
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Postfix: The Definitive Guide

By Kyle D. Dent

Publisher: O'Reilly

Pub Date: December 2003

ISBN: 0-596-00212-2

Pages: 264

Postfix: The Definitive Guide eases readers from the basic configuration to the full power of
Postfix. It discusses the interfaces to various tools that round out a fully scalable and highly
secure email system. These tools include POP, IMAP, LDAP, MySQL, Simple Authentication and
Security Layer (SASL), and Transport Layer Security (TLS, an upgrade of SSL). A reference
section for Postfix configuration parameters and an installation guide are included.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
http://www.oreilly.com/catalog/postfix/reviews.html
http://www.oreilly.com/cgi-bin/reviews@bookident=postfix
http://www.oreilly.com/catalog/postfix/errata/default.htm
http://academic.oreilly.com/default.htm
http://www.oreillynet.com/cs/catalog/view/au/1285@x-t=book.view
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Postfix: The Definitive Guide

By Kyle D. Dent

Publisher: O'Reilly

Pub Date: December 2003

ISBN: 0-596-00212-2

Pages: 264

 Copyright

 Foreword

 Preface

 Audience

 Organization

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Chapter 1. Introduction

 Section 1.1. Postfix Origins and Philosophy

 Section 1.2. Email and the Internet

 Section 1.3. The Role of Postfix

 Section 1.4. Postfix Security

 Section 1.5. Additional Information and How to Obtain Postfix

 Chapter 2. Prerequisites

 Section 2.1. Unix Topics

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
http://www.oreilly.com/catalog/postfix/reviews.html
http://www.oreilly.com/cgi-bin/reviews@bookident=postfix
http://www.oreilly.com/catalog/postfix/errata/default.htm
http://academic.oreilly.com/default.htm
http://www.oreillynet.com/cs/catalog/view/au/1285@x-t=book.view

 Section 2.2. Email Topics

 Chapter 3. Postfix Architecture

 Section 3.1. Postfix Components

 Section 3.2. How Messages Enter the Postfix System

 Section 3.3. The Postfix Queue

 Section 3.4. Mail Delivery

 Section 3.5. Tracing a Message Through Postfix

 Chapter 4. General Configuration and Administration

 Section 4.1. Starting Postfix the First Time

 Section 4.2. Configuration Files

 Section 4.3. Important Configuration Considerations

 Section 4.4. Administration

 Section 4.5. master.cf

 Section 4.6. Receiving Limits

 Section 4.7. Rewriting Addresses

 Section 4.8. chroot

 Section 4.9. Documentation

 Chapter 5. Queue Management

 Section 5.1. How qmgr Works

 Section 5.2. Queue Tools

 Chapter 6. Email and DNS

 Section 6.1. DNS Overview

 Section 6.2. Email Routing

 Section 6.3. Postfix and DNS

 Section 6.4. Common Problems

 Chapter 7. Local Delivery and POP/IMAP

 Section 7.1. Postfix Delivery Transports

 Section 7.2. Message Store Formats

 Section 7.3. Local Delivery

 Section 7.4. POP and IMAP

 Section 7.5. Local Mail Transfer Protocol

 Chapter 8. Hosting Multiple Domains

 Section 8.1. Shared Domains with System Accounts

 Section 8.2. Separate Domains with System Accounts

 Section 8.3. Separate Domains with Virtual Accounts

 Section 8.4. Separate Message Store

 Section 8.5. Delivery to Commands

 Chapter 9. Mail Relaying

 Section 9.1. Backup MX

 Section 9.2. Transport Maps

 Section 9.3. Inbound Mail Gateway

 Section 9.4. Outbound Mail Relay

 Section 9.5. UUCP, Fax, and Other Deliveries

 Chapter 10. Mailing Lists

 Section 10.1. Simple Mailing Lists

 Section 10.2. Mailing-List Managers

 Chapter 11. Blocking Unsolicited Bulk Email

 Section 11.1. The Nature of Spam

 Section 11.2. The Problem of Spam

 Section 11.3. Open Relays

 Section 11.4. Spam Detection

 Section 11.5. Anti-Spam Actions

 Section 11.6. Postfix Configuration

 Section 11.7. Client-Detection Rules

 Section 11.8. Strict Syntax Parameters

 Section 11.9. Content-Checking

 Section 11.10. Customized Restriction Classes

 Section 11.11. Postfix Anti-Spam Example

 Chapter 12. SASL Authentication

 Section 12.1. SASL Overview

 Section 12.2. Postfix and SASL

 Section 12.3. Configuring Postfix for SASL

 Section 12.4. Testing Your Authentication Configuration

 Section 12.5. SMTP Client Authentication

 Chapter 13. Transport Layer Security

 Section 13.1. Postfix and TLS

 Section 13.2. TLS Certificates

 Chapter 14. Content Filtering

 Section 14.1. Command-Based Filtering

 Section 14.2. Daemon-Based Filtering

 Section 14.3. Other Considerations

 Chapter 15. External Databases

 Section 15.1. MySQL

 Section 15.2. LDAP

 Appendix A. Configuration Parameters

 Section A.1. Postfix Parameter Reference

 Appendix B. Postfix Commands

 Appendix C. Compiling and Installing Postfix

 Section C.1. Obtaining Postfix

 Section C.2. Postfix Compiling Primer

 Section C.3. Building Postfix

 Section C.4. Installation

 Section C.5. Compiling Add-on Packages

 Section C.6. Common Problems

 Section C.7. Wrapping Things Up

 Appendix D. Frequently Asked Questions

 Colophon

 Index

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Copyright

Copyright © 2004 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safari.oreilly.com). For more
information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

Postfix: The Definitive Guide, the image of a dove, and related trade dress ar e trademarks of
O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
http://safari.oreilly.com/default.htm
mailto:corporate@oreilly.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Foreword

All programmers are optimists—these words of wisdom were written down almost thirty years

ago by Frederick P. Brooks, Jr.
[1]

 The Postfix mail system is a fine example of this. Postfix
started as a half-year project while I was visiting the network and security department at IBM
Research in New York state. Although half a year was enough time to replace the mail system
on my own workstation, it was not nearly enough to build a complete mail system for general
use. Throughout the next year, a lot of code was added while the software was tested by a
closed group of experts. And in the five years that followed the public release, Postfix more
than doubled in size and in the number of features. Meanwhile, active development continues.

[1] Frederick P. Brooks, Jr.: The Mythical Man-Month: Essays on Software
Engineering, Addison Wesley, 1975.

One of the main goals of Postfix is wide adoption. Building Postfix was only the first challenge
on the way to that goal. The second challenge was to make the software accessible. While
expert users are happy to Read The Friendly Manual that accompanies Postfix, most people
need a more gentle approach. Truth be told, I would not expect to see wide adoption of Postfix
without a book to introduce the concepts behind the system, and which gives examples of how
to get common tasks done. I was happy to leave the writing of this book to Kyle Dent.

Just like Postfix, I see this book as a work in progress. In the time that the first edition of the
book was written, Postfix went through several major revisions. Some changes were the result
of discussions with Kyle in order to make Postfix easier to understand, some changes added
functionality that was missing from earlier versions, and some changes were forced upon
Postfix by the big bad ugly world of junk email and computer viruses. Besides the changes that
introduced new or extended features, many less-visible changes were made behind the scenes
as part of ongoing maintenance and improvement.

This book describes Postfix Version 2.1, and covers some of the differences with older Postfix
versions that were widely used at the time of publication. As Postfix continues to evolve, it will
slowly diverge from this book, and eventually this book will have to be updated. While it is a
pleasure for me to welcome you to this first edition, I already look forward to an opportunity to
meet again in the near future.

—Wietse Venema
Hawthorne, New York
September 19, 2003

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Preface

I'm always astounded when I think about the early designers of Internet technologies. They
were (and many still are) an amazing group of people who developed software and
technologies for a network that was minuscule, by comparison with today's Internet. Yet their
work scaled and has continued to function in not only a much larger but in a very different
environment. The expansion hasn't been completely without growing pains, but that doesn't
diminish this amazing feat. Sendmail is an example of one of the early technologies that was
written for a different universe, yet is still relevant and handles a large portion of email today.

Postfix has an advantage in that it was built with an awareness of the scope and hostile
environment it would have to face. In fact, its creation was motivated by the need to overcome
some of the problems of software written in a more innocent age. What a difference a little
hindsight can make.

I first started using Postfix when I was working with systems in a security-sensitive
environment. The promise of more flexibility and better security caught my interest as soon as
I heard about it. I was not disappointed. It didn't take long before I was hooked, and preferred
using Postfix everywhere. This book is my attempt to create a reference and a guide to
understanding how Postfix works. Its main goal is to explain the details and concepts behind
Postfix. It also offers instructions for accomplishing many specific tasks.

Documenting a piece of software that is still under active development is a bit like trying to
stop running water. Sadly, this book will be incomplete even before it is out. I've tried to
structure the information in the book in such a way as to exclude things that might become
irrelevant or quickly out-of-date, so that what you find in the book will be good information for
a long time to come. However, you may have to supplement this book with online
documentation, web sites, and the Postfix mailing list for coverage of the latest features.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Audience

Postfix is a network application written for Unix. The more you know about networking and
Unix, the better equipped you will be to manage a Postfix server. This book tries to explain
things in such a way as to be understandable to users new to Unix, but it is unrealistic to think
that you could learn to administer a Postfix server without having (or at least acquiring) some
Unix knowledge. The book focuses on Postfix itself. Other concepts are explained as needed to
understand the functions and configuration of Postfix. If you're new to Unix, you should
certainly consult other texts for general Unix information. Unix System Administration
Handbook by Evi Nemeth, et al. (Prentice-Hall) is an excellent choice, and includes a helpful
section on email. The relevant RFCs mentioned in this book can also be very helpful for
understanding the details of a subject.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Organization

Chapter 1 through Chapter 3 provide background information on Postfix and email, Chapter 4
through Chapter 7 discuss general aspects of running a Postfix server, and Chapter 8 through
Chapter 15 each present a specific topic that you may or may not need, depending on how you
use Postfix:

Chapter 1

Introduces Postfix and some general email concepts. Also discusses some of the design
decisions that went into Postfix.

Chapter 2

Covers required topics for understanding other concepts in the book. Anyone with a
basic understanding of Unix and email can safely skip this chapter.

Chapter 3

Explains the pieces of the modular architecture of Postfix and how Postfix handles email
messages.

Chapter 4

Covers a wide range of topics for configuring and managing a Postfix server.

Chapter 5

Explains how the Postfix queue manager works, and presents the tools used to work
with the queue.

Chapter 6

Discusses how DNS is used for email routing. Presents considerations for configuring
DNS to work with Postfix.

Chapter 7

Covers how Postfix makes local deliveries and how it operates in conjunction with POP

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

and IMAP servers.

Chapter 8

Discusses using Postfix to receive email for virtual domains.

Chapter 9

Discusses operating Postfix as a mail relay or gateway system.

Chapter 10

Discusses setting up mailing lists in Postfix, and using Postfix with mailing-list
managers. Provides examples with Majordomo and Mailman.

Chapter 11

Discusses Postfix controls for blocking unwanted mail messages.

Chapter 12

Covers using SASL libraries to provide SMTP authentication for clients to relay messages
through your Postfix server.

Chapter 13

Covers using the TLS patch to provide encrypted communications between clients and
your Postfix server.

Chapter 14

Discusses setting up external content filters with Postfix.

Chapter 15

Covers using external data sources for Postfix lookup tables.

Appendix A

Presents an alphabetical listing of Postfix configuration parameters.

Appendix B

Presents a list, with brief explanations, of the command-line utilities that come with
Postfix.

Appendix C

Discusses compiling and installing Postfix from source files.

Appendix D

Presents a list of frequently asked questions about Postfix.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Conventions Used in This Book

Items appearing in this book are sometimes given a special appearance to set them apart from
the regular text. Here's how they look:

Italic

Used for commands, email addresses, URIs, filenames, emphasized text, first references
to terms, and citations of books and articles.

Constant width

Used for literals, constant values, code listings, and XML markup.

Constant width italic

Used for replaceable parameter and variable names.

Constant width bold

Used to highlight the portion of a code listing being discussed.

These icons signify a tip, suggestion, or general note.

These icons indicate a warning or caution.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

O'Reilly maintains a web page for this book, that lists errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/postfix/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about O'Reilly books, conferences, Resource Centers, and the O'Reilly
Network, see O'Reilly's web site at:

http://www.oreilly.com/

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
http://www.oreilly.com/catalog/postfix/default.htm
mailto:

bookquestions@oreilly.com
http://www.oreilly.com/default.htm
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Acknowledgments

I would first like to thank Wietse Venema for Postfix, of course, but also for his many
contributions to the Internet community. Having had the honor to work with him on this book,
it is apparent to me that he brings the same level of intelligence and attention to detail to all of
his endeavors. This book has benefited greatly from his considerable input.

I have always admired O'Reilly & Associates as a company. After having had the experience of
working with them, my admiration has not diminished in the least. My editor, Andy Oram,
excellently personifies the goals of the company. I've enjoyed discussions with him, and his
comments were always very helpful. I appreciate his enormous patience. Lenny Muellner helped
me get going with text-processing tools and I'd like to thank David Chu for his timely assistance
when needed. I would also like to thank Robert Romano for turning my crude diagrams into the
professional figures you find in the book, and Reg Aubry for guiding the book through the
production process.

Several technical reviewers assisted me not only in staying honest and correct in the details,
but they also often offered useful stylistic suggestions. Thanks to Rob Dinoff, Viktor Dukhovni
(a.k.a. Victor Duchovni), Lutz Jänicke, and Alan Schwartz. I wish I had such a team looking
over my shoulder for everything I do.

I would also like to acknowledge the many members of the postfix-users@postfix.org list. It is
an active list with a low noise-to-signal ratio, populated by a group of remarkably capable and
helpful people. Its members not only help the user community, but have contributed through
their comments and discussions to the evolution of Postfix itself.

Finally, I owe a large debt of gratitude to my wife and first editor, Jackie. She subjected my
initial drafts to scrupulous tests for lucidity and sanity (shocking how often they failed). This
book is much improved from her patient and valuable input. She is an all-around good egg who
remained cheerful even when faced with reading and rereading several rewrites.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 1. Introduction

Internet email history goes back as far as the early 1970s, when the first messages were sent
across the Arpanet, the predecessor of today's Internet. Since that time, email has been, and
continues to be, the most widely used application on the Internet. In the olden days, email
delivery was relatively simple, and generally consisted of moving mail files from one large host
to another large host that served many users. As the Internet evolved and the network itself
became more complex, more flexible tools were needed to move mail between different
networks and different types of networks. The Sendmail package, released in the early 1980s,
was designed to deal with the many variations among mail systems. It quickly assumed a
dominant role for mail delivery on the Internet.

Today, most Internet sites use the SMTP mail protocol to deliver and receive mail messages.
Sendmail is still one of the most widely deployed SMTP servers, but there have been problems
with it. Sendmail's monolithic architecture has been the primary cause of numerous security
issues, and it can be difficult to configure and maintain.

Postfix was originally conceived as a replacement for the pervasive Sendmail. Its design
eliminates many opportunities for security problems. Postfix also eliminates much of the
complexity that comes with managing a Sendmail installation. Postfix administration is
managed with two straightforward configuration files, and Postfix has been designed from the
beginning to handle unexpected hardware or software problems gracefully.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

1.1 Postfix Origins and Philosophy

Postfix was written by Wietse Venema, who is widely known for his security tools and papers. It
was made available as open source software in December 1998. IBM Research sponsored the
initial release and has continued to support its ongoing development. (IBM calls the package
Secure Mailer.) There were certain goals from the beginning that drove the design and
development of Postfix:

Reliability

Postfix shows its real value when operating under stressful conditions. Even within
simple environments, software can encounter unexpected conditions. For example,
many software systems behave unpredictably when they run out of memory or disk
space. Postfix detects such conditions, and rather than make the problem worse, gives
the system a chance to recover. Regardless of hazards thrown its way, Postfix takes
every precaution to function in a stable and reliable way.

Security

Postfix assumes it is running in a hostile environment. It employs multiple layers of
defense to protect against attackers. The security concept of least privilege is employed
throughout the Postfix system, so that each process, which can be run within an isolated
compartment, runs with the lowest set of privileges it needs. Processes running with
higher privileges never trust the unprivileged processes. Likewise, unneeded modules
can be disabled, enhancing security and simplifying an installation.

Performance

Postfix was written with performance in mind and, in fact, takes steps to ensure that its
speed doesn't overwhelm other systems. It uses techniques to limit both the number of
new processes that have to be created and the number of filesystem accesses required
in processing messages.

Flexibility

The Postfix system is actually made up of several different programs and subsystems.
This approach allows for great flexibility. All of the pieces are easily tunable through
straightforward configuration files.

Ease-of-use

Postfix is one of the easier email packages to set up and administer, as it uses
straightforward configuration files and simple lookup tables for address translations and
forwarding. The idea behind Postfix's configuration is the notion of least surprise, which

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

means that, to the extent it's possible, Postfix behaves the way most people expect.
When faced with design choices, Dr. Venema has opted for the decision that seems
most reasonable to most humans.

Compatibility with Sendmail

With Sendmail compatibility, Postfix can easily replace Sendmail on a system without
forcing any changes on users or breaking any of the applications that depend on it.
Postfix supports Sendmail conventions like /etc/aliases and .forward files. The Sendmail
executable program, sendmail, is replaced with a Postfix version that supports nearly all
of the same command-line arguments but runs in conjunction with the Postfix system.
While your Sendmail-dependent programs continue to work, Postfix has been evolving
independently of Sendmail, and doesn't necessarily implement all email features in the
same way.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

1.2 Email and the Internet

Unlike most proprietary email solutions, where a single software package does everything,
Internet email is built from several standards and protocols that define how messages are
composed and transferred from a sender to a recipient. There are many different pieces of
software involved, each one handling a different step in message delivery. Postfix handles only
a portion of the whole process. Most email users are only familiar with the software they use for
reading and composing messages, known as a mail user agent (MUA). Examples of some
common MUAs include mutt, elm, Pine, Netscape Communicator, and Outlook Express. MUAs
are good for reading and composing email messages, but they don't do much for mail delivery.
That's where Postfix fits in.

1.2.1 Email Components

When you tell your MUA to send a message, it simply hands off the message to a mail server
running a mail transfer agent (MTA). Figure 1-1 shows the components involved in a simple
email transmission from sender to recipient. MTAs (like Postfix) do the bulk of the work in
getting a message delivered from one system to another. When it receives a request to accept
an email message, the MTA determines if it should take the message or not. An MTA generally
accepts messages for its own local users; for other systems it knows how to forward to; or for
messages from users, systems, or networks that are allowed to relay mail to other destinations.
Once the MTA accepts a message, it has to decide what to do with it next. It might deliver the
message to a user on its system, or it might have to pass the message along to another MTA.
Messages bound for other networks will likely pass through many systems. If the MTA cannot
deliver the message or pass it along, it bounces the message back to the original sender or
notifies a system administrator. MTA servers are usually managed by Internet Service Providers
(ISPs) for individuals or by corporate Information Systems departments for company
employees.

Figure 1-1. Simple Internet message flow

Ultimately, a message arrives at the MTA that is the final destination. If the message is
destined for a user on the system, the MTA passes it to a message delivery agent (MDA) for the
final delivery. The MDA might store the message as a plain file or pass it along to a specialized
database for email. The term message store applies to persistent message storage regardless
of how or where it is kept.

Once the message has been placed in the message store, it stays there until the intended

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

recipient is ready to pick it up. The recipient uses an MUA to retrieve the message and read it.
The MUA contacts the server that provides access to the message store. This server is separate
from the MTA that delivered the message and is designed specifically to provide access for
retrieving messages. After the server successfully authenticates the requester, it can transfer
that user's messages to her MUA.

Because Internet email standards are open, there are many different software packages
available to handle Internet email. Different packages that implement the same protocols can
interoperate regardless of who wrote them or the type of system they are running on. If you
are putting together a complete email system, most likely the software that handles SMTP will
be a different package than the software that handles POP/IMAP, and there are many different
software choices for each aspect of your complete email system.

1.2.2 Major Email Protocols

The communications that occur between each of these email system components are defined by
standards and protocols. The standards documents are maintained by the Internet Engineering
Task Force (IETF) and are published as Request For Comments (RFC) documents, which are
numbered documents that explain a particular technology or protocol.

The Simple Mail Transport Protocol (SMTP) is used for sending messages, and either the Post
Office Protocol (POP) or Internet Mail Application Protocol (IMAP) is used for retrieving
messages. SMTP, defined in RFC 2821, describes the conversation that takes place between
two hosts across a network to exchange email messages. The IMAP (RFC 2060) and POP (RFC
1939) protocols describe how to retrieve messages from a message store. The IMAP protocol
was developed after POP and offers additional features. In both protocols, email messages are
kept on a central server for message recipients who generally retrieve them across a network.

Note that the MUA does not necessarily use the same system for POP/IMAP as it does for SMTP,
which is why email clients have to be configured separately for POP/IMAP and SMTP. An ISP
might provide separate servers for each function to their customers, and corporate users who
are away from the office often retrieve their messages from the company POP/IMAP server, but
use the SMTP server of a dial-up ISP to send messages. MTA software running on SMTP servers
constantly listens for requests to accept messages for delivery. Requests might come from
MUAs or other MTA servers.

1.2.2.1 SMTP and email submission

SMTP is commonly used for email submission and for transmissions of email messages between
MTAs. When an MUA contacts an MTA to have a message delivered, it uses SMTP. SMTP is also
used when one MTA contacts another MTA to relay or deliver a message. Originally, SMTP had
no means to authenticate users, but extensions to the protocol provide the capability, if
required. See Chapter 7 for more information on authenticating SMTP users.

1.2.2.2 POP/IMAP and mailbox access

When users want to retrieve their messages, they use their MUA to connect to a POP or IMAP
server to retrieve them. POP users generally take all their messages from the server and
manage their mail locally. IMAP provides features that make it easier to manage mail on the
server itself. (See Chapter 12 for more information on using Postfix with POP and IMAP
servers.) Many servers now offer both protocols, so I will refer to them as POP/IMAP servers.

POP and IMAP have nothing to do with sending email. These protocols deal only with how users
retrieve previously delivered and stored messages.

Not all users need POP/IMAP access to the message store. Users with shell access on a Unix
machine, for example, might have their MUA configured to read their email messages directly
from the mail file that resides on the same machine.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

1.3 The Role of Postfix

Postfix is an MTA and handles the delivery of messages between servers and locally within a
system. It does not handle any POP or IMAP communications.

Figure 1-2 illustrates a simple example of message transmission where Postfix handles the
responsibilities of the MTA and local delivery. As the MTA, Postfix receives and delivers email
messages over the network via the SMTP protocol. For local delivery, the Postfix local delivery
agent can deposit messages directly to a message store or hand off a message to a specialized
mail delivery agent.

Figure 1-2. Example network email message delivery

This example shows Postfix as the SMTP server at both ends of the email transaction; however,
since Postfix is based on Internet standards, the other email server in this example could easily
be any other standards-compliant server. Postfix can communicate with any other server that
speaks SMTP (and even some that are not quite fluent). In our example, Heloise wants to send
a message to Abelard from her address (heloise@oreilly.com) to his address (abelard@postfix.
org.) Heloise uses her email client to compose her message, which passes it to her MTA (using
SMTP). As it happens, her MTA is a Postfix server that allows her to relay messages. After
accepting the message from Heloise's email client, the Postfix server determines where
Heloise's message needs to go, based on Abelard's email address. Using DNS (see Chapter 6
for more information on DNS and email) it figures out which SMTP server should accept
messages for Abelard's domain (postfix.org) and contacts that server (using SMTP). Abelard's
Postfix server accepts the message and stores it until Abelard is ready to pick it up. At this
point Postfix's job is done. When Abelard is ready to retrieve his messages, his email client,
using POP or IMAP, picks up Heloise's message.

This example leaves out the details of the complicated tasks involved when Postfix delivers
mail. In the case of messages with multiple recipients, Postfix has to figure out where to deliver
copies for each recipient. In case one or more recipients cannot receive mail due to a
networking or systems problem, Postfix has to queue the message and retry delivery

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

periodically. From a user's point of view, the Postfix piece of the operation is nearly invisible.
From the Internet mail system's point of view, Postfix handles most aspects of email message
delivery.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

1.4 Postfix Security

Email systems are necessarily exposed to possible attacks because their function requires that
they accept data from untrusted systems. The challenge is to build systems that are resistant
to attack, and any good security strategy includes multiple layers of protection. This is
particularly true for public systems in a potentially hostile environment. Postfix takes a
proactive and multilayered approach to security. The Postfix architecture limits the severity of
vulnerabilities, even if there are design or coding errors that might otherwise create major
vulnerabilities in a monolithic privileged program.

1.4.1 Modular Design

The modular architecture of Postfix forms the basis for much of its security. Each Postfix
process runs with the least amount of privilege necessary to get its particular job done. Many of
Sendmail's security problems were exacerbated because Sendmail ran as a privileged process
most of the time. Postfix operates with the minimum privilege necessary to accomplish a
particular task. Postfix processes that are not needed on a system can be turned off, making it
impossible to exploit them. For example, a network firewall system that only relays mail and
does not need local delivery can have all the Postfix components for local delivery turned off.
Postfix processes are insulated from each other and depend very little on any interprocess
communication. Each process determines for itself what it needs to know.

1.4.2 Shells and Processes

In most cases, the delivery of mail does not require a Unix shell process, but when a
configuration does make use of one, Postfix sanitizes information before placing it into
environment variables. Postfix tries to eliminate any harmful characters that might have special
meaning to a shell before making any data available to the shell.

Most Postfix processes are executed by a trusted master daemon. They do not run as user child
processes, so they are immune to any of the security problems that rely on parent-child
inheritance and communications. These attacks that use signals, shared memory, open files,
and other types of interprocess communication are essentially useless against Postfix.

1.4.3 Security by Design

A buffer overflow is another common type of attack against applications. In this type of attack,
crackers cause a program to write to memory where it is not supposed to. Doing so might allow
them to change the path of execution in order to take control of the process. I've already
mentioned that Postfix processes run with as little privilege as possible, so such an attack would
not get very far; moreover, Postfix avoids using fixed-size buffers for dynamic data, making a
successful buffer overflow attack highly unlikely.

An important security protection available on Unix systems is the ability to chroot applications.
A chroot establishes a new root directory for a running application such as /var/spool/
postfix. When that program runs, its view of the filesystem is limited to the subtree below /
var/spool/postfix, and it cannot see anything else above that point. Your critical system
directories and any other programs that might be exploited during an attack are not accessible.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

Postfix makes it very simple to cause its processes to run within a chroot (see more about
chrooting in Chapter 4). By doing so, you cause Postfix to run in its own separate compartment.
Even if Postfix is somehow subverted, it will not provide access to many of the methods an
attacker typically employs to compromise a system.

Because Postfix is designed to run even under stressful conditions, denial-of-service (DOS)
attacks are much less effective. If a system runs out of disk space or memory due to a DOS
attack or another type of problem, Postfix is careful not to make the situation worse. It backs
off from what it is trying to do to allow the system to recover. Postfix processes are configured
to use a limited amount of memory, so they do not grow uncontrollably from an onslaught of
messages.

The difficulty in planning for security is that you don't know what the next attack will be or how
it will be carried out. Postfix is designed to deal with adverse conditions no matter what their
cause. Its built-in robustness is a major factor in the degree of security that Postfix provides.
Indeed, Dr. Venema has said that he is not so much interested in security as he is in creating
software that works as intended, regardless of the circumstances. Security is just a beneficial
side effect.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

1.5 Additional Information and How to Obtain Postfix

You can get more information about Postfix at the official web site: The Postfix Home Page
(http://www.postfix.org/). The site contains the source code, documentation, links to add-on
software, articles, and additional information about Postfix. There is also information about
joining an active mailing list that discusses all aspects of Postfix.

If you don't have a copy of Postfix already, you can obtain the source code from the Postfix web
site. It is, however, quite possible that there is a precompiled package for your platform that
may be more convenient for you. If that is the case, you can obtain the Postfix package for
your operating system and use your system's normal tools for software installation and
configuration. You should check the normal repositories you use to get software for your
system.

There are many good reasons to build Postfix for yourself: there may not be a pre-packaged
bundle for your platform, you might not trust the packager of the bundle to have done
everything correctly for your environment, you might need support for add-ons that are not
built into a package, you might need a more current version than is available in packages, or
you might just enjoy the task. If you have any experience compiling software, you'll have no
trouble building Postfix. It's one of the easier open source packages to compile.

The Postfix web site has a download link that displays a list of mirrors from which you can get
the software. You should select the mirror that is closest to you. Postfix is available as either an
Official Release package or as an Experimental Release package. Even though it's called
experimental, you should consider the code to be very stable. Experimental releases contain
new features that might still change before they become official. Some new features are
available only in an experimental release, but you should feel comfortable using them. Just be
aware that they may evolve slightly in later releases until their feature sets are considered
stable enough for the official release. No Postfix software is released that hasn't gone through
extensive testing and review. Read through the RELEASE_NOTES file that comes with the
package to learn what the differences are between the current official and experimental
releases.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
http://www.postfix.org/default.htm
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 2. Prerequisites

This chapter presents some basic Unix and email concepts that you need in order to follow
explanations and examples presented later in the book. If you are already familiar with email
administration, you can safely skip the material here and move on to the next chapter. This
chapter does not give a systematic or comprehensive overview of either email or Unix
administration. There is already an enormous amount of information available on both topics.
This chapter simply presents an assortment of items that are referred to later in the book, with
the expectation that readers already understand them.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

2.1 Unix Topics

There's no question that the more familiar you are with Unix, the better a Postfix administrator
you'll be. Postfix is very much a Unix program working in conjunction with the underlying
operating system for many of its functions. If you're new to Unix, you should study an
introductory text. In the meantime, this section presents some fundamental concepts that you
will need to understand to follow explanations in the book.

2.1.1 Login Names and UID Numbers

The list of recognized users on a system is stored in the /etc/passwd file. Every user should
have a unique login name and user ID number (commonly written as uid or UID). The UID, not
the user's login name, is the important attribute for identity and ownership checks. The login
name is a convenience for humans, and the system uses it primarily to determine what the UID
is. Some Postfix configuration parameters require UIDs rather than login names when referring
to user accounts. Postfix sometimes takes on the identify of different users. A process is said to
be using the rights or privileges of that account when assuming its identity.

2.1.2 Pseudo-Accounts

A pseudo-account is a normal Unix system account except that it does not permit logins. These
accounts are used to perform administrative functions or to run programs under specific user
privileges. Your system most likely came installed with several pseudo-accounts. Account
names such as bin and daemon are common ones. Generally, these accounts prevent logins by
using an invalid password and nonexistent home directories and login shells. For Postfix
administration, you need at least one pseudo-account for Postfix processes to run under. You
may need additional ones for other functions, such as mailing-list programs and filters.

2.1.3 Standard Input/Standard Output

Nearly all processes on a Unix system have a standard input stream and a standard output
stream when they start. They read data on their standard input and write data on their
standard output. Normally, standard input is the keyboard and standard output is the monitor,
which is how users interact with running programs. Standard input and output can be
redirected so that programs can get input from, and send output to, a file or another program.
This is often how batch mode programs operate. For the purpose of email, you should be aware
of standard input and output because your mail system may have to interact with other
programs over their standard inputs and outputs. A mail filter program, for example, might
accept the contents of an email message on its standard input and send the revised contents to
its standard output. Programs usually also have a standard error stream that, like standard
output, is normally a user's monitor, but it can also be redirected. Standard input/output/error
are often written as stdin, stdout, and stderr. For more information, consult an introductory
book on Unix.

2.1.4 The Superuser

The administrative login on Unix systems is the root account. It is also referred to as the
superuser account, and you should treat it carefully. You should log in as the root user only

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/bin
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/daemon
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root

when its privileges are required to accomplish a particular task. Administering Postfix
sometimes requires root privileges. If you do not have superuser access on your system, you
cannot administer Postfix.

2.1.5 Command Prompts

When working with an interactive shell, you are normally greeted with a command prompt that
indicates the system is ready for you to enter a command. By convention, user command
prompts are shown as either the $ character or the % character, while the root prompt is
presented as the # character. You should use the root account only when it is necessary. In
examples in this book, a normal user prompt is shown as $, and that for root is shown as #. If
the example shows the prompt as #, you know that you must execute the command as root.

2.1.6 Long Lines

It is common usage in Unix to break long commands into multiple lines with a backslash (\) at
the end of the line, which indicates that two or more lines continue as if they were a single line.
The continuation backslash can be used at a command prompt and in shell scripts, and it is
commonly used in configuration files (but not in Postfix configuration files—see Chapter 4). In
this book, lines that don't fit on the page are continued with backslashes. If you follow the
examples, you can type lines exactly as shown with the backslashes, or simply combine the
continued lines into a single one.

2.1.7 ManPages

Documentation for Unix systems is kept in an online manual known as manpages. You can read
the documentation for a particular item by issuing the man command with the item as its
argument. For example, to read about the mailq command, simply type:

$ man mailq

A description of the command is presented on your screen, one page at a time. Press the
spacebar to continue scrolling through the information.

Manpages have a standard organization showing the syntax of the command, all options, and
descriptions of behavior and other context. Some users find manpages daunting, but you'll do
yourself a great service by getting comfortable with manpages. All Unix and Postfix commands
as well as many other features are documented in manpages. See an introductory Unix text or
your system documentation to learn more about manpages.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

2.2 Email Topics

Internet email is a complex subject with many aspects. There are important principles that
apply when administering an email system regardless of the MTA you are working with. This
section presents a few concepts that will help in understanding later explanations in the book,
but you are urged to learn as much about Internet email as possible from the many resources
available in books and online.

2.2.1 RFCs

RFCs, or Request for Comments documents, define the standards for the Internet. There are
several RFCs relating to Internet email, all of which are relevant to you if you are administering
an email system on the Internet. The two most commonly referenced RFCs for email are RFC
821 and RFC 822, which deal with how email messages are transferred between systems, and
how email messages should appear. These documents were put into effect more than 20 years
ago. They were updated in April 2001 with the proposed standards RFC 2821 and RFC 2822,
although you will still see many references to the original documents. RFC documents are
maintained by the Internet Engineering Task Force, whose site is available at http://www.ietf.
org/.

2.2.2 Email Agents

Chapter 1 introduced several of the email agents involved in message composition to final
delivery. For convenience, Table 2-1 contains a summary of these agents.

Table 2-1. Email agents

Agent Name Purpose

MUA Mail User Agent

Email client software used to compose, send, and retrieve email
messages. Sends messages through an MTA. Retrieves
messages from a mail store either directly or through a POP/
IMAP server.

MTA Mail Transfer Agent
Server that receives and delivers email. Determines message
routing and possible address rewriting. Locally delivered
messages are handed off to an MDA for final delivery.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
http://www.ietf.org/default.htm
http://www.ietf.org/default.htm

MDA Mail Delivery Agent

Program that handles final delivery of messages for a system's
local recipients. MDAs can often filter or categorize messages
upon delivery. An MDA might also determine that a message
must be forwarded to another email address.

2.2.3 The Postmaster

An email administrator is commonly referred to as a postmaster. An individual with postmaster
responsibilities makes sure that the mail system is working correctly, makes configuration
changes, and adds/removes email accounts, among other things. You must have a postmaster
alias at all domains for which you handle email that directs messages to the correct person or
persons. RFC 2142 specifies that a postmaster address is required.

2.2.4 Reject or Bounce

If a receiving MTA determines during the SMTP conversation (see Section 2.2.8 later in the
chapter) that it will not accept the message, it rejects the message. At that point the sending
system should generate an error report to deliver to the original sender. Sometimes the MTA
accepts a message and later discovers that it cannot be delivered—perhaps the intended
recipient doesn't exist or there is a problem in the final delivery. In this case, the MTA that has
accepted the message bounces it back to the original sender by sending an error report, usually
including the reason the original message could not be delivered.

The MTA that accepts a message takes responsibility for the message until it is delivered or
handed off to another MTA. When a system is responsible for a message and cannot deliver or
relay it, the responsible system informs the sender that the mail is undeliverable.

2.2.5 Envelope Addresses and Message Headers

A common source of confusion for email users is the fact that the To: address in email message
headers has nothing to do with where a message is actually delivered. The envelope address
controls message delivery. In practice, when you compose a message and provide your MUA
with a To: address, your MUA uses that same address as the envelope destination address, but
this is not required nor is it always the case. From the MTA's point of view, message headers
are part of the content of an email message. The delivery of a message is determined by the
addresses specified during the SMTP conversation. These addresses are the envelope
addresses, and they are the only thing that determine where messages go. See Section 2.2.8
later in the chapter for an explanation of the SMTP protocol.

Mailing lists and spam are common examples of when the envelope destination address differs
from the To: address of the message headers. For more information, see RFC 2821 and RFC
2822. Also see Section 2.2.7 later in the chapter for more information about the format of email
messages. If you follow the SMTP session in Example 2-2, try substituting any address you
want in the To: field of the message contents to see that it has no effect on where the message
is delivered.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postmaster
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postmaster

2.2.6 Local Parts of Email Addresses

RFC 2822 describes the format of email addresses in great detail. It specifies how things such
as quoting and comments should work in email addresses. If we ignore the more obscure
details, a simple email address is generally composed of three parts: the local part (which is
usually a username), the @ separator, and the domain name. The local part might also be an
alias to another address or to a mailing list. The local part is sometimes referred to as the
lefthand side (LHS), and the domain is sometimes called the righthand side (RHS). For more
information, see RFC 2822.

