and
that's a bit awkward, since clearly The Guardian is an after-lunch paper. You'd say something about it, but one doesn't
want to make a scene, so you just decide to write a program that the help can run on the laptop to find all the BBC story
URLs.

So you look at the source of http://news.bbc.co.uk and discover that each headline link is wrapped in one of two kinds of
code. There are lots of headlines in code such as these:

http://news.bbc.co.uk/
http://news.bbc.co.uk/
http://news.bbc.co.uk/

<B CLASS="h3"><A href="/hi/english/business/newsid_1576000/1576290.
stm">Bank
of England mulls rate cut

<B CLASS="h3"><A href="/hi/english/uk_politics/newsid_1576000/1576541.
stm">Euro
battle revived by Blair speech

and also some headlines in code like this:

 <B class="h2"> Swissair shares wiped out

 <B class="h1">Mid-East blow to US anti-terror drive

(Note that the a start-tag's class value can be h1 or h2.)

Studying this, you realize that this is how you find the story URLs:

● Every time there's a B start-tag with class value of h3, and then an A start-tag with an href value, save that
href.

● Every time there's an A start-tag with an href value, a text token consisting of just whitespace, and then a B start-
tag with a class value of h1 or h2, save the first token's href value.

7.4.2. Translating the Problem into Code

We can take some shortcuts when translating this into $stream->unget_token($token) code. The following
HTML is typical:

<B CLASS="h3">Top Stories

...
<B CLASS="h3"><A href="/hi/english/business/newsid_1576000/1576290.
stm">Bank
of England mulls rate cut

When we see the first B-h3 start-tag token, we think it might be the start of a B-h3-A-href pattern. So we get
another token and see if it's an A-href token. It's not (it's the text token Top Stories), so we put it back into the
stream (useful in case some other pattern we're looking for involves that being the first token), and we keep looping.
Later, we see another B-h3, we get another token, and we inspect it to see if it's an A-href token. This time it is, so we
process its href value and resume looping. There's no reason for us to put that a-href back, so the next iteration of
the loop will resume with the next token being Bank of England mulls rate cut.

sub scan_bbc_stream {
 my($stream, $docbase) = @_;

 Token:
 while(my $token = $stream->get_token) {

 if ($token->[0] eq 'S' and $token->[1] eq 'b' and
 ($token->[2]{'class'} || '') eq 'h3') {
 # The href we want is in the NEXT token... probably.
 # Like: <B CLASS="h3">

 my(@next) = ($stream->get_token);

 if ($next[0] and $next[0][0] eq 'S' and $next[0][1] eq 'a' and
 defined $next[0][2]{'href'}) {
 # We found ! This rule matches!
 print URI->new_abs($next[0][2]{'href'}, $docbase), "\n";
 next Token;
 }
 # We get here only if we've given up on this rule:
 $stream->unget_token(@next);
 }

 # fall thru to subsequent rules here...

 }
 return;
}

The general form of the rule above is this: if the current token looks promising, pull off a token and see if that looks
promising too. If, at any point, we see an unexpected token or hit the end of the stream, we restore what we've pulled off
(held in the temporary array @next), and continue to try other rules. But if all the expectations in this rule are met, we
make it to the part that processes this bunch of tokens (here it's just a single line, which prints the URL), and then call
next Token to start another iteration of this loop without restoring the tokens that have matched this pattern. (If you
are disturbed by this use of a named block and last ing and next ing around, consider that this could be written as a
giant if/else statement at the risk of potentially greater damage to what's left of your sanity.)

Each such rule, then, can pull from the stream however many tokens it needs to either match or reject the pattern it's
after. Either it matches and starts another iteration of this loop, or it restores the stream to exactly the way it was before
this rule started pulling from it. This business of a temporary @next list may seem like overkill when we only have to
look one token ahead, only ever looking at $next[0]. However, the if block for the next pattern (which requires
looking two tokens ahead) shows how the same framework can be accommodating:

Add this right after the first if-block ends.
if($token->[0] eq 'S' and $token->[1] eq 'a' and
 defined $token->[2]{'href'}) {
 # Like: <B class="h2">

 my(@next) = ($stream->get_token);
 if ($next[0] and $next[0][0] eq 'T' and $next[0][1] =~ m/^\s+/s) {
 # We found whitespace.
 push @next, $stream->get_token;
 if ($next[1] and $next[1][0] eq 'S' and $next[1][1] eq 'b' and
 ($next[1][2]{'class'} || '') =~ m/^h[12]$/s) {
 # We found <b class="h2">! This rule matches!
 print URI->new_abs($token->[2]{'href'}, $docbase), "\n";
 next Token;
 }
 }
 # We get here only if we've given up on this rule:
 $stream->unget_token(@next);
}

7.4.3. Bundling into a Program

With all that wrapped up in a pure function scan_bbc_stream(), we can test it by first saving the contents of
http://news.bbc.co.uk locally as bbc.html (which we probably already did to scrutinize its source code and figure out
what HTML patterns surround headlines), and then calling this:

use strict;

use HTML::TokeParser;
use URI;

scan_bbc_stream(
 HTML::TokeParser->new('bbc.html') || die($!),
 'http://news.bbc.co.uk/' # base URL
);

When run, this merrily scans the local copy and say:

http://news.bbc.co.uk/hi/english/world/middle_east/
newsid_1576000/1576113.stm
http://news.bbc.co.uk/hi/english/world/south_asia/
newsid_1576000/1576186.stm
http://news.bbc.co.uk/hi/english/uk_politics/newsid_1576000/1576051.stm
http://news.bbc.co.uk/hi/english/uk/newsid_1576000/1576379.stm
http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576636.stm
http://news.bbc.co.uk/sport/hi/english/in_depth/2001/
england_in_zimbabwe/newsid_
1574000/1574824.stm
http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576546.stm
http://news.bbc.co.uk/hi/english/uk/newsid_1576000/1576313.stm
http://news.bbc.co.uk/hi/english/uk_politics/newsid_1576000/1576541.stm
http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576290.stm
http://news.bbc.co.uk/hi/english/entertainment/music/
newsid_1576000/1576599.stm
http://news.bbc.co.uk/hi/english/sci/tech/newsid_1574000/1574048.stm
http://news.bbc.co.uk/hi/english/health/newsid_1576000/1576776.stm
http://news.bbc.co.uk/hi/english/in_depth/uk_politics/2001/
conferences_2001/labour/
newsid_1576000/1576086.stm

At least that's what the program said once I got scan_bbc_stream() in its final working state shown above. As I
was writing it and testing bits of it, I could run and re-run the program, scanning the same local file. Then once it's
working on the local file (or files, depending on how many test cases you have), you can write the routine that gets
what's at a URL, makes a stream pointing to its content, and runs a given scanner routine (such as scan_bbc_stream
()) on it:

my $browser;
BEGIN {
 use LWP::UserAgent;
 $browser = LWP::UserAgent->new;
 # and any other $browser initialization code here
}

sub url_scan {
 my($scanner, $url) = @_;
 die "What scanner function?" unless $scanner and ref($scanner) eq
'CODE';
 die "What URL?" unless $url;
 my $resp = $browser->get($url);
 die "Error getting $url: ", $resp->status_line
 unless $resp->is_success;
 die "It's not HTML, it's ", $resp->content_type
 unless $resp->content_type eq 'text/html';

 my $stream = HTML::TokeParser->new($resp->content_ref)
 || die "Couldn't make a stream from $url\'s content!?";
 # new() on a string wants a reference, and so that's what

 # we give it! HTTP::Response objects just happen to
 # offer a method that returns a reference to the content.
 $scanner->($stream, $resp->base);
}

If you thought the contents of $url could be very large, you could save the contents to a temporary file, and start the
stream off with HTML::TokeParser->new($tempfile). With the above url_scan(), to retrieve the BBC
main page and scan it, you need only replace our test statement that scans the input stream, with this:

url_scan(\&scan_bbc_stream, 'http://news.bbc.co.uk/');

And then the program outputs the URLs from the live BBC main page (or will die with an error message if it can't get it).
To actually complete the task of getting the printed URLs to each open a new browser instance, well, this depends on
your browser and OS, but for my MS Windows laptop and Netscape, this Perl program will do it:

my $ns = "c:\\program files\\netscape\\communicator\\program\\netscape.
exe";
die "$ns doesn't exist" unless -e $ns;
die "$ns isn't executable" unless -x $ns;
while (<>) { chomp; m/\S/ and system($ns, $_) and die $!; }

This is then called as:

C:\perlstuff> perl bbc_urls.pl | perl urls2ns.pl

Under Unix, the correct system() command is:

system("netscape '$url' &")

7.3. Individual Tokens 7.5. More HTML::TokeParser Methods

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

9.4. Example: BBC News

In Chapter 7, "HTML Processing with Tokens", we considered the task of extracting the headline link URLs from the
BBC News main page, and we implemented it in terms of HTML::TokeParser. Here, we'll consider the same problem
from the perspective of HTML::TreeBuilder.

To review the problem: when you look at the source of http://news.bbc.co.uk, you discover that each headline link is
wrapped in one of two kinds of code. There are a lot of headlines expressed with code like this:

<B CLASS="h3"><A href="/hi/english/business/newsid_1576000/1576290.
stm">Bank
of England mulls rate cut

<B CLASS="h3"><A href="/hi/english/uk_politics/newsid_1576000/1576541.
stm">Euro
battle revived by Blair speech

and some headlines expressed with code like this:

 <B class="h2"> Swissair shares wiped out

 <B class="h1">Mid-East blow to US anti-terror drive

(Note that in this second case, the B element's class value can be h1 or h2.)

In both cases, we can find what we want by first looking for B elements. We then look for the href attribute either on
the A element that's a child of this B element, or on the A element that's this B element's parent. Whether we look for a
parent A node or a child A node depends on the class attribute of the B element. To make sure we're on the right track, we
can code up something to formalize our idea of what sorts of nodes we want, and call the dump method on each of them.

use strict;
use HTML::TreeBuilder 3;

my $tree = HTML::TreeBuilder->new();
$tree->parse_file('bbc.html') || die $!; # the saved source from BBC
News
scan_bbc_tree($tree, 'http://news.bbc.co.uk/');
$tree->delete();

sub scan_bbc_tree {
 my($root, $docbase) = @_;
 # $docbase will be needed if we want to absolutize the URL
 foreach my $b ($root->find_by_tag_name('b')) {
 my $class = $b->attr('class') || next;
 if($class eq 'h3') {
 # expect one 'a' element as a child
 print "Found a b-h3. Dumping it:\n";
 $b->dump;

http://news.bbc.co.uk/

 } elsif($class eq 'h1' or $class eq 'h2') {
 # expect the parent to be an 'a'
 print "Found a b-h[1-2]. Dumping its parent:\n";
 $b->parent->dump;
 }
 }
 return;
}

When run on the full file, that program produces this output:

Found a b-h3. Dumping it:
<b class="h3"> @0.1.2.2.0.0.3.2.0.3.0.0.0.0.6
 <a href="/sport/hi/english/in_depth/2001/england_in_zimbabwe/
newsid_1574000/
1574824.stm"> @0.1.2.2.0.0.3.2.0.3.0.0.0.0.6.0
 "Zimbabwe suffer treble blow"

Found a b-h3. Dumping it:
<b class="h3"> @0.1.2.2.0.0.3.2.0.6.1.0

@0.1.2.2.0.0.3.2.0.6.1.0.0
 "UK housing market stalls"

Found a b-h[1-2]. Dumping its parent:

@0.1.2.2.0.0.1.2.0.14.2
 " "
 <b class="h1"> @0.1.2.2.0.0.1.2.0.14.2.1
 "UK hate crime laws to be tightened"

 @0.1.2.2.0.0.1.2.0.14.2.2

Found a b-h[1-2]. Dumping its parent:

@0.1.2.2.0.0.1.2.0.18.2
 " "
 <b class="h2"> @0.1.2.2.0.0.1.2.0.18.2.1
 "Leeds footballers' trial begins"

 @0.1.2.2.0.0.1.2.0.18.2.2

[...and others just like those...]

This output shows all the sorts of nodes from which we'll want to extract data and contains no other kinds of nodes. With
the situation we see in the first two cases, the b element with the class="h3" attribute indeed has only one child node,
which is an a element whose href we want, and in the latter two cases, we need only look to the href attribute on the
parent of the b element (which has a class="h1" or class="h2" attribute). So because we're identifying things
correctly, we can go ahead and change our code so that instead of dumping nodes, it will actually pull the hrefs out,
absolutize them, and print them:

sub scan_bbc_tree {
 my($root, $docbase) = @_;
 foreach my $b ($root->find_by_tag_name('b')) {
 my $class = $b->attr('class') || next;
 if($class eq 'h3') {
 # Expect one 'a' element as a child
 my @children = $b->content_list;
 if(@children == 1 and ref $children[0] and $children[0]->tag eq
'a')
 print URI->new_abs(

 $children[0]->attr('href') || next,
 $docbase
), "\n";
 }
 } elsif($class eq 'h1' or $class eq 'h2') {
 # Expect an 'a' element as a parent
 my $parent = $b->parent;
 if($parent and $parent->tag eq 'a') {
 print URI->new_abs(
 $parent->attr('href') || next,
 $docbase
), "\n";
 }
 }
 }
 return;
}

When run, this correctly reports all the URLs in the document:

http://news.bbc.co.uk/sport/hi/english/in_depth/2001/
england_in_zimbabwe/newsid_
1574000/1574824.stm
http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576546.stm
http://news.bbc.co.uk/hi/english/uk_politics/newsid_1576000/1576051.stm
http://news.bbc.co.uk/hi/english/uk/newsid_1576000/1576379.stm
[...etc...]

If we want to make our program also capture the text inside the link, that's straightforward too; we need only change
each occurrence of:

print URI->new_abs(...

to:

print $b->as_text(), "\n ", URI->new_abs(...

Then you'll get output like this:

UK housing market stalls
 http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576546.stm
UK hate crime laws to be tightened
 http://news.bbc.co.uk/hi/english/uk_politics/newsid_1576000/1576051.
stm
Leeds footballers' trial begins
 http://news.bbc.co.uk/hi/english/uk/newsid_1576000/1576379.stm
 Swissair shares wiped out
 http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576636.stm
[...]

Notice that in the fourth link there, we have a space at the start. Wanting to not have whitespace at the start or end of
as_text() is common enough that there's a method just for that: as_trimmed_text(), which wraps around
as_text(), removes any whitespace at the start or end, and collapses any whitespace nodes on the inside.[3] When
we replace our calls to get_text() with calls to get_trimmed_text(), that last link changes to this:

[3]This is exactly the same as the $stream->get_text() versus $stream-
>get_trimmed_text() distinction in HTML::TokeParser.

[...]
Swissair shares wiped out
 http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576636.stm
[...]

that is, without the space at the start of the line.

9.3. Processing 9.5. Example: Fresh Air

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

6.5. Example: Extracting Linksfrom a Bookmark File

Suppose we want to delegate to a Perl program the task of checking URLs in my Netscape bookmark file. I'm told that
this isn't the same format as is used in newer Netscapes. But, antiquarian that I am, I still use Netscape 4.76, and this is
what the file looks like:

<!DOCTYPE NETSCAPE-Bookmark-file-1>
<!-- This is an automatically generated file.
It will be read and overwritten.
Do Not Edit! -->
<TITLE>Bookmarks for Sean M. Burke</TITLE>
<H1>Bookmarks for Sean M. Burke</H1>

<DL><p>
 <DT><H3 ADD_DATE="911669103">Personal Toolbar Folder</H3>
 <DL><p>
 <DT><A HREF="http://libros.unm.edu/" ADD_DATE="908672224" ...
 <DT><A HREF="http://www.melvyl.ucop.edu/" ADD_DATE="900184542" ...
 <DT><A HREF="http://www.guardian.co.uk/" ADD_DATE="935897798" ...
 <DT><A HREF="http://www.booktv.org/schedule/"
ADD_DATE="935897798" ...
 <DT><A HREF="http://www.suck.com/" ADD_DATE="942604862" ...
 ...and so on...

There are three important things we should note here:

● Each bookmark item is on a line of its own. This means we can use the handy Perl idioms for line-at-a-time
processing such as while(<IN>) {...} or @lines = <IN>.

● Every URL is absolute. There are no relative URLs such as HREF="../stuff.html". That means we don't
have to bother with making URLs absolute (not yet, at least).

● The only thing we want from this file is the URL in the HREF="...url..." part of the line—and if there is
no HREF on the line, we can ignore this line. This practically begs us to use a Perl regexp!

So we scan the file one line at a time, find URLs in lines that have a HREF="...url..." in them, then check those
URLs. Example 6-4 shows such a program.

Example 6-4. bookmark-checker

#!/usr/bin/perl -w
bookmark-checker - check URLs in Netscape bookmark file

use strict;
use LWP;
my $browser;
my $bmk_file = $ARGV[0]
 || 'c:/Program Files/Netscape/users/sburke/bookmark.htm';
open(BMK, "<$bmk_file") or die "Can't read-open $bmk_file: $!";

while (<BMK>) {

 check_url($1) if m/ HREF="([^"\s]+)" /;
}

print "# Done after ", time - $^T, "s\n";
exit;

my %seen; # for tracking which URLs we've already checked

sub check_url {
 # Try to fetch the page and report failure if it can't be found
 # This routine even specially reports if the URL has changed
 # to be on a different host.

 my $url = URI->new($_[0])->canonical;

 # Skip mailto: links, and in fact anything not http:...
 return unless $url->scheme() eq 'http';

 # Kill anything like '#staff' in 'http://luddites.int/them.txt#staff'
 $url->fragment(undef);

 # Kill anything like the currently quite useless but
 # occasionally occurring 'jschmo@' in
 # 'http://jschmo@luddites.int/them.txt'
 # (It's useless because it doesn't actually show up
 # in the request to the server in any way.)
 $url->userinfo(undef);

 return if $seen{$url}; # silently skip duplicates
 $seen{$url} = 1;

 init_browser() unless $browser;
 my $response = $browser->head($url);
 my $found = URI->new($response->request->url)->canonical;
 $seen{$found} = 1; # so we don't check it later.

 # If the server complains that it doesn't understand "HEAD",
 # (405 is "Method Not Allowed"), then retry it with "GET":
 $response = $browser->get($found) if $response->code == 405;

 if($found ne $url) {
 if($response->is_success) {
 # Report the move, only if it's a very different URL.
 # That is, different schemes, or different hosts.
 if(
 $found->scheme ne $url->scheme
 or
 lc($found->can('host') ? $found->host : '')
 ne
 lc($url->can('host') ? $url->host : '')
) {
 print "MOVED: $url\n -> $found\n",
 }

 } else {
 print "MOVED: $url\n -> $found\n",
 " but that new URL is bad: ",
 $response->status_line(), "\n"
 }

 } elsif($response->is_success) {
 print "## okay: $url\n";
 } else {
 print "$url is bad! ", $response->status_line, "\n";
 }
 return;
}

sub init_browser {
 $browser = LWP::UserAgent->new;

 # Speak only HTTP - no mailto or FTP or anything.
 $browser->protocols_allowed(['http']);

 # And any other initialization we might need to do.

 return $browser;
}

And for this rigidly formatted input file, our line-at-a-time regexp-based approach works just fine; our simple loop:

while (<BMK>) { check_url($1) if m/ HREF="([^"\s]+)" / }

really does catch every URL in my Netscape bookmark file.

6.4. When Regular Expressions Aren't
Enough

6.6. Example: Extracting Linksfrom
Arbitrary HTML

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 1. Introduction to Web Automation

Contents:

The Web as Data Source
History of LWP
Installing LWP
Words of Caution
LWP in Action

LWP (short for "Library for World Wide Web in Perl") is a set of Perl modules and object-oriented classes for getting
data from the Web and for extracting information from HTML. This chapter provides essential background on the LWP
suite. It describes the nature and history of LWP, which platforms it runs on, and how to download and install it. This
chapter ends with a quick walkthrough of several LWP programs that illustrate common tasks, such as fetching web
pages, extracting information using regular expressions, and submitting forms.

1.1. The Web as Data Source

Most web sites are designed for people. User Interface gurus consult for large sums of money to build HTML code that
is easy to use and displays correctly on all browsers. User Experience gurus wag their fingers and tell web designers to
study their users, so they know the human foibles and desires of the ape descendents who will be viewing the web site.

Fundamentally, though, a web site is home to data and services. A stockbroker has stock prices and the value of your
portfolio (data) and forms that let you buy and sell stock (services). Amazon has book ISBNs, titles, authors, reviews,
prices, and rankings (data) and forms that let you order those books (services).

It's assumed that the data and services will be accessed by people viewing the rendered HTML. But many a programmer
has eyed those data sources and services on the Web and thought "I'd like to use those in a program!" For example, they
could page you when your portfolio falls past a certain point or could calculate the "best" book on Perl based on the ratio
of its price to its average reader review.

LWP lets you do this kind of web automation. With it, you can fetch web pages, submit forms, authenticate, and extract
information from HTML. Once you've used it to grab news headlines or check links, you'll never view the Web in the
same way again.

As with everything in Perl, there's more than one way to automate accessing the Web. In this book, we'll show you
everything from the basic way to access the Web (via the LWP::Simple module), through forms, all the way to the gory
details of cookies, authentication, and other types of complex requests.

1.1.1. Screen Scraping

Once you've tackled the fundamentals of how to ask a web server for a particular page, you still have to find the
information you want, buried in the HTML response. Most often you won't need more than regular expressions to
achieve this. Chapter 6, "Simple HTML Processing with Regular Expressions" describes the art of extracting information
from HTML using regular expressions, although you'll see the beginnings of it as early as Chapter 2, "Web Basics",
where we query AltaVista for a word, and use a regexp to match the number in the response that says "We found
[number] results."

The more discerning LWP connoisseur, however, treats the HTML document as a stream of tokens (Chapter 7, "HTML

Processing with Tokens", with an extended example in Chapter 8, "Tokenizing Walkthrough") or as a parse tree (Chapter
9, "HTML Processing with Trees"). For example, you'll use a token view and a tree view to consider such tasks as how
to catch <img...> tags that are missing some of their attributes, how to get the absolute URLs of all the headlines on
the BBC News main page, and how to extract content from one web page and insert it into a different template.

In the old days of 80x24 terminals, "screen scraping" referred to the art of programmatically extracting information from
the screens of interactive applications. That term has been carried over to mean the act of automatically extracting data
from the output of any system that was basically designed for interactive use. That's the term used for getting data out of
HTML that was meant to be looked at in a browser, not necessarily extracted for your programs' use.

1.1.2. Brittleness

In some lucky cases, your LWP-related task consists of downloading a file without requiring your program to parse it in
any way. But most tasks involve having to extract a piece of data from some part of the returned document, using the
screen-scraping tactics as mentioned earlier. An unavoidable problem is that the format of most web content can change
at any time. For example in Chapter 8, "Tokenizing Walkthrough", I discuss the task of extracting data from the program
listings at the web site for the radio show Fresh Air. The principle I demonstrate for that specific case is true for all
extraction tasks: no pattern in the data is permanent and so any data-parsing program will be "brittle."

For example, if you want to match text in section headings, you can write your program to depend on them being inside
<h2>...</h2> tags, but tomorrow the site's template could be redesigned, and headings could then be in <h3
class='hdln'>...</h3> tags, at which point your program won't see anything it considers a section heading. In
practice, any given site's template won't change on a daily basis (nor even yearly, for most sites), but as you read this
book and see examples of data extraction, bear in mind that each solution can't be the solution, but is just a solution, and
a temporary and brittle one at that.

As somewhat of a lesson in brittleness, in this book I show you data from various web sites (Amazon.com, the BBC
News web site, and many others) and show how to write programs to extract data from them. However, that code is
fragile. Some sites get redesigned only every few years; Amazon.com seems to change something every few weeks. So
while I've made every effort to provide accurate code for the web sites as they exist at the time of this writing, I hope you
will consider the programs in this book valuable as learning tools even after the sites will have changed beyond
recognition.

1.1.3. Web Services

Programmers have begun to realize the great value in automating transactions over the Web. There is now a booming
industry in web services, which is the buzzword for data or services offered over the Web. What differentiates web
services from web sites is that web services don't emit HTML for the ultimate reading pleasure of humans, they emit
XML for programs.

This removes the need to scrape information out of HTML, neatly solving the problem of ever-changing web sites made
brittle by the fickle tastes of the web-browsing public. Some web services standards (SOAP and XML-RPC) even make
the remote web service appear to be a set of functions you call from within your program—if you use a SOAP or XML-
RPC toolkit, you don't even have to parse XML!

However, there will always be information on the Web that isn't accessible as a web service. For that information, screen
scraping is the only choice.

0.7. Acknowledgments 1.2. History of LWP

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

5.4. Idiosyncrasies of HTML Forms

This section explains how the various form fields (hidden data, text boxes, etc.) are turned into data that is sent to the
server. For information on the cosmetic features, such as the attributes that control how big the form object appears on
the screen, see Web Design in a Nutshell (O'Reilly), HTML & XHTML: The Definitive Guide (O'Reilly), or the W3C's
explanation of HTML 4.01 forms at http://www.w3.org/TR/html401/interact/forms.

5.4.1. Hidden Elements

An input element with type=hidden creates a form pair consisting of the value of its name attribute and the value of
its value attribute. For example, this element:

<input type=hidden name="pie" value="meringue">

This doesn't display anything to the user, but when submitted, creates a form pair pie=meringue.

5.4.2. Text Elements

An input element with type=text (or with no type attribute at all) creates a one-line form box in which the user can
type whatever she wants to send on this form. If there's a value attribute, its value is what's filled in when the form is
first rendered, or when the user hits a Reset form button.

For example, this element:

<input type=text name="pie_filling" value="cherry">

creates a form box with "cherry" filled in. If the user submits the form as is, this will make a form pair
pie_filling=cherry. If the user changes this to crème brÛlée, this will make a form pair
pie_filling=crème brÛlée, or, after it gets URL encoded, pie_filling=cr%E8me+br%FBl%E9e.

5.4.3. Password Elements

An input element with type=password works exactly as if it had type=text, except the characters on screen in
that box are made unreadable to anyone who might be looking over the user's shoulder. This is typically done by
showing every character of the current value as *. For example:

<input type=password name="pie_filling" value="cherry">

This will have the initial value cherry, except it will appear as ******. If the user enters crème brÛlée, that will
be the current value, but it will display as ************. The form pairs submitted are just as if it were
type=text, that is, pie_filling=cherry or pie_filling=crème brÛlée.

5.4.4. Checkboxes

An input element with type=checkbox creates an on/off form button. The user cannot change the value of the
element beyond just turning it on or off. For example:

<input type=checkbox name="à la mode" value="Pretty please!">

If the user checks this box and submits the form, it will send the form pair consisting of the element's name and value

http://www.w3.org/TR/html401/interact/forms

attribute's values. In this case, the pair is à la mode=Pretty please!, or, after it gets URL encoded, %E0+la
+mode=Pretty+please%21. Note that if there is no value attribute, you get the pair name=on, as if there were a
value="on" in this element. Incidentally, the user doesn't typically see whatever is specified for the value attribute.

Note that this differs from type=text input elements in this way: in type=text input elements, the value attribute
sets the default value of the form, but in type=checkbox elements, the value attribute controls what value is sent if
the checkbox is turned on when the form is submitted. By default, a checkbox is off upon rendering a new form (or when
the user hits Reset); to make a checkbox element on by default, add the checked attribute:

<input type=checkbox name="à la mode" ivalue="Pretty please!" checked>

5.4.5. Radio Buttons

Input elements with type=radio behave like checkboxes, except that turning one radio button element on will turn off
any other radio button elements with the same name value in that form. As the name "radio button" suggests, this is
meant to be like the station preset buttons on many models of old car radios, where pressing in one button would make
any selected one pop out.

Moreover, there is typically no way to turn off a radio button except by selecting another in the same group. An example
group of radio buttons:

<input type=radio name="à la mode" value="nope" checked>
 nope

<input type=radio name="à la mode" value="w/lemon" >
 with lemon sorbet

<input type=radio name="à la mode" value="w/vanilla" >
 with vanilla ice cream

<input type=radio name="à la mode" value="w/chocolate" >
 with chocolate ice cream

By default, the nope element is on. If the user submits this form unchanged, this will send the form pair à la
mode=nope. Selecting the second option ("with lemon sorbet") also deselects the first one (or whatever other "à la
mode" element is selected), and if the user submits this, it well send the form pair à la mode=w/lemon.

Note that the checked attribute can be used to turn a type=radio element on by default, just as with
type=checkbox elements. Different browsers behave differently when a radio button group has no checked element
in it, or more than one. If you need to emulate the behavior of a particular browser in that case, experiment with the
formpairs.pl program explained earlier, to see what form pair(s) are sent.

5.4.6. Submit Buttons

An input element with type=submit produces a button that, when pressed, submits the form data. There are two types
of submit buttons: with or without a name attribute.

<input type=submit value="Go!">

The name-less element forms a button on screen that says "Go!". When pressed, that button submits the form data.

<input type=submit value="Go!" name="verb">

This displays the same as the name-less element, but when pressed, it also creates a form pair in the form it submits,
consisting of verb=Go! (or after URL encoding, verb=Go%21). Note that the value attribute is doing double duty
here, supplying both the value to be submitted as well as what should be displayed on the face of the button.

The purpose of this sort of button is to distinguish which of several submit buttons is pressed. Consider a form that
contains these three submit buttons:

<input type=submit name="what_to_do" value="Continue Shopping">
<input type=submit name="what_to_do" value="Check Out">
<input type=submit name="what_to_do" value="Erase Order">

All of these will submit the form, but only if the first one is pressed will there be a what_to_do=Continue
Shopping pair in the form data; only if the second one is pressed will there be a what_to_do=Check Out pair in
the form data; and only if the third one is pressed will there be a what_to_do=Erase Order pair in the form data.

Note, incidentally, that in some cases, it is possible to submit a form without pressing a submit button! This is not
specified in the HTML standard, but many browsers have the feature that if a form contains only one type=text field,
if the user hits Enter while the cursor is in that field, the form is submitted. For example, consider this form:

<form type=get action="searcher.cgi">
 <input type=hidden name="session" value="3.14159">
 <input type=text name="key" value="">
 <input type=submit name="verb" value="Search!">
</form>

If the user types "meringue" in the input box, then hits the "Search!" button with the mouse pointer, there will be three
form pairs submitted: session=3.14159, key=meringue, and verb=Search!. But if the user merely types
"meringue" in the input box and hits the Enter key, there will be only two form pairs submitted: session=3.14159
and key=meringue. No form pair for the submit button is sent then, because it wasn't actually pressed.

5.4.7. Image Buttons

An input element with type=image is somewhat like a type=submit element, except instead of producing a button
that the user presses in order to submit the form, it produces an inline image that the user clicks on to submit the form.

Also, whereas a type=submit button generates one form pair when pressed, name=value, from the element's name
and value attributes, a type=image element generates two form pairs when pressed: name.x=across and name.
y=down, reflecting the point in the image where the user's pointer was when he clicked on it. An example of typical
type=image element syntax will illustrate this:

<input type=image name="woohah" src="do_it.gif">

And suppose that do_it.gif is an image 100 pixels wide by 40 high, and looks like the image in Figure 5-1.

Figure 5-1. A sample submit button

If the user clicks the pointer over the absolute top-leftmost pixel of that image as drawn by the above <input
type=image ...> element inside a larger form element, it will submit the form along with two form pairs: woohah.
x=0 and woohah.y=0. If the user instead clicks the pointer over the four-corners design in the middle of the "O" in
"DO IT!", this happens to be 38 pixels from the left edge of the image, and 19 pixels from the top edge of the image, the
form is submitted with the two form pairs woohah.x=38 and woohah.y=19.

While this imagemap-like feature of input type=image elements would obviously be quite useful for, say, click-to-
zoom maps, most uses of input type=image elements are actually merely cosmetic, and the inlined image is just a
fancy-looking version of the submit button. As such, the programs that process most such forms will just ignore the
values of the name.x and name.y form pairs.

Consider this simple form:

<form type=post action="searcher.cgi">

 <input type=hidden name="session" value="3.14159">
 <input type=text name="key" value="">
 <input type=image name="in-english" src="usa_flag.png">
 <input type=image name="in-spanish" src="mex_flag.png">
</form>

This will render an input box followed by a U.S. flag image, then a Mexican flag image. There are three possible ways
this can be submitted. First, if the user selects the input box to plant the cursor there, types "chocolate", and presses
Enter, this will submit the form (via a POST method) to the form searcher.cgi with just two form pairs:
session=3.14159 and key=chocolate.

Secondly, if the user types "chocolate", then puts the pointer over the U.S. flag and clicks it, it will submit the form with
four form pairs: session=3.14159, key=chocolate, in-english.x=12, and in-english.y=34, where
12 and 34 are the across and down coordinates of the point in the U.S. flag where the user clicked.

Or thirdly, if the user types "chocolate", then puts the pointer over the Mexican flag and clicks it, it will submit the form
with four form pairs: session=3.14159, key=chocolate, in-spanish.x=12, and in-spanish.y=34,
where 12 and 34 are the across and down coordinates of the point in the Mexican flag where the user clicked.

Incidentally, the HTML specifications do not say how browsers should behave when there is no name=whatever
attribute present in an input type=image element, but common practice is to create form pairs with keys named x and
y (i.e., x=38 and y=19).

5.4.8. Reset Buttons

A type=reset input element produces no form pair and does not submit the form. It merely creates a button that the
user can press to reset the form's contents to their default values, back to the way they were when the form was first
rendered. The value attribute is used only to put text on the button's face. For example:

<input type=reset value="Nevermind">

This creates a reset button with the text "Nevermind" on it. It has no other effect.

5.4.9. File Selection Elements

A type=file input element provides some set of controls with which the user can select a local file. Usually this
appears as a "Browse..." button that brings up an "Open File..." window and a text box that lists the name of whatever
file is selected. When a file is selected, it sets the value of the form pair as the content of the file. File parameters,
however, work in quite a different way from regular forms, and we deal with them in the Section 5.7, "File Uploads"
section later in this chapter.

5.4.10. Textarea Elements

A textarea element is like an <input type=text ...> element, except the user can enter many lines of text
instead of just one. Moreover, the syntax is different. Whereas an <input type=text ...> element consists of just
one tag, with the default content in the value attribute, like so:

<input type=text name="pairname" value="default content">

a textarea element consists of a start-tag, default content, and an end-tag:

<textarea name="pairname">Default content, first line.
Another line.
The last line.</textarea>

5.4.11. Select Elements and Option Elements

One final construct for expressing form controls is a select element containing some number of option elements.
This is usually rendered as a drop-down/pop-up menu or occasionally as a scrollable list. In either case, the behavior is
the same: the user selects an option from the list. The syntax is:

<select name="à la mode">
 <option value="nope">Nope</option>
 <option value="w/lemon">with lemon sorbet</option>
 <option value="w/vanilla">with vanilla ice cream</option>
 <option value="w/chocolate">with chocolate ice cream</option>
</select>

That is, one select element with a name=string attribute contains some option elements, each of which has a
value=string attribute. The select element generates one form pair, using the select element's name=string
attribute and the value=string attribute from the chosen option element. So in the example above, if the user
chooses the option that showed on the screen as "with lemon sorbet", this sends the form pair à la mode=w/lemon,
or, once it's URL encoded, %E0+la+mode=w%2Flemon.

Any option elements that have no value=string attribute get their values from the content of the element. So these
option elements:

<option>This & That</option>
<option>And the other

mean the same thing as:

<option value="This & That">This & That</option>
<option value="And the other">And the other</option>

When the form is first rendered, the first element is typically selected by default, and selecting any other deselects it. By
providing a selected attribute in an option element, you can force it to be the selected one when the form first renders,
just as the checked attribute does for checkbox input elements. Also, the </option> end-tag is optional.

Putting all that together, this code:

<select name="pie_filling">
 <option>Apple crunch
 <option selected>Pumpkin
 <option value="Mince-meat">Mince
 <option>Blueberry
 <option>Quince
</select>

means the same thing as this code:

<select name="pie_filling">
 <option value="Apple crunch">Apple crunch</option>
 <option value="Pumpkin">Pumpkin</option>
 <option value="Mince-meat">Mince</option>
 <option value="Blueberry" selected>Blueberry</option>
 <option value="Quince">Quince</option>
</select>

with the single exception that when the first one is rendered on the screen, it starts out with "Pumpkin" selected by
default, whereas in the second one, "Blueberry" is selected by default.

There are two other kinds of differences in the code: the latter has </option> tags, but the former does not, and the
former leaves out some value="..." attributes where the latter always has them. However, neither of these two kinds

of differences are significant; the browser sees both blocks of code as meaning the same thing.

If the select element has a multiple attribute, as here:

<select name="à la mode" multiple>
 <option value="nope">Nope</option>
 <option value="w/lemon">with lemon sorbet</option>
 <option value="w/vanilla">with vanilla ice cream</option>
 <option value="w/chocolate">with chocolate ice cream</option>
</select>

the user is allowed to select more than one option at a time. (And incidentally, this typically forces the options to appear
as a scrollable list instead of as a drop-down/pop-up menu.) This multiple feature is rarely used in practice.

5.3. Automating Form Analysis 5.5. POST Example: License Plates

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

7.3. Individual Tokens

Now that you know the composition of the various types of tokens, let's see how to use HTML::TokeParser to write
useful programs. Many problems are quite simple and require only one token at a time. Programs to solve these problems
consist of a loop over all the tokens, with an if statement in the body of the loop identifying the interesting parts of the
HTML:

use HTML::TokeParser;
my $stream = HTML::TokeParser->new($filename)
 || die "Couldn't read HTML file $filename: $!";
For a string: HTML::TokeParser->new(\$string_of_html);

while (my $token = $stream->get_token) {
 if ($token->[0] eq 'T') { # text
 # process the text in $text->[1]

 } elsif ($token->[0] eq 'S') { # start-tag
 my($tagname, $attr) = @$token[1,2];
 # consider this start-tag...

 } elsif ($token->[0] eq 'E') {
 my $tagname = $token->[1];
 # consider this end-tag
 }

 # ignoring comments, declarations, and PIs
}

7.3.1. Checking Image Tags

Example 7-1 complains about any img tags in a document that are missing alt, height, or width attributes:

Example 7-1. Check tags

while(my $token = $stream->get_token) {
 if($token->[0] eq 'S' and $token->[1] eq 'img') {
 my $i = $token->[2]; # attributes of this img tag
 my @lack = grep !exists $i->{$_}, qw(alt height width);
 print "Missing for ", $i->{'src'} || "????", ": @lack\n" if @lack;
 }
}

When run on an HTML stream (whether from a file or a string), this outputs:

Missing for liza.jpg: height width
Missing for aimee.jpg: alt
Missing for laurie.jpg: alt height width

Identifying images has many applications: making HEAD requests to ensure the URLs are valid, or making a GET
request to fetch the image and using Image::Size from CPAN to check or insert the height and width attributes.

7.3.2. HTML Filters

A similar while loop can use HTML::TokeParser as a simple code filter. You just pass through the $source from
each token you don't mean to alter. Here's one that passes through every tag that it sees (by just printing its source as
HTML::TokeParser passes it in), except for img start-tags, which get replaced with the content of their alt attributes:

while (my $token = $stream->get_token) {
 if ($token->[0] eq 'S') {
 if ($token->[1] eq 'img') {
 print $token->[2]{'alt'} || '';
 } else {
 print $token->[4];
 }
 }
 elsif($token->[0] eq 'E') { print $token->[2] }
 elsif($token->[0] eq 'T') { print $token->[1] }
 elsif($token->[0] eq 'C') { print $token->[1] }
 elsif($token->[0] eq 'D') { print $token->[1] }
 elsif($token->[0] eq 'PI') { print $token->[2] }
}

So, for example, a document consisting just of this:

<!-- new entry -->
<p>Dear Diary,

This is me & my balalaika, at BalalaikaCon 1998:
 Rock on!</p>

is then spat out as this:

<!-- new entry -->
<p>Dear Diary,

This is me & my balalaika, at BalalaikaCon 1998:
BC1998! WHOOO! Rock on!</p>

7.2. Basic HTML::TokeParser Use 7.4. Token Sequences

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 9. HTML Processing with Trees

Contents:

Introduction to Trees
HTML::TreeBuilder
Processing
Example: BBC News
Example: Fresh Air

Treating HTML as a stream of tokens is an imperfect solution to the problem of extracting information from HTML. In
particular, the token model obscures the hierarchical nature of markup. Nested structures such as lists within lists or
tables within tables are difficult to process as just tokens. Such structures are best represented as trees, and the HTML::
Element class does just this.

This chapter teaches you how to use the HTML::TreeBuilder module to construct trees from HTML, and how to process
those trees to extract information. Chapter 10, "Modifying HTML with Trees" shows how to modify HTML using trees.

9.1. Introduction to Trees

The HTML in Example 9-1 can be represented by the tree in Figure 9-1.

Example 9-1. Simple HTML

 Ice cream.
 Whipped cream.
 Hot apple pie
(mmm pie)

Figure 9-1. HTML tree

In the language of trees, each part of the tree (such as html, li, Ice cream., and br) is a node. There are two kinds
of nodes in an HTML tree: text nodes,which are strings with no tags, and elements, which symbolize not mere strings,

but things that can have attributes (such as align=left), and which generally came from an open tag (such as),
and were possibly closed by an end-tag (such as).

When several nodes are contained by another, as the li elements are contained by the ul element, the contained ones
are called children. Children of the same element are called siblings. For example, head and body are siblings, as they
are both children of the html element. Text nodes can't have children; only elements can have children.

Example 9-1 shows the difference between a tag and an element. A tag is a piece of markup source, such as the string
. An element is a feature of the tree that you get by parsing the source that contains tags. The relationship between
the two isn't always easy to figure out by just looking at the source, because HTML lets you omit closing tags (such as </
li>) and in some cases omit entire groups of tags (such as <html><head></head><body>...</body></
html>, as were omitted above but showed up in the tree anyway). This is unlike XML, where there are exactly as many
elements in the tree as there are <foo>...</foo> tag pairs in the source.

Trees let you work with elements and ignore the way the HTML was marked up. If you're processing the tree shown in
Figure 9-1, you don't need to worry about whether the tag was or was not present.

In LWP, each element in a tree is an HTML::Element object. The HTML::TreeBuilder module parses HTML and
constructs a tree for you. The parsing options in a given HTML::TreeBuilder object control the nature of the final tree
(for example, whether comments are ignored or represented in the tree). Once you have a tree, you can call methods on it
that search for bits of content and emit parts of it as HTML or text. In the next chapter, we even see how to move nodes
around within the tree, and from tree to tree.

8.7. Alternatives 9.2. HTML::TreeBuilder

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 11. Cookies, Authentication, and Advanced
Requests

Contents:

Cookies
Adding Extra Request Header Lines
Authentication
An HTTP Authentication Example:The Unicode Mailing Archive

Not every document can be fetched with a simple GET or POST request. Many pages require authentication before you
can access them, some use cookies to keep track of the different users, and still others want special values in the
Referer or User-Agent headers. This chapter shows you how to set arbitrary headers, manage cookies, and even
authenticate using LWP. You'll be able to make your LWP programs appear to be Netscape or Internet Explorer, log in
to a protected site, and work with sites that use cookies.

For example, suppose you're automating a web-based purchasing system. The server requires you to log in, then issues
you a cookie to prove you've been authenticated. You must then send this cookie back to the server with every request
you make.

Or, more mundanely, suppose you're extracting information from one of the many web sites that check the User-
Agent header in your requests. If your User-Agent doesn't identify yours as a recent version of Netscape or Internet
Explorer, the server sends you back an "Upgrade your browser" page. You need to set the User-Agent header to make
it appear that you are using Netscape or Internet Explorer.

11.1. Cookies

HTTP was originally designed as a stateless protocol, meaning that each request is totally independent of other requests.
But web site designers felt the need for something to help them identify the user of a particular session. The mechanism
that does this is called a cookie. This section gives some background on cookies so you know what LWP is doing for
you.

An HTTP cookie is a string that an HTTP server can send to a client, which the client is supposed to put in the headers of
any future requests that it makes to that server. Suppose a client makes a request to a given server, and the response
headers consist of this:

Date: Thu, 28 Feb 2002 04:29:13 GMT
Server: Apache/1.3.23 (Win32)
Content-Type: text/html
Set-Cookie: foo=bar; expires=Thu, 20 May 2010 01:23:45 GMT; path=/

This means that the server wants all further requests from this client to anywhere on this site (i.e., under /) to be
accompanied by this header line:

Cookie: foo=bar

That header should be present in all this browser's requests to this site, until May 20, 2010 (at 1:23:45 in the morning),
after which time the client should never send that cookie again.

A Set-Cookie line can fail to specify an expiration time, in which case this cookie ends at the end of this "session,"
where "session" is generally seen as ending when the user closes all browser windows. Moreover, the path can be
something more specific than /. It can be, for example, /dahut/, in which case a cookie will be sent only for URLs that
begin http://thishost/dahut/. Finally, a cookie can specify that this site is not just on this one host, but also on all other
hosts in this subdomain, so that if this host is search.mybazouki.com, cookies should be sent to any hostname under
mybazouki.com, including images.mybazouki.com, ads.mybazouki.com, extra.stuff.mybazouki.com, and so on.

All those details are handled by LWP, and you need only make a few decisions for a given LWP::UserAgent object:

● Should it implement cookies at all? If not, it will just ignore any Set-Cookie: headers from the server and will
never send any Cookie: headers.

● Should it load cookies when it starts up? If not, it will start out with no cookies.

● Should it save cookies to some file when the browser object is destroyed? If not, whatever cookies it has
accumulated will be lost.

● What format should the cookies file be in? Currently the choices are either a format particular to LWP, or
Netscape cookies files.

11.1.1. Enabling Cookies

By default, an LWP::UserAgent object doesn't implement cookies. To make an LWP::UserAgent object that implements
cookies is as simple as this:

my $browser = LWP::UserAgent->new();
$browser->cookie_jar({});

However, that browser object's cookie jar (as we call its HTTP cookie database) will start out empty, and its contents
won't be saved anywhere when the object is destroyed. Incidentally, the above code is a convenient shortcut for what one
previously had to do:

Load LWP class for "cookie jar" objects
use HTTP::Cookies;
my $browser = LWP::UserAgent->new();
my $cookie_jar = HTTP::Cookies->new();
$browser->cookie_jar($cookie_jar);

There's not much point to using the long form when you could use the short form instead, but the longer form becomes
preferable when you're adding options to the cookie jar.

11.1.2. Loading Cookies from a File

To start the cookie jar by loading from a particular file, use the file option to the HTTP::Cookies new method:

use HTTP::Cookies;
my $cookie_jar = HTTP::Cookies->new(
 file => "/some/where/cookies.lwp",
);
my $browser = LWP::UserAgent->new;
$browser->cookie_jar($cookie_jar);

In that case, the file is read when the cookie jar is created, but it's never updated with any new cookies that the
$browser object will have accumulated.

To read the cookies from a Netscape cookies file instead of from an LWP-format cookie file, use a different class,
HTTP::Cookies::Netscape, which is just like HTTP::Cookies, except for the format that it reads and writes:

use HTTP::Cookies::Netscape;
my $cookie_jar = HTTP::Cookies::Netscape->new(
 file => "c:/program files/netscape/users/shazbot/cookies.txt",
);
my $browser = LWP::UserAgent->new;
$browser->cookie_jar($cookie_jar);

11.1.3. Saving Cookies to a File

To make LWP write out its potentially changed cookie jar to a file when the object is no longer in use, add an
autosave => 1 parameter:

use HTTP::Cookies;
my $cookie_jar = HTTP::Cookies->new(
 file => "/some/where/cookies.lwp",
 autosave => 1,
);
my $browser = LWP::UserAgent->new;
$browser->cookie_jar($cookie_jar);

At time of this writing, using autosave => 1 with HTTP::Cookies::Netscape has not been sufficiently tested and is not
recommended.

11.1.4. Cookies and the New York Times Site

Suppose that you have felt personally emboldened and empowered by all the previous chapters' examples of pulling data
off of news sites, especially the examples of simplifying HTML in Chapter 10, "Modifying HTML with Trees". You
decide that a great test of your skill would be to write LWP code that downloads the stories off various newspapers' web
sites and saves them all in a format (either plain text, highly simplified HTML, or even WML, if you have an
html2wml tool around) that your ancient but trusty 2001-era PDA can read. Thus, you can spend your commute time
on the train (or bus, tube, el, metro, jitney, T, etc.) merrily flipping through the day's news stories from papers all over
the world.

Suppose also that you have the basic HTML-simplifying code in place (so we shall not discuss it further), and the LWP
code that downloads stories from all the newspapers is working fine—except for the New York Times site. And you can't
imagine why it's not working! You have a simple HTML::TokeParser program that gets the main page, finds all the
URLs to stories in it, and downloads them one at a time. You verify that those routines are working fine. But when you
look at the files that it claims to be successfully fetching and saving ($response->is_success returns true and
everything!), all you see for each one is a page that says "Welcome to the New York Times on the Web! Already a
member? Log in!" When you look at the exact same URL in Netscape, you don't see that page at all, but instead you see
the news story that you want your LWP program to be accessing.

Then it hits you: years ago, the first time you accessed the New York Times site, it wanted you to register with an email
address and a password. But you haven't seen that screen again, because of... HTTP cookies! You riffle through your
Netscape HTTP cookies file, and lo, there you find:

.nytimes.com TRUE / FALSE 1343279235 RMID 809ac0ad1cff9a6b

Whatever this means to the New York Times site, it's apparently what differentiates your copy of Netscape when it's
accessing a story URL, from your LWP program when it's accessing that URL.

Now, you could simply hardwire that cookie into the headers of the $browser->get() request's headers, but that
involves recalling exactly how lines in Netscape cookie databases translate into headers in HTTP request. The optimally
lazy solution is to simply enable cookie support in this LWP::UserAgent object and have it read your Netscape cookie
database. So just after where you started off the program with this:

use LWP;
my $browser = LWP::UserAgent->new();

Add this:

use HTTP::Cookies::Netscape;
my $cookie_jar = HTTP::Cookies::Netscape->new(
 'file' => 'c:/program files/netscape/users/me/cookies.txt'
);
$browser->cookie_jar($cookie_jar);

With those five lines of code added, your LWP program's requests to the New York Times's server will carry the cookie
that says that you're a registered user. So instead of giving your LWP program the "Log in!" page ad infinitum, the New
York Times's server now merrily serves your program the news stories. Success!

10.5. Creating New Elements 11.2. Adding Extra Request Header
Lines

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 3. The LWP Class Model

Contents:

The Basic Classes
Programming with LWP Classes
Inside the do_GET and do_POST Functions
User Agents
HTTP::Response Objects
LWP Classes: Behind the Scenes

For full access to every part of an HTTP transaction—request headers and body, response status line, headers and body—
you have to go beyond LWP::Simple, to the object-oriented modules that form the heart of the LWP suite. This chapter
introduces the classes that LWP uses to represent browser objects (which you use for making requests) and response
objects (which are the result of making a request). You'll learn the basic mechanics of customizing requests and
inspecting responses, which we'll use in later chapters for cookies, language selection, spidering, and more.

3.1. The Basic Classes

In LWP's object model, you perform GET, HEAD, and POST requests via a browser object (a.k.a. a user agent object) of
class LWP::UserAgent, and the result is an HTTP response of the aptly named class HTTP::Response. These are the two
main classes, with other incidental classes providing features such as cookie management and user agents that act as
spiders. Still more classes deal with non-HTTP aspects of the Web, such as HTML. In this chapter, we'll deal with the
classes needed to perform web requests.

The classes can be loaded individually:

use LWP::UserAgent;
use HTTP::Response;

But it's easiest to simply use the LWP convenience class, which loads LWP::UserAgent and HTTP::Response for you:

use LWP; # same as previous two lines

If you're familiar with object-oriented programming in Perl, the LWP classes will hold few real surprises for you. All
you need is to learn the names of the basic classes and accessors. If you're not familiar with object-oriented programming
in any language, you have some catching up to do. Appendix G, "User's View of Object-Oriented Modules" will give
you a bit of conceptual background on the object-oriented approach to things. To learn more (including information on
how to write your own classes), check out Programming Perl (O'Reilly).

2.7. Example: Babelfish 3.2. Programming with LWP Classes

file:///I|/Carti/Temp/perl3/prog/index.htm

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

9.2. HTML::TreeBuilder

There are five steps to an HTML::TreeBuilder program:

1. Create the HTML::TreeBuilder object.
2. Set the parse options.
3. Parse the HTML.
4. Process it according to the needs of your problem.
5. Delete the HTML::TreeBuilder object.

Example 9-2 is a simple HTML::TreeBuilder program.

Example 9-2. Simple HTML::TreeBuilder program

#!/usr/bin/perl -w
use strict;
use HTML::TreeBuilder 3; # make sure our version isn't ancient
my $root = HTML::TreeBuilder->new;
$root->parse(# parse a string...
q{

 Ice cream.
 Whipped cream.
 Hot apple pie
(mmm pie)

});
$root->eof(); # done parsing for this tree
$root->dump; # print() a representation of the tree
$root->delete; # erase this tree because we're done with it

Four of the five steps are shown here. The HTML::TreeBuilder class's new() constructor creates a new object. We
don't set parse options, preferring instead to use the defaults. The parse() method parses HTML from a string. It's
designed to let you supply HTML in chunks, so you use the eof() method to tell the parser when there's no more
HTML. The dump() method is our processing here, printing a string form of the tree (the output is given in Example
9-3). And finally we delete() the tree to free the memory it used.

Example 9-3. Output of

Example 9-2

<html> @0 (IMPLICIT)
 <head> @0.0 (IMPLICIT)
 <body> @0.1 (IMPLICIT)
 @0.1.0
 @0.1.0.0
 "Ice cream."
 @0.1.0.1
 "Whipped cream. "
 @0.1.0.2
 "Hot apple pie "

 @0.1.0.2.1

 "(mmm pie)"

Each line in the dump represents either an element or text. Each element is identified by a dotted sequence of numbers (e.
g., 0.1.0.2). This sequence identifies the position of the element in the tree (2nd child of the 0th child of the 1st child of
the 0th child of the root of the tree). The dump also identifies some nodes as (IMPLICIT), meaning they weren't
present in the HTML fragment but have been inferred to make a valid document parse tree.

9.2.1. Constructors

To create a new empty tree, use the new() method:

$root = HTML::TreeBuilder->new();

To create a new tree and parse the HTML in one go, pass one or more strings to the new_from_content() method:

$root = HTML::TreeBuilder->new_from_content([string, ...]);

To create a new HTML::TreeBuilder object and parse HTML from a file, pass the filename or a filehandle to the
new_from_file() method:

$root = HTML::TreeBuilder->new_from_file(filename);
$root = HTML::TreeBuilder->new_from_file(filehandle);

If you use new_from_file() or new_from_content(), the parse is carried out with the default parsing
options. To parse with any nondefault options, you must use the new() constructor and call parse_file() or
parse().

9.2.2. Parse Options

Set options for the parse by calling methods on the HTML::TreeBuilder object. These methods return the old value for
the option and set the value if passed a parameter. For example:

$comments = $root->strict_comment();
print "Strict comment processing is ";
print $comments ? "on\n" : "off\n";
$root->strict_comments(0); # disable

Some options affect the way the HTML standard is ignored or obeyed, while others affect the internal behavior of the
parser. The full list of parser options follows.

$root->strict_comments([boolean]);
The HTML standard says that a comment is terminated by an even number of -- s between the opening < and the
closing >, and there must be nothing but whitespace between even and odd -- s. That part of the HTML standard
is little known, little understood, and little obeyed. So most browsers simply accept any --> as the end of a
comment. If enabled via a true value, this option makes the HTML::TreeBuilder recognize only those comments
that obey the HTML standard. By default, this option is off, so that HTML::TreeBuilder will parse comments as
normal browsers do.

$root->strict_names([boolean]);
Some HTML has unquoted attribute values that include spaces, e.g., <img alt=big dog! src="dog.
jpg">. If this option is enabled, that tag would be reported as text, because it doesn't obey the standard (dog! is
not a valid attribute name). If the option is disabled, as it is by default, source such as this is parsed as a tag, with
a Boolean attribute called dog! set.

$root->implicit_tags([boolean]);
Enabled by default, this option makes the parser create nodes for missing start- or end-tags. If disabled, the parse
tree simply reflects the input text, which is rarely useful.

$root->implicit_body_p_tag([boolean]);
This option controls what happens to text or phrasal tags (such as <i>...</i>) that are directly in a <body>,

without a containing <p>. By default, the text or phrasal tag nodes are children of the <body>. If enabled, an
implicit <p> is created to contain the text or phrasal tags.

$root->ignore_unknown([boolean]);
By default, unknown tags, such as <footer>, are ignored. Enable this to create nodes in the parse tree for
unknown tags.

$root->ignore_text([boolean]);
By default, text in elements appears in the parse tree. Enable this option to create parse trees without the text from
the document.

$root->ignore_ignorable_whitespace([boolean]);
Whitespace between most tags is ignorable, and multiple whitespace characters are collapsed to one. If you want
to preserve the whitespace present in the original HTML, enable this option.

9.2.3. Parsing

There are two ways of parsing HTML: from a file or from strings.

Pass the parse_file() method a filename or filehandle to parse the HTML in that file:

$success = $root->parse_file(filename);
$success = $root->parse_file(filehandle);

For example, to parse HTML from STDIN:

$root->parse_file(*STDIN) or die "Can't parse STDIN";

The parse_file() method returns the HTML::TreeBuilder object if successful or undef if an error occurred.

The parse() method takes a chunk of HTML and parses it. Call parse() on each chunk, then call the eof()
method when there's no more HTML to come.

$success = $root->parse(chunk);
$success = $root->eof();

This method is designed for situations where you are acquiring your HTML one chunk at a time. It's also useful when
you're extracting HTML from a larger file and can't simply parse the entire file with parse_file(). In many cases,
you could use new_from_content(), but recall that new_from_content() doesn't give you an opportunity
to set nondefault parsing options.

9.2.4. Cleanup

The delete() method frees the tree and its elements, giving the memory it used back to Perl:

$root->delete();

Use this method in persistent environments such as mod_perl or when your program will parse a lot of HTML files. It's
not enough to simply have $root be a private variable that goes out of scope, or to assign a new value to $root. Perl's
current memory-management system fails on the kinds of data structures that HTML::Element uses.

9. HTML Processing with Trees 9.3. Processing

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

10.3. Detaching and Reattaching

Suppose that the output of our above rewriter is not satisfactory. While its output contains an apparently harmless one-
cell one-row table, this is somehow troublesome when the president of the company tries viewing that web page on his
cellphone/PDA, which has a typically limited understanding of HTML. Some experimentation shows that any web pages
with tables in them will deeply confuse the boss's PDA.

So your task should be changed to this: find the one interesting cell in the table (the td with class="story"), detach
it, then replace the table with the td, and delete the table. This is a complex series of actions, but luckily every one of
them is directly translatable into an HTML::Element method. The result is Example 10-2.

Example 10-2. Detaching and reattaching nodes

use strict;
use HTML::TreeBuilder;
my $root = HTML::TreeBuilder->new;
$root->parse_file('rewriters1/in002.html') || die $!;

my $good_td = $root->look_down('_tag', 'td', 'class', 'story',);
die "No good td?!" unless $good_td; # sanity checking
my $big_table = $root->look_down('_tag', 'table');
die "No big table?!" unless $big_table; # sanity checking

$good_td->detach;
$big_table->replace_with($good_td);
 # Yes, there's even a method for replacing one node with another!

open(OUT, ">rewriters1/out002b.html") || die "Can't write: $!";
print OUT $root->as_HTML(undef, ' '); # two-space indent in output
close(OUT);
$root->delete; # done with it, so delete it

The resulting document looks like this:

<html>
 <head>
 <title>Shatner and Kunis Sweep the Oscars</title>
 </head>
 <body>
 <td class="story">
 <h1>Shatner and Kunis Sweep the Oscars</h1>
 <p>Stars of <cite>American Psycho II</cite> walked [...] </td>
 <hr>Copyright 2002, United Lies Syndicate </body>
</html>

One problem, though: we have a td outside of a table. Simply change it from a td element into something innocuous,
such as a div, and while we're at it, delete that class attribute:

$good_td->tag('div');
$good_td->attr('class', undef);

That makes the output look like this:

<html>
 <head>
 <title>Shatner and Kunis Sweep the Oscars</title>
 </head>
 <body>
 <div>
 <h1>Shatner and Kunis Sweep the Oscars</h1>
 <p>Stars of <cite>American Psycho II</cite> walked [...] </div>
 <hr>Copyright 2002, United Lies Syndicate </body>
</html>

An alternative is not to detach and save the td in the first place, but to detach and save only its content. That's simple
enough:

my @good_content = $good_td->content_list;
foreach my $c (@good_content) {
 $c->detach if ref $c;
 # text nodes aren't objects, so aren't really "attached" anyhow
}

10.3.1. The detach_content() Method

The above task is so common that there's a method for it, called detach_content(), which detaches and returns
the content of the node on which it's called. So we can simply modify our program to read:

my @good_content = $good_td->detach_content;

$big_table->replace_with(@good_content);
$big_table->delete;

However you chose to express the node-moving operations, the parse tree looks like this:

<html>
 <head>
 <title>Shatner and Kunis Sweep the Oscars</title>
 </head>
 <body>
 <h1>Shatner and Kunis Sweep the Oscars</h1>
 <p>Stars of <cite>American Psycho II</cite> walked [...]
 <hr>Copyright 2002, United Lies Syndicate </body>
</html>

In fact, every HTML::Element method that allows you to attach a node someplace (as replace_with does) will first
detach that node if it's already attached elsewhere. So you could actually skip the whole detach_content()
process step and just write this:

$big_table->replace_with($good_td->content_list);
$big_table->delete;

It does the same thing and results in the same output.

10.3.2. Constraints

There are some constraints on what you can expect replace_with() to do, but these are just three constraints
against fairly odd things that you would probably not try anyway. Namely, the documentation says you can't replace an
element with multiple instances of itself; you can't replace an element with one (or more) of its siblings; and you can't

replace an element that has no parent, because replacing an element inherently means altering the content list of its
parent.

Many methods in the HTML::Element documentation have similar constraints spelled out, although the typical
programmer will never find them to be an obstacle in and of themselves. If one of those constraints is violated, it is
typically a sign that something is conceptually wrong elsewhere in the program.

For example, if you try $element->replace_with(...) and are surprised by an error message that "the target
node has no parent," it is almost definitely because you either already replaced the element with something (leaving it
parentless) or deleted it (leaving it parentless, contentless, and attributeless). For example, that error message would
result if our program had this:

$big_table->delete;
$big_table->replace_with($good_td->content_list);
Wrong!

instead of this:

$big_table->replace_with($good_td->content_list);
$big_table->delete;
Right.

10.2. Deleting Images 10.4. Attaching in Another Tree

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

7.2. Basic HTML::TokeParser Use

The HTML::TokeParser module is a class for accessing HTML as tokens. An HTML::TokeParser object gives you one token at a
time, much as a filehandle gives you one line at a time from a file. The HTML can be tokenized from a file or string. The tokenizer
decodes entities in attributes, but not entities in text.

Create a token stream object using one of these two constructors:

my $stream = HTML::TokeParser->new($filename)
 || die "Couldn't read HTML file $filename: $!";

or:

my $stream = HTML::TokeParser->new(\$string_of_html);

Once you have that stream object, you get the next token by calling:

my $token = $stream->get_token();

The $token variable then holds an array reference, or undef if there's nothing left in the stream's file or string. This code
processes every token in a document:

my $stream = HTML::TokeParser->new($filename)
 || die "Couldn't read HTML file $filename: $!";

while(my $token = $stream->get_token) {
 # ... consider $token ...
}

The $token can have one of six kinds of values, distinguished first by the value of $token->[0], as shown in Table 7-1.

Table 7-1. Token types

Token Values

Start-tag ["S", $tag, $attribute_hashref, $attribute_order_arrayref, $source]

End-tag ["E", $tag, $source]

Text ["T", $text, $should_not_decode]

Comment ["C", $source]

Declaration ["D", $source]

Processing
instruction

["PI", $content, $source]

7.2.1. Start-Tag Tokens

If $token->[0] is "S", the token represents a start-tag:

["S", $tag, $attribute_hash, $attribute_order_arrayref, $source]

The components of this token are:

$tag
The tag name, in lowercase.

$attribute_hashref
A reference to a hash encoding the attributes of this tag. The (lowercase) attribute names are the keys of the hash.

$attribute_order_arrayref
A reference to an array of (lowercase) attribute names, in case you need to access elements in order.

$source
The original HTML for this token.

The first three values are the most interesting ones, for most purposes.

For example, parsing this HTML:

gives this token:

[
 'S',
 'img',
 { 'alt' => 'Shatner in rôle of Kirk',
 'height' => '522', 'src' => 'kirk.jpg', 'width' => '352'
 },
 ['src', 'alt', 'width', 'height'],
 '<IMG SRC="kirk.jpg" alt="Shatner in rôle of Kirk" WIDTH=352
height=522>'
]

Notice that the tag and attribute names have been lowercased, and the ô entity decoded within the alt attribute.

7.2.2. End-Tag Tokens

When $token->[0] is "E", the token represents an end-tag:

["E", $tag, $source]

The components of this tag are:

$tag
The lowercase name of the tag being closed.

$source
The original HTML for this token.

Parsing this HTML:

gives this token:

['E', 'a', '']

7.2.3. Text Tokens

When $token->[0] is "T", the token represents text:

["T", $text, $should_not_decode]

The elements of this array are:

$text
The text, which may have entities.

$should_not_decode
A Boolean value true indicating that you should not decode the entities in $text.

Tokenizing this HTML:

& the

gives this token:

['T',
 ' & the',
 ''
]

The empty string is a false value, indicating that there's nothing stopping us from decoding $text with decode_entities
() from HTML::Entities:

decode_entities($token->[1]) if $token->[2];

Text inside <script>, <style>, <xmp>, <listing>, and <plaintext> tags is not supposed to be entity-decoded. It is for
such text that $should_not_decode is true.

7.2.4. Comment Tokens

When $token->[0] is "C", you have a comment token:

["C", $source]

The $source component of the token holds the original HTML of the comment. Most programs that process HTML simply
ignore comments.

Parsing this HTML

<!-- Shatner's best known rôle -->

gives us this $token value:

['C', #0: we're a comment
 '<!-- Shatner's best known rôle -->' #1: source
]

7.2.5. Markup Declaration Tokens

When $token->[0] is "D", you have a declaration token:

["D", $source]

The $source element of the array is the HTML of the declaration. Declarations rarely occur in HTML, and when they do, they
are rarely of any interest. Almost all programs that process HTML ignore declarations.

This HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

gives this token:

['D',
 '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">'
]

7.2.6. Processing Instruction Tokens

When $token->[0] is "PI", the token represents a processing instruction:

["PI", $instruction, $source]

The components are:

$instruction
The processing instruction stripped of initial <? and trailing >.

$source
The original HTML for the processing instruction.

A processing instruction is an SGML construct rarely used in HTML. Most programs extracting information from HTML ignore
processing instructions. If you do handle processing instructions, be warned that in SGML (and thus HTML) a processing
instruction ends with a greater-than (>), but in XML (and thus XHTML), a processing instruction ends with a question mark and a
greater-than sign (?>).

Tokenizing:

<?subliminal message>

gives:

['PI', 'subliminal message', '<?subliminal message>']

7. HTML Processing with Tokens 7.3. Individual Tokens

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

10.4. Attaching in Another Tree

So far we've detached elements from one part of a tree and attached them elsewhere in the same tree. But there's nothing
stopping you from attaching them in other trees.

For example, consider a case like the above example, where we extract the text in the <td class="story"> ...
</td> element, but this time, instead of attaching it elsewhere in the same document tree, we're attaching it at a certain
point in a different tree that we're using as a template. The template document looks like this:

<html><head><title>Put the title here</title></head>
<body><!-- printable version -->
<blockquote>

<!-- start -->
...put the content here...
<!-- end -->
<hr>Copyright 2002. Printed from the United Lies Syndicate web site.

</blockquote>
</body></html>

You'll note that the web designers have helpfully inserted comments to denote where the inserted content should start
and end. But when you have HTML::TreeBuilder parse the document with default parse options and dump the tree, you
don't see any sign of the comments:

<html> @0
 <head> @0.0
 <title> @0.0.0
 "Put the title here"
 <body> @0.1
 <blockquote> @0.1.0
 @0.1.0.0
 " ...put the content here... "
 <hr> @0.1.0.0.1
 "Copyright 2002. Printed from the United Lies Syndicate web
site. "

10.4.1. Retaining Comments

However, storing comments is controlled by an HTML::TreeBuilder parse option, store_comments(), which is off
by default. If we parse the file like so:

use strict;
use HTML::TreeBuilder;
my $template_root = HTML::TreeBuilder->new;
$template_root->store_comments(1);
$template_root->parse_file('rewriters1/template1.html')
 || die "Can't read template file: $!";

$template_root->dump;

the comments now show up in the parse tree:

<html> @0
 <head> @0.0
 <title> @0.0.0
 "Put the title here"
 <body> @0.1
 <!-- printable version --> @0.1.0
 <blockquote> @0.1.1
 @0.1.1.0
 <!-- start --> @0.1.1.0.0
 " ...put the content here... "
 <!-- end --> @0.1.1.0.2
 <hr> @0.1.1.0.3
 "Copyright 2002. Printed from the United Lies Syndicate web
site. "

10.4.2. Accessing Comments

What's left is to figure out how to take out what's between the <!-- start --> and <!-- end --> comments, to
insert whatever content needs to be put in there, then to write out the document. First we need to find the comments, and
to do that we need to figure out how comments are stored in the tree, because so far we've only dealt with elements and
bits of text.

Mercifully, what we know about element objects in trees still applies, because that's how comments are stored: as
element objects. But because comments aren't actual elements, the HTML::Element documentation refers to them as
pseudoelements, and they are given a tag name that no real element could have: ~comment. The actual content of the
comment (start) is stored as the value of the text attribute. In other words, <!-- start --> is stored as if it were
<~comment text=' start '></~comment>. So finding comments is straightforward:

foreach my $c ($template_root->find_by_tag_name('~comment')) {
 print "A comment has text [", $c->attr('text'), "].\n";
}

That prints this:

A comment has text [printable version]
A comment has text [start]
A comment has text [end]

Finding the start and end comments is a matter of filtering those comments:

use strict;
use HTML::TreeBuilder;
my $template_root = HTML::TreeBuilder->new;
$template_root->store_comments(1);
$template_root->parse_file('rewriters1/template1.html')
 || die "Can't read template file: $!";

my($start_comment, $end_comment);
foreach my $c ($template_root->find_by_tag_name('~comment')) {
 if($c->attr('text') =~ m/^\s*start\s*$/) {
 $start_comment = $c;
 } elsif($c->attr('text') =~ m/^\s*end\s*$/) {
 $end_comment = $c;
 }
}
die "Couldn't find template's 'start' comment!" unless $start_comment;

die "Couldn't find template's 'end' comment!" unless $end_comment;

die "start and end comments don't have the same parent?!"
 unless $start_comment->parent eq $end_comment->parent;
Make sure things are sane.

10.4.3. Attaching Content

Once that's done, we need some way of taking some new content (which we'll get elsewhere) and putting that in place of
what's between the "start" comment and the "end" comment. There are many ways of doing this, but this is the most
straightforward in terms of the methods we've already seen in this chapter:

sub put_into_template {
 my @to_insert = @_;
 my $parent = $start_comment->parent;
 my @old_content = $parent->detach_content;
 my @new_content;

 # Copy everything up to the $start_comment into @new_content,
 # and then everything starting at $end_comment, and ignore
 # everything inbetween and instead drop in things from @to_insert.

 my $am_saving = 1;
 foreach my $node (@old_content) {
 if($am_saving) {
 push @new_content, $node;
 if($node eq $start_comment) {
 push @new_content, @to_insert;
 $am_saving = 0; # and start ignoring nodes.
 }
 } else { # I'm snipping out things to ignore
 if($node eq $end_comment) {
 push @new_content, $node;
 $am_saving = 1;
 } else { # It's an element to ignore, and to destroy.
 $node->delete if ref $node;
 }
 }
 }
 $parent->push_content(@new_content); # attach new children
 return;
}

This seems a bit long, but it's mostly the work of just tracking whether we're in the mode of saving things from the old
content list or ignoring (and in fact deleting) things from the old content list. With that subroutine in our program, we can
test whether it works:

put_into_template("Testing 1 2 3.");
$template_root->dump;
put_into_template("Is this mic on?");
$template_root->dump;

That prints this:

<html> @0
 <head> @0.0
 <title> @0.0.0
 "Put the title here"

 <body> @0.1
 <!-- printable version --> @0.1.0
 <blockquote> @0.1.1
 @0.1.1.0
 <!-- start --> @0.1.1.0.0
 "Testing 1 2 3."
 <!-- end --> @0.1.1.0.2
 <hr> @0.1.1.0.3
 "Copyright 2002. Printed from the United Lies Syndicate web
site. "
<html> @0
 <head> @0.0
 <title> @0.0.0
 "Put the title here"
 <body> @0.1
 <!-- printable version --> @0.1.0
 <blockquote> @0.1.1
 @0.1.1.0
 <!-- start --> @0.1.1.0.0
 "Is this mic on?"
 <!-- end --> @0.1.1.0.2
 <hr> @0.1.1.0.3
 "Copyright 2002. Printed from the United Lies Syndicate web
site. "

This shows that not only did we manage to replace the template's original ...put the content here... text node
with a Testing 1 2 3. node, but also another call to replace it with Is this mic on? worked too. From there, it's
just a matter of adapting the code from the last section, which found the content in a file. Except this time we use our
new put_into_template() function on that content:

Read an individual file for its content now.
my $content_file_root = HTML::TreeBuilder->new;
my $input_filespec = 'rewriters1/in002.html'; # or whatever input
file
$content_file_root->parse_file($input_filespec)
 || die "Can't read input file $input_filespec: $!";

Find its real content:
my $good_td = $content_file_root->look_down('_tag', 'td', 'class',
'story',);
die "No good td?!" unless $good_td;

put_into_template($good_td->content_list);
$content_file_root->delete; # We don't need it anymore.

open(OUT, ">rewriters1/out003a.html") || die "Can't write: $!";
 # or whatever output filespec
print OUT $template_root->as_HTML(undef, ' '); # two-space indent in
output
close(OUT);

When this runs, we see can see in the output file that the content was successfully inserted into the template and written
out:

<html>
 <head>
 <title>Put the title here</title>
 </head>
 <body>

 <!-- printable version -->
 <blockquote>
 <!-- start -->
 <h1>Shatner and Kunis Sweep the Oscars</h1>
 <p>Stars of <cite>American Psycho II</cite> walked away with
four Academy
 Awards...
 <!-- end -->
 <hr>Copyright 2002. Printed from the United Lies Syndicate web
site.
 </blockquote>
 </body>
</html>

All is well, except the title is no good. It still says "Put the title here". All that's left is to replace the content of the
template's title with the content of the current file's title. We just find the title element in each, and swap content:

my $template_title = $template_root->find_by_tag_name('title')
 || die "No title in template?!";
$template_title->delete_content;
my $content_title = $content_file_root->find_by_tag_name('title');
if($content_title) {
 $template_title->push_content($content_title->content_list);
 # This method, like all methods, automatically detaches
 # elements from where they are currently, as necessary.
} else {
 $template_title->push_content('No title');
}

We put that code in our program anywhere between when we read the file into $content_file_root and when we
destroy it; it works happily and puts the right content into the output file's title element:

<html>
 <head>
 <title>Shatner and Kunis Sweep the Oscars</title>
 </head>
[...]

Because this works for a single given input file, and because we tested earlier to make sure our put_into_template
() routine works for all subsequent invocations as well as for the first, that means we have the main building block
for a system that does template extraction and insertion for any number of files. All we have to do is turn that into a
function, and call it as many times as needed. For example:

...read in $template_root...
...get names of files to change into @input_files...
foreach my $input_filespec (@input_files) {
 template_redo($input_filespec, "../printables/$input_filespec");
}

sub template_redo {
 my($input_filespec, $output_filespec) = @_;
 my $content_file_root = HTML::TreeBuilder->new;
 $content_file_root->parse_file($input_filespec)
 || die "Can't read input file $input_filespec: $!";

 # ...then extract content and put into the template tree, as
above...

 $content_file_root->delete; # We don't need it anymore.
 open(OUT, ">$output_filespec") || die "Can't write $output_file: $!";
 print OUT $template_root->as_HTML(undef, ' ');
 close(OUT);
}

10.3. Detaching and Reattaching 10.5. Creating New Elements

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

6.2. Regular Expression Techniques

Web pages are designed to be easy for humans to read, not for programs. Humans are very flexible in what they can
read, and they can easily adapt to a new look and feel of the web page. But if the underlying HTML changes, a program
written to extract information from the page will no longer work. Your challenge when writing a data-extraction program
is to get a feel for the amount of natural variation between pages you'll want to download.

The following are a set of techniques for you to use when creating regular expressions to extract data from web pages. If
you're an experienced Perl programmer, you probably know most or all of them and can skip ahead to Section 6.3,
"Troubleshooting".

6.2.1. Anchor Your Match

An important decision is how much surrounding text you put into your regular expression. Put in too much of this
context and you run the risk of being too specific—the natural variation from page to page causes your program to fail to
extract some information it should have been able to get. Similarly, put in too little context and you run the risk of your
regular expression erroneously matching elsewhere on the page.

6.2.2. Whitespace

Many HTML pages have whitespace added to make the source easier to read or as a side effect of how they were
produced. For example, notice the spaces around the number in this line:

Amazon.com Sales Rank: 4,070

Without checking, it's hard to guess whether every page has that space. You could check, or you could simply be flexible
in what you accept:

$html =~ m{Amazon\.com Sales Rank: \s*([\d,]+)\s*
} ||
die;

Now we can match the number regardless of the amount of whitespace around it. The \s wildcard matches any
whitespace character.

6.2.3. Embedded Newlines

Beware of using \s when you are matching across multiple lines, because \s matches newlines. You can construct a
character class to represent "any whitespace but newlines":

[^\S\n]

As a further caveat, the regexp dot "." normally matches any character except a newline. To make the dot match newlines
as well, use the /s option. Now you can say m{.*?}s and find the bold text even if it includes newlines. But
this /s option doesn't change the meaning of ^ and $ from their usual "start of string" and "end of string, or right before
the newline at the end of the string if present." To change that, use the /m option, which makes ^ and $ match the
beginning and end of lines within the string. That is, with /m, a ^ matches the start of the string or right after any
newline in the string; and a $ then matches the end of the string, or right before any newline in the string.

For example, to match the ISBN that starts out a line while ignoring any other occurrences of "ISBN" in the page, you
might say:

m{^ISBN: ([-0-9A-Za-z]+)}m

Incidentally, you might expect that because an ISBN is called a number, we'd use \d+ to match it. However, ISBNs
occasionally have letters in them and are sometimes shown with dashes; hence the [-0-9A-Za-z] range instead of the
overly restrictive \d+ range, which would fail to match an ISBN such as 038079439X or 0-8248-1898-9.

6.2.4. Minimal and Greedy Matches

If you want to extract everything between two tags, there are two approaches:

m{(.*?)}i
m{([^<]*)}i

The former uses minimal matching to match as little as possible between the and the . The latter uses greedy
matching to match as much text that doesn't contain a greater-than sign as possible between and . The latter is
marginally faster but won't successfully match text such as <i>hi</i>, whereas the former will.

6.2.5. Capture

To extract information from a regular expression match, surround part of the regular expression in parentheses. This
causes the regular expression engine to set the $1, $2, etc. variables to contain the portions of the string that match those
parts of the pattern. For example:

$string = 'go here now!';
$string =~ m{ href="(.*?)"}i; # extract destination of link
$url = $1;

A match in scalar context returns true or false depending on whether the regular expression matched the string. A match
in list context returns a list of $1, $2, ... captured text.

$matched = $string =~ m{RE};
@matches = $string =~ m{RE};

To group parts of a regular expression together without capturing, use the (?:RE) construct:

$string = '';
@links = $string =~ m{(?:href|src)="(.*?)"}g;
print "Found @links\n";
Found jumbo.html big.gif

6.2.6. Repeated Matches

The /g modifier causes the match to be repeated. In scalar context, the match continues from where the last match left
off. Use this to extract information one match at a time. For example:

$string = '';
while ($string =~ m{src="(.*?)"}g) {
 print "Found: $1\n";
}
Found: big.gif
Found: small.gif

In list context, /g causes all matching captured strings to be returned. Use this to extract all matches at once. For
example:

$string = '';

@pix = $string =~ m{src="(.*?)"}g;
print "Found @pix\n";
Found big.gif small.gif

If your regular expression doesn't use capturing parentheses, the entire text that matches is returned:

$string = '';
@gifs = $string =~ m{\w+\.gif}g;
print "Found @gifs\n";
Found big.gif small.gif

6.2.7. Develop from Components

There are many reasons to break regular expressions into components—it makes them easier to develop, debug, and
maintain. Use the qr// operator to compile a chunk of a regular expression, then interpolate it into a larger regular
expression without sacrificing performance:

$string = '';
$ATTRIBUTE = qr/href|src/;
$INSIDE_QUOTES = qr/.*?/;
@files = $string =~ m{(?:$ATTRIBUTE)="($INSIDE_QUOTES)"}g;
print "Found @files\n";
Found jumbo.html big.gif

6.2.8. Use Multiple Steps

A common conceit in programmers is to try to do everything with one regular expression. Don't be afraid to use two or
more. This has the same advantages as building your regular expression from components: by only attempting to solve
one part of the problem at each step, the final solution can be easier to read, debug, and maintain.

For example, the front page of http://www.oreillynet.com/ has several articles on it. Inspecting the HTML with View
Source on the browser shows that each story looks like this:

<!-- itemtemplate -->
<p class="medlist"><a href="http://www.oreillynet.com/pub/a/
dotnet/2002/03/04
/rotor.html">Uncovering Rotor -- A Shared Source CLI ^M
 Recently, David Stutz and Stephen Walli hosted an informal,
unannounced BOF at
BSDCon 2002 about Microsoft's Shared Source implementation of the ECMA
CLI, also
known as Rotor. Although the source code for the Shared Source CLI
wasn't yet
available, the BOF offered a preview of what's to come, as well as
details about its
implementation and the motivation behind it. [<a href="http://
www.oreillynet.
com/dotnet/">.NET DevCenter]</p>

That is, the article starts with the itemtemplate comment and ends with the </p> tag. This suggests a main loop of:

while ($html =~ m{<!-- itemtemplate -->(.*?)</p>}gs) {
 $chunk = $1;
 # extract URL, title, and summary from $chunk
}

It's surprisingly common to see HTML comments indicating the structure of the HTML. Most dynamic web sites are

http://www.oreillynet.com/

generated from templates, the comments help the people who maintain the templates keep track of the various sections.

Extracting the URL, title, and summary is straightforward. It's even a simple matter to use the standard Text::Wrap
module to reformat the summary to make it easy to read:

use Text::Wrap;

while ($html =~ m{<!-- itemtemplate -->(.*?)</p>}gs) {
 $chunk = $1;
 ($URL, $title, $summary) =
 $chunk =~ m{href="(.*?)">(.*?)\s* \s*(.*?)\[}i
 or next;
 $summary =~ s{ }{ }g;
 print "$URL\n$title\n", wrap(" ", " ", $summary), "\n\n";
}

Running this, however, shows HTML still in the summary. Remove the tags with:

$summary =~ s{<.*?>}{}sg;

The complete program is shown in Example 6-3.