2.2.7 Email Message Format

Since RFC 822 was the document that originally described how Internet email messages should
be formatted, messages are commonly referred to as "in the RFC 822 format" or as an "RFC
822 message." You should understand the basics of the format since it is referred to in this
book and you will likely see it elsewhere. I'll use the newer proposed standard and refer to "RFC
2822 messages."

2.2.7.1 RFC 2822 messages

RFC 2822 specifies the format of both email messages and email addresses as they appear in
message headers (but not envelope addresses). The specification describes the format for
transmission, but many implementations use the same or a similar format to store messages. A
message is comprised of two parts: the header and the body. The header contains specific
fields with names such as To, From, or Subject followed by a colon (:). After the colon comes
the contents of the field. One message header field can span multiple lines. Lines that continue
a field start with whitespace characters (space or tab characters) to show that they are
continuations of the previous line.

The standard document provides a lot of detail about the header fields and what they should be
used for. There are rules about how fields relate to each other and when one or another must
be used, but in the simplest case, the only required fields are the Date: and the From: fields.
The standard also provides for customized fields that a particular email implementation might
want to create for its own use.

The header fields are separated from the message body by an empty line. The body of a
message contains the contents of the message itself. The body is purposely free-form, but
should contain only ASCII characters. Some defined headers have a prescribed structure that is
more restricted than the body. Binary files, such as images or executables, must be converted
in some way to ASCII characters, so they can be sent in compliance with the standard. Other
standards such as MIME encoding or traditional uuencoding deal with converting such files for
mailing. Example 2-1 shows a typical message with headers and body.

Example 2-1. Email message format

Return-Path: <info@oreilly.com>
Delivered-To: kdent@mail.example.com
Received: from mail.oreilly.com (mail.oreilly.com [192.168.145.34])
 by mail.example.com (Postfix) with SMTP id 5FA26B3DFE
 for <kdent@example.com>;

 Mon, 8 Apr 2003 16:40:29 -0400 (EDT)
Date: Mon, 8 Apr 2003 15:38:21 -0500
From: Customer Service <info@oreilly.com>
To: <kdent@example.com>
Reply-To: <info@oreilly.com>
Message-ID: <01a4e2238200842@mail.oreilly.com>
Subject: Have you read RFC 2822?

This is the start of the body of the message. It could continue
for many lines, but it doesn't.

The fields in the example are mostly self-explanatory. The Received: header is not required by
RFC 2822, but every MTA that handles a message normally prepends a Received: header to
the message, as discussed in RFC 2821, which is described in the following section.

2.2.8 The SMTP Protocol

The SMTP protocol is defined in RFC 2821. The protocol is actually quite simple to follow, and
was designed to be easily comprehensible both to humans and computers. A client connects to
an SMTP server, whereupon the server begins the SMTP conversation, which consists of a series
of simple commands and replies, including the transmission of the email message. The best
way to understand the protocol is to see it in action. You can easily try it yourself once you
have your mail server set up. Using a Telnet client, you can pose as a delivering MTA. Example
2-2 shows the steps and the basic commands to deliver a message.

Example 2-2. Email message delivery

$ telnet mail.example.com 25
Trying 10.232.45.151
Connected to mail.example.com.
Escape character is '^]'.
220 mail.example.com ESMTP Postfix
HELO mail.oreilly.com
250 mail.oreilly.com
MAIL FROM:<info@oreilly.com>
250 Ok
RCPT TO:<kdent@example.com>
250 Ok
DATA
354 End data with <CR><LF>.<CR><LF>

Date: Mon, 8 Apr 2003 15:38:21 -0500
From: Customer Service <info@oreilly.com>
To: <kdent@example.com>
Reply-To: <service@oreilly.com>
Message-ID: <01a4e2238200842@mail.oreilly.com>
Subject: Have you read RFC 2822?

This is the start of the body of the message. It could continue
for many lines, but it doesn't.
.

250 Ok: queued as 5FA26B3DFE

quit
221 Bye
Connection closed by foreign host.
$

The SMTP session depicted in Example 2-2 is actually the delivery that produced the sample
message in Example 2-1. To follow the example yourself, start by using a Telnet client to
connect to the mail server on port 25 at mail.example.com. You should connect to your own
Postfix server and type in your own email addresses for the envelope addresses. Port 25 is the
well-known port for SMTP servers. After the Telnet messages:

Trying 10.232.45.151
Connected to localhost.
Escape character is '^]'.

the server greets you with its banner:

220 mail.example.com ESMTP Postfix

SMTP server replies, such as the greeting message, always start with a three-digit response
code, usually followed by a short message for human consumption. Table 2-2 provides the
reply code levels and their meanings. The first digit of the response code is enough to know the
status of the requested command. In documentation the response codes are often written as
2xx to indicate a level 200 reply.

Table 2-2. SMTP response codes

Code level Status

2xx The requested action was successful. The client may continue to the next step.

3xx Command was accepted, but the server expects additional information. The
client should send another command with the additional information.

4xx The command was not successful, but the problem is temporary. The client
should retry the action at a later time.

5xx The command was not successful, and the problem is considered permanent.
The client should not retry the action.

After receiving the welcome banner, introduce yourself with the HELO command. The hostname
after the HELO command should be the name of the system you're connecting from:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail.example.com

HELO mail.oreilly.com

The server replies with a success. So you may continue:

250 mail.oreilly.com

Indicate who the message is from with the MAIL FROM command:

MAIL FROM:<info@oreilly.com>

The server accepts the sending address:

250 Ok

Indicate who the message is to with the RCPT TO command:

RCPT TO:<kdent@example.com>

The server accepts the recipient address:

250 Ok

Now you are ready to send the content of the message. The DATA command tells the server
that you have an RFC 2822 message ready to transfer:

DATA

The server replies that it accepts the command and is expecting you to begin sending data:

354 End data with <CR><LF>.<CR><LF>

At this point, you can transfer the entire contents of your message. The contents of messages
start with the message headers. When the message itself is finished, indicate the end by
sending a single period on a line by itself.

The server acknowledges the end of your message and replies that the transfer was
successfully completed:

250 Ok: queued as 5FA26B3DFE

At this point the server has taken responsibility for the message. If you wanted to continue with
more commands, you could do so now. Since you have no other messages to deliver to this
server, you can start to disconnect with the quit command:

quit

The server replies with a success and disconnects:

221 Bye

Finally, the Telnet client tells you that the connection has ended returns to the command
prompt:

Connection closed by foreign host.
$

This was, of course, the simplest example of an SMTP transaction. The basic protocol provides
additional commands and has been extended to allow for many enhancements. RFC 1869
provides a framework for adding additional features to the basic SMTP protocol. The enhanced
protocol is referred to as ESMTP. A client indicates its willingness to use the enhanced protocol
by beginning with the EHLO command instead of HELO. If the server also supports
enhancements, it replies with a list of the features it provides.

Many enhancements have been specified in various RFCs. You can learn about them by
searching for SMTP information on the IETF web site (http://www.ietf.org/). There are many
other resources available on the Web regarding the SMTP and ESMTP protocols.

[Team LiB]

http://www.ietf.org/default.htm
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 3. Postfix Architecture

You can easily manage and operate Postfix without understanding everything about how it
works. If you're ready to dive right in, you can skip this section and start at the beginning of
the next chapter. It might be difficult to digest all of the material here if you don't have much
experience with Postfix yet, but this chapter will give you an overview of the various pieces,
which might come in handy as you start to work with Postfix. Later, after you have more
experience with Postfix, you might want to return to this chapter to try to absorb more of the
details.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

3.1 Postfix Components

The architecture of Postfix is quite different from that of a monolithic system such as Sendmail,
which traditionally uses a single large program for its handling of email messages. Postfix
breaks down tasks into separate functions using individual programs that each perform one
specific task. Most of these programs are daemons, which are processes that run in the
background on your system. The master daemon is started first, and it invokes most other
processes, as needed. Postfix daemons that are invoked by the master daemon process their
assigned tasks and terminate. They might also terminate after a configured amount of time or
after handling a maximum number of requests. The master daemon is resident at all times, and
gets its configuration information at startup from both main.cf and master.cf. See Chapter 4 for
more information on Postfix configuration files.

Figure 3-1 depicts a high-level picture of the Postfix architecture. Broadly speaking, Postfix
receives messages, queues them, and finally delivers them. Each stage of processing is handled
by a distinct set of Postfix components. After a message is received and placed into the queue,
the queue manager invokes the appropriate delivery agent for the final disposition of the
message. The next few sections in this chapter discuss the details of each of the stages.

Figure 3-1. Broad view of the Postfix architecture

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

3.2 How Messages Enter the Postfix System

Messages come into Postfix in one of four ways:

1. A message can be accepted into Postfix locally (sent from a user on the same machine).

2. A message can be accepted into Postfix over the network.

3. A message that was already accepted into Postfix through one of the other methods is
resubmitted for forwarding to another address.

4. Postfix generates messages itself when it has to send notifications of undeliverable or
deferred delivery attempts.

There is always the possibility that a message is rejected before it enters the Postfix system, or
that some messages are deferred for later delivery.

3.2.1 Local Email Submission

The various Postfix components work together by writing messages to and reading messages
from the queue. The queue manager has the responsibility of managing messages in the queue
and alerting the correct component when it has a job to do.

Figure 3-2 illustrates the flow when a local email message enters the Postfix system. Local
messages are deposited into the maildrop directory of the Postfix queue by the postdrop
command, usually through the sendmail compatibility program. The pickup daemon reads the
message from the queue and feeds it to the cleanup daemon. Some messages arrive without
all of the required information for a valid email message. So in addition to sanity checks on the
message, the cleanup daemon, in conjunction with the trivial-rewrite daemon inserts
missing message headers, converts addresses to the user@domain.tld format expected by
other Postfix programs, and possibly translates addresses based on the canonical or virtual
lookup tables (see Chapter 4 for more information on lookup tables).

The cleanup daemon processes all inbound mail and notifies the queue manager after it has
placed the cleaned-up message into the incoming queue. The queue manager then invokes the
appropriate delivery agent to send the message to its next hop or ultimate destination.

Figure 3-2. Local email submission

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

3.2.2 Email from the Network

Figure 3-3 illustrates the flow when a network email message enters the Postfix system.
Messages received over the network are accepted by the Postfix smtpd daemon. This daemon
performs sanity checking and can be configured to allow clients to relay mail on the system or
deny them from doing so. The smtpd daemon passes the message to the cleanup daemon,
which performs its own checks then deposits the message into the incoming queue. The queue
manager then invokes the appropriate delivery agent to send the message to its next hop or
ultimate destination.

Figure 3-3. Email from the network

3.2.3 Postfix Email Notifications

When a user message is deferred or can't be delivered, Postfix uses the defer or bounce
daemons to create a new error message. The error message is handed off to the cleanup

daemon. It performs its normal checks before depositing the error message into the incoming
queue, where it is picked up by the queue manager.

3.2.4 Email Forwarding

Sometimes, after processing an email message, Postfix determines that the destination address
actually points to another address on another system. It could, at that point, simply hand off
the message to the SMTP client for immediate delivery, but to make sure that every recipient is
processed and logged correctly, Postfix resubmits it as a new message where it is handled like
any other locally submitted message.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

3.3 The Postfix Queue

The Postfix queue manager does the bulk of the work in processing email. Postfix components
that accept mail have the ultimate goal of getting the email message to the queue manager.
This is done through the cleanup daemon, which notifies the queue manager when it has
placed a new message into the incoming mail queue. Once the queue manager has a new
message, it uses trivial-rewrite to determine the routing information: the transport method
to use, the next host for delivery, and the recipient's address.

The queue manager maintains four different queues: incoming, active, deferred, and corrupt.
After the initial cleanup steps, the incoming queue is the first stop for new messages. Assuming
system resources are available, the queue manager then moves the message into the active
queue, and calls on one of the delivery agents to deliver it. Messages that cannot be delivered
are moved into the deferred queue.

The queue manager also has the responsibility of working with the bounce and defer daemons
to generate delivery status reports for problem messages to be sent back to the sender, or
possibly the system administrator, or both. In addition to the message queue directories, the
Postfix spool directory contains bounce and defer directories. These directories contain status
information about why a particular message is delayed or undeliverable. The bounce and defer
daemons use the information stored in these directories to generate their notifications. See
Chapter 5 for more detailed information on how the queue manager works.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

3.4 Mail Delivery

Postfix uses the concept of address classes when determining which destinations to accept for
delivery and how the delivery takes place. The main address classes are local, virtual
alias, virtual mailbox, and relay. Destination addresses that do not fall into one of these
classes are delivered over the network by the SMTP client (assuming it was received by an
authorized client). Depending on the address class, the queue manager calls the appropriate
delivery agent to handle the message.

3.4.1 Local Delivery

The local delivery agent handles mail for users with a shell account on the system where
Postfix is running. Domain names for local delivery are listed in the mydestination parameter.
Messages sent to a user at any of the mydestination domains are delivered to the individual
shell account for the user. In the simple case, the local delivery agent deposits an email
message into the local message store. It also checks aliases and users' .forward files to see if
local messages should be delivered elsewhere. See Chapter 7 for more information on local
delivery.

When a message is to be forwarded elsewhere, it is resubmitted to Postfix for delivery to the
new address. If there are temporary problems delivering the message, the delivery agent
notifies the queue manager to mark the message for a future delivery attempt and store it in
the deferred queue. Permanent problems cause the queue manager to bounce the message
back to the original sender.

3.4.2 Virtual Alias Messages

Virtual alias addresses are all forwarded to other addresses. Domain names for virtual aliasing
are listed in the virtual_alias_domains parameter. Every domain has its own set of users
that do not have to be unique across domains. Users and their real addresses are listed in
lookup tables specified in the virtual_alias_maps parameter. Messages received for virtual
alias addresses are resubmitted for delivery to the real address. See Chapter 8 for more
information on virtual aliases.

3.4.3 Virtual Mailbox Messages

The virtual delivery agent handles mail for virtual mailbox addresses. These mailboxes are
not associated with particular shell accounts on the system. Domain names for virtual
mailboxes are listed in the virtual_mailbox_domains parameter. Every domain has its own
set of users that do not have to be unique across domains. Users and their mailbox files are
listed in lookup tables specified in the virtual_mailbox_maps parameter. See Chapter 8 for
more information on virtual mailboxes.

3.4.4 Relay Messages

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

The smtp delivery agent handles mail for relay domains. Email addresses in relay domains are
hosted on other systems, but Postfix accepts messages for the domains and relays them to the
correct system. Relay configurations are common when Postfix accepts mail over the Internet
and passes it to systems on an internal network. Domain names for relay domains are listed in
the relay_domains parameter. See Chapter 9 for more information on relaying.

3.4.5 Other Messages

Messages that do not fit into one of the address classes are generally destined for other
domains hosted elsewhere on the network. Postfix accepts such messages only from authorized
clients, such as systems that run on the same local network. When a message has to be
delivered across the network, the queue manager calls the smtp delivery agent. The smtp agent
determines which host or hosts can receive the message and makes a connection to each in
turn until it finds one to accept it. If there are temporary problems delivering the message, the
smtp delivery agent notifies the queue manager to mark the message for a future delivery
attempt and store it in the deferred queue. Permanent problems cause the queue manager to
bounce the message back to the original sender.

When a destination system that has been unavailable comes back online, Postfix is careful not
to overwhelm it with all its pending messages. Whether delivering previously deferred
messages or new messages, Postfix, at first, makes only a limited (configurable) number of
connections to a receiving system. After Postfix has detected successful deliveries to a
particular site, it slowly increases (up to a configurable limit) simultaneous connections to it. If
Postfix detects any trouble from the receiving site, it starts to back off deliveries immediately.

3.4.6 Other Delivery Agents

There are other Postfix delivery agents that can be configured to handle messages for a
particular class or destination. Other delivery agents must be configured in the master.cf file.
They are invoked either through the class_transport parameter or through an entry in a
transport table, listed in the transport_maps parameter. Two common alternate delivery
agents are the lmtp and pipe agents.

3.4.6.1 Delivery via LMTP

The LMTP protocol is similar to SMTP, but it is used for deliveries between mail systems on the
same network. (See Chapter 7 for more information on LMTP.) For example, if a message has
to be delivered to a different software package, which might be running on the same machine
or another system on the local area network, the queue manager calls the lmtp delivery agent.
The most common example for using LMTP is when a POP/IMAP server stores messages in a
proprietary format. (Recall that POP and IMAP are protocols for users to retrieve their
messages.) The POP/IMAP server, in this case, has its own proprietary format for storing
messages, so Postfix uses the LMTP standard to hand off the message to the POP/IMAP server.
If there are any problems delivering the message, the lmtp delivery agent notifies the queue
manager to mark the message for a future delivery attempt and store it in the deferred queue.

3.4.6.2 Pipe delivery

Postfix offers the option of delivering messages to another program through the pipe daemon.

The pipe daemon delivers messages to external commands. A common use for the pipe
daemon is to have email delivered to an external content filter or another communications
medium, such as a FAX machine. If there are any problems delivering the message, the pipe
daemon notifies the queue manager to mark the message for a future delivery attempt and
store it in the deferred queue.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

3.5 Tracing a Message Through Postfix

Let's follow a typical message through the Postfix system. Figure 3-4, Figure 3-5, and Figure 3-
6 illustrate the process as the message goes from the originating system to a destination MTA,
which, in turn, forwards it to the final MTA, where it is held until the user is ready to read it. In
Figure 3-4, Helene (helene@oreilly.com) wants to send a message to Frank (frank@postfix.
org). Helene has an account on a system that runs Postfix. Her email client lets her compose
the message, and then it calls the Postfix sendmail command to send it. The Postfix sendmail
command receives the message from Helene's email software and deposits it into the maildrop
directory. The pickup daemon then retrieves the message, performs its sanity checks, and
feeds the message to the cleanup daemon, which performs the final processing on the new
message. If Helene's email client did not include a From: address, or did not use a fully-
qualified hostname in the address, cleanup makes the necessary fixes to the message.

Figure 3-4. Tracing message delivery 1

Once finished, cleanup places the message into the incoming queue and notifies the queue
manager that a new message is ready to be delivered. If the queue manager is ready to
process new messages, it moves the message into the active queue. Because this message is
destined for a user on an outside system, the queue manager has to alert the smtp agent to
handle the delivery of the message.

The smtp agent uses DNS (see Chapter 6) to get a list of email systems that can accept mail for
the domain postfix.org. The smtp delivery agent selects the most preferred MX host from the

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postfix.org

list and contacts it to deliver Helene's message.

Figure 3-5 shows Frank's email server at postfix.org also running Postfix, although the system
could be using any other standards-compliant MTA. The Postfix smtpd on Frank's server takes
the message from Helene's smtp delivery agent. After the smtpd daemon verifies that it should,
in fact, accept this message, it passes the message through to the cleanup daemon, which
performs its checks before depositing the message into the incoming queue.

Figure 3-5. Tracing message delivery 2

The queue manager moves the message to the active queue, performs its processing, and
determines that it should call on the local agent to make the final delivery of the message.
The local delivery agent finds that frank is an alias and resubmits the message through the
cleanup daemon for delivery to the new address.

Both cleanup and the queue manager call upon the trivial-rewrite daemon when
processing messages. trivial-rewrite helps with converting email addresses to a standard
format and determining the transport type and next hop for delivery.

When a new message has to be delivered to another network, the queue manager calls on
smtp, which checks the DNS for mail servers that can accept mail for the domain onlamp.com.
In Figure 3-6, the MTA at the onlamp.com system (once again by a happy coincidence, it's a
Postfix system) eventually hands the message to the local delivery agent, which deposits it
into the message store on that system. At this point Postfix has finished its job. Frank can now
read the message using his own email client, which might pull it directly from the local message
store or might use another protocol, such as POP or IMAP, to get the message for him to read.

Figure 3-6. Tracing message delivery 3

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postfix.org
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/frank
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/onlamp.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/onlamp.com

There are several variations that might have occurred in our simple example. Perhaps the
message could not be delivered at any step for some temporary reason, in which case the
delivery agent alerts the queue manager, which places the message into the deferred queue
and attempts another delivery at a later time. Another possibility is that doel is not an actual
account on the system but an account in an IMAP email system. In this case, the queue
manager might deliver the message through the lmtp agent or via a specialized command
configured through the pipe delivery agent.

There are many variations and potential complications for Postfix to deal with. Fortunately, the
architecture is robust enough to deal with nearly all situations, and flexible enough to easily
accommodate changes in the future.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/doel
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 4. General Configuration and Administration

One of the truly remarkable things about Postfix is that, in many cases, it works as soon as you
install it, with little or no change to its configuration. In the first section of this chapter, we'll
walk through checking the configuration and starting Postfix for the first time. Later sections
discuss Postfix configuration details.

By default, Postfix is configured as a traditional Unix mail server, sending and receiving
messages for all the accounts on the system. Your users can send and receive messages using
any email client software available on your system.

In most environments, Postfix works in conjunction with a variety of other software systems.
You should build each piece of your email system and test each one as a separate module
before trying to integrate them all together. As you add each module, test the system before
moving on to the next piece.

At this point you should have Postfix installed on your system. You might install Postfix from a
packaged bundle for your platform or compile it yourself. See Appendix C for help with
compiling Postfix, if you're building it yourself. Check your normal software sources for any
Postfix packages that might be available. If you haven't yet installed Postfix, either get a
package for your system or follow the instructions in Appendix C to build it. When you have
finished with the installation, come back to this chapter for the final configuration.

I will assume, in examples throughout the book, that your installation of Postfix uses the
default directories:

/etc/postfix

Configuration files and lookup tables

/usr/libexec/postfix

Postfix daemons

/var/spool/postfix

Queue files

/usr/sbin

Postfix commands

I will also assume that you or your installer created a postfix user and postdrop group. This

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

user and group should not be used for any other purpose on your system. If you have changed
any of the defaults, or if your Postfix package did, keep that in mind when you read the
examples presented in the book.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

4.1 Starting Postfix the First Time

There are two important issues to deal with before starting Postfix for the first time. The first is
how your system identifies itself. Postfix uses a configuration parameter called myhostname,
which must be set to the fully qualified hostname of the system Postfix is running on. Once
Postfix knows the fully qualified hostname, it can use that hostname to set default values for
other important parameters, such as mydomain. If the parameter myhostname is not set, Postfix
defaults to the hostname reported by the system itself. There is a complete discussion of
myhostname later in the chapter. You can see what name your system reports with the Unix
hostname command:

$ hostname
mail.example.com

A fully qualified hostname is comprised of both the individual hostname and the domain in
which it resides. Some systems are configured with their simple hostname, rather than its fully
qualified version:

$ hostname
mail

If your system is configured with just its simple hostname, Postfix cannot determine what the
fully qualified name is. You must therefore explicitly set the myhostname parameter. You can do
this quite easily with the postconf Postfix command. The postconf command is a Postfix utility
that provides an easy way to get a variety of information about your Postfix system. One of its
functions is to display or change a specific configuration parameter. You can use it to set the
myhostname parameter:

postconf -e myhostname=mail.example.com

The -e option tells postconf to edit the configuration with the parameters and values specified.
If your system is configured with its fully qualified hostname, you don't have to do anything to
the Postfix configuration.

The second important issue before starting Postfix for the first time is to make sure that your
system's aliases database is in the correct format. There are certain required aliases that you
should configure when operating your mail server in a production environment. We'll discuss
the aliases file later in this chapter. For now, be aware that it is a text file that must be mapped
into an indexed, binary format. Your existing aliases binary format might be different from what
Postfix uses by default on your system. You can rebuild the indexed file with the newaliases
command:

newaliases

This command doesn't require any arguments, and it simply recreates your alias database
without making any changes to your actual alias file.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

Having accomplished these two critical items, you are now ready to start Postfix. Execute the
following command:

postfix start

If Postfix encounters any problems at start up, it reports them to your terminal. After some
initial setup, Postfix detaches from the terminal and can no longer report problems to the
screen. It will, however, continue to send a lot of information to your system log. Whenever
you start or reload Postfix, be sure to check your system's log to make sure that there are no
reported errors or warnings. See Section 4.4.1 later in this chapter for information on Postfix
logging and how to find the log file it uses.

Under most circumstances, Postfix will start without any problems, and you should now be the
proud administrator of a currently running, fully functional Postfix system. See Chapter 7 for
information about configuring Postfix to work with a POP/IMAP server, so that your users do not
need shell access to your mail system. You should also review Chapter 6 for important
information on DNS and email.

To read about stopping and restarting Postfix, see Section 4.4.2 later in this chapter. The rest
of this chapter discusses Postfix configuration and administration.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

4.2 Configuration Files

The directory /etc/postfix contains Postfix configuration files. The two most important files used
in the configuration of Postfix are master.cf and main.cf. These files should be owned by, and
only writable by, the root user. They should be readable by everyone. Whenever you make

changes to these files, you have to reload Postfix for your changes to go into effect:
[1]

[1] If you change the inet_interfaces parameter, you must stop and start
Postfix.

postfix reload

The master daemon is the overall process that controls other Postfix daemons for mail
handling. The master daemon uses the master.cf file for its configuration information. The
master.cf file contains a line for each Postfix service or transport. Each line has columns that
specify how each program should run as part of the overall Postfix system. See Chapter 3 for
information on Postfix's architecture and how various components interact with each other. In
many installations, you will never have to change the default master.cf file. See Section 4.5
later in the chapter for information on when and how to make changes to master.cf.

4.2.1 The main.cf Configuration File

The main.cf file is the core of your Postfix configuration. Nearly all configuration changes occur
in this file. The default main.cf file lists only a portion of the nearly 300 Postfix parameters.
Most Postfix parameters do not need to be changed, but the flexibility is there when it's
required. All Postfix parameters are listed and described in the various sample configuration
files. The sample files are located in the directory specified by the sample_directory
parameter, which is usually the same directory as your main.cf file. Both the main.cf file and
the sample files that come with the Postfix distribution contain comments that explain each of
the parameters.

Throughout this book, when the text says to modify a parameter, it
always refers to a parameter in your main.cf unless a different file is
indicated.

You can edit main.cf with the postconf command, as you saw earlier in the chapter, or you can

change the file directly with any text editor
[2]

 (such as vi or emacs). The file contains blank
lines, comment lines, and lines that assign values to parameters. Comment lines start with the
character and continue to the end of the line. Blank and comment lines are ignored by
Postfix. Parameters can appear in any order within the file, and are written as you would expect:

[2] Postfix expects configuration files to contain normal Unix-style line endings. If
you edit your configuration files from another platform, such as Windows or Mac,

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

make sure that your editor uses the correct line endings for Unix.

parameter = value

A parameter definition must start in the first column of the line. The spaces around the equals
sign are optional.

Here is an example parameter assignment with a comment:

The myhostname value must be a fully qualified hostname.
myhostname = mail.example.com

The rest of the file continues below...

You cannot have a comment on the same line as a parameter. The following example is
incorrect and, with some parameters, could cause unexpected behavior that might be difficult
to track down:

#
This is a bad parameter assignment. Never do this.
#
myhostname = mail.example.com # must be fully qualified hostname

Do not use quotation marks around values. They have no significance in the Postfix
configuration, so they would be considered part of the value, which is probably not what you
want.

4.2.1.1 Line continuation

A line that starts with whitespace (tabs or spaces) is considered a continuation of the previous
line. This allows you to continue long parameter values onto multiple lines. The parameter
assignment:

mydestination = example.com oreilly.com ora.com postfix.org

is the same as:

mydestination = example.com
 oreilly.com
 ora.com
 postfix.org

4.2.1.2 Configuration variables

You can refer to the value of a defined parameter by putting a $ in front of the parameter name:

mydomain = example.com
myorigin = $mydomain

This causes the value of myorigin to be "example.com."

You can reference a value in the file even before it has been set. The following example works
as well as the previous one:

myorigin = $mydomain
mydomain = example.com

4.2.1.3 Multiple values

Many parameters can have more than one value. Multiple values can be separated by commas,
spaces, tabs, or new lines. Remember that when you separate values with new lines there must
be spaces or tabs in front of the values to indicate a continuation of the previous line:

mydestination = $mydomain, example.com, oreilly.com
mydestination = $mydomain example.com oreilly.com
mydestination = $mydomain
 example.com
 oreilly.com

These three assignments to mydestination are effectively the same.

Certain parameters allow you to place multiple values in a text file and then point the
parameter to that file in main.cf. A value that starts with a forward slash is assumed to be a
pointer to a file. If your system receives mail locally for many destinations, you may want to
keep the list of destinations in a separate file. Then point the mydestination parameter to that
file:

mydestination = /etc/postfix/destinations

The parameters that can use external files to store values are those that accept lists where the
order of the listed items is not significant, such as mynetworks, mydestination, and
relay_domains. Check the documentation for a particular parameter to see if it supports this
feature.

If you have thousands of items in a list, it can be more efficient to keep them in a lookup table
instead. Lookup tables are described in the next section.

Whenever you make a change to main.cf, you must reload Postfix for your changes to go into
effect:

postfix reload

See Section 4.4.2 later in the chapter for more information about stopping and starting Postfix.

4.2.2 Lookup Tables

Rather than using complicated rewriting or pattern transformation rules as Sendmail does,

Postfix makes use of simple, yet flexible, lookup tables. Many parameters point to lookup tables
to obtain important configuration information. One such parameter is canonical_maps. It's
used to rewrite email addresses in messages. Consider a site that uses account names
internally for email addresses, but wants any publicly visible addresses to have the form
firstname.lastname@example.com. For example, the address kdent@example.com should
appear as kyle.dent@example.com. A canonical_maps lookup table provides the mapping from
a key (kdent@example.com) to a value (kyle.dent@example.com).

There are many parameters that use lookup maps, but they all work on the same principle. An
email message (or client) provides some kind of key used to look up a value. Based on the
value, Postfix takes some action or makes some change.

4.2.2.1 Lookup table format

Postfix lookup tables are usually Unix database files, which are specially indexed files that
provide faster access to the stored items. Lookup tables start as simple text files, with each key
and value on the same line separated by spaces or tabs:

#
canonical mappings
#
kdent@example.com kyle.dent@example.com

Each entry has a unique key. The keys are often referred to as the LHS, or lefthand side of an
entry, and the values are referred to as the RHS, or righthand side of an entry. Keys in lookup
tables are not case-sensitive. The files can contain comment and blank lines just like main.cf,
and line continuation works by putting whitespace at the beginning of carry-over lines. Lookup
tables also do not treat quotation marks with any special significance.

Once you have created a text file with all of your mappings, you have to execute the postmap
command against it to create the actual indexed version of the file:

postmap /etc/postfix/canonical

Whenever you change your text file you must execute postmap against it.

The postmap command can also be used to query lookup tables. Use the -q option to query a
value:

postmap -q kdent@example.com /etc/postfix/canonical
kyle.dent@example.com

4.2.2.2 Database formats

Different types of Unix database files have different internal formats. The format you use
depends on the database libraries available on your system. Normally Postfix supports one or
more of three types: btree, dbm, and hash. Depending on your system libraries, you may have
fewer or more than these three types available. It's important to know which map type you
use. The postconf command with the -m option lists all of the map types supported by your

installation of Postfix:

$ postconf -m
static
pcre
nis
regexp
environ
proxy
btree
unix
hash

The output of this command lists all map types, some of which are used for access to other
kinds of storage. But you should find at least one of the three database types (btree, dbm, and
hash).

The default_database_type parameter tells you which database type Postfix uses by default:

$ postconf default_database_type
default_database_type = hash

All of the examples in this book use the hash type, but if your
installation is using something different, be aware of that as you
follow the examples.

If you don't specify a database type with postmap, it automatically uses your default type. In
general, you can just use the default type configured on your system, but you must know what
it is when assigning lookup tables to mapping parameters.

When you assign a lookup table to a parameter, you must specify both the map type and the
path to the lookup table. The format of lookup maps is:

parameter = type:name

where type is the storage access method and name is the resource containing keys and values.
With indexed datafile lookups, name is the filename. The canonical example is assigned as
follows:

canonical_maps = hash:/etc/postfix/canonical

You can assign multiple lookup tables to a parameter. Postfix searches the tables in the order
listed, stopping as soon as it finds a match. Some table lookups are recursive, depending on
the parameter. The canonical_maps parameter in these examples is one such parameter. With
recursive lookups, once a value is found, Postfix tries to match it against all of the keys again
until a key matches itself or is not found.

You may have noticed that when postmap indexes files, it creates additional files. postmap
creates either one additional file with the extension .db, or two additional files with the
extensions .dir and .pag, depending on your database format. When you assign the lookup
table to its parameter, specify the path and filename without any extensions.

4.2.2.3 Search order

Since keys are often email addresses, Postfix automatically parses addresses, breaking them up
into their parts. You can have keys that match a full address, just the domain portion, or just
the local part. The way Postfix searches for addresses or portions of addresses depends on the
type of mapping parameter. Certain maps might sensibly include the simple local part of an
address, such as canonical_maps. Others would not expect a local part key, such as
transport_maps. The order in which Postfix searches for a match differs slightly, depending on
which type of parameter it's working with. Check the lookup table's manpage to see which
search order it follows.

The search order where local parts are expected, such as with canonical_maps,
relocated_maps, and virtual_alias_maps, is as follows:

1. The complete address. Example: kdent@example.com

2. The local part alone. Example: kdent

3. The domain portion only, specified with the @ character. Example: @example.com

For lookup tables where it doesn't make sense to have a local part, such as with
transport_maps, Postfix searches for matches in the following order:

1. The complete address. Example: kdent@example.com

2. The domain by itself. Example: example.com

3. The domain specified with an initial period, which matches any subdomain. Example: .
example.com

If you always want domains to match themselves plus any subdomain, you can simplify your
lookup tables somewhat by setting the parent_domain_matches_subdomains parameter. The
parameter, by default, contains many lists. To add transport_maps to the list, append it as
follows:

parent_domain_matches_subdomains =
 debug_peer_list
 fast_flush_domains
 mynetworks
 permit_mx_backup_networks
 qmqpd_authorized_clients
 relay_domains
 smtpd_access_maps
 transport_maps

transport_maps = hash:/etc/postfix/transport

Now, a domain entry in the /etc/postfix/transport matches itself and all of its subdomains
automatically. You no longer need any entries such as the third item, .example.com, from the
preceding list.

4.2.2.4 Lookup tables and simple lists

Some parameters that normally take a simple list, such as mydestination, can also be
specified with a lookup table. The LHS keys are the items in the list. You still have to provide a
RHS value for each key, but the value is simply ignored. You can specify any text you want. It's
a good place to provide yourself a comment. Using a lookup table for a straight list is useful
when you have thousands of items; otherwise, a simple text file is more than adequate and
probably has better performance. If you use a lookup table for lists of network IP addresses,
you cannot use the network/netmask notation to specify an entire subnet. You must list each
address individually. Check the documentation to see if a list parameter supports the lookup
table feature.

4.2.2.5 Regular expression tables

Postfix provides a special lookup table type using regular expressions that offers even more
flexibility for matching keys in lookup tables. Regular expressions are used in many Unix
utilities. They provide a powerful tool for specifying matching patterns. There are two types of
regular expression libraries that you might use with Postfix, depending on which libraries are
available on your system.

By default, Postfix uses POSIX extended regular expressions, which I'll refer to as regexp.
POSIX, which stands for Portable Operating System Interface, is a standard that encourages
portability across different operating systems. It includes specifications for regular expressions.
Postfix also supports Perl-compatible regular expressions, which I'll refer to as pcre. If you're
used to regular expressions in Perl, you'll find that regexp patterns are a bit different. If you
want pcre support, be sure you have a pcre library to link with when building Postfix. With the
pcre format, some features differ from regexp, and the performance is usually better. It's
possible that your Postfix distribution already includes pcre support. You can check by
executing the postconf command with the -m option, as you did earlier in the chapter.

If pcre is listed among your map types, then you can use Perl-style regular expressions for your
regular expression lookup tables. But don't rush to add pcre support if you don't have it; the
default regexp is quite powerful and usually adequate for administrators who need regular
expressions. Install pcre only if you know of particular Perl-style regular expression features
you need.

Both Perl-style and POSIX regular expressions are very well-documented in many places. Any
book on Perl should include information on its regular expressions, and if you have Perl installed
on your system, you should find a manpage called perlre(1). Documentation for regexp
usually appears in a manpage called re_format(7). If your system does not include the
manpage, you should be able to find it on the Web. sed & awk by Dale Dougherty and Arnold
Robbins (O'Reilly) contains information on POSIX regular expressions.

To use regular expression tables, specify either regexp or pcre as the map type when assigning
tables to map parameters:

body_checks = regexp:/etc/postfix/re_body_checks

Entries in re_body_checks are conventionally specified—with the regular expression pattern
between two forward slashes—as the key, followed by whitespace, followed by the mapped
value:

/pattern/ value

The most common use of regular expression tables is with the header_checks and
body_checks parameters for blocking spam. See Chapter 11 for more information.

4.2.3 Other Formats

Postfix can make use of other backend systems for its lookup tables. (Later chapters discuss
using MySQL and LDAP lookup tables.) When you make use of these external sources for
lookup values, you should start with one of the simple database formats, such as dbm or hash.
Make sure your configuration works as expected. After setting up your external data source,
verify that it returns the same results as your simple tables.

The postmap with the -q option is an important tool for testing any kind of lookup table. For
example, the following two commands should return the same values when you test your
MySQL database:

$ postmap -q hash:/etc/postfix/transport

$ postmap -q mysql:/etc/postfix/transport.cf

See Chapter 15 for more information on using Postfix with external data sources.

4.2.4 Alias Files

Alias files are a special case of Postfix lookup tables because they use a Sendmail-compatible
format. The file has traditionally been called aliases, and its location depends on your platform,
but it is normally within the /etc directory or a subdirectory below it. By default, Postfix is
configured to point to your original aliases file, so if you are migrating from Sendmail, your
existing aliases continue to work.

4.2.4.1 Locating aliases

Historically, email systems used a single alias database. Postfix lets you have as many as you
want. Multiple alias files can help in organizing your configuration information. Typically,
administrators configure multiple alias files for convenience when configuring separate mailing
lists. The alias_maps parameter points to your alias files.

If your system supports NIS, which is a network database of users (including their aliases),
then by default Postfix includes NIS among your alias maps. A typical default alias_maps looks
like the following:

alias_maps = hash:/etc/aliases, nis:mail.aliases

If your system includes support for NIS, but you're not using it, you should change the
parameter so that it points to your aliases file only:

alias_maps = hash:/etc/aliases

You may want to locate your aliases file in your Postfix configuration directory for consistency.
Some administrators prefer to have all of the email configuration files located together. Simply
reassign alias_maps to point to the new location:

alias_maps = hash:/etc/postfix/aliases

You should also reassign alias_database so that your newaliases command continues to work
correctly (see the next section):

alias_database = hash:/etc/postfix/aliases

4.2.4.2 Building alias database files

Since the format of alias maps differs from that of Postfix lookup tables, you cannot use
postmap to build the alias database from your text file. Instead, Postfix provides the postalias
command. Its command-line syntax is the same as that of postmap, allowing you to create or
query alias maps. To build an alias database from your aliases file, execute the following:

postalias /etc/aliases

Another Sendmail compatibility command related to alias files is the newaliases command. It
provides a convenient way to rebuild your alias databases. The Postfix installation includes a
replacement version of the command that follows the same syntax as the original. It's normally
executed with no arguments and determines which alias files to rebuild from the
alias_database parameter. The alias_database parameter differs from alias_maps in that it
includes only standard Unix database-mapped files (those that should be indexed by
newaliases), whereas alias_maps might also contain other map types such as nis. newaliases
uses the default_database_type parameter discussed earlier to determine which database
format to use.

4.2.4.3 Alias file format

The text file for alias databases is much like Postfix lookup tables, except for the alias definition
itself. Alias files can have blank and comment lines that are ignored. Comments are marked by
a # at the beginning of the line and cannot be on the same line as an alias definition. A single
alias definition can be broken onto multiple lines by starting continuation lines with whitespace.

The form of an alias definition consists of the name being aliased, followed by a colon, followed
by one or more targets for the aliased name. Aliases can be directed to different types of
targets (discussed below). Multiple targets are separated by commas. Both aliases and targets
should be quoted if they contain whitespace or any special characters such as a #, :, and @:

alias: target1, target2, ...

The LHS aliases are always local addresses, so you cannot specify a domain name with an alias
key. The target is often one or more addresses, but can be any of the following:

Email addresses

Any RFC 2822 address is allowed, meaning target addresses can be local or forwarded
to another site for delivery. For example:

kyle.dent: kdent, kdent@oreilly.com

Filename

Specify the full path to a file. New messages are appended to the file specified. Delivery
occurs to the file as it would to any local mailbox. See Chapter 7 for information on local
delivery to mailboxes and on specifying different mailbox formats. For example:

info: /usr/local/mail/info_box

Command

Specify a pipe character and a command. See Chapter 14 for more information on
delivery to commands. For example:

info: "|/usr/local/bin/autoreply"

:include:

An included file contains a list of additional alias targets. The targets in the file can be
any valid target type as described here, but by default filenames and commands are not
allowed. The next section discusses configuration parameters to override these default
restrictions. For example:

info: :include:/usr/local/mail/info_list

Normally, when Postfix makes a local delivery it assumes the identity of the recipient of the
message. With aliases, Postfix uses the identity of the owner of the alias file, except when the
file is owned by root. When a delivery would occur as root, Postfix uses the identity of the
account configured with the default_privs parameter instead.

4.2.4.4 Alias restrictions

You can control which kinds of targets are allowed in your alias files with the parameters
allow_mail_to_commands and allow_mail_to_files. Each of these parameters takes a list of
the aliasing mechanism that permits its action. Aliasing mechanisms are "alias," the alias file
we've been discussing; "include," the include target, and "forward," which is the .forward file
discussed in Chapter 7.

The default setting for the two parameters is to allow delivery to commands and files from both
alias and .forward files, but not from include files, for security considerations. If you want to
disallow delivery to commands and files from your aliases database entirely, set the parameters
to blank:

allow_mail_to_commands =
allow_mail_to_files =

If you would like to make delivery to commands and files available in all the alias mechanisms,
set the parameters as follows:

allow_mail_to_commands = alias, forward, include
allow_mail_to_files = alias, forward, include

This setting is equivalent to the default behavior for Sendmail. However, it could expose access
to possibly vulnerable mailing-list managers that might be coerced into adding a filename or
command as a destination address. If you don't need the additional include option for files and
commands, it's best to accept the Postfix default.

4.2.4.5 Important aliases

There are several common aliases that are configured by default. By convention, these system
aliases point to the root account. You want to make sure that root's mail is read regularly.
This is normally accomplished by creating an alias for root to the normal login account of the
person or persons responsible for system administration.

RFC 2142 defines several mailbox names that all domains should have, depending on which
services they run on the Internet. At a minimum, you should have a postmaster alias, and you
should review the RFC to see if there are other aliases you want to create.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

4.3 Important Configuration Considerations

We saw at the beginning of this chapter how Postfix requires only minimal configuration
changes to work. Depending on how you plan to use your Postfix system, you may want to
consider some of the more common options. This section discusses how your system identifies
itself, and then covers the very important topic of relay control.

4.3.1 Configuring Your MTA Identity

There are four parameters dealing with your system's hostname and domain that you want to
consider, no matter how you use Postfix: myhostname, mydomain, myorigin, and
mydestination.

4.3.1.1 myhostname and mydomain

We discussed the purpose and importance of the myhostname parameter earlier in this chapter.
If myhostname is not specified, Postfix uses the function gethostname to determine what your
system's hostname is. If your system correctly reports the fully qualified hostname, you can
leave myhostname unspecified in the configuration file. Some systems may not be configured
correctly or may not report the fully qualified version of the hostname. In these cases, you can
set either myhostname to the fully qualified hostname or mydomain to your system's domain. If
mydomain is explicitly set, Postfix automatically sets myhostname to the domain name specified
and the local hostname reported by gethostname to create the fully qualified hostname.

If you set myhostname to the system's fully qualified hostname but omit mydomain, Postfix uses
the value of myhostname, minus the first component of the fully qualified hostname, to
automatically set mydomain. A value of mail.example.com for myhostname causes mydomain to
be example.com unless you explicitly set it to something else. Similarly, a hostname of mail.ny.
example.com causes the value to be ny.example.com. If your system does not report its fully
qualified name, and you have not set either the mydomain or myhostname parameters, Postfix
reports the problem in your log file. See Section 4.4.1 later in this chapter.

4.3.1.2 myorigin

When your users send or receive mail through the Postfix system with no domain name
specified in the envelope or header addresses, the parameter myorigin determines what
domain name should be appended. The default is to use the value of myhostname. If Postfix is
running on a system whose hostname is mail.example.com, messages from the user kdent
have a From: address of kdent@mail.example.com. However, frequently users want their mail
to be sent from the domain name without any extra host information (kdent@example.com
instead of kdent@mail.example.com). If that is the case, set myorigin to $mydomain:

myorigin = $mydomain

4.3.1.3 mydestination

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

The mydestination parameter lists all the domains your Postfix system should accept mail for
and deliver to local users. By default Postfix accepts mail destined for $myhostname and
localhost.$mydomain. If you want your system to accept mail for your entire domain and not
just the single host it is running on, add $mydomain to the list:

mydestination = $myhostname, localhost.$mydomain, $mydomain

Now your mail server can act as a gateway receiving all mail for the domain.

4.3.2 Relay Control

In addition to accepting mail and delivering messages to your local users, Postfix also relays
messages to other systems. It's very important to restrict who is allowed to relay messages
through your system. Systems on your own network may require the ability to send messages
anywhere, but you do not want to provide the rest of the world with the same service. Relay
control is an important topic in email administration because of the prevalence of Unsolicited
Bulk Email (UBE), or spam. (See Chapter 11for more information on UBE.) A common practice
among spammers is to find a well-connected system that allows them to relay their mail. You
want to prevent anyone who is not authorized from using your system to relay mail. If you
leave yourself configured as an open relay, not only will you be contributing to the spam
problem, but your own machine may become unusable as it is abused by spammers.
Furthermore, you may find that other systems start refusing mail from you as they discover
that your system is the source of spam. They'll refuse the spam as well as any legitimate
messages your own systems send. Mail servers that permit anyone to relay mail are called
open relays.

4.3.2.1 Restricting relay access

By default Postfix is not an open relay. The parameters mynetworks_style and mynetworks
determine what other systems can use your mail server to send messages. The default
configuration allows relaying only from other machines that are connected to the same IP
subnet as your server. You can limit or broaden the range of addresses that should be allowed
to relay by setting the parameter mynetworks_style. If you prefer to limit relaying to the local
machine only, set mynetworks_style to "host". You can also set mynetworks_style to "class"
to allow relaying by any host within the same class A, B, or C network as your server. For many
networks a class setting opens relaying to too many systems. If you aren't familiar with IP
address classes, stick to the default "subnet" or more restrictive "host" settings.

Alternatively, you can explicitly indicate the hosts that should be allowed to relay mail by
setting mynetworks. If you set mynetworks, the mynetworks_style parameter is ignored. You
can list individual IP addresses or specify subnets using the network/netmask notation—for
example, 192.168.100.0/28. This parameter is handy if you need to provide mail relay to hosts
outside of your network because you can list specific IP addresses regardless of their
relationship to your own subnet. If, for example, you want to provide relaying to remote users,
you simply add an IP address to your list. In this case, your remote users need a static IP
address, or at least an address assigned from a limited range of addresses. If your remote
users do not have static IP addresses, then you have to configure some kind of SMTP
authentication.

4.3.2.2 SMTP authentication

All of the techniques for SMTP authentication introduce their own complexities. You would be
wise to consider simpler options before selecting an authentication technique. Is it possible to
get static IP addresses for your remote users? Can your remote users avail themselves of
another SMTP server? Perhaps your users' remote access provider offers an SMTP server as
well.

Your first inclination may be to use UBE controls to permit mail relaying when a message's
envelope sender address is from the local domain. Don't do this. Envelope addresses are trivial
to fake, and spammers know to use local addresses for this purpose. Configuring your mail
server in this way makes you an open relay.

4.3.2.3 Dynamic IP solutions

Chapter 12 discusses using SASL for SMTP authentication. SASL is a general protocol that
defines how a server and client can exchange authentication credentials. It requires that
additional libraries be linked to your SMTP server. There are three alternatives to SASL that all
work similarly: pop-before-smtp, DRAC (Dynamic Relay Authorization Control), and WHOSON.
Each of these methods is designed to work with clients that have dynamically assigned IP
addresses. They require that a user first log in to a POP/IMAP server, thereby supplying the
client's currently assigned IP address to your system or network. The client IP address is fed to
the SMTP server, which then permits mail relaying by the client system for some configurable
time limit. This technique is mostly transparent to end users, but it does require that they first
check for new messages (logging into the POP/IMAP server) before trying to send out any
messages.

Both pop-before-smtp and DRAC work with Postfix by dynamically updating a Postfix lookup
table, adding new addresses as users authenticate, and deleting others when the time period
expires. Postfix doesn't require any special libraries or configuration. You simply configure it to
check the lookup table that is updated when users log in via your POP/IMAP server. Your POP/
IMAP server, on the other hand, may require changes and recompiling to work. DRAC differs
from pop-before-smtp in that it can work over a network, while pop-before-smtp requires that
the POP/IMAP server be installed on the same system as the SMTP server.

WHOSON is actually a protocol that provides an interface to both the POP/IMAP and SMTP
servers. You have to run a WHOSON server on your network, and you must obtain a patch that
adds a new lookup type to Postfix. After building Postfix with the patch, it can communicate
with the WHOSON server to determine if a particular client IP address should be allowed to
relay mail.

4.3.2.4 Certificate authentication

Another option to consider is client-side certificate authentication. (See Chapter 13 for a full
discussion of Transport Layer Security and certificates.) We normally think of certificates as a
means to encrypt communications, but they can also be used as a strong method of
authentication. However, they do require management of certificates and support for the TLS
protocol.

None of these add-ons is an ideal solution. They require additional code compiled into your
existing daemons that may then require special write access to system files. They also require

additional work for busy system administrators. If you cannot use any of the nonauthenticating
alternatives mentioned earlier, or your business requirements demand that all of your users'
mail pass through your system no matter where they are on the Internet, SASL is probably the
solution that offers the most reliable and scalable method to authenticate users.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

4.4 Administration

Running a mail server is an ongoing task. You cannot start it and forget about it. There are
periodic administrative tasks, and you should regularly check for any problems your system
might have. This section discusses many of those tasks and how to accomplish them with
Postfix.

Postfix provides a utility through the postfix command to validate many aspects of your
installation. The command checks for configuration problems, looks at directory and file
ownership, and creates any missing directories. Executing:

postfix check

should report no messages on a correctly installed system. If there are any problems, the
command reports them to you both on the screen and in your log file.

4.4.1 Logging

Since Postfix is a long-running program, you should regularly check your system's log file for
warnings or messages. Things can change on your system that might impact Postfix. Almost all
Postfix activity, successful or not, is logged. Whenever you start or reload Postfix, it is a good
idea to check your log file for messages.

Postfix logging is accomplished by using your system's syslog daemon. System log files are an
aspect of system administration that vary across versions of Unix, so you may have to consult
your own system documentation to fully understand Postfix logging.

In general, the syslog daemon (syslogd) receives messages from various system processes
and writes them to their final destination (often a file). syslogd organizes messages according
to their importance and the application or facility that generated the message. The file /etc/
syslog.conf tells syslogd where to write each type of message. The logging facility used by
Postfix is mail. If you don't know where to find messages logged by Postfix, the file /etc/syslog.
conf should point you in the right direction. Some operating systems, by convention, log nearly
everything to a single file, such as /var/log/syslog, while others prefer to separate messages by
applications or services, so that Postfix messages go to a file like /var/log/maillog. For the latter
type of systems, you might find an entry like the following in /etc/syslog.conf:

mail.* -/var/log/maillog

Once you locate your mail log file, check it regularly. You'll probably want to check it at least
daily, but decide for yourself, depending on the volume of mail your server handles and your
existing log rotation scheme. You can use the following command to find Postfix messages that
might be of interest:

$ egrep '(reject|warning|error|fatal|panic):' /var/log/maillog

assuming that your log file is /var/log/maillog. If not, substitute the name of your own mail log

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

file.

4.4.2 Starting, Stopping, and Reloading Postfix

You saw earlier in the chapter how to use the postfix command to start Postfix:

postfix start

Once Postfix is running, if you make any changes to main.cf or master.cf, have Postfix reread
its configuration by executing postfix with the reload argument:

postfix reload

Postfix gracefully terminates running processes after they have finished any tasks they are
working on, rereads its configuration files, and continues to receive mail without interruption.

The most important thing when starting or reloading Postfix is to check your system log to see
if Postfix reports any errors or warnings.

You can stop Postfix with the stop argument. Running processes will still finish any tasks
they're working on and then terminate:

postfix stop

You should not stop and start Postfix when a reload will suffice. Also, do not stop, restart, or
reload frequently, since any of these actions can impact performance.

4.4.3 Running Postfix at System Startup

Most systems automatically start Postfix when they boot up because of Postfix's built-in
Sendmail compatibility. Sendmail is typically launched at startup with a command like:

sendmail -bd -q15m

The Postfix sendmail command understands nearly all of the same options as Sendmail, so if
your server already has scripts that start Sendmail, those same scripts will start Postfix. One
common Sendmail option ignored by Postfix is -q, which is used by Sendmail to specify the
time between queue scans. The time between queue scans for Postfix is set in the main.cf file
with the queue_run_delay parameter, which defaults to 1000 seconds.

Your system may have a configuration option to turn on automatic startup of Sendmail. After
you install Postfix, turning on this option should be sufficient to cause Postfix to start at system
initialization. Different versions of Unix have different idioms for configuring a server to start a
process at system initialization. If your system's Sendmail start script doesn't work, or you
prefer to use a Postfix-specific script, you can easily create a start script.

4.4.3.1 Do it yourself

The requirements and conventions for initialization scripts vary among the different versions of
Unix, so you should consult your system's documentation to see where and how to add startup
options. On System V-type systems, you can install a script like the one shown in Example 4-1.

Example 4-1. Sample SysV-style init script

#!/sbin/sh
#
Set the path to your own logger and postfix commands.
#
LOGGER="/usr/bin/logger"
POSTFIX="/usr/sbin/postfix"
rc=0

if [! -f $POSTFIX] ; then
 $LOGGER -t $0 -s -p mail.err "Unable to locate Postfix"
 exit(1)
fi
if [! -f /etc/postfix/main.cf] ; then
 $LOGGER -t $0 -s -p mail.err "Unable to locate Postfix configuration"
 exit(1)
fi

case "$1" in
 start)
 echo -n "Starting Postfix"
 $POSTFIX start
 rc=$?
 echo "."
 ;;

 stop)
 echo -n "Stopping Postfix"
 $POSTFIX stop
 rc=$?
 echo "."
 ;;

 restart)
 echo -n "Restarting Postfix"
 $POSTFIX reload
 rc=$?
 echo "."
 ;;

 *)
 echo "Usage: $0 {start|stop|restart}"
 rc=1

esac
exit $rc

Depending on your environment, you may also want to add additional pre- and post-checks to
this example. You should install your script in the correct directory for your system, commonly /
etc/init.d, although HP-UX, for example, uses /sbin/init.d. Once the script is in place, you also

have to create a symlink to it in the appropriate run level directory for your server (often /etc/
rc2.d). For example, if you named the above script postfix, create a symlink such as the
following:

ln -s /etc/init.d/postfix /etc/init.d/rc2.d/S95postfix

You should consult your system documentation for the details on your platform.

4.4.4 Queue Management

The Postfix queue is also an important part of email administration. See Chapter 5 for
information on the Postfix queue manager.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

4.5 master.cf

The Postfix master daemon launches all of the other Postfix services as they are needed. The various
services, and how they are run, are specified in the master.cf file.

The master configuration file works like other Postfix configuration files. A comment is marked by a #
character at the beginning of a line. Comments and blank lines are ignored. Long lines can continue onto
subsequent lines by starting the carry-over lines with whitespace.

Example 4-2 shows a sample file. Each column contains a specific configuration option. A dash in a
column indicates the default setting for that column. Some default values come from parameters in the
main.cf file.

Example 4-2. Sample master.cf file

#=
=
service type private unpriv chroot wakeup maxproc command + args
name (yes) (yes) (yes) (never) (100)
#=
=
smtp inet n - y - - smtpd
pickup fifo n - n 60 1 pickup
cleanup unix n - n - 0 cleanup
qmgr fifo n - n 300 1 qmgr
rewrite unix - - n - - trivial-rewrite
bounce unix - - n - 0 bounce
defer unix - - n - 0 bounce
flush unix n - n 1000? 0 flush
proxymap unix - - n - - proxymap
smtp unix - - y - - smtp
relay unix - - y - - smtp
 -o smtp_helo_timeout=5 -o smtp_connect_timeout=5
showq unix n - n - - showq
error unix - - n - - error
local unix - n n - - local
virtual unix - n n - - virtual
lmtp unix - - n - - lmtp
maildrop unix - n n - - pipe
 flags=DRhu user=vmail argv=/usr/local/bin/maildrop -d ${recipient}
cyrus unix - n n - - pipe
 user=cyrus argv=/cyrus/bin/deliver -e -r ${sender}
 -m ${extension} ${user}
uucp unix - n n - - pipe
 flags=Fqhu user=uucp argv=uux -r -n -z -a$sender -
 $nexthop!rmail ($recipient)

The following list describes each column in the file, including its default setting:

service name

The name of the component. The rules for naming a service depend on the type of service, as
specified in the transport type column (see below).

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

transport type

Valid transport types are inet, unix, and fifo. Each of these indicates a method of
communication for this service.

The inet type refers to network sockets. A network socket component can communicate with other
processes on the same machine or other machines on the network. Network sockets use a combination
of a system's IP address and the port used for connecting. They are commonly written in combination as
the host or IP address and the port, separated by a colon. The name of an inet transport in master.cf is
a socket specified as the host and port. The name can be written as just the port if it's on the local
system. You can use a hostname or an IP address for the host, and the port can be the actual port
number, or its symbolic name. (Symbolic names for ports come from the /etc/services file. See your
system documentation.)

The unix type refers to Unix domain sockets, and fifo refers to named pipes. Both are used for
communication between processes on the same machine. Both Unix domain sockets and FIFOs use
special files for their communications. The names for unix and fifo components follow the same
naming rules as for valid Unix filenames without directories. Postfix creates special communications files
using the service name. Unix domain sockets and named pipes are standard Unix interprocess
communications tools. If you would like more information about them, refer to a text on Unix
programming.

Table 4-1 shows examples of valid service names for the various transport types.

Table 4-1. Example service names

Service name Transport type Description

smtp inet Name for the smtpd daemon. The name is the symbolic name for
the SMTP port.

127.0.0.1:10025 inet A component that listens on the loopback interface on port 10025.

465 inet A component that listens on the local host on port 465.

maildrop unix A component that is invoked through Postfix's pipe daemon.

pickup fifo A Postfix FIFO component.

private

Access to some components is restricted to the Postfix system itself. This column is marked with
a y for private access (the default) or an n for public access. inet components must be marked n

for public access, since network sockets are necessarily available to other processes.

unpriv

Postfix components run with the least amount of privilege required to accomplish their tasks.
They set their identity to that of the unprivileged account specified by the mail_owner
parameter. The default installation uses postfix. The default value of y for this column indicates
that the service runs under the normal unprivileged account. Services that require root
privileges are marked with n.

chroot

Many components can be chrooted for additional security. The chroot location is specified in the
queue_directory parameter in master.cf. The default is for a service to run in a chroot
environment; however, the normal installation marks all components with an n so they are not
chrooted when they run. Chrooting a service adds a level of complexity that you should
thoroughly understand before taking advantage of the added security. See Section 4.8 later in
the chapter for more information on running Postfix services in a chroot environment.

wakeup

Some components require a wake-up timer to kick them into action at the specified interval. The
pickup daemon is one example. At its default setting of 60 seconds, the master daemon wakes it
up every minute to see if any new messages have arrived in the maildrop queue. The other
services that require a wake-up are the qmgr and flush daemons. A question mark character (?)
can be added at the end of the time to indicate that a wake-up event should be sent only if the
component is being used. A 0 for the time interval indicates that no wake-up is required. The
default is 0, since only the three components mentioned require a wake-up. The values as they
are set in the Postfix distribution should work for almost all situations. Other services should not
have wakeup enabled.

maxproc

Limits the number of processes that can be invoked simultaneously. If unspecified here, the
value comes from the parameter default_process_limit in main.cf, which is set to 100 by
default. A setting of 0 means no process limit. You may want to adjust maxproc settings if you
run Postfix on a system with limited resources or you want to optimize different aspects of the
system.

command

The actual command used to execute a service is listed in the final column. The command is
specified with no path information, because it is expected to be in the Postfix daemon directory
specified by the daemon_directory parameter in main.cf. By default the directory is /usr/libexec/
postfix. All of the Postfix commands can be specified with one or more -v options to turn on
increasingly more verbose logging information, which can be helpful if you must troubleshoot a
problem. You can also enable information for a debugging program with the -D option. See the
DEBUG_README file that comes with the Postfix distribution for more information on debugging
if necessary.

Each of the Postfix daemons has its own set of options that can be specified after the command itself.
(See the manpages for the individual daemons to learn about the available options.) You can specify
only Postfix commands in the command column. If you want to execute your own commands, use the
Postfix pipe daemon. See the Postfix pipe manpage for more information.

Time Units

Some Postfix parameters accept a length of time for their values. Time values in Postfix can
be specified with the appropriate abbreviation to indicate their units: s (seconds), m
(minutes), h (hours), d (days), or w (weeks). If no time unit is specified, each time
parameter has a default unit that it assumes for the given value. You should check the
documentation to see what the default value is for a given parameter, or always be sure to
specify a unit with the time.

If main.cf offers configuration information for a component, you can override that information in master.
cf by providing an alternative in an -o option. To create a specialized smtp client service, for example,
add another entry to master.cf such as the following:

smtp-quick unix - - n - - smtp
 -o smtp_connect_timeout=5s

There can be no spaces between the parameter and the equals sign and the assigned value. As
configured in the example, smtp-quick is a specialized smtp service that doesn't wait as long for a
server to respond when it tries to connect. This SMTP client follows the configuration in main.cf, but
uses a different value for the smtp_connect_timeout parameter. You'll see more examples later in this
chapter and elsewhere in the book.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

4.6 Receiving Limits

The smtpd daemon can enforce a number of limits on incoming mail. The limits are configurable
through several parameters in the main.cf file. You can limit the size of messages, the number
of recipients for a single delivery, and the length of lines in a message. You can also limit the
number of errors to allow from a single client before breaking off communications.

To limit the number of recipients for a single message, use the smtpd_recipient_limit
parameter. The default is 1,000 recipients, and it should be adequate for normal operation.

The message_size_limit parameter limits the size of any message your system will accept.
The default is 10 MB. If you have limited disk space or memory, you might want to lower the
value. On the other hand, if your users commonly receive large attachments, you may have to
increase it.

Increasingly frequent errors from the same client might indicate a problem or an attack. Postfix
keeps a counter of errors, and handles potential problem clients by introducing delays with
each error. The delays can help protect your system from misconfigured or malignant clients.
As the number of errors increases so does the length of each delay. The length of the initial
delay is specified by smtpd_error_sleep_time with a default of one second. After the number
of errors exceeds the value set for smtpd_soft_error_limit, Postfix increases the delay by
one second for every error, so that with each error, there is a slightly longer delay. Finally,
when the error count hits the value set in smtpd_hard_error_limit, Postfix gives up on the
client and disconnects.

If a malicious program connects to your mail server and sends garbage commands, attempting
to crash your server, the bogus commands appear to Postfix as errors from a misbehaving
client. Assume the following values for the delay parameters:

smtpd_error_sleep_time = 1s
smtpd_soft_error_limit = 10
smtpd_hard_error_limit = 20

With these settings, Postfix initially waits one second (smtpd_error_sleep_time) after each
error before responding to the client. After 10 (smtpd_soft_error_limit) such probes, Postfix
starts increasing the length of each delay. After 11 errors, Postfix waits 11 seconds. After 12
errors, Postfix waits 12 seconds, and so on. Once the number of errors hits 20
(smtpd_hard_error_limit), Postfix disconnects, cutting off the malicious program. If the
program connects again, it simply gets the same treatment each time it starts creating
problems.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

4.7 Rewriting Addresses

Postfix tries to make sense of addresses in email and writes them using the standard RFC 2822
format. Certain address rewriting occurs automatically.

You saw earlier in the chapter how Postfix appends myorigin to a local name that has no
domain part. Postfix also appends the value of mydomain to addresses that include only the host
portion without the domain name. This fixes addresses that look like kdent@host so they
become kdent@host.example.com.

Turning Off Address Completion

Postfix's expansion of incomplete email addresses is sometimes the source of
confusion for end users. If your system is hosting the domain example.com and
receives an email message where the From: message header contains an incomplete
address like:

From: Marketing
To: kdent@example.com

Postfix performs its normal repairs, and the message header becomes:

From: Marketing@example.com
To: kdent@example.com

Incomplete addresses, such as in this example, are often employed by spammers.
When naive users see the adjusted address, they assume that the spam originated
on your server. It is possible to configure Postfix so that it doesn't append your
domain. You probably don't want to do so unless your mail system is used strictly as
a mail gateway and no messages are sent from the machine itself. Many applications
expect RFC 2822 conforming addresses, and you may run into problems if your
addresses are not complete.

To prevent Postfix from appending the domain in myorigin or mydomain to partial
addresses, you can change the parameters append_at_myorigin and
append_dot_mydomain:

append_at_myorigin = no
append_dot_mydomain = no

Under most circumstances you do not want to do this. Postfix itself assumes
addresses are in the correct format, as do many other applications that handle email
messages. A better solution is to reject messages that do not include complete email
addresses. For more information on problem email, see Chapter 11.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

4.7.1 Canonical Addresses

Postfix provides another type of address rewriting that lets you map disparate addresses into a
standard format for your entire site. The canonical_maps parameter points to a lookup table of
address mappings. (While the word canonical has many meanings, among computer
professionals it means "the usual, standard, or normal.") If different mail systems on your
network create addresses in different ways, you can relay them all through your Postfix
gateway and have it fix up the addresses into your standard format. Canonical maps are often
used to change addresses from an internal format to a public one. Include entries like the
following in your canonical table:

#
/etc/postfix/canonical
#
pabelard@example.com peter.abelard@example.com
hfulbert@example.com heloise.fulbert@example.com

They can also rewrite addresses completely.

#
/etc/postfix/canonical
#
pabelard@example.com abelard@oreilly.com
hfulbert@example.com heloise@oreilly.com

In main.cf, point the canonical_maps parameter to the canonical file:

canonical_maps = hash:/etc/postfix/canonical

Be sure to execute postmap against your canonical file and reload Postfix so that it recognizes
your changes to main.cf:

postmap /etc/postfix/canonical
postfix reload

The canonical_maps parameter affects all of the addresses, including envelope and message
headers. If Postfix finds a match, it makes the change. If you want your changes to affect only
sender or recipient addresses, Postfix provides the additional parameters
sender_canonical_maps and recipient_canonical_maps. They both work the same as
canonical_maps, but only on their respective classes of addresses. If you use either of these
two parameters in addition to canonical_maps, Postfix first fixes the addresses according to
sender_canonical_maps and recipient_canonical_maps, and then canonical_maps.

4.7.2 Masquerading Hostnames

Address masquerading refers to the idea that you can hide the names of internal hosts, and
make all addresses appear as if they originated from the gateway system itself. You may have
internal systems that use your Postfix server as a gateway. When mail is sent from these

systems and the sender addresses include the fully qualified hostname, you may want
addresses to appear with the domain name only. The masquerade_domains parameter strips
hostnames down to their simpler domain names.

The parameter takes a list of domains. Any address whose fully qualified hostname matches the
domain portion is stripped down to just the domain name:

masquerade_domains = example.com

Addresses that look like heloise@server1.example.com and frank@server2.example.com are
converted to heloise@example.com and frank@example.com.

You can list multiple domains and subdomains. Postfix processes addresses against
masquerade domain names in the order you list them. Consider a network that includes the two
subdomains, acct.example.com and hr.example.com. You want addresses from these domains
to show the subdomain, but you want addresses from any other domain or host in the network
to show the parent domain. Set masquerade_domains as follows:

masquerade_domains = acct.example.com hr.example.com example.com

With this setting, the address heloise@sys3.acct.example.com matches acct.example.com, so
that it becomes heloise@acct.example.com. The address frank@db.hr.example.com matches hr.
example.com, and becomes frank@hr.example.com. Finally, helene@server1.example.com
matches the last value, example.com, to become helene@example.com.

If you want to preserve a domain name that would otherwise be stripped down, you can
preface the domain with an exclamation point:

masquerade_domains = !it.example.com, example.com

In this case, the domain it.example.com will not be rewritten, so the address kdent@it.example.
com stays as it is.

You can exclude specific account names from masquerading. For example, if you want an
address like root@db.example.com to stay intact, add the account to the
masquerade_exceptions parameter:

masquerade_exceptions = admin, root

When you use masquerading, it is normally applied to all envelope and header addresses but
not envelope recipient addresses. This allows mail addressed to a specific host to be delivered
from the mail gateway to that particular system, while still rewriting addresses for messages
sent from the host. If you prefer to have all addresses masqueraded, set the
masquerade_classes parameter to include the complete list of address classes recognized by
Postfix:

masquerade_classes = envelope_recipient, envelope_sender,
 header_sender, header_recipient

Be aware that if you set masquerade_classes this way, a gateway mail system may no longer
know where to deliver a message that was originally addressed to kdent@server1.example.com
once it has been rewritten as kdent@example.com.

4.7.3 Relocated Users

The relocated_maps parameter points to a lookup table where you can store a list of addresses
or domains that have moved to another location:

relocated_maps = hash:/etc/postfix/relocated

The lookup table uses the old address as the key and its new location as the value. When a
message is delivered to a relocated address, Postfix rejects the delivery attempt with a
message that includes the user's new address as specified in the lookup table. You can also list
just a domain name to have all recipients at that domain rejected with your specified message.

The file /etc/postfix/relocated contains entries like:

kdent@ora.com kdent@oreilly.com
heloise@ora.com hfulbert@oreilly.com
@example.com oreilly.com

Messages sent to either kdent@ora.com or heloise@ora.com are rejected with an error
message that gives their respective new addresses. Any messages sent to example.com are
rejected regardless of what the local part is. The message reports that the address has moved
to oreilly.com.

4.7.4 Unknown Users

A local address that is not listed in relocated or other maps, and is not an account on the
system is an unknown user. Normally, when Postfix receives mail for an unknown user, it
rejects it. If you prefer to capture all of the messages sent to nonexistent accounts, you can
use the luser_relay parameter. Set it to any email address to have messages destined for
unknown users sent to the address you provide. You must also set local_recipient_maps to
blank to prevent Postfix from rejecting mail for unknown users:

luser_relay = catchall
local_recipient_maps =

Assuming catchall is a legitimate address (alias or user account) on your system, it will
receive all messages sent to nonexistent users. Be careful when using luser_relay, since
spammers often launch dictionary attacks, where they try enormous lists of addresses hoping
to find a legitimate one at your site. If luser_relay is configured, it will catch all of the spam.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

4.8 chroot

Postfix provides multiple layers of security. One such layer is the option to permit most Postfix
services to run within a chroot environment. The Unix chroot function allows a process to
change its view of, and access to, its filesystem by changing its root directory to a new path
other than the normal /.

The chroot feature is particularly beneficial for processes that must communicate with external,
potentially hostile clients. If an attacker somehow manages to subvert the smtpd daemon, for
example, the attacker gains only very limited access to the filesystem. Configuring for a chroot
environment is an advanced Postfix feature that adds a layer of complexity that you or your
administrators may not want to deal with. Generally, chroot is not needed, except for sites that
use Postfix in a highly secure environment or on particularly exposed servers, such as
dedicated firewall systems and bastion hosts.

All of the Postfix processes that use chroot change their root directory to the directory specified
in the queue_directory parameter, which is normally /var/spool/postfix. When a process runs
chrooted, the directory /var/spool/postfix/pid, for example, becomes /pid to that process, and
the process cannot access any files other than those below its new root.

To chroot individual components, edit your master.cf file. Change the fifth column to y. The
chroot option is possible with all components except the pipe, virtual, local, and proxymap
services. In Example 4-1, chroot is enabled for the SMTP clients and server.

Since chroot changes the environment of the process, all of the resources the chrooted daemon
needs must be available below the new root directory. Unfortunately, the specific resources
Postfix daemons might need depend on your platform. In general, Postfix might require
resources that provide user information (/etc/passwd), name resolution configuration (nsswitch.
conf or resolv.conf), timezone information, or shared libraries. Some platforms also require
certain device files. There are platform-specific scripts that come with the Postfix distribution.
They're available in the examples/chroot-setup/ subdirectory below the main distribution
directory.

Executing the correct script should be sufficient to set up the chroot environment on your
system. If there is not a script for your platform, you may have to experiment a little to find
everything you need. Consider all of the resources mentioned above and review the example
scripts for other platforms. Watch your logs for error messages after you chroot a process. An
entry like the following:

postfix/smtp[1575]: fatal: unknown service: smtp/tcp

shows that Postfix cannot determine what port the smtp service uses. This problem is fixed by
placing the /etc/services file into the chroot, by copying it to /var/spool/postfix/etc/services.
Other symptoms show up in the log complaining of similar types of problems.

If the normal Postfix log doesn't give enough information, you may have to run a trace to see
where the program fails. Look for tools such as truss, strace, and tusc on your system. These
tools can be used to see where a service fails when it tries to run in a chroot. If you discover
the failure is due to a missing component, copy the component into the chrooted environment.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

See the DEBUG_README file that comes with Postfix for instructions on attaching tracing tools
to Postfix.