Example 6-3. orn-summary

#!/usr/bin/perl -w

use LWP::Simple;
use Text::Wrap;

$html = get("http://www.oreillynet.com/") || die;

while ($html =~ m{<!-- itemtemplate -->(.*?)</p>}gs) {
 $chunk = $1;
 ($URL, $title, $summary) =
 $chunk =~ m{href="(.*?)">(.*?)\s* \s*(.*?)\[}i
 or next;
 $summary =~ s{ }{ }g;
 $summary =~ s{<.*?>}{}sg;
 print "$URL\n$title\n", wrap(" ", " ", $summary), "\n\n";
}

6. Simple HTML Processing with
Regular Expressions

6.3. Troubleshooting

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

12.3. Example: A Link-Checking Spider

So far in the book, we've produced little single-use programs that are for specific tasks. In this section, we will diverge
from that approach by walking through the development of a Type Three Requester robot whose internals are modular
enough that with only minor modification, it could be used as any sort of Type Three or Type Four Requester.

12.3.1. The Basic Spider Logic

The specific task for our program is checking all the links in a given web site. This means spidering the site, i.e.,
requesting every page in the site. To do that, we request a page in the site (or a few pages), then consider each link on
that page. If it's a link to somewhere offsite, we should just check it. If it's a link to a URL that's in this site, we will not
just check that the URL is retrievable, but in fact retrieve it and see what links it has, and so on, until we have gotten
every page on the site and checked every link.

So, for example, if I start the spider out at http://www.mybalalaika.com/oggs/, it will request that page, get back HTML,
and analyze that HTML for links. Suppose that page contains only three links:

http://bazouki-consortium.int/
http://www.mybalalaika.com/oggs/studio_credits.html
http://www.mybalalaika.com/oggs/plinky.ogg

We can tell that the first URL is not part of this site; in fact, we will define "site" in terms of URLs, so a URL is part of
this site if starts with this site's URL. So because http://bazouki-consortium.int doesn't start with http://www.mybalalaika.
com/oggs/, it's not part of this site. As such, we can check it (via an HTTP HEAD request), but we won't actually look at
its contents for links. However, the second URL, which is http://www.mybalalaika.com/oggs/studio_credits.html,
actually does start with http://www.mybalalaika.com/oggs/, so it's part of this site and can be retrieved and scanned for
links. Similarly, the third link, http://www.mybalalaika.com/oggs/plinky.ogg, does start with http://www.mybalalaika.
com/oggs/, so it's part of this site and can be retrieved, and its HTML checked for links.

But I happen to know that http://www.mybalalaika.com/oggs/plinky.ogg is a 90-megabyte Ogg Vorbis (compressed
audio) file of a 50-minute long balalaika solo, and it would be a very bad idea for our user agent to go getting this file,
much less to try scanning it as HTML! So the way we'll save our robot from this bother is by having it HEAD any URLs
before it GETs them. If HEAD reports that the URL is gettable (i.e., doesn't have an error status, nor a redirect) and that
its Content-Type header says it's HTML (text/html), only then will we actually get it and scan its HTML for
links.

We could always hardcode a list of strings such as .gif, .jpg, etc., including .ogg, such that any URL ending in any such
string will be assumed to not be HTML. However, we could never know that our list is complete, so we must carefully
avoid the possibility of ever downloading a massive binary file that our suffix list just didn't happen to catch.

Now, what to do if we check (or try to get) a URL, and we get an error status? We will have to make note of this in some
way. Now, at bare minimum we could do something like have a hash called %notable_url_error, and when we
see an error, we could do:

$notable_url_error{$url} = $response->status_code;

In fact, we will be a bit more ambitious in our program, by also making note of what links to what, so that in the end,
instead of saying "something links to http://somebadurl.int, but it's 404 Not Found," we can list the URLs that link to it,
so that those links can be fixed.

Incidentally, when we get http://www.mybalalaika.com/oggs/studio_credits.html and scan its HTML, suppose it contains

a link to http://www.mybalalaika.com/oggs/. We shouldn't go and request that URL, because we've already been there.
So we'll need to keep track of what we've already seen. This is as simple as having a hash %seen_url_before, and
when we see a URL, if we see $seen_url_before{$url} is true, we'll skip it. But if it's false, we know we haven't
dealt with this URL before, so we can set $seen_url_before{$url} = 1 and go deal with it, for what we can be
sure will be the only time this session.

12.3.2. Overall Design in the Spider

Now that we've settled on the basic logic behind the spider, we can start coding. For example, our idea of how to process
a URL is expressed as this simple routine:

sub process_url {
 my $url = $_[0];
 if(near_url($url)) { process_near_url($url) }
 else { process_far_url($url) }
 return;
}

This is the first of the two dozen routines (mostly small) that make up this spider framework, and clearly it requires us to
write three more routines, near_url(), process_near_url(), and process_far_url(). But before we
go further, we must consider the question of how we would interact with the program. Ideally, we can just write it as a
command-line utility that we start up and let run, and in the end it will email us. So, in theory, we could call it like so:

% thatdarnedbot http://mybazouki.com/ | mail $USER &

Then we don't have to think about it again until the program finishes and the report it generates comes to our mailbox.
But that is like tightrope-walking without a net, because suppose we get email from someone saying "Hey, wassamatta
you? A bot from your host just spent a solid hour hammering my server, checking the same links over and over again!
Fix it!" But if all we have is a bad links report, we'll have no idea why the bot visited his site, whether it did indeed
request "the same links" over and over, or even what URLs it visited (aside from the ones we see in our bad links report),
so we'd have no idea how to fix the problem.

To avoid that situation, we must build logging into the spider right from the beginning. We'll implement this with two
basic routines: say(), used for important messages, and mutter(), used for less important messages. When we
have a part of the program call say(), like so:

say("HEADing $url\n");

That is a message that we'll save in a log file, as well as write to STDOUT for the edification of the user who's watching
the process. We can call mutter(), like so:

mutter(" That was hit #$hit_count\n");

That message will be saved to the log file (in case we need it), but isn't considered important enough to send to
STDOUT, unless of course the user is running this program with a switch that means "say everything to STDOUT, no
matter how trivial."

And because it's helpful to know not just what happened but when, we'll make say() and mutter() emit a
timestamp, unless it's the same time as the last thing we said or muttered. Here are the routines:

my $last_time_anything_said;
sub say {
 # Add timestamps as needed:
 unless(time() == ($last_time_anything_said || 0)) {
 $last_time_anything_said = time();
 unshift @_, "[T$last_time_anything_said = " .
 localtime($last_time_anything_said) . "]\n";

 }
 print LOG @_ if $log;
 print @_;
}

my $last_time_anything_muttered;
sub mutter {
 # Add timestamps as needed:
 unless(time() == ($last_time_anything_muttered || 0)) {
 $last_time_anything_muttered = time();
 unshift @_, "[T$last_time_anything_muttered = " .
 localtime($last_time_anything_muttered) . "]\n";
 }
 print LOG @_ if $log;
 print @_ if $verbose;
}

This relies on a flag $log (indicating whether we're logging), a filehandle LOG (open on our log file, if we are logging),
and a flag $verbose that signals whether mutter messages should go to STDOUT too. These variables will be set by
code that you'll see in the complete listing at the end of this chapter, which simply gets those values from @ARGV using
the standard Perl module Getopt::Std.

With those two logging routines in place, we can return to our first substantial routine, here repeated:

sub process_url {
 my $url = $_[0];
 if (near_url($url)) { process_near_url($url) }
 else { process_far_url($url) }
 return;
}

Not only does this implicate near_url(), process_near_url(), and process_far_url(), but it also begs
the question: what will actually call process_url()? We will implement the basic control of this program in terms of
a schedule (or queue) of URLs that need to be processed. Three things need to be done with the schedule: we need a way
to see how many entries there are in it (at least so we can know when it's empty); we need to be able to pull a URL from
it, to be processed now; and we need a way to feed a URL into the schedule. Call those functions schedule_count
(), next_scheduled_url(), and schedule($url) (with code that we'll define later on), and we're in
business. We can now write the main loop of this spider:

my $QUIT_NOW;
 # a flag we can set to indicate that we stop now!

sub main_loop {
 while(
 schedule_count()
 and $hit_count < $hit_limit
 and time() < $expiration
 and ! $QUIT_NOW
) {
 process_url(next_scheduled_url());
 }
 return;
}

This assumes we've set $hit_limit (a maximum number of hits that this bot is allowed to perform on the network)
and $expiration (a time after which this bot must stop running), and indeed our @ARGV processing will get those
from the command line. But once we know that's the program's main loop, we know that the program's main code will
just be the processing of switches in @ARGV, followed by this code:

initialize();
process_starting_urls(@ARGV);
main_loop();
report() if $hit_count;
say("Quitting.\n");
exit;

And from this point on, the design of the program is strictly top-down stepwise refinement, just fleshing out the details
of the remaining routines that we have mentioned but not yet defined.

12.3.3. HEAD Response Processing

Consider our basic routine, repeated again:

sub process_url {
 my $url = $_[0];
 if(near_url($url)) { process_near_url($url) }
 else { process_far_url($url) }
 return;
}

The first thing this needs in a function that, given a URL, can tell whether it's "near" or not, i.e., whether it's part of this
site. Because we've decided that a URL is part of this site only if it starts with any of the URLs with which we started
this program, just as http://www.mybalalaika.com/oggs/studio_credits.html starts with http://www.mybalalaika.com/
oggs/, but http://bazouki-consortium.int/ doesn't. This is a simple matter of using substr():

my @starting_urls;

sub near_url { # Is the given URL "near"?
 my $url = $_[0];
 foreach my $starting_url (@starting_urls) {
 if(substr($url, 0, length($starting_url))
 eq $starting_url
 # We assume that all URLs are in canonical form!
) {
 mutter(" So $url is near\n");
 return 1;
 }
 }
 mutter(" So $url is far\n");
 return 0;
}

We will have to have fed things into @starting_urls first, and we can do that in the process_starting_urls
() routine that gets called right before we start off the program's main loop. That routine needn't do anything more
than this:

sub process_starting_urls {
 foreach my $url (@_) {
 my $u = URI->new($url)->canonical;
 schedule($u);
 push @starting_urls, $u;
 }
 return;
}

Note that we feed URLs through the canonical method, which converts a URL to its single most "proper" form; i.e.,

turning any capital letters in the hostname into lowercase, removing a redundant :80 port specification at the end of the
hostname, and so on. We'll use the canonical method throughout this program when dealing with URLs. If we had
failed to use the canonical method, we would, for example, not know that http://nato.int, http://NATO.
int/ and http://nato.int:80/ all certainly denote the same thing, in that they all translate to exactly the same
request to exactly the same server.

To get process_url() fleshed out fully, we need to define process_near_url($url) and
process_far_url($url). We'll start with the first and simplest one. Processing a "far" URL (one that's not part of
any site we're spidering, but is instead a URL we're merely checking the validity of), is a simple matter of HEADing the
URL.

my $robot;

sub process_far_url {
 my $url = $_[0];
 say("HEADing $url\n");
 ++$hit_count;
 my $response = $robot->head($url, refer($url));
 mutter(" That was hit #$hit_count\n");
 consider_response($response); # that's all we do!
 return;
}

The minor routine refer($url) should generate a Referer header for this request (or no header at all, if none can
be generated). This is so if our request produces a 404 and this shows up in the remote server's hit logs, that server's
webmaster won't be left wondering "What on Earth links to that broken URL?" This routine merely checks the hash-of-
hashes $points_to{$url}{$any_from_url}, and either returns empty list (for no header) if there's no entry for
$url, or Referer => $some_url if there is an entry.

my %points_to;

sub refer {
 # Generate a good Referer header for requesting this URL.
 my $url = $_[0];
 my $links_to_it = $points_to{$url};
 # the set (hash) of all things that link to $url
 return() unless $links_to_it and keys %$links_to_it;

 my @urls = keys %$links_to_it; # in no special order!
 mutter " For $url, Referer => $urls[0]\n";
 return "Referer" => $urls[0];
}

The more important routine consider_response() is where we will have to mull over the results of
process_far_url()'s having headed the given URL. This routine should decide what HTTP statuses are errors,
and not all errors are created equal. Some are merely "405 Method Not Allowed" errors from servers or CGIs that don't
understand HEAD requests; these apparent errors should presumably not be reported to the user as broken links. We
could just define this routine like so:

sub consider_response {
 # Return 1 if it's successful, otherwise return 0
 my $response = $_[0];
 mutter(" ", $response->status_line, "\n");
 return 1 if $response->is_success;
 note_error_response($response);
 return 0;
}

We then further break down the task of deciding what errors are worthy of reporting and delegate that to a
note_error_response() routine:

my %notable_url_error; # URL => error messageS

sub note_error_response {
 my $response = $_[0];
 return unless $response->is_error;

 my $code = $response->code;
 my $url = URI->new($response->request->uri)->canonical;

 if($code == 404 or $code == 410 or $code == 500) {
 mutter(sprintf "Noting {%s} error at %s\n",
 $response->status_line, $url);
 $notable_url_error{$url} = $response->status_line;
 } else {
 mutter(sprintf "Not really noting {%s} error at %s\n",
 $response->status_line, $url);
 }
 return;
}

This note_error_response() only really notes (in %notable_url_error) error messages that are 404 "Not
Found", 410 "Gone", or 500 (which could be any number of things, from LWP having been unable to DNS the
hostname, to the server actually reporting a real 500 error on a CGI). Among the errors that this is meant to avoid
reporting is the 403 "Forbidden" error, which is what LWP::RobotUA generates if we try accessing a URL that we are
forbidden from accessing by that server's robots.txt file. In practice, if you base a spider on this code, you should
routinely consult the logs (as generated by the above calls to mutter) to see what errors are being noted, versus what
kinds of errors are being "not really noted." This is an example of how each will show up in the log:

[T1017138941 = Tue Mar 26 03:35:41 2002]
 For http://www.altculture.com/aentries/a/absolutely.html, Referer \
 => http://www.speech.cs.cmu.edu/~sburke/
[T1017139042 = Tue Mar 26 03:37:22 2002]
 That was hit #10
 500 Can't connect to www.altculture.com:80 (Timeout)
Noting {500 Can't connect to www.altculture.com:80 (Timeout)} error \
 at http://www.altculture.com/aentries/a/absolutely.html
[T1017139392 = Tue Mar 26 03:43:12 2002]
HEADing http://www.amazon.com/exec/obidos/ASIN/1565922840
 For http://www.amazon.com/exec/obidos/ASIN/1565922840, Referer \
 => http://www.speech.cs.cmu.edu/~sburke/pub/perl.html
[T1017139404 = Tue Mar 26 03:43:24 2002]
That was hit #51
405 Method Not Allowed
Not really noting {405 Method Not Allowed} error at \
 http://www.amazon.com/exec/obidos/ASIN/1565922840

12.3.4. Redirects

Implicit in our consider_request() function, above, is the idea that something either succeeded or was an error.
However, there is an important and frequent middle-ground in HTTP status codes: redirection status codes.

Normally, these are handled internally by the LWP::UserAgent/LWP::RobotUA object, assuming that we have left that
object with its default setting of following redirects wherever possible. But do we want it following redirects at all?
There's a big problem with such automatic redirect processing: if we request a URL with options appropriate for a "far"
URL, and it redirects to a URL that's part of our site, we've done the wrong thing. Or, going the other way, if we GET a

URL that's part of our site, and it redirects to a "far" URL, we'll have broken our policy of never GETting "far" URLs.

The solution is to turn off automatic redirect following for the $robot that we use for HEADing and GETting (by
calling $robot->requests_redirectable([]) when we initialize it), and to deal with redirects ourselves, in an
expanded consider_response() routine, like so:

sub consider_response {
 # Return 1 if it's successful, otherwise return 0
 my $response = $_[0];
 mutter(" ", $response->status_line, "\n");
 return 1 if $response->is_success;

 if($response->is_redirect) {
 my $to_url = $response->header('Location');
 if(defined $to_url and length $to_url and
 $to_url !~ m/\s/
) {
 my $from_url = $response->request->uri;
 $to_url = URI->new_abs($to_url, $from_url);
 mutter("Noting redirection\n from $from_url\n",
 " to $to_url\n");
 note_link_to($from_url => $to_url);
 }
 } else {
 note_error_response($response);
 }

 return 0;
}

By now we have completely fleshed out process_url() and everything it calls, except for process_near_url
() and the less-important note_link_to() routine. Processing "near" (in-site) URLs is just an elaboration of
what we do to "far" URLs. As discussed earlier, we will HEAD this URL, and if it's a successful URL (as shown by the
return value of consider_response(), remember!), and if it will contain HTML, we GET it and scan its content
for links. The fully defined function seems long, but only because of our many calls to say() and mutter(), and
all our sanity checking, such as not bothering to GET the URL if the HEAD actually returned content, as happens now
and then.

sub process_near_url {
 my $url = $_[0];
 mutter("HEADing $url\n");
 ++$hit_count;
 my $response = $robot->head($url, refer($url));
 mutter(" That was hit #$hit_count\n");
 return unless consider_response($response);

 if($response->content_type ne 'text/html') {
 mutter(" HEAD-response says it's not HTML! Skipping ",
 $response->content_type, "\n");
 return;
 }
 if(length ${ $response->content_ref }) {
 mutter(" Hm, that had content! Using it...\n");
 say("Using head-gotten $url\n");
 } else {
 mutter("It's HTML!\n");
 say("Getting $url\n");
 ++$hit_count;
 $response = $robot->get($url, refer($url));

 mutter(" That was hit #$hit_count\n");
 return unless consider_response($response);
 }
 if($response->content_type eq 'text/html') {
 mutter(" Scanning the gotten HTML...\n");
 extract_links_from_response($response);
 } else {
 mutter(" Skipping the gotten non-HTML (",
 $response->content_type, ") content.\n");
 }
 return;
}

All the routines this uses are already familiar, except extract_links_from_response().

12.3.5. Link Extraction

Our extract_links_from_response() routine has to take a successful HTTP::Response object containing
HTML and extract the URLs from the links in it. But in practice, "link" can be an imprecise term. Clearly, this
constitutes a link:

I like pie!

But what about the area element here?

<map>
 ...
 <area shape="rect" href="pie.html" coords="0,0,80,21">
 ...
</map>

Or what about the frame element here?

<frameset rows="*,76">
 ...
 <frame src="pie.html" name="eat_it">
 ...
</frameset>

And what about the background attribute value here?

<body bgcolor="#000066" background="images/bg.gif" ... >

You will have to decide for each kind of spider task what sort of links it should be interested in and implement a
different extract_links_from_response() accordingly. For purposes of simplicity, we'll consider only tags to be links. This is easy to implement using the HTML::TokeParser approach we covered in
Chapter 7, "HTML Processing with Tokens" and using the URI class we covered in Chapter 4, "URLs".

use HTML::TokeParser;
use URI;

sub extract_links_from_response {
 my $response = $_[0];

 my $base = URI->new($response->base)->canonical;
 # "canonical" returns it in the one "official" tidy form

 my $stream = HTML::TokeParser->new($response->content_ref);
 my $page_url = URI->new($response->request->uri);

 mutter("Extracting links from $page_url\n");

 my($tag, $link_url);
 while($tag = $stream->get_tag('a')) {
 next unless defined($link_url = $tag->[1]{'href'});
 next if $link_url =~ m/\s/; # If it's got whitespace, it's a bad
URL.
 next unless length $link_url; # sanity check!

 $link_url = URI->new_abs($link_url, $base)->canonical;
 next unless $link_url->scheme eq 'http'; # sanity

 $link_url->fragment(undef); # chop off any "#foo" part
 note_link_to($page_url => $link_url)
 unless $link_url->eq($page_url); # Don't note links to itself!
 }
 return;
}

This does lots of sanity checking on the href attribute value but ends up feeding to note_link_to() new
(absolute) URI objects for URLs such as http://bazouki-consortium.int/ or http://www.mybalalaika.com/oggs/
studio_credits.html, while skipping non-HTTP URLs such as mailto:info@mybalalaika.com, as well as invalid URLs
that might arise from parsing bad HTML.

This is about as complex as our spider code gets, and it's easy from here on.

12.3.6. Fleshing Out the URL Scheduling

So far we've used a note_link_to() routine twice. That routine need only do a bit of accounting to update the %
points_to hash we mentioned earlier and schedule this URL to be visited.

sub note_link_to {
 my($from_url => $to_url) = @_;
 $points_to{ $to_url }{ $from_url } = 1;
 mutter("Noting link\n from $from_url\n to $to_url\n");
 schedule($to_url);
 return;
}

That leaves routines such as schedule() left to write. As a reminder, three things need to be done with the schedule
(as we're calling the big set of URLs that need to be visited). We need a way to see how many entries there are in it with
schedule_count() (at least so main_loop() can know when it's empty). We'll need to pull a URL from the
schedule with next_scheduled_url(), so main_loop() can feed it to process_url(). And we need a way
to feed a URL into the schedule, with schedule($url), as called from note_link_to() and
process_starting_urls().

A simple Perl array is a perfectly sufficient data structure for our schedule, so we can write schedule_count() like
so:

my @schedule;
sub schedule_count { return scalar @schedule }

The implementation of next_scheduled_url() depends on exactly what we mean by "next." If our @schedule
is a proper stack, scheduling a URL means we push @schedule, $url, and next_scheduled_url() is just a
matter of $url = pop @schedule. If our @schedule is a proper queue, then scheduling a URL means we push

@schedule, $url, and next_scheduled_url() is just a matter of $url = shift @schedule.

Both of these approaches make our spider quite predictable, in the sense that when run on the same site, it will always do
the same things in the same order. This could theoretically be an advantage for debugging, and would be a necessary
feature if we were trying to debug without the benefit of the logging we've written into the spider.

However, that predictability is also a problem: if the spider happens on a page with dozens of slow-responding URLs, it
could spend the rest of its life trying to check those links; i.e., until main_loop() quits because $hit_count
reaches $hit_limit or because time() reaches $expiration. In practice, this problem is greatly alleviated
(although not completely eliminated) by pulling URLs not from the beginning or end of @schedule, but instead from a
random point in it:

sub next_scheduled_url {
 my $url = splice @schedule, rand(@schedule), 1;

 mutter("\nPulling from schedule: ", $url || "[nil]",
 "\n with ", scalar(@schedule),
 " items left in schedule.\n");
 return $url;
}

This leaves us with the schedule($url) routine to flesh out. It would be as simple as:

sub schedule {
 my $url = $_[0];
 push @schedule, URI->new($url);
 return;
}

However, we don't do much sanity checking on URLs everywhere else, so we need to do lots of it all here. First off, we
need to make sure we don't schedule a URL that we've scheduled before. Not only does this keep there from being
duplicates in @schedule at any one time, it means we never process the same URL twice in any given session.

Second off, we want to skip non-HTTP URLs, because other schemes (well, except HTTPS) aren't HEADable and don't
have MIME types, two things our whole spider logic depends on. Moreover, we probably want to skip URLs that have
queries (http://foo.bar/thing?baz) because those are usually CGIs, which typically don't understand HEAD requests.
Moreover, we probably want to skip HTTP URLs that inexplicably have userinfo components (http://joeschmo@foo.bar/
thing), which are typically typos for FTP URLs, besides just being bizarre.

We also want to regularize the hostname, so we won't think http://www.Perl.com/, http://www.perl.com/, and http://www.
perl.com./ are all different hosts, to be visited separately. We also want to skip URLs that are too "deep," such as http://
www.foo.int/docs/docs/docs/docs/docs/docs/about.html, which are typically a sign of a wild symlink or some other
similar problem. We also want to skip unqualified hostnames, such as http://www/ or http://mailhost/, and URLs with
path weirdness, such as http://thing.com/./././//foo.html. Then we chop off any #foo fragment at the end of the URL, and
finally add the URL to @schedule if it's new.

All that sort of sanity checking adds up to this:

my %seen_url_before;

sub schedule {
 # Add these URLs to the schedule
 foreach my $url (@_) {
 my $u = ref($url) ? $url : URI->new($url);
 $u = $u->canonical; # force canonical form

 next unless 'http' eq ($u->scheme || '');
 next if defined $u->query;

 next if defined $u->userinfo;

 $u->host(regularize_hostname($u->host()));
 return unless $u->host() =~ m/\./;

 next if url_path_count($u) > 6;
 next if $u->path =~ m<//> or $u->path =~ m</\.+(/|$)>;

 $u->fragment(undef);

 if($seen_url_before{ $u->as_string }++) {
 mutter(" Skipping the already-seen $u\n");
 } else {
 mutter(" Scheduling $u\n");
 push @schedule, $u;
 }
 }
 return;
}

All we need is the routine that regularizes a given hostname:

sub regularize_hostname {
 my $host = lc $_[0];
 $host =~ s/\.+/\./g; # foo..com => foo.com
 $host =~ s/^\.//; # .foo.com => foo.com
 $host =~ s/\.$//; # foo.com. => foo.com
 return 'localhost' if $host =~ m/^0*127\.0+\.0+\.0*1$/;
 return $host;
}

then a routine that counts the number of /-separated parts in the URL path:

sub url_path_count {
 # Return 4 for "http://foo.int/fee/fie/foe/fum"
 # 1 2 3 4
 my $url = $_[0];
 my @parts = $url->path_segments;
 shift @parts if @parts and $parts[0] eq '';
 pop @parts if @parts and $parts[-1] eq '';
 return scalar @parts;
}

12.3.7. The Rest of the Code

That's a fully functioning checker-spider—at least once you add in the boring switch processing, initialize(),
and the report() that dumps the contents of %notable_url_error, which are as follows:

use strict;
use warnings;
use URI;
use LWP;

Switch processing:
my %option;
use Getopt::Std;
getopts('m:n:t:l:e:u:t:d:hv', \%option) || usage_quit(1);
usage_quit(0) if $option{'h'} or not @ARGV;

sub usage_quit {
 # Emit usage message, then exit with given error code.
 print <<"END_OF_MESSAGE"; exit($_[0] || 0);
Usage:
$0 [switches] [urls]
 This will spider for bad links, starting at the given URLs.

Switches:
 -h display this help message
 -v be verbose in messages to STDOUT (default off)
 -m 123 run for at most 123 minutes. (default 20)
 -n 456 cause at most 456 network hits. (default 500)
 -d 7 delay for 7 seconds between hits. (default 10)
 -l x.log log to text file x.log. (default is to not log)
 -e y\@a.b set bot admin address to y\@a.b (no default!)
 -u Xyz set bot name to Xyz. (default: Verifactrola)
 -t 34 set request timeout to 34 seconds. (default 15)

END_OF_MESSAGE
}

my $expiration = ($option{'m'} || 20) * 60 + time();
my $hit_limit = $option{'h'} || 500;
my $log = $option{'l'};
my $verbose = $option{'v'};
my $bot_name = $option{'u'} || 'Verifactrola/1.0';
my $bot_email = $option{'e'} || '';
my $timeout = $option{'t'} || 15;
my $delay = $option{'d'} || 10;
die "Specify your email address with -e\n"
 unless $bot_email and $bot_email =~ m/\@/;

my $hit_count = 0;
my $robot; # the user-agent itself

Then the top-level code we've already seen:
initialize();
process_starting_urls(@ARGV);
main_loop();
report() if $hit_count;
say("Quitting.\n");
exit;

sub initialize {
 init_logging();
 init_robot();
 init_signals();
 return;
}

sub init_logging {
 my $selected = select(STDERR);
 $| = 1; # Make STDERR unbuffered.
 if($log) {
 open LOG, ">>$log" or die "Can't append-open $log: $!";
 select(LOG);
 $| = 1; # Make LOG unbuffered
 }

 select($selected);
 print "Logging to $log\n" if $log;
 return;
}

sub init_robot {
 use LWP::RobotUA;
 $robot = LWP::RobotUA->new($bot_name, $bot_email);
 $robot->delay($delay/60); # "/60" to do seconds->minutes
 $robot->timeout($timeout);
 $robot->requests_redirectable([]);
 # don't follow any sort of redirects
 $robot->protocols_allowed(['http']); # disabling all others
 say("$bot_name ($bot_email) starting at ", scalar(localtime), "\n");
 return;
}

sub init_signals { # catch control-C's
 $SIG{'INT'} = sub { $QUIT_NOW = 1; return;};
 # That might not be emulated right under MSWin.
 return;
}

sub report { # This that gets run at the end.
 say(
 "\n\nEnding at ", scalar(localtime),
 " after ", time() - $^T,
 "s of runtime and $hit_count hits.\n\n",
);
 unless(keys %notable_url_error) {
 say("\nNo bad links seen!\n");
 return;
 }

 say("BAD LINKS SEEN:\n");
 foreach my $url (sort keys %notable_url_error) {
 say("\n$url\n Error: $notable_url_error{$url}\n");
 foreach my $linker (sort keys %{ $points_to{$url} }) {
 say(" < $linker\n");
 }
 }
 return;
}

And that's all of it!

12.2. A User Agent for Robots 12.4. Ideas for Further Expansion

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Copyright © 2002 O'Reilly & Associates. All rights reserved.

10.5. Creating New Elements

So far we haven't directly created any new HTML::Element objects. All the elements that have appeared thus far were
created by HTML::TreeBuilder as part of its delegated task of building whole trees. But suppose that we actually do need
to add something to a tree that never existed elsewhere in that or any other tree. In the above section, we actually snuck
in creating a new node in this statement:

$template_title->push_content('No title');

But that's hardly an amazing feat, because that node isn't a real object. You can actually create a new object by calling
HTML::Element->new('tagname'). So this would add an hr element to a given paragraph object:

my $hr = HTML::Element->new('hr');
$paragraph->push_content($hr);

And you could create a new img node with given attributes:

my $img = HTML::Element->new('img');
$img->attr('src', 'hooboy.png');
$img->attr('alt', 'Lookit that!');
$paragraph->push_content($img);

Incidentally, the setting of attributes can be done in the constructor call:

my $img = HTML::Element->new('img', # plus any key,value pairs...
 'src' => 'hooboy.png',
 'alt' => 'Lookit that!',
);
$paragraph->push_content($img);

This is simple enough, but it becomes rather annoying when you want to construct several linked nodes. For example,
suppose you wanted to construct objects equivalent to what you'd get if you parsed this:

See here.!

Even this little treelet is fairly tedious to produce using normal constructor calls:

use HTML::Element;

my $li = HTML::Element->new('li');
my $b = HTML::Element->new('b');
my $a = HTML::Element->new('a', 'href' => 'page.html');
$a->push_content('here.');
$b->push_content($a);
$li->push_content("See ", $b, "!");

Have a look:
print $li->as_HTML, "\n";
$li->dump;

That indeed shows us that we succeeded in constructing what we wanted:

See here.!

 @0
 "See "
 @0.1
 @0.1.0
 "here."
 "!"

10.5.1. Literals

If you try manually constructing and linking every element in a larger structure such as a table, the code will be
maddening. One solution is not to create the elements at all, but to create a single element, called a ~literal
pseudoelement, that contains the raw source you want to appear when that part of the tree is dumped. These sorts of
objects are very much like the ~comment pseudoelements we saw in the last section; their real content is in their text
attribute:

my $li = HTML::Element->new('~literal',
 'text', 'See here.!'
);

This constructs something that will appear as that chunk of text when as_HTML() is called on it, but it's nothing like a
normal HTML element—you can't put other elements or text under it, and you can't see it with look_down or
find_by_tag_name() (unless you're looking for a ~literal element, which you're probably not).

10.5.2. New Nodes from Lists

Literals are fine for cases where you just want to drop arbitrarily large amounts of undigested HTML source into a tree
right before you call as_HTML(). But when you want to really make new, full-fledged elements, you can do that with
a friendlier syntax with the new_from_lol() constructor.

With new_from_lol(), you can specify an element with a list reference whose first item should be the tag name,
which then specifies attributes with an optional hash reference, and then contains any other nodes, either as bits of text,
preexisting element objects, or more list references. This is best shown by example:

my $li = HTML::Element->new_from_lol(
 ['li',
 "See ",
 ['b',
 ['a',
 {'href' => 'page.html'},
 "here."
]
],
 "!"
]
); # or indent it however you prefer -- probably more concisely

And this produces exactly the same tree as when we called HTML::Element->new three times then linked up the
resulting elements.

The benefits of the new_from_lol() approach are you can easily specify children at construction time, and it's very
hard to produce mis-nested trees, because if the number of ['s above doesn't match the number of]'s, it won't parse as
valid Perl. Moreover, it can actually be a relatively concise format. The above code, with some whitespace removed,
basically fits happily on one line:

my $li = HTML::Element->new_from_lol(

 ['li', "See ", ['b', ['a', {'href' => 'page.html'}, "here."]],
"!"]
);

So, for example, consider returning to the template-insertion problem in the previous section, and suppose that besides
dumping the article's content into a template, we should also preface the content with something like this:

<p>The original version of the following story is to found at:

$orig_url</p>
<hr>

This can be done by replacing:

put_into_template($good_td->content_list);

with this:

Assuming $orig_url has been set somewhere...

put_into_template(
 HTML::Element->new_from_lol(
 ['p', "The original version of the following story is to found
at:",
 ['a', {'href', $orig_url}, $orig_url],
]
),
 HTML::Element->new_from_lol(['hr']),
 $good_td->content_list,
);

If you find new_from_lol() notation to be an unnecessary elaboration, you can still manually construct each
element with HTML::Element->new and link them up before passing them to put_into_template(). Or you
could just as well create a ~literal pseudoelement containing the raw source:

put_into_template(
 HTML::Element->new('~literal', 'text' => qq{
 <p>The original version of the following story is to found at:

$orig_url</p>
 <hr>
 }),
 $good_td->content_list,
);

While the new_from_lol() syntax is an expressive shorthand for the general form of element construction, you
may well prefer the directness of creating a single ~literal or the simplicity of normal ->new calls. As the Perl
saying goes, there is more than one way to do it.

10.4. Attaching in Another Tree 11. Cookies, Authentication,and
Advanced Requests

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

3.5. HTTP::Response Objects

You have to manually create most objects your programs work with by calling an explicit constructor, with the syntax
ClassName->new(). HTTP::Response objects are a notable exception. You never need to call HTTP::
Response->new() to make them; instead, you just get them back as the result of a request made with one of the
request methods (get(), post(), and head()).

That is, when writing web clients, you never need to create a response yourself. Instead, a user agent creates it for you, to
encapsulate the results of a request it made. You do, however, interrogate a response object's attributes. For example, the
code() method returns the HTTP status code:

print "HTTP status: ", $response->code(), "\n";
HTTP status: 404

HTTP::Response objects also have convenience methods. For example, is_success() returns a true value if the
response had a successful HTTP status code, or false if it didn't (e.g., 404, 403, 500, etc.). Always check your responses,
like so:

die "Couldn't get the document"
 unless $response->is_success();

You might prefer something a bit more verbose, like this:

Given $response and $url ...
die "Error getting $url\n", $response->status_line
 unless $response->is_success();

3.5.1. Status Line

The status_line() method returns the entire HTTP status line:

$sl = $response->status_line();

This includes both the numeric code and the explanation. For example:

$resp = $browser->get("http://www.cpan.org/nonesuch");
print $response->status_line();
404 Not Found

To get only the status code, use the code() method:

$code = $response->code();

To access only the explanatory message, use the message() method:

$msg = $response->message();

For example:

$resp = $browser->get("http://www.cpan.org/nonesuch");

print $response->code(), " (that means ", $response->message(), ")
\n";
404 (that means Not Found)

Four methods test for types of status codes in the response: is_error(), is_success(), is_redirect(),
and is_info(). They return true if the status code corresponds to an error, a successful fetch, a redirection, or
informational (e.g., "102 Processing").

$boolean = $response->is_error();
$boolean = $response->is_success();
$boolean = $response->is_redirect();
$boolean = $response->is_info();

Exactly what codes count as what sort of status, is explained in greater detail in Appendix B, "HTTP Status Codes".

3.5.2. Content

Most responses contain content after their headers. This content is accessible with the content() method:

$the_file_data = $response->content();

In some cases, it's easier (and more efficient) to get a scalar reference to the content, instead of the value of the content
itself. For that, use the content_ref() method:

$data_ref = $response->content_ref();

For example in Chapter 7, "HTML Processing with Tokens", we use a class called HTML::TokeParser that parses
HTML starting with a reference to a big block of HTML source. We could use that module to parse the HTML in an
HTTP::Response object by using do{ my $x = $response->content(); \$x}, but we could avoid the
unnecessary copying by just using $response->content_ref().

3.5.3. Headers

To fetch the value of an HTTP header in the response, use the header() method:

$value = $response->header(header_name);

For example, if you know there will be useful data in a header called Description, access it as $response-
>header('Description'). The header() method returns undef if there is no such header in this response.

HTTP::Response provides some methods for accessing the most commonly used header fields:

$type = $response->content_type();

The Content-Type header contains the MIME type of the body. This is "text/html" for HTML files, "image/jpeg" for
JPEG files, and so on. Appendix C, "Common MIME Types" contains a list of common MIME types.

$length = $response->content_length();

The Content-Length header contains the size of the body (in bytes) sent from the browser but is not always present.
If you need the real length of the response, use length($response->content).

$lm = $response->last_modified();

The Last-Modified header contains a timestamp indicating when the content was last modified, but it is sometimes
not present.

$encoding = response->content_encoding();

The Content-Encoding header contains the name of the character set this document is declared as using. The most
common value is iso-8859-1 meaning Latin-1. An increasingly common runner-up is utf-8, meaning Unicode
expressed in the UTF-8 encoding. Less-common encodings are listed in Appendix E, "Common Content Encodings".
But be warned: this header is occasionally inaccurate, in cases where content is clearly in one encoding, but the
document fails to declare it as such. For example, a document might be in Chinese in the big5 encoding but might
erroneously report itself as being in iso-8859-1.

This brings us to a regrettably even less-used header:

$language = $response->content_language();

Rarely present, the Content-Language header contains the language tag(s) for the document's content. Appendix D,
"Language Tags" lists common language tags.

If you want to get all the headers as one string, call $response->headers_as_string. This is useful for
debugging, as in:

print "Weird response!!\n",
 $response->headers_as_string, "\n\n"
unless $response->content_type();

3.5.4. Expiration Times

Most servers send a Date header as well as an Expires or Last-Modified header with their responses. Four
methods on HTTP::Response objects use these headers to calculate the age of the document and various caching
statistics.

The current_age() method returns the number of seconds since the server sent the document:

$age = $response->current_age();

For example:

$age = $response->current_age();
$days = int($age/86400); $age -= $days * 86400;
$hours = int($age/3600); $age -= $hours * 3600;
$mins = int($age/60); $age -= $minutes * 60;
$secs = $age;
print "The document is $days days, $hours hours, $mins minutes, and
$secs
seconds old.\n";
The document is 0 days, 0 hours, 5 minutes, and 33
seconds old.

The freshness_lifetime() method returns the number of seconds until the document expires:

$lifetime = $response->freshness_lifetime();

For example:

$time = $response->freshness_lifetime();
$days = int($time/86400); $time -= $days * 86400;
$hours = int($time/3600); $time -= $hours * 3600;
$mins = int($time/60); $time -= $mins * 60;

$secs = int($time);
print "The document expires in $days days, $hours hours, $mins
minutes, and
$secs seconds.\n";
The document expires in 0 days, 23 hours, 6 minutes, and 15 seconds.

The is_fresh() method returns true if the document has not expired yet:

$boolean = $response->is_fresh();

If the document is not fresh, your program should reissue the request to the server. This is an issue only if your program
runs for a long time and you keep responses for later interrogation.

The fresh_until() entry returns the time when the document expires:

$expires = $response->fresh_until();

For example:

$expires = $response->fresh_until();
print "This document is good until ", scalar(localtime($expires)),
"\n";
This document is good until Tue Feb 26 07:36:08 2004

3.5.5. Base for Relative URLs

An HTML document can have relative URLs in it. For example:

This generally refers to the my_face.gif that's located in the same directory as the HTML page. Turning these relative
URLs into absolute URLs that can be requested via LWP is covered in the next chapter. To do that, you must know the
URL of the current page.

The base() method returns the URL of the document in the response.

$url = $response->base();

This base URL is normally the URL you requested but can sometimes differ: if there was a redirection (which LWP
normally follows through on), the URL of the final response isn't the same as the requested URL. Moreover, the Base,
Content-Base, and Content-Location headers in a response specify the address against which you resolve
relative URLs. And finally, if the response content is an HTML document and has a <base href="..."> tag in its
head, that definitively sets the base URL.

3.5.6. Debugging

When an error occurs (as indicated by the is_error() method), error_as_HTML() returns an error page in
HTML:

$error_page = $response->error_as_HTML();
print "The server said:\n<blockquote>$error_page</blockquote>\n";

Because a user agent can follow redirections and automatically answer authentication challenges, the request you gave to
the user agent object might not be the request represented by your object. That is, you could have said to get one URL,
but that could have directed to another, which could have redirected to another, producing not one response but a chain
of responses. For the sake of simplicity, you get back only the one $response object, which is the last in the chain.
But if you need to, you can work your way back, using the previous() method:

$previous_response = $response->previous();

The previous() method returns undef when there is no previous method (i.e., on the response to the request you
gave the user agent, at the head of the chain). Moreover, each response stores the HTTP::Request object that LWP used
for making the request, and you can access it with the $response->request(). HTTP::Request objects support
most of the same methods as HTTP::Response objects, notably $request->as_string, which is useful in
debugging.

From each response, you can get the corresponding request and recreate the HTTP dialog. For example:

$last = $response;
while ($response) {
 print $response->code(), " after ";
 # Or you could print even dump the whole
 # thing, with $response->as_string()

 $last = $response;
 $response = $response->previous();
}
print "the original request, which was:\n",
 $last->request->as_string;

200 after 401 after 301 after the original request, which was:
GET http://some.crazy.redirector.int/thing.html
User-Agent: libwww-perl/5.5394

3.4. User Agents 3.6. LWP Classes: Behind the Scenes

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

1.4. Words of Caution

In theory, the underlying mechanisms of the Web make no difference between a browser getting data and displaying it to
you, and your LWP-based program getting data and doing something else with it. However, in practice, almost all the
data on the Web was put there with the assumption (sometimes implicit, sometimes explicit) that it would be looked at
directly in a browser. When you write an LWP program that downloads that data, you are working against that
assumption. The trick is to do this in as considerate a way as possible.