Once you have Postfix running in a chroot, you need to make sure you keep your chroot
resources in sync with the normal system files. If your chroot requires /etc/passwd, for
example, whenever the system /etc/passwd changes, the chroot version must be updated, too.
Creating link files doesn't work because symlinks cannot cross the chroot boundary, and hard
links do not work across filesystems.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

4.9 Documentation

The Postfix distribution ships with a lot of documentation. Depending on your installation
package, you may or may not have all of the documents. You should have at least the
manpages and sample configuration files. The sample files are located in the directory specified
by the sample_directory parameter, which is usually the same directory in which your main.cf
file resides. All of the Postfix parameters are documented in one or more of the sample files.

When Postfix was installed, the manpages should have been installed in a sensible place on
your system. If they are in a directory where your system expects to find them, you only have
to type, for example:

$ man postfix

to have the manpage displayed on your screen. If your system replies with an error message
such as:

$ man postfix
No manual entry found for postfix.

then either the pages are not installed or they are not in a location your system expects to find
them. Read the documentation for your system to find out about setting your MANPATH variable
or moving the manpages to a more standard location for your platform.

There are many manpages for various Postfix commands, daemons, and lookup tables. All of
the documentation is also available as HTML files. If the HTML files are not installed on your
system, you can find them on the Postfix web site at http://www.postfix.org/. The online
documentation always refers to the current release of Postfix.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
http://www.postfix.org/default.htm
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 5. Queue Management

The queue manager daemon qmgr is in many ways the heart of your Postfix system.
[1]

 All
messages, both outbound and inbound, must pass through the queue. It's a good idea to
understand the queue and how Postfix uses it in case you have to troubleshoot a problem.

[1] You may see references to nqmgr in older configuration files and
documentation. Earlier Postfix versions shipped with two queue manager
daemons, qmgr and nqmgr. The original qmgr was replaced by the current one,
which has a better scheduling algorithm. nqmgr was the name of the current
queue manager daemon while it coexisted with the original. Once it was ready
for promotion as sole queue manager for Postfix, it was renamed qmgr.

The queue manager maintains five different queues: incoming, active, deferred, hold, and
corrupt. Postfix uses a separate directory for each queue below the path specified in the
queue_directory parameter. By default the path is /var/spool/postfix, which gives you a
directory structure like the following:

/var/spool/postfix/active
/var/spool/postfix/bounce
/var/spool/postfix/corrupt
/var/spool/postfix/deferred
/var/spool/postfix/hold

The qmgr daemon running in the background handles most of the queue management tasks
automatically. The commands postsuper and postqueue are used by administrators for manual
queue management tasks. This chapter looks at how qmgr and the command-line tools work,
as well as Postfix parameters that affect the queue.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

5.1 How qmgr Works

Figure 5-1 illustrates how messages move through the queue. The incoming queue is where
messages first enter Postfix. The queue manager provides protection for the queue filesystem
through the queue_minfree parameter. The default value is 0. You can make sure the disk that
stores your queue doesn't run out of space by setting a limit.

Figure 5-1. Message movement in the queue.

From the incoming queue, the queue manager moves messages to the active queue and
invokes the appropriate delivery agent to handle them. For the most part, if there are no
problems with delivery, movement through the queue is so fast that you won't see messages in
the queue. If Postfix is trying to deliver to a slow or unavailable SMTP server, you may see
messages in the active queue. Postfix waits 30 seconds to decide if a remote system is
unreachable.

A message that cannot be delivered is placed in the deferred queue. Messages are deferred
only when they encounter a temporary problem in delivery, such as a temporary DNS problem
or when a destination mail server reports a temporary problem. Messages that are rejected, or
encounter a permanent error, are immediately bounced back to the sender in an error report
and don't stay in the queue.

5.1.1 Deferred Mail

Messages in the deferred queue stay there until they are either delivered successfully or expire
and are bounced back to the sender. The bounce_size_limit parameter determines how much
of a message that could not be delivered is bounced back to the sender in the error report. The
default is 50,000 bytes.

Once a message has failed delivery, Postfix marks it with a timestamp to indicate when the
next delivery attempt should occur. Postfix keeps a short-term list of systems that are down to
avoid unnecessary delivery attempts. If there are deferred messages scheduled for a redelivery
attempt, and there is space available in the active queue, the queue manager alternates
between taking messages from the deferred and incoming queues, so that new messages are
not forced to wait behind a large backlog of deferred ones.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

5.1.2 Queue Scheduling

Postfix periodically scans the queue to see if there are deferred messages whose timestamps
indicate they are ready for another delivery attempt. Subsequent failed attempts at delivery
cause scheduled delays to double, so Postfix waits longer each time before it attempts to
deliver a message. You can configure the maximum delay with the maximal_queue_lifetime
parameter. When the time has expired, Postfix gives up trying to deliver the message and
bounces it back to the sender. By default the period is five days (5d). You can set it to any
length of time, or to 0 to have undeliverable mail returned immediately.

Queue scans occur at an interval specified by the queue_run_delay parameter. By default the
parameter is set to 1,000 seconds (1000s). With this setting, every 1,000 seconds, Postfix
checks the deferred queue to see if there are any messages due for another delivery attempt.

The parameters minimal_backoff_time and maximal_backoff_time set minimum and
maximum time limits on how often Postfix attempts to redeliver deferred messages. Each time
a message is deferred, the queue manager increases the amount of time it waits to attempt to
deliver that message again. The calculated increase of time is never allowed to exceed
maximal_backoff_time (default 4,000 seconds) and is never less than minimal_backoff_time
(default 1,000 seconds). If you find that you have a large backlog of deferred messages, you
may want to increase the maximal_backoff_time so that Postfix doesn't expend system
resources in trying to deliver messages to unavailable servers.

5.1.3 Message Delivery

The queue manager arranges for the delivery of messages by invoking the appropriate delivery
agent. Postfix is careful not to overwhelm destination systems and provides several parameters
to control resources for outgoing messages. For most situations the default settings are correct,
but if you are experiencing resource problems or you are trying to optimize deliveries, you may
want to experiment with the queue manager configuration.

Outgoing messages might be delivered over any of the transports available in the master.cf file.
Each transport can have a limit on its total number of processes, specified in the maxproc
column (see Section 4.5). If a value is not specified there, Postfix uses
default_process_limit for its limit.

The initial_destination_concurrency parameter limits the number of messages initially
sent (default is five). You can increase the value, but it can't go higher than the maxproc value
or default_process_limit for the transport used. After the initial delivery of messages, if
there are more messages in the queue for a particular destination, Postfix increases the number
of concurrent delivery attempts, as long as it doesn't detect any problem from the destination
system at the current load. Postfix continues to increase the number of simultaneous deliveries
up to the number specified in the default_destination_concurrency_limit parameter, which
is 20 by default. In general, you don't want to increase the concurrency limit, or you risk
overwhelming the receiving system.

You can override the default_destination_concurrency_limit value for any transport by
setting a parameter of the form transport_destination_concurrency_limit. For example,
you can limit concurrent connections to external systems with the parameter

smtp_destination_concurrency_limit, or limit local deliveries with
local_destination_concurrency_limit.

There are also parameters of the form transport_destination_recipient_limit that control
how many recipients Postfix specifies for a single copy of an email message. If a transport-
specific parameter is not configured, it takes its default value from
default_destination_recipient_limit. If the number of recipients for a message exceeds
the limit, Postfix breaks up the list of recipients into smaller groups of addresses and sends
separate copies of the message to each group of addresses.

5.1.4 Corrupt Messages

The corrupt queue is simply used to store damaged or otherwise unreadable messages. If a
message is too damaged to do anything with it, Postfix places it here. If you want to investigate
an issue, the problem message is available in this queue where you can view it manually, if
necessary. Corrupt messages are very rare. If you have them, they may be a symptom of an
underlying operating system or hardware problem.

5.1.5 Error Notifications

Postfix can report certain errors by sending error messages to an administrator. Postfix
classifies errors for notification, as shown in Table 5-1. The notify_classes parameter in main.
cf contains the list of error classes that should generate error notices. By default the parameter
includes "resource" and "software" errors.

Each class of error can be configured to send the notification to a particular email address,
using parameters of the form class_notice_recipient. By default they all go to postmaster.
Table 5-1 provides a list of possible error classes, along with the parameters that indicate who
should receive the error notices.

Table 5-1. Email error notices

Error class Description Notice recipient parameter

bounce Send headers for all bounced messages. bounce_notice_recipient

2bounce Send undeliverable bounced messages. 2bounce_notice_recipient

delay Send headers of delayed messages. delay_notice_recipient

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postmaster

policy
Send the transcript of any SMTP transaction
when a message is rejected due to anti-spam
restrictions.

error_notice_recipient

protocol Send the transcript of any SMTP transaction
that had errors.

error_notice_recipient

resource Send notice that a message could not be
delivered because of system resource problems.

error_notice_recipient

software Send notice that a message could not be
delivered because of software problems.

error_notice_recipient

If you would like to receive all problem notices, set the parameter as follows:

notify_classes = bounce, 2bounce, delay, policy, protocol,
 resource, software

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

5.2 Queue Tools

Postfix provides command-line tools for displaying and managing the messages in your queue.
The primary commands are postsuper and postqueue. You can perform the following tasks on
messages in the queue:

● Listing messages
● Deleting messages
● Holding messages
● Requeuing messages
● Displaying messages
● Flushing messages

Each of the tasks, and the commands to accomplish them, are explained in the sections that
follow.

5.2.1 Listing the Queue

The queue display contains an entry for each message that shows the message ID, size, arrival
time, sender, and recipient addresses. Deferred messages also include the reason they could
not be delivered. Messages in the active queue are marked with an asterisk after the Queue ID.
Messages in the hold queue are marked with an exclamation point. Deferred messages have no
mark.

You can list all the messages in your queue with the postqueue -p command. Postfix also
provides the mailq command for compatibility with Sendmail. The Postfix replacement for mailq
produces the same output as postqueue -p.

A typical queue entry looks like the following:

$ postqueue -p
-Queue ID- --Size-- ----Arrival Time---- -Sender/Recipient-------
DBA3F1A9 553 Mon May 5 14:42:15 kdent@example.com
 (connect to mail.ora.com[192.168.155.63]: Connection refused)
 kdent@ora.com

Since this entry is not marked with either an asterisk or an exclamation point, it is in the
deferred queue.

5.2.2 Deleting Messages

The postsuper command allows you to remove messages from the queue. To remove the
message in the sample entry displayed above, execute postsuper with the -d option:

postsuper -d DBA3F1A9
postsuper: DBA3F1A9: removed
postsuper: Deleted: 1 message

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

If you have a lot of messages to remove, you can clear out your entire queue with the ALL
argument:

postsuper -d ALL
postsuper: Deleted: 23 messages

The ALL argument must be capitalized. Be very careful when using the command, since it will
delete all queued messages without asking any questions.

Rather than deleting all of the queued messages or just one at a time, frequently you want to
delete messages with a specific email address. Example 5-1 is a Perl script that provides a
convenient way to specify an email address to delete particular messages from the queue.

Example 5-1. Perl script to delete queued messages by email address

#!/usr/bin/perl -w
#
pfdel - deletes message containing specified address from
Postfix queue. Matches either sender or recipient address.
#
Usage: pfdel <email_address>
#

use strict;

Change these paths if necessary.
my $LISTQ = "/usr/sbin/postqueue -p";
my $POSTSUPER = "/usr/sbin/postsuper";

my $email_addr = "";
my $qid = "";
my $euid = $>;

if (@ARGV != 1) {
 die "Usage: pfdel <email_address>\n";
} else {
 $email_addr = $ARGV[0];
}

if ($euid != 0) {
 die "You must be root to delete queue files.\n";
}

open(QUEUE, "$LISTQ |") ||
 die "Can't get pipe to $LISTQ: $!\n";

my $entry = <QUEUE>; # skip single header line
$/ = ""; # Rest of queue entries print on
 # multiple lines.
while ($entry = <QUEUE>) {
 if ($entry =~ / $email_addr$/m) {
 ($qid) = split(/\s+/, $entry, 2);

 $qid =~ s/[*\!]//;
 next unless ($qid);

 #
 # Execute postsuper -d with the queue id.
 # postsuper provides feedback when it deletes
 # messages. Let its output go through.
 #
 if (system($POSTSUPER, "-d", $qid) != 0) {
 # If postsuper has a problem, bail.
 die "Error executing $POSTSUPER: error " .
 "code " . ($?/256) . "\n";
 }
 }
}
close(QUEUE);

if (! $qid) {
 die "No messages with the address <$email_addr> " .
 "found in queue.\n";
}

exit 0;

5.2.3 Holding Messages

The hold queue is available for messages you would like to keep in your queue indefinitely.
Figure 5-2 shows the hold queue and how you can move messages into the hold queue where
they will not be delivered until you specifically remove them or move them back for normal
queue processing. To place the example message into the hold queue, use the postsuper
command with the -h option:

postsuper -h DBA3F1A9

The queue entry now contains an exclamation point to show that the message is on hold:

-Queue ID- --Size-- ----Arrival Time---- -Sender/Recipient-------
DBA3F1A9 ! 553 Mon May 5 14:42:15 kdent@example.com
 (connect to mail.ora.com[192.168.155.63]: Connection refused)
 kdent@ora.com

Figure 5-2. Putting messages on hold

To move the message back into the normal queue for regular processing, execute the
command with a capital -H option instead:

postsuper -H DBA3F1A9

After the message is moved back, the queue manager marks it for redelivery according to its
normal scheduling, or you can flush the message to have it sent out immediately (see Section
5.2.6).

5.2.4 Requeuing Messages

If you have messages that were deferred because of a configuration problem that has been
corrected, you may have to requeue the messages to have them delivered successfully. If the
misconfiguration caused Postfix to store incorrect information about the next hop or transport
method, or to rewrite the address incorrectly, requeuing causes Postfix to update the incorrect
information based on your new configuration. The postsuper command uses the -r option to
requeue messages. You can specify a queue ID for a single message, or the word ALL in capital
letters to requeue everything:

postsuper -r ALL

Requeued messages get a new queue ID and an additional Received: header.

5.2.5 Displaying Messages

The postcat command displays the contents of a queue file:

postcat -q DBA3F1A9

Earlier versions of postcat did not support the -q option but required the full path to the queue
file. Since a message can be in any of the queue compartments (maildrop, incoming, active,
deferred, hold), and each of these has multiple subdirectories, the path to a particular queue
file is not immediately apparent. If you are using an earlier version of postcat, which doesn't
support the -q option, you can create a shell script like the one in Example 5-2 as a convenient
way to view a queue file by specifying only the queue ID. The script accepts one queue ID as
an argument, checks all of the queue directories to locate the queue file, and executes postcat
with the full path as its argument. The contents are then displayed. This simple script displays

only one queue file at a time.

Example 5-2. Shell script wrapper for postcat

#!/bin/sh

PATH=/usr/bin:/usr/sbin
QS="deferred active incoming maildrop hold"
QPATH=`postconf -h queue_directory`

if [$# -ne 1]; then
 echo "Usage: pfcat <queue id>"
 exit 1
fi

if [`whoami` != "root"]; then
 echo "You must be root to view queue files."
 exit 1
fi

if [! -d $QPATH]; then
 echo "Cannot locate queue directory $QPATH."
 exit 1
fi

for q in $QS
do
 FILE=`find $QPATH/$q -type f -name $1`
 if [-n "$FILE"]; then
 postcat $FILE
 exit 0
 fi
done

if [-z $FILE]; then
 echo "No such queue file $1"
 exit 1
fi

5.2.6 Flushing Messages

Flushing the queue causes Postfix to attempt to deliver messages in the queue immediately.
You can flush queue messages with the postqueue -f command. However, unless you have a
reason to expect successful deliveries, it's best to leave redelivery attempts to the Postfix
queue manager. Repeated attempts to flush the queue can have a severe performance impact
on your mail server.

You can flush messages destined for a particular site with the -s option. The site must be
eligible for fast flush in order for this to work. To be eligible, the site must be listed in the
fast_flush_domains parameter. By default, fast_flush_domains includes all of the hosts
listed in relay_domains, but you can add additional sites if you want to flush them before the
normally scheduled redelivery attempt.

fast_flush_domains = $relay_domains example.com

If you know that a previously unavailable, eligible site is ready to accept mail, execute
postqueue with the -s option and name the site:

postqueue -s example.com

See Chapter 9 for more information about fast flush and the SMTP command ETRN.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 6. Email and DNS

The Domain Name System (DNS) is a vast distributed database whose main job is to map
hostnames to IP addresses. It also has an important role in email routing. In this chapter we'll
look at how MTAs in general use DNS and some of the DNS issues that relate to Postfix and its
configuration. Keep in mind that there are two important aspects to your mail servers and DNS:

● For sending mail, the system running your Postfix mail server must have access to a
reliable DNS server to resolve hostnames and email-routing information.

● For receiving mail, your domains must be configured correctly to route messages to
your mail server.

Misconfiguration of DNS servers is a common source of problems in setting up email servers.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

6.1 DNS Overview

At one time, hostname to IP address mapping was handled by one large, centrally managed
text file that contained an entry for every host accessible on the Internet. Each site downloaded
a copy of the file periodically to get the latest hostname information. That scheme quickly
became unwieldy, and the DNS service was conceived. It was defined in RFC 882 in 1983, and
introduced two key ideas: the data is distributed and the naming of hosts is hierarchical.
Making the data distributed means that every site updates its own information, and the updates
become available almost immediately. Hierarchical naming prevents hostname conflicts and
gives us the current domain-naming system that we are all very familiar with today. Each site
obtains at least one domain name, and all of the hosts at that site are named by prefixing the
simple hostname to the site's domain name. For example, a site that controls the domain name
example.com might have any number of hosts with names like server1.example.com, hp4100.
example.com, or www.example.com.

Each domain has at least two domain nameservers that are considered authoritative for the
domain. Authoritative nameservers should have direct access to the database that contains all
the information about a domain.

The data is comprised of different types of records called resource records. Different resource
records provide different kinds of information, such as IP addresses, nameservers, hostname
aliases, and mail routing. The resource records you need to know about for this discussion are
the following:

A

The mapping of names to IP addresses is handled by A records. These records contain a
hostname and its IP address. The names that people use to refer to hosts have to be
converted to IP addresses used for Internet routing. A records provide this name-to-
address translation.

CNAME

Some hostnames are aliases that point to other hostnames, rather than to IP addresses.
This can be useful for directing requests to services (such as HTTP or POP) that might
reside on systems generally known by a different name. The CNAME record provides the
"real," or canonical, name that an alias hostname points to. For example, an
administrator might publicize the hostname www.example.com, which is really a CNAME
record pointing to server1.example.com most of the time. But during periods of
maintenance on server1.example.com, for example, www.example.com could
temporarily point to server2.example.com.

MX

MX records provide mail-routing information. They specify mail exchangers for domains—
that is, the names of the mail hubs that handle all the mail for a domain name. The MX

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/www.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/server1.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/server1.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/www.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/server2.example.com

records tell MTAs where to send messages. Since a domain can have multiple mail
exchangers, MX records include a preference value to designate the order of priority
when selecting a mail exchanger to deliver messages to.

PTR

PTR records provide a reverse lookup of IP addresses to hostnames. These records
normally match up with A records, so that forward lookups of hostnames return an IP
address whose reverse lookup returns the hostname. However, many hostnames can
point to the same IP address, so PTR records should map back to the canonical name
associated with the IP address. Some applications use PTR records as a form of
authentication to make sure that a connecting client's IP address maps to the expected
hostname.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

6.2 Email Routing

Let's consider for a moment one way that email routing might work. A user horatio in the
domain example.com has a workstation named denmark. He could receive mail by using the
email address horatio@denmark.example.com. An MTA with a message to deliver would simply
look up the IP address for denmark.example.com and deliver it to that system for the user
horatio. This scenario requires that Horatio's workstation is always turned on, that it has a
functional MTA running at all times to receive messages, and that it is accessible by unknown
MTAs from anywhere on the Internet. Rather than manage hundreds or thousands of MTAs on
workstations and expose them to the Internet, nearly all sites make use of mail hubs that
receive all the mail for a domain. MTAs such as Postfix need a way to determine which host or
hosts are the mail hubs for a domain. DNS MX records provide this information.

A mail exchanger either delivers mail it receives or forwards it to another mail system. A
domain may have multiple mail systems for reliability, and therefore multiple MX records.
Generally, one host is the primary mail server and the others serve as backup or secondary
mail servers. Each MX record in DNS contains a preference value that orders mail systems from
most preferred to least preferred.

BIND is one of the most common DNS server applications. (O'Reilly's DNS and BIND by Paul
Albitz and Cricket Liu fully explains the DNS system and documents the BIND software.) A
simple BIND configuration file for the domain example.com looks like the following:

example.com. IN SOA ns.example.com. kdent.example.com. (
 1049310513
 10800
 3600
 604800
 900)

;
; Nameservers
;
example.com. IN NS ns.example.com.

;
; Host Addresses
;
example.com. IN A 192.168.100.50
server1.example.com. IN A 192.168.100.220
ns.example.com. IN A 192.168.100.5
mail1.example.com. IN A 192.168.100.50
mail2.example.com. IN A 192.168.100.54
mail3.example.com. IN A 192.168.100.123

;
; Mail Exchangers
;
example.com. IN MX 10 mail1.example.com.
example.com. IN MX 20 mail2.example.com.
example.com. IN MX 30 mail3.example.com.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/horatio
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/horatio
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com

;
; CNAME Records
;
pop.example.com. IN CNAME mail1.example.com.
www.example.com. IN CNAME server1.example.com.

For this discussion, we're primarily interested in the mail exchanger records:

example.com. IN MX 10 mail1.example.com.
example.com. IN MX 20 mail2.example.com.
example.com. IN MX 30 mail3.example.com.

The domain name is in the first column. The second column indicates that the entries are
Internet class records, and the third indicates that they are mail exchanger resource records.
The last column shows the mail exchanger host, and the second-to-last column shows its
preference value. Preference values can be any number between 0 and 65,536, and a lower
value indicates a more preferred host. The numbers are meaningful only in relation to each
other and can be anything within the allowed range. By convention, most administrators create
priority values in multiples of 10, which allows some flexibility for inserting or temporarily
rearranging preferences.

In our simple example above, mail1.example.com receives all the mail for the domain example.
com. In this case, all mail must eventually arrive at mail1.example.com. When an MTA has to
deliver a message to a user at the domain example.com, it retrieves all of the MX records and
sorts them in order of priority. It first attempts delivery to mail1.example.com. If mail1.
example.com is available and accepts the message, the delivery is finished; however, if for
some reason mail1.example.com is not available to accept the message, the MTA continues
down the list until it finds a mail exchanger able to accept the message. If a secondary mail
exchanger accepts a message, it takes the responsibility of delivering it to a more preferred
mail server (possibly the primary) when the unavailable server comes back online.

If no MX records are found for a domain, an MTA checks to see if there is an A record
associated with the domain name itself. If there is an A record, the MTA attempts delivery to
the system at that IP address.

This mail-routing scheme seems simple enough, but it does get slightly more complicated.
Consider an example where the MTA on mail2.example.com receives a message for
ophelia@example.com. Presumably, mail1.example.com is offline, since mail2 received the
message. The MTA running on mail2.example.com gets the list of mail exchangers for example.
com, determines that the message should go to mail1.example.com, and discovers that mail1
is not available. The next mail exchanger on the list is itself. Delivery to itself doesn't really
make sense. So, the next mail exchanger in line is mail3.example.com. The MTA could deliver
the message there, but mail3 will go through the same process and immediately try to hand
the message back to mail2, creating a mail loop. (MTAs actually resolve hostnames to IP
addresses for comparisons, since MX hosts might have multiple A records. Postfix compares the
IP address to its list of addresses in inet_interfaces and proxy_interfaces.)

The solution is that when an MTA gets the list of mail exchangers and discovers itself among
them, it discards its own record plus all other mail exchangers with an equal or less preferred
priority (higher number). For our example, the host mail2 eliminates itself and mail3, thus
reducing the list of mail exchangers to only mail1. Since mail1 is not available and mail2 has

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail1.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail1.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail2.example.com

no other options for delivery, it queues the message and makes the delivery when mail1 comes
back online.

In order for mail routing to work successfully, you should be very careful when setting up MX
records. In particular, you should observe the following rules for MX records in your DNS
configuration:

Mail exchangers must have valid A records.

The mail exchanger pointed to by the MX record must be a hostname with a valid A
record. Once an MTA has determined which host should receive the mail, it has to be
able to find that host.

Mail exchangers cannot be aliases.

The host pointed to by an MX record should not be an alias (CNAME record). Under
normal circumstances, an MTA knows itself by its canonical name and looks for that
name when checking the list of mail exchangers to prevent mail loops. The server must
be able to find itself, so make sure that you list the canonical name in the MX record, or
you risk creating a mail loop. Even if an MTA accommodates CNAME records (by looking
up and using the canonical name), using them causes inefficiencies in mail delivery.

Use hostnames and not IP addresses for mail exchangers.

List a hostname rather than an IP address for mail exchangers. While you may get by
with a bare IP address, RFC 974 states that you must use a name of a host. Future
changes (IPv6, for example) might cause bare IP addresses to break mail routing.

Make sure that you specify preference values.

Leaving out the preference value for MX records may have different effects, depending
on your DNS server and MTA. At best, the problem creates ambiguity; at worst, it can
prevent mail delivery.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

6.3 Postfix and DNS

When sending mail, Postfix uses system resolvers, which are programs or libraries that make
requests for DNS information. To receive mail, the DNS for your domain must be configured to
route messages to your Postfix server. This section looks at DNS issues both for sending and
receiving mail.

6.3.1 DNS and Sending Mail

The Postfix SMTP delivery agent must be able to obtain IP address and MX records for mail-
routing information. Postfix must make at least two DNS lookups: one to get the MX hostname
and one to get the IP address for that hostname. Since Postfix uses the normal operating
system resolver libraries for its DNS queries, the system that runs Postfix must have access to
a DNS server. The DNS server does not have to be on the same system, although for most
circumstances it should be.

If your system does not seem to be resolving domain names correctly, there are three common
command-line tools that you can use to troubleshoot the problem: nslookup, dig, and host. You
should check your system documentation to see which of these tools is available on your server
and how to use them. You can use these tools to query all types of resource records for a
domain, including the MX record that Postfix needs in order to successfully deliver mail to a
domain.

DNS problems might stem from your own system's configuration or a problem with the DNS
server configuration for the domain Postfix is trying to send mail to. When you are
troubleshooting a problem, it is very important to remember that Postfix first looks for MX
records and not A records. Even if you can resolve a domain to an IP address, Postfix may not
be able to deliver mail for that domain if there is a problem in retrieving MX information.

6.3.1.1 Configuration options

When delivering mail, Postfix performs a DNS lookup to retrieve all of the MX records for the
destination domain. It sorts them in order of preference and tries each one in priority order.
Once Postfix has established a connection with an SMTP server, the server replies to Postfix
requests with a status code. Codes within the 2xx range indicate that everything is okay. Error
codes in the 4xx range indicate a temporary problem, and those in the 5xx range indicate a
permanent problem. See Chapter 2 for more information on SMTP reply codes.

To provide compatibility with Sendmail, Postfix, by default, treats SMTP servers that respond
with 4xx or 5xx reply codes as if the servers had not responded at all. If you prefer that Postfix
react to the error codes returned by the MX server rather than ignore them, set the
smtp_skip_5xx_greeting and smtp_skip_4xx_greeting parameters:

smtp_skip_4xx_greeting = no
smtp_skip_5xx_greeting = no

If smtp_skip_4xx_greeting is set to no, and Postfix attempts delivery to a mail exchanger that
responds with a 4xx code, it does not try any more mail exchangers for the destination domain.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

It queues the message and attempts delivery later.

If smtp_skip_5xx_greeting is set to no, and Postfix attempts delivery to a mail exchanger that
responds with a 5xx code, it does not try any more mail exchangers for the destination domain.
It bounces the message back to the sender.

Some domains have MX records set to equal preference values. By default, the Postfix SMTP
client randomly shuffles MX addresses of equal preference. You can change the default behavior
by setting the smtp_randomize_addresses parameter:

smtp_randomize_addresses = no

Setting this parameter causes Postfix to attempt delivery to the MX servers in the same order it
retrieved them.

6.3.1.2 Reverse PTR records

Due to the prevalence of spam, many sites now require that connecting clients have valid PTR
records associated with their IP addresses. Your Postfix system's IP address should have a
reverse PTR mapping to a hostname that returns the same IP address to ensure that you can
deliver to all mail servers.

6.3.2 DNS and Receiving Mail

For Postfix to accept email for a particular domain, the system must be specified as an MX host
in the domain's DNS setup, and Postfix must be configured to accept mail for the domain.
Postfix accepts mail for domains that are either local to the system, relay domains, or virtual
domains. Virtual domains might use virtual aliases or virtual mailboxes (see Chapter 8). Each
type of domain must be listed in a different Postfix parameter, as shown in Table 6-1.

Table 6-1. Domain types and their parameters

Domain type Parameter

Local mydestination

Relay relay_domains

Virtual mailboxes virtual_mailbox_domains

Virtual aliases virtual_alias_domains

Do not list a domain in more than one of the parameters. Postfix issues a warning if it detects a
domain listed in two of the parameters. The error message "mail for example.com loops back to
myself" occurs when the DNS configuration points to your mail server, but Postfix has not been
configured to accept mail for the domain.

If your Postfix server accepts mail for the two local domains example.com and porcupine.org,
then the mydestination parameter should look like the following in your main.cf file:

mydestination = example.com, porcupine.org

Chapter 9 explains configuration of relay domains. Chapter 8 covers virtual mailbox and virtual
alias domains.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

6.4 Common Problems

The following error messages in the mail log files indicate host lookup problems:

mail for domain loops back to myself

This is one of the most common errors related to DNS. It happens when you have
configured your Postfix server as an MX host in your DNS server, but you have not told
your Postfix server that it is the final destination for the domain. Add the domain in
question to the mydestination parameter, or configure it as a virtual domain or a relay
domain. If your Postfix server is behind a proxy or NAT device, it may not realize that it
is an MX host for the domain. In that case, add the proxy device's IP address to
proxy_interfaces. Log entries for this error resemble the following:

postfix/qmgr[3981]: 2CC3B229: from=<heloise@ora.com>, \
 size=306, nrcpt=1 (queue active)
postfix/smtp[3983]: warning: mailer loop: best MX host for \
 example.com is local
postfix/smtp[3983]: 2CC3B229: to=<abelard@example.com>, \
 relay=none, delay=0, status=bounced (mail for example.com \
 loops back to myself)

Host found but no data record of requested type

The domain's DNS configuration has no MX records and there is no A record for the
domain itself. You will have to contact an administrator of the domain to fix the
problem. For your own domains, be sure they all include MX records pointing to your
mail server. Log entries for this error resemble the following:

postfix/qmgr[3818]: D31CD20F: from=<heloise@ora.com>, \
 size=312, nrcpt=1 (queue active)
postfix/smtp[3824]: D31CD20F: to=<abelard@example.com>, \
 relay=none, delay=1, status=bounced (Name service \
 error forname=example.com type=A: Host found but \
 no data record of requested type)

no MX host for domain has a valid A record

The domain's DNS configuration has MX records, but lookups for the IP addresses fail.
You will have to contact an administrator of the domain to fix the problem. For your own
domains, be sure that any hosts you specify as MX hosts are valid and have correct A
records. Log entries for this error resemble the following:

postfix/qmgr[3818]: 068DB20F: from=<heloise@ora.com> \
 size=306, nrcpt=1 (queue active)
postfix/smtp[3846]: warning: no MX host for example.com has

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

 a valid A record
postfix/smtp[3846]: 068DB20F: to=<abelard@example.com> \
 relay=none, delay=1, status=deferred (Name service \
 error for name=mail.seaglass.com type=A: Host not found)

Host not found, try again

The DNS query produced no answer. Either the DNS server is not reachable, or it is
broken. Assuming the DNS server for this domain is up and working correctly, this error
message could be due to a networking problem, or perhaps your system's resolver is
misconfigured. Check over the documentation for the nsswitch.conf and resolv.conf files
on your platform. Be sure that your system is resolving DNS queries correctly, using one
of the tools mentioned earlier in the chapter, before trying to troubleshoot the problem
with Postfix. Log entries for this error resemble the following:

postfix/qmgr[3818]: CCBED1E8: from=<heloise@ora.com> \
 size=306, nrcpt=1 (queue active)
postfix/smtp[3937]: CCBED1E8: to=<abelard@example.com> \
 relay=none, delay=1, status=deferred (Name service error \
 for name=example.com type=MX: Host not found, try again)

If you are running Postfix in a chrooted environment, there are several configuration files
related to DNS that must be within the chrooted compartment. See Chapter 4 for more
information on running Postfix within a chroot.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 7. Local Delivery and POP/IMAP

Chapter 1 explained that POP and IMAP are protocols that deal with how users retrieve their
email messages from message stores. Postfix is a mail transfer agent and does not implement
POP or IMAP. This chapter looks at how Postfix delivers messages and how they are read by
POP/IMAP servers. There are many POP/IMAP servers available, and the information presented
here should be applicable to any standards-conforming server. The last part of this chapter
deals with configuring Postfix to work with the Cyrus IMAP server. Before we look at local
delivery, we'll first discuss more broadly the different delivery transports Postfix uses.
Transports other than local are discussed in subsequent chapters.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

7.1 Postfix Delivery Transports

Postfix offers delivery for four different classes of recipient addresses: local, relay, virtual alias,
and virtual mailbox. How you configure the domains you accept mail for determines the
delivery method used by Postfix. The following are the delivery transports used by Postfix:

local

Delivers mail on the local system. Each address has an account on the system or comes
from the local aliases file (historically /etc/aliases). Delivered messages go to the
system's mail spool or mail files in individual home directories. Deliveries are handled by
the local delivery agent or passed to a custom delivery program. Lists local domains in
the mydestination parameter.

relay

Delivers mail to other systems, usually on the same network. Relay domains are
generally configured on gateway systems when Postfix accepts mail for an entire
network. The gateway system relays messages to the correct internal mail system.
Deliveries are handled by the relay transport, which is simply a clone of the smtp agent,
but it is optimized for making deliveries to internal systems on a local network. Lists
relay domains in the relay_domains parameter. Mail relaying is discussed in Chapter 9.

virtual

Delivers mail for virtual mailbox domains. Virtual mailbox domains are used for hosting
multiple domains using a separate mail spool that contains mailboxes for many separate
domains. Email users typically do not have system accounts on the mail server. Lists
virtual mailbox domains in the virtual_mailbox_domains parameter. Virtual hosting is
discussed in Chapter 8.

Deliveries to nonlocal domains are handled by the smtp transport. It determines where to
deliver messages for any nonlocal domain through DNS lookups. Virtual alias addresses are
resubmitted to Postfix for delivery to the new address, at which point they'll be handled by one
of the above transports.

The rest of the chapter discusses the details of local delivery.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

7.2 Message Store Formats

When Postfix makes local deliveries it transfers the contents of messages to the local message
store. The most common types of message stores are the traditional mbox format and the
newer maildir style. Both use regular files to store messages, but they are structured in
different ways. In Postfix, you specify maildir style by including a trailing slash when you
configure any mail file or directory parameters (see configuration information later in this
chapter).

7.2.1 The Mbox Format

Historically, Unix systems have used a single file to store each user's email messages. This type
of message store format is commonly referred to as mbox. Each message within the file starts
with a line that begins with the word From. It is important that the string start on the first
character of the line, and that there is a space after the end of the word. The From line is
commonly referred to as From_ with an underscore character to indicate the space following the
word. Don't confuse the From_ line used for separating messages within an mbox file with the
From: line included in email message headers. The last line of a message is always a blank line.

A complete From_ line looks like the following:

From jmbrown@example.com Sun Feb 3 16:54:01 2002

As described, the line starts with the word From followed by a space. Following the space is an
email address that is usually the envelope address of the message. Following the envelope
address is the date of delivery in the common Unix date format occupying 24 characters. The
mbox format allows for an optional comment string following the date, but it is generally not
used.

When Postfix delivers a message to an mbox file, it first creates the From_ line using the
envelope sender and the current date. Postfix then copies the contents of the delivered
message into the mbox file. If Postfix encounters any lines that begin with From followed by a
space, it has to quote them by adding a > to the beginning of the line, so that they won't be
confused with the start of the next message.

When a POP/IMAP server reads messages from the mbox file, it scans the file, looking for From_
lines, which mark the beginning of each message. It can read to the next From_ line (or the end
of the file) to know when a message is finished. The POP/IMAP server may unquote any of the
">From" quoted lines, or they may remain in the quoted form.

Since both Postfix and the POP/IMAP servers access the mailbox file, they must use file locking.
Postfix must obtain an exclusive lock on the file when it is delivering a message, so that it can
write the message to the file. Postfix offers a variety of locking mechanisms, depending on the
platform. You can use the postconf -l command to see which mechanisms Postfix can use on
your system:

$ postconf -l

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

flock
fcntl
dotlock

If you want more information about the locking types listed by Postfix on your system, check
your system's man pages for the specific lock name:

$ man flock

The dotlock type, which should be available on all systems, is probably not documented on
your system, because it is not a function of the operating system or supporting libraries as
flock and fcntl are. The dotlock is simply a file. The lock file name is made up of the name
of the file to be locked with a .lock extension appended to it. If such a lock file exists, then
Postfix knows that another process is using the mail file. If the file does not exist, Postfix
creates it to signal other processes that it is using the file. When Postfix is finished, it removes
the lock file, making the mail file available again. The drawback of dotlock locking is that it is
susceptible to stale locks, and it is not very efficient.

For the most part, you do not need to worry about locking, and the lock types available,
because Postfix does a good job of figuring out the best option.

7.2.2 The Maildir Format

The maildir mailbox format differs from mbox in that it uses a structure of directories to store
email messages. It was designed to solve some of the reliability and locking problems of the
mbox format. For example, if a system crashes at the instant an email message is being
delivered to an mbox file, it is possible that the message will be truncated at the point where
the delivery was interrupted. When the system comes back online, the mail transport agent will
attempt to deliver the message again. The partially written message at the bottom of the mbox
file may cause problems when the next message is appended to the file.

Other problems can occur if a POP/IMAP server tries to access the mbox file at the same time
as the SMTP server. If the programs do not use the same locking mechanism, the mail file will
most likely be corrupted. There are several possible mail file locking mechanisms (see above),
which are not necessarily used by all mail programs. With the maildir format, no locks are
necessary because each message gets its own file. Different mail processes do not need access
to the same files at the same time.

A maildir-style directory has three subdirectories, which must all be on the same filesystem:
tmp, new, and cur. These subdirectories are usually below a mail directory in a user's home
directory:

$ ll /home/kdent/maildir
total 12
drwxr-x--- 2 kdent kdent 4096 Mar 13 12:24 cur
drwxr-x--- 2 kdent kdent 4096 Mar 13 12:24 new
drwxr-x--- 2 kdent kdent 4096 Mar 13 12:24 tmp

Files in the new directory are messages that have been delivered but have not yet been read.
The modification time of the file is the delivery date of the message. The file usually contains
the message in RFC 2822 format, and no From_ line is needed.

Once a message has been viewed, it is moved to the cur directory. The tmp directory is used
during message delivery to store the contents of a file before it can be confirmed to have been
written to the new directory.

7.2.3 Mbox Versus Maildir

There is no simple answer to help you decide which type of mailbox format is best for you. The
mbox format has the advantage of being almost universally supported, but has the file-locking
problems that prompted the development of the maildir format. On the other hand, there are
concerns about the ability of the maildir format to scale to handle large numbers of messages
on some filesystems. There are performance arguments to support both formats: locating and
accessing or deleting a particular message is probably quicker with maildir, but delivery by
simply appending the text of a message to the end of a single file is probably quicker in the
mbox format. Your choice will most likely be driven by your selection of a POP/IMAP server. If
you settle on a POP/IMAP server that requires the maildir format, the choice is made for you.
Postfix easily supports either format, so you can safely allow other considerations to drive your
decision. If you think it will be significant in your environment, you should run tests of both
formats, simulating your own mail tasks as closely as possible.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

7.3 Local Delivery

All destination domains that should be handled by the local transport should be listed in the
mydestination parameter. You can list as many domains as you like, but individual local users
receive mail at all of the domains listed. For example, if both ora.com and oreilly.com are listed
in mydestination, then messages to either kdent@ora.com or kdent@oreilly.com go to the
same local mailbox.

All local recipients should be listed in tables configured in the local_recipient_maps
parameter to avoid accepting messages for unknown users. By default, local_recipient_maps
is set to the system password file and alias maps, so you normally don't have to make any
changes. Once Postfix has determined that it is the final destination for a message, and that the
message should be delivered locally, it has to decide what to do with the message.

Before looking for a user account that matches the local part of the email address, Postfix
consults its alias maps (see Chapter 4). If there is a forwarding alias that matches the recipient
address, Postfix resubmits the message as a new delivery, based on the forwarding information
from the alias lookup. Otherwise, it tries to deliver the message to a user on the system.
Postfix first checks for the existence of a .forward file for the local user, and may resubmit the
message based on information there. If no .forward exists for the user, Postfix delivers the
message to the user's mailbox.

7.3.1 .forward Files

.forward files allow local users to set up their own aliases. The contents of the .forward file are
the same as the righthand side of an alias entry. When an alias entry has multiple values on
the righthand side, they are separated by commas; while .forward files use the same
convention, they also allow multiple entries to be entered on multiple lines.

.forward files must be owned by the recipient, and are normally found in users' home
directories. You can specify different locations with the forward_path parameter. When
specifying a path for the parameter, there are eight variables whose values are expanded at
delivery time:

$user

Recipient username as specified in /etc/passwd

$home

Recipient home directory as specified in /etc/passwd

$shell

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

Recipient shell as specified in /etc/passwd

$recipient

The complete recipient email address

$extension

An optional extension of a local part of the recipient address, separated by a delimiter
such as the + character

$domain

Domain from the recipient email address

$local

Complete local part of recipient email address (includes extensions if any)

$recipient_delimiter

Delimiter character from the recipient email address, if there is an extension

If you want to add support for a nonstandard .forward file, you could configure forward_path
as follows:

forward_path = /home/$user/.forward /home/$user/other_forward

See the Postfix local manpage for more information on specifying paths with variable expansion.

7.3.2 Alias Deliveries

When Postfix delivers to a command or file specified in alias files, it makes the delivery or
executes the command as the user who owns the alias file. The exception is when the file is
owned by root, in which case Postfix uses the account specified in the default_privs
parameter. By default it is set to the account nobody. Aliases are discussed in Chapter 4.

7.3.3 Mailbox Delivery

When Postfix delivers a message to a local user, it writes the message to the system's message
store. By default Postfix uses the mbox format for deliveries. When you install Postfix, it can
normally figure out the default location of the mail spool directory depending on the type of
Unix system you have. The mail_spool_directory parameter can be used to specify a

directory other than the default. To change the directory to something other than the default
for your system, edit the main.cf file, and add or modify the mail_spool_directory parameter:

mail_spool_directory = /var/spool/mail

To cause Postfix to use the maildir format for delivery, append the directory with a trailing
slash:

mail_spool_directory = /var/spool/mail/

Postfix can also be configured to deliver messages to mailboxes within users' home directories.
Assign a relative path to the home_mailbox parameter to indicate which file should be used for
mailboxes:

home_mailbox = mbox

Append the path with a trailing slash to indicate that Postfix should use the maildir-style
delivery:

home_mailbox = maildir/

This causes Postfix to deliver messages into a directory called maildir, below users' home
directories.

With maildir-style delivery, Postfix normally creates the necessary
directories and files, if the user's credentials permit it; however, as a
security precaution, if the parent directory is world-writable, Postfix
delivery agents will not create any additional files or directories.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

7.4 POP and IMAP

After Postfix has delivered a message, users need a way to read it. Many sites provide a POP/
IMAP server for users to retrieve their email messages over the network. In most cases Postfix
works seamlessly with POP/IMAP servers, so that no special configuration is required on either
side.

7.4.1 POP Versus IMAP

The POP protocol works best when you have limited, or less than full-time, network access
because it allows you to connect to your mail server, fetch all of your messages, and disconnect
from the network. You now have local copies that you can read offline. Most POP clients have a
configuration option to delete your messages from the server when you retrieve them, since
you then have the local copies. If you don't delete them at some time, the messages
accumulate, taking up more and more space on your mail server. POP was designed to be easy
to implement, but the major problem with the POP protocol is that if you ever work from more
than one computer, your messages may not be where you need them. It also does not handle
multiple mailboxes very well, and it forces you to download complete messages. There is no
option to retrieve just the subject, for example, to decide if you want the complete message.

The IMAP protocol was designed to overcome some of POP's shortcomings. It keeps all
messages on the server. You have to be connected while working with your email messages,
but you can manage them as if they were local. Since everything happens on the server, it
doesn't matter if you work from your desktop computer at home, another machine at work, and
even on a laptop while traveling. IMAP still allows for saving messages locally, if necessary, and
it also provides much more flexibility than POP. You can download just the headers from your
messages and then decide to retrieve the rest of a message if you want to read it. You don't
have to be stuck downloading a huge message or attachment that you might not be interested
in. You can maintain multiple mailboxes and folders on the IMAP server.

7.4.2 Postfix and POP/IMAP Servers

The cooperation between Postfix and POP/IMAP servers is simple. When Postfix accepts delivery
of an email message, it places it in the message store. The POP/IMAP server simply retrieves
messages from the same store when a user requests them. Figure 7-1 shows how simple the
cooperation is between Postfix and POP/IMAP servers. Postfix and the POP/IMAP server must
agree on the type of mailbox format and the style of locking. Postfix should work with any
standards-compliant POP/IMAP server that uses one of the traditional message stores. You may
have to adjust the mail_spool_directory parameter, as described earlier in the chapter, but
for most POP/IMAP servers, you can simply follow the standard installation instructions and
start the server. For POP/IMAP servers that don't use a traditional message store, Postfix can
still deliver messages using the Local Mail Transfer Protocol, which is discussed in the next
section.

Figure 7-1. Postfix and POP/IMAP servers

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

7.5 Local Mail Transfer Protocol

Some POP/IMAP servers use nonstandard message stores. Since it would be unreasonable to
expect MTAs such as Postfix to understand many different proprietary formats, the Local Mail
Transfer Protocol (LMTP) provides a way to pass email messages from one local mail service to
another without depending on a common message store. LMTP is based on, and is a simplified
version of, SMTP. With LMTP, the server can either accept an email message immediately or it
cannot accept it at all. There is no attempt by the LMTP server to queue or redeliver a message
that cannot be delivered immediately.

When an MTA makes a delivery to an SMTP server, where the message is destined for multiple
recipients, and one or more recipients cannot accept the message for some reason, the SMTP
server takes the responsibility of queuing the message to deliver it later, and reports an overall
successful delivery to the MTA. LMTP servers do not queue messages, so they must return an
individual status reply for every recipient of a particular email message. For those recipients
that could not be delivered, the MTA, and not the LMTP server, takes the responsibility of
queuing the message and attempting redelivery.

LMTP conversations can occur between mail subsystems on the same machine or on different
machines on a local area network. It is not recommended for wide area networks, since the
protocol depends on a quick response to indicate whether the message was delivered. With
SMTP there is a recognized synchronization problem between sending and receiving mail
systems that sometimes causes duplicate messages to be delivered. It is believed that LMTP
over wide area networks would make the problem worse.

Apart from delivery to nonstandard message stores, a real benefit of
the LMTP protocol is that it allows for a highly scalable and reliable
mail system. One or more Postfix servers can receive mail from the
public Internet and make deliveries to multiple LMTP backend
systems. As the load increases, it is a simple matter to add more
boxes to the front- or backend systems.

The most common implementation of LMTP delivery is the Cyrus IMAP server from Carnegie
Mellon University. It is available from the Project Cyrus web page at http://asg.web.cmu.edu/
cyrus/. Cyrus IMAP uses its own message store, as shown in Figure 7-2. This section looks at
how Postfix can use the LMTP protocol to hand off messages to Cyrus IMAP. For more
information about configuring Cyrus IMAP, see Managing IMAP by Dianna Mullet and Kevin
Mullet (O'Reilly).

7.5.1 Postfix and Cyrus IMAP

Cyrus IMAP is intended to run on servers that provide POP/IMAP access only, where users do
not need a shell account. If you are creating a mail server for existing users on a system, you
will probably want to use another simpler POP/IMAP solution, such as Qualcomm's Qpopper
(POP access only) or the University of Washington's IMAP Toolkit, which doesn't require any
special configuration to work with Postfix. This section deals with configuration issues for

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
http://asg.web.cmu.edu/cyrus/default.htm
http://asg.web.cmu.edu/cyrus/default.htm

getting Postfix to work together with Cyrus IMAP.

Figure 7-2. Postfix and Cyrus IMAP

Cyrus IMAP can listen for LMTP deliveries using either Unix-domain sockets or TCP sockets. You
must know which method you are using so that you can configure Postfix appropriately. If you
want to use Unix-domain sockets, both Postfix and the Cyrus IMAP server must be on the same
machine. If you use TCP sockets, the Cyrus IMAP server could be on the same system or any
other system on your network. LMTP delivery is configured in your main.cf file or in a transport
map.

For Postfix to accept messages to be delivered locally to Cyrus IMAP, the destination domain
name of the email address must be listed in the mydestination parameter. (You may also want
to configure Cyrus deliveries via the virtual transport. See Chapter 8.) Then you must
configure Postfix to pass messages to Cyrus IMAP. Use the mailbox_transport,
local_transport, or fallback_transport parameter to tell Postfix how much local processing
to do before handing off messages to Cyrus. If you are using local_transport or
fallback_transport, make sure that Postfix knows about all of the Cyrus users, by including
the usernames in a lookup table listed with the local_recipient_maps parameter.

mailbox_transport

The mail message is given to the local delivery agent first. The local delivery agent
checks for and expands any aliases or entries in .forward files. After expansion of the
original address, the message is delegated to the Postfix LMTP client, which delivers it to
the LMTP server.

local_transport

When you specify that the local transport should be LMTP, Postfix transfers the message
directly to the Postfix LMTP client. The normal local delivery agent does not process the
message at all, so there is no expansion of aliases or .forward files.

fallback_transport

When the fallback transport is LMTP, Postfix gives the message to its local delivery
agent first. The normal aliases and .forward files are expanded, and if the recipient has

a normal account on the system, delivery is made to the appropriate mail store on the
system. If no such account exists, delivery is delegated to the Postfix LMTP client for
delivery to the LMTP server. If you have actual accounts on the system that should
receive email messages in the conventional message store, and the rest of your email
users do not have system accounts but do receive mail through the Cyrus IMAP server,
you should configure the fallback_transport to use LMTP delivery.

Specify your chosen transport type using the following format:

xxx_transport = service:socket_type[:/path/to/socket]

For LMTP delivery, service must be lmtp, which refers to the lmtp service in the /etc/postfix/
master.cf file. The socket_type is either unix or inet for Unix domain, or TCP sockets,
respectively. The default is inet, which means that if your LMTP server uses an inet socket,
you can simply specify the service as:

local_transport = lmtp

A typical LMTP transport configuration in /etc/postfix/main.cf using local_transport and a
Unix domain socket looks like the following:

local_transport = lmtp:unix:/var/imap/socket/lmtp

7.5.2 A Postfix and Cyrus IMAP Example

To build Cyrus IMAP, you need the Cyrus SASL library, which is used to authenticate users for

the IMAP server.
[1]

 You must first build and install the Cyrus SASL library, and then you can
build the Cyrus IMAP server. The Cyrus software requires at least Version 3 of Berkeley DB. If
you were using a version of Berkeley DB prior to Version 3, you may need to update your entire
system. Having different versions of Berkeley DB intermixed on your system will likely lead to
problems that can be difficult to track down. If you have to upgrade your libraries, consider
rebuilding other packages that use Berkeley DB (such as Perl and Postfix), so that everything
on your system uses the same version of the library.

[1] It is the same library that is used to add authentication support for Postfix.
See Chapter 12 for more information on adding SMTP authentication support to
Postfix.

Follow the instructions in the Cyrus SASL and IMAP distributions to compile and install them
correctly on your system. There might be binary distributions available for your platform. Check
your normal software sources to see if you can save yourself the trouble of building the Cyrus
software.

For this example, assume that you have a Postfix server receiving mail for the domain example.
com. All of the email accounts are set up within the Cyrus IMAP server running on the same
system, so there are very few actual login accounts on the system. However, you want mail
destined for the root account or postmaster alias to be sent to the correct person, which
means that you need to expand local aliases before handing off messages to the Cyrus IMAP
server. To achieve this, set the mailbox_transport parameter to point to the lmtp delivery

agent, which will be configured to deliver mail to the Cyrus IMAP server:

1. Complete the installation and configuration of Cyrus IMAP on your system. Check the
Cyrus configuration file (normally /etc/cyrus.conf) to make sure that it is configured to
use Unix-domain sockets, and note the location of the socket file. You should see an
entry that resembles the following:

SERVICES {
 # add or remove based on preferences
 imap cmd="imapd" listen="imap" prefork=0
 pop3 cmd="pop3d" listen="pop3" prefork=0
 # LMTP is required for delivery
 lmtpunix cmd="lmtpd" listen="/var/imap/socket/lmtp" prefork=0
}

The lmtpunix entry shows the correct path to the socket file.

2. Follow the documentation that came with your package to add users to your Cyrus IMAP
server.

3. Check the /etc/postfix/master.cf to make sure that the lmtp service is set up correctly.
The line should look like the following:

lmtp unix - - n - - lmtp

If you have a default Postfix installation, the lmtp line will already be in the file, as
shown in the example. The fifth column indicates whether the LMTP delivery agent
should run within a chrooted environment. In this example, the Postfix LMTP delivery
agent must read the socket file created by the Cyrus IMAP server, so leave this column

with the value n.
[2]

[2] It is possible to set up your system in such a way that allows the LMTP
delivery agent to read the socket file even from within the Postfix chroot
environment, but it is probably not necessary.

4. Check the main.cf file to make sure that the domain you are receiving mail for is listed
in the mydestination parameter. It might be listed explicitly:

mydestination = $myhostname, localhost.$mydomain, $mydomain,
 example.com

or it might come from the $mydomain variable:

mydomain = example.com
mydestination = $myhostname, localhost.$mydomain, $mydomain

5. Specify that the mailbox_transport parameter should use the lmtp service from the
master.cf file, and point to the Cyrus IMAP socket file whose path you determined from

the Cyrus configuration file (see item 1):

mailbox_transport = lmtp:unix:/var/imap/socket/lmtp

6. Reload Postfix:

postfix reload

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 8. Hosting Multiple Domains

It is very common these days for a single system to host many domains. For instance,
oreillynet.com and onlamp.com might run on a single host, but act as if they were two totally
different hosts. A system usually has a canonical domain, which is considered its usual or
common domain name. Additional domains are configured as virtual domains. Each virtual
domain can host services such as web sites and email as if it were the only domain on a server.
This chapter explains several different mechanisms for hosting multiple domains. The
techniques are explained separately, but it is possible to mix techniques if you must handle
different domains in different ways.

To determine which technique or techniques you need, you must decide how Postfix should
deliver messages for virtual domains. There are two important considerations that influence
how you should configure Postfix for hosting multiple domains:

● Should your domains have separate namespaces? For example, should mail for the two
addresses info@ora.com and info@oreilly.com go to the same mailbox or separate
ones? We'll refer to the same mailbox scenario as shared domains, and the other as
separate domains.

● Does every user require a system account? We'll make the distinction between system
accounts that are real Unix accounts on your system and virtual accounts. With virtual
accounts, users can have mailboxes on your server, but don't otherwise log in to the
system and don't require an entry in /etc/passwd.

We'll consider four different ways Postfix can handle mail for virtual domains:

● Shared domains with system accounts
● Separate domains with system accounts
● Separate domains with virtual accounts
● Virtual domains with a proprietary message store not managed by Postfix

Your POP/IMAP server will be a major factor in deciding which technique you need. If your POP/
IMAP server does not understand virtual domains, then it will most likely require that you have
system accounts for all addresses. Some POP/IMAP servers inherently support multiple
domains, and deliver messages into a particular directory structure on the local filesystem.
Other POP/IMAP servers use their own proprietary message store. Postfix can hand off
messages to them using LMTP.

Regardless of the technique you use, all of your virtual domains must be configured correctly in
DNS. You should configure DNS for virtual domains the same way you do for your system's
canonical domain. See Chapter 6 for information on Postfix and DNS.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/oreillynet.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/onlamp.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/info_40ora.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/info_40oreilly.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

8.1 Shared Domains with System Accounts

Accepting mail for multiple domains where every user can receive mail for every domain is the
simplest configuration of virtual domains. Simply add your virtual domains to the
mydestination parameter. Create user accounts as you normally would, and they can start
receiving mail addressed to any of the domains. This technique uses the local delivery agent,
providing all of the same features as your normal canonical domain hosting. Users can create
their own .forward files, and local aliases are available. On a system whose canonical name is
oreillynet.com, hosting two virtual domains, ora.com and oreilly.com, the mydomain parameter
is set as if oreillynet.com were the only domain, and mydestination is set as follows:

mydomain = oreillynet.com
mydestination = $myhostname, $mydomain, ora.com, oreilly.com

Make sure you reload Postfix after making changes. Users can now receive mail at any of the
domains you listed in mydestination:

postfix reload

Messages addressed to either info@ora.com or info@oreilly.com all go to the same local user
account.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/oreillynet.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/ora.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/oreilly.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/oreillynet.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/info_40ora.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/info_40oreilly.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

8.2 Separate Domains with System Accounts

If you require separate namespaces for each of your virtual domains, the configuration is only
slightly more complicated. With separate domains, mail to info@ora.com should go to a
different mailbox than mail to info@oreilly.com. In this case, do not list the additional domains
in the mydestination parameter. Instead, use virtual_alias_domains:

virtual_alias_domains = ora.com, oreilly.com

You must create a user account for every email address that will receive messages on your
system. Your system accounts do not have to match the email addresses in any way, since you
will be mapping the addresses to the accounts separately, but each account must be unique. If
your platform supports long usernames, a good way to create unique account names, and to
avoid confusion about which accounts are meant to receive mail at which domains, is to use the
domain name itself as part of the account name. One possible naming convention is to create
accounts such as info.ora.com and info.oreilly.com.

Once Postfix knows which domains to accept mail for, and you have accounts for each address,
use virtual_alias_maps to map the email addresses to the accounts you create. In main.cf,
point the virtual_alias_maps parameter to the virtual alias lookup file. In this example, the
file /etc/postfix/virtual_alias is used:

virtual_alias_maps = hash:/etc/postfix/virtual_alias

The /etc/postfix/virtual_alias file contains entries with the email addresses pointing to the
system accounts you created, plus any non-local forwarding you need:

info@ora.com helene@localhost
info@oreilly.com frank@localhost
kdent@oreilly.com kyle.dent@onlamp.com

Whenever you create or update a virtual aliases file, don't forget to execute the postmap
command on the file:

postmap virtual_alias

If helene and frank plan to send messages from the system, you may also want to set up
canonical maps so that their outbound messages show the correct sending addresses. Assign a
lookup table like the following to canonical_maps:

helene info@ora.com
frank info@oreilly.com

And remember to execute postmap against the file:

postmap canonical

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/info.ora.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/info.oreilly.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/helene
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/frank

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

8.3 Separate Domains with Virtual Accounts

The drawback for the techniques so far is that you must maintain system accounts for all email
addresses on your server. As the number of domains you host increases, so does the effort to
maintain all the accounts. In particular, if users only receive email at your server, and don't
otherwise log in, you probably don't want to have to create system accounts for each one.
Instead, configure Postfix to deliver to a local message store where each virtual email address
can have its own mailbox file. Your users then retrieve their messages through a POP/IMAP
server.

The local message store works much like normal local delivery, but it doesn't require a one-to-
one correspondence between each mail file and a local user account. For this configuration, list
each virtual domain in the virtual_mailbox_domains parameter:

virtual_mailbox_domains = ora.com, oreilly.com

If you have many domains, you can list them in a file and point virtual_mailbox_domains to
the file:

virtual_mailbox_domains = /etc/postfix/virtual_domains

The file /etc/postfix/virtual_domains then contains a line for each domain:

#
/etc/postfix/virtual_domains
#
ora.com
oreilly.com

Virtual domains listed in virtual_mailbox_domains are delivered by the virtual delivery agent,
which is actually a streamlined version of the local delivery agent. It makes deliveries in a
highly secure and efficient manner, but local aliases, .forward files, and mailing list programs
are not available. You can make use of the virtual_alias_maps parameter that you saw
earlier in the chapter to accomplish aliasing, and we'll look at a technique to accomplish
delivery to programs later in this chapter.

When setting up the virtual mailboxes, you should structure the directories to accommodate the
expectations of your POP/IMAP server. Let's assume for this explanation that the virtual
mailboxes are all located below the base directory /usr/local/vmail. Each virtual domain has its
own subdirectory below that, so that you have directories like the following:

/usr/local/vmail/ora.com
/usr/local/vmail/oreilly.com

This is a common configuration for POP/IMAP servers that support virtual hosting. Below each
domain subdirectory are the mail files for each user. Indicate to Postfix the base directory of
the mail store with the virtual_mailbox_base parameter:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

virtual_mailbox_base = /usr/local/vmail

You must create a lookup file that maps email addresses to their mailbox files. Specify the
lookup table with the virtual_mailbox_maps parameter:

virtual_mailbox_maps = hash:/etc/postfix/virtual

Every user receiving mail to a virtual mailbox file must have an entry in a Postfix lookup table.
The mailbox file is specified relative to virtual_mailbox_base. Mail files can use either mbox
or maildir format (see Chapter 7). To use maildir format, include a slash at the end of the
filename. A virtual mailbox map file looks like the following:

info@ora.com ora.com/info
info@oreilly.com oreilly.com/info

The email address info@ora.com goes to a different mailbox from the address info@oreilly.com.

8.3.1 Mailbox File Ownership

The virtual mailbox files must be owned by a user account and associated with a group on your
system. How your users retrieve their messages determines what the ownership of mailbox
files should be. Often, your POP/IMAP server executes under its own account and expects all of
the mailbox files to be owned by this user, but if necessary, Postfix lets you configure
ownership for mailbox files in any way you need. Each can be owned by a separate user, or one
user can own all of the mailboxes for one domain, while a different user owns the mailboxes of
another.

The virtual_uid_maps and virtual_gid_maps parameters determine the owner and group
Postfix uses when making deliveries to virtual mailbox files. You can specify that all of the
virtual mailboxes should be owned by the same user account with the static map type.
Assume, for this example, that you have created an account called vmail that has a UID of
1003, and a group called vmail that has a GID of 1005. You want all of the virtual mailbox files
to be owned by this user and group.

Set the virtual_uid_maps and virtual_gid_maps parameters in main.cf:

virtual_uid_maps = static:1003
virtual_gid_maps = static:1005

If you want to use different UIDs for different mailbox files, you must create a lookup file that
maps the addresses to the UIDs. Then point the mapping parameter to your lookup file:

virtual_uid_maps = hash:/etc/postfix/virtual_uids

If most of your virtual mailboxes should have the same fixed ownership but some require
different UIDs, you can combine static and table lookups:

virtual_uid_maps = hash:/etc/postfix/virtual_uids static:1003

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/vmail
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/vmail

If you also need separate group mappings, they work exactly the same way.

The file /etc/postfix/virtual_uids contains entries like the following, with each address mapped
to the correct UID. In this case, the mailboxes for ora.com use one ID and those for oreilly.com
use another:

#
/etc/postfix/virtual_uids
#
info@ora.com 1004
kdent@ora.com 1004
info@oreilly.com 1007
service@oreilly.com 1007

8.3.2 Virtual Aliases

It is possible for a virtually hosted domain to have some addresses that are delivered to the
local message store and some that are forwarded. Since all recipient addresses are checked for
virtual aliasing regardless of their class, simply place the forwarded addresses in the
virtual_alias_maps file instead of the virtual_mailbox_maps file. Make sure the
virtual_alias_maps parameter points to a virtual alias lookup table:

virtual_alias_maps = hash:/etc/postfix/virtual_alias

The /etc/postfix/virtual_alias file contains entries for addresses that should be forwarded
elsewhere:

kdent@oreilly.com kyle.dent@onlamp.com

Do not list a domain in both virtual_mailbox_domains and virtual_alias_domains. Use
virtual_mailbox_domains for domains that have a mix of aliases and mailboxes and
virtual_alias_domains only when all of the addresses are aliases.

8.3.3 Catchall Addresses

For either virtual mailboxes or virtual aliases, your lookup table can have a key value of the
domain without a local part to catch any message destined for the domain addressed to a
nonexistent address. Catchall addresses should be used advisedly, since they tend to receive a
lot of spam. Spammers often send messages to nonexistent accounts at a domain, which are
received by catchall addresses.

8.3.3.1 Virtual mailbox catchall

The first step is to identify a mailbox to receive messages sent to nonexistent addresses. You
can use an existing mailbox or create a new one. Add a new virtual_mailbox_maps entry like
the following to deliver any message with an unknown destination address to the service
mailbox:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/ora.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/oreilly.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/service

@ora.com ora.com/service

8.3.3.2 Virtual alias catchall

Catchall addresses with virtual aliases work similarly to virtual mailboxes, but you should set up
a catchall alias address only if all addresses in a domain are configured as aliases and not
mailboxes. Since virtual aliases are checked before virtual mailboxes, a catchall alias intercepts
all messages, including those otherwise destined for virtual mailbox addresses. Once you've
identified the address that should receive messages sent to nonexistent addresses, add a new
virtual_alias_maps entry like the following:

@ora.com customer.service@onlamp.com

It's possible to have a virtual alias catchall address in conjunction with virtual mailbox
addresses by creating entries for all of your virtual mailbox addresses in your virtual alias
lookup maps. Assuming you have virtual mailboxes configured like the following:

info@ora.com ora.com/info
info@oreilly.com oreilly.com/info

your virtual alias lookup table that includes a catchall alias must also contain the mailbox
entries:

@ora.com customer.service@onlamp.com
kdent@oreilly.com kyle.dent@onlamp.com
info@ora.com info@ora.com
info@oreilly.com info@oreilly.com

In this way, a message addressed to info@oreilly.com won't be intercepted by the @ora.com
catchall alias.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

8.4 Separate Message Store

The last configuration we'll consider is hosting virtual domains with a system using a
proprietary message store. To work with these systems, Postfix hands off messages using a
protocol like LMTP, letting the proprietary system handle delivery to the correct mail box.

Since Postfix must receive messages before handing them off to the LMTP server, it has to
know that it should accept mail for each of the virtual domains. List them in
virtual_mailbox_domains:

virtual_mailbox_domains = ora.com, oreilly.com

You also have to list each email address, so Postfix can accept messages for valid addresses
and reject unknown users. Use the virtual_mailbox_maps parameter to point to a lookup file
with valid addresses:

virtual_mailbox_maps = hash:/etc/postfix/virtual

In the /etc/postfix/virtual file, the righthand value isn't used because all messages are passed
along to the POP/IMAP server. You must still include a righthand value because lookup tables
must have a key and a value, but the value you use doesn't matter:

info@ora.com General Information Address
info@oreilly.com General Information Address

In order to have Postfix pass mail for virtual domains through to your POP/IMAP server, specify
the correct transport in the virtual_transport parameter in main.cf. You have to know how
your LMTP server socket is set up. Assuming it's on the same host as Postfix and uses a socket
file located at /var/imap/socket/lmtp, the transport lookup table for the example domains looks
like the following:

virtual_transport = lmtp:unix:/var/imap/socket/imap

This causes all of your virtual_mailbox_domains to be delivered to your POP/IMAP server
over LMTP.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

8.5 Delivery to Commands

As mentioned earlier in the chapter, you can't use local aliases, .forward files, and mailing-list
programs with virtual domains delivered by the virtual delivery agent. You've seen that you can
easily set up aliases through the virtual_alias_maps parameter, but you cannot deliver
messages to a command. In this last section, we'll look at working around that issue by
demonstrating how to deliver virtual addresses to external programs. The first example sets up
delivery to an autoreply program, and the second to a mailing-list manager.

Auto-responders are scripts or programs that process incoming messages and return a reply to
the sender of the message without any human intervention. The autoreply program used in this
example, inforeply.pl, is listed in Example 8-1. This program is meant to handle mail for a
dedicated information email address. Users or customers can send a message to the address to
request special information. Note that this simple example is inadequate as a general autoreply
program, such as the Unix vacation command. It does not cache addresses it has already
replied to, and it does not do full checking for addresses that should not receive automatic
replies (see the sidebar). You might also like to enhance the program to return different types
of information, based on the subject or a keyword in the body of the request messages.

Example 8-1. Simple automatic reply program

#!/usr/bin/perl -w
#
inforeply.pl - Automatic email reply.
#
All messages are logged to your mail log. Check the
log after executing the script to see the results.
#
Set $UID to the uid of the process that runs the script.
Check the entry in master.cf that calls this script. Use
the uid of the account you assign to the user= attribute.
If you want to test the script from the command line,
set $UID to your own uid.
#
Set $ENV_FROM to the envelope FROM address you want on
outgoing replies. By default it's blank, which will
use the NULL sender address <>. You can set it to an
address to receive bounces, but make sure you don't set
it to the same address that invokes the program, or
you'll create a mail loop.
#
Point $INFOFILE to a text file that contains the text of
the outgoing reply. Include any headers you want in the
message such as Subject: and From:. The To: header is
set automatically based on the sender's address. Make
sure you have an empty line between your headers and the
body of the message.
#
If necessary, change the path to sendmail in $MAILBIN.
#
@MAILOPTS contains options to sendmail. Make changes if

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

necessary. The default options should work in most
situations.
#
The calls to syslog require that your Perl installation
converted the necessary header files. See h2ph in your
Perl distribution.

require 5.004; # for setlogsock in Sys::Syslog module

use strict;
use Sys::Syslog qw(:DEFAULT setlogsock);

#
Config options. Set these according to your needs.
#
my $UID = 500;
my $ENV_FROM = "";
my $INFOFILE = "/home/autoresp/inforeply.txt";
my $MAILBIN = "/usr/sbin/sendmail";
my @MAILOPTS = ("-oi", "-tr", "$ENV_FROM");
my $SELF = "inforeply.pl";
#
end of config options

my $EX_TEMPFAIL = 75;
my $EX_UNAVAILABLE = 69;
my $EX_OK = 0;
my $sender;
my $euid = $>;

$SIG{PIPE} = \&PipeHandler;
$ENV{PATH} = "/bin:/usr/bin:/sbin:/usr/sbin";

setlogsock('unix');
openlog($SELF, 'ndelay,pid', 'user');

#
Check our environment.
#
if ($euid != $UID) {
 syslog('mail|err',"error: invalid uid: $> (expecting: $UID)");
 exit($EX_TEMPFAIL);
}
if (@ARGV != 1) {
 syslog('mail|err',"error: invalid invocation (expecting 1 argument)");
 exit($EX_TEMPFAIL);
} else {
 $sender = $ARGV[0];
 if ($sender =~ /([\w\-.%]+\@[\w.-]+)/) { # scrub address
 $sender = $1;
 } else {
 syslog('mail|err',"error: Illegal sender address");
 exit($EX_UNAVAILABLE);
 }
}
if (! -x $MAILBIN) {

 syslog('mail|err', "error: $MAILBIN not found or not executable");
 exit($EX_TEMPFAIL);
}
if (! -f $INFOFILE) {
 syslog('mail|err', "error: $INFOFILE not found");
 exit($EX_TEMPFAIL);
}

#
Check sender exceptions.
#
if ($sender eq ""
 || $sender =~ /^owner-|-(request|owner)\@|^(mailer-daemon|postmaster)\@/i) {
 exit($EX_OK);
}

#
Check message contents for Precedence header.
#
while (<STDIN>) {
 last if (/^$/);
 exit($EX_OK) if (/^precedence:\s+(bulk|list|junk)/i);
}

#
Open info file.
#
if (! open(INFO, "<$INFOFILE")) {
 syslog('mail|err',"error: can't open $INFOFILE: %m");
 exit($EX_TEMPFAIL);
}

#
Open pipe to mailer.
#
my $pid = open(MAIL, "|-") || exec("$MAILBIN", @MAILOPTS);

#
Send reply.
#
print MAIL "To: $sender\n";
print MAIL while (<INFO>);

if (! close(MAIL)) {
 syslog('mail|err',"error: failure invoking $MAILBIN: %m");
 exit($EX_UNAVAILABLE);
}

close(INFO);
syslog('mail|info',"sent reply to $sender");
exit($EX_OK);

sub PipeHandler {
 syslog('mail|err',"error: broken pipe to mailer");
}

8.5.1 Configuring a Virtual Auto-Responder

To configure an auto-responder to work with virtual domains, you must create a special
transport type in master.cf for delivery to the specific command. In order to have messages
delivered to your new component, you have to map an address to the transport you created
using transport maps.

Many auto-responders can handle only a single message at a time with only one recipient. You
can limit the number of recipients to any transport type by setting a parameter of the form
transport_destination_recipient_limit, where the string transport is the name of the
transport type. If a transport called inforeply should be limited to only one recipient at a time,
set the following parameter:

inforeply_destination_recipient_limit = 1

Writing an Auto-Responder

If you are writing your own auto-responder, there are several considerations you
should take into account. The first, and possibly most important, is that your
program is receiving data from the network, which is an untrusted source. Don't
make any assumptions about the supplied input you are processing, other than to
assume that it's designed to compromise your system in some way. Under no
circumstances should you invoke a shell where the untrusted input might be able to
gain access to your system.

Other issues to think about have more to do with being polite than anything else. For
example, you don't want your auto-responder to blast out a reply to a mailing list of
hundreds or thousands of recipients. Never send replies to addresses that have the
form owner-list or list-request. There are several other addresses you probably
don't want to reply to, such as postmaster, daemon, and majordomo. Your program
should set its own envelope address to the null string to prevent mailer loops.

Many mailing lists make use of a header field called Precedence:. They generally set
the value to something like bulk to indicate its purpose. Your program should check
the Precedence: field, and if it is set to bulk, list, or junk, do not send a reply.

Finally, make sure that your program has a way to log what happens to each
message received. Once Postfix delivers a message to your program, the program
has the responsibility of checking for errors and providing a way to communicate
them to an administrator.