1.4.1. Network and Server Load

When you access a web server, you are using scarce resources. You are using your bandwidth and the web server's
bandwidth. Moreover, processing your request places a load on the remote server, particularly if the page you're
requesting has to be dynamically generated, and especially if that dynamic generation involves database access. If you're
writing a program that requests several pages from a given server but you don't need the pages immediately, you should
write delays into your program (such as sleep 60; to sleep for one minute), so that the load that you're placing on the
network and on the web server is spread unobtrusively over a longer period of time.

If possible, you might even want to consider having your program run in the middle of the night (modulo the relevant
time zones), when network usage is low and the web server is not likely to be busy handling a lot of requests. Do this
only if you know there is no risk of your program behaving unpredictably. In Chapter 12, "Spiders", we discuss programs
with definite risk of that happening; do not let such programs run unattended until you have added appropriate
safeguards and carefully checked that they behave as you expect them to.

1.4.2. Copyright

While the complexities of national and international copyright law can't be covered in a page or two (or even a library or
two), the short story is that just because you can get some data off the Web doesn't mean you can do whatever you want
with it. The things you do with data on the Web form a continuum, as far as their relation to copyright law. At the one
end is direct use, where you sit at your browser, downloading and reading pages as the site owners clearly intended. At
the other end is illegal use, where you run a program that hammers a remote server as it copies and saves copyrighted
data that was not meant for free public consumption, then saves it all to your public web server, which you then
encourage people to visit so that you can make money off of the ad banners you've put there. Between these extremes,
there are many gray areas involving considerations of "fair use," a tricky concept. The safest guide in trying to stay on
the right side of copyright law is to ask, by using the data this way, could I possibly be depriving the original web site of
some money that it would/could otherwise get?

For example, suppose that you set up a program that copies data every hour from the Yahoo! Weather site, for the 50
most populous towns in your state. You then copy the data directly to your public web site and encourage everyone to
visit it. Even though "no one owns the weather," even if any particular bit of weather data is in the public domain (which
it may be, depending on its source), Yahoo! Weather put time and effort into making a collection of that data, presented
in a certain way. And as such, the collection of data is copyrighted.

Moreover, by posting the data publicly, you are almost definitely taking viewers away from Yahoo! Weather, which
means less ad revenue for them. Even if Yahoo! Weather didn't have any ads and so wasn't obviously making any money
off of viewers, your having the data online elsewhere means that if Yahoo! Weather wanted to start having ads
tomorrow, they'd be unable to make as much money at it, because there would be people in the habit of looking at your
web site's weather data instead of at theirs.

1.4.3. Acceptable Use

Besides the protection provided by copyright law, many web sites have "terms of use" or "acceptable use" policies,

where the web site owners basically say "as a user, you may do this and this, but not that or that, and if you don't abide
by these terms, then we don't want you using this web site." For example, a search engine's terms of use might stipulate
that you should not make "automated queries" to their system, nor should you show the search data on another site.

Before you start pulling data off of a web site, you should put good effort into looking around for its terms of service
document, and take the time to read it and reasonably interpret what it says. When in doubt, ask the web site's
administrators whether what you have in mind would bother them.

1.3. Installing LWP 1.5. LWP in Action

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 6. Simple HTML Processing with Regular
Expressions

Contents:

Automating Data Extraction
Regular Expression Techniques
Troubleshooting
When Regular Expressions Aren't Enough
Example: Extracting Linksfrom a Bookmark File
Example: Extracting Linksfrom Arbitrary HTML
Example: Extracting Temperatures from Weather Underground

The preceding chapters have been about getting things from the Web. But once you get a file, you have to process it. If
you get a GIF, you'll use some module or external program that reads GIFs and likewise if you get a PNG, an RSS file,
an MP3, or whatever. However, most of the interesting processable information on the Web is in HTML, so much of the
rest of this book will focus on getting information out of HTML specifically.

In this chapter, we will use a rudimentary approach to processing HTML source: Perl regular expressions. This technique
is powerful and most web sites can be mined in this fashion. We present the techniques of using regular expressions to
extract data and show you how to debug those regular expressions. Examples from Amazon, the O'Reilly Network,
Netscape bookmark files, and the Weather Underground web site demonstrate the techniques.

6.1. Automating Data Extraction

Suppose we want to extract information from an Amazon book page. The first problem is getting the HTML. Browsing
Amazon shows that the URL for a book page is http://www.amazon.com/exec/obidos/ASIN/ISBN, where ISBN is the
book's unique International Standard Book Number. So to fetch the Perl Cookbook's page, for example:

#!/usr/bin/perl -w
use strict;
use LWP::Simple;

my $html = get("http://www.amazon.com/exec/obidos/ASIN/1565922433")
 or die "Couldn't fetch the Perl Cookbook's page.";

The relevant piece of HTML looks like this:

<br clear="left">

Paperback
- 794 pages (August 1998)

O'Reilly & Associates;

ISBN: 1565922433
; Dimensions (in inches): 1.55 x 9.22 x 7.08

Amazon.com Sales Rank: 4,070

The easiest way to extract information here is to use regular expressions. For example:

$html =~ m{Amazon\.com Sales Rank: ([\d,]+)
};
$sales_rank = $1;
$sales_rank =~ tr[,][]d; # 4,070 becomes 4070

This regular expression describes the information we want (a string of digits and commas), as well as the text around the
text we're after (Amazon.com Sales Rank: and
). We use curly braces to delimit the regular
expression to avoid problems with the slash in , and we use parentheses to capture the desired information. We
save that information to $sales_rank, then modify the variable's value to clean up the data we extracted.

The final program appears in Example 6-1.

Example 6-1. cookbook-rank

#!/usr/bin/perl -w
cookbook-rank - find rank of Perl Cookbook on Amazon

use LWP::Simple;

my $html = get("http://www.amazon.com/exec/obidos/ASIN/1565922433")
 or die "Couldn't fetch the Perl Cookbook's page.";
$html =~ m{Amazon\.com Sales Rank: ([\d,]+)
} || die;
my $sales_rank = $1;
$sales_rank =~ tr[,][]d; # 4,070 becomes 4070
print "$sales_rank\n";

It's then straightforward to generalize the program by allowing the user to provide the ISBN on the command line, as
shown in Example 6-2.

Example 6-2. amazon-rank

#!/usr/bin/perl -w
amazon-rank: fetch Amazon rank given ISBN on cmdline

use LWP::Simple;

my $isbn = shift
 or die "usage:\n$0 ISBN\n";
my $html = get("http://www.amazon.com/exec/obidos/ASIN/$isbn");
$html =~ m{Amazon\.com Sales Rank: ([\d,]+)
} || die;
my $sales_rank = $1;
$sales_rank =~ tr[,][]d; # 4,070 becomes 4070
print "$sales_rank\n";

We could take this program in any direction we wanted. For example, it would be a simple enhancement to take a list of
ISBNs from the command line or from STDIN, if none were given on the command line. It would be trickier, but more
useful, to have the program accept book titles instead of just ISBNs. A more elaborate version of this basic program is
one of O'Reilly's actual market research tools.

5.8. Limits on Forms 6.2. Regular Expression Techniques

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

6.3. Troubleshooting

Both when developing and maintaining data extraction programs, things can go wrong. Suddenly, instead of an article
summary, you see a huge mass of HTML, or you don't get any output at all. Several things might cause this. For
example, the web site's HTML changed, or your program wasn't flexible enough to deal with all the naturally occurring
variations in the HTML.

There are two basic types of problems: false positives and false negatives. A false positive is when your regular
expression identifies something it thinks is the information you're after, but it isn't really. For example, if the O'Reilly
Network used the itemtemplate and summary format for things that aren't articles, the summary extraction program
in Example 6-3 would report headlines that aren't really headlines.

There are two ways to deal with false positives. You can tighten your regular expression to prevent the uninteresting
piece of HTML from matching. For example, matching text with /[^<]*/ instead of /.*?/ ensures the text has no
HTML. The other way to prevent a false positive is to inspect the results of the match to ensure they're relevant to your
search. For example, in Example 6-3, we checked that the URL, title, and summary were found when we decomposed
the chunk.

A false negative is where your program fails to find information for which it is looking. There are also two ways to fix
this. The first is to relax your regular expression. For example, replace a single space with /\s*/ to allow for any
amount of whitespace. The second way is to make another pass through the document with a separate regular expression
or processing technique, to catch the data you missed the first time around. For example, extract into an array all the
things that look like news headlines, then remove the first element from the array if you know it's always going to be an
advertisement instead of an actual headline.

Often the hardest part of debugging a regular expression is locating which part isn't matching or is matching too much.
There are some simple steps you can take to identify where your regular expression is going wrong.

First, print the text you're matching against. Print it immediately before the match, so you are totally certain what the
regular expression is being applied to. You'd be surprised at the number of subtle ways the page your program fetches
can differ from the page for which you designed the regular expression.

Second, put capturing parentheses around every chunk of the regular expression to see what's matching. This lets you
find runaway matches, i.e., places where a quantifier matches too much. For example, the /.*/ intended to skip just the
formatting HTML might instead skip the formatting HTML, three entries, and another piece of formatting HTML. In
such situations, it's typically because either the thing being quantified was too general (e.g., instead of the dot, we should
have had /[^<]/ to avoid matching HTML), or because the literal text after the quantifier wasn't enough to identify the
stop point. For example, /<font/ instead of /<font size=-1/ might make a minimal quantifier stop too soon (at
the first font tag, instead of the correct font tag) or a greedy quantifier match too much (at the last font tag, instead
of the last size=-1 font tag).

If the regular expression you've created isn't matching at all, repeatedly take the last chunk off the regular expression
until it does match. The last bit you removed was causing the match to fail, so inspect it to see why.

For example, let's find out why this isn't matching:

$text = qq(DogWoof\nWoof</p>);
($file, $title, $summary) =
 $text =~ m{(.*?)\s*(.*?)</p>};

Taking the last piece off yields this regular expression:

(.*?)\s*(.*?)

This matches. This tells us that /</p>/ wasn't being found after /(.*?)/ matched. We're not going to see much if we
print $3 at this point, as we're matching minimally, and without something forcing the quantifier to match more than 0,
it'll be happy to match nothing.

The way around this is to remove the minimal matching—how much could it match?

(.*?)\s*(.*)

Printing $3 now show us that /.*/ is matching only Woof, instead of Woof\nWoof. The newline should be the
giveaway—we need to add the /s modifier to the original regular expression (be sure to change the /.*/ back to /.
*?/!) to ensure that summaries with embedded newlines are correctly located.

6.2. Regular Expression Techniques 6.4. When Regular Expressions Aren't
Enough

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 8. Tokenizing Walkthrough

Contents:

The Problem
Getting the Data
Inspecting the HTML
First Code
Narrowing In
Rewrite for Features
Alternatives

So far, I've been showing examples of data in a particular format, then presenting code for extracting the data out of that
format, as an illustration of newly introduced HTML::TokeParser methods. But in real life, you do not proceed tidily
from the problem to an immediate and fully formed solution. And ideally, the task of data extraction is simple: identify
patterns surrounding the data you're after and write a program that matches those patterns and extracts the embedded
data.

In practice, however, you write programs bit by bit and in fits and starts, and with data extraction specifically; this
involves a good amount of trying one pattern, finding that its matching is too narrow or too broad, trying to amend it,
possibly having to backtrack and try another pattern, and so on. Moreover, even equally effective patterns are not equal;
some patterns are easier to capture in code than others, and some patterns are more temporary than others.

In this section, I'll try to make these points by walking though the implementation of a data extraction task, with all
alternatives considered, and even a misstep or two.

8.1. The Problem

As a starting point, consider the task of harvesting a month's worth of listings and corresponding RealAudio URLs from
the web site of the National Public Radio program Fresh Air, at http://freshair.npr.org. Fresh Air is on NPR stations each
weekday, and on every show, different guests are interviewed. The show's web site lists which guests appear on the show
each day and has links to the RealAudio files for each segment of each show. If your particular weekday schedule doesn't
have you listening to Fresh Air every night or afternoon, you would find it useful to have a program tell you who had
been on in the past month, so you could make a point of listening to the RealAudio files for the guests you find
interesting. Such a data-extraction program could be scheduled with crontab to run on the first or second day of every
month, to harvest the past month's program data.

7.6. Using Extracted Text 8.2. Getting the Data

Copyright © 2002 O'Reilly & Associates. All rights reserved.

http://freshair.npr.org/
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

6.6. Example: Extracting Linksfrom Arbitrary HTML

Suppose that the links we want to check are in a remote HTML file that's not quite as rigidly formatted as my local
bookmark file. Suppose, in fact, that a representative section looks like this:

<p>Dear Diary,

I was listening to Fresh
Air the other day and they had Linus Torvalds on,
and he was going on about how he wrote some kinda
program or something. If
he's so smart, why didn't he write something useful, like Tetris or <a href="../
minesweeper_hints/"
>Minesweeper, huh?

In the case of the bookmarks, we noted that links were each alone on a line, all absolute, and each capturable with m/
HREF="([^"\s]+)" /. But none of those things are true here! Some links (such as
href="why_I_love_tetris.html") are relative, some lines have more than one link in them, and one link even
has a newline between its href attribute name and its ="..." attribute value.

Regexps are still usable, though—it's just a matter of applying them to a whole document (instead of to individual lines)
and also making the regexp a bit more permissive:

while ($document =~ m/\s+href\s*=\s*"([^"\s]+)"/gi) {
 my $url = $1;
 ...
}

(The /g modifier ("g" originally for "globally") on the regexp tries to match the pattern as many times as it can, each
time picking up where the last match left off.)

Example 6-5 shows this basic idea fleshed out to include support for fetching a remote document, matching each link in
it, making each absolute, and calling a checker routine (currently a placeholder) on it.

Example 6-5. diary-link-checker

#!/usr/bin/perl -w
diary-link-checker - check links from diary page

use strict;
use LWP;

my $doc_url = "http://chichi.diaries.int/stuff/diary.html";
my $document;
my $browser;
init_browser();

{ # Get the page whose links we want to check:
 my $response = $browser->get($doc_url);
 die "Couldn't get $doc_url: ", $resp->status_line

 unless $response->is_success;
 $document = $response->content;
 $doc_url = $response->request->base;
 # In case we need to resolve relative URLs later
}

while ($document =~ m/href\s*=\s*"([^"\s]+)"/gi) {
 my $absolute_url = absolutize($1, $doc_url);
 check_url($absolute_url);
}

sub absolutize {
 my($url, $base) = @_;
 use URI;
 return URI->new_abs($url, $base)->canonical;
}

sub init_browser {
 $browser = LWP::UserAgent->new;
 # ...And any other initialization we might need to do...
 return $browser;
}

sub check_url {
 # A temporary placeholder...
 print "I should check $_[0]\n";
}

When run, this prints:

I should check http://www.freshair.com/
I should check http://www.cs.Helsinki.FI/u/torvalds/
I should check http://www.linux.org/
I should check http://chichi.diaries.int/stuff/why_I_love_tetris.html
I should check http://chichi.diaries.int/minesweeper_hints/

So our while (regexp) loop is indeed successfully matching all five links in the document. (Note that our
absolutize routine is correctly making the URLs absolute, as with turning why_I_love_tetris.html into http://chichi.
diaries.int/stuff/why_I_love_tetris.html and ../minesweeper_hints/ into http://chichi.diaries.int/minesweeper_hints/ by
using the URI class that we explained in Chapter 4, "URLs".)

Now that we're satisfied that our program is matching and absolutizing links correctly, we can drop in the check_url
routine from the Example 6-4, and it will actually check the URLs that the our placeholder check_url routine
promised we'd check.

6.5. Example: Extracting Linksfrom a
Bookmark File

6.7. Example: Extracting
Temperatures from Weather

Underground

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Copyright © 2002 O'Reilly & Associates. All rights reserved.

2.4. Fetching Documents Without LWP::Simple

LWP::Simple is convenient but not all powerful. In particular, we can't make POST requests or set request headers or
query response headers. To do these things, we need to go beyond LWP::Simple.

The general all-purpose way to do HTTP GET queries is by using the do_GET() subroutine shown in Example 2-5.

Example 2-5. The do_GET subroutine

use LWP;
my $browser;
sub do_GET {
 # Parameters: the URL,
 # and then, optionally, any header lines: (key,value, key,value)
 $browser = LWP::UserAgent->new() unless $browser;
 my $resp = $browser->get(@_);
 return ($resp->content, $resp->status_line, $resp->is_success, $resp)
 if wantarray;
 return unless $resp->is_success;
 return $resp->content;
}

A full explanation of the internals of do_GET() is given in Chapter 3, "The LWP Class Model". Until then, we'll be
using it without fully understanding how it works.

You can call the do_GET() function in either scalar or list context:

doc = do_GET(URL [header, value, ...]);
(doc, status, successful, response) = do_GET(URL [header, value, ...]);

In scalar context, it returns the document or undef if there is an error. In list context, it returns the document (if any),
the status line from the HTTP response, a Boolean value indicating whether the status code indicates a successful
response, and an object we can interrogate to find out more about the response.

Recall that assigning to undef discards that value. For example, this is how you fetch a document into a string and learn
whether it is successful:

($doc, undef, $successful, undef) = do_GET('http://www.suck.com/');

The optional header and value arguments to do_GET() let you add headers to the request. For example, to attempt to
fetch the German language version of the European Union home page:

$body = do_GET("http://europa.eu.int/",
 "Accept-language" => "de",
);

The do_GET() function that we'll use in this chapter provides the same basic convenience as LWP::Simple's get()
but without the limitations.

2.3. LWP::Simple 2.5. Example: AltaVista

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

3.3. Inside the do_GET and do_POST Functions

You now know enough to follow the do_GET() and do_POST() functions introduced in Chapter 2, "Web Basics".
Let's look at do_GET() first.

Start by loading the module, then declare the $browser variable that will hold the user agent. It's declared outside the
scope of the do_GET() subroutine, so it's essentially a static variable, retaining its value between calls to the
subroutine. For example, if you turn on support for HTTP cookies, this browser could persist between calls to do_GET
(), and cookies set by the server in one call would be sent back in a subsequent call.

use LWP;
my $browser;
sub do_GET {

Next, create the user agent if it doesn't already exist:

$browser = LWP::UserAgent->new() unless $browser;

Enable proxying, if you're behind a firewall:

$browser->env_proxy();

Then perform a GET request based on the subroutine's parameters:

my $response = $browser->request(@_);

In list context, you return information provided by the response object: the content, status line, a Boolean indicating
whether the status meant success, and the response object itself:

return($response->content, $response->status_line, $response-
>is_success, $response)
 if wantarray;

If there was a problem and you called in scalar context, we return undef:

return unless $response->is_success;

Otherwise we return the content:

 return $response->content;
}

The do_POST() subroutine is just like do_GET(), only it uses the post() method instead of get().

The rest of this chapter is a detailed reference to the two classes we've covered so far: LWP::UserAgent and HTTP::
Response.

3.2. Programming with LWP Classes 3.4. User Agents

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 7. HTML Processing with Tokens

Contents:

HTML as Tokens
Basic HTML::TokeParser Use
Individual Tokens
Token Sequences
More HTML::TokeParser Methods
Using Extracted Text

Regular expressions are powerful, but they're a painfully low-level way of dealing with HTML. You're forced to worry
about spaces and newlines, single and double quotes, HTML comments, and a lot more. The next step up from a regular
expression is an HTML tokenizer. In this chapter, we'll use HTML::TokeParser to extract information from HTML files.
Using these techniques, you can extract information from any HTML file, and never again have to worry about character-
level trivia of HTML markup.

7.1. HTML as Tokens

Your experience with HTML code probably involves seeing raw text such as this:

<p>Dear Diary,

I'm gonna be a superstar, because I'm learning to play
the balalaika & the bazouki!!!

The HTML::TokeParser module divides the HTML into units called tokens, which means units of parsing. The above
source code is parsed as this series of tokens:

start-tag token
p with no attributes

text token
Dear Diary,\n

start-tag token
br with no attributes

text token
I'm gonna be a superstar, because I'm learning to play\nthe

start-tag token
a, with attribute href whose value is http://MyBalalaika.com

text token
balalaika

end-tag token
a

text token
& the , which means & the

start-tag token
a, with attribute href equals http://MyBazouki.com

text token
bazouki

end-tag token

a
text token

!!!\n

This representation of things is more abstract, focusing on markup concepts and not individual characters. So whereas
the two <a> tags have different types of quotes around their attribute values in the raw HTML, as tokens each has a start-
tag of type a, with an href attribute of a particular value. A program that extracts information by working with a stream
of tokens doesn't have to worry about the idiosyncrasies of entity encoding, whitespace, quotes, and trying to work out
where a tag ends.

6.7. Example: Extracting
Temperatures from Weather
Underground

7.2. Basic HTML::TokeParser Use

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

7.5. More HTML::TokeParser Methods

Example 7-1 illustrates that often you aren't interested in every kind of token in a stream, but care only about tokens of a
certain kind. The HTML::TokeParser interface supports this with three methods, get_tag(), get_text(), and
get_trimmed_text() that do something other than simply get the next token.

$text_string = $stream->get_text();
If the next token is text, return its value.

$text_string = $stream->get_text('foo');
Return all text up to the next foo start-tag.

$text_string = $stream->get_text('/bar');
Return all text up to the next /bar end-tag.

$text = $stream->get_trimmed_text();
$text = $stream->get_trimmed_text('foo');
$text = $stream->get_trimmed_text('/bar');

Like get_text() calls, except with initial and final whitespace removed, and all other whitespace collapsed.
$tag_ref = $stream->get_tag();

Return the next start-tag or end-tag token.
$tag_ref = $stream->get_tag('foo', '/bar', 'baz');

Return the next foo start-tag, /bar end-tag, or baz start-tag.

We will explain these methods in detail in the following sections.

7.5.1. The get_text() Method

The get_text() syntax is:

$text_string = $stream->get_text();

If $stream's next token is text, this gets it, resolves any entities in it, and returns its string value. Otherwise, this returns
an empty string.

For example, if you are parsing this snippet:

<h1 lang='en-GB'>Shatner Reprises Kirk Rôle</h1>

and have just parsed the token for h1, $stream->get_text() returns "Shatner Reprises Kirk Rôle." If you call it
again (and again and again), it will return the empty string, because the next token waiting is not a text token but an h1
end-tag token.

7.5.2. The get_text() Method with Parameters

The syntax for get_text() with parameters is:

$text_string = $stream->get_text('foo');
$text_string = $stream->get_text('/bar');

Specifying a foo or /bar parameter changes the meaning of get_text(). If you specify a tag, you get all the text
up to the next time that tag occurs (or until the end of the file, if that tag never occurs).

For however many text tokens are found, their text values are taken, entity sequences are resolved, and they are
combined and returned. (All the other sorts of tokens seen along the way are just ignored.)

Note that the tag name that you specify (whether foo or /bar) must be in lowercase.

This sounds complex, but it works out well in real use. For example, imagine you've got this snippet:

<h1 lang='en-GB'>Star of <cite>Star Trek</cite> in New Rôle</h1>
 <cite>American Psycho II</cite> in Production.
 <!-- I'm not making this up, folks. -->

Shatner to play FBI profiler.

and that you've just parsed the token for h1. Calling $stream->get_text(), simply gets Star of . If, however,
the task you're performing is the extraction of the text content of <h1> elements, then what's called for is:

$stream->get_text('/h1')

This returns Star of Star Trek in New Rôle.

Calling:

$stream->get_text('br')

returns:

"Star of Star Trek in New Rôle\n American Psycho II in Production.
\n \n "

And if you instead called $stream->get_text('schlock') and there is no <schlock...> in the rest of the
document, you will get Star of Star Trek in New Rôle\n American Psycho II in Production.\n \n
Shatner to play FBI profiler.\n, plus whatever text there is in the rest of the document.

Note that this never introduces whitespace where it's not there in the original. So if you're parsing this:

<table>
<tr><th>Height<th>Weight<th>Shoe Size</tr>
<tr><th>6' 2"<th>180lbs<th>n/a</tr>
</table>

and you've just parsed the table token, if you call:

$stream->get_text('/table')

you'll get back:

"\nHeightWeightShoe Size\n6' 2"180lbsn/a\n"

Not all nontext tokens are ignored by $stream->get_text(). Some tags receive special treatment: if an img or
applet tag is seen, it is treated as if it were a text token; if it has an alt attribute, its value is used as the content of the
virtual text token; otherwise, you get just the uppercase tag name in brackets: [IMG] or [APPLET]. For further
information on altering and expanding this feature, see perldoc HTML::TokeParser in the documentation for the
get_text method, and possibly even the surprisingly short HTML::TokeParser source code.

If you just want to turn off such special treatment for all tags:

$stream->{'textify'} = {}

This is the only case of the $object->{'thing'} syntax we'll discuss in this book. In no other case does an object
require us to access its internals directly like this, because it has no method for more normal access. For more
information on this particular syntax, see perldoc perlref's documentation on hash references.

7.5.3. The get_trimmed_text() Method

The syntax for the get_trimmed_text() method is:

$text = $stream->get_trimmed_text();
$text = $stream->get_trimmed_text('foo');
$text = $stream->get_trimmed_text('/bar');

These work exactly like the corresponding $stream->get_text() calls, except any leading and trailing
whitespace is removed and each sequence of whitespace is replaced with a single space.

Returning to our news example:

$html = <<<EOF ;
<h1 lang='en-GB'>Star of <cite>Star Trek</cite> in New Rôle</h1>
 <cite>American Psycho II</cite> in Production.
 <!-- I'm not making this up, folks. -->

Shatner to play FBI profiler.
EOF
$stream = HTML::TokeParser->new(\$html);
$stream->get_token(); # skip h1

The get_text() method would return Star of (with the trailing space), while the get_trimmed_text()
method would return Star of (no trailing space).

Similarly, $stream->get_text('br') would return:

"Star of Star Trek in New Rôle\n American Psycho II in Production.
\n \n "

whereas $stream->get_trimmed_text ('br') would return:

"Star of Star Trek in New Rôle American Psycho II in Production."

Notice that the medial newline-space-space became a single space, and the final newline-space-space-newline-space-
space was simply removed.

The caveat that get_text() does not introduce any new whitespace applies also to get_trimmed_text(). So
where, in the last example in get_text(), you would have gotten \nHeightWeightShoe Size\n6'
2"180lbsn/a\n, get_trimmed_text() would return HeightWeightShoe Size 6' 2"180lbsn/a.

7.5.4. The get_tag() Method

The syntax for the get_tag() method is:

$tag_reference = $stream->get_tag();

This returns the next start-tag or end-tag token (throwing out anything else it has to skip to get there), except while
get_token() would return start and end-tags in these formats:

['S', 'hr', {'class','Ginormous'}, ['class'], '<hr class=Ginormous>']
['E', 'p' , '</P>']

get_tag() instead returns them in this format:

['hr', {'class','Ginormous'}, ['class'], '<hr class=Ginormous>']
['/p' , '</P>']

That is, the first item has been taken away, and end-tag names start with /.

7.5.4.1. Start-tags

Unless $tag->[0] begins with a /, the tag represents a start-tag:

[$tag, $attribute_hash, $attribute_order_arrayref, $source]

The components of this token are:

$tag
The tag name, in lowercase.

$attribute_hashref
A reference to a hash encoding the attributes of this tag. The (lowercase) attribute names are the keys of the hash.

$attribute_order_arrayref
A reference to an array of (lowercase) attribute names, in case you need to access elements in order.

$source
The original HTML for this token.

The first two values are the most interesting ones, for most purposes.

For example, parsing this HTML with $stream->get_tag() :

<IMG SRC="kirk.jpg" alt="Shatner in rôle of Kirk" WIDTH=352
height=522>

gives this tag:

[
 'img',
 { 'alt' => 'Shatner in rôle of Kirk',
 'height' => '522', 'src' => 'kirk.jpg', 'width' => '352'
 },
 ['src', 'alt', 'width', 'height'],
 '<IMG SRC="kirk.jpg" alt="Shatner in rôle of Kirk" WIDTH=352
height=522>'
]

Notice that the tag and attribute names have been lowercased, and the ô entity decoded within the alt attribute.

7.5.4.2. End-tags

When $tag->[0] does begin with a /, the token represents an end-tag:

["/$tag", $source]

The components of this tag are:

$tag
The lowercase name of the tag being closed, with a leading /.

$source

The original HTML for this token.

Parsing this HTML with $stream->get_tag() :

gives this tag:

['/a', '']

Note that if get_tag() reads to the end of the stream and finds no tag tokens, it will return undef.

7.5.5. The get_tag() Method with Parameters

Pass a list of tags, to skip through the tokens until a matching tag is found:

$tag_reference = $stream->get_tag('foo', '/bar', 'baz');

This returns the next start-tag or end-tag that matches any of the strings you provide (throwing out anything it has to skip
to get there). Note that the tag name(s) that you provide as parameters must be in lowercase.

If get_tag() reads to the end of the stream and finds no matching tag tokens, it will return undef. For example,
this code's get_tag() looks for img start-tags:

while (my $img_tag = $stream->get_tag('img')) {
 my $i = $img_tag->[1]; # attributes of this img tag
 my @lack = grep !exists $i->{$_}, qw(alt height width);
 print "Missing for ", $i->{'src'} || "????", ": @lack\n" if @lack;
}

7.4. Token Sequences 7.6. Using Extracted Text

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

7.6. Using Extracted Text

Consider the BBC story-link extractor introduced earlier. Its task was to find links to stories, in either of these kinds of
patterns:

<B CLASS="h3"><A href="/hi/english/business/newsid_1576000/1576290.
stm">Bank
 of England mulls rate cut

 <B class="h1">Mid-East blow to US anti-terror drive

and then to isolate the URL, absolutize it, and print it. But it ignores the actual link text, which starts with the next token
in the stream. If we want that text, we could get the next token by calling get_text():

print $stream->get_text(), "\n ",
 URI->new_abs($next[0][2]{'href'}, $docbase), "\n";

That prints the text like this:

Bank
of England mulls rate cut
 http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576290.stm

Note that the newline (and any indenting, if there was any) in the source hasn't been filtered out. For some applications,
this makes no difference, but for neatness sake, let's keep headlines to one line each. Changing get_text() to
get_trimmed_text() makes that happen:

print $stream->get_trimmed_text(), "\n ",
 URI->new_abs($next[0][2]{'href'}, $docbase), "\n";
Bank of England mulls rate cut
 http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576290.stm

If the headlines are potentially quite long, we can pass them through Text::Wrap, to wrap them at 72 columns.

There's a trickier problem that occurs often with get_text() or get_trimmed_text(). What if the HTML
we're parsing looks like this?

<B CLASS="h3">Shatner & Kunis win
Oscars
 for <cite>American Psycho II</cite> rôles

If we've just parsed the b and the a, the next token in the stream is a text token, Shatner & Kunis win Oscars
for , that's what get_text() returns (get_trimmed_text() returns the same thing, minus the final space).
But we don't want only the first text token in the headline, we want the whole headline. So instead of defining the
headline as "the next text token," we could define it as "all the text tokens until the next ." So the program changes
to:

print $stream->get_trimmed_text('/a'), "\n ",
 URI->new_abs($next[0][2]{'href'}, $docbase), "\n";

That happily prints:

Shatner & Kunis win Oscars for American Psycho II rôles
 http://news.bbc.co.uk/unlikely/2468.stm

Note that the & and ô entity references were resolved to & and ô. If you were using such a program to spit
out something other than plain text (such as XML or RTF), a bare & and/or a bare high-bit character such as ô might be
unacceptable, and might need escaping in some fashion. Even if you are emitting plain text, the \xA0 (nonbreaking
space) or \xAD (soft hyphen) characters may not be happily interpreted by whatever application you're reading the text
with, in which case a tr/\xA0/ / and tr/\xAD//d are called for. If you're taking the output of get_text() or
get_trimmed_text() and sending it to a system that understands only U.S. ASCII, then passing the text through a
module such as Text::Unidecode might be called for to turn the ô into an o. This is not really an HTML or HTML::
TokeParser matter at all, but is the sort of problem that commonly arises when extracting content from HTML and
putting it into other formats.

7.5. More HTML::TokeParser Methods 8. Tokenizing Walkthrough

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

5.7. File Uploads

So far we've discussed users entering text data that they type (or paste) into forms. But there's another way to submit
data: with a type=file form element, which allows users to select a file on their local systems to upload when the
form is submitted.

Currently, three things have to happen for a user to upload a file via a form. First, the program that will be processing the
form has to be expecting a file to be uploaded (you can't just alter the HTML for any form and stick a type=file field
into it). Second, the form has to have an <input type=file name=whatever> element. And third, the form
element has to have its attributes set like so:

<form method=post enctype="multipart/form-data" action="url">

This is necessary because file-upload fields can't be conveyed by the normal form-data encoding system, but instead
have to use the "multipart/form-data" encoding system (which, incidentally, can be conveyed only across
POST requests, not across GET requests).

Suppose, for example, that you were automating interaction with an HTML form that looked like this:

<form enctype="multipart/form-data" method=post
 action="http://pastel.int/feedback.pl">
Subject: <input name="subject" type="text">

File to process -- <input name="saywhat" type="file">

Your Name -- <input name="user" type="text">
<input type="submit" value="Send!"></form>

Modeling the first and third fields is as we've seen before -- a simple matter of $browser->post($url,
['subject'=>..., 'user'=>...]). But the file-upload part involves some doing. First off, you have to add a
header line of 'Content_Type' => 'form-data' to mean that yes, you really mean this to be a "multipart/
form-data" POSTing. And secondly, where you would have a string in 'saywhat'=>text, you instead have an
array reference where the first array item is the path to the file you want to upload. So it ends up looking like this:

my $response = $browser->post(
 'http://pastel.int/feedback.pl',
 ['subject' => 'Demand for pie.',
 'saywhat' => ["./today/earth_pies1.dml"],
 'user' => 'Adm. Kang',
],
 'Content_Type' => 'form-data',
 ...any other header lines...
);

Assume that ./today/earth_pies1.dml looks like this:

<?xml version="1.0" encoding='iso-8859-1' standalone="yes"?>
<Demand xml:lang="i-klingon">
 DaH chabmeyraj tunob!
</Demand>

The request that the above program actually sends will look like this:

--xYzZY
Content-Disposition: form-data; name="subject"

Demand for pie.
--xYzZY
Content-Disposition: form-data; name="saywhat"; filename="earth_pies1.
dml"
Content-Length: 131
Content-Type: text/plain

<?xml version="1.0" encoding='iso-8859-1' standalone="yes"?>
<Demand xml:lang="i-klingon">
 DaH chabmeyraj tunob!
</Demand>

--xYzZY
Content-Disposition: form-data; name="user"

Adm. Kang
--xYzZY--

Note that each form-field is like a little HTTP message of its own, with its own set of headers and its own body. For the
"normal" fields (the first and third fields), the header basically expresses that this is ordinary data for a particular field
name, and the body expresses the form data. But for the type=file field, we get the file's content as the body. Take a
look at the header again:

Content-Disposition: form-data; name="saywhat"; filename="earth_pies1.
dml"
Content-Length: 131
Content-Type: text/plain

The name="saywhat" expresses what the name="..." attribute was on the <input type=file ...> element
to which this corresponds, which we coded into our program in the saywhat=>[...] line. But note that LWP also
tells the remote host the basename of the file we're uploading by default (i.e., the filename minus directory names) as
well as its best guess at the MIME type for that file. Because LWP (specifically, the LWP::MediaTypes module) has
never heard of the .dml extension, it falls back on text/plain. (If this file had clearly been a binary file, LWP would
call it application/octet-stream, the MIME type for general binary files.) In case you want to change the name
that LWP presents to the remote server, you can provide that name as a second item in the arrayref:

fieldname => [local_filespec => as_what_name],

So if you change the saywhat line in the above program to this:

'saywhat' => ["./today/earth_pies1.dml" => "allyourpie.xml"],

Then the resulting headers on its part of the POST request would look like this:

Content-Disposition: form-data; name="saywhat"; filename="allyourpie.
xml"
Content-Length: 131
Content-Type: text/plain

Although most applications that take file uploads across the Web pay no attention to the MIME types (because so many
browsers get them wrong), if you want to specify a MIME type for a particular file upload, you could do so with a third
item in the array reference:

fieldname => [local_filespec => as_what_name => MIME_type],

Like so:

'saywhat' => ["./today/earth_pies1.dml" => "allyourpie.xml"
 => "application/angry-ultimatum"],

Then the resulting headers on its part of the POST request would look like this:

Content-Disposition: form-data; name="saywhat"; filename="allyourpie.
xml"
Content-Length: 131
Content-Type: application/angry-ultimatum

All these file-upload options work just as well for binary files (such as JPEGs) as for text files. Note, however, that when
LWP constructs and sends the request, it currently has to read into memory all files you're sending in this request. If
you're sending a 20-megabyte MP3 file, this might be a problem! You can tell LWP not to read the files into memory by
setting $HTTP::Request::Common::DYNAMIC_FILE_UPLOAD = 1 (it bears explaining that HTTP::Request::
Common is the library that LWP uses for creating these file-upload requests), but unfortunately, at the time of this
writing, many servers and CGIs do not understand the resulting HTTP POST request.

One especially neat trick is that you don't even need to have a file to upload to send a "file upload" request. To send
content from a string in memory instead of from a file on disk, use this syntax:

fieldname => [
 undef, # yes, undef!
 as_what_name,
 'Content_Type' => MIME_type,
 'Content' => data_to_send
],

For example, we could change our saywhat line in the above program to read:

'saywhat' => [
 undef,
 'allyourpie.xml',
 'Content_Type' => 'application/angry-ultimatum',
 'Content' => "All your pies are belong to me!\nGNAR!"
],

The resulting request will contain this chunk of data for the saywhat field:

Content-Disposition: form-data; name="saywhat"; filename="allyourpie.
xml"
Content-Type: application/angry-ultimatum

All your pies are belong to me!
GNAR!

5.6. POST Example: ABEBooks.com 5.8. Limits on Forms

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Copyright © 2002 O'Reilly & Associates. All rights reserved.

5.2. LWP and GET Requests

The way you submit form data with LWP depends on whether the form's action is GET or POST. If it's a GET form, you
construct a URL with encoded form data (possibly using the $url->query_form() method) and call $browser-
>get(). If it's a POST form, you call to call $browser->post() and pass a reference to an array of form
parameters. We cover POST later in this chapter.

5.2.1. GETting Fixed URLs

If you know everything about the GET form ahead of time, and you know everything about what you'd be typing (as if
you're always searching on the name "Dulce"), you know the URL! Because the same data from the same GET form
always makes for the same URL, you can just hardcode that:

$resp = $browser->get(
 'http://www.census.gov/cgi-bin/gazetteer?city=Dulce&state=&zip='
);

And if there is a great big URL in which only one thing ever changes, you could just drop in the value, after URL-
encoding it:

use URI::Escape ('uri_escape');
$resp = $browser->get(
 'http://www.census.gov/cgi-bin/gazetteer?city=' .
 uri_escape($city) .
 '&state=&zip='
);

Note that you should not simply interpolate a raw unencoded value, like this:

$resp = $browser->get(
 'http://www.census.gov/cgi-bin/gazetteer?city=' .
 $city . # wrong!
 '&state=&zip='
);

The problem with doing it that way is that you have no real assurance that $city's value doesn't need URL encoding.
You may "know" that no unencoded town name ever needs escaping, but it's better to escape it anyway.

If you're piecing together the parts of URLs and you find yourself calling uri_escape more than once per URL, then
you should use the next method, query_form, which is simpler for URLs with lots of variable data.

5.2.2. GETting a query_form() URL

The tidiest way to submit GET form data is to make a new URI object, then add in the form pairs using the
query_form method, before performing a $browser->get($url) request:

$url->query_form(name => value, name => value, ...);

For example:

use URI;

my $url = URI->new('http://www.census.gov/cgi-bin/gazetteer');
my($city,$state,$zip) = ("Some City","Some State","Some Zip");
$url->query_form(
 # All form pairs:
 'city' => $city,
 'state' => $state,
 'zip' => $zip,
);

print $url, "\n"; # so we can see it

Prints:

http://www.census.gov/cgi-bin/gazetteer?city=Some+City&state=Some
+State&zip=Some+Zip

From this, it's easy to write a small program (shown in Example 5-1) to perform a request on this URL and use some
simple regexps to extract the data from the HTML.

Example 5-1. gazetteer.pl

#!/usr/bin/perl -w
gazetteer.pl - query the US Cenus Gazetteer database

use strict;
use URI;
use LWP::UserAgent;

die "Usage: $0 \"That Town\"\n" unless @ARGV == 1;
my $name = $ARGV[0];
my $url = URI->new('http://www.census.gov/cgi-bin/gazetteer');
$url->query_form('city' => $name, 'state' => '', 'zip' => '');
print $url, "\n";

my $response = LWP::UserAgent->new->get($url);
die "Error: ", $response->status_line unless $response->is_success;
extract_and_sort($response->content);

sub extract_and_sort { # A simple data extractor routine
 die "No ... in content" unless $_[0] =~ m{(.*?)}s;
 my @pop_and_town;
 foreach my $entry (split //, $1) {
 next unless $entry =~ m{^(.*?)(.*?)
}s;
 my $town = "$1 $2";
 next unless $entry =~ m{^Population \(.*?\): (\d+)
}m;
 push @pop_and_town, sprintf "%10s %s\n", $1, $town;
 }
 print reverse sort @pop_and_town;
}

Then run it from a prompt:

% perl gazetteer.pl Dulce
http://www.census.gov/cgi-bin/gazetteer?city=Dulce&state=&zip=
 2438 Dulce, NM (cdp)
 794 Agua Dulce, TX (city)
 136 Guayabo Dulce Barrio, PR (county subdivision)

% perl gazetteer.pl IEG
http://www.census.gov/cgi-bin/gazetteer?city=IEG&state=&zip=
 2498016 San Diego County, CA (county)
 1886748 San Diego Division, CA (county subdivision)
 1110549 San Diego, CA (city)
 67229 Boca Ciega Division, FL (county subdivision)
 6977 Rancho San Diego, CA (cdp)
 6874 San Diego Country Estates, CA (cdp)
 5018 San Diego Division, TX (county subdivision)
 4983 San Diego, TX (city)
 1110 Diego Herna]Ndez Barrio, PR (county subdivision)
 912 Riegelsville, PA (county subdivision)
 912 Riegelsville, PA (borough)
 298 New Riegel, OH (village)

5. Forms 5.3. Automating Form Analysis

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 5. Forms

Contents:

Elements of an HTML Form
LWP and GET Requests
Automating Form Analysis
Idiosyncrasies of HTML Forms
POST Example: License Plates
POST Example: ABEBooks.com
File Uploads
Limits on Forms

Much of the interesting data of the Web is accessible only through HTML forms. This chapter shows you how to write
programs to submit form data and get the resulting page. In covering this unavoidably complex topic, we consider
packing form data into GET and POST requests, how each type of HTML form element produces form data, and how to
automate the process of submitting form data and processing the responses.