The following steps walk through setting up the email address info@ora.com to use inforeply.pl.
The domain ora.com is configured as a virtual domain. The local domain on the host is example.
com:

1. Create a local account under whose privileges the inforeply.pl program should execute.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/ora.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com

In this example, an account called autoresp is used. You should create a new pseudo-
account for this purpose. Use the normal administrative tools on your system to make
the account.

2. Create a transport type called inforeply by adding an entry to your master.cf file. The
entry should look something like the following:

inforeply unix - n n - - pipe
 flags= user=autoresp argv=/usr/local/bin/inforeply.pl ${sender}

The pipe daemon is used to deliver messages to external commands. You can specify
flags if your program requires any special options. (See the pipe(8) man page for
information on the available options.) The user attribute is required for any pipe
components in master.cf. The argv attribute must be specified last, and should start
with the path to the autoreply command. There are several values that you can pass to
your command when Postfix executes it. The values are supplied through special
macros. In this example, the envelope sender address (${sender}) is passed. For the
simple inforeply.pl responder, you need only the sender address, but you will often want
the recipient (${recipient}) address, too, for auto-responders that can handle multiple
recipient addresses. See the pipe(8) manpage for the list of available macros.

3. If you haven't already set up any transports on your system, set the transport_maps
parameter in main.cf to point to the transport table:

transport_maps = hash:/etc/postfix/transport

4. Add an entry in your transport table that contains the address to direct messages to the
inforeply transport. In this case, we'll use the address autoresp@ora.com:

autoresp@ora.com inforeply

Now, all messages sent to autoresp@ora.com are delivered to the auto-responder.

5. Execute postmap against the transport lookup table:

postmap /etc/postfix/transport

6. Point virtual_alias_maps to your virtual alias lookup table:

virtual_alias_maps = hash:/etc/postfix/virtual_alias

7. Add an entry to the virtual_alias lookup table to map info@ora.com to both the new
autoreply address and the actual recipient address that can receive the messages:

info@ora.com autoresp@ora.com service@oreilly.com

8. Execute postmap against the virtual alias lookup table:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/autoresp

postmap /etc/postfix/virtual_alias

Now messages sent to info@ora.com will be delivered to autoresp@ora.com and
service@oreilly.com.

9. Reload Postfix so that it recognizes the changes to its main.cf and master.cf files:

postfix reload

When a message is sent to info@ora.com, Postfix first finds the destination address in
the virtual_alias lookup table. The address points both to autoresp@ora.com and
service@oreilly.com. Postfix finds autoresp@ora.com in the transport lookup table,
which points to the inforeply transport in the master.cf file. The entry in master.cf
pipes the message to the inforeply.pl program, which sends the reply to the original
sender. Finally, the message is also resubmitted for delivery to service@oreilly.com.

8.5.2 Configuring a Virtual Mailing List Manager

In the next example, you'll set up a mailing list for a virtual domain. Mailing-list managers are
discussed in Chapter 10. You may want to review that chapter before setting up your virtual
mailing lists. This example creates a mailing list for Majordomo. You should first install and
configure Majordomo according to the directions in Chapter 10.

Virtual mailing lists work by creating a parallel version of the list under a local domain. The
local version is only used internally on your system. External users can use the virtual
addresses and never know that the local version exists. When naming the local version, you
may want to include the virtual domain name in some way to distinguish the list from lists for
other virtual domains hosted on your system. The following procedure creates a mailing list at
the virtual address astronomy@ora.com that is handled by the local version astronomy-
ora@example.com:

1. Set up the local version of the mailing list just as you would a normal mailing list, as
described in Chapter 10, by adding the following entries to /usr/local/majordomo/
aliases:

astronomy@ora.com list
astronomy-ora: :include:/usr/local/majordomo/lists/astronomy
owner-astronomy-ora: kdent@ora.com
astronomy-ora-request: "|/usr/local/majordomo/wrapper request-answer \
 astronomy-ora"
astronomy-ora-approval: kdent@ora.com

2. Rebuild the Majordomo aliases table:

postaliases /usr/local/majordomo/aliases

3. Create the file to hold the email addresses for list subscribers, and set its ownership to
the majordom account:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/autoresp_40ora.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/service_40oreilly.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/majordom

touch /usr/local/majordomo/lists/astronomy
chown majordom /usr/local/majordomo/lists/astronomy

4. If desired, create an info file for the list at /usr/local/majordomo/lists/astronomy-ora.
info.

5. Create the necessary addresses for the list at the virtual domain. Add the following
entries to the virtual alias map file virtual_alias:

astronomy@ora.com list
astronomy@ora.com astronomy-ora@localhost
owner-astronomy@ora.com owner-astronomy-ora@localhost
astronomy-request@ora.com astronomy-ora-request@localhost
astronomy-approval@ora.com astronomy-ora-approval@localhost

6. Rebuild the virtual alias map file:

postmap virtual_alias

7. Add addresses to the /usr/local/majordomo/lists/astronomy list file.

You should now be able to send messages to astronomy@ora.com for distribution to all of the
addresses in your list file.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 9. Mail Relaying

Up until now, we've mostly considered Postfix in its role as the end node for email messages.
That is, messages that arrive at the Postfix system are, for the most part, delivered to the local
system. But it's also common to find Postfix serving as an intermediate node on the path a
message follows to its ultimate destination. In this chapter we'll look at some of the
configuration options for Postfix as a client in MTA-to-MTA communications.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

9.1 Backup MX

In DNS, MX records refer to mail exchangers (see Chapter 6). MX records contain both host and
priority (or preference) information for sending mail to a domain. A backup MX server is one
that receives mail for a particular domain, but is not the preferred server to receive the mail. If
the preferred server or servers are down, the backup MX server receives the mail and queues it
until one of the more preferred servers comes back online. Figure 9-1 illustrates delivery to a
backup host when the primary host is not available. The backup queues messages until the
primary is back online, whereupon the backup can deliver messages to it.

Figure 9-1. Delivery to backup MX host

When your system is configured in DNS as a backup MX host, you don't have to configure any
special transport from your system to the primary system. Postfix uses the DNS records to
determine how to route mail to the primary MX host. The only configuration required in Postfix
is to indicate that it should receive mail for the domain by adding the domain name to the
relay_domains parameter. When a sending MTA discovers that the primary mail system for a
domain is down, it tries the next preferred one until it finds one that accepts delivery. If your
system is a backup MX host, and the destination domain is listed in your relay_domains
parameter, Postfix accepts the mail and queues it. Postfix periodically scans its queue and
checks for a more preferred system to see if any are able to accept the message. Once a higher
priority mail exchanger is back online, Postfix can deliver the message to it.

Postfix continues trying to deliver queued messages for the amount of time specified in the
maximal_queue_lifetime parameter, which determines how long deferred messages stay in
the queue before they are bounced back to the sender. The default value is five days. If you
provide secondary mail service for primary servers that you know will be down longer than the
default, you can extend the time.

9.1.1 Relay Recipients

It is highly recommended that you maintain a list of valid recipients for domains you provide
backup MX services to. You should develop a regular process for obtaining an updated user list
from your primary MX servers. If your system does not know all of the available mailboxes on
the primary mail server, it must accept all messages. It's only when your backup MX server
tries to deliver them to the primary server that it discovers that a message cannot be delivered.
At that point, your server must bounce the message back to the original sender.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

Since spammers often send messages to made-up addresses, if your server does not know all
the valid email addresses on the primary server, your server will unnecessarily accept a lot of
mail that must be bounced. The bounce problem is exacerbated by the spammer tactic of
forging sender addresses by using the real email addresses of innocent bystanders. The forged
addresses receive all of the error notices for messages they never sent (see Chapter 11). The
relay_recipient_maps parameter specifies lookup tables that should contain all of the
addresses for domains listed in your relay_domains parameter:

relay_recipient_maps = hash:/etc/postfix/relay_recipients

The relay_recipients file should contain entries with the recipient address on the lefthand side.
The righthand side is not used by Postfix, but you must specify a value:

#
relay_recipients
#
user1@example.com any_value
user2@example.com any_value
user3@example.com any_value

If your system is on the same network as the primary, and the user accounts are stored in
some kind of database, you may be able to perform real-time lookups using MySQL or LDAP
(see Chapter 15).

A potential problem is that once you set relay_recipient_maps, you must include email
addresses for all domains you provide backup service to. If not, Postfix will reject messages
that don't appear in the lookup table. If you don't know the valid addresses for some domains,
you can specify a wildcard entry for that domain:

#
relay_recipients
#
user1@example.com any_value
user2@example.com any_value
user3@example.com any_value
@oreillynet.com any_value

The final entry is a wildcard entry that allows messages for any address at the domain.
Obviously, it's better to obtain the list of valid addresses for the reasons mentioned earlier.

9.1.2 Fast Flushing

Networks that receive mail for many sites, such as ISP networks, typically have some
customers whose systems aren't always connected to the network. When the customer network
is offline, the ISP queues its messages. When the site comes online, it can request immediate
delivery of all its queued mail with the ETRN SMTP command:

220 mail.ora.com ESMTP Postfix
EHLO mail.example.com
250-auger.seaglass.com
250-PIPELINING

250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250 8BITMIME
ETRN example.com
250 Queuing started

If there are a lot of messages queued when a domain is ready to accept mail, searching every
queue file would be time-consuming. Postfix provides a capability called fast flush to speed up
queue processing for a particular domain. Fast flush is handled by the flush daemon, which
maintains lists of messages that are queued for specific domains so that Postfix knows which
messages to deliver when it receives an ETRN command.

By default, all of the sites listed in relay_domains are eligible for the fast flush service. You can
include domains in addition to your relay domains by adding them to the fast_flush_domains
parameter. Add a domain name as follows:

fast_flush_domains = $relay_domains, example.com

In this case example.com is a domain not already listed in relay_domains.

You can manually notify Postfix that a fast flush domain is ready to accept messages by issuing
the postqueue -s command (or its equivalent, sendmail -qR) with the site name:

$ postqueue -s example.com

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

9.2 Transport Maps

Postfix can be configured to relay to any other host, regardless of how DNS MX records are set
up. This section discusses the transport_maps parameter in general. Later sections and other
chapters in the book present specific configurations that use it.

Conceptually, transport maps override default transport types for delivery of messages. The
transport_maps parameter points to one or more transport lookup tables. The following entry
sets up /etc/postfix/transport as a transport map lookup table:

transport_maps = hash:/etc/postfix/transport

The keys in a transport lookup table are either complete email addresses or domains and
subdomains. (Email addresses as lookup keys for transport maps require Postfix 2.0 or later.)
When a destination address or domain matches a lefthand key it uses the righthand value to
determine the delivery method and destination. Example 9-1 lists some possible transport map
entries.

Example 9-1. Transport map entries

example.com smtp:[192.168.23.56]:20025
oreilly.com relay:[gateway.oreilly.com]
oreillynet.com smtp
ora.com maildrop
kdent@ora.com error:no mail accepted for kdent

The format of righthand values can differ depending on the transport type, but generally has
the form transport:nexthop, where nexthop often indicates a host and port for delivery. Each
of the possible portions of the righthand value are described here:

transport

Refers to an entry from master.cf. If you are adding a new transport type, first create
an entry for it in master.cf.

host

The destination host for delivery of messages. The host is used only with inet
transports such as SMTP and LMTP. Postfix treats the hostname like any destination
domain. It performs an MX lookup to determine where to deliver messages. If there are
no MX records, Postfix delivers to the A record IP address. If you know that Postfix
should deliver directly to the IP in the A record for the specified host, you can have
Postfix skip the check for MX records by enclosing the name in brackets. If you use an
IP address, the brackets are required.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

port

The destination port for message delivery. The port is used only with inet transports
such as SMTP and LMTP. The port can be specified using the actual number or its
symbolic name from the /etc/services file.

Each of the sample entries from Example 9-1 uses a different format in their righthand values,
which are explained below:

example.com smtp:[192.168.23.56]:20025

All messages destined for example.com are relayed using the smtp transport to the host
at IP address 192.168.23.56. Messages are delivered over port 20025 instead of the
default SMTP port 25. Notice that the IP address is in brackets, as required for IP
addresses.

oreilly.com relay:[gateway.oreilly.com]

All messages destined for oreilly.com are relayed using the relay transport to the host
gateway.oreilly.com. Since no port is specified, Postfix uses the default port 25. The
hostname is in brackets to prevent Postfix from looking up MX records. Instead, it looks
up the A record and delivers to the IP address that the hostname resolves to.

The relay transport was introduced in Version 2 of Postfix to fix a potential performance
bottleneck with queue scheduling. You should direct inbound messages relayed to internal
systems over the relay transport, so that they don't compete with messages destined for
many different systems on the Internet.

oreillynet.com smtp

All messages destined for oreillynet.com are relayed using the smtp transport. Since
both the next hop and port are left off, Postfix uses the default port 25 and determines
the next hop based on the destination address. Most often, the next hop is determined
by performing a DNS lookup, which determines the MX host for the domain. This
example is a bit contrived, since simply listing oreillynet.com with relay_hosts achieves
the same thing in this case.

ora.com maildrop

All messages destined for ora.com are delivered to the maildrop service. maildrop
must be an entry in master.cf. Since delivery occurs over a pipe rather than an inet
socket, no host and port are specified.

kdent@ora.com error:no mail accepted for kdent

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/oreilly.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/gateway.oreilly.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/oreillynet.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/oreillynet.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/ora.com

The special error transport causes all mail to be rejected. After the colon, specify a
message to report when email is rejected.

Transport maps can also be used for special handling of certain messages on the local system.
(Chapter 14 discusses content filters, which provide a good example of configuring special local
transports.) Another local use of transport maps is to temporarily defer all of a domain's
messages. To demonstrate a simple use of transport maps, the next section describes a
procedure to defer all of the messages for a domain.

9.2.1 Postponing Mail Delivery

Under some circumstances you want Postfix to postpone delivery of messages until it has
received an explicit command to deliver them. Deferred messages are delivered when you issue
the postqueue -f domain command or Postfix receives an ETRN SMTP command from a fastflush-
eligible domain.

A common scenario for deferring messages is when an ISP receives mail for a customer
network that is not always online. The ISP must queue messages until the network is online
and can receive them. Similarly, users on the customer network should send messages through
a local gateway that queues them until they can be delivered once the network is online. This
section presents configurations for both situations.

9.2.1.1 Deferring mail relay

This procedure sets up a new transport type called "ondemand," and configures a transport
map to defer all messages for the example.com domain:

1. Create a new transport in your master.cf file called ondemand. It should be identical to
your smtp transport except for the name:

ondemand unix - - n - - smtp

2. Tell Postfix that delivery of all messages over your new transport should be deferred
automatically. Edit the defer_transports parameter in main.cf to include your
ondemand transport:

defer_transports = ondemand

3. Make sure that the transport_maps parameter points to your transport lookup table:

transport_maps = hash:/etc/postfix/transport

4. Add an entry to your transport file for example.com that points it to the ondemand
transport:

example.com ondemand

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com

5. Execute postmap on the file.

postmap /etc/postfix/transport

6. Reload Postfix so that it recognizes the changes in its configuration files:

postfix reload

Now any message destined for example.com is deferred until there is an explicit command to
deliver it.

When you are ready to release the deferred messages, issue the postqueue -f command:

$ postqueue -f example.com

9.2.1.2 Deferring delivery

A home network or small office network that wants to trigger delivery manually should defer all
SMTP deliveries, so that delivery attempts only occur when a connection to the Internet has
been established:

1. In main.cf, assign the smtp transport to the defer_transports parameter:

defer_transports = smtp

2. Reload Postfix so that it recognizes the changes in its configuration file:

postfix reload

Once a connection is established, all of the messages can be delivered using postqueue -f.

The rest of this chapter describes various scenarios where Postfix must relay mail to other
systems. In many cases, transport maps are necessary for configuring the next-hop delivery
details.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

9.3 Inbound Mail Gateway

A mail gateway is an email system that accepts messages and relays them to another system.
Gateways might provide a path from one network to another, or from one protocol to another.
A common use of a mail gateway is a server that accepts all the mail for a network from the
Internet and relays it to internal mail systems. Mail gateways are commonly set up in
conjunction with firewall systems to limit the number of servers that need direct access to the
Internet.

Imagine a company network such as the one depicted in Figure 9-2. There are sub-domains for
different workgroups at the company, and each workgroup has its own internal mail server. The
gateway system gw.example.com receives all the mail for the network. The human resources
department gets email addressed as user@hr.example.com, and their mail should go to the
server mail1.example.com. The sales department uses user@sales.example.com, and their mail
should go to mail2.example.com. The client hosts in each subnet retrieve mail from their
respective mail servers. Transport maps are required to set up the mail gateway gw.example.
com to relay messages to the correct internal mail servers.

Figure 9-2. Email gateway to internal systems

The following procedure demonstrates how to configure gw.example.com to relay messages to
the correct internal systems:

1. Make sure that the DNS has been configured correctly with MX records for hr.example.
com and sales.example.com pointing to the gateway gw.example.com.

2. In your main.cf file, set relay_domains to include the two internal domains:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/gw.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail1.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail2.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/gw.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/gw.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/gw.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/hr.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/hr.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/sales.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/gw.example.com

relay_domains = hr.example.com, sales.example.com

3. Make sure that the transport_maps parameter points to your transport lookup table:

transport_maps = hash:/etc/postfix/transport

4. Add entries to your transport file for each domain pointing to the correct internal mail
systems:

#
transport maps
#
hr.example.com relay:[mail1.example.com]
sales.example.com relay:[mail2.example.com]

We've used brackets around the internal mail system host names to disable MX lookups
for those systems.

5. Reload Postfix so that it recognizes the changes in its configuration files:

postfix reload

It is highly recommended that you maintain a list of valid recipients for all of your internal users
with the relay_recipient_maps parameter. See Section 9.1.1 earlier in the chapter.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

9.4 Outbound Mail Relay

When a mail system does not have adequate connectivity or all of the information it needs to
relay messages, it can forward them to another system that is in a better position for relaying.
Consider the network in Figure 9-2 again. If the internal mail systems don't have direct access
to the Internet, they can't deliver messages sent by the users in their subnets. They can,
however, pass along all messages to the gateway mail system, which can make the deliveries
for them. The following procedure demonstrates setting up Postfix on mail1.example.com to
relay all messages it receives to gw.example.com, which can then make the outbound
deliveries.

Before configuring the internal mail systems, make sure that the mail gateway is set up to
permit relaying from the internal mail systems. The mynetworks parameter (see Chapter 4)
should encompass the IP addresses of the internal mail systems, and if you use SMTP UBE
restrictions (see Chapter 11), be sure to include permit_mynetworks among the rules to allow
relaying:

1. Check the mynetworks (or mynetworks_style) parameter to make sure it includes the
client systems.

2. Have the users in the workgroup configure their various mail clients to use mail1.
example.com as their SMTP server.

3. In main.cf, set the parameter relayhost to point to the gateway system:

relayhost = [gw.example.com]

4. Reload Postfix so that it recognizes the changes in its configuration file:

postfix reload

Now all messages delivered to mail1.example.com are relayed through gw.example.com.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail1.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/gw.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail1.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail1.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail1.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/gw.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

9.5 UUCP, Fax, and Other Deliveries

The Postfix online documentation describes configuring Postfix for delivery to a FAX system and
setting up a gateway for UUCP. These provide good examples for configuring Postfix to work
with all kinds of special devices. If you need to create a gateway between different types of
systems or different networks, transport maps provide the mechanism for directing mail to the
other systems or devices.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 10. Mailing Lists

Mailing lists provide a convenient way to send a single email message to many recipients. They
allow a nearly unlimited number of correspondents to carry on conversations through email. A
server-based, centrally managed mailing list has many advantages over other mechanisms to
send messages to multiple recipients. If you regularly send email to the same group of people,
typing in lists of recipients is too tedious and prone to error to be practical. MUAs usually have
a facility that lets you create personal aliases that associate an easily remembered name with a
list of email addresses. Personal aliases are fine for an individual, but as soon as the list has to
be shared with others, it is no longer a practical solution. Major advantages of centrally
managed mailing lists are that changes are made in a single place, and the new information is
immediately available to anyone sending messages to the list. Other advantages become
evident when you use Mailing List Managers (MLMs) to administer the list, relieving
administrators from manually updating addresses.

In this chapter we look at creating simple mailing lists within Postfix itself, and then configuring
Postfix to deliver messages to MLMs for more sophisticated list management. In deciding
whether or not to create your mailing list within Postfix or to use an MLM, consider how often
the list has to be changed, who will make the changes, and whether you need some of the
other features of an MLM, such as moderated lists and digest versions. MLMs allow users to
subscribe and unsubscribe themselves and to make changes to their addresses, if necessary. If
you have relatively static lists or users who come to you for subscribing and unsubscribing
anyway, you probably don't need the overhead of an MLM. You can always run both flavors of
lists, if that fits your environment.

There are many aspects and nuances to managing a mailing list. If you will be taking on the
task, you should consult a text that deals specifically with mailing-list management such as
Managing Mailing Lists by Alan Schwartz (O'Reilly).

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

10.1 Simple Mailing Lists

Postfix provides the means to create simple mailing lists through the normal alias facility (see
Chapter 4). Because aliases can point to lists of addresses or files that contain lists of
addresses, it is easy to create an alias that points to multiple names. You can create list aliases
in the system aliases file, or in any other file that you specify in the alias_maps parameter.
See more about the alias_maps parameter later in the chapter. The default alias file when you
install Postfix is /etc/aliases.

Let's suppose that you administer mail for the domain example.com, and you want to create a
new mailing list for people to discuss needlepoint. You decide to create a mailing list alias
needlepoint@example.com to be used for online discussions. Edit your alias file, and add the
following line with the email addresses of people who want to subscribe to the list:

needlepoint: rgrier@oreilly.com, gmhopper@onlamp.com,
 grayburn@oreilly.com

After making changes to the file, rebuild the alias lookup table by executing:

postalias /etc/aliases

Now any messages sent to needlepoint@example.com will be forwarded to each of the email
addresses listed in the example.

10.1.1 Mailing-List Owners

If any messages cannot be delivered to one of the addresses listed, the original sender of the
message receives an error message explaining that there was a delivery problem. For small or
internal lists this may be perfectly acceptable; however, if you are creating a large list, or the
members of the list do not necessarily know each other, it is probably more appropriate to have
error messages sent to the administrator of the list. The convention is to create an additional
alias for lists using a format like owner-<list_alias>@example.com, where owner- is prepended
to the name of the list alias. For the previous example, we would create the alias owner-

needlepoint.
[1]

 This owner- alias should point to an administrator, who is generally in a better
position than the original sender to deal with bounced messages:

[1] Some MLM systems have adopted the convention of placing -owner after the
alias instead of before.

owner-needlepoint: kdent@example.com

Sending error notifications to the owner- alias is achieved by setting the envelope sender to the
owner-needlepoint@example.com alias instead of the original sender's email address. Example
10-1 shows typical headers from a mailing-list message.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com

Example 10-1. Sample headers from mailing-list message

Return-Path: <owner-needlepoint@example.com>
Delivered-To: rgrier@oreilly.com
Received: from cowrie.example.com (cowrie.example.com[192.168.100.7])
 by mail.oreilly.com (Postfix) with ESMTP id B712120DD5B
 for <needlepoint@example.com> Mon, 13 May 2002 11:55:40 -0400 (EDT)
Date: Mon, 13 May 2002 12:00:43 -0400 (EDT)
From: G.M. Hopper <gmhopper@onlamp.com>
X-Sender: gmhopper@cowrie
To: needlepoint@example.com
Subject: Just finished latest project
Message-ID: <Pine.GSO.4.10.10205131200230.692-100000@cowrie>

When the owner- alias exists, Postfix automatically uses it as the envelope sender address
when sending out messages to list members. If, for some reason, you don't want Postfix to use
the owner- alias but rather to keep the originator's address, you can set the parameter
owner_request_special to no:

owner_request_special = no

You can also cause Postfix to use the actual administrator's email address instead of the owner-
alias by setting expand_owner_alias to yes:

expand_owner_alias = yes

If this parameter is set, the address kdent@example.com is used instead of owner-
needlepoint@example.com.

Although users do not generally need to send mail directly to the list owner, you should create
owner aliases even for simple lists so other postmasters can contact the correct person in case
they run into any problems with your list.

Another list convention is to provide a request alias for your lists. Request aliases use the
format <list_alias>-request@example.com. The request alias for the needlepoint alias looks
like needlepoint-request@example.com. Request aliases are used for requests to subscribe and
unsubscribe from lists or to get nontechnical information about a list.

10.1.2 Separate List Files

If you have more than just a few names on a list, it is more convenient to create a text file that
lists all of the email addresses for the list. The format of the alias entry that points to a file is as
follows:

email_alias: :include:/path/to/file.

Let's take the needlepoint alias from earlier in the chapter and move the list addresses into a
separate file. Your alias entry should be revised to point to the text file that contains the list of
addresses:

needlepoint: :include:/etc/postfix/needlepoint

The file /etc/postfix/needlepoint contains the email address of each member of the group. Put
one address on each line. When you need to make changes to the list, simply edit the file:

rgrier@oreilly.com
gmhopper@onlamp.com
grayburn@oreilly.com
bogus@example.com

I'm adding an invalid address, bogus@example.com, for testing later in the chapter.

10.1.3 Additional Alias Files

Recall from Chapter 4 that the alias_maps parameter allows you to specify any number of alias
files to use with Postfix. For example, you might want to use a separate alias file to store your
mailing lists. Simply include the separate alias filename along with the system alias to set the
alias_maps parameter. You should also set the alias_database parameter, so that you can
run the command newaliases to update all of your alias-mapping files:

alias_maps = hash:/etc/postfix/aliases, hash:/etc/postfix/mail_lists
alias_database = hash:/etc/postfix/aliases, hash:/etc/postfix/mail_lists

It may be more convenient to assign all of your alias files to alias_database and then assign
alias_database to alias_maps. If you use other map types for aliases, simply assign them to
alias_maps as well:

alias_database = hash:/etc/postfix/aliases, hash:/etc/postfix/mail_lists
alias_maps = $alias_database, nis:mail.aliases

Remember to reload Postfix when you make changes to main.cf.

10.1.4 Creating a Simple Mailing List

Let's review everything discussed so far and consider all the pieces of our needlepoint mailing
list. The alias file contains the following lines:

needlepoint: :include:/etc/postfix/needlepoint
owner-needlepoint: kdent@example.com
needlepoint-request: kdent@example.com

The first line in the example causes messages sent to needlepoint@example.com to be
delivered to every address listed in the /etc/postfix/needlepoint file. This file should contain a
list of email addresses of all members of the list. Bounce messages and requests are forwarded
to the real address kdent@example.com. If necessary, users or other postmasters can send
messages to the list owner, and users can send messages to the request alias for subscription
or other information.

When a message is sent to the list, the To: header contains just the address of the mail list
alias and not an expansion of all the names on the list (which could be hundreds or even
thousands of names). Each member of the list receives a copy of the message with headers
that resemble those shown in Example 10-1. In this example, gmhopper@onlamp.com has sent
a message to the list. Notice that the Return-Path: contains the owner alias rather than the
actual originator of the message (gmhopper@onlamp.com).

10.1.5 Testing Your List

You can test your list by sending a message to the alias you created for it. In this example,
we'll use the list alias needlepoint@example.com. Example 10-2 shows the log entries for a
sample test message. Imagine that the address bogus@example.com is invalid.

Example 10-2. Log entries for message to astronomy mailing list

postfix/local[7411]: 6C2CE20DD5B: to=<needlepoint@example.com>,
 relay=local, delay=1, status=sent (forwarded as ACDC120DD70)
postfix/qmgr[8163]: ACDC120DD70: from=<owner-needlepoint@example.com>,
 size=1121, nrcpt=8 (queue active)
postfix/local[0835]: ACDC120DD70: to=<bogus@example.com> relay=local,
 delay=1, status=bounced (unknown user: "bogus")
postfix/smtp[6556]: ACDC120DD70: to=<grayburn@oreilly.com>
 relay=mail.oreilly.com[10.82.6.11], delay=1,
 status=sent (250 Mail accepted)
postfix/smtp[6556]: ACDC120DD70: to=<rgrier@oreilly.com>
 relay=mail.oreilly.com[10.82.6.11], delay=1,
 status=sent (250 Mail accepted)
postfix/smtp[5954]: ACDC120DD70: to=<gmhopper@onlamp.com>
 relay=mail.onlamp.com[10.171.8.111], delay=1,
 status=sent (250 Message received: GZCLUC00.E8F)

Some of the information, such as the timestamp and hostname, has been removed for clarity.
Notice that at the end of the first line there is a comment saying (forwarded as ACDC120DD70)
and the rest of the log entries use the new queue ID. Also notice in the first line of the example
that the message enters the system addressed to needlepoint@example.com. The second line
shows that Postfix uses the owner alias as the envelop sender address (from=<owner-
needlepoint@example.com>) while delivering the message to all members of the list. The
bogus address shows a status of "bounced." The address kdent@example.com pointed to by
the owner alias receives the bounce notification, which looks like Example 10-3. Notice in the
example that the bounce notification message is delivered to owner-needlepoint@example.com.
The sender of the message does not receive a notification.

Example 10-3. Bounce notification for invalid address

From MAILER-DAEMON@mail.example.com Tue Jul 16 12:03:49 2002
Date: Tue, 16 Jul 2002 11:25:27 -0400 (EDT)
From: Mail Delivery System <MAILER-DAEMON@mail.example.com>
To: owner-needlepoint@example.com
Subject: Undelivered Mail Returned to Sender

...

<bogus@example.com>: unknown user: "bogus"

...

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

10.2 Mailing-List Managers

Running mailing lists within Postfix is fine for static lists. But lists that change frequently are better
handled by a mailing-list manager (MLM). With an MLM, the administrator of the list doesn't have to
manually edit the list file to add, delete, or change addresses because list members can subscribe and
unsubscribe themselves. MLMs also support other features such as archiving of messages, digests of
discussions, and the ability to moderate a list by allowing an administrator to review messages before
they are posted to all members.

MLMs work by pointing normal Postfix aliases to commands that handle the distribution of messages and
management of lists. MLMs use administrative aliases that point to programs to handle list functions
such as subscribing and unsubscribing members from the list, handling bounced messages, and possibly
filtering messages sent to the list. The lists themselves actually work the same way as the simple aliases
from the last section. Each list has its own file to store list members, but rather than editing the file
yourself, you can have the MLM automatically add and remove addresses.

The next two sections look at two popular MLMs: Majordomo and Mailman.

10.2.1 Majordomo

Majordomo is one of the more popular MLMs and has been available since the early 1990's. It offers a
complete set of MLM features, and nearly all administration takes place by sending commands through
email messages. Little to no intervention is required by a postmaster once a list has been created. There
are also web-based administration packages available to work with Majordomo, allowing much of the list
administration to take place from a web site.

Majordomo is available at the Majordomo home page (http://www.greatcircle.com/majordomo/.) It
requires Perl and works with Perl4 Version 4.036 or Perl5 Version 5.002 or better. Future releases will
probably require Perl5. Majordomo also makes use of a small wrapper program written in C. If you are
planning to build the package from scratch, you must have an ANSI C compiler.

If you configure Majordomo for moderated lists, where a list administrator approves posts using the
Majordomo-supplied approve, you have to make an adjustment for Postfix and Majordomo to work
together correctly. Postfix prepends a Delivered-To: header to messages it handles. It then uses the
header to detect mailer loops. When a Majordomo message is delivered to a moderator for approval who
then pipes the message through the approve command, it is sent back to the list with all of its original
headers intact. When Postfix receives the message again, it recognizes that it has already seen the
message and reports a mail delivery loop.

The easiest way to fix this issue is to make a small change to the Majordomo approve script (which is
written in Perl). You'll have to edit the file, normally located in the /bin directory located below the main
Majordomo installation directory. If you follow the steps in the procedure below, your file will be located
at /usr/local/majordomo/bin/approve. Edit the file and find the subroutine called process_bounce.
Within that routine, there is a while loop, as shown below. Insert the emphasized line as shown, save
the file, and you're done:

while (<$FILE>) {
 if (/^>?From / && ! defined($from_skipped)) {
 # Skip any initial "From " or ">From " line
 $from_skipped = 1;
 next;
 }
 next if (/^delivered-to:/i); # Added for Postfix

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
http://www.greatcircle.com/majordomo/default.htm

 s/^~/~~/;
 print MAIL $_;
}

10.2.1.1 Creating a Majordomo list

The following steps walk you through setting up the astronomy list alias using Majordomo and Postfix.
These instructions assume that you will create a user called majordom and install the package at /usr/
local/majordomo. If you create a different username or install to a different location, keep that in mind
as you read through this example.

1. Make sure that you have Perl installed on your system and that it is at least Version 5.002 or
better. You can check your Perl installation by typing perl -v at a command prompt. This will
display license and other information about your installation of Perl, including the version
number:

$ perl -v
This is perl, version 5.005_03 built for i386-freebsd
Copyright 1987-1999, Larry Wall
...

2. Obtain a copy of Majordomo either in source form from the Majordomo home page or find a
prepackaged version from your normal software sources. Follow the instructions that come with
your bundle to install Majordomo on your system. If you are installing from source, you will need
an ANSI C compiler to build it.

If you build Majordomo yourself, when you modify the Makefile and majordomo.cf file, you
should be able to follow the instructions as if you were installing Majordomo to work with
Sendmail as the MTA. If the location for $sendmail_command in majordomo.cf is correct, the rest
of the mailer variables with the default options will be correct.

3. Create and edit a file called /usr/local/majordomo/aliases to store the Majordomo aliases. Add
the aliases for the Majordomo commands as specified in the Majordomo instructions. Then add
the aliases for your list. The file should look like the following:

majordomo: "| /usr/local/majordomo/wrapper majordomo"
owner-majordomo: kdent@example.com
majordomo-owner: kdent@example.com
astronomy list
astronomy: :include:/usr/local/majordomo/lists/astronomy
owner-astronomy: csagan@example.com
astronomy-request: "|/usr/local/majordomo/wrapper request-answer astronomy"
astronomy-approval: csagan@example.com

4. Edit /etc/postfix/main.cf to add the Majordomo alias file to the alias_maps parameter:

alias_maps = hash:/etc/aliases, hash:/usr/local/majordomo/aliases

5. You can also add the new alias file to the alias_database parameter to automatically rebuild the
datafile when you run the newaliases command:

alias_database = hash:/etc/aliases, hash:/usr/local/majordomo/aliases

6. Reload Postfix so that it recognizes the changes in its main.cf configuration file:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/majordom

postfix reload

7. Create the file to hold the email addresses for the astronomy list. Set its ownership to the
majordom account:

touch /usr/local/majordomo/lists/astronomy
chown majordom /usr/local/majordomo/lists/astronomy

8. Create the info file that contains the message sent to new members of the list and anyone who
sends the info command. Create the file as /usr/local/majordomo/lists/astronomy.info and
include any text that is appropriate for your list:

Welcome to the astronomy discussion list at example.com. The
purpose of this list is to discuss new astronomical phenomena.
To send a message to all the members of the list, address your
email to <astronomy@example.com>.
The basic rules and etiquette for the list are as follows:
1. ...

9. Make sure that the info file is accessible by the majordom account:

chown majordom /usr/local/majordomo/lists/astronomy.info

10. Build the alias database:

postalias /usr/local/majordomo/aliases

Or, if you added the Majordomo alias file to alias_database, just type newaliases.

You can test your Majordomo installation by running the following command:

$ echo 'lists' | mail majordomo

Executing the above sends an email message to Majordomo containing the command 'lists', telling
Majordomo to send you information about all of the lists it maintains. On our example system, the reply
from Majordomo looks like the following:

Date: Tue, 16 Jul 2002 18:14:59 -0400 (EDT)
From: Majordomo@example.com
To: kdent@example.com
Subject: Majordomo results

--

>>>> lists
Majordomo@example.com serves the following lists:

 astronomy

Use the 'info <list>' command to get more information
about a specific list.
>>>>
>>>>

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/majordom

You or your users can now send Majordomo commands at the address majordomo@example.com to get
help and be added to lists. To add yourself to the new mailing list, send a message to majordomo with
the subscribe command in the body of the message:

To: majordomo@example.com
From: tbrahe@porcupine.org
Subject:

subscribe astronomy

If you send a subscription request, you should receive a confirmation message from Majordomo. You
must reply to the message with the authentication code provided to complete your subscription to the
list (see the Majordomo documentation).

10.2.1.2 Potential problems

If you had no problems during the Majordomo installation, everything should work as expected. The
main issue that you may run into has to do with file permissions. If you send a message to the list and
receive a bounce notification like the following, then you know you have a permissions problem:

...
 The Postfix program

<astronomy@example.com>: cannot open include file
 /usr/local/majordomo/lists/astronomy: Permission denied

...

Majordomo needs read access to the list file (/usr/local/majordomo/astronomy) and the list
configuration file (/usr/local/majordomo/astronomy.config) when Postfix invokes it for deliveries to the
list. Postfix delivers the message to Majordomo running with the privileges of the user that owns the
alias map file containing the majordomo alias, /usr/local/majordomo/aliases.db. The normal mechanism
used to ensure that Majordomo has access to the necessary files is to set the Majordomo wrapper
program to set user ID (suid) with root as the owner. This means that regardless of the user executing
the command, the process runs with root privileges. The Majordomo installation takes care of setting the
permissions properly, but if for some reason they are not correct, you will see an error message like the
one described above. You can correct the problem by setting the permissions yourself:

chmod 4755 /usr/local/majordomo/wrapper

A better solution than setting the wrapper program suid is to make sure that the alias file and all of the
list files are owned by the majordom user.

10.2.2 Mailman

Mailman is another full-featured MLM. It is available at the Mailman home page at http://www.gnu.org/
software/mailman/. It includes web-based administration and creates a home page for each list where
list administrators and members can perform administrative functions. It also accepts administrative
commands via email much like Majordomo does.

Mailman requires at least Version 1.5.2 of Python. It includes some security wrapper programs that are
written in C, so you must have an ANSI C compiler if you are planning to build the package from scratch.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/majordom
http://www.gnu.org/software/mailman/default.htm
http://www.gnu.org/software/mailman/default.htm

There is one slightly tricky aspect to get Postfix and Mailman working together correctly. Mailman
expects to be invoked by a process running with a particular group ID (GID). The GID it expects is
specified at the time the Mailman package is built. If you are building the package yourself, make sure
that you first create an account and a group called mailman. You should be able to use the normal
administrative tools on your system to create both the account and the group. When you are finished,
you should have an entry in /etc/passwd that resembles the following:

mailman:*:26413:60003:Mailman List Manager:/home/mailman:/bin/sh

and an entry in /etc/group like the following:

mailman:*:60003:

Make sure that the account mailman has the group mailman as its primary group. In the examples
above, 60003 specifies the mailman group and the mailman account has that as its primary group.

When you run configure for Mailman, be sure that you include the option --with-mail-gid=xxx, where
xxx is the actual GID for the mailman group that you created. According to the examples above, you
should execute configure using 60003 for the GID option:

$./configure --with-mail-gid=60003

You may have additional options for configure according to your environment. Be sure to read the
Mailman documentation for building the package. If you have already built your Mailman package and
you did not specify the group, build it again. If you didn't build your Mailman package, see the sidebar
below.

WANTED gid 12 GOT gid 99?

If you didn't build the Mailman package yourself (and don't have the option of rebuilding it),
there is no good way to find out which GID it is expecting other than by looking at what is
reported in an error message. If you have a mismatch between the group of the Postfix
process and the group that Mailman expects, you will receive a bounce error message after
you send an email message to a Mailman list. Mailman also logs the error, which will look
something like the following:

Failure to exec script. WANTED gid 12 GOT gid 99 (Reconfigure
to take 99?)

In order to get Postfix to deliver the message to Mailman using the correct GID, you have to
set the permissions correctly on the Mailman alias file. When Postfix makes a normal local
delivery, it assumes the identity of the recipient of the message. In the case of an alias,
Postfix assumes the identity of the owner of the alias file, unless the owner is root, in which
case Postfix uses the identity specified in its default_privs parameter. Make sure that the
alias file is owned by the mailman user and that the mailman user has the mailman GID as its
primary group. Postfix will then use the mailman group when it delivers a message to the
Mailman system.

If you did not build your own Mailman package and therefore cannot control the GID that it
expects, you will have to accommodate Mailman by getting Postfix to use the GID Mailman
expects. Generate an error message like the one above by first creating a list (see the steps
in this chapter) and then by sending a message to it. You should receive a bounce error
email message (or you can check for the error in the Mailman log). Note the GID Mailman

reports that it wants (WANTED gid 12). Change the primary group of the mailman account to
that group. Make sure that the Mailman alias file is owned by the mailman account.

10.2.2.1 Creating a Mailman list

The following steps walk you through setting up the astronomy list alias using Mailman and Postfix. They
assume that you create an account and a group called mailman and install the package in /home/
mailman.

1. Make sure that you have Python installed on your system and that you have at least Version
1.5.2. Test this by executing the python command, which will display version information and a
Python prompt. You can exit the Python shell by typing Ctrl-D:

$ python
Python 1.5.2 (#1, Jul 5 2001, 03:02:19) [GCC...
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> ^D
$

If the version number following "Python" on the first line of output is not at least 1.5.2, you will
have to upgrade your copy of Python.

2. Obtain a copy of Mailman either in source form from the Mailman home page or find a
prepackaged version from your normal software sources. Follow the instructions that come with
your bundle to install Mailman on your system. If you are installing from source, you will need an
ANSI C compiler to build it. Be sure to specify the correct GID when you build Mailman. (See the
discussion earlier in this chapter.)

3. You should create a separate alias file to store all of your Mailman aliases and set the owner and
group correctly. Become the mailman user and execute the following commands. This example
assumes that you want the alias file in the mailman home directory located at /home/mailman:

$ cd /home/mailman
$ touch aliases
$ postalias aliases

These commands create both the alias file and the necessary map files that Postfix uses for
lookups. Since you perform these steps as the mailman user, the group and ownership of the
files will automatically be correct, assuming your account is set up as it should be.

4. Edit /etc/postfix/main.cf to add the new alias file for storing Mailman mailing lists. Simply add
the Mailman alias file to the existing list of files for the alias_maps parameter:

alias_maps = hash:/etc/aliases, hash:/home/mailman/aliases

5. You can also add the new alias file to the alias_database parameter to automatically rebuild the
datafile when you run the newaliases command:

alias_database = hash:/etc/aliases, hash:/home/mailman/aliases

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mailman
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mailman
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mailman

6. Reload Postfix so that it recognizes the changes in its main.cf configuration file:

postfix reload

7. Execute the Mailman command newlist to initialize your new mailing list. The output of newlist
includes lines of text that must be inserted into the /home/mailman/aliases file. Copy the lines
from the newlist output into /home/mailman/aliases. Save and exit the file. The emphasized lines
in Example 10-4 are the lines that must be added to /home/mailman/aliases.

8. Build the new alias datafile:

postalias /home/mailman/aliases

Or, if you added the Mailman alias file to alias_database, just run the newaliases command.

Example 10-4. Executing the Mailman newlist command

bin/newlist
Enter the name of the list: astronomy
Enter the email of the person running the list: kdent@example.com
Initial astronomy password:
Entry for aliases file:

astronomy mailing list
created: 08-Mar-2002 root
astronomy: "|/home/mailman/mail/wrapper post astronomy"
astronomy-admin: "|/home/mailman/mail/wrapper mailowner astronomy"
astronomy-request: "|/home/mailman/mail/wrapper mailcmd astronomy"
astronomy-owner: astronomy-admin

Hit enter to continue with astronomy owner notification...

You or your users can now send requests to astronomy-request@example.com to get help and be added
to the list. You can now use Mailman's web- or email-based command interface to specify options for
your new list. See the Mailman documentation to learn its options and other ways to work with the
package.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 11. Blocking Unsolicited Bulk Email

Unsolicited Bulk Email (UBE), also referred to as Unsolicited Commercial Email (UCE), is
commonly called spam. Spamming is the practice of sending mass mailings to large numbers of
people who have had no prior relationship with the sender and who didn't ask to receive such
mail. Spam exists because it's so cheap to send. The incremental cost of adding even hundreds
of thousands of recipients to a mailing is relatively small, so spammers target as many email
addresses as they possibly can. This chapter looks at the problem of spam and the tools Postfix
provides to help limit the consequences.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

11.1 The Nature of Spam

There is a decidedly dishonest component to most spam. Spammers make no effort to match
message content with a recipient's interests, and their messages frequently lie, claiming that
the recipient has an association with the company or its partners or in some way requested
information. Messages are sometimes designed to look like an actual exchange between two
people that was mistakenly misdelivered in the hopes of sparking interest in some product or
service.

Spam frequently offers instructions to opt out from receiving more messages; however, in
many cases this is simply a subterfuge on the part of the spammer to confirm that your email
address is good. By replying to such messages, you confirm that your address is a legitimate
one. Following the directions provided will more than likely cause your address to be added to
more spammer lists.

Spammers often try to hide their trail so their messages cannot be traced back to them. They
purposely use false return addresses and forge header information. They seek out
misconfigured systems that allow them to relay anonymously. More recently spammers have
broken into systems and installed their own secret relay servers. Spammers commonly encode
their messages or insert random letters to circumvent spam filters.

Some of the techniques employed by spammers have sideeffects that make the problem much
worse than the act of spamming itself. In their scatter-shot approach, spammers send
messages to email addresses they think are likely to exist whether they actually do or not.
Some launch dictionary assaults on mail servers where they run through preassembled lists of
names hoping to find a match with a user on the mail server.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

11.2 The Problem of Spam

While spam may seem like a minor issue on a small scale, it is a significant problem on the
Internet. A system hosting hundreds or thousands of users each receiving dozens or hundreds
of unwanted messages every day can have substantial difficulties dealing with the onslaught.
There is a real cost to the victims of spam. It unfairly uses the bandwidth and disk space of its
recipients and their providers.

Other costs brought on by spam include technical support personnel time, when technicians or
administrators must help users clean up flooded mailboxes. Sometimes the volume of spam can
even make a system unusable for its intended purpose (clogging bandwidth or filling disk
space). In such a case the effects of spam are no different from those of a denial-of-service
attack. Even in less drastic circumstances, spam interferes with legitimate uses of email.
Important messages can easily be overlooked in a flood of spam or mistakenly deleted when
littered mailboxes are cleaned up.

A significant issue with spam is dealing with messages addressed to nonexistent users. Some
mail systems recognize that a destination address is bogus and can reject mail before it is
accepted; other systems must receive the mail first and then bounce it as undeliverable. The
volume of bounces can easily clog a queue and interfere with the delivery of legitimate
messages. Since the return addresses often don't really exist, the bounces cannot be delivered
and sit in the queue undergoing many redelivery attempts until they expire.

Another spamming trick is to use a legitimate return address that belongs to an innocent third
party. The target or relay systems that receive the spam send bounce messages to the
supposed sender, helpfully letting that person know that the recipient does not exist. In this
case, thousands or millions of bounce messages will be delivered to the unfortunate victim in a
phenomenon referred to as backscatter. This victim isn't involved in any way in the original
delivery of the spam. In most cases, the only solution for these completely innocent bystanders
is to abandon the victimized address and start using a new one.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

11.3 Open Relays

If you operate an email server on the Internet, you have a responsibility to make sure that you
do not create an open relay that spammers can use as a launching point for their activities. An
open relay is a mail system that permits outside systems to send mail to other outside systems,
passing the messages along so that the originating system does not have to deliver directly to
its target. Spammers constantly scan for misconfigured systems that permit them to relay mail.
Before spam became such a problem on the Internet, mail administrators often operated open
relays because it made their systems convenient for their users. Now nearly all SMTP software
systems are configured by default not to be open relays. Postfix is no exception.

If your system is abused as an open relay, it will most likely be so bogged down with sending
spam that its performance will be hindered for your legitimate users. If you choose to accept
spam into your own system that is, of course, up to you, but you must take steps to ensure
that your system is not used to abuse other systems. There is a good possibility that if
spammers use your system to relay mail, your network will end up on a blacklist. Once your
site is blacklisted, many sites will reject all messages from your network, both relayed spam
and legitimate messages from your users. Chapter 4 discusses safely configuring Postfix to
prevent your system from being abused.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

11.4 Spam Detection

As long as you're not operating an open relay, you can be confident that your systems are not
being used to harm other systems. Your next consideration is to protect yourself and your users
by limiting the spam your network receives. Ideally, your mail server could simply reject any
message that looks like spam. Unfortunately, whereas humans can look at a message and
know instantly that it's spam, computers have a tougher time detecting it without making
mistakes. The ugly truth is that once you start to reject spam, there is always a risk that you
will block legitimate correspondence.

Misidentifying a legitimate message as spam is referred to as a false-positive identification.
Your anti-spam efforts are an attempt to detect as much spam as you can with the fewest
possible false-positives. You have to weigh the size of your spam problem against the
possibility of rejecting real email when deciding how aggressive to be in implementing your anti-
spam measures. The extremes range from permitting all spam to accepting mail only from
preapproved individuals. Preapproval may seem severe, but the problem is getting bad enough
for some people that whitelist applications, where any correspondent you receive mail from
must be identified ahead of time, are becoming more common.

There are two primary ways of detecting spam: identifying a known spamming client and
inspecting the contents of a message for tell-tale phrases or other clues that reveal the true
nature of a spam message. Despite the difficulties, postmasters can achieve some success with
minimal false-positives by implementing various spam-detection measures.

11.4.1 Client-Based Spam Detection

Client-blocking techniques use IP addresses, hostnames, or email addresses supplied by clients
when they connect to deliver a message. Each piece of information supplied can be compared
to lists of items from known spamming systems. Spamming systems might be owned by actual
spammers, but they might also be unintentionally open relays managed by hapless, (almost)
innocent mail administrators. In either case, if a system is regularly sending you spam, you will
probably decide to block messages from it. One problem with identifying spam by IP address,
hostname, or email address is that these items are easily forged. While the IP address of the
connecting system requires some sophistication to spoof, envelope email addresses are trivial
to fake.

11.4.1.1 DNS-based blacklists

In a grass-roots effort to stem the tide of spam on the Internet, various anti-spam services,
generally called DNS-based Blacklists (DNSBL) or Realtime Blacklists, have developed. These
services maintain large databases of systems that are known to be open relays or that have
been used for spam. A newer, increasingly more common problem is with systems that have
been hijacked by spammers who install their own proxy software that allows them to relay
messages. These hijacked systems can also be used in distributed denial-of-service attacks.
There are DNSBL lists that are dedicated to listing these unwitting spam relays. The idea is that
by pooling the information from hundreds or thousands of postmasters, legitimate sites can try
to stay ahead of spammers.

Usually, these systems work by adding a DNS entry to their domain space for each of the IP

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

addresses in their database that have been identified as spam-friendly open relays. For
example, if the host at IP address 192.168.254.31 has been identified as an open relay, the
(fictitious) DNSBL service No Spam Unlimited using a domain name of nospam.example.com
creates a DNS entry like 31.254.168.192.nospam.example.com. When a client connects to your
Postfix system, Postfix can check the No Spam DNS server to see if there is an entry for the
client's IP address. If the IP address has been identified as an open relay system, Postfix can
reject the message.

Consider very carefully before you decide to make use of a DNSBL service. Many open relays
used to forward spam also operate mail services for nonspamming users. You are very likely to
block legitimate mail in addition to the spam. Also keep in mind that you are offloading to a
third party the responsibility of making important decisions about who can and cannot send
mail to your users. On the other hand, if you're buried in spam, DNSBL services can definitely
help. If you decide to use one, review their service options and policies very carefully. Again,
you have to balance your aggressiveness and the likelihood of losing legitimate mail against the
magnitude of your spam problem.

11.4.2 Content-Based Spam Detection

In addition to identifying clients, you can often recognize spam by its contents. Certain strings
within email messages mark them as likely to be spam ("Our Rates Have Never Been Lower!!").
But trying to distinguish spam by the contents of the message can be problematic. Imagine
that you receive lots of spam offering new house mortgages. You figure you can eliminate most
of it by blocking messages that contain words like "really low interest rate on a new mortgage."
This may indeed block many spam messages, but you might also block a message from your
friend (or one of your user's friends) who just got a great deal on a new house and wrote to tell
you about it.

11.4.3 Detection Difficulties

The problem with both client- and content-based techniques to identify spam is that spammers
are constantly finding ways to get around them. There is a sort of arms race going on between
legitimate users of email and spammers. You can compile lists of open relays, but spammers
expend a great deal of effort seeking out new open relays or proxy servers to abuse (and there
always seem to be more of them).

You may discover that you receive a lot of spam with the same return address. You can block
messages that use that return address, but spammers use hit-and-run tactics. They obtain an
email address from one of the free email sites and use that address to send thousands or
millions of spam messages, and then discard it for another. Within a couple of days, you'll
never see the address you listed again.

Even content filters have to adjust for spammers escalating tactics. Some spammers embed
HTML codes within the words of their messages to break up phrases you might filter against. Or
they encode the entire message so that when Postfix scans it for recognized spam phrases,
there are no intelligible phrases. Most email clients oblige users by automatically rendering such
messages—decoding or ignoring extraneous HTML codes. Recipients often don't even notice
that the message had originally been encoded.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/nospam.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

11.5 Anti-Spam Actions

Broadly speaking you have a few choices once you have detected spam:

● Reject spam immediately during the SMTP conversation. Rejecting spam outright is an
attractive idea because you never have to store a copy of the message and worry about
what to do with it. The sender of the message is responsible for handling the error. If
your site has a low tolerance for rejecting legitimate messages, you might prefer to
accept suspect messages and develop a process to review them periodically to make
sure that there are no good messages in with the bad.

● Save spam into a suspected spam repository. If you save the suspect messages and
review them periodically, you can be sure that you don't miss any legitimate mail. The
task is cumbersome and usually requires frequent reviews, so you may not gain much
over allowing suspect messages into users' mail boxes.

● Label spam and deliver it with some kind of spam tag. This option provides users with
flexibility in determining their own tolerance for spam versus their sensitivity to missing
real messages. Postfix doesn't currently have a built-in mechanism for labeling spam.
You can easily have Postfix work with an external content filter to handle the labeling
(see Chapter 14). If the content filter delivers tagged messages to individual users, they
can configure their email software to deal with it according to their own preferences.

When using an MTA for spam detection, the rejection option is usually best. If you want more
flexibility, consider using options that filter spam at the MDA or MUA level. A combination of
spam filtering is also a good alternative. You can configure Postfix to reject the obvious spam,
allowing suspicious messages through to the next level where another agent can perform the
most appropriate action.

Postfix really excels in its tools to help you identify spam clients and reject them. Rejecting
messages with Postfix requires fewer system resources than invoking external filters after the
message has been accepted. If you are concerned about losing legitimate mail, there are still a
couple of safety measures available that we'll look at when configuring Postfix.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

11.6 Postfix Configuration

The rest of this chapter discusses the various types of UBE checks Postfix provides. It considers
four different categories of spam detection which are listed below.

Client-detection rules.

Four parameter rules that work with pieces of the client identity. Each rule is assigned a
list of one or more restrictions that can explicitly reject or accept a message or take no
position one way or the other (commonly indicated as DUNNO). For example, you can
configure a rule that includes a restriction to reject a particular client IP address.

Syntax-checking parameters.

Parameters that check for strict adherence to the standards. Since spammers often
don't follow the published standards, you can reject messages that come from
misconfigured or poorly implemented systems. Some of the client restrictions also fall
under this category.

Content checks.

You can check the headers and the body of each message for tell-tale regular
expressions that indicate probable spam.

Restriction classes

You can define complex client-detection rules with restriction classes. These allow you to
combine restrictions into groups to form new restrictions.

When configuring Postfix to detect spam, you also specify what to do with messages identified
as spam. In general, Postfix can reject them outright, separate them into a different queue, or
pass them along to an external filter.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

11.7 Client-Detection Rules

Postfix provides the following rules that are assigned restrictions based on client information:

● smtpd_client_restrictions
● smtpd_helo_restrictions
● smtpd_sender_restrictions
● smtpd_recipient_restrictions
● smtpd_data_restrictions

Each one corresponds to a step of the SMTP transaction. At each step, the client provides a
piece of information. Using the client-supplied information, Postfix considers one or more
restrictions that you assign to each rule. Figure 11-1 shows an SMTP conversation along with
the client rule applied at each step. The header_checks and body_checks are discussed later in
the chapter.

Let's review the SMTP conversation to see where each of the parameters fits in.

Figure 11-1. SMTP conversation with client rules

11.7.1 The SMTP Conversation (Briefly)

The SMTP conversation in Figure 11-1 should be familiar to you from Chapter 2. Example 11-1
shows the log entries for the transaction. First, an SMTP client connects to Postfix over a
socket. Because of the way sockets function, Postfix learns the IP address of the client when it
establishes the connection. You don't see the client IP address in the figure, but it is logged by
Postfix. You can accept or reject a message based on the client hostname or IP address, thus
blocking specific hostnames or IP and network addresses.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

Example 11-1. SMTP logging

1. postfix/smtpd[866062]: connect from mail.ora.com[10.143.23.45]
2. postfix/smtpd[866062]: D694B20DD5B: client=[10.143.23.45]
3. postfix/cleanup[864868]: D694B20DD5B: \
 message-id=<20030106185403.D694B20DD5B@smtp.example.com>
4. postfix/qmgr[861396]: D694B20DD5B: from=<info@ora.com>, \
 size=486, nrcpt=1 (queue active)
5. postfix/local[864857]: D694B20DD5B: to=<kdent@smtp.example.com>, \
 relay=local, delay=98, status=sent (mailbox)
6. postfix/smtpd[866062]: disconnect from mail.ora.com[10.143.23.45]

Once connected, the client sends a HELO command with an identifying hostname. The hostname
provided can be used to accept or reject a message using smtpd_helo_restrictions.

In the next step, the client issues a MAIL FROM command to indicate the sender's email
address, followed by a RCPT TO command to indicate the recipient's email address.

If everything is acceptable up to the point of the DATA command, the client is permitted to send
the contents of the message, which consist of message headers followed by the message body.
Postfix provides another opportunity to reject the message based on its contents (see Section
11.9 later in this chapter). If the final header and body checks are acceptable, the message is
delivered.

Postfix indicates to the client that it has rejected a message by sending reply codes. Standard
reply codes are described in Chapter 2. In this chapter, we consider codes in the 4xx and 5xx
range. More information appears in a sidebar later in this chapter.

11.7.2 Listing Restrictions

When you assign restrictions to Postfix UBE rules, it is not necessary to use all of the rules. You
can define restrictions for the ones you need and leave out the others. The default setting if no
rules are set in main.cf looks like the following:

smtpd_client_restrictions =
smtpd_helo_restrictions =
smtpd_sender_restrictions =
smtpd_recipient_restrictions =
 permit_mynetworks, reject_unauth_destination

This prevents your system from being an open relay by allowing any computer on your network
to relay while rejecting all others unless they are sending messages destined for one of your
users.

There are many restrictions available. Table 11-1 lists each one along with the client
information it operates on. One important concept that confuses many people at first is that
any of these restrictions can be used in any rule. While it may seem logical that
check_helo_access should be assigned to smtpd_helo_restrictions, it could equally be
assigned to smptd_sender_restrictions or any of the others. This gives you a lot of flexibility

in ordering your restrictions when deciding what to accept and what to block.

Table 11-1. SMTP rules and restrictions

Restrictions Client-supplied information

check_client_access maptype:mapname Client IP address or hostname

reject_rbl_client

reject_rhsbl_client

reject_unknown_client

check_helo_access maptype:mapname HELO hostname

permit_naked_ip_address

reject_invalid_hostname

reject_non_fqdn_hostname

reject_unknown_hostname

check_sender_access maptype:mapname MAIL FROM address

reject_non_fqdn_sender

reject_rhsbl_sender

reject_unknown_sender_domain

check_recipient_access maptype:mapname RCPT TO address

permit_auth_destination

permit_mx_backup

reject_non_fqdn_recipient

reject_unauth_destination

reject_unknown_recipient_domain

reject_unauth_pipelining DATA command

You'll notice from Table 11-1 that some rules take an argument of the form maptype:mapname.
The mapname refers to a normal Postfix lookup table whose lefthand key is matched against the
piece of client information, and the righthand value is the action to perform. Access maps are
discussed in Restriction Definitions following.

11.7.2.1 How restrictions work

Each of the nonaccess map restrictions evaluates to or returns one of three possible values that
determine what action Postfix takes with the message: OK, REJECT, and DUNNO. (Access maps
can also return the same values, but they allow additional actions as well.) The restrictions are
evaluated in the order you list them. During processing, if a rule returns an explicit REJECT, the
message is immediately rejected. If a rule returns an explicit OK, the processing stops for
that parameter but continues on to the next until all of the assigned rules have been
evaluated or Postfix encounters a rejection. It's important to note that a rule might explicitly
accept a message, but it can still be rejected by another rule's restrictions. If the set of rules
comes to no definite conclusion (all DUNNOs), the default action is to accept the message. Any
single parameter can reject a message, but all of them must accept it in order for it not to be
rejected. There are generic restrictions such as permit and reject that return explicit OK or
REJECT values without considering any of the client information.

When a rule evaluates to REJECT, by default Postfix does not actually reject the message until
after the client has sent the RCPT TO command. Even though it may know at the HELO
command that it's going to reject this client, it waits until after it receives the RCPT TO
command before returning the reject code. The reason for this default is that some SMTP
clients do not check that they have been rejected during the transaction and continue trying to
deliver the message. In such a case, you end up with connections that last longer than they
should and several warning messages in your log file. Another advantage to the default is that
you get more complete information in your log. If you want to change the default to have a
rejection take effect as soon as possible, set the parameter smtpd_delay_reject in main.cf:

smtpd_delay_reject = no

You might want to do this in a controlled environment where you know all of the connecting
SMTP clients are well-behaved; otherwise, the default makes sense for most situations.

11.7.2.2 Testing new restrictions

A useful parameter for testing new restrictions is soft_bounce:

soft_bounce = yes

When it is set, hard reject responses (5xx) are converted to soft reject responses (4xx). When
you add a new restriction that you're not sure about, you might want to turn soft_bounce on
and then watch your logs for what's rejected so that you can fine-tune your settings by the
time another delivery attempt is made.

Another useful option for testing restrictions is the warn_if_reject qualifier. Simply precede
any restriction with it to have that restriction log a warning instead of rejecting a message. If
you're not sure what effect a new restriction will have in your environment, you can try it out
with warn_if_reject, and then implement it completely only if it works as you expect:

smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination
 warn_if_reject reject_invalid_hostname
 reject_unknown_recipient_domain
 reject_non_fqdn_recipient

In this example, if a client uses an invalid HELO hostname when delivering a message, Postfix
logs a warning but still delivers the message (assuming it's not blocked for other reasons).

11.7.2.3 A simple example

Before moving on to the restriction definitions, let's consider a simple example:

smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination
 reject_invalid_hostname
 reject_unknown_sender_domain

This example expands on the default configuration with two additional restrictions. When a
client connects, if it's from your own network, permit_mynetworks returns OK, so it is allowed
to send mail. The other restrictions are not checked. If the client is from outside your network,
permit_mynetworks does not return OK and does not return REJECT, so it returns DUNNO.
Postfix then checks reject_unauth_destination.

If the message is not addressed to somebody at one of your destination domains, it returns
REJECT; otherwise, it returns DUNNO. Assuming it returns DUNNO, Postfix then checks
reject_invalid_hostname, which says to return REJECT if the hostname supplied with the
HELO command is not valid. Otherwise, it returns DUNNO. Finally, Postfix checks

reject_unknown_sender_domain, which returns REJECT if the domain name of the address
supplied with the MAIL FROM command does not have a valid DNS entry. If none of the
restrictions has rejected the message, Postfix accepts it for delivery.

11.7.3 Restriction Definitions

There are six types of restrictions introduced below. Each of the restrictions are defined in the
sections that follow.

Access maps for client checking

Restrictions of the form check_*_access point to lookup tables that might list IP
addresses, hostnames, or email addresses (depending on the parameter) that should be
accepted or rejected by Postfix.

Other client checks

Other client restrictions compare the client information to general configuration
information instead of access tables. An example is permit_mynetworks, which you saw
earlier.

Strict syntax checking

Some restrictions tell Postfix to enforce SMTP standards very strictly. Since spammers
often misconfigure or use poorly implemented software, you can stop a lot of spam by
making sure that connecting clients follow the rules.

DNS checking

DNS-checking rules ensure that DNS information is correct. Spammers often work from
networks that do not configure DNS correctly. Unfortunately, rules of this type are
appropriate only for a very aggressive anti-spam stance because of the number of
legitimate sites that also do not configure their DNS correctly.

Real-time blacklist checking

Real-time blacklists are services listing suspected spamming clients. Postfix can check
with real-time blacklist services and reject clients based on their listing.

Generic

Generic rules explicitly reject or accept a message. They usually specify your default
stance if a message isn't explicitly accepted or rejected elsewhere. Since these rules will
always accept or reject a message, they should come last in your list of rules.

11.7.3.1 Access maps

Restrictions in the client-checking category all point to access map files. Access maps are
simply a type of Postfix lookup table (see Chapter 4 for more information about lookup tables).
In the lookup table, you specify the client information as a key and the action to take (accept or
reject) as the value:

check_client_access maptype:mapname

The check_client_access restriction points to an access table containing entries with
IP addresses, network addresses, hostnames, and parent domains to match against the
client IP address. (Postfix performs a reverse lookup on the IP address to obtain a
hostname to compare host and parent domain name information.) Each entry includes
an action to take when the IP address matches a key.

check_helo_access maptype:mapname

The check_helo_access restriction points to an access table containing hostnames and
parent domains to match against the host information supplied with the HELO command.
Each entry includes an action to take when the supplied host information matches a key.

check_recipient_access maptype:mapname

The check_recipient_access restriction points to an access table containing entries
with email addresses, domains, and local parts to match against the address specified
with the RCPT TO command. Each entry includes an action to take when the supplied
address matches a key.

check_sender_access maptype:mapname

The check_sender_access restriction points to an access table containing entries with
email addresses, domains, and local parts to match against the address specified with
the MAIL FROM command. Each entry includes an action to take when the supplied
address matches a key.

The restrictions check_sender_access and check_recipient_access both check a supplied
email address. For them, the key in your index file can be an email address (user@example.
com) to match a specific address, a domain name (example.com) to match the domain name
portion or subdomains of the address, or the local part of an email address (user@) to match
all addresses using the specified local part.

The rules check_client_access and check_helo_access compare the key to a supplied
hostname or IP address. The index file pattern can be a hostname, an IP address
(192.168.143.23), or a network address specified by the initial octets of the address (10 or

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com

10.12 or 10.12.154).

Actions can be indicated as follows:

OK

Accept the item. Processing for the current rule stops. Postfix moves on to the next
restriction rule.

REJECT

Reject the item. You can optionally specify a short string of text to be used in the reply
and with logging for this message; otherwise, Postfix uses the general reply code and
text configured for the restriction. The parameter access_map_reject_code contains
the default reply code for the check_*_access rules and maps_rbl_reject_code
contains the default reply code for reject_maps_rbl. If you don't specify a value, they
both default to 554.

DUNNO

Stop checking entries for the lookup table. Postfix moves on to the next restriction for
the current rule.

FILTER

Redirect the message to a content filter. You must specify a transport and next hop as
you would in a transport table.

HOLD

Place the message in the hold queue. You can optionally specify a short string of text to
be logged; otherwise, Postfix logs a generic message.

DISCARD

Report a successful delivery to the client, but drop the message. You can optionally
specify a short string of text to be logged; otherwise, Postfix logs a generic message.
Don't use this action unless you have carefully considered the ramifications. Silently
dropping messages runs counter to the expected behavior of email systems. When
dealing with spam, dropping messages might be the best course of action, but
discarding any legitimate mail can affect the overall perceived reliability of Internet
email.

4xx message text

Reject the message. The response sent to the client is the numerical code you specify. A
response in the 4xx range tells the client there is a temporary problem; queue the
message and try delivery later. (See sidebar.)

5xx message text

Reject the message. The response sent to the client is the numerical code you specify. A
response in the 5xx range tells the client there is a permanent problem; send a bounce
notification to the original sender. (See sidebar.)

You can also set up regular expression tables for access maps. In most cases, it probably
doesn't make sense to use a regular expression table for your access lists. Postfix already
breaks up email addresses, domains, and IP addresses into the individual pieces to make its
comparisons, so you really don't gain much through regular expressions here. On the other
hand, regular expression tables work very well for header and body checks, which are
discussed later in this chapter.

Let's expand the configuration example with some access maps:

smtpd_client_restrictions =
 check_client_access hash:/etc/postfix/client_access
smtpd_sender_restrictions =
 check_sender_access hash:/etc/postfix/sender_access
smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination
 reject_invalid_hostname
 reject_unknown_sender

We've now added restrictions to consult the lookup tables client_access and sender_access.

The client_access file can have entries like the following:

10.157 REJECT
192.168.76.23 REJECT
currentmail.com REJECT

and the sender_access file can have entries like the following:

hardsell@example.com REJECT
marketing@ REJECT
specials.digital-letter.com REJECT

11.7.3.2 Other client-checking restrictions

The following client restrictions make their decisions by comparing client-supplied information
to the local Postfix configuration. The default rules fall under this category.

permit_auth_destination

Permits a request if the resolved destination address matches a hostname or subdomain
where the Postfix system is the final destination for the message or a relay for the final
destination. Final destinations are listed in mydestination, inet_interfaces,
virtual_alias_maps, or virtual_mailbox_maps, and relays are listed in
relay_domains. Furthermore, the address must not contain any sender-specified
routing (e.g., user@example.com@example.net). If permit_auth_destination does
not find a match, it returns DUNNO rather than REJECT. Postfix continues to check all
subsequent restriction rules.

permit_mynetworks

Allows a request if the client IP address matches any of the addresses listed in the
mynetworks parameter. You normally use this restriction to exclude local clients from
other UBE restrictions and to allow them to relay through your SMTP server.

reject_unauth_destination

Rejects a request if the Postfix system is not the final resolved destination email address
or a relay for the final destination. Final destinations are listed in mydestination,
inet_interfaces, virtual_alias_maps, or virtual_mailbox_maps, and relays are
listed in relay_domains. Addresses must not contain any sender-specified routing (e.g.,
user@example.com@example.net). The relay_domains_reject_code parameter
specifies the response code for rejected requests. The default is 554.

11.7.3.3 Strict syntax restrictions

Restrictions in the strict syntax category check for misconfigured clients and reject mail when
they don't comply with the standards. These rules can detect a lot of spam, but they might also
reject legitimate clients. You should study the nature of your spam and real messages to see
which rules will benefit you most without rejecting real messages. You can use access maps
with OK actions to whitelist known senders that would otherwise be rejected.

reject_invalid_hostname

Rejects a request if the hostname supplied with the HELO command is not a valid
hostname. The invalid_hostname_reject_code parameter specifies the response code
for rejected requests. The default is 501. Most legitimate senders use valid hostnames.

reject_non_fqdn_hostname

Rejects a request if the hostname supplied with the HELO command is not in the fully
qualified form, as required by the RFC. The non_fqdn_reject_code parameter specifies

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/user_40example.com_40example.net
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/user_40example.com_40example.net

the response code for rejected requests. The default is 504.

reject_non_fqdn_recipient

Rejects a request if the address supplied with the RCPT TO command is not in the fully
qualified form, as required by the RFC. The non_fqdn_reject_code parameter specifies
the response code for rejected requests. The default is 504. Most legitimate senders use
fully qualified domain names.

reject_non_fqdn_sender

Rejects a request if the address supplied with the MAIL FROM command is not in the fully
qualified form, as required by the RFC. The non_fqdn_reject_code parameter specifies
the response code for rejected requests. The default is 504.

reject_unauth_pipelining

Pipelining is a technique supported by Postfix to speed up bulk mail deliveries by
sending multiple SMTP commands at once. The protocol requires that clients first check
that the server supports pipelining. Some clients incorrectly begin pipelining before they
confirm that Postfix actually supports it. The rule reject_unauth_pipelining
immediately rejects such requests. There is no more processing, and the message is
rejected.

11.7.3.4 DNS restrictions

The DNS checking rules make sure that clients and email envelope addresses are sent from
domains that have valid DNS information. It would be a great improvement to email in general
if postmasters could always require valid DNS information because it would be harder for
spammers to hide. Unfortunately, there are too many legitimate domains that do not configure
their DNS correctly for such strictness to be practical. You should study the nature of your
spam and real messages to see which will benefit you most without rejecting false-positives.
You can use access maps with OK actions to whitelist known senders that would otherwise be
rejected.

reject_unknown_client

Rejects a request if the client IP address has no DNS PTR record or if a follow-up lookup
on the hostname listed in the PTR record does not match the connecting IP address. The
unknown_client_reject_code parameter specifies the response code for rejected
requests. The default is 450. If you change the default, the reply code you specify is
returned except when there is a temporary DNS error. In this case, your change is
overridden and Postfix returns 450. This rule tends to find many false-positives for spam
because it seems to be very common to have PTR records misconfigured or not
configured at all.

reject_unknown_hostname

Rejects a request if the hostname supplied with the HELO command doesn't have either
a DNS A or MX record. The unknown_hostname_reject_code parameter specifies the
response code for rejected requests. The default is 450. If you change the default, the
reply code you specify is returned except when there is a temporary DNS error. In this
case, your change is overridden and Postfix returns 450. Many clients do not use a fully
qualified hostname and would be rejected by this restriction.

reject_unknown_recipient_domain

Rejects a request if the domain name of the address supplied with the RCPT TO
command doesn't have either a DNS A or an MX record. The
unknown_address_reject_code parameter specifies the response code for rejected
requests. The default is 450. If you change the default, the reply code you specify is
returned except when there is a temporary DNS error. In this case, your change is
overridden and Postfix returns 450.

reject_unknown_sender_domain

Rejects a request if the domain name of the address supplied with the MAIL FROM
command has neither an A nor an MX record in DNS. The
unknown_address_reject_code parameter specifies the response code for rejected
requests. The default is 450. If you change the default, the reply code you specify is
returned except when there is a temporary DNS error. In this case, your change is
overridden and Postfix returns 450.

Since the MAIL FROM address is the address that bounce notifications must be sent to, it makes
sense to require a known domain name. It is highly recommended that you include this rule in
your restrictions.