The basic model for the Web is that the typical item is a "document" with a known URL, and when you want to access it
(whether it's the Rhoda episode guide, or the front page of today's Boston Globe), you just get it, no questions asked.
Even when there are cookies or HTTP authentication involved, these are basically just addenda to the process of
requesting the known URL from the appropriate server. But some web resources require parameters beyond just their
URL, parameters that are generally fed in by the user through HTML forms, and that the browser then sends either as
dynamic parts of a URL (in the case of a GET request) or as content of a POST request.

A program on the receiving end of form data may simply use it as a query for searching other data, such as scanning all
the RFCs and listing the ones by specific authors. Or a program may store the data, as with taking the user's data and
saving it as a new post to a message base. Or a program may do grander things with the user-provided data, such as
debiting the credit card number provided, logging the products being ordered, and putting them on the roster of items to
be sent out. The details of writing those kinds of programs are covered in uncountable books on CGI, mod_perl, ASP,
and the like. You are probably familiar with writing server-side programs in at least one of these frameworks, probably
through having written CGIs in Perl, maybe with the huge and hugely popular Perl library, CGI.pm.

But what we are interested in here is the process of data getting from HTML forms into those server-side programs.
Once you understand that process, you can write LWP programs that simulate that process, by providing the same kind
of data as a real live user would provide keying data into a real live browser.

5.1. Elements of an HTML Form

A good example of a straightforward form is the U.S. Census Bureau's Gazetteer (geographical index) system. The
search form, at http://www.census.gov/cgi-bin/gazetteer, consists of:

<form method=get action=/cgi-bin/gazetteer>
<hr noshade>
<h3>
Search for a Place in the
US
</h3>
<p>
Name: <input name="city" size=15>

http://www.census.gov/cgi-bin/gazetteer

State (optional): <input name="state" size=3>

or a 5-digit zip code: <input name="zip" size=8>
<p>
<input type="submit" value="Search">
</form>

We've highlighted the interesting bits. The method attribute of the <form> tag says whether to use GET or POST to
submit the form data. The action attribute gives the URL to receive the form data. The components of a form are text
fields, drop-down lists, checkboxes, and so on, each identified by a name. Here the <input> tags define text fields with
the names city and state, and a submit button called zip. The browser submits the state of the form components
(what's been typed into the text boxes, which checkboxes are checked, which submit button you pressed) as a set of
name=value pairs. If you typed "Dulce" into the city field, part of the browser's request for /cgi-bin/gazetteer would
be city=Dulce.

Which part of the request contains the submitted name=value pairs depends on whether it's a GET or POST request.
GET requests encode the pairs in the URL being requested, each pair separated by an ampersand (&) character, while
POST requests encode them in the body of the request, one pair per line. In both cases the names and values are URL
encoded.

4.4. Converting Relative URLs to
Absolute

5.2. LWP and GET Requests

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

5.5. POST Example: License Plates

Second only to the issues surrounding tattooing and tattoo removal, the hardest decision one ever has to make is, upon
moving to California and buying a convertible, what personalized license plate should one get? In the past, this was a
slow and embarrassing process, requiring one to go to the Motor Vehicles office, shuffle up to the clerk, and meekly
request "HOTBABE," only to receive the crushing news that someone else has, somehow, already thought of that and
taken it as her own personalized license plate. While there are 66,220,518,000 possible combinations,[2] it is apparently
a devoted pursuit of the state's 30-odd million residents to think of personalized license plates. As with Internet domain
names, if you can think of it, someone probably already has it.

[2]This is based on the formula: $c += 35 ** $_ - 10 ** $_ for 2 .. 7; print $c;. (The 35 is
because letter O is treated as digit zero. The 10 is because all-digit plates are not allowed.)

But now the California Department of Motor Vehicles has understood our plight, and has put up the web site plates.ca.
gov so that we can sit at home and use the Web to see which of our license plate ideas is available. It has a simple HTML
form interface, shown in Figure 5-2.

Figure 5-2. California License Plate Search

However, it's so draining to have to plant the mouse in the search box, type "PL8DV8" or whatever other license plate
you want, mouse over to the submit button and press it, see the next screen report either "Plate configuration PL8DV8 is
unavailable" or "this plate is tentatively acceptable and available," then mouse over to the Back button, press it, and so
on for every possibility that occurs to us. Just as a true power user would never use the web interface to whois but would
instead insist on the command-line tool, we too would be happiest with a command-line interface to this license plate
search form.

5.5.1. The Form

Viewing the source of the search form at http://plates.ca.gov/search/ shows that, omitting some table-formatting codes, it
really just consists of:

<form method=POST action="search.php3">
<input type=text size=7 name=plate maxlength=7>

http://plates.ca.gov/search/

2. Choose a search option.

<input type=submit value="Check Plate Availability" name="search">

Use this method to see if your exact configuration is available.

<input type=submit value="See Existing Similar Plates" name="search">
...
Enter 2 to 7 letters or letters and numbers (number only plates are no
longer offered)
...
</form>

From what we learned earlier about how different kinds of form elements produce different kinds of pairs, we can
deduce that filling "PL8DV8" in the type=text box, then pressing the "Check Plate Availability" button will cause
two form pairs to be submitted: plate=PL8DV8 and search=Check Plate Availability.

In each case, the first part of the form pair comes from the element's name attribute. With the first pair, we follow the
rule for text input elements, and get the value from whatever the user has typed into that box (or whatever is there by
default). With either submit button, we follow the rule for type=submit elements and make a form pair from the
value attribute (if there is such an attribute and if this is the button that the user is pressing in order to submit the form).

5.5.2. Use formpairs.pl

We can save a local copy of the form's HTML source and edit the form element's action attribute to point to some
server where we've set up as a CGI the formpairs.pl program from earlier in this chapter. The form element will then
read:

<form method=POST action="http://someserver.int/cgi-bin/formpairs.pl">

If we then open the local copy of the form in our browser, fill in "PL8DV8" in the search box, and hit the first Submit
button, formpairs.pl will report:

POST data:
(
 "plate" => "PL8DV8",
 "search" => "Check Plate Availability",
)

Our idea of what form pairs get sent was correct! (The second button would predictably send a "search" value of
"See Existing Similar Plates", but that function is outside the scope of our interest.)

5.5.3. Translating This into LWP

Simply put that list of form pairs into a call to $browser->post(url, pairs_arrayref). Specifically, the call
will look like this:

my $response = $browser->post(
 'http://plates.ca.gov/search/search.php3',
 [
 'plate' => $plate,
 'search' => 'Check Plate Availability'
],
);

Knowing this, it's simple to write code that takes an argument from the command line and puts it into $plate, performs
the above POST request, then checks the response. Example 5-3 is the complete program.

Example 5-3. pl8.pl

#!/usr/bin/perl -w
pl8.pl - query California license plate database

use strict;
use LWP::UserAgent;
my $plate = $ARGV[0] || die "Plate to search for?\n";
$plate = uc $plate;
$plate =~ tr/O/0/; # we use zero for letter-oh
die "$plate is invalid.\n"
 unless $plate =~ m/^[A-Z0-9]{2,7}$/
 and $plate !~ m/^\d+$/; # no all-digit plates

my $browser = LWP::UserAgent->new;
my $response = $browser->post(
 'http://plates.ca.gov/search/search.php3',
 [
 'plate' => $plate,
 'search' => 'Check Plate Availability'
],
);
die "Error: ", $response->status_line
 unless $response->is_success;

if($response->content =~ m/is unavailable/) {
 print "$plate is already taken.\n";
} elsif($response->content =~ m/and available/) {
 print "$plate is AVAILABLE!\n";
} else {
 print "$plate... Can't make sense of response?!\n";
}
exit;

Saved into pl8.pl, it runs happily from the command line:

% perl pl8.pl
Plate to search for?
% perl pl8.pl 314159
314159 is invalid.
% perl pl8.pl pl8dv8
PL8DV8 is AVAILABLE!
% perl pl8.pl elbarto
ELBART0 is already taken.
% perl pl8.pl ilikepie
ILIKEPIE is invalid.
% perl pl8.pl pieman
PIEMAN is already taken.
% perl pl8.pl pielady
PIELADY is already taken.
% perl pl8.pl pieboy
PIEB0Y is AVAILABLE!
% perl pl8.pl piegirl
PIEGIRL is AVAILABLE!
% perl pl8.pl shazbot
SHAZB0T is already taken.
% perl pl8.pl lwpbot
LWPB0T is AVAILABLE!

5.4. Idiosyncrasies of HTML Forms 5.6. POST Example: ABEBooks.com

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

5.8. Limits on Forms

The examples in this chapter use approaches to form-data submission that work well for almost all form systems that
you'd run into, namely, systems where the form data is meant to be keyed into HTML forms that do not change. Some
form systems can't be treated with that approach because they contain JavaScript code that can do just about anything,
such as manipulate the form data in arbitrary ways before sending it to the server. The best one can do in such cases is
write Perl code that replicates what the JavaScript code does, as needed.

Some form systems are problematic not because of JavaScript, but because the forms into which users are meant to key
data are not always the same each time they're loaded. In most cases, the extent of change is merely a hidden form
variable containing a session ID. These you can code around by using LWP to download the form, extracting the session
ID or other hidden fields, and submitting those along with your other values.

In a few remaining cases where the form in question is predictable enough for a program to manipulate it, but
unpredictable enough that your program needs to carefully scrutinize its contents each time before choosing what form
data to submit, you may be able put to good use either of the two CPAN modules that provide an abstracted interface to
forms and the fields in them, HTML::Form and HTTP::Request::Form.

HTML::Form is an LWP class for objects representing HTML forms. That is, it parses HTML source that you give it and
builds an object for the form, each form containing an object for each input element in the form. HTML::Request::Form
is quite similar, except it takes as input an HTML::TreeBuilder tree, not HTML source text. In practice, however, those
modules are needed in very few cases, and the simpler strategies in this chapter will be enough for submitting just about
any form on the Web and processing the result.

5.7. File Uploads 6. Simple HTML Processing with
Regular Expressions

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

4.2. Relative URLs

URL paths are either absolute or relative. An absolute URL starts with a scheme, then has whatever data this scheme
requires. For an HTTP URL, this means a hostname and a path:

http://phee.phye.phoe.fm/thingamajig/stuff.html

Any URL that doesn't start with a scheme is relative. To interpret a relative URL, you need a base URL that is absolute
(just as you don't know the GPS coordinates of "800 miles west of here" unless you know the GPS coordinates of
"here").

A relative URL leaves some information implicit, which you look to its base URL for. For example, if your base URL is
http://phee.phye.phoe.fm/thingamajig/stuff.html, and you see a relative URL of /also.html, then the implicit information
is "with the same scheme (http)" and "on the same host (phee.phye.phoe.fm)," and the explicit information is "with the
path /also.html." So this is equivalent to an absolute URL of:

http://phee.phye.phoe.fm/also.html

Some kinds of relative URLs require information from the path of the base URL in a way that closely mirrors relative
filespecs in Unix filesystems, where ".." means "up one level", "." means "in this level", and anything else means "in
this directory". So a relative URL of just zing.xml interpreted relative to http://phee.phye.phoe.fm/thingamajig/stuff.html
yields this absolute URL:

http://phee.phye.phoe.fm/thingamajig/zing.xml

That is, we use all but the last bit of the absolute URL's path, then append the new component.

Similarly, a relative URL of ../hi_there.jpg interpreted against the absolute URL http://phee.phye.phoe.fm/thingamajig/
stuff.html gives us this URL:

http://phee.phye.phoe.fm/hi_there.jpg

In figuring this out, start with http://phee.phye.phoe.fm/thingamajig/ and the ".." tells us to go up one level, giving us
http://phee.phye.phoe.fm/. Append hi_there.jpg giving us the URL you see above.

There's a third kind of relative URL, which consists entirely of a fragment, such as #endnotes. This is commonly met
with in HTML documents, in code like so:

See the endnotes for the full citation

Interpreting a fragment-only relative URL involves taking the base URL, stripping off any fragment that's already there,
and adding the new one. So if the base URL is this:

http://phee.phye.phoe.fm/thingamajig/stuff.html

and the relative URL is #endnotes, then the new absolute URL is this:

http://phee.phye.phoe.fm/thingamajig/stuff.html#endnotes

We've looked at relative URLs from the perspective of starting with a relative URL and an absolute base, and getting the

equivalent absolute URL. But you can also look at it the other way: starting with an absolute URL and asking "what is
the relative URL that gets me there, relative to an absolute base URL?". This is best explained by putting the URLs one
on top of the other:

Base: http://phee.phye.phoe.fm/thingamajig/stuff.xml
Goal: http://phee.phye.phoe.fm/thingamajig/zing.html

To get from the base to the goal, the shortest relative URL is simply zing.xml. However, if the goal is a directory higher:

Base: http://phee.phye.phoe.fm/thingamajig/stuff.xml
Goal: http://phee.phye.phoe.fm/hi_there.jpg

then a relative path is ../hi_there.jpg. And in this case, simply starting from the document root and having a relative path
of /hi_there.jpg would also get you there.

The logic behind parsing relative URLs and converting between them and absolute URLs is not simple and is very easy
to get wrong. The fact that the URI class provides functions for doing it all for us is one of its greatest benefits. You are
likely to have two kinds of dealings with relative URLs: wanting to turn an absolute URL into a relative URL and
wanting to turn a relative URL into an absolute URL.

4. URLs 4.3. Converting Absolute URLs to
Relative

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

9.5. Example: Fresh Air

Another HTML::TokeParser problem (in Chapter 8, "Tokenizing Walkthrough") was extracting relevant links from the
program descriptions from the Fresh Air web site. There were aspects of the task that we will not review here (such as
how to request a month's worth of weekday listings at a time), but we will instead focus on the heart of the program,
which is how to take HTML source from a local file, feed it to HTML::TreeBuilder, and pull the interesting links out of
the resulting tree.

If we save the HTML source of a program description page as fresh1.html and sift through its source, we get a 12-KB
file. Only about one 1 KB of that is real content, like this:

...

 Listen to Monday - July 2, 2001

...

 Listen
to

 Editor and writer Walter Kirn

<BLOCKQUOTE>Editor and writer Walter
Kirn's new novel <I>Up in the Air</I> (Doubleday) is about
...
</BLOCKQUOTE>

 Listen to

 Casting director and actress Joanna Merlin

<BLOCKQUOTE>Casting director and actress Joanna
Merlin has written a new guide for actors, <I>Auditioning: An
...
</BLOCKQUOTE>

...

The rest of the file is mostly taken up by some JavaScript, some search box forms, and code for a button bar, which
contains image links like this:

...
<IMG SRC="images/nav_archived_on.
gif"
ALT="Archived Shows" WIDTH="124" HEIGHT="36" BORDER="0" HSPACE="0"
VSPACE="0">
<IMG SRC="images/nav_commentators_off.gif"
ALT="Commentators"
WIDTH="124" HEIGHT="36" BORDER="0" HSPACE="0" VSPACE="0">
<IMG SRC="images/nav_about_off.gif" ALT="About
Fresh Air"
WIDTH="124" HEIGHT="36" BORDER="0" HSPACE="0" VSPACE="0">
<IMG SRC="images/nav_stations_off.gif"
ALT="Find a Station"
WIDTH="124" HEIGHT="36" BORDER="0" HSPACE="0" VSPACE="0">
...

Then, after the real program description text, there is code that links to the description pages for the previous and next
shows:

...
<TD WIDTH="50%" ALIGN="left" BGCOLOR="#4F4F85">

 «

 <FONT FACE="Verdana, Charcoal, Sans Serif" SIZE="2"
COLOR="#FFCC00">
 Previous show

</TD>
<TD WIDTH="50%" ALIGN="right" BGCOLOR="#4F4F85">

 <FONT FACE="Verdana, Charcoal, Sans Serif" SIZE="2"
COLOR="#FFCC00">
 Next show

 »

</TD>
...

The trick is in capturing the URLs and link text from each program link in the main text, while ignoring the button bar
links and the "Previous Show" and "Next Show" links. Two criteria distinguish the links we want from the links we
don't: First, each link that we want (i.e., each a element with an href attribute) has a font element as a child; and
secondly, the text content of the a element starts with "Listen to" (which we incidentally want to leave out when we print
the link text). This is directly implementable with calls to HTML::Element methods:

use HTML::TreeBuilder;
my $tree = HTML::TreeBuilder->new;
$tree->parse_file('fresh1.html') || die $!;
my $base_url = 'http://www.freshair.com/whatever';
 # for resolving relative URLs

foreach my $a ($tree->find_by_tag_name('a')) {

 my $href = $a->attr('href') || next;
 # Make sure it has an href attribute

 next unless grep ref($_) && $_->tag eq 'font', $a->content_list;
 # Make sure (at least) one of its children is a font element

 my $text_content = $a->as_text;
 next unless $text_content =~ s/^\s*Listen to\s+//s;
 # Make sure its text content starts with that (and remove it)

 # It's good! Print it:
 use URI;
 print "$text_content\n ", URI->new_abs($href, $base_url), "\n";
}

$tree->delete; # Delete tree from
memory

9.4. Example: BBC News 10. Modifying HTML with Trees

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 2. Web Basics

Contents:

URLs
An HTTP Transaction
LWP::Simple
Fetching Documents Without LWP::Simple
Example: AltaVista
HTTP POST
Example: Babelfish

Three things made the Web possible: HTML for encoding documents, HTTP for transferring them, and URLs for
identifying them. To fetch and extract information from web pages, you must know all three—you construct a URL for
the page you wish to fetch, make an HTTP request for it and decode the HTTP response, then parse the HTML to extract
information. This chapter covers the construction of URLs and the concepts behind HTTP. HTML parsing is tricky and
gets its own chapters later, as does the module that lets you manipulate URLs.

You'll also learn how to automate the most basic web tasks with the LWP::Simple module. As its name suggests, this
module has a very simple interface. You'll learn the limitations of that interface and see how to use other LWP modules
to fetch web pages without the limitations of LWP::Simple.

2.1. URLs

A Uniform Resource Locator (URL) is the address of something on the Web. For example:

http://www.oreilly.com/news/bikeweek_day1.html

URLs have a structure, given in RFC 2396. That RFC runs to 40 pages, largely because of the wide variety of things for
which you can construct URLs. Because we are interested only in HTTP and FTP URLs, the components of a URL, with
the delimiters that separate them, are:

scheme://username@server:port/path?query

In the case of our example URL, the scheme is http, the server is www.oreilly.com, and the path is /news/bikeweek_day1.
html.

This is an FTP URL:

ftp://ftp.is.co.za/rfc/rfc1808.txt

The scheme is ftp, the host is ftp.is.co.za, and the path is /rfc/rfc1808.txt. The scheme and the hostname are not case
sensitive, but the rest is. That is, ftp://ftp.is.co.za/rfc/rfc1808.txt and fTp://ftp.Is.cO.ZA/rfc/rfc1808.txt are the same, but
ftp://ftp.is.co.za/rfc/rfc1808.txt and ftp://ftp.is.co.za/rfc/RFC1808.txt are not, unless that server happens to forgive case
differences in requests.

We're ignoring the URLs that don't designate things that a web client can retrieve. For example, telnet://melvyl.ucop.edu/
designates a host with which you can start a Telnet session, and mailto:mojo@jojo.int designates an email address to
which you can send.

The only characters allowed in the path portions of a URL are the US-ASCII characters A through Z, a through z, and 0-
9 (but excluding extended ASCII characters such as ü and Unicode characters such as or), and these permitted
punctuation characters:

- _ . ! ~ * ' ,
: @ & + $ () /

For a query component, the same rule holds, except that the only punctuation characters allowed are these:

- _ . ! ~ * ' ()

Any other characters must be URL encoded, i.e., expressed as a percent sign followed by the two hexadecimal digits for
that character. So if you wanted to use a space in a URL, it would have to be expressed as %20, because space is
character 32 in ASCII, and the number 32 expressed in hexadecimal is 20.

Incidentally, sometimes you might also see some of these characters in a URL:

{ } | \ ^ [] `

But the document that defines URLs, RFC 2396, refers to the use of these as unreliable and "unwise." When in doubt,
encode it!

The query portion of a URL assigns values to parameters:

name=Hiram%20Veeblefeetzer+age=35+country=Madagascar

There are three parameters in that query string: name, with the value "Hiram Veeblefeetzer" (the space has been
encoded); age, with the value 35; and country, with the value "Madagascar".

The URI::Escape module provides the uri_escape() function to help you build URLs:

use URI::Escape;
encoded_string = uri_escape(raw_string);

For example, to build the name, age, and country query string:

$n = uri_escape("Hiram Veeblefeetzer");
$a = uri_escape(35);
$c = uri_escape("Madagascar");
$query = "name=$n+age=$a+country=$c";
print $query;
name=Hiram%20Veeblefeetzer+age=35+country=Madagascar

1.5. LWP in Action 2.2. An HTTP Transaction

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

2.3. LWP::Simple

GET is the simplest and most common type of HTTP request. Form parameters may be supplied in the URL, but there is
never a body to the request. The LWP::Simple module has several functions for quickly fetching a document with a GET
request. Some functions return the document, others save or print the document.

2.3.1. Basic Document Fetch

The LWP::Simple module's get() function takes a URL and returns the body of the document:

$document = get("http://www.suck.com/daily/2001/01/05/1.html");

If the document can't be fetched, get() returns undef. Incidentally, if LWP requests that URL and the server replies
that it has moved to some other URL, LWP requests that other URL and returns that.

With LWP::Simple's get() function, there's no way to set headers to be sent with the GET request or get more
information about the response, such as the status code. These are important things, because some web servers have
copies of documents in different languages and use the HTTP language header to determine which document to return.
Likewise, the HTTP response code can let us distinguish between permanent failures (e.g., "404 Not Found") and
temporary failures ("505 Service [Temporarily] Unavailable").

Even the most common type of nontrivial web robot (a link checker), benefits from access to response codes. A 403
("Forbidden," usually because of file permissions) could be automatically corrected, whereas a 404 ("Not Found") error
implies an out-of-date link that requires fixing. But if you want access to these codes or other parts of the response
besides just the main content, your task is no longer a simple one, and so you shouldn't use LWP::Simple for it. The
"simple" in LWP::Simple refers not just to the style of its interface, but also to the kind of tasks for which it's meant.

2.3.2. Fetch and Store

One way to get the status code is to use LWP::Simple's getstore() function, which writes the document to a file
and returns the status code from the response:

$status = getstore("http://www.suck.com/daily/2001/01/05/1.html",
 "/tmp/web.html");

There are two problems with this. The first is that the document is now stored in a file instead of in a variable where you
can process it (extract information, convert to another format, etc.). This is readily solved by reading the file using Perl's
built-in open() and <FH> operators; see below for an example.

The other problem is that a status code by itself isn't very useful: how do you know whether it was successful? That is,
does the file contain a document? LWP::Simple offers the is_success() and is_error() functions to answer
that question:

$successful = is_success(status);
$failed = is_error(status);

If the status code status indicates a successful request (is in the 200-299 range), is_success() returns true. If
status is an error (400-599), is_error() returns true. For example, this bit of code saves the BookTV (CSPAN2)
listings schedule and emits a message if Gore Vidal is mentioned:

use strict;

use warnings;
use LWP::Simple;
my $url = 'http://www.booktv.org/schedule/';
my $file = 'booktv.html';
my $status = getstore($url, $file);
die "Error $status on $url" unless is_success($status);
open(IN, "<$file") || die "Can't open $file: $!";
while (<IN>) {
 if (m/Gore\s+Vidal/) {
 print "Look! Gore Vidal! $url\n";
 last;
 }
}
close(IN);

2.3.3. Fetch and Print

LWP::Simple also exports the getprint() function:

$status = getprint(url);

The document is printed to the currently selected output filehandle (usually STDOUT). In other respects, it behaves like
getstore(). This can be very handy in one-liners such as:

% perl -MLWP::Simple -e "getprint('http://cpan.org/RECENT')||die" |
grep Apache

That retrieves http://cpan.org/RECENT, which lists the past week's uploads in CPAN (it's a plain text file, not HTML),
then sends it to STDOUT, where grep passes through the lines that contain "Apache."

2.3.4. Previewing with HEAD

LWP::Simple also exports the head() function, which asks the server, "If I were to request this item with GET, what
headers would it have?" This is useful when you are checking links. Although, not all servers support HEAD requests
properly, if head() says the document is retrievable, then it almost definitely is. (However, if head() says it's not,
that might just be because the server doesn't support HEAD requests.)

The return value of head() depends on whether you call it in scalar context or list context. In scalar context, it is
simply:

$is_success = head(url);

If the server answers the HEAD request with a successful status code, this returns a true value. Otherwise, it returns a
false value. You can use this like so:

die "I don't think I'll be able to get $url" unless head($url);

Regrettably, however, some old servers, and most CGIs running on newer servers, do not understand HEAD requests. In
that case, they should reply with a "405 Method Not Allowed" message, but some actually respond as if you had
performed a GET request. With the minimal interface that head() provides, you can't really deal with either of those
cases, because you can't get the status code on unsuccessful requests, nor can you get the content (which, in theory, there
should never be any).

In list context, head() returns a list of five values, if the request is successful:

(content_type, document_length, modified_time, expires, server)
 = head(url);

http://cpan.org/RECENT

The content_type value is the MIME type string of the form type/subtype; the most common MIME types are
listed in Appendix C, "Common MIME Types". The document_length value is whatever is in the Content-
Length header, which, if present, should be the number of bytes in the document that you would have gotten if you'd
performed a GET request. The modified_time value is the contents of the Last-Modified header converted to a
number like you would get from Perl's time() function. For normal files (GIFs, HTML files, etc.), the Last-
Modified value is just the modification time of that file, but dynamically generated content will not typically have a
Last-Modified header.

The last two values are rarely useful; the expires value is a time (expressed as a number like you would get from
Perl's time() function) from the seldom used Expires header, indicating when the data should no longer be
considered valid. The server value is the contents of the Server header line that the server can send, to tell you what
kind of software it's running. A typical value is Apache/1.3.22 (Unix).

An unsuccessful request, in list context, returns an empty list. So when you're copying the return list into a bunch of
scalars, they will each get assigned undef. Note also that you don't need to save all the values—you can save just the
first few, as in Example 2-4.

Example 2-4. Link checking with HEAD

use strict;
use LWP::Simple;
foreach my $url (
 'http://us.a1.yimg.com/us.yimg.com/i/ww/m5v9.gif',
 'http://hooboy.no-such-host.int/',
 'http://www.yahoo.com',
 'http://www.ora.com/ask_tim/graphics/asktim_header_main.gif',
 'http://www.guardian.co.uk/',
 'http://www.pixunlimited.co.uk/siteheaders/Guardian.gif',
) {
 print "\n$url\n";

 my ($type, $length, $mod) = head($url);
 # so we don't even save the expires or server values!

 unless (defined $type) {
 print "Couldn't get $url\n";
 next;
 }
 print "That $type document is ", $length || "???", " bytes long.\n";
 if ($mod) {
 my $ago = time() - $mod;
 print "It was modified $ago seconds ago; that's about ",
 int(.5 + $ago / (24 * 60 * 60)), " days ago, at ",
 scalar(localtime($mod)), "!\n";
 } else {
 print "I don't know when it was last modified.\n";
 }
}

Currently, that program prints the following, when run:

http://us.a1.yimg.com/us.yimg.com/i/ww/m5v9.gif
That image/gif document is 5611 bytes long.
It was modified 251207569 seconds ago; that's about 2907 days ago, at
Thu Apr 14 18:00:00 1994!

http://hooboy.no-such-host.int/

Couldn't get http://hooboy.no-such-host.int/

http://www.yahoo.com
That text/html document is ??? bytes long.
I don't know when it was last modified.

http://www.ora.com/ask_tim/graphics/asktim_header_main.gif
That image/gif document is 8588 bytes long.
It was modified 62185120 seconds ago; that's about 720 days ago, at
Mon Apr 10 12:14:13 2000!

http://www.guardian.co.uk/
That text/html document is ??? bytes long.
I don't know when it was last modified.

http://www.pixunlimited.co.uk/siteheaders/Guardian.gif
That image/gif document is 4659 bytes long.
It was modified 24518302 seconds ago; that's about 284 days ago, at
Wed Jun 20 11:14:33 2001!

Incidentally, if you are using the very popular CGI.pm module, be aware that it exports a function called head() too.
To avoid a clash, you can just tell LWP::Simple to export every function it normally would except for head():

use LWP::Simple qw(!head);
use CGI qw(:standard);

If not for that qw(!head), LWP::Simple would export head(), then CGI would export head() (as it's in that
module's :standard group), which would clash, producing a mildly cryptic warning such as "Prototype mismatch: sub
main::head ($) vs none." Because any program using the CGI library is almost definitely a CGI script, any such warning
(or, in fact, any message to STDERR) is usually enough to abort that CGI with a "500 Internal Server Error" message.

2.2. An HTTP Transaction 2.4. Fetching Documents Without
LWP::Simple

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

8.5. Narrowing In

Now, we could try excluding every kind of thing we know we don't want. We could exclude the mailto: link by
excluding all URLs that start with mailto:; we could exclude the guest bio URLs by excluding URLs that contain
guestinfo; we could exclude the "Previous" and "Next" links by ignoring any URLs with dayFA in them; and we could
think of a way to exclude the image URLs. However, tomorrow the people at Fresh Air might add this to their general
template:

<img alt="Buy the Terry Gross mug"
 src="/mug.jpg" width=450 weight=90>

Because that isn't explicitly excluded, it would make its way through and appear as a segment link in every program
listed.

It is a valid approach to come up with criteria for the kinds of things we don't want to see, but it's usually easier to come
up with criteria to capture what we do want to see. So this is what we'll do.

We could characterize the links we're after in several ways:

1. These links all contain a <font...> ... sequence and a ... sequence.

2. They all have an <a ...> tag with an href attribute pointing to a URL.

3. The URL they point to looks like http://www.npr.org/ramfiles/fa/20010702.fa.ram.

4. Notably, the URL's scheme is http, it's on the server www.npr.org, its path includes ramfiles, and it ends
in .ram.

5. The (trimmed) link text up to /a always begins with Listen to .

Now, of these, the first criterion is most reminiscent of the sort of things we did earlier with the BBC news extractor. But
in this case, it's actually sort of a bother, because we can't specify that the next token after the <a ...> start-tag is a
<font...> tag.

If, by this first criterion, we simply mean that calling $x->get_tag('/a', 'font', 'b') should give you
<font...> or before you hit , well, this is true. But in either case, you'll have skipped over all the tokens
between the current point in the stream and the next tag you find, and once you've skipped them, you can't get them back.
In this case, we can get away with throwing out the content of <a ...>... sequences that don't meet this one
criterion, but in many situations you run into, you won't have that luxury. Moreover, in jumping from the <a ...> start-
tag to the first <font...> tag, we may be jumping over text that we want but will never be able to get.

We could try implementing this all with the same approach we used with the BBC extractor in Chapter 7, "HTML
Processing with Tokens", where we cook up several patterns (such as an <a href...> start-tag, a text token Listen
to , a <font...> start-tag, some whitespace, and a start-tag) and base our pattern matcher on get_token()
so we can always call unget_token() on tokens that don't match the pattern. This is feasible, but it's sounding like
the hardest of the criteria to formalize, at least under HTML::TokeParser. (But testing whether a tag sequence contains
another is easy with HTML::TreeBuilder, as we see in later chapters.) So we'll try to make do without this one criterion
and consider it a last resort.

Winding irrevocably past things is a problem not just with get_tag(). It's also a problem with get_text() and
get_trimmed_text(). Once you use any of these methods to skip past tags and/or comments, they're gone for

good. Unless you did something particularly perverse, such as read a huge chunk of the stream with get_token()
and then stuffed it back in with unget_token() while still keeping a copy around. If you're even contemplating
something like that, it's a definite sign that your program is outgrowing what you can do with HTML::TokeParser, and
you should either write a new searcher method that's like get_text() but that can restore tokens to the buffer, or
more likely move on to a parsing model based on HTML::TreeBuilder.

The next criteria (numbers 3 and 4 in the list above) are easy to formalize. These involve characteristics of the URL. We
simply add a line to our while loop, like so:

while(my $a_tag = $stream->get_tag('a')) {
 my $url = $a_tag->[1]{'href'} || next;
 next unless $url =~ m{^http:}s and $url =~ m/www\.npr\.org/i
 and $url =~ m{/ramfiles/} and $url =~ m/\.ram$/;
 # (There's many other ways of doing the above.)
 my $text = $stream->get_trimmed_text('/a');
 printf "%s\n %s\n", $text, $url;
}

But this raises a point on which many programmers will, legitimately, diverge. Currently, we can say "it's interesting
only if the URL ends in .ram," like so:

next unless $url =~ m/\.ram$/;

It works! But what if, tomorrow, some code like the following is added to the normal template?

Happy Holidays
 from Terry Gross!
<!-- just a short RA file of Terry saying "Happy NATO Day!" -->

We'll be annoyed we didn't make our link extractor check $url =~ m/www\.npr\.org/i and $url =~ m{/
ramfiles/}. On the other hand, if we do check those additional facts about the URL, and tomorrow all the .ram files
are moved off of www.npr.org and onto archive.npr.org, or onto terrygross.com or whatever, then it'll look like there
were no links for this program! Then we'll be annoyed that we did make our link extractor check those additional things
about the URL. Moreover, tomorrow NPR could switch to a better audio format than RealAudio, and all the .ram files
could turn into something else, such that even m/\.ram$/ is no longer true. It could even be something served across a
protocol other than HTTP! In other words, no part of the URL is reliably stable. On one hand, National Public Radio is
not normally characterized by lavish budgets for web design (and redesign, and re-redesign), so you can expect some
measure of stability. But on the other hand, you never know!

8.4. First Code 8.6. Rewrite for Features

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

11.2. Adding Extra Request Header Lines

Here's some simplistic debugging advice: if your browser sees one thing at a given URL, but your LWP program sees
another, first try just turning on cookie support, with an empty cookie jar. If that fails, have it read in your browser's
cookie file.[4] And if that fails, it's time to start wondering what means the remote site is using for distinguishing your
LWP program's requests from your browser's requests.

[4]Currently there is support for only Netscape cookie files. But check CPAN; someone might write
support for other browsers' cookie files.

Every kind of browser sends different HTTP headers besides the very minimal headers that LWP::UserAgent typically
sends. For example, whereas an LWP::UserAgent browser by default sends this header line:

User-Agent: libwww-perl/5.5394

Netscape 4.76 sends a header line like this:

User-Agent: Mozilla/4.76 [en] (Win98; U)

And also sends these header fields that an LWP::UserAgent browser doesn't send normally at all:

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/
png, */*
Accept-Charset: iso-8859-1,*,utf-8
Accept-Encoding: gzip
Accept-Language: en-US

(That's assuming you've set your language preferences to U.S. English). That's on top of any Connection: keep-
alive headers that may be sent, if the browser or any intervening firewall supports that feature (keep-alive) of
HTTP.

Opera 5.12 is not much different:

User-Agent: Opera/5.12 (Windows 98; U) [en]
Accept: text/html, image/png, image/jpeg, image/gif, image/x-xbitmap,
/
Accept-Language: en
Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0

But a recent version of Netscape gets rather more verbose:

User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en-US;
 rv:0.9.4) Gecko/20011126 Netscape6/6.2.1
Accept: text/xml, application/xml, application/xhtml+xml, text/html;
q=0.9,
 image/png, image/jpeg, image/gif;q=0.2, text/plain;q=0.8,
 text/css, */*;q=0.1
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
Accept-Encoding: gzip, deflate, compress;q=0.9
Accept-Language: en-us

Internet Explorer 5.12, in true Microsoft fashion, emits a few nonstandard headers:

Accept: */*
Accept-Language: en
Extension: Security/Remote-Passphrase
UA-CPU: PPC
UA-OS: MacOS
User-Agent: Mozilla/4.0 (compatible; MSIE 5.12; Mac_PowerPC)

Lynx can be verbose in reporting what MIME types my system's /etc/mailcap tells it that it can handle:

Accept: text/html, text/plain, audio/mod, image/*, video/*, video/mpeg,
 application/pgp, application/pgp, application/pdf, message/partial,
 message/external-body, application/postscript, x-be2,
 application/andrew-inset, text/richtext, text/enriched
Accept: x-sun-attachment, audio-file, postscript-file, default,
 mail-file, sun-deskset-message, application/x-metamail-patch,
 text/sgml, */*;q=0.01
Accept-Encoding: gzip, compress
Accept-Language: en, es
User-Agent: Lynx/2.8.3dev.18 libwww-FM/2.14

This information can come in handy when trying to make your LWP program seem as much like a well-known
interactive browser as possible

11.2.1. Pretending to Be Netscape

For example, suppose you're looking at http://www.expreszo.nl/home.php and you see that it has interesting headlines.
You'd like to write a headline detector for this site to go with the other headline detectors we've been producing
throughout the book. You look at the source in Netscape and see that each headline link looks like this:

...text...

So you write something quite simple to capture those links:

use strict;
use warnings;
use LWP;
my $browser = LWP::UserAgent->new;

my $url = 'http://www.expreszo.nl/home.php';
my $response = $browser->get($url);
die "Can't get $url: ", $response->status_line
 unless $response->is_success;
$_ = $response->content;
my %seen;
while(m{href="(headlines.php[^"]+)">(.*?)}sg) {
 my $this = URI->new_abs($1,$response->base);
 print "$this\n $2\n" unless $seen{$this}++;
}
print "NO HEADLINES?! Source:\n", $response->content unless keys %
seen;

And you run it, and it quite stubbornly says:

NO HEADLINES?! Source:
<html><body>
...

http://www.expreszo.nl/home.php

Je hebt minimaal Microsoft Internet Explorer versie 4 of hoger, of
Netscape Navigator versie 4 of hoger nodig om deze site te bekijken.
...
</body></html>

That is, "you need MSIE 4 or higher, or Netscape 4 or higher, to view this site." It seems to be checking the User-
Agent string of whatever browser visits the site and throwing a fit unless it's MSIE or Netscape! This is easily
simulated, by adding this line right after $browser is created:

$browser->agent('Mozilla/4.76 [en] (Win98; U)');

With that one small change, the server sends the same page you saw in Netscape, and the headline extractor happily sees
the headlines, and everything works:

http://www.expreszo.nl/headlines.php?id=752 Meer syfilis en HIV bij homo's
http://www.expreszo.nl/headlines.php?id=751 Imam hangt geldboete van 1200
boven het hoofd http://www.expreszo.nl/headlines.php?id=740 SGP wil homohuwelijk
terugdraaien http://www.expreszo.nl/headlines.php?id=750 Gays en moslims worden
vaak gediscrimineerd http://www.expreszo.nl/headlines.php?id=749 Elton's gaydar
rinkelt bij bruidegom Minnelli http://www.expreszo.nl/headlines.php?id=746
Lekkertje Drew Barrymore liever met een vrouw?

This approach works fine when the web site is looking only at the User-Agent line, as you can most easily control it
with $browser->agent(...). If you were dealing with some other site that insisted on seeing even more Netscape-
like headers, that could be done, too:

my @netscape_like_headers = (
 'User-Agent' => 'Mozilla/4.76 [en] (Win98; U)',
 'Accept-Language' => 'en-US',
 'Accept-Charset' => 'iso-8859-1,*,utf-8',
 'Accept-Encoding' => 'gzip',
 'Accept' =>
 "image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */
*",
);
my $response = $browser->get($url, @netscape_like_headers);

11.2.2. Referer

For some sites, that's not enough: they want to see that your Referer header value is something they consider
appropriate. A Referer header line signals the URL of a page that either linked to the item you're requesting (as with
) or inlines that image item (as with).

For example, I am a big fan of the comic strip Dennis The Menace. I find it to be the truest realization of deep satire, and
I admire how its quality has kept up over the past 50 years, quite undeterred by the retirement and eventual death of its
auteur, the comic genius Hank Ketcham. And nothing brightens my day more than laughing over the day's Dennis The
Menace strip and hardcopying a really good one now and then, so I can pin it up on my office door to amuse my
colleagues and to encourage them to visit the DTM web site. However, the server for the strip's image files doesn't want
it to be inlined on pages that aren't authorized to do so, so they check the Referer line. Unfortunately, they have
forgotten to allow for when there is no Referer line at all, such as happens when I try to hardcopy the day's image file
using my browser. But LWP comes to the rescue:

my $response = $browser->get(
 # The URL of the image:
 'http://pst.rbma.com/content/Dennis_The_Menace',

 'Referer' => # The URL where I see the strip:

 'http://www.sfgate.com/cgi-bin/article.cgi?file=/comics/
Dennis_The_Menace.dtl',
);
open(OUT, ">today_dennis.gif") || die $!;
binmode(OUT);
print OUT $response->content;
close(OUT);

By giving a Referer value that passes the image server's test for a good URL, I get to make a local copy of the image,
which I can then print out and put on my office door.

11. Cookies, Authentication,and
Advanced Requests

11.3. Authentication

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

2.2. An HTTP Transaction

The Hypertext Transfer Protocol (HTTP) is used to fetch most documents on the Web. It is formally specified in RFC
2616, but this section explains everything you need to know to use LWP.

HTTP is a server/client protocol: the server has the file, and the client wants it. In regular web surfing, the client is a web
browser such as Mozilla or Internet Explorer. The URL for a document identifies the server, which the browser contacts
and requests the document from. The server returns either in error ("file not found") or success (in which case the
document is attached).

Example 2-1 contains a sample request from a client.

Example 2-1. An HTTP request

GET /daily/2001/01/05/1.html HTTP/1.1
Host: www.suck.com
User-Agent: Super Duper Browser 14.6
blank line

A successful response is given in Example 2-2.

Example 2-2. A successful HTTP response

HTTP/1.1 200 OK
Content-type: text/html
Content-length: 24204
blank line
and then 24,204 bytes of HTML code

A response indicating failure is given in Example 2-3.

Example 2-3. An unsuccessful HTTP response

HTTP/1.1 404 Not Found
Content-type: text/html
Content-length: 135

<html><head><title>Not Found</title></head><body>
Sorry, the object you requested was not found.
</body><html>
and then the server closes the connection

2.2.1. Request

An HTTP request has three parts: the request line, the headers, and the body of the request (normally used to pass form
parameters).

The request line says what the client wants to do (the method), what it wants to do it to (the path), and what protocol it's
speaking. Although the HTTP standard defines several methods, the most common are GET and POST. The path is part
of the URL being requested (in Example 2-1 the path is /daily/2001/01/05/1.html). The protocol version is generally

HTTP/1.1.

Each header line consists of a key and a value (for example, User-Agent: SuperDuperBrowser/14.6). In
versions of HTTP previous to 1.1, header lines were optional. In HTTP 1.1, the Host: header must be present, to name
the server to which the browser is talking. This is the "server" part of the URL being requested (e.g., www.suck.com).
The headers are terminated with a blank line, which must be present regardless of whether there are any headers.

The optional message body can contain arbitrary data. If a body is sent, the request's Content-Type and Content-
Length headers help the server decode the data. GET queries don't have any attached data, so this area is blank (that is,
nothing is sent by the browser). For our purposes, only POST queries use this third part of the HTTP request.

The following are the most useful headers sent in an HTTP request.

Host: www.youthere.int
This mandatory header line tells the server the hostname from the URL being requested. It may sound odd to be
telling a server its own name, but this header line was added in HTTP 1.1 to deal with cases where a single HTTP
server answers requests for several different hostnames.

User-Agent: Thing/1.23 details...
This optional header line identifies the make and model of this browser (virtual or otherwise). For an interactive
browser, it's usually something like Mozilla/4.76 [en] (Win98; U) or Mozilla/4.0 (compatible;
MSIE 5.12; Mac_PowerPC). By default, LWP sends a User-Agent header of libwww-perl/5.64 (or
whatever your exact LWP version is).

Referer: http://www.thingamabob.int/stuff.html
This optional header line tells the remote server the URL of the page that contained a link to the page being
requested.

Accept-Language: en-US, en, es, de
This optional header line tells the remote server the natural languages in which the user would prefer to see
content, using language tags. For example, the above list means the user would prefer content in U.S. English, or
(in order of decreasing preference) any kind of English, Spanish, or German. (Appendix D, "Language Tags" lists
the most common language tags.) Many browsers do not send this header, and those that do usually send the
default header appropriate to the version of the browser that the user installed. For example, if the browser is
Netscape with a Spanish-language interface, it would probably send Accept-Language: es, unless the user
has dutifully gone through the browser's preferences menus to specify other languages.

2.2.2. Response

The server's response also has three parts: the status line, some headers, and an optional body.

The status line states which protocol the server is speaking, then gives a numeric status code and a short message. For
example, "HTTP/1.1 404 Not Found." The numeric status codes are grouped—200-299 are success, 400-499 are
permanent failures, and so on. A full list of HTTP status codes is given in Appendix B, "HTTP Status Codes".

The header lines let the server send additional information about the response. For example, if authentication is required,
the server uses headers to indicate the type of authentication. The most common header—almost always present for both
successful and unsuccessful requests—is Content-Type, which helps the browser interpret the body. Headers are
terminated with a blank line, which must be present even if no headers are sent.

Many responses contain a Content-Length line that specifies the length, in bytes, of the body. However, this line is
rarely present on dynamically generated pages, and because you never know which pages are dynamically generated,
you can't rely on that header line being there.

(Other, rarer header lines are used for specifying that the content has moved to a given URL, or that the server wants the
browser to send HTTP cookies, and so on; however, these things are generally handled for you automatically by LWP.)

The body of the response follows the blank line and can be any arbitrary data. In the case of a typical web request, this is
the HTML document to be displayed. If an error occurs, the message body doesn't contain the document that was
requested but usually consists of a server-generated error message (generally in HTML, but sometimes not) explaining

the error.

2. Web Basics 2.3. LWP::Simple

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

10.2. Deleting Images

Instead of altering nodes or extracting data from them, it's common to want to just delete them. For example, consider
that we have the task of taking normally complex and image-rich web pages and making unadorned text-only versions of
them, such as one would print out or paste into email. Each document in question has one big table with three rows, like
this:

<html>
<head><title>Shatner and Kunis Sweep the Oscars</title></head>
<body>
<table>
 <tr class="top_button_bar">
 ...appalling amounts of ad banners and button bars...
 </tr>
 <tr class="main">
 <td class="left_geegaws">
 ...yet more ads and button bars...
 </td>
 <td class="story">

 <h1>Shatner and Kunis Sweep the Oscars</h1>

 <p>Stars of <cite>American Psycho II</cite> walked away with four
 Academy Awards...

 </td>
 <td class="right_geegaws">
 ...even more ads...
 </td>
 </tr>
 <tr class="top_button_bar">
 ...ads, always ads...
 </tr>
</table>
<hr>Copyright 2002, United Lies Syndicate
</html>

The simplified version of such a page should omit all images and elements of the class top_button_bar,
bottom_button_bar, left_geegaws, and right_geegaws. This can be implemented with a simple call to
look_down:

use HTML::TreeBuilder;
my $root = HTML::TreeBuilder->new;
$root->parse_file('rewriters1/in002.html') || die $!;

foreach my $d ($root->look_down(
 sub {
 return 1 if $_[0]->tag eq 'img'; # we're looking for images
 # no class means ignore it
 my $class = $_[0]->attr('class') || return 0;

 return 1 if $class eq 'top_button_bar' or $class eq 'right_geegaws'
 or $class eq 'bottom_button_bar' or $class eq
'left_geegaws';
 return 0;
 }
)) {
 $d->delete;
}

open(OUT, ">rewriters1/out002.html") || die "Can't write: $!";
print OUT $root->as_HTML(undef, ' '); # two-space indent in output
close(OUT);
$root->delete; # done with it, so delete it

The call to $d->delete detaches the node in $d from its parent, then destroys it along with all its descendant nodes.
The resulting file looks like this:

<html>
 <head>
 <title>Shatner and Kunis Sweep the Oscars</title>
 </head>
 <body>
 <table>
 <tr class="main">
 <td class="story">
 <h1>Shatner and Kunis Sweep the Oscars</h1>
 <p>Stars of <cite>American Psycho II</cite> walked [...] </
td>
 </tr>
 </table>
 <hr>Copyright 2002, United Lies Syndicate </body>
</html>

One pragmatic point here: the list returned by the look_down() call will contain the two tr and td elements, any
images they contain, and also images elsewhere in the document. When we delete one of those tr or td nodes, we are
also implicitly deleting every one of its descendant nodes, including some img elements that we are about to hit in a
subsequent iteration through look_down()'s return list.

This isn't a problem in this case, because deleting an already deleted node is a harmless no-operation. The larger point
here is that when look_down() finds a matching node (as with a left_geegaws td node, in our example), that
doesn't stop it from looking below that node for more matches. If you need that kind of behavior, you'll need to
implement it in your own traverser, as discussed in Chapter 9, "HTML Processing with Trees".

10. Modifying HTML with Trees 10.3. Detaching and Reattaching

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

6.4. When Regular Expressions Aren't Enough

Regular expressions are powerful, but they can't describe everything. In particular, nested structures (for example, lists
containing lists, with any amount of nesting possible) and comments are tricky. While you can use regular expressions to
extract the components of the HTML and then attempt to keep track of whether you're in a comment or to which nested
array you're adding elements, these types of programs rapidly balloon in complexity and become maintenance
nightmares.

The best thing to do in these situations is to use a real HTML tokenizer or parser such as HTML::Parser, HTML::
TokeParser, and HTML::TreeBuilder (all demonstrated in the next chapter), and forego your regular expressions.

6.3. Troubleshooting 6.5. Example: Extracting Linksfrom a
Bookmark File

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

2.6. HTTP POST

Some forms use GET to submit their parameters to the server, but many use POST. The difference is POST requests pass
the parameters in the body of the request, whereas GET requests encode the parameters into the URL being requested.

Babelfish (http://babelfish.altavista.com) is a service that lets you translate text from one human language into another. If
you're accessing Babelfish from a browser, you see an HTML form where you paste in the text you want translated,
specify the language you want it translated from and to, and hit Translate. After a few seconds, a new page appears, with
your translation.

Behind the scenes, the browser takes the key/value pairs in the form:

urltext = I like pie
lp = en_fr
enc = utf8

and rolls them into a HTTP request:

POST /translate.dyn HTTP/1.1
Host: babelfish.altavista.com
User-Agent: SuperDuperBrowser/14.6
Content-Type: application/x-www-form-urlencoded
Content-Length: 40

urltext=I%20like%20pie&lp=en_fr&enc=utf8

Just as we used a do_GET() function to automate a GET query, Example 2-7 uses a do_POST() function to
automate POST queries.

Example 2-7. The do_POST subroutine

use LWP;
my $browser;
sub do_POST {
 # Parameters:
 # the URL,
 # an arrayref or hashref for the key/value pairs,
 # and then, optionally, any header lines: (key,value, key,value)
 $browser = LWP::UserAgent->new() unless $browser;
 my $resp = $browser->post(@_);
 return ($resp->content, $resp->status_line, $resp->is_success, $resp)
 if wantarray;
 return unless $resp->is_success;
 return $resp->content;
}

Use do_POST() like this:

doc = do_POST(URL, [form_ref, [headers_ref]]);
(doc, status, success, resp) = do_GET(URL, [form_ref, [headers_ref]]);

http://babelfish.altavista.com/

The return values in scalar and list context are as for do_GET(). The form_ref parameter is a reference to a hash
containing the form parameters. The headers_ref parameter is a reference to a hash containing headers you want
sent in the request.

2.5. Example: AltaVista 2.7. Example: Babelfish

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

1.2. History of LWP

The following history of LWP was written by Gisle Aas, one of the creators of LWP and its current maintainer.

The libwww-perl project was started at the very first WWW conference held in Geneva in 1994. At the conference,
Martijn Koster met Roy Fielding who was presenting the work he had done on MOMspider. MOMspider was a Perl
program that traversed the Web looking for broken links and built an index of the documents and links discovered.
Martijn suggested turning the reusable components of this program into a library. The result was the libwww-perl library
for Perl 4 that Roy maintained.

Later the same year, Larry Wall made the first "stable" release of Perl 5 available. It was obvious that the module system
and object-oriented features that the new version of Perl provided make Roy's library even better. At one point, both
Martijn and myself had made our own separate modifications of libwww-perl. We joined forces, merged our designs,
and made several alpha releases. Unfortunately, Martijn ended up in disagreement with his employer about the
intellectual property rights of work done outside hours. To safeguard the code's continued availability to the Perl
community, he asked me to take over maintenance of it.

The LWP:: module namespace was introduced by Martijn in one of the early alpha releases. This name choice was lively
discussed on the libwww mailing list. It was soon pointed out that this name could be confused with what certain
implementations of threads called themselves, but no better name alternatives emerged. In the last message on this
matter, Martijn concluded, "OK, so we all agree LWP stinks :-)." The name stuck and has established itself.

If you search for "LWP" on Google today, you have to go to 30th position before you find a link about threads.

In May 1996, we made the first non-beta release of libwww-perl for Perl 5. It was called release 5.00 because it was for
Perl 5. This made some room for Roy to maintain libwww-perl for Perl 4, called libwww-perl-0.40. Martijn continued to
contribute but was unfortunately "rolled over by the Java train."

In 1997-98, I tried to redesign LWP around the concept of an event loop under the name LWPng. This allowed many
nice things: multiple requests could be handled in parallel and on the same connection, requests could be pipelined to
improve round-trip time, and HTTP/1.1 was actually supported. But the tuits to finish it up never came, so this branch
must by now be regarded as dead. I still hope some brave soul shows up and decides to bring it back to life.

1998 was also the year that the HTML:: modules were unbundled from the core LWP distribution and the year after Sean
M. Burke showed up and took over maintenance of the HTML-Tree distribution, actually making it handle all the real-
world HTML that you will find. I had kind of given up on dealing with all the strange HTML that the web ecology had
let develop. Sean had enough dedication to make sense of it.

Today LWP is in strict maintenance mode with a much slower release cycle. The code base seems to be quite solid and
capable of doing what most people expect it to.

1. Introduction to Web Automation 1.3. Installing LWP

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Copyright © 2002 O'Reilly & Associates. All rights reserved.

6.7. Example: Extracting Temperatures from Weather Underground

The Weather Underground web site (http://www.wunderground.com) is a great source of meteorological information.
Let's write a program to tell us which of the two O'Reilly offices, Cambridge and Sebastopol, is warmer and by how
many degrees.

First, we fetch the pages with the temperatures. A quick look around the Weather Underground site indicates that the
best way to get the temperature for a place is to fetch a URL like:

http://www.wunderground.com/cgi-bin/findweather/getForecast?query=95472

95472 is the Zip Code for the Sebastopol office, while 02140 is the Zip Code for the Cambridge office. The program
begins by fetching those pages:

#!/usr/bin/perl -w

use strict;
use LWP::Simple;

my $url = "http://www.wunderground.com/cgi-bin/findweather/getForecast?
query=";
my $ca = get("${url}95472"); # Sebastopol, California
my $ma = get("${url}02140"); # Cambridge, Massachusetts

Next, we need to extract the temperature from the HTML. Viewing the source to one of the pages reveals the relevant
portion as:

<tr ><td>Temperature</td>
<td>52° F</td></tr>

Because we need to extract the temperature from multiple pages, we define a subroutine that takes the HTML string and
returns the temperature:

sub current_temp {
 local $_ = shift;
 m{<tr ><td>Temperature</td>\s+<td>(\d+)} || die "No temp data?";
 return $1;
}

Now all that's left to do is extract the temperatures and display the message:

my $ca_temp = current_temp($ca);
my $ma_temp = current_temp($ma);
my $diff = $ca_temp - $ma_temp;

print $diff > 0 ? "California" : "Massachusetts";
print " is warmer by ", abs($diff), " degrees F.\n";

When you run the program, you see something like:

% ora-temps

http://www.wunderground.com/

California is warmer by 21 degrees F.

The complete program is shown in Example 6-6.

Example 6-6. ora-temps

#!/usr/bin/perl -w

use strict;
use LWP::Simple;

my $url = "http://www.wunderground.com/cgi-bin/findweather/
getForecast?"
 . "query=";
my $ca = get("${url}95472"); # Sebastopol, California
my $ma = get("${url}02140"); # Cambridge, Massachusetts

my $ca_temp = current_temp($ca);
my $ma_temp = current_temp($ma);
my $diff = $ca_temp - $ma_temp;

print $diff > 0 ? "California" : "Massachusetts";
print " is warmer by ", abs($diff), " degrees F.\n";

sub current_temp {
 local $_ = shift;
 m{<tr ><td>Temperature</td>\s+<td>(\d+)} || die "No temp data?";
 return $1;
}

6.6. Example: Extracting Linksfrom
Arbitrary HTML

7. HTML Processing with Tokens

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

12.2. A User Agent for Robots

So far in this book, we've been using one type of user-agent object: objects of the class LWP::UserAgent. This is
generally appropriate for a program that makes only a few undemanding requests of a remote server. But for cases in
which we want to be quite sure that the robot behaves itself, the best way to start is by using LWP::RobotUA instead of
LWP::UserAgent.

An LWP::RobotUA object is like an LWP::UserAgent object, with these exceptions:

● Instead of calling $browser = LWP::UserAgent->new(), you call:

$robot = LWP::RobotUA->new('botname/1.2', 'me@myhost.int')

Specify a reasonably unique name for the bot (with an X.Y version number) and an email address where you can
be contacted about the program, if anyone needs to do so.

● When you call $robot->get(...) or any other method that performs a request (head(), post(),
request(), simple_request()), LWP calls sleep() to wait until enough time has passed since the
last request was made to that server.

● When you request anything from a given HTTP server using an LWP::RobotUA $robot object, LWP will make
sure it has consulted that server's robots.txt file, where the server's administrator can stipulate that certain parts of
his server are off limits to some or all bots. If you request something that's off limits, LWP won't actually request
it, and will return a response object with a 403 (Forbidden) error, with the explanation "Forbidden by robots.txt."

For specifics on robots.txt files, see the documentation for the LWP module called WWW::RobotRules, and also
be sure to read http://www.robotstxt.org/wc/robots.html.

Besides having all the attributes of an LWP::UserAgent object, an LWP::RobotUA object has one additional interesting
attribute, $robot->delay($minutes), which controls how long this object should wait between requests to the
same host. The current default value is one minute. Note that you can set it to a non-integer number of minutes. For
example, to set the delay to seven seconds, use $robot->delay(7/60).

So we can take our New York Times program from Chapter 11, "Cookies, Authentication,and Advanced Requests" and
make it into a scrupulously well-behaved robot by changing this one line:

my $browser = LWP::UserAgent->new();

to this:

use LWP::RobotUA;
my $browser = LWP::RobotUA->new('JamiesNYTBot/1.0',
 'jamie@newsjunkie.int' # my address
);
$browser->delay(5/60); # 5 second delay between requests

We may not notice any particular effect on how the program behaves, but it makes quite sure that the $browser object
won't perform its requests too quickly, nor request anything the Times's webmaster thinks robots shouldn't request.

In new programs, I typically use $robot as the variable for holding LWP::RobotUA objects instead of $browser. But
this is a merely cosmetic difference; nothing requires us to replace every $browser with $robot in the Times

http://www.robotstxt.org/wc/robots.html

program when we change it from using an LWP::UserAgent object to an LWP::RobotUA object.

You can freely use LWP::RobotUA anywhere you could use LWP::UserAgent, in a Type One or Type Two spider. And
you really should use LWP::RobotUA as the basis for any Type Three or Type Four spiders. You should use it not just
so you can effortlessly abide by robots.txt rules, but also so that you don't have to remember to write in sleep
statements all over your programs to keep it from using too much of the remote server's bandwidth—or yours!

12. Spiders 12.3. Example: A Link-Checking
Spider

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

3.2. Programming with LWP Classes

The first step in writing a program that uses the LWP classes is to create and initialize the browser object, which can be
used throughout the rest of the program. You need a browser object to perform HTTP requests, and although you could
use several browser objects per program, I've never run into a reason to use more than one.

The browser object can use a proxy (a server that fetches web pages for you, such as a firewall, or a web cache such as
Squid). It's good form to check the environment for proxy settings by calling env_proxy():

use LWP::UserAgent;
my $browser = LWP::UserAgent->new();
$browser->env_proxy(); # if we're behind a firewall

That's all the initialization that most user agents will ever need. Once you've done that, you usually won't do anything
with it for the rest of the program, aside from calling its get(), head(), or post() methods, to get what's at a
URL, or to perform HTTP HEAD or POST requests on it. For example:

$url = 'http://www.guardian.co.uk/';
my $response = $browser->get($url);

Then you call methods on the response to check the status, extract the content, and so on. For example, this code checks
to make sure we successfully fetched an HTML document that isn't worryingly short, then prints a message depending
on whether the words "Madonna" or "Arkansas" appear in the content:

die "Hmm, error \"", $response->status_line(),
 "\" when getting $url" unless $response->is_success();
my $content_type = $response->content_type();
die "Hm, unexpected content type $content_type from $url"
 unless $content_type eq 'text/html';
my $content = $response->content();
die "Odd, the content from $url is awfully short!"
 if length($content) < 3000;
if($content =~ m/Madonna|Arkansas/i) {
 print "<!-- The news today is IMPORTANT -->\n",
 $content;
} else {
 print "$url has no news of ANY CONCEIVABLE IMPORTANCE!\n";
}

As you see, the response object contains all the data from the web server's response (or an error message about how that
server wasn't reachable!), and we use method calls to get at the data. There are accessors for the different parts of the
response (e.g., the status line) and convenience functions to tell us whether the response was successful (is_success
()).

And that's a working and complete LWP program!

3. The LWP Class Model 3.3. Inside the do_GET and do_POST
Functions

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Chapter 12. Spiders

Contents:

Types of Web-Querying Programs
A User Agent for Robots
Example: A Link-Checking Spider
Ideas for Further Expansion

So far we have focused on the mechanics of getting and parsing data off the Web, just a page here and a page there,
without much attention to the ramifications. In this section, we consider issues that arise from writing programs that send
more than a few requests to given web sites. Then we move on to how to writing recursive web user agents, or spiders.
With these skills, you'll be able to write programs that automatically navigate web sites, from simple link checkers to
powerful bulk-download tools.

12.1. Types of Web-Querying Programs

Let's say your boss comes to you and says "I need you to write a spider." What does he mean by "spider"? Is he talking
about the simple one-page screen scrapers we wrote in earlier chapters? Or does he want to extract many pages from a
single server? Or maybe he wants you to write a new Google, which attempts to find and download every page on the
Web. Roughly speaking, there are four kinds of programs that make requests to web servers:

Type One Requester
This program requests a couple items from a server, knowing ahead of time the URL of each. An example of this
is our program in Chapter 7, "HTML Processing with Tokens" that requested just the front page of the BBC News
web site.

Type Two Requester
This program requests a few items from a server, then requests the pages to which those link (or possibly just a
subset of those). An example of this is the program we alluded to in Chapter 11, "Cookies, Authentication,and
Advanced Requests" that would download the front page of the New York Times web site, then downloaded every
story URL that appeared there.

Type Three Requester
This single-site spider requests what's at a given URL, finds links on that page that are on the same host, and
requests those. Then, for each of those, it finds links to things on the same host, and so on, until potentially it
visits every URL on the host.

Type Four Requester
This host-spanning spider requests what's at a given URL, finds links on that page that are anywhere on the Web,
and requests those. Then, for each of those, it finds links to things anywhere on the Web (or at least things that are
accessed via HTTP) and so on, until it visits every URL on the Web, in theory.

From each of the above types to the next, there is an added bit of logic that radically changes the scope and nature of the
program.

A Type One Requester makes only a few requests. This is not normally a noticeable imposition on the remote server,
unless one of these requests is for a document that's very large or that has to be dynamically generated with great
difficulty.

A Type Two Requester places rather more burden on the remote server, simply because it generates many more requests.
For example, our New York Times story downloader in Chapter 11, "Cookies, Authentication,and Advanced Requests"
downloads not one or two pages, but several dozen. Because we don't want this to burden the Times's servers, we

considerately called sleep(2) after every request.

In fact, that probably makes our program much kinder to the remote server than a typical browser would be. Typically,
browsers create several simultaneous connections when downloading all the various images, stylesheets, and applets they
need to render a given web page. However, a typical session with a graphical browser doesn't involve downloading so
many different pages.

Note that with this sort of program, the scope of the program is clearly finite; it processes only the presumably small
number of links that appear on a few pages. So there is no real chance of the program surprising you by requesting vastly
more pages than you'd expect. For example, if you run your program that downloads links off the New York Times's front
page, it downloads just those and that's it. If you run it, and the total count of downloaded pages is 45, you can assume
that when you run it tomorrow, it will be about that many: maybe 30, 60, maybe even 70, but not 700 or 70,000.
Moreover, when you see that the average length of each story downloaded is 30 KB, you can assume that it's unlikely for
any future story to be 100 KB, and extremely unlikely for any to be 10 MB.

But a Type Three Requester is the first kind that could potentially go seriously awry. Previously, we could make safe
assumptions about the nature of the pages whose links we were downloading. But when a program (or, specifically, a
spider, as we can freely call these sorts of recursive programs) could request anything and everything on the server, it
will be visiting pages we know nothing about, and about which we can't make any assumptions. For example, suppose
we request the main page of our local paper's web site, and suppose that it links to a local events calendar for this month.
If the events calendar is dynamically generated from a database, this month's page probably has a link to next month's
page, and next month's to the month after, and so on forever, probably regardless of whether each "next month" has any
events to it. So if you wrote a spider that wouldn't stop until it had requested every object on the server, for this server, it
would never stop, because the number of pages on the server is infinite. In webmaster jargon, these are referred to as
"infinite URL spaces."

A Type Four Requester has all the problems of Type Threes, except that instead of running the risk of annoying just the
webmaster of the local paper, it can annoy any number of webmasters all over the world. Just one of the many things that
can go wrong with these kinds of host-spanning spiders is if it sees a link to Yahoo!. It will follow that link, and then
start recursing through all of Yahoo!, and visiting every site to which Yahoo! links. Because these sorts of spiders
demand typically immense resources and are not "general purpose" by any means, we will not be discussing them.

If you are interested in this type of spider, you should read this chapter to understand the basic ideas of single-site
spiders, then read Totty et al's HTTP: The Definitive Guide (O'Reilly), which goes into great detail on the special
problems that await large-scale spiders.

11.4. An HTTP Authentication
Example:The Unicode Mailing Archive

12.2. A User Agent for Robots

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

0.3. Order of Chapters

The chapters in this book are arranged so that if you read them in order, you will face a minimum of cases where I have
to say "you won't understand this part of the code, because we won't cover that topic until two chapters later." However,
only some of what each chapter introduces is used in later chapters. For example, Chapter 3, "The LWP Class Model"
lists all sorts of LWP methods that you are likely to use eventually, but the typical task will use only a few of those, and
only a few will show up in later chapters. In cases where you can't infer the meaning of a method from its name, you can
always refer back to the earlier chapters or use perldoc to see the applicable module's online reference documentation.

0.2. Structure of This Book 0.4. Important Standards Documents

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Appendix A. LWP Modules

While the text of this book has covered the LWP modules that you need to know about to get things done, there are many
additional modules in LWP. Most of them are behind the scenes or have limited use that we couldn't spare the space to
discuss. But if you want to further your knowledge of LWP's internals, here's a roadmap to get you started.

These are the LWP modules, listed alphabetically, from the CPAN distributions most current at time of writing, libwww-
perl v5.64, URI v1.18, HTML-Parser v3.26, HTML-Tree v3.11, and HTML-Format v1.23. Especially noteworthy
modules have an "*" in front of their names.

Module Description

File::Listing Module for parsing directory listings. Used by Net::FTP.

HTML::Form Class for objects representing HTML forms.

HTML::FormatPS
Class for objects that can render HTML::TreeBuilder tree contents as
PostScript.

HTML::Formatter Internal base class for HTML::FormatPS and HTML::FormatText.

*HTML::FormatText Class for objects that can render HTML::TreeBuilder tree contents as plain text.

*HTML::Entities
Useful module providing functions that &-encode/decode strings (such as C. &
E. Brontë to and from C. & E. Brontë).

HTML::Filter Deprecated class for HTML parsers that reproduce their input by default.

HTML::HeadParser Parse <HEAD> section of an HTML document.

HTML::LinkExtor Class for HTML parsers that parse out links.

HTML::PullParser Semi-internal base class used by HTML::TokeParser.

*HTML::TokeParser Friendly token-at-a-time HTML pull-parser class.

HTML::Parser
Base class for HTML parsers; used by the friendlier HTML::TokeParser and
HTML::TreeBuilder.

HTML::AsSubs
Semi-deprecated module providing functions that each construct an HTML::
Element object.

*HTML::Element Class for objects that each represent an HTML element.

HTML::Parse Deprecated module that provides functions accessing HTML::TreeBuilder.

HTML::Tree Module that exists just so you can run perldoc HTML-Tree.

*HTML::TreeBuilder Class for objects representing an HTML tree into which you can parse source.

*HTTP::Cookies Class for objects representing databases of cookies.

HTTP::Daemon Base class for writing HTTP server daemons.

HTTP::Date Module for date conversion routines. Used by various LWP protocol modules.

HTTP::Headers
Class for objects representing the group of headers in an HTTP::Response or
HTTP::Request object.

HTTP::Headers::Auth Experimental/internal for improving HTTP::Headers's authentication support.

HTTP::Headers::ETag Experimental/internal module adding HTTP ETag support to HTTP::Headers.

HTTP::Headers::Util
Module providing string functions used internally by various other LWP
modules.

*HTTP::Message Base class for methods common to HTTP::Response and HTTP::Request.

HTTP::Negotiate Module implementing an algorithm for content negotiation. Not widely used.

HTTP::Request
Class for objects representing a request that carried out with an LWP::
UserAgent object.

HTTP::Request::Common
Module providing functions used for constructing common kinds of HTTP::
Request objects.

*HTTP::Response
Class for objects representing the result of an HTTP::Request that was carried
out.

*HTTP::Status Module providing functions and constants involving HTTP status codes.

*LWP

Module that exists merely so you can say "use LWP" and have all the common
LWP modules (notably LWP::UserAgent, HTTP::Request, and HTTP::
Response). Saying "use LWP5.64" also asserts that the current LWP
distribution had better be Version 5.64 or later. The module also contains
generous documentation.

LWP::Authen::Basic
Module used internally by LWP::UserAgent for doing common ("Basic")
HTTP authentication responses.

LWP::Authen::Digest
Module used internally by LWP::UserAgent for doing less-common HTTP
Digest authentication responses.

LWP::ConnCache
Class used internally by some LWP::Protocol::protocol modules to reuse socket
connections.

*LWP::Debug Module for routines useful in tracing how LWP performs requests.

LWP::MediaTypes Module used mostly internally for guessing the MIME type of a file or URL.

LWP::MemberMixin Base class used internally for accessing object attributes.

LWP::Protocol Mostly internal base class for accessing and managing LWP protocols.

LWP::Protocol::data Internal class that handles the new data: URL scheme (RFC 2397).

LWP::Protocol::file Internal class that handles the file: URL scheme.

LWP::Protocol::ftp Internal class that handles the ftp: URL scheme.

LWP::Protocol::GHTTP
Internal class for handling http: URL scheme using the HTTP::GHTTP
library.

LWP::Protocol::gopher Internal class that handles the gopher: URL scheme.

LWP::Protocol::http Internal class that normally handles the http: URL scheme.

LWP::Protocol::http10
Internal class that handles the http: URL scheme via just HTTP v1.0 (without
the 1.1 extensions and features).

LWP::Protocol::https
Internal class that normally handles the https: URL scheme, assuming you
have an SSL library installed.

LWP::Protocol::https10
Internal class that handles the https: URL scheme, if you don't want HTTP
v1.1 extensions.

LWP::Protocol::mailto Internal class that handles the mailto: URL scheme; yes, it sends mail!

LWP::Protocol::nntp Internal class that handles the nntp: and news: URL schemes.

LWP::Protocol::nogo Internal class used in handling requests to unsupported protocols.

*LWP::RobotUA
Class based on LWP::UserAgent, for objects representing virtual browsers that
obey robots.txt files and don't abuse remote servers.

*LWP::Simple
Module providing the get, head, getprint, getstore, and mirror
shortcut functions.

*LWP::UserAgent Class for objects representing "virtual browsers."

Net::HTTP Internal class used for HTTP socket connections.

Net::HTTP::Methods Internal class used for HTTP socket connections.

Net::HTTP::NB Internal class used for HTTP socket connections with nonblocking sockets.

Net::HTTPS Internal class used for HTTP Secure socket connections.

*URI Main class for objects representing URIs/URLs, relative or absolute.

URI::_foreign
Internal class for objects representing URLs for schemes for which we don't
have a specific class.

URI::_generic Internal base class for just about all URLs.

URI::_login
Internal base class for connection URLs such as telnet:, rlogin:, and
ssh:.

URI::_query
Internal base class providing methods for URL types that can have query strings
(such as foo://...?bar).

URI::_segment
Internal class for representing some return values from $url-
>path_segments() calls.

URI::_server
Internal base class for URL types where the first bit represents a server name
(most of them except mailto:).

URI::_userpass
Internal class providing methods for URL types with an optional user[:
pass] part (such as ftp://itsme:foo@secret.int/).

URI::data Class for objects representing the new data: URLs (RFC 2397).

*URI::Escape
Module for functions that URL-encode and URL-decode strings (such as pot
pie to and from pot%20pie).

URI::file Class for objects representing file: URLs.

URI::file::Base Internal base class for file: URLs.

URI::file::FAT
Internal base class for file: URLs under legacy MSDOS (with 8.3
filenames).

URI::file::Mac Internal base class for file: URLs under legacy (before v10) MacOS.

URI::file::OS2 Internal base class for file: URLs under OS/2.

URI::file::QNX Internal base class for file: URLs under QNX.

URI::file::Unix Internal base class for file: URLs under Unix.

URI::file::Win32 Internal base class for file: URLs under MS Windows.

URI::ftp Class for objects representing ftp: URLs.

URI::gopher Class for objects representing gopher: URLs.

URI::Heuristic Module for functions that expand abbreviated URLs such as ora.com.

URI::http Class for objects representing http: URLs.

URI::https Class for objects representing https: URLs.

URI::ldap Class for objects representing ldap: URLs.

URI::mailto Class for objects representing mailto: URLs.

URI::news Class for objects representing news: URLs.

URI::nntp Class for objects representing nntp: URLs.

URI::pop Class for objects representing pop: URLs.

URI::rlogin Class for objects representing rlogin: login URLs.

URI::rsync Class for objects representing rsync: URLs.

URI::snews Class for objects representing snews: (Secure News) URLs.

URI::ssh Class for objects representing ssh: login URLs.

URI::telnet Class for objects representing telnet: login URLs.

URI::URL Deprecated class that is like URI; use URI instead.

URI::WithBase Like the class URI, but objects of this class can "remember" their base URLs.

WWW::RobotsRules Class for objects representing restrictions parsed from various robots.txt files.

WWW::RobotRules::AnyDBM_File Subclass of WWW::RobotRules that uses a DBM file to cache its contents.

12.4. Ideas for Further Expansion B. HTTP Status Codes

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Appendix B. HTTP Status Codes

Contents:

100s: Informational
200s: Successful
300s: Redirection
400s: Client Errors
500s: Server Errors

You can find a detailed explanation of each status code in RFC 2616 (Hypertext Transfer Protocol—HTTP/1.1) at http://
www.rfc-editor.org.

B.1. 100s: Informational

If an LWP request gets either of these rarely used codes, $response->is_info will be true. For all other status
codes, $response->is_info will be false.

100 Continue
101 Switching Protocols

A. LWP Modules B.2. 200s: Successful

Copyright © 2002 O'Reilly & Associates. All rights reserved.

http://www.rfc-editor.org/
http://www.rfc-editor.org/
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Appendix C. Common MIME Types

Every HTTP response that's more than just headers must specify a MIME type via the Content-Type header
(accessible as $response->content_type()). Here is a list of the usual MIME type for each of the most
common file types on the Internet. The items are sorted alphabetically by the usual extensions.

Regrettably, this list is neither complete nor authoritative, as there are more file types in use than those given "official"
MIME types. For more information, see HTTP: The Definitive Guide (O'Reilly). Also consider the mime.types file that
comes with Apache and/or your browser's "Helper Applications" configuration menus. For the list of official MIME
types, see http://www.isi.edu/in-notes/iana/assignments/media-types/.

Extension MIME type

.au audio/basic

.avi video/msvideo, video/avi, video/x-msvideo

.bmp image/bmp

.bz2 application/x-bzip2

.css text/css

.dtd application/xml-dtd

.doc application/msword

.exe application/octet-stream

.gif image/gif

.gz application/x-gzip

.hqx application/mac-binhex40

.html text/html

.jar application/java-archive

.jpg image/jpeg

http://www.isi.edu/in-notes/iana/assignments/media-types/

.js application/x-javascript

.midi audio/x-midi

.mp3 audio/mpeg

.mpeg video/mpeg

.ogg audio/vorbis, application/ogg

.pdf application/pdf

.pl application/x-perl

.png image/png

.ppt application/vnd.ms-powerpoint

.ps application/postscript

.qt video/quicktime

.ra audio/x-pn-realaudio, audio/vnd.rn-realaudio

.ram audio/x-pn-realaudio, audio/vnd.rn-realaudio

.rdf application/rdf, application/rdf+xml

.rtf application/rtf

.sgml text/sgml

.sit application/x-stuffit

.svg image/svg+xml

.swf application/x-shockwave-flash

.tar.gz application/x-tar

.tgz application/x-tar

.tiff image/tiff

.tsv text/tab-separated-values

.txt text/plain

.wav audio/wav, audio/x-wav

.xls application/vnd.ms-excel

.xml application/xml

.zip application/zip, application/x-compressed-zip

B.5. 500s: Server Errors D. Language Tags

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Appendix D. Language Tags

Language tags are a system defined in RFC 3066, which is used in various Internet protocols and formats, including
HTML, HTTP, and XML. For example, an HTTP request often has an Accept-Language header, an HTTP response
can have a Content-Language header, and any HTML element can have a lang="en-US" or (in XML and
XHTML) an xml:lang="en-US" attribute to indicate that its content is in that language.

There are many more language tags than are presented here; for the full list, see documentation for the Perl module I18N::
LangTags::List. This appendix lists major languages, in alphabetical order by their English names.

Tag Language Tag Language

sq Albanian en-us American English

ar Arabic en-gb British English

hy Armenian et Estonian

as Assamese fa Farsi

eu Basque fi Finnish

be Belarusian fr French

bn Bengali/Bangla fr-ca Canadian French

bg Bulgarian fr-fr French French

ca Catalan ga Irish Gaelic

zh Chinese gd Scots Gaelic

zh-cn Mainland Chinese de German

zh-tw Taiwan Chinese el Modern Greek

hr Croatian grc Ancient Greek

cs Czech gu Gujarati

da Danish haw Hawaiian

nl Dutch he Hebrew

en English hi Hindi

hu Hungarian pt Portuguese

is Icelandic pt-br Brazilian Portuguese

id Indonesian pt-pt European Portuguese

it Italian pa Punjabi

ja Japanese ro Romanian

kn Kannada ru Russian

ks Kashmiri sa Sanskrit

kok Konkani sr Serbian

ko Korean sd Sindhi

la Latin sk Slovak

lv Latvian sl Slovene

lt Lithuanian es Spanish

mk Macedonian es-es European Spanish

ms Malay es-mx Mexican Spanish

ml Malayalam sv Swedish

mt Maltese tl Tagalog

mi Maori ta Tamil

mr Marathi te Telugu

mni Meithei/Manipuri th Thai

ne Nepali tr Turkish

no Norwegian uk Ukrainian

nb Norwegian Bokmål ur Urdu

nn Norwegian Nynorsk vi Vietnamese

or Oriya cy Welsh

pl Polish

C. Common MIME Types E. Common Content Encodings

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Appendix E. Common Content Encodings

In an ideal world, the only character encoding (or, loosely, "character set") that you'd ever see would be UTF-8 (utf-
8), and Latin-1 (iso-8859-1) for all those legacy documents. However, the encodings mentioned below exist and can
be found on the Web. They are listed below in order of their English names, with the lefthand side being the value you'd
get returned from $response->content_charset. The complete list of character sets can be found at http://www.
iana.org/assignments/character-sets.

Value Encoding

us-ascii ASCII plain (just characters 0x00-0x7F)

asmo-708 Arabic ASMO-708

iso-8859-6 Arabic ISO

dos-720 Arabic MSDOS

windows-1256 Arabic MSWindows

iso-8859-4 Baltic ISO

windows-1257 Baltic MSWindows

iso-8859-2 Central European ISO

ibm852 Central European MSDOS

windows-1250 Central European MSWindows

hz-gb-2312 Chinese Simplified (HZ)

gb2312 Chinese Simplified (GB2312)

euc-cn Chinese Simplified EUC

big5 Chinese Traditional (Big5)

cp866 Cyrillic DOS

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

iso-8859-5 Cyrillic ISO

koi8-r Cyrillic KOI8-R

koi8-u Cyrillic KOI8-U

windows-1251 Cyrillic MSWindows

iso-8859-7 Greek ISO

windows-1253 Greek MSWindows

iso-8859-8-i Hebrew ISO Logical

iso-8859-8 Hebrew ISO Visual

dos-862 Hebrew MSDOS

windows-1255 Hebrew MSWindows

euc-jp Japanese EUC-JP

iso-2022-jp Japanese JIS

shift_jis Japanese Shift-JIS

iso-2022-kr Korean ISO

euc-kr Korean Standard

windows-874 Thai MSWindows

iso-8859-9 Turkish ISO

windows-1254 Turkish MSWindows

utf-8 Unicode expressed as UTF-8

utf-16 Unicode expressed as UTF-16

windows-1258 Vietnamese MSWindows

viscii Vietnamese VISCII

iso-8859-1 Western European (Latin-1)

windows-1252 Western European (Latin-1) with extra characters in 0x80-0x9F

D. Language Tags F. ASCII Table

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Appendix F. ASCII Table

Gone are the days when ASCII meant just US-ASCII characters 0-127. For over a decade now, Latin-1 support (US-
ASCII plus characters 160-255) has been the bare minimum for any Internet application, and support for Unicode (Latin-
1 plus characters 256 and up) is becoming the rule more than the exception. Although a full Unicode character chart is a
book on its own, this appendix lists all US-ASCII characters, plus all the Unicode characters that are common enough
that the current HTML specification (4.01) defines a named entity for them.

Note that at time of this writing, not all browsers support all these characters, and not all users have installed the fonts
needed to display some characters.

Also note that in HTML, XHTML, and XML, you can refer to any Unicode character regardless of whether it has a
named entity (such as €) by using a decimal character reference such as € or a hexadecimal character
reference such as € (note the leading x). See http://www.unicode.org/charts/ for a complete reference for
Unicode characters.

Dec Hex Char Octal
Raw

encoding
UTF8 encoding HTML entity Description

0 0000

000 0x00 0x00

NUL

1 0001

001 0x01 0x01

SOH

2 0002

002 0x02 0x02

STX

3 0003

003 0x03 0x03

ETX

4 0004

004 0x04 0x04

EOT

5 0005

005 0x05 0x05

ENQ

6 0006

006 0x06 0x06

ACK

7 0007

007 0x07 0x07

BEL, bell, alarm, \a

8 0008

010 0x08 0x08

BS, backspace, \b

9 0009

011 0x09 0x09

HT, tab, \t

10 000a

012 0x0A 0x0A

LF, line feed, \cj

http://www.unicode.org/charts/

11 000b

013 0x0B 0x0B

VT

12 000c

014 0x0C 0x0C

FF, NP, form feed, \f

13 000d

015 0x0D 0x0D

CR, carriage return,
\cm

14 000e

016 0x0E 0x0E

SO

15 000f

017 0x0F 0x0F

SI

16 0010

020 0x10 0x10

DLE

17 0011

021 0x11 0x11

DC1

18 0012

022 0x12 0x12

DC2

19 0013

023 0x13 0x13

DC3

20 0014

024 0x14 0x14

DC4

21 0015

025 0x15 0x15

NAK

22 0016

026 0x16 0x16

SYN

23 0017

027 0x17 0x17

ETB

24 0018

030 0x18 0x18

CAN

25 0019

031 0x19 0x19

EM

26 001a

032 0x1A 0x1A

SUB

27 001b

033 0x1B 0x1B

ESC, escape, \e

28 001c

034 0x1C 0x1C

FS

29 001d

035 0x1D 0x1D

GS

30 001e

036 0x1E 0x1E

RS

31 001f

037 0x1F 0x1F

US

32 0020

040 0x20 0x20

SPC, space

33 0021 ! 041 0x21 0x21

Exclamation point,
bang

34 0022 " 042 0x22 0x22 " Quote, double quote

35 0023 # 043 0x23 0x23

Number, pound, hash

36 0024 $ 044 0x24 0x24

Dollar

37 0025 % 045 0x25 0x25

Percent

38 0026 & 046 0x26 0x26 & Ampersand, and

39 0027 ' 047 0x27 0x27 '
Apostrophe, single
quote

40 0028 (050 0x28 0x28

Open parenthesis,
open parens

41 0029) 051 0x29 0x29

Close parenthesis,
close parens

42 002a * 052 0x2A 0x2A

Asterisk, star, glob

43 002b + 053 0x2B 0x2B

Plus

44 002c , 054 0x2C 0x2C

Comma

45 002d - 055 0x2D 0x2D

Hyphen, dash, minus

46 002e . 056 0x2E 0x2E

Period, dot, decimal,
full stop

47 002f / 057 0x2F 0x2F

Slash, forward slash,
stroke, virgule, solidus

48 0030 0 060 0x30 0x30

49 0031 1 061 0x31 0x31

50 0032 2 062 0x32 0x32

51 0033 3 063 0x33 0x33

52 0034 4 064 0x34 0x34

53 0035 5 065 0x35 0x35

54 0036 6 066 0x36 0x36

55 0037 7 067 0x37 0x37

56 0038 8 070 0x38 0x38

57 0039 9 071 0x39 0x39

58 003a : 072 0x3A 0x3A

Colon

59 003b ; 073 0x3B 0x3B

Semicolon

60 003c < 074 0x3C 0x3C < Less-than sign

61 003d = 075 0x3D 0x3D

Equals sign

62 003e > 076 0x3E 0x3E > Greater-than sign

63 003f ? 077 0x3F 0x3F

Question mark

64 0040 @ 100 0x40 0x40

At sign

65 0041 A 101 0x41 0x41

66 0042 B 102 0x42 0x42

67 0043 C 103 0x43 0x43

68 0044 D 104 0x44 0x44

69 0045 E 105 0x45 0x45

70 0046 F 106 0x46 0x46

71 0047 G 107 0x47 0x47

72 0048 H 110 0x48 0x48

73 0049 I 111 0x49 0x49

74 004a J 112 0x4A 0x4A

75 004b K 113 0x4B 0x4B

76 004c L 114 0x4C 0x4C

77 004d M 115 0x4D 0x4D

78 004e N 116 0x4E 0x4E

79 004f O 117 0x4F 0x4F

80 0050 P 120 0x50 0x50

81 0051 Q 121 0x51 0x51

82 0052 R 122 0x52 0x52

83 0053 S 123 0x53 0x53

84 0054 T 124 0x54 0x54

85 0055 U 125 0x55 0x55

86 0056 V 126 0x56 0x56

87 0057 W 127 0x57 0x57

88 0058 X 130 0x58 0x58

89 0059 Y 131 0x59 0x59

90 005a Z 132 0x5A 0x5A

91 005b [133 0x5B 0x5B

Left (square) bracket,
open (square) bracket

92 005c \ 134 0x5C 0x5C

Backslash

93 005d] 135 0x5D 0x5D

Right (square) bracket,
close (square) bracket

94 005e ^ 136 0x5E 0x5E

Caret, up-arrow,
circumflex

95 005f _ 137 0x5F 0x5F

Underscore

96 0060 ` 140 0x60 0x60

Backtick, backquote

97 0061 a 141 0x61 0x61

98 0062 b 142 0x62 0x62

99 0063 c 143 0x63 0x63

100 0064 d 144 0x64 0x64

101 0065 e 145 0x65 0x65

102 0066 f 146 0x66 0x66

103 0067 g 147 0x67 0x67

104 0068 h 150 0x68 0x68

105 0069 i 151 0x69 0x69

106 006a j 152 0x6A 0x6A

107 006b k 153 0x6B 0x6B

108 006c l 154 0x6C 0x6C

109 006d m 155 0x6D 0x6D

110 006e n 156 0x6E 0x6E

111 006f o 157 0x6F 0x6F

112 0070 p 160 0x70 0x70

113 0071 q 161 0x71 0x71

114 0072 r 162 0x72 0x72

115 0073 s 163 0x73 0x73

116 0074 t 164 0x74 0x74

117 0075 u 165 0x75 0x75

118 0076 v 166 0x76 0x76

119 0077 w 167 0x77 0x77

120 0078 x 170 0x78 0x78

121 0079 y 171 0x79 0x79

122 007a z 172 0x7A 0x7A

123 007b { 173 0x7B 0x7B

Open brace

124 007c | 174 0x7C 0x7C

Pipe, vertical bar

125 007d } 175 0x7D 0x7D

Close brace

126 007e ~ 176 0x7E 0x7E

Tilde, twiddle,
squiggle

127 007f

177 0x7F 0x7F

DEL, delete

128 0080

200 0x80 0xC2,0x80

(Undefined)

129 0081

201 0x81 0xC2,0x81

(Undefined)

130 0082

202 0x82 0xC2,0x82

(Undefined)

131 0083

203 0x83 0xC2,0x83

(Undefined)

132 0084

204 0x84 0xC2,0x84

(Undefined)

133 0085

205 0x85 0xC2,0x85

(Undefined)

134 0086

206 0x86 0xC2,0x86

(Undefined)

135 0087

207 0x87 0xC2,0x87

(Undefined)

136 0088

210 0x88 0xC2,0x88

(Undefined)

137 0089

211 0x89 0xC2,0x89

(Undefined)

138 008a

212 0x8A 0xC2,0x8A

(Undefined)

139 008b

213 0x8B 0xC2,0x8B

(Undefined)

140 008c

214 0x8C 0xC2,0x8C

(Undefined)

141 008d

215 0x8D 0xC2,0x8D

(Undefined)

142 008e

216 0x8E 0xC2,0x8E

(Undefined)

143 008f

217 0x8F 0xC2,0x8F

(Undefined)

144 0090

220 0x90 0xC2,0x90

(Undefined)

145 0091

221 0x91 0xC2,0x91

(Undefined)

146 0092

222 0x92 0xC2,0x92

(Undefined)

147 0093

223 0x93 0xC2,0x93

(Undefined)

148 0094

224 0x94 0xC2,0x94

(Undefined)

149 0095

225 0x95 0xC2,0x95

(Undefined)

150 0096

226 0x96 0xC2,0x96

(Undefined)

151 0097

227 0x97 0xC2,0x97

(Undefined)

152 0098

230 0x98 0xC2,0x98

(Undefined)

153 0099

231 0x99 0xC2,0x99

(Undefined)

154 009a

232 0x9A 0xC2,0x9A

(Undefined)

155 009b

233 0x9B 0xC2,0x9B

(Undefined)

156 009c

234 0x9C 0xC2,0x9C

(Undefined)

157 009d

235 0x9D 0xC2,0x9D

(Undefined)

158 009e

236 0x9E 0xC2,0x9E

(Undefined)

159 009f

237 0x9F 0xC2,0x9F

(Undefined)

160 00a0

240 0xA0 0xC2,0xA0
No-break space,
nonbreaking space

161 00a1 ¡ 241 0xA1 0xC2,0xA1 ¡
Inverted exclamation
mark

162 00a2 ¢ 242 0xA2 0xC2,0xA2 ¢ Cent sign

163 00a3 £ 243 0xA3 0xC2,0xA3 £ Pound sign

164 00a4 ¤ 244 0xA4 0xC2,0xA4 ¤ Currency sign

165 00a5 ¥ 245 0xA5 0xC2,0xA5 ¥ Yen sign, yuan sign

166 00a6 | 246 0xA6 0xC2,0xA6 ¦
Broken bar, broken
vertical bar

167 00a7 § 247 0xA7 0xC2,0xA7 § Section sign

168 00a8 ¨ 250 0xA8 0xC2,0xA8 ¨
Diaeresis, spacing
diaeresis

169 00a9 © 251 0xA9 0xC2,0xA9 © Copyright sign

170 00aa ª 252 0xAA 0xC2,0xAA ª
Feminine ordinal
indicator

171 00ab « 253 0xAB 0xC2,0xAB «
Left-pointing double
angle quotation mark,
left pointing guillemet

172 00ac ¬ 254 0xAC 0xC2,0xAC ¬ Not sign, angled dash

173 00ad (-) 255 0xAD 0xC2,0xAD ­
Soft hyphen,
discretionary hyphen

174 00ae ® 256 0xAE 0xC2,0xAE ®
Registered sign,
registered trademark
sign

175 00af ¯ 257 0xAF 0xC2,0xAF ¯
Macron, spacing
macron, overline, APL
overbar

176 00b0 ° 260 0xB0 0xC2,0xB0 ° Degree sign

177 00b1 ± 261 0xB1 0xC2,0xB1 ±
Plus-minus sign, plus-
or-minus sign

178 00b2 2 262 0xB2 0xC2,0xB2 ²
Superscript two,
superscript digit two,
squared

179 00b3 3 263 0xB3 0xC2,0xB3 ³
Superscript three,
superscript digit three,
cubed

180 00b4 ´ 264 0xB4 0xC2,0xB4 ´
Acute accent, spacing
acute

181 00b5 • 265 0xB5 0xC2,0xB5 µ Micro sign

182 00b6 ¶ 266 0xB6 0xC2,0xB6 ¶
Pilcrow sign,
paragraph sign

183 00b7 · 267 0xB7 0xC2,0xB7 ·
Middle dot, Georgian
comma, Greek middle
dot

184 00b8 ¸ 270 0xB8 0xC2,0xB8 ¸ Cedilla, spacing cedilla

185 00b9 1 271 0xB9 0xC2,0xB9 ¹
Superscript one,
superscript digit one

186 00ba º 272 0xBA 0xC2,0xBA º
Masculine ordinal
indicator

187 00bb » 273 0xBB 0xC2,0xBB »

Right-pointing double
angle quotation mark,
right pointing
guillemet

188 00bc 274 0xBC 0xC2,0xBC ¼
Vulgar fraction one
quarter, fraction one
quarter

189 00bd 1/2 275 0xBD 0xC2,0xBD ½
Vulgar fraction one
half, fraction one half

190 00be 276 0xBE 0xC2,0xBE ¾
Vulgar fraction three
quarters, fraction three
quarters

191 00bf ¿ 277 0xBF 0xC2,0xBF ¿
Inverted question
mark, turned question
mark

192 00c0 À 300 0xC0 0xC3,0x80 À
Capital A grave,
capital A grave

193 00c1 Á 301 0xC1 0xC3,0x81 Á Capital A acute

194 00c2 Â 302 0xC2 0xC3,0x82 Â Capital A circumflex

195 00c3 Ã 303 0xC3 0xC3,0x83 Ã Capital A tilde

196 00c4 Ä 304 0xC4 0xC3,0x84 Ä Capital A diaeresis

197 00c5 Å 305 0xC5 0xC3,0x85 Å
Capital A ring above,
capital A ring

198 00c6 Æ 306 0xC6 0xC3,0x86 Æ
Capital AE, capital
ligature AE

199 00c7 Ç 307 0xC7 0xC3,0x87 Ç Capital C cedilla

200 00c8 È 310 0xC8 0xC3,0x88 È Capital E grave

201 00c9 É 311 0xC9 0xC3,0x89 É Capital E acute

202 00ca Ê 312 0xCA 0xC3,0x8A Ê Capital E circumflex

203 00cb Ë 313 0xCB 0xC3,0x8B Ë Capital E diaeresis

204 00cc Ì 314 0xCC 0xC3,0x8C Ì Capital I grave

205 00cd Í 315 0xCD 0xC3,0x8D Í Capital I acute

206 00ce Î 316 0xCE 0xC3,0x8E Î Capital I circumflex

207 00cf Ï 317 0xCF 0xC3,0x8F Ï Capital I diaeresis

208 00d0 320 0xD0 0xC3,0x90 Ð
Capital Eth, Edh,
crossed D

209 00d1 Ñ 321 0xD1 0xC3,0x91 Ñ Capital N tilde

210 00d2 Ò 322 0xD2 0xC3,0x92 Ò Capital O grave

211 00d3 Ó 323 0xD3 0xC3,0x93 Ó Capital O acute

212 00d4 Ô 324 0xD4 0xC3,0x94 Ô Capital O circumflex

213 00d5 Õ 325 0xD5 0xC3,0x95 Õ Capital O tilde

214 00d6 Ö 326 0xD6 0xC3,0x96 Ö Capital O diaeresis

215 00d7 x 327 0xD7 0xC3,0x97 × Multiplication sign

216 00d8 Ø 330 0xD8 0xC3,0x98 Ø
Capital O stroke,
capital O slash

217 00d9 Ù 331 0xD9 0xC3,0x99 Ù Capital U grave

218 00da Ú 332 0xDA 0xC3,0x9A Ú Capital U acute

219 00db û 333 0xDB 0xC3,0x9B Û Capital U circumflex

220 00dc Ü 334 0xDC 0xC3,0x9C Ü Capital U diaeresis

221 00dd Ý 335 0xDD 0xC3,0x9D Ý Capital Y acute

222 00de 336 0xDE 0xC3,0x9E Þ Capital Thorn

223 00df ß 337 0xDF 0xC3,0x9F ß Sharp s, ess-zed

224 00e0 à 340 0xE0 0xC3,0xA0 à a grave

225 00e1 á 341 0xE1 0xC3,0xA1 á a acute

226 00e2 â 342 0xE2 0xC3,0xA2 â a circumflex

227 00e3 ã 343 0xE3 0xC3,0xA3 ã a tilde

228 00e4 ä 344 0xE4 0xC3,0xA4 ä a diaeresis

229 00e5 å 345 0xE5 0xC3,0xA5 å a ring above, a ring

230 00e6 æ 346 0xE6 0xC3,0xA6 æ ae, ligature ae

231 00e7 ç 347 0xE7 0xC3,0xA7 ç c cedilla

232 00e8 è 350 0xE8 0xC3,0xA8 è e grave

233 00e9 é 351 0xE9 0xC3,0xA9 é e acute

234 00ea ê 352 0xEA 0xC3,0xAA ê e circumflex

235 00eb ë 353 0xEB 0xC3,0xAB ë e diaeresis

236 00ec ì 354 0xEC 0xC3,0xAC ì i grave

237 00ed í 355 0xED 0xC3,0xAD í i acute

238 00ee î 356 0xEE 0xC3,0xAE î i circumflex

239 00ef ï 357 0xEF 0xC3,0xAF ï i diaeresis

240 00f0 360 0xF0 0xC3,0xB0 ð eth, edh, crossed d

241 00f1 ñ 361 0xF1 0xC3,0xB1 ñ n tilde

242 00f2 ò 362 0xF2 0xC3,0xB2 ò o grave

243 00f3 ó 363 0xF3 0xC3,0xB3 ó o acute

244 00f4 ô 364 0xF4 0xC3,0xB4 ô o circumflex

245 00f5 õ 365 0xF5 0xC3,0xB5 õ o tilde

246 00f6 ö 366 0xF6 0xC3,0xB6 ö o diaeresis

247 00f7 ÷ 367 0xF7 0xC3,0xB7 ÷ Division sign

248 00f8 • 370 0xF8 0xC3,0xB8 ø o stroke, o slash

249 00f9 ù 371 0xF9 0xC3,0xB9 ù u grave

250 00fa ú 372 0xFA 0xC3,0xBA ú u acute

251 00fb Û 373 0xFB 0xC3,0xBB û u circumflex

252 00fc ü 374 0xFC 0xC3,0xBC ü u diaeresis

253 00fd 375 0xFD 0xC3,0xBD ý y acute

254 00fe 376 0xFE 0xC3,0xBE þ Thorn

255 00ff ÿ 377 0xFF 0xC3,0xBF ÿ y diaeresis

338 0152

0xC5,0x92 Œ Capital ligature OE

339 0153

0xC5,0x93 œ Ligature oe

352 0160

0xC5,0xA0 Š Capital S caron

353 0161

0xC5,0xA1 š s caron

376 0178

0xC5,0xB8 Ÿ Capital Y diaeresis

402 0192

0xC6,0x92 ƒ F hook, function, florin

710 02c6 ^

0xCB,0x86 ˆ
Modifier letter
circumflex accent

732 02dc ~

0xCB,0x9C ˜ Small tilde

913 0391

0xCE,0x91 Α Capital alpha

914 0392

0xCE,0x92 Β Capital beta

915 0393

0xCE,0x93 Γ Capital gamma

916 0394

0xCE,0x94 Δ Capital delta

917 0395

0xCE,0x95 Ε Capital epsilon

918 0396

0xCE,0x96 Ζ Capital zeta

919 0397

0xCE,0x97 Η Capital eta

920 0398

0xCE,0x98 Θ Capital theta

921 0399

0xCE,0x99 Ι Capital iota

922 039a K

0xCE,0x9A Κ Capital kappa

923 039b

0xCE,0x9B Λ Capital lambda

924 039c

0xCE,0x9C Μ Capital mu

925 039d

0xCE,0x9D Ν Capital nu

926 039e

0xCE,0x9E Ξ Capital xi

927 039f

0xCE,0x9F Ο Capital omicron

928 03a0

0xCE,0xA0 Π Capital pi

929 03a1

0xCE,0xA1 Ρ Capital rho

931 03a3

0xCE,0xA3 Σ Capital sigma

932 03a4

0xCE,0xA4 Τ Capital tau

933 03a5

0xCE,0xA5 Υ Capital upsilon

934 03a6

0xCE,0xA6 Φ Capital phi

935 03a7

0xCE,0xA7 Χ Capital chi

936 03a8

0xCE,0xA8 Ψ Capital psi

937 03a9

0xCE,0xA9 Ω Capital omega

945 03b1

0xCE,0xB1 α Alpha

946 03b2

0xCE,0xB2 β Beta

947 03b3

0xCE,0xB3 γ Gamma

948 03b4

0xCE,0xB4 δ Delta

949 03b5

0xCE,0xB5 ε Epsilon

950 03b6

0xCE,0xB6 ζ Zeta

951 03b7

0xCE,0xB7 η Eta

952 03b8

0xCE,0xB8 θ Theta

953 03b9

0xCE,0xB9 ι Iota

954 03ba

0xCE,0xBA κ Kappa

955 03bb

0xCE,0xBB λ Lambda

956 03bc •

0xCE,0xBC μ Mu

957 03bd

0xCE,0xBD ν Nu

958 03be

0xCE,0xBE ξ Xi

959 03bf

0xCE,0xBF ο Omicron

960 03c0

0xCF,0x80 π Pi

961 03c1

0xCF,0x81 ρ Rho

962 03c2

0xCF,0x82 ς Final sigma

963 03c3

0xCF,0x83 σ Sigma

964 03c4

0xCF,0x84 τ Tau

965 03c5

0xCF,0x85 υ Upsilon

966 03c6

0xCF,0x86 φ Phi

967 03c7

0xCF,0x87 χ Chi

968 03c8

0xCF,0x88 ψ Psi

969 03c9

0xCF,0x89 ω Omega

977 03d1

0xCF,0x91 ϑ Theta symbol

978 03d2

0xCF,0x92 ϒ
Greek upsilon with
hook symbol

982 03d6

0xCF,0x96 ϖ Greek pi symbol

8194 2002
•

0xE2,0x80,0x82   En space

8195 2003
•

0xE2,0x80,0x83   Em space

8201 2009
•

0xE2,0x80,0x89   Thin space

8204 200c

0xE2,0x80,0x8C ‌ Zero width non-joiner

8205 200d

0xE2,0x80,0x8D ‍ Zero width joiner

8206 200e

0xE2,0x80,0x8E ‎ Left-to-right mark

8207 200f

0xE2,0x80,0x8F ‏ Right-to-left mark

8211 2013 -

0xE2,0x80,0x93 – En dash

8212 2014 —

0xE2,0x80,0x94 — Em dash

8216 2018 `

0xE2,0x80,0x98 ‘
Left single quotation
mark

8217 2019 '

0xE2,0x80,0x99 ’
Right single quotation
mark

8218 201a

0xE2,0x80,0x9A ‚
Single low-9 quotation
mark

8220 201c "

0xE2,0x80,0x9C “
Left double quotation
mark

8221 201d "

0xE2,0x80,0x9D ”
Right double quotation
mark

8222 201e

0xE2,0x80,0x9E „
Double low-9
quotation mark

8224 2020

0xE2,0x80,0xA0 † Dagger

8225 2021

0xE2,0x80,0xA1 ‡ Double dagger

8226 2022 ·

0xE2,0x80,0xA2 •
Bullet, black small
circle

8230 2026 ...

0xE2,0x80,0xA6 …
Horizontal ellipsis,
three dot leader

8240 2030

0xE2,0x80,0xB0 ‰ Per mille sign

8242 2032 ′

0xE2,0x80,0xB2 ′ Prime, minutes, feet

8243 2033

0xE2,0x80,0xB3 ″
Double prime,
seconds, inches

8249 2039

0xE2,0x80,0xB9 ‹
Single left-pointing
angle quotation mark

8250 203a

0xE2,0x80,0xBA ›
Single right-pointing
angle quotation mark

8254 203e -

0xE2,0x80,0xBE ‾
Overline, spacing
overscore

8260 2044 /

0xE2,0x81,0x84 ⁄ Fraction slash

8364 20ac

0xE2,0x82,0xAC € Euro sign

8465 2111

0xE2,0x84,0x91 ℑ
Blackletter capital I,
imaginary part

8472 2118

0xE2,0x84,0x98 ℘
Script capital P, power
set, Weierstrass p

8476 211c

0xE2,0x84,0x9C ℜ
Blackletter capital R,
real part symbol

8482 2122

0xE2,0x84,0xA2 ™ Trademark sign

8501 2135

0xE2,0x84,0xB5 ℵ
Alef symbol, first
transfinite cardinal

8592 2190

0xE2,0x86,0x90 ← Leftward arrow

8593 2191

0xE2,0x86,0x91 ↑ Upward arrow

8594 2192

0xE2,0x86,0x92 → Rightward arrow

8595 2193

0xE2,0x86,0x93 ↓ Downward arrow

8596 2194

0xE2,0x86,0x94 ↔ Left-right arrow

8629 21b5

0xE2,0x86,0xB5 ↵
Downward arrow with
corner leftward,
carriage return

8656 21d0

0xE2,0x87,0x90 ⇐ Leftward double arrow

8657 21d1

0xE2,0x87,0x91 ⇑ Upward double arrow

8658 21d2

0xE2,0x87,0x92 ⇒
Rightward double
arrow

8659 21d3

0xE2,0x87,0x93 ⇓
Downward double
arrow

8660 21d4

0xE2,0x87,0x94 ⇔ Left-right double arrow

8704 2200

0xE2,0x88,0x80 ∀ For all

8706 2202

0xE2,0x88,0x82 ∂ Partial differential

8707 2203

0xE2,0x88,0x83 ∃ There exists

8709 2205 Ø

0xE2,0x88,0x85 ∅
Empty set, null set,
diameter

8711 2207

0xE2,0x88,0x87 ∇
Nabla, backward
difference

8712 2208

0xE2,0x88,0x88 ∈ Element of

8713 2209

0xE2,0x88,0x89 ∉ Not an element of

8715 220b

0xE2,0x88,0x8B ∋ Contains as member

8719 220f

0xE2,0x88,0x8F ∏
n-ary product, product
sign

8721 2211

0xE2,0x88,0x91 ∑ n-ary sumation

8722 2212 -

0xE2,0x88,0x92 − Minus sign

8727 2217 *

0xE2,0x88,0x97 ∗ Asterisk operator

8730 221a

0xE2,0x88,0x9A √
Square root, radical
sign

8733 221d

0xE2,0x88,0x9D ∝ Proportional to

8734 221e

0xE2,0x88,0x9E ∞ Infinity

8736 2220

0xE2,0x88,0xA0 ∠ Angle

8743 2227

0xE2,0x88,0xA7 ∧ Logical and, wedge

8744 2228

0xE2,0x88,0xA8 ∨ Logical or, vee

8745 2229

0xE2,0x88,0xA9 ∩ Intersection, cap

8746 222a

0xE2,0x88,0xAA ∪ Union, cup

8747 222b

0xE2,0x88,0xAB ∫ Integral

8756 2234

0xE2,0x88,0xB4 ∴ Therefore

8764 223c

0xE2,0x88,0xBC ∼
Tilde operator, varies
with, similar to

8773 2245

0xE2,0x89,0x85 ≅
Approximately equal
to

8776 2248

0xE2,0x89,0x88 ≈
Almost equal to,
asymptotic to

8800 2260

0xE2,0x89,0xA0 ≠ Not equal to

8801 2261

0xE2,0x89,0xA1 ≡ Identical to

8804 2264

0xE2,0x89,0xA4 ≤ Less-than or equal to

8805 2265

0xE2,0x89,0xA5 ≥
Greater-than or equal
to

8834 2282

0xE2,0x8A,0x82 ⊂ Subset of

8835 2283

0xE2,0x8A,0x83 ⊃ Superset of

8836 2284

0xE2,0x8A,0x84 ⊄ Not a subset of

8838 2286

0xE2,0x8A,0x86 ⊆ Subset of or equal to

8839 2287

0xE2,0x8A,0x87 ⊇ Superset of or equal to

8853 2295

0xE2,0x8A,0x95 ⊕
Circled plus, direct
sum

8855 2297

0xE2,0x8A,0x97 ⊗
Circled times, vector
product

8869 22a5

0xE2,0x8A,0xA5 ⊥
Up tack, orthogonal
to, perpendicular

8901 22c5

0xE2,0x8B,0x85 ⋅ Dot operator

8968 2308

0xE2,0x8C,0x88 ⌈
Left ceiling, APL
upstile

8969 2309

0xE2,0x8C,0x89 ⌉ Right ceiling

8970 230a

0xE2,0x8C,0x8A ⌊
Left floor, APL
downstile

8971 230b

0xE2,0x8C,0x8B ⌋ Right floor

9001 2329

0xE2,0x8C,0xA9 ⟨
Left-pointing angle
bracket, bra

9002 232a

0xE2,0x8C,0xAA ⟩
Right-pointing angle
bracket, ket

9674 25ca

0xE2,0x97,0x8A ◊ Lozenge

9824 2660

0xE2,0x99,0xA0 ♠ Black spade suit

9827 2663

0xE2,0x99,0xA3 ♣
Black club suit,
shamrock

9829 2665

0xE2,0x99,0xA5 ♥
Black heart suit,
valentine

9830 2666

0xE2,0x99,0xA6 ♦ Black diamond suit

E. Common Content Encodings G. User's View of Object-Oriented
Modules

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

G.2. Modules and Their Functional Interfaces

Modules are the main way that Perl provides for bundling up code for later use by yourself or others. As I'm sure you
can't help noticing from reading The Perl Journal, CPAN (the Comprehensive Perl Archive Network) is the repository
for modules (or groups of modules) that others have written, to do anything from composing music to accessing web
pages. A good deal of those modules even come with every installation of Perl.

One module that you may have used before, and which is fairly typical in its interface, is Text::Wrap. It comes with Perl,
so you don't even need to install it from CPAN. You use it in a program of yours, by having your program code say early
on:

use Text::Wrap;

and after that, you can access a function called wrap, which inserts line-breaks in text that you feed it, so that the text
will be wrapped to 72 (or however many) columns.

The way this use Text::Wrap business works is that the module Text::Wrap exists as a file Text/Wrap.pm
somewhere in one of your library directories. That file contains Perl code[6] which, among other things, defines a
function called Text::Wrap::wrap, and then exports that function, which means that when you say wrap after
having said use Text::Wrap, you'll be actually calling the Text::Wrap::wrap function. Some modules don't
export their functions, so you have to call them by their full name, like Text::Wrap::wrap(parameters).

[6]And mixed in with the Perl code, there's documentation, which is what you read with perldoc
Text::Wrap. The perldoc program simply ignores the code and formats the documentation text,
whereas use Text::Wrap loads and runs the code while ignoring the documentation.

Regardless of whether the typical module exports the functions it provides, a module is basically just a container for
chunks of code that do useful things. The way the module allows for you to interact with it, is its interface. And when,
like with Text::Wrap, its interface consists of functions, the module is said to have a functional interface.[7]

[7]The term "function" (and therefore "functional") has various senses. I'm using the term here in its
broadest sense, to refer to routines—bits of code that are called by some name and take parameters and
return some value.

Using modules with functional interfaces is straightforward—instead of defining your own "wrap" function with sub
wrap { ... }, you entrust use Text::Wrap to do that for you, along with whatever other functions its defines
and exports, according to the module's documentation. Without too much bother, you can even write your own modules
to contain your frequently used functions; I suggest having a look at the perlmod manpage for more leads on doing this.

G. User's View of Object-Oriented
Modules

G.3. Modules with Object-Oriented
Interfaces

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Copyright © 2002 O'Reilly & Associates. All rights reserved.

G.3. Modules with Object-Oriented Interfaces

So suppose that one day you want to write a program that will automate the process of ftp ing a bunch of files from one
server down to your local machine, and then off to another server.

A quick browse through search.cpan.org turns up the module Net::FTP, which you can download and install using
normal installation instructions (unless your sysadmin has already installed it, as many have).

Like Text::Wrap or any other module with a familiarly functional interface, you start off using Net::FTP in your program
by saying:

use Net::FTP;

However, that's where the similarity ends. The first hint of difference is that the documentation for Net::FTP refers to it
as a class. A class is a kind of module, but one that has an object-oriented interface.

Whereas modules like Text::Wrap provide bits of useful code as functions, to be called like function
(parameters) or like PackageName::function(parameters), Net::FTP and other modules with object-
oriented interfaces provide methods. Methods are sort of like functions in that they have a name and parameters; but
methods look different, and are different, because you have to call them with a syntax that has a class name or an object
as a special argument. I'll explain the syntax for method calls, and then later explain what they all mean.

Some methods are meant to be called as class methods, with the class name (same as the module name) as a special
argument. Class methods look like this:

ClassName->methodname(parameter1, parameter2, ...)
ClassName->methodname() # if no parameters
ClassName->methodname # same as above

which you will sometimes see written:

methodname ClassName (parameter1, parameter2, ...)
methodname ClassName # if no parameters

Basically, all class methods are for making new objects, and methods that make objects are called constructors (and the
process of making them is called "constructing" or "instantiating"). Constructor methods typically have the name "new,"
or something including "new" (new_from_file, etc.); but they can conceivably be named anything—DBI's
constructor method is named "connect," for example.

The object that a constructor method returns is typically captured in a scalar variable:

$object = ClassName->new(param1, param2...);

Once you have an object (more later on exactly what that is), you can use the other kind of method call syntax, the
syntax for object method calls. Calling object methods is just like class methods, except that instead of the ClassName
as the special argument, you use an expression that yields an object. Usually this is just a scalar variable that you
earlier captured the output of the constructor in. Object method calls look like this:

$object->methodname(parameter1, parameter2, ...);
$object->methodname() # if no parameters
$object->methodname # same as above

which is occasionally written as:

methodname $object (parameter1, parameter2, ...)
methodname $object # if no parameters

Examples of method calls are:

my $session1 = Net::FTP->new("ftp.myhost.com");
 # Calls a class method "new", from class Net::FTP,
 # with the single parameter "ftp.myhost.com",
 # and saves the return value (which is, as usual,
 # an object), in $session1.
 # Could also be written:
 # new Net::FTP('ftp.myhost.com')
$session1->login("sburke","aoeuaoeu")
 || die "failed to login!\n";
 # calling the object method "login"
print "Dir:\n", $session1->dir(), "\n";
$session1->quit;
 # same as $session1->quit()
print "Done\n";
exit;

Incidentally, I suggest always using the syntaxes with parentheses and -> in them,[8] and avoiding the syntaxes that start
out methodname $object or methodname ModuleName. When everything's going right, they all mean the same
thing as the -> variants, but the syntax with -> is more visually distinct from function calls, as well as being immune to
some kinds of rare but puzzling ambiguities that can arise when you're trying to call methods that have the same name as
subroutines you've defined.

[8]The character-pair -> is supposed to look like an arrow, not "negative greater-than"!

But, syntactic alternatives aside, all this talk of constructing objects and object methods begs the question—what is an
object? There are several angles to this question that the rest of this article will answer in turn: what can you do with
objects? what's in an object? what's an object value? and why do some modules use objects at all?

G.2. Modules and Their Functional
Interfaces

G.4. What Can You Do with Objects?

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

G.4. What Can You Do with Objects?

You've seen that you can make objects and call object methods with them. But what are object methods for? The answer
depends on the class:

A Net::FTP object represents a session between your computer and an FTP server. So the methods you call on a Net::
FTP object are for doing whatever you'd need to do across an FTP connection. You make the session and log in:

my $session = Net::FTP->new('ftp.aol.com');
die "Couldn't connect!" unless defined $session;
 # The class method call to "new" will return
 # the new object if it goes OK, otherwise it
 # will return undef.

$session->login('sburke', 'p@ssw3rD')
 || die "Did I change my password again?";
 # The object method "login" will give a true
 # return value if actually logs in, otherwise
 # it'll return false.

You can use the session object to change directory on that session:

$session->cwd("/home/sburke/public_html")
 || die "Hey, that was REALLY supposed to work!";
 # if the cwd fails, it'll return false

...get files from the machine at the other end of the session:

foreach my $f ('log_report_ua.txt', 'log_report_dom.txt',
 'log_report_browsers.txt')
{
 $session->get($f) || warn "Getting $f failed!"
};

...and plenty else, ending finally with closing the connection:

$session->quit();

In short, object methods are for doing things related to (or with) whatever the object represents. For FTP sessions, it's
about sending commands to the server at the other end of the connection, and that's about it—there, methods are for
doing something to the world outside the object, and the objects is just something that specifies what bit of the world
(well, what FTP session) to act upon.

With most other classes, however, the object itself stores some kind of information, and it typically makes no sense to do
things with such an object without considering the data that's in the object.

G.3. Modules with Object-Oriented
Interfaces

G.5. What's in an Object?

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

G.5. What's in an Object?

An object is (with rare exceptions) a data structure containing a bunch of attributes, each of which has a value, as well as
a name that you use when you read or set the attribute's value. Some of the object's attributes are private, meaning you'll
never see them documented because they're not for you to read or write; but most of the object's documented attributes
are at least readable, and usually writeable, by you. Net::FTP objects are a bit thin on attributes, so we'll use objects from
the class Business::US_Amort for this example. Business::US_Amort is a very simple class (available from CPAN) that
I wrote for making calculations to do with loans (specifically, amortization, using U.S.-style algorithms).

An object of the class Business::US_Amort represents a loan with particular parameters, i.e., attributes. The most basic
attributes of a "loan object" are its interest rate, its principal (how much money it's for), and it's term (how long it'll take
to repay). You need to set these attributes before anything else can be done with the object. The way to get at those
attributes for loan objects is just like the way to get at attributes for any class's objects: through accessors. An accessor is
simply any method that accesses (whether reading or writing, a.k.a. getting or putting) some attribute in the given object.
Moreover, accessors are the only way that you can change an object's attributes. (If a module's documentation wants you
to know about any other way, it'll tell you.)

Usually, for simplicity's sake, an accessor is named after the attribute it reads or writes. With Business::US_Amort
objects, the accessors you need to use first are principal, interest_rate, and term. Then, with at least those
attributes set, you can call the run method to figure out several things about the loan. Then you can call various
accessors, like total_paid_toward_interest, to read the results:

use Business::US_Amort;
my $loan = Business::US_Amort->new;
Set the necessary attributes:
$loan->principal(123654);
$loan->interest_rate(9.25);
$loan->term(20); # twenty years

NOW we know enough to calculate:
$loan->run;

And see what came of that:
print
 "Total paid toward interest: A WHOPPING ",
 $loan->total_paid_interest, "!!\n";

This illustrates a convention that's common with accessors: calling the accessor with no arguments (as with $loan-
>total_paid_interest) usually means to read the value of that attribute, but providing a value (as with $loan-
>term(20)) means you want that attribute to be set to that value. This stands to reason: why would you be providing a
value, if not to set the attribute to that value?

Although a loan's term, principal, and interest rates are all single numeric values, an object's values can be any kind of
scalar, or an array, or even a hash. Moreover, an attribute's value(s) can be objects themselves. For example, consider
MIDI files (as I wrote about in TPJ#13): a MIDI file usually consists of several tracks. A MIDI file is complex enough to
merit being an object with attributes like its overall tempo, the file-format variant it's in, and the list of instrument tracks
in the file. But tracks themselves are complex enough to be objects too, with attributes like their track-type, a list of
MIDI commands if they're a MIDI track, or raw data if they're not. So I ended up writing the MIDI modules so that the
"tracks" attribute of a MIDI::Opus object is an array of objects from the class MIDI::Track. This may seem like a
runaround—you ask what's in one object, and get another object, or several! But in this case, it exactly reflects what the
module is for—MIDI files contain MIDI tracks, which contain data.

G.4. What Can You Do with Objects? G.6. What Is an Object Value?

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

G.6. What Is an Object Value?

When you call a constructor like Net::FTP->new(hostname), you get back an object value, which is a value you
can later use, in combination with a method name, to call object methods.

Now, so far we've been pretending, in the above examples, that the variables $session or $loan are the objects
you're dealing with. This idea is innocuous up to a point, but it's really a misconception that will, at best, limit you in
what you know how to do. The reality is not that the variables $session or $query are objects; it's a little more
indirect—they hold values that symbolize objects. The kind of value that $session or $query hold is what I'm
calling an object value.

To understand what kind of value this is, first think about the other kinds of scalar values you know about: The first two
types of scalar values you probably ever ran into in Perl are numbers and strings, which you learned (or just assumed)
will usually turn into each other on demand; that is, the three-character string "2.5" can become the quantity two and a
half, and vice versa. Then, especially if you started using perl -w early on, you learned about the undefined value,
which can turn into 0 if you treat it as a number, or the empty-string if you treat it as a string.[9]

[9]You may also have been learning about references, in which case you're ready to hear that object values
are just a kind of reference, except that they reflect the class that created thing they point to, instead of
merely being a plain old array reference, hash reference, etc. If this makes sense to you, and you want to
know more about how objects are implemented in Perl, have a look at the perltoot manpage.

And now you're learning about object values. An object value is a value that points to a data structure somewhere in
memory, which is where all the attributes for this object are stored. That data structure as a whole belongs to a class
(probably the one you named in the constructor method, like ClassName->new), so that the object value can be used
as part of object method calls.

If you want to actually see what an object value is, you might try just saying print $object. That'll get you
something like this:

Net::FTP=GLOB(0x20154240)

or:

Business::US_Amort=HASH(0x15424020)

That's not very helpful if you wanted to really get at the object's insides, but that's because the object value is only a
symbol for the object. This may all sound very abstruse and metaphysical, so a real-world allegory might be very helpful.

You get an advertisement in the mail saying that you have been (im)personally selected to have the rare privilege of
applying for a credit card. For whatever reason, this offer sounds good to you, so you fill out the form and mail it back to
the credit card company. They gleefully approve the application and create your account, and send you a card with a
number on it.

Now, you can do things with the number on that card—clerks at stores can ring up things you want to buy, and charge
your account by keying in the number on the card. You can pay for things you order online by punching in the card
number as part of your online order. You can pay off part of the account by sending the credit card people some of your
money (well, a check) with some note (usually the pre-printed slip) that has the card number for the account you want to
pay toward. And you should be able to call the credit card company's computer and ask it things about the card, like its
balance, its credit limit, its APR, and maybe an itemization of recent purchases and payments.

Now, what you're really doing is manipulating a credit card account, a completely abstract entity with some data
attached to it (balance, APR, etc.). But for ease of access, you have a credit card number that is a symbol for that
account. Now, that symbol is just a bunch of digits, and the number is effectively meaningless and useless in and of itself
—but in the appropriate context, it's understood to mean the credit card account you're accessing.

This is exactly the relationship between objects and object values, and from this analogy, several facts about object
values are a bit more explicable:

● An object value does nothing in and of itself, but it's useful when you use it in the context of an $object-
>method call, the same way that a card number is useful in the context of some operation dealing with a card
account.

Moreover, several copies of the same object value all refer to the same object, the same way that making several
copies of your card number won't change the fact that they all still refer to the same single account (this is true
whether you're "copying" the number by just writing it down on different slips of paper, or whether you go to the
trouble of forging exact replicas of your own plastic credit card). That's why this:

$x = Net::FTP->new("ftp.aol.com");
$x->login("sburke", "aoeuaoeu");

does the same thing as this:

$x = Net::FTP->new("ftp.aol.com");
$y = $x;
$z = $y;
$z->login("sburke", "aoeuaoeu");

That is, $z and $y and $x are three different slots for values, but what's in those slots are all object values
pointing to the same object—you don't have three different FTP connections, just three variables with values
pointing to the some single FTP connection.

● You can't tell much of anything about the object just by looking at the object value, any more than you can see
your credit account balance by holding the plastic card up to the light, or by adding up the digits in your credit
card number.[10]

[10]URI.pm objects are an exception to this general rule: when you use them as a string, instead of
getting a useless value like URI=HASH(0x15404220), you instead get the string representation
of that URL: http://www.perl.com/thingamabob/ or whatever.

● You can't just make up your own object values and have them work—they can come only from constructor
methods of the appropriate class. Similarly, you get a credit card number only by having a bank approve your
application for a credit card account—at which point they let you know what the number of your new card is.

Now, there's even more to the fact that you can't just make up your own object value: even though you can print
an object value and get a string like Net::FTP=GLOB(0x20154240), that's just a representation of an object
value.

Internally, an object value has a basically different type from a string, or a number, or the undefined value—if $x holds a
real string, then that value's slot in memory says "this is a value of type string, and its characters are...," whereas if it's an
object value, the value's slot in memory says, "this is a value of type reference, and the location in memory that it points
to is..." (and by looking at what's at that location, Perl can tell the class of what's there).

Perl programmers typically don't have to think about all these details of Perl's internals. Many other languages force you
to be more conscious of the differences between all of these (and also between types of numbers, which are stored
differently depending on their size and whether they have fractional parts). But Perl does its best to hide the different
types of scalars from you—it turns numbers into strings and back as needed, and takes the string or number
representation of undef or of object values as needed. However, you can't go from a string representation of an object

value, back to an object value. And that's why this doesn't work:

$x = Net::FTP->new('ftp.aol.com');
$y = Net::FTP->new('ftp.netcom.com');
$z = Net::FTP->new('ftp.qualcomm.com');
$all = join(' ', $x,$y,$z); # !!!
...later...
($aol, $netcom, $qualcomm) = split(' ', $all); # !!!
$aol->login("sburke", "aoeuaoeu");
$netcom->login("sburke", "qjkxqjkx");
$qualcomm->login("smb", "dhtndhtn");

This fails because $aol ends up holding merely the string representation of the object value from $x, not the object
value itself—when join tried to join the characters of the "strings" $x, $y, and $z, Perl saw that they weren't strings at
all, so it gave join their string representations.

Unfortunately, this distinction between object values and their string representations doesn't really fit into the analogy of
credit card numbers, because credit card numbers really are numbers—even thought they don't express any meaningful
quantity, if you stored them in a database as a quantity (as opposed to just an ASCII string), that wouldn't stop them from
being valid as credit card numbers.

This may seem rather academic, but there's two common mistakes programmers new to objects often make, which make
sense only in terms of the distinction between object values and their string representations.

The first common error involves forgetting (or never having known in the first place) that when you go to use a value as
a hash key, Perl uses the string representation of that value. When you want to use the numeric value two and a half as a
key, Perl turns it into the three-character string "2.5." But if you then want to use that string as a number, Perl will treat it
as meaning two and a half, so you're usually none the wiser that Perl converted the number to a string and back. But
recall that Perl can't turn strings back into objects—so if you tried to use a Net::FTP object value as a hash key, Perl
actually used its string representation, like Net::FTP=GLOB(0x20154240), but that string is unusable as an object
value. (Incidentally, there's a module Tie::RefHash that implements hashes that do let you use real object-values as
keys.)

The second common error with object values is in trying to save an object value to disk (whether printing it to a file, or
storing it in a conventional database file). All you'll get is the string, which will be useless.

When you want to save an object and restore it later, you may find that the object's class already provides a method
specifically for this. For example, MIDI::Opus provides methods for writing an object to disk as a standard MIDI file.
The file can later be read back into memory by a MIDI::Opus constructor method, which will return a new MIDI::Opus
object representing whatever file you tell it to read into memory. Similar methods are available with, for example,
classes that manipulate graphic images and can save them to files, which can be read back later.

But some classes, like Business::US_Amort, provide no such methods for storing an object in a file. When this is the
case, you can try using any of the Data::Dumper, Storable, or FreezeThaw modules. Using these is unproblematic for
objects of most classes, but may run into limitations with others. For example, a Business::US_Amort object can be
turned into a string with Data::Dumper, and that string written to a file. When it's restored later, its attributes will be
accessible as normal. But in the unlikely case that the loan object was saved in mid-calculation, the calculation may not
be resumable. This is because of the way that that particular class does its calculations, but similar limitations may occur
with objects from other classes.

But often, even wanting to save an object is basically wrong—what would saving an ftp session even mean? Saving the
hostname, username, and password? current directory on both machines? the local TCP/IP port number? In the case of
"saving" a Net::FTP object, you're better off just saving whatever details you actually need for your own purposes, so
that you can make a new object later and just set those values for it.

G.5. What's in an Object? G.7. So Why Do Some Modules Use
Objects?

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

0.4. Important Standards Documents

The basic protocols and data formats of the Web are specified in a number of Internet RFCs. The most important are:

RFC 2616: HTTP 1.1
ftp://ftp.isi.edu/in-notes/rfc2616.txt

RFC 2965: HTTP Cookies Specification
ftp://ftp.isi.edu/in-notes/rfc2965.txt

RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
ftp://ftp.isi.edu/in-notes/rfc2617.txt

RFC 2396: Uniform Resource Identifiers: Generic Syntax
ftp://ftp.isi.edu/in-notes/rfc2396.txt

HTML 4.01 specification
http://www.w3.org/TR/html401/

HTML 4.01 Forms specification
http://www.w3.org/TR/html401/interact/forms/

Character sets
http://www.iana.org/assignments/character-sets

Country codes
http://www.isi.edu/in-notes/iana/assignments/country-codes

Unicode specifications
http://www.unicode.org

RFC 2279: Encoding Unicode as UTF-8
ftp://ftp.isi.edu/in-notes/rfc2279.txt

Request For Comments documents
http://www.rfc-editor.org

IANA protocol assignments
http://www.iana.org/numbers.htm

0.3. Order of Chapters 0.5. Conventions Used in This Book

Copyright © 2002 O'Reilly & Associates. All rights reserved.

ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2965.txt
ftp://ftp.isi.edu/in-notes/rfc2617.txt
ftp://ftp.isi.edu/in-notes/rfc2396.txt
http://www.w3.org/TR/html401/
http://www.w3.org/TR/html401/interact/forms/
http://www.iana.org/assignments/character-sets
http://www.isi.edu/in-notes/iana/assignments/country-codes
http://www.unicode.org/
ftp://ftp.isi.edu/in-notes/rfc2279.txt
http://www.rfc-editor.org/
http://www.iana.org/numbers.htm
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

0.7. Acknowledgments

It takes a mere village to raise a puny human child, but it took a whole globe-girdling Perl cabal to get this book done!
These are the readers who, as a personal favor to me, took the time to read and greatly improve my first sketchy
manuscript, each in their own particular, helpful, and careful ways: Gisle Aas, David H. Adler, Tim Allwine, Elaine
Ashton, Gene Boggs, Gavin Estey, Scott Francis, Joe Johnston, Kevin Healy, Conrad Heiney, David Huggins-Daines,
Samy Kamkar, Joe Kline, Yossef Mendelssohn, Abhijit Menon-Sen, Brad Murray, David Ondrik, Clinton Pierce, Robert
Spier, Andrew Stanley, Dennis Taylor, Martin Thurn, and Glenn Wood.

I'm also especially thankful to Elaine Ashton for doing a last-minute review not just of this manuscript's prose, but of all
the code blocks. If not for her eagle eye, you'd be scratching your head over variables and subroutines magically
renaming themselves all over the place!

I am grateful to Conrad Heiney for suggesting the California Department of Motor Vehicles as an example for Chapter 5,
"Forms". Thanks also to Mark-Jason Dominus for suggesting the ABEBooks web site as an example in that same
chapter. Many thanks to Gisle Aas, Michael A. Chase, and Martijn Koster for making LWP such a reliable and
indispensable addition to every programmer's toolkit.

And last but not least, thanks to the people at O'Reilly who intrepidly pushed for this book to get done when I really just
wanted to stay in bed and play Tetris. The chief author-wrangler is my editor, Nat Torkington, but I'm much obliged also
to the many other under-appreciated O'Reilly people who conspired to get this book from my hands to yours: Jon Orwant
(of Perl Journal fame even before he got to O'Reilly), Neil Walls (who slaved over Appendix F, "ASCII Table" so you
can see what a ⊥ looks like!), sage editor Linda Mui, Betsy Waliszewski in marketing, and in the production
department, Linley Dolby, the book's production editor and copyeditor and Rob Romano, the book's illustrator.

0.6. Comments & Questions 1. Introduction to Web Automation

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

3.6. LWP Classes: Behind the Scenes

To get data off the Web with LWP, you really only need to know about LWP::UserAgent objects and HTTP::Response
objects (although a rudimentary knowledge of the URI class and the LWP::Cookies class can help too). But behind the
scenes, there are dozens and dozens of classes that you generally don't need to know about, but that are still busily doing
their work. Most of them are documented in the LWP manual pages, and you may see them mentioned in the
documentation for the modules about which you do need to know. For completeness, they are listed in Appendix A,
"LWP Modules".

3.5. HTTP::Response Objects 4. URLs

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

8.2. Getting the Data

The first step is to figure out what web pages we need to request to get the data in any form. With the BBC extractor, it
was just a matter of requesting the single page http://news.bbc.co.uk, but here there's no one page that lists all the data we
want. Instead, you can view the program description for each show, one day at a time. Moreover, the URL for each such
page looks like this, which displays the program info for July 2, 2001:

http://freshair.npr.org/dayFA.cfm?todayDate=07%2F02%2F2001

It's relatively clear that the format for the bit after the equal sign is the two-digit month, %2F, the two-digit day, %2F,
and the four-digit year. (It's even more clear when you consider that %2F is the / character encoded, so that the above
means 07/02/2001.) Harvesting all the data is a simple matter of iterating over all the days of the month (or whatever
period you want to cover), skipping weekends (because the program listings are only for weekdays), substituting the
proper date numbers into that URL. Once each page is harvested, the data can be extracted from it.

Already the outlines of the program's design are becoming clear: there needs to be a loop that harvests the contents of a
URL based on each date, then scans the returned content. Scanning the content isn't a distinct enough task that it has to
be part of the same block of code as the code that actual harvests the URL. Instead, it can simply be a routine that is
given a new stream from which it is expected to extract data. Moreover, that is the hard part of the program, so we might
as well do that first (the stuff with date handling and URL interpolation is much less worrisome, and can be put off until
last).

So, to figure out the format of the data we want to harvest, consider a typical program listing page in its rendered form in
a browser. We establish that this is a "typical" page (shown in Figure 8-1) by flipping through the listings and finding
that they all pretty much look like that. (That stands to reason, as the URL tells us that they're being served dynamically,
and all through the same .cfm—Cold Fusion—file, such that having each day's bit of content poured into a common
template is the easy way for the web site's designers to have implemented this.) So we have good reason to hope that
whatever code we work up to extract successfully from one typical page, would hopefully work for all of them. The only
remarkable difference is in the number of segments per show: here there's two, but there could be one, or four, or even
more. Also, the descriptions can be several paragraphs, sometimes much shorter.

Figure 8-1. Fresh Air web page

What we want to extract here is the link text that says "Monday - July 2, 2001," "Editor and writer Walter Kirn," and
"Casting director and actress Joanna Merlin," and for each we also want the link URL as an absolute URL. We don't
want the "Listen to" part, since it'd be pointlessly repetitive to have a whole month's worth of listings where every line
starts with "Listen to".

8. Tokenizing Walkthrough 8.3. Inspecting the HTML

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

8.3. Inspecting the HTML

The first step to getting some code working is to save a file locally. This is so you can look at the source in an editor, and
secondly so you can initially test your data extractor on that local file. It may take a good deal of hit-and-miss before you
get it working right, and there's no point in making each trial run go and get the same page across the network, especially
to Fresh Air's occasionally quite busy server. Saving the above URL as fresh1.html gives us a 12K file. While there's
only about 1K of text shown on the screen, the other 11K are mostly whitespace that indents the HTML, some
JavaScript, plus all the table code needed to make the navigation bar on the left and the search form on the right. We can
completely ignore all that code and just try to figure out how to extract the "Listen..." links. Sifting through the HTML
source, we see that those links are represented with this code (note that most lines begin with at least two spaces):

...

 <FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#FFCC00"
SIZE="2">
 Listen to Monday - July 2, 2001

...

 Listen
to

 Editor and writer Walter Kirn

 <BLOCKQUOTE>Editor and writer Walter
 Kirn's new novel <I>Up in the Air</I> (Doubleday) is about
...
 </BLOCKQUOTE>

 Listen
to

 Casting director and actress Joanna Merlin

 <BLOCKQUOTE>Casting director and actress <A
 HREF="http://freshair.npr.org/guestInfoFA.cfm?
name=joannamerlin">Joanna
 Merlin has written a new guide for actors, <I>Auditioning: An
...
 </BLOCKQUOTE>

...

8.2. Getting the Data 8.4. First Code

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

8.4. First Code

Because we want links, let's get links, like this:

use strict;
use HTML::TokeParser;
parse_fresh_stream(
 HTML::TokeParser->new('fresh1.html') || die $!
);

sub parse_fresh_stream {
 my($stream) = @_;
 while(my $a_tag = $stream->get_tag('a')) {
 my $text = $stream->get_trimmed_text('/a');
 printf "%s\n %s\n", $text, $a_tag->[1]{'href'} || '??';
 }
 return;
}

But this outputs:

Fresh Air Online
 index.cfm
Listen to Current Show
 http://www.npr.org/ramfiles/fa/20011011.fa.ram
[...]
NPR Online
 http://www.npr.org
FreshAir@whyy.org
 mailto:freshair@whyy.org
Listen to Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram
Listen to Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Walter Kirn
 http://freshair.npr.org/guestInfoFA.cfm?name=walterkirn
Listen to Casting director and actress Joanna Merlin
 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram
Joanna Merlin
 http://freshair.npr.org/guestInfoFA.cfm?name=joannamerlin
Previous show
 dayFA.cfm?todayDate=06%2F29%2F2001
Next show
 dayFA.cfm?todayDate=07%2F03%2F2001

We got what we wanted (those three "Listen to" links are in there), but it's buried in other stuff. You see, the navigation
bar on the left does consist of image links, whose ALT content shows up when we call get_trimmed_text() or
get_text(). We also get the mailto: link from the bottom of the navigation bar, the bio links for the guests from
the paragraphs describing each segment, and the "Previous Show" and "Next Show" links.

8.3. Inspecting the HTML 8.5. Narrowing In

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

8.7. Alternatives

Now, with the sort of 20/20 hindsight that is always in abundance in such cases, we can see that there were other ways it
could have been done. For example, instead of using the various tricks to keep the first image-ALT link from printing,
we could simply have kept a count of the good links seen so far in the current stream and ignored the first one. Our
actual solution is more proper in this case, but sometimes counting items is the best or only way to get a problem solved.

More importantly, we could have done without all the code that tests the link URL and used one regexp to implement our
last criterion, i.e., that the link text begin with "Listen to". But, as with our earlier consideration of how much of the URL
to check, it comes down to the question: do you want something that's more careful (i.e., enforcing more assumptions on
the input data, and so more prone to reject appropriate links in the future) or more forgiving (i.e., enforcing fewer
assumptions, but more likely to match inappropriate links in the future)?

The answer depends on how concise you want the code to be, how much time you want to spend thinking up
assumptions, and, most importantly, what happens if it breaks. If I've crontabbed this program to harvest Fresh Air
listings every month and mail me the results, if it breaks, I'll get some sort of anomalous output mailed to me (whether
with too few links, or too many) and it's no big deal because, working or not, it's just so I can listen to interesting radio
programs. But your data extraction program may instead serve many people who will be greatly inconvenienced if it
stops working properly. You have to decide on a case-by-case basis whether your program should be more likely to clam
up and miss interesting data in new formats, or pass through new kinds of data despite the risk that they might be
irrelevant or just plain wrong.

8.6. Rewrite for Features 9. HTML Processing with Trees

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

12.4. Ideas for Further Expansion

In its current form, this bot is a passable implementation framework for a Type Three Requester spider that checks links
on typical HTML web sites. In actual use, you would want to fine tune its heuristics. For example, if you want to check
the validity of lots of URLs to sites that don't implement HEAD, you'd want to improve on the logic that currently just
considers those URLs a lost cause; or you might want to add code that will skip any attempt at HEADing a URL on a
host that has previously responded to any HEAD request with a "Method Not Supported" error, or has otherwise proven
uncooperative.

If you wanted the spider to check large numbers of URLs, or spider a large site, it might be prudent to have some of its
state saved to disk (specifically @schedule, %seen_url_before, %points_to, and %notable_url_error);
that way you could stop the spider, start it later, and have it resume where it left off, to avoid wastefully duplicating what
it did the last time. It would also be wise to have the spider enforce some basic constraints on documents and requests,
such as aborting any HTML transfer that exceeds 200K or that seems to not actually be HTML, or by having the spider
put a maximum limit on the number of times it will hit any given host (see the no_visits() method mentioned in
the LWP::RobotUA documentation, and specifically consider $bot->no_visits($url->host_port)).

Moreover, the spider's basic behavior could be altered easily by changing just a few of the routines. For example, to turn
it into a robot that merely checks URLs that you give it on the command line, you need only redefine one routine like
this:

sub near_url { 0; } # no URLs are "near", i.e., spiderable

Conversely, to turn it into a pure Type Four Requester spider that recursively looks for links to which any web pages it
finds link, all it takes is this:

sub near_url { 1; } # all URLs are "near", i.e., spiderable

But as pointed out earlier in this chapter, that is a risky endeavor. It requires careful monitoring and log analysis,
constant adjustments to its response-processing heuristics, intelligent caching, and other matters regrettably beyond what
can be sufficiently covered in this book.

12.3. Example: A Link-Checking
Spider

A. LWP Modules

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

B.2. 200s: Successful

If an LWP request gets any of these codes, $response->is_success will be true. For all other status codes,
$response->is_success will be false.

200 OK
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Content

B. HTTP Status Codes B.3. 300s: Redirection

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

B.3. 300s: Redirection

If an LWP request gets any of these codes, $response->is_redirect will be true. For all other status codes,
$response->is_redirect will be false.

300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
307 Temporary Redirect

B.2. 200s: Successful B.4. 400s: Client Errors

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

B.4. 400s: Client Errors

If an LWP request gets any of these 400-series codes, $response->is_error will be true, as it will be for any of
the 500-series codes. For all other status codes, $response->is_error will be false.

400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Long
415 Unsupported Media Type
416 Requested Range Not Satisfiable
417 Expectation Failed
420-424: (Planned extensions involving WebDAV)
426 Upgrade Required (RFC 2817)

B.3. 300s: Redirection B.5. 500s: Server Errors

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

B.5. 500s: Server Errors

If an LWP request gets any of these 500-series codes, $response->is_error will be true, as it will be for any of
the 400-series codes. For all other status codes, $response->is_error will be false.

Note that at the time of this writing, the "500 Internal Server Error" code is also used by LWP to signal some error
conditions where the remote server can't even be contacted, such as when there's a DNS failure or a TCP/IP connection
error.

500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported

B.4. 400s: Client Errors C. Common MIME Types

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

0.6. Comments & Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can access this page
at:

http://www.oreilly.com/catalog/perllwp/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web site
at:

http://www.oreilly.com

0.5. Conventions Used in This Book 0.7. Acknowledgments

Copyright © 2002 O'Reilly & Associates. All rights reserved.

http://www.oreilly.com/catalog/perllwp/
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

0.5. Conventions Used in This Book

The following typographic conventions are used in this book:

Italic
Used for file and directory names, email addresses, and URLs, as well as for new terms where they are defined.

Constant width
Used for code listings and for keywords, variables, function names, command options, parameters, and bits of
HTML source where they appear in the text.

Constant width bold
Used to highlight key fragments of larger code examples, or to show the output of a piece of code.

Constant width italic
Used as a general placeholder to indicate terms that should be replaced by actual values in your own programs.

0.4. Important Standards Documents 0.6. Comments & Questions

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Perl & LWP
by Sean M. Burke

Submit your own errata for this book.

The changes and errata are listed by printing date. To find the printing date of your copy, look on the
copyright page for the most recent date (either under "Printing History" or in the lower righthand corner).

Printings that are not listed here contained no significant corrections.

● Errata: a list of errors in the most recent printing
● Unconfirmed error reports and comments from readers

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2002, O'Reilly & Associates, Inc.

http://www.oreilly.com/cgi-bin/errata.form/perllwp
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html

Perl & LWP
by Sean M. Burke

This errata page lists errors outstanding in the most recent printing.

If you have technical questions or error reports, you can send them to
booktech@oreilly.com. Please specify the printing date of your copy.

This page was updated September 24, 2003.

Here's a key to the markup:
 [page-number]: serious technical mistake
 {page-number}: minor technical mistake
 <page-number>: important language/formatting problem
 (page-number): language change or minor formatting problem
 ?page-number?: reader question or request for clarification

NOTE FROM THE AUTHOR

Thanks for buying my book! I've gotten really enthusiastic responses from
readers, and that has made all the work of writing absolutely worth it.

If you're having trouble getting any code from the book to work, the
absolute first thing you should do is make sure you've got a recent version
of LWP installed! Here's my favorite incantation for seeing what version
you have:
 perl -e "use LWP 1000000000"
It will say something like:
 LWP version 1000000000 required--this is only version 5.68 at -e line 1.
 BEGIN failed--compilation aborted at -e line 1.

If the version number you see in "this is only version 5.68" is lower that
5.68, upgrade! /Perl & LWP/ is not about old versions of LWP, but just
about modern versions -- the more modern the better, since we're constantly
improving its performance and interface. If you're using an old version,
you're missing out on years of improvements that Gisle, me, and many others
have added for you.

Just to pick two little examples: in older versions, you would load the
class HTTP::Cookies::Netscape not with the expected "use
HTTP::Cookies::Netscape" line, but with "use HTTP::Cookies". Moreover, old
versions didn't understand cookies files from recent Mozilla versions.
A more compelling example is that in old LWP versions, LWP::UserAgent had
no $browser->get or $browser->post methods -- and this book uses those

"new" methods heavily, because the alternative is a much less friendly
syntax: use HTTP::Request::Common; $browser->request(GET(...),...); and the
like.

Besides the issue of LWP versions, there is also the question of brittleness.

SECOND NOTE FROM THE AUTHOR:

I said in Chapter 1, in the section on "Brittleness":
"As somewhat of a lesson in brittleness, in this book I show you data on
various web sites (Amazon.com, the BBC News web site, and many others) and
show how to write programs to extract data from them. However, that code
is fragile. Some sites get redesigned only every few years; Amazon.com
seems to change something every few weeks. So while I've made every effort
to have the code be accurate for the web sites as they exist at the time of
this writing, I hope you will consider the programs in this book valuable
as learning tools even after the sites they communicate with will have
changed beyond recognition."

Well, even though it's been only a few weeks since the book went to press,
already many of the sites have changed enough to break some of the
extractor programs that are examples in the book. With some sites (like
Amazon), that was expected -- it was just a matter of happening sooner
rather than later. With others (like the California DMV server, or the
Weather Underground), I'm a bit surprised that the changes happened so soon.

In some of the program files at http://examples.oreilly.com/perllwp/
I have added a few comments noting where some of the screen-scraper
programs have already broken because of changes in the site that they pull
from.
I leave it as an exercise to readers to try on their own to get some of
those extractors working. It'll be good practice in retuning brittle
programs! After all, when you write your extractors from stratch, they'll
eventually break too.

 -- Sean M. Burke
 August 1, 2002

Confirmed errors:

(xi) Under the heading "Foreword", add a subheading "by Gisle Aas"

(xiv) Second line;
Correct
 http://www.w3.org/TR/html401/interact/forms/
to
 http://www.w3.org/TR/html401/interact/forms
(just removing the final "/")

{7}, Table 1-1
Several things wrong with the table contents. Here it is, all fixed:

Distribution CPAN directory Minimal Version Needed

libwww-perl modules/by-module/Net 5.68
URI modules/by-module/URI 1.23
libnet modules/by-module/Net 1.12
HTML-Tagset modules/by-module/HTML 3.03
HTML-Parser modules/by-module/HTML 3.27
HTML-Tree modules/by-module/HTML 3.17
MIME-Base64 modules/by-module/MIME 2.16
Compress-Zlib modules/by-module/Compress 1.19
Digest-MD5 modules/by-module/Digest 2.23

(7) end of first paragraph after the table
After "get the latest." add a new sentence:
"This book is about the latest version of LWP! Upgrade now!"

{7} in the paragraph before heading "Unpack and configure"
Change both instances of
authors/id/G/GA/GAAS
to
modules/by-module/MIME

(11) example 1-1
change "use LWP::Simple;" to "use LWP::Simple 1.36;"

(11) example 1-2
change "use LWP;" to "use LWP 5.58;"

(12) example 1-3
change "use LWP::UserAgent;" to "use LWP::UserAgent 2.003;"

(13) example 1-5
change "use HTML::TreeBuilder;" to "use HTML::TreeBuilder 3.13;"

(14) end of the chapter text:
Add a new section with a heading "Upgrade Now!" with this as the text:

If you're having trouble getting any code from the book to work, the
absolute first thing you should do is make sure you've got a recent version
of LWP installed! Here's my favorite incantation for seeing what version
you have:
 perl -e "use LWP 1000000000"
It will say something like:
 LWP version 1000000000 required--this is only version 5.68 at -e line 1.
 BEGIN failed--compilation aborted at -e line 1.

If the version number you see in "this is only version 5.68" is lower that
5.68, upgrade! This book is not about old versions of LWP, but just about
modern versions -- the more modern the better, since we're constantly
improving its performance and interface. If you're using an old version,
you're missing out on years of improvements that Gisle, me, and many others
have added for you.

Just to pick two examples: in older LWP versions, you would load the class
HTTP::Cookies::Netscape not with the expected "use HTTP::Cookies::Netscape"
line, but with "use HTTP::Cookies". Moreover, old versions didn't
understand cookies files from recent Mozilla versions. A more compelling
example is that in old LWP versions, LWP::UserAgent had no $browser->get or
$browser->post methods -- and this book uses those methods heavily, because
the alternative is a much less friendly syntax: use HTTP::Request::Common;
$browser->request(GET(...),...); and the like.

{16}
The examples at the bottom of page 16 and the top of 17 mistakenly show
"+" separating form=value pairs. It should be "&"!
So:

Take this:
 name=Hiram%20Veeblefeetzer+age=35+country=Madagascar
and correct to:
 name=Hiram%20Veeblefeetzer&age=35&country=Madagascar

And later, take this:

 $query = "name=$n+age=$a+country=$c";
 print $query;
 name=Hiram%20Veeblefeetzer+age=35+country=Madagascar
and correct it to:
 $query = "name=$n&age=$a&country=$c";
 print $query;
 name=Hiram%20Veeblefeetzer&age=35&country=Madagascar

(24) example 2-5
change "use LWP;" to "use LWP 5.58;"

{28}, 1st new paragraph, 7th line down on the page.
Take this:
 (doc, status, success, resp) = do_GET(URL, [form_ref, [headers_ref]]);
And correct it to:
 (doc, status, success, resp) = do_POST(URL, [form_ref, [headers_ref]]);

(31) third code line
change "use LWP;" to "use LWP 5.58;"

(32) 2nd paragraph, second line:
There's slightly too much space after the comma in "a firemwall, or"

{37} Fifth (non-code) paragraph, second sentence:
Correct to:

If this $browser object has a protocols_allowed list (and most don't),
then is_protocol_supported returns true only for protocols that are in
that list, and which LWP supports. But if $browser object is normal in
not having a protocols_allowed list, then is_protocol_supported returns
true for any protocol that LWP supports and which isn't in
protocols_forbidden.

{40} second codeblock, fifth and sixth lines
Correct both instances of "$response" to "$resp".

{40} six lines from the bottom;

Correct
 my $resp = $browser->get('http://www.perl.com'
to
 my $resp = $browser->get('http://www.perl.com',
(just adding a comma to the end)

{41} first line of first new codeblock;
Correct
 my $resp = $browser->get('http://www.perl.com/'
to
 my $resp = $browser->get('http://www.perl.com/',
(just adding a comma to the end)

{41} first line of second-to-last codeblock;
Correct
 my $resp = $browser->get('http://www.perl.com/'
to
 my $resp = $browser->get('http://www.perl.com/',
(just adding a comma to the end)

{43} The first line of the 2nd and 5th code examples under "Status Line"

Correct "$resp = " to "$response = ".

{45} second-to-last codeblock;
Correct the line:
 $mins = int($age/60); $age -= $minutes * 60;
to
 $mins = int($age/60); $age -= $mins * 60;

(47) Third line of the last paragraph:
Correct "LWP::Cookies" to "HTTP::Cookies"

(48) first code line
change "use URI;" to "use URI 1.23;"

(53) The third line of each of the first two code sections:
Correct "$uri->" to "$url->".
(Look close!)

(61) example 5-1
change "use URI;" to "use URI 1.23;"

{75} Second-from-last line of the codeblock;
 "ds" => "30",
should be:
 "ds" => "100",

(85) first code line
change "use LWP::Simple;" to "use LWP::Simple 1.36;"

{97} about a dozen lines down;
Correct this line:
 die "Couldn't get $doc_url: ", $resp->status_line
to:
 die "Couldn't get $doc_url: ", $response->status_line

{97} 14th non-blank codeline, right under "{ # Get..."

Take
 $doc_url = $response->request->base;
and correct it to:
 $doc_url = $response->base;

{98, 99} All the code in this section:
Sorry, this code doesn't work anymore -- Weather Underground has changed
their HTML at least twice since the book went to press. You're on your
own with getting it to work -- and (the hard part) KEEPING it working.

{105} second "#" line in the codeblock in the middle of the page.
Correct this comment line:
 # process the text in $text->[1]
to this:
 # process the text in $token->[1]

(105) third code line
change "use HTML::TokeParser;" to "use HTML::TokeParser 2.24;"

{106} Next-to-last paragraph;
Book reads:

Should be (with alt attribute)

(111) Start of new paragraph in the middle of the page;
Clarify
 If you though the contents of $url could be very large,
to
 If you thought the content in $resp could be very large,

(120) 3rd paragraph, 2nd sentence;
"actual" should be "actually"

(122) three lines under the new heading "First Code"
change "use HTML::TokeParser;" to "use HTML::TokeParser 2.24;"

(126) first line under the heading "Debuggability"
correct "all the links" to "all the lines"

(134) example 9-2
change "use HTML::TreeBuilder 3;" to "use HTML::TreeBuilder 3.13;"

(135) Parse Options Section;
Two incidents of mistake.

A) In example beginning with
 $comments = $root->strict_comment();
last statement incorrectly reads
 $comments = $root->strict_comments(); -- Omit 's'

B) Two paragraphs later beginning with
 $root->strict_comments([boolean]);
Incorrect with 's' again, should read
 $root->strict_comment([boolean]);

(140) Second paragraph under "Traversing" heading;
Correct
 The traverse() method lets you both:
to
 The traverse() method lets you do both:

{144} first codeblock;
Add before the first line:
 use URI;

{144} about eight lines into the first codeblock;
Correct
 if(@children == 1 and ref $children[0] and $children[0]->tag eq 'a')
to
 if(@children == 1 and ref $children[0] and $children[0]->tag eq 'a') {
(Just adding a "{" at the end)

(149) example 10-1
change "use HTML::TreeBuilder;" to "use HTML::TreeBuilder 3.13;"

{149} Example 10-1 (lines 11 and 16 of code);
The attribute should be 'class' not 'style'. The value should be 'mutter' not
'mumble' (cf. p. 148).

Take
 $h3c->attr('style', 'scream');
and correct to
 $h3c->attr('class', 'scream');

And take
 $h3r->attr('style', 'mumble');
and correct to:
 $h3r->attr('class', 'mutter');

And in the dump on page 150, the bolded line, correct the second and third
bolded lines to:
 <h2 class="scream"> @0.1.0
and to
 <h2 class="mutter"> @0.1.1

(151) Second line of the last paragraph;

Correct
 "There's no point is"
to
 "There's no point in"

(152) HTML example, sixth-from-last line;
Take
 <tr class="top_button_bar">
and correct to:
 <tr class="bottom_button_bar">

(166) last codeblock
change "use HTTP::Cookies;" to "use HTTP::Cookies 1.30;"

(174) 2nd line of first codeblock:
Take
 $browser->name('ReportsBot/1.01');
and correct to
 $browser->agent('ReportsBot/1.01');

(175) the first paragraph's fifth line;
Correct
 is password protected
to
 is password-protected

(178) 1st paragraph, 4th line;
"writing" should be "write"

(181) second code line
change "use LWP::RobotUA;" to "use LWP::RobotUA 1.19;"

(187) the last codeblock's first line;
Correct
 my %notable_url_error; # URL => error messageS
to
 my %notable_url_error; # URL => error message
(Just removing the "S")

{195}
Take
 my $hit_limit = $option{'h'} || 500;
and correct it to:
 my $hit_limit = $option{'n'} || 500;

[i.e. 'n' for 'network hits', not 'h' for 'help']

(196) about 3/5ths of the way thru the codeblock;
Correct
 sub report { # This that gets run at the end.
to
 sub report { # This gets run at the end.

{220} entry for character 982;
The character should not be an uppercase pi, but instead should be
a lowercase pi that looks like an omega with a crossbar --
just like TeX \varpi -- as seen at http://members.spinn.net/~sburke/varpi.gif

(228) four lines from the bottom;
Correct
 it's term (how long
to
 its term (how long
(Just deleting the apostrophe)

Perl & LWP
by Sean M. Burke

The unconfirmed error reports are from readers. They have not yet been
approved or disproved by the author or editor and represent solely the
opinion of the reader.

Here's a key to the markup:
 [page-number]: serious technical mistake
 {page-number}: minor technical mistake
 <page-number>: important language/formatting problem
 (page-number): language change or minor formatting problem
 ?page-number?: reader question or request for clarification

This page was updated February 06, 2003.

UNCONFIRMED errors and comments from readers:

{51} last line, second from last paragraph;
reads:
userinfo, server, or port components).

should be:
userinfo, host, or port components).

(59) fifth line, paragraph after code sample;
reads:
city, state, and a submit button called zip.

should be:
city, state, zip, and a submit button called Search

(59) second to last paragraph, next to last line;
reads:
call to call
should be:
call

[203] Redirection;
Redirection seems to have some quirks that might be good to mention. Using, for

example, do_get with www.amazon.com does not show up as a redirection unless
$browser->requests_redirectable([]) is set. In which case the redirection is not
allowed.

#Example 1:
using default requests_redirectable
my $url = 'http://www.amazon.com/';
my ($content, $status_line, $is_success, $resp) = do_url($url);

print "status_line $status_line " . "\n";
print "is_success $is_success " . "\n";
($resp->is_redirect() ? print "is redirect \n" : print "not redirect \n");

RESULT:
status_line 200 OK
is_success 1
not redirect

#Example 2:
switch off redirects
$browser->requests_redirectable([]);
my $url = 'http://www.amazon.com/';
my ($content, $status_line, $is_success, $resp) = do_url($url);

print "status_line $status_line " . "\n";
print "is_success $is_success " . "\n";
($resp->is_redirect() ? print "is redirect \n" : print "not redirect \n");

RESULT:
status_line 302 Found
is_success
is redirect

sub do_url {

 my $url = shift;
 my $resp = $browser->get($url);
 #my $response = $browser->get(@_); # allows more flexibility
 return ($resp->content, $resp->status_line, $resp>is_success, $resp)
 if wantarray;
 # scalar return values
 return unless $resp->is_success; # returns undef if not success
 return $resp->content; # returns content

}

	Local Disk
	Perl & LWP
	JObjects QuestAgent - "Search by Field" Applet
	Copyright (Perl & LWP)
	Preface (Perl & LWP)
	Perl & LWP: Index
	Preface (Perl & LWP)
	The Gory Details (Perl & LWP)
	Colophon (Perl & LWP)
	Index: Symbols & Numbers
	Index: A
	Index: B
	Index: C
	Index: D
	Index: E
	Index: F
	Index: G
	Index: H
	Index: I
	Index: J
	Index: K
	Index: L
	Index: M
	Index: N
	Index: O
	Index: P
	Index: Q
	Index: R
	Index: S
	Index: T
	Index: U
	Index: V
	Index: W
	Index: X
	Index: Y
	Index: Z
	Structure of This Book (Perl & LWP)
	User's View of Object-Oriented Modules (Perl & LWP)
	So Why Do Some Modules Use Objects? (Perl & LWP)
	POST Example: ABEBooks.com (Perl & LWP)
	Converting Relative URLs to Absolute (Perl & LWP)
	Converting Absolute URLs to Relative (Perl & LWP)
	Installing LWP (Perl & LWP)
	User Agents (Perl & LWP)
	Example: AltaVista (Perl & LWP)
	Automating Form Analysis (Perl & LWP)
	Rewrite for Features (Perl & LWP)
	Modifying HTML with Trees (Perl & LWP)
	URLs (Perl & LWP)
	Processing (Perl & LWP)
	LWP in Action (Perl & LWP)
	Authentication (Perl & LWP)
	An HTTP Authentication Example:The Unicode Mailing Archive (Perl & LWP)
	Example: Babelfish (Perl & LWP)
	Token Sequences (Perl & LWP)
	Example: BBC News (Perl & LWP)
	Example: Extracting Linksfrom a Bookmark File (Perl & LWP)
	Introduction to Web Automation (Perl & LWP)
	Idiosyncrasies of HTML Forms (Perl & LWP)
	Individual Tokens (Perl & LWP)
	HTML Processing with Trees (Perl & LWP)
	Cookies, Authentication, and Advanced Requests (Perl & LWP)
	The LWP Class Model (Perl & LWP)
	HTML::TreeBuilder (Perl & LWP)
	Detaching and Reattaching (Perl & LWP)
	Basic HTML::TokeParser Use (Perl & LWP)
	Attaching in Another Tree (Perl & LWP)
	Regular Expression Techniques (Perl & LWP)
	Example: A Link-Checking Spider (Perl & LWP)
	Creating New Elements (Perl & LWP)
	HTTP::Response Objects (Perl & LWP)
	Words of Caution (Perl & LWP)
	Simple HTML Processing with Regular Expressions (Perl & LWP)
	Troubleshooting (Perl & LWP)
	Tokenizing Walkthrough (Perl & LWP)
	Example: Extracting Linksfrom Arbitrary HTML (Perl & LWP)
	Fetching Documents Without LWP::Simple (Perl & LWP)
	Inside the do_GET and do_POST Functions (Perl & LWP)
	HTML Processing with Tokens (Perl & LWP)
	More HTML::TokeParser Methods (Perl & LWP)
	Using Extracted Text (Perl & LWP)
	File Uploads (Perl & LWP)
	LWP and GET Requests (Perl & LWP)
	Forms (Perl & LWP)
	POST Example: License Plates (Perl & LWP)
	Limits on Forms (Perl & LWP)
	Relative URLs (Perl & LWP)
	Example: Fresh Air (Perl & LWP)
	Web Basics (Perl & LWP)
	LWP::Simple (Perl & LWP)
	Narrowing In (Perl & LWP)
	Adding Extra Request Header Lines (Perl & LWP)
	An HTTP Transaction (Perl & LWP)
	Deleting Images (Perl & LWP)
	When Regular Expressions Aren't Enough (Perl & LWP)
	HTTP POST (Perl & LWP)
	History of LWP (Perl & LWP)
	Example: Extracting Temperatures from Weather Underground (Perl & LWP)
	A User Agent for Robots (Perl & LWP)
	Programming with LWP Classes (Perl & LWP)
	Spiders (Perl & LWP)
	Order of Chapters (Perl & LWP)
	LWP Modules (Perl & LWP)
	HTTP Status Codes (Perl & LWP)
	Common MIME Types (Perl & LWP)
	Language Tags (Perl & LWP)
	Common Content Encodings (Perl & LWP)
	ASCII Table (Perl & LWP)
	Modules and Their Functional Interfaces (Perl & LWP)
	Modules with Object-Oriented Interfaces (Perl & LWP)
	What Can You Do with Objects? (Perl & LWP)
	What's in an Object? (Perl & LWP)
	What Is an Object Value? (Perl & LWP)
	Important Standards Documents (Perl & LWP)
	Acknowledgments (Perl & LWP)
	LWP Classes: Behind the Scenes (Perl & LWP)
	Getting the Data (Perl & LWP)
	Inspecting the HTML (Perl & LWP)
	First Code (Perl & LWP)
	Alternatives (Perl & LWP)
	Ideas for Further Expansion (Perl & LWP)
	200s: Successful (Perl & LWP)
	300s: Redirection (Perl & LWP)
	400s: Client Errors (Perl & LWP)
	500s: Server Errors (Perl & LWP)
	Comments & Questions (Perl & LWP)
	Conventions Used in This Book (Perl & LWP)
	Perl & LWP
	http://www.oreilly.com/catalog/perllwp/errata/perllwp.confirmed
	http://www.oreilly.com/catalog/perllwp/errata/perllwp.unconfirmed