11.7.3.5 Real-time blacklists

Restrictions for real-time blacklists cause Postfix to perform DNS lookups using client
information with domains you specify to determine if a client is listed with one of the DNSBL
services:

reject_rbl_client domain name

Rejects a request if a DNS lookup of a hostname composed of the octets of the client IP
address in reverse in the specified domain lists an A record.

reject_rhsbl_client domain name

Rejects a request if the client hostname has an A record under the specified domain.

reject_rhsbl_sender domain name

Rejects a request if the domain of the sender address has an A record under the
specified domain.

11.7.3.6 Generic restrictions

There are two generic restriction rules that explicitly accept or reject a message:

permit

Immediately permits a message. Processing for the current restriction parameter stops,
but Postfix continues checking the other restriction parameters.

reject

Immediately rejects a request. There is no more processing, and the message is
rejected.

Reject Spam with 4xx or 5xx?

There are two classes of reply codes you can use when rejecting spam. Reply codes
in the 4xx range normally indicate a temporary problem. Given a 4xx reply, a client
will queue a message and attempt delivery later. A 5xx code indicates a permanent
error and tells the client to stop trying to send the message.

At first glance the 5xx code seems like the obvious choice for rejecting spam,
because the spammer is told to stop attempting to deliver the message; however,
there may be benefits to replying with a 4xx code. In case you reject legitimate mail,
the client should attempt to deliver it again. Assuming that you check your logs for
such things, you could tweak your anti-spam settings to allow the message the next
time delivery is attempted. On the other hand, if you reject real spam with a 4xx
code, and you have any secondary mail exchangers for your domain that do not also
reject the message, you may be filling up their queues with your temporary
rejections. As you populate your access tables, you can fine-tune your replies by
choosing a code based on who you are blocking and the reason for it. Keep in mind,
however, that spammers don't have to respect any reply you send, so you may not
have much success in controlling what happens.

You can specify the reply code with any short text message for the action side of an
access table. Postfix provides parameters to control the default reply code given for
most of the restriction rules. The restriction definitions mention the relevant reject
code parameter when it is available.

11.7.4 Tracing a Restriction List

With what we know so far, let's trace what happens with some simple HELO restrictions.
Consider that smtpd_helo_restrictions is assigned the following rules:

smtpd_helo_restrictions =
 check_helo_access hash:/etc/postfix/helo_access
 reject_invalid_hostname

and helo_access contains the following entries:

greatdeals.example.com REJECT
oreillynet.com OK

Let's follow four different scenarios when clients connect with different HELO commands:

HELO example

Postfix first encounters the check_helo_access rule pointing to the helo_access lookup
table. In checking the lookup table, it does not find the specified hostname example, so
it moves on to the reject_invalid_hostname rule. Since example is not a complete
hostname as required by the standard, Postfix rejects the message.

HELO greatdeals.example.com

Postfix first encounters the check_helo_access rule pointing to the helo_access lookup
table. In checking the lookup table, it finds an entry for greatdeals.example.com with an
action of REJECT. Postfix, therefore, rejects the message.

HELO oreillynet.com

Postfix first encounters the check_helo_access rule pointing to the helo_access lookup
table. In checking the lookup table, it finds an entry for oreillynet.com with an action of
OK. Postfix stops processing for the smtpd_helo_restrictions parameter without
considering any of the other restrictions and moves on to smtpd_sender_restrictions
if specified.

HELO mail.ora.com

Postfix first encounters the check_helo_access rule pointing to the helo_access lookup
table. In checking the lookup table, it does not find the specified host mail.ora.com, so it
moves on to the reject_invalid_hostname rule. Since mail.ora.com conforms to the
format required by the standard, Postfix continues to the smtpd_sender_restrictions
if specified.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/greatdeals.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/oreillynet.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail.ora.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail.ora.com

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

11.8 Strict Syntax Parameters

There are two parameters configured in main.cf that require strict adherence to Internet email
standards. Enable the smtpd_helo_required parameter to require that SMTP clients start the
conversation with the HELO/EHLO verb, as described in the SMTP RFC. By default Postfix is
rather lenient with clients that do not follow the protocol exactly. If you specify
smtpd_helo_required = yes, and a client skips this step, Postfix rejects the message. The RFC
also specifies exactly how envelope addresses should be formatted. Normally, Postfix accepts
nearly any envelope address that it can make sense of, but if you specify
strict_rfc821_envelopes = yes, Postfix rejects messages from clients that do not send
correctly formatted addresses.

In actual practice, it's probably a good idea to require HELO because most clients at least follow
the basic steps of the protocol. On the other hand, there are a number of clients that don't get
address formatting correct. Being too strict here might lose legitimate messages.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

11.9 Content-Checking

The last chance you have to reject a message from Postfix directly is by checking the contents
of the message itself. Postfix offers simple content checking through the parameters:

● header_checks for message headers
● mime_header_checks for MIME headers
● nested_header_checks for attached message headers
● body_checks for the body of a message

These checks are an all-or-nothing feature with Postfix. There is no way to bypass checks for
certain senders or recipients. For more sophisticated analysis, you should use a separate
content filter specifically designed to detect spam. See Chapter 14 for more information on
using filters with Postfix.

Each parameter points to a lookup table containing regular expression patterns and actions.
The patterns are compared to strings within email messages. If Postfix finds a match, the
specified action is executed. By default regular expression checking is not case-sensitive. See
Chapter 4 for information on using regular expressions with Postfix lookup tables.

11.9.1 Content Checking Configuration

By default mime_header_checks and nested_header_checks use the same lookup tables as
header_checks. If you want to distinguish checks for each one, you can configure them
separately; otherwise, configuring header_checks causes mime_header_checks and
nested_header_checks to use the same patterns as header_checks. When you assign the
checking parameters, indicate both the lookup table and which type of regular expression you
are using (see Chapter 4):

header_checks = regexp:/etc/postfix/header_checks
body_checks = regexp:/etc/postfix/body_checks

In a pattern-checking lookup table, the lefthand key is a regular expression enclosed by two
delimiters (usually forward slashes):

/match string/ REJECT

A typical header_checks file contains lines like the following:

/free mortgage quote/ REJECT
/repair your credit/ REJECT
/take advantage now/ REJECT

If any of the strings shown appear in any of the headers of a message (these would most likely
show up in the Subject: header), the message is rejected. Postfix logs the rejection along with
the offending line, and if you specified a message, it is also logged and sent to the client.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

11.9.2 Content Checking Actions

The right hand action can be one of the following values. The values that allow an optional text
message are indicated. The specified message is sent to the client and logged with the
rejection. If you don't supply a message, Postfix uses the default.

REJECT message

Rejects the message when a line from the message matches the regular expression.

WARN message

Logs a rejection without actually rejecting the message. This action is useful for testing
a regular expression to see what happens in the log before using a REJECT to actually
reject the message.

IGNORE

Provides a way to delete headers or lines from the body of a message. If the regular
expression matches, the line is dropped from the message. This can be useful to strip
out internal network information before sending a message outside your network. Be
careful about what you delete since most headers are required by the standards and can
be very useful in tracking down email problems.

HOLD message

Causes the message to be placed in the HOLD queue. See Chapter 5 for information
about the HOLD queue.

DISCARD message

Causes Postfix to claim successful delivery and silently discard the message. Sometimes
spammer software won't take no for an answer. Even if you reject the message with a
5xx error, the client continues to try to deliver it. DISCARD makes it look as if the
message was delivered even though it was simply thrown away. DISCARD can also be
useful to minimize the backscatter problem mentioned earlier in the chapter. If an
innocent user's email address is used as the sender address, you can claim successful
delivery, so that the innocent user does not receive bounce messages.

FILTER transport:nexthop

After queuing the message, Postfix sends it through a separate content filter. See
Chapter 14 for more information about setting up separate content filters.

Actions cannot include specific error reply codes or customized restrictions as with access maps.

11.9.3 Comparing Patterns

Header checks compare each header against every pattern in the listed lookup files. Multiline
headers are combined into a single line before making comparisons. Each pattern is checked in
the order you list them, and checking stops as soon as Postfix finds a match, at which point the
message is handled according to the action you specified.

The patterns indicated by the body_checks parameter are checked against each line of the
body of the message. Lines are compared one at a time, and each one is checked against every
pattern in the order you list them. Checking stops as soon as Postfix finds a match, at which
point the message is handled according to the action you specified.

Very long body lines are compared in chunks that are at most as long as the value of the
parameter line_length_limit. The default is 2048. Also, by default, Postfix checks the
contents of the body only up to the value of body_checks_size_limit. The default is 50 KB.
Message headers are compared in chunks that are limited by header_size_limit. These limits
are useful in preventing Postfix from scanning the entire file when messages contain large
attachments.

Some administrators use header checks for simple virus scanning. You can reject all messages
that include attachments with file extensions that might be dangerous to your users:

/name ?="?.*\.(bat|com|dll|exe|hta|pif|vbs)"?/ REJECT

You should include any other extensions that you know might pose a problem for your users.
Be aware, however, that this pattern is not really sufficient for true virus scanning since you are
certain to miss some extensions, and many PC clients may execute files regardless of their
extension.

A typical body_checks file contains lines like the following:

/increase your sales by/ REJECT
/lowest rates.*\!/ REJECT
/in compliance (with|of) strict/ REJECT
/[:alpha:]<!--.*-->[:alpha:]/ REJECT Suspicious embedded HTML comments

The second line matches any string that starts with "lowest rates" followed by any text leading
to an exclamation point ("We have our lowest rates in 40 years!"). The fourth line checks for
HTML comments that are embedded in the middle of words. Remember that this is a common
spammer trick to defeat your content filters, but it's also a dead giveaway that the message
contains spam.

You can test your regular expressions with the postmap command. Place the contents of a
message into a file, then redirect the file to postmap:

$ postmap -q - regexp:/etc/postfix/body_checks < msg.txt
opportunity. increase your sales by 500%. Consider REJECT

postmap prints any lines that match any of the regular expressions along with the action
specified.

Study the spam you receive to refine and add to your patterns. However, be aware of potential
performance problems with poorly written regular expressions. Another potential issue with
content checking is that there is no way to whitelist individual messages that you might want to
receive despite their containing phrases that trigger a rejection. In particular, if a message is
whitelisted during the restriction parameter checking (described earlier in this chapter), it might
still be rejected by header and body checks.

As you create rules for detecting spam, keep in mind that your users may differ in what balance
they'll accept between some spam and the possibility of blocking some real messages. If you
must create different rules for different users, it's probably best not to try to accomplish this
with an MTA. Instead consider a specialized delivery agent such as procmail, maildrop, or sieve
to set up per-user UBE rules. You can use Postfix to set up broad per-user class restrictions, as
you'll see in the next section.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

11.10 Customized Restriction Classes

Restriction classes provide the last wrinkle in the Postfix anti-spam parameters. They allow you
to define a set of restrictions that you can assign to the righthand side of an access table. They
cannot be used in header and body checks—only in access tables. Restriction classes let you set
up different restrictions for different clients, senders, and recipients. Restriction classes are a
powerful tool that can provide great flexibility in Postfix UBE restrictions. If you require any sort
of complicated rules to block spam, it is well worth your while to invest the time to understand
restriction classes.

Restriction classes are particularly useful when you need to create exceptions to your normal
restrictions. To illustrate with an example, let's create two classes of users. One group wants to
receive all messages addressed to them whether or not the messages are spam. The other
group prefers particularly stringent checks against spam even at the risk of losing some
legitimate mail.

11.10.1 Sample Restriction Classes

We'll call the two classes "spamlover" and "spamhater." You must list all of the restriction
classes you plan to define in the smtpd_restriction_classes parameter:

smtpd_restriction_classes = spamlover, spamhater

We've invented the names of the classes, but once listed with smtpd_restriction_classes,
they can be treated like any other restriction rule. You can assign a list of restrictions to be
considered for the class. Once defined, the restriction class can be used as an action in an
access table. When Postfix encounters the class, it steps through the assigned restrictions.

We'll define "spamhater" with several restrictions:

spamhater =
 reject_invalid_hostname
 reject_non_fqdn_hostname
 reject_unknown_sender_domain
 reject_rbl_client nospam.example.com

and "spamlover" with a simple "permit":

spamlover = permit

You could, of course, refine these with restrictions that make sense for your own configuration.

Now that the restriction classes have been declared and defined, you can put them to use by
assigning the appropriate class to each of our recipients in a lookup table. We'll call the table
per_user_ube.

#

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

per_user_ube
#
abelard@example.com spamhater
heloise@example.com spamlover

Next, tell Postfix that it should check your recipient lookup table when checking restrictions:

smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination
 check_recipient_access hash:/etc/postfix/per_user_ube

When a message comes in addressed to abelard@example.com, Postfix goes through the
normal default restrictions and then encounters check_recipient_access pointing to the
recipient lookup table. Postfix finds the recipient address in the file, reads the action
spamhater, and then invokes the restrictions defined for spamhater. If any of the "spamhater"
restrictions returns REJECT, Postfix rejects the message; otherwise, it is delivered. Messages
for heloise@example.com go through the same process, but when Postfix checks the
"spamlover" restrictions, it finds permit and immediately accepts the message.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

11.11 Postfix Anti-Spam Example

Now that we've covered the many aspects of Postfix's anti-spam arsenal, we'll finish with an
example configuration. Requirements vary considerably from site to site, so it's impossible to
make actual recommendations apart from the considerations that have been discussed in this
chapter. Example 11-2 can provide a starting point, but you must decide for yourself which
restrictions fit your own circumstances.

Example 11-2. Sample restrictions to block UBE

smtpd_restriction_classes =
 spamlover
 spamhater

spamhater =
 reject_invalid_hostname
 reject_non_fqdn_hostname
 reject_unknown_sender_domain
 reject_rbl_client nospam.example.com

spamlover = permit

smtpd_helo_required = yes
smtpd_client_restrictions =
 check_client_access hash:/etc/postfix/client_access
smtpd_helo_restrictions =
 reject_invalid_hostname
 check_helo_access hash:/etc/postfix/helo_access
smtpd_sender_restrictions =
 reject_non_fqdn_sender
 reject_unknown_sender_domain
 check_sender_access hash:/etc/postfix/sender_access
smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination
 reject_non_fqdn_recipient
 reject_unknown_recipient_domain
smtpd_data_restrictions =
 reject_unauth_pipelining
header_checks = /etc/postfix/header_checks
body_checks = /etc/postfix/body_checks

You should enter IP and email addresses into the access tables from messages you receive that
you have identified as spam. It's very difficult to block a lot of spam with the
check_helo_access and check_sender_access restrictions because it's so easy for spammers
to fake that information. There is effectively an unlimited number of addresses and hostnames
spammers might use. This makes it nearly impossible to keep up with them. Since it's so easy
to fake this information, you might be blocking legitimate hosts and addresses that just have
the bad luck of having their information used by spammers.

But these checks can be useful against messages that repeatedly use the same forged

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

information and spammers that don't attempt to cover their tracks. Some online marketing
services use their real information when sending spam. These sites might even honor removal
requests, but if you object to having to request a removal from companies you've never heard
of, you can block them based on the HELO or MAIL FROM information.

You can also block sites that you don't want to hear from whether they're real or fake. Mail
from a site you consider objectionable is one example. Also, if you believe it's impossible that
you would be receiving messages from the Republic of Maldives, you could block addresses and
hostnames using the Republic of Maldive's top-level domain. Keep in mind, however, if you run
a mail system for many users, you probably shouldn't force your own moral attitude on
everyone, or assume your users don't have Maldivian relatives or a special interest in the
cuisine.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 12. SASL Authentication

The basic SMTP protocol does not provide a mechanism to authenticate users. Since email
envelope addresses are so easy to fake, you can't know who is sending mail to your server
unless you have a reliable means to authenticate clients. To allow mail relay privileges on your
server, you need assurance that senders are who they claim to be, and you cannot rely on the
senders' email addresses as identification. In this chapter, we look at using the Simple
Authentication and Security Layer (SASL) as a means to control mail relaying and generally to
identify who is using your mail server.

You might want to provide access to individuals using your mail server as their SMTP server, or
to other MTAs that relay through your system. We'll also look at configuring Postfix to provide
its own credentials to other MTAs that may require authentication before permitting email
delivery or relaying. Chapter 4 discusses the mail relay problem in general, and some other
solutions to consider.

Because you lock down your mail servers to prevent unauthorized relaying, some of your users
might have trouble sending email when they are not on your network. If you have users that
travel with laptops, for example, they will likely connect through a nearby ISP and get an IP
address from its dial-up pool. Or perhaps you have users that work from home. In any case,
whenever you don't know what users' IP addresses will be, SASL can provide the means to
reliably identify them.

RFC 2554, "SMTP Service Extension for Authentication," provides an extension to the basic
SMTP protocol that allows clients to authenticate to an SMTP server using the SASL protocol.
We'll show how to use the Cyrus SASL libraries from Carnegie Mellon to add SASL to Postfix.
You may optionally also want to add support for TLS (see Chapter 13). TLS (formerly SSL) is
most commonly used to encrypt conversations between web browsers and servers, but works
equally well for mail servers and clients. Since some of the SASL password mechanisms
transmit passwords as plaintext, you can use TLS to make sure your passwords are not sent in
the clear.

Adding SASL to Postfix requires that you have the Cyrus libraries on your system and that your
Postfix system be compiled with them. Remote users must configure their email clients to send
a login and password when they want to relay mail through your system. Most modern email
clients make this a fairly easy configuration option.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

12.1 SASL Overview

SASL is a general method to add or enhance authentication in client/server protocols. Its
primary purpose is to authenticate clients to servers. When you configure SASL, you must
decide on both an authentication mechanism, for the exchange of authentication information
(commonly referred to as user credentials), and an authentication framework for how user
information is stored. The SASL authentication mechanism governs the challenges and
responses between the client and server and how they should be encoded for transmission. The
authentication framework refers to how the server itself stores and verifies password
information. Figure 12-1 illustrates these two processes. Once an authentication is successful,
the server knows the user's identity and can determine which privileges the identified user
should have. In the case of Postfix, it is the privilege to relay mail. You can also optionally limit
identified users to using a particular sender address when they relay mail.

Figure 12-1. SASL authentication frameworks and mechanisms

12.1.1 Choosing an Authentication Mechanism

The client and server must agree on the authentication mechanism they'll use. (See the Cyrus
documentation for currently supported mechanisms.) Some of the more common mechanisms
are listed below:

PLAIN

The PLAIN mechanism is the simplest to use, but it does not include any encryption of
authentication credentials. You may want to use TLS (see TLS information in Chapter
13) in conjunction with the PLAIN mechanism. The login and password are passed to the
mail server as a base64 encoded string.

LOGIN

The LOGIN mechanism is not an officially registered or supported mechanism. Certain
older email clients were developed using LOGIN as their authentication mechanism. The
SASL libraries support it in case you have to support such clients. If you need it, you
must specify support for it when you compile the libraries and Postfix. See Appendix C if
you are building your own Postfix. If you are using a packaged distribution and you need
LOGIN support, check the documentation with your distribution to make sure it includes
it. If it is used, the authentication exchange works the same as the PLAIN mechanism.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

OTP

OTP is an authentication mechanism using one-time passwords (formerly S/Key). The
mechanism does not provide for any encryption, but that may not be necessary since
any captured password is good for only a single session. SMTP clients must be able to
generate OTP authentication credentials.

DIGEST-MD5

With the DIGEST-MD5 mechanism, both the client and server share a secret password,
but it's never sent over the network. The authentication exchange starts with a
challenge from the server. The client uses the challenge and the secret password to
generate a unique response that could be created only by somebody who has the secret
password. The server uses the same two pieces, the challenge and secret password, to
generate its own copy, and compares the two. Since the actual secret password is never
sent across the network, it's not vulnerable to network eavesdropping.

KERBEROS

Kerberos is a network-wide authentication protocol. Unless you are already using
Kerberos on your network, you probably don't need to support the KERBEROS
mechanism. If you are using Kerberos, using SASL is a nice way to fit SMTP
authentication into your existing infrastructure.

ANONYMOUS

SASL includes an ANONYMOUS mechanism, which might make sense for some
protocols, but has no benefit for SMTP. An open relay is essentially using an anonymous
mechanism, and the purpose of SMTP authentication is to eliminate open relays.

When a client connects to a mail server, the server typically lists all of the password
mechanisms it supports, in order of preference. The client tries the first one it supports. If that
fails, it may be configured to try additional mechanisms until it can authenticate successfully. If
the client and server cannot successfully negotiate over a common mechanism, authentication
fails.

Once the server and client agree on a mechanism, they begin the authentication process,
consisting of one or more challenges and responses that are governed by the agreed-upon

mechanism. The protocol also specifies how these exchanges should be encoded.
[1]

[1] Note: that's encoded, not encrypted. A particular mechanism may or may not
include encryption of the client's credentials.

12.1.2 Choosing an Authentication Framework

The SASL authentication framework can use your existing Unix system passwords (for example,
passwd, shadow, or PAM) or a separate password file just for authenticating SMTP users. Other

options include Kerberos or even a new scheme of your own.

Ultimately, your choice comes down to where and how you want to store your authentication
information. Consider your network and how your users currently authenticate to decide which
framework works best for you. If your mail users already authenticate on your network through
PAM, for example, then you probably want to configure SASL to use your existing system. If, on
the other hand, most of your SMTP users are virtual accounts (without system logins), you
should opt for a separate password database for SMTP users. Often your POP/IMAP server can
share the same user database, making this a convenient option for virtual mail accounts.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

12.2 Postfix and SASL

Before getting started with SASL, you should decide which framework and mechanism you will
use because it affects your installation and configuration. In order to enable SASL
authentication in Postfix, you must have the Cyrus SASL library and a copy of Postfix with SASL
support compiled in. Some platforms have precompiled packages available with support for
SASL. If you want to use a precompiled Postfix package make sure that it specifically includes
support for SASL and has the necessary SASL libraries. Furthermore, make sure that the SASL
libraries were compiled with the options you need for your situation. The relevant options are
described throughout the rest of this section.

Cyrus SASL library development is currently following two tracks: SASL and SASLv2. The SASL
track is being phased out in favor of SASLv2. In the future, you can expect Postfix to include
support for SASLv2 only. This chapter discusses SASLv2. You must have the correct
combination of versions of both Postfix and the SASL libraries.

You should be able to use the latest stable version of the SASLv2 track of the Cyrus libraries.
Postfix support for SASLv2 first appeared in the experimental release Version 1.1.7-20020331
and was included in the official release 2.0. It is very important that you use a version of
Postfix that supports SASLv2 to follow the directions in this chapter. When the text mentions
SASL, it refers to Version 2 of the library.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

12.3 Configuring Postfix for SASL

Before you get started, decide on the authentication mechanisms you plan to support and the
authentication framework you want SASL to use with Postfix.

12.3.1 Specifying a Framework

The SASL library uses a separate configuration file for each application it works with. Postfix
uses a file named smtpd.conf for SASL purposes. This file is usually located at /usr/local/lib/
sasl2/smtpd.conf. At a minimum, smtpd.conf contains a line indicating the framework to use.
We are going to look at specifying either Unix passwords or separate SASL passwords for
Postfix authentication. See the Cyrus documentation to see other options you might include in
smtpd.conf.

12.3.1.1 Unix passwords

Often, it's most convenient for SASL to use the existing system database to authenticate users.
Historically, this meant using the /etc/passwd file. Today, it's more likely that you use /etc/
shadow, PAM, or some related authentication database. Since these passwords are not
available to unprivileged processes, and Postfix purposely runs with limited privileges, it cannot
normally authenticate users.

The Cyrus libraries deal with the problem by providing a special authentication server called
saslauthd. It handles requests on behalf of Postfix. The saslauthd daemon requires superuser
privileges; however, since it runs as a process distinct from Postfix and does not have to
communicate outside of your network, the security impact is minimized. If you are going to use
Unix passwords with SASL, you must run the saslauthd daemon that ships with the Cyrus
distribution. Note that using Unix passwords with saslauthd limits you to plaintext passwords
because the daemon needs the actual passwords to verify them. See Chapter 13 for using
encryption between Postfix and email clients.

To specify that you want Postfix to use the saslauthd daemon for authentication, create the
smtpd.conf with a line like the following:

pwcheck_method: saslauthd

saslauthd comes with the Cyrus SASL distribution and should be installed in a convenient
location. The daemon must be running in the background for Postfix to use it to authenticate
clients. When you start saslauthd, you tell it what type of password system you are using with
the -a option. The most common options are pam, shadow, or getpwent (for the conventional /
etc/passwd). For example, to start the daemon on a system that uses PAM for authentication,
type the command:

saslauthd -a pam

Consult the Cyrus documentation for other options when using saslauthd. Also, you probably
want this daemon to start automatically at system initialization so that it is always available for
your Postfix server. You can add saslauthd to your system's startup processes in the same way

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

you add other daemons such as Postfix.

12.3.1.2 SASL passwords

If you don't want your mail server to use existing system accounts, you can create a separate
database of users and passwords that is independent of the system password mechanism. You
can create accounts for email users who have mail access only and will not be able to log into
the host itself. Include the following line in your smtpd.conf file:

pwcheck_method: auxprop

The term auxprop comes from the Cyrus notion of auxiliary property plug-ins. Plug-ins allow
you to insert external programs for authentication. The Cyrus SASL distribution ships with
sasldb as the default auxiliary property plug-in and that should be all you need to work with
Postfix. The keyword auxprop simply says to use an external SASL password file.

You do not have to run the saslauthd daemon when using SASL passwords, but you must
create the external password file containing credentials for all of your email accounts. By
default, the SASL username/password file is kept at /etc/sasldb2. The Postfix SMTP server
needs at least read access to the file, and if you use the auto_transition feature of Cyrus
SASL (see the Cyrus documentation), Postfix will also require write access to the file. If you
don't need the auto_transition feature, it's best not to give Postfix write access to the
password file.

If you have other processes that also need access to the file (such as a POP/IMAP server), you
may have to adjust the ownership and permissions so all the processes that need it can access
it. For example, you might want to create an sasl group on your system. Make sure that the
postfix user and other accounts that need access to the file are all in that group. If any of the
other processes need to update the file, then read-only is too restrictive and you'll have to
provide write access for the processes that need it. To set the permissions to 440, so that it is
read-only and not generally readable by users on the system, type the following commands:

chown postfix:sasl /etc/sasldb2
chmod 440 /etc/sasldb2

To create accounts for your SMTP server, use the saslpasswd2 command included with the
Cyrus SASL distribution. It stores accounts in /etc/sasldb2. You must specify both a username
and an SASL domain. For Postfix the domain should be the value specified in the myhostname
parameter. If you use the command postconf -h myhostname to determine your hostname, you
can be sure you have the correct one. The following command creates an account for the user
kdent:

saslpasswd2 -c -u `postconf -h myhostname` kdent
Password:
Again (for verification):

Enter the password twice, as prompted. The -c option tells saslpasswd2 to create the user
account, and -u is used to specify the domain for this account, which you take directly from the
Postfix configuration.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/sasl
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postfix
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/kdent

12.3.2 Configuring Postfix

All of the relevant Postfix parameters for SASL password authentication start with smtpd_sasl*
for the SMTP server or smtp_sasl* for the SMTP client. For server configuration you need at a
minimum the smtpd_sasl_auth_enable parameter and the permit_sasl_authenticated
restriction, which must be assigned to one of the smtpd restriction parameters. See Chapter 11
for more information on UBE restrictions.

12.3.2.1 Enabling SASL

In order to turn on authentication in the Postfix SMTP server, add the enable parameter to your
main.cf file:

smtpd_sasl_auth_enable = yes

In addition, some older email clients
[2]

 don't follow the SMTP authentication protocol correctly.
The specification calls for the server to list its supported mechanisms after the keyword AUTH
followed by a space. These clients expect to receive AUTH followed by an equals sign. Postfix
allows you to accommodate them by setting the following parameter:

[2] Reportedly, Microsoft Outlook and Outlook Express before Version 5, but you
may have to experiment to determine if your clients are culprits.

broken_sasl_auth_clients = yes

By setting this parameter, you tell Postfix to advertise its SMTP authentication support in the
nonstandard way as well as the standard way. This option is perfectly safe to use since it
doesn't interfere with other mail clients, and the nonstandard ones will now work as well.

12.3.2.2 Preventing sender spoofing

To make sure that clients use correct sender addresses when relaying, Postfix allows you to
map sender addresses to SASL logins. For example, if you have an address kdent@example.
com that should be used only by the SASL user kdent, you can create a file requiring the
correct user for that address:

kdent@example.com kdent

The file is a normal Postfix lookup table and allows regular expressions as well as local parts
and domains (see Chapter 4 for information on Postfix lookup tables). Use the parameter
smtpd_sender_login_maps in main.cf to indicate the table you create:

smtpd_sender_login_maps = hash:/etc/postfix/sasl_senders

You can list as many addresses as you need in the table. To reject messages from users
attempting to use incorrect sender addresses or users who are not authenticated at all who

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/kdent

attempt to use a specified address, include the restriction reject_sender_login_mismatch
with your restriction parameters (see Chapter 11 for information on UBE restrictions).

12.3.2.3 Permitting authenticated users

If you are already using the smtpd_recipient_restrictions parameter as part of your UBE
blocking, you have to tell Postfix to allow authenticated users to relay by adding
permit_sasl_authenticated to the list of restrictions. If you were previously using the default
and didn't need a smtpd_recipient_restrictions parameter, just add the following line:

smtpd_recipient_restrictions = permit_mynetworks,
 permit_sasl_authenticated, reject_unauth_destination

If you are already using the smtpd_recipient_restrictions parameter, just add
permit_sasl_authenticated to the list of restrictions. Be sure to include some kind of
rejection restriction in your list (see Chapter 11).

12.3.2.4 Specifying mechanisms

The smtpd_sasl_security_options parameter lets you control which password mechanisms
are listed when clients connect to your SMTP server. The complete list of available mechanisms
depends on your system and the mechanisms that were available when your SASL libraries
were built. If you don't specify any options, the default is to accept all available mechanisms
including plaintext passwords, but not anonymous logins. If you are using the saslauthd
daemon, you must accept plaintext passwords, so the default configuration probably makes the
most sense. If you specify any of the options, you override the default, so make sure that you
include noanonymous among your options. If you set this parameter, you can specify any
combination of the following values. For example:

smtpd_sasl_security_options = noanonymous, noplaintext

Common mechanisms include:

noplaintext

If your security policy does not permit passwords to be sent as plaintext, specify
noplaintext. This causes SASL to use one of the challenge/response techniques that
authenticate without transmitting actual passwords.

noactive

In active attacks, attackers manage to insert themselves between the client and server.
Some types of active attacks are commonly referred to as man-in-the-middle attacks.
Attackers may be able to read or alter data as it is transmitted or pretend to be the
client or server. Specify noactive to limit supported password mechanisms to those
that are not known to be vulnerable to active attacks.

nodictionary

In dictionary attacks, attackers run through a preassembled database of possible
passwords trying each one in turn to see if it allows access. Databases are typically
made up of lists of cities, teams, proper names, and all dictionary words plus obvious
variations on the words. Specify nodictionary to limit supported password mechanisms
to those that are not known to be vulnerable to dictionary attacks.

noanonymous

Anonymous logins have no useful purpose for SMTP servers. By default Postfix does not
allow anonymous logins. If you specify any other options, be sure to also specify
noanonymous since you will be overriding the default.

mutual_auth

You can require mechanisms that provide mutual authentication where both the client
and server provide credentials proving their identities. Specify mutual_auth to limit
advertised mechanisms to those that provide for mutual authentication.

12.3.3 Configuration Summary

Following are step-by-step instructions summarizing the configuration described in this chapter.
This is a broad overview of what's required to set up your Postfix system with SASL:

1. Determine the authentication mechanisms and framework you plan to support.

2. Install the SASL libraries and recompile Postfix with SASL support. Or obtain a Postfix
distribution with SASL, including support for the authentication mechanisms and SASL
options you need.

3. Reinstall Postfix.

4. Create the file /usr/local/lib/sasl2/smtpd.conf. Enter either saslauthd or auxprop for
pwcheck_method.

5. If you are using Unix passwords for authentication, start the saslauthd daemon,
specifying the type of authentication in use on your system. Otherwise, use the
saslpasswd2 command to create email accounts on your system.

6. Edit main.cf to turn on authentication. This requires that you enable SASL and that you
specify that authenticated clients should be allowed to relay mail. A basic setup requires
at least the following parameters:

smtpd_sasl_auth_enable = yes
smtpd_recipient_restrictions = permit_mynetworks,

 permit_sasl_authenticated, reject_unauth_destination

7. Reload Postfix so that it recognizes the changes in its main.cf configuration file:

postfix reload

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

12.4 Testing Your Authentication Configuration

It's probably best to try authenticating to your SMTP server manually before having your users
attempt it with their email clients. By connecting to your SMTP server and manually
authenticating, you can see exactly what response you get, and you can immediately check
your log file for any other important information.

The easiest way to connect to your SMTP server is to use a Telnet client and then start
speaking SMTP to your server. (Chapter 2 shows a sample SMTP session.) The PLAIN
mechanism is the easiest to test, so if you have disabled it, you may want to enable it just to
confirm that authentication works. You can disable it after you are finished testing.

To authenticate using the PLAIN mechanism, you must send the command AUTH followed by
your credentials encoded using base64. Your credentials are a combination of the authorization
identity (identity to login as), followed by a null character, followed by the authentication
identity (identity whose password will be used), followed by a null character, followed by the
password. Usually, the authorization identity is the same as the authentication identity, and
we'll assume as much here. Using the credentials for the user kdent, you need to encode the
string 'kdent\0kdent\0Rumpelstiltskin'.

The tricky part is to encode your credentials in base64 without including a carriage return
character. If your system has the mmencode and printf commands, it should be simple. The
printf command prints formatted strings, and does not automatically include a linefeed like the
more common echo command. The mmencode command simply converts strings into various
MIME formats and uses base64 by default, which is exactly what we need.

You can get the encoded string you need by executing the following:

$ printf 'kdent\0kdent\0Rumpelstiltskin' | mmencode
a2RlbnQAa2RlbnQAcnVtcGxlc3RpbHRza2lu

On some platforms printf might not handle the null characters embedded in the middle of the
string correctly. You'll know that you have this problem if the encoded string is shorter than
your original string. You can try using the echo command with the -n switch instead of printf if
it's available on your system. The -n tells echo not to include a trailing newline character. If you
cannot get echo or printf to cooperate, or if you do not have the mmencode command, you can
find a simple Perl solution in the sidebar in this chapter to get the string you need.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/kdent

encode_sasl_plain.pl

If you don't have the mmencode (or mimeencode) command, here's a simple Perl
script to create the encoded string you need for testing. This script requires the
MIME::Base64 module, which may not be installed on your system. You can easily
retrieve it from your favorite CPAN mirror:

#!/usr/bin/perl
use strict;
use MIME::Base64;
if ($#ARGV != 1) {
 die "Usage: encode_sasl_plain.pl <username> <password>\n";
}
print encode_base64("$ARGV[0]\0$ARGV[0]\0$ARGV[1]");
exit 0;

To get the required base64 authentication string for the user kdent using the
password Rumpelstiltskin, execute the command as follows:

$ encode_sasl_plain.pl kdent Rumpelstiltskin
a2RlbnQAa2RlbnQAcnVtcGxlc3RpbHRza2lu

This produces the required string, which you can then cut and paste into your Telnet
session.

Once you have the string you need, cut and paste it into your Telnet session. In the example
below, you type the telnet command to get things started, and then all of the bold lines. Here
you are testing authentication on the host mail.example.com. You should specify your own
system's name:

$ telnet mail.example.com 25
Trying 192.168.100.5...
Connected to mail.example.com.
Escape character is '^]'.

Server: 220 mail.example.com ESMTP Postfix
EHLO test.ora.com
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-AUTH LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-XVERP
250 8BITMIME
AUTH PLAIN a2RlbnQAa2RlbnQAcnVtcGxlc3RpbHRza2lu
Server: 235 Authentication successful
quit
Server: 221 Bye

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail.example.com

Connection closed by foreign host.

If you do not see a message that the authentication was successful, check your mail log to see
what Postfix has reported. Problems can be tricky to track down because there are many pieces
involved.

When you test authentication using Telnet, if you don't see the line:

250-AUTH LOGIN PLAIN DIGEST-MD5 CRAM-MD5

listed among the server's extensions, make sure that you didn't forget
smtpd_sasl_auth_enable in your main.cf file. If the parameter is there (without typos), then
you'd better look at how you compiled Postfix and make sure that it was built with support for
SASL.

If the log tells you that it cannot open the db file, make sure that the password file exists in
the /etc directory and that the permissions are set so the postfix account has access to it. The
Cyrus distribution comes with some utilities that might help you diagnose problems. Check the
documentation for the sasldblistusers2 and the saslpasswd2 commands.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postfix
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

12.5 SMTP Client Authentication

You may want your Postfix server to relay through other servers that require SMTP
authentication. In addition to requiring passwords on your own server, you can configure
Postfix to provide login names and passwords when relaying mail through other SMTP servers.

You have to provide Postfix with a password file that contains the credentials it should use
when authenticating to other servers. Entries in the password file contain a domain or
hostname, username, and password in the form: domain username:password. For the domain
or hostname, Postfix first checks for the destination domain from the recipient address. If it
doesn't find the domain, it then checks for the hostname it is connecting to. This allows Postfix
to work easily with sites that have multiple MX hosts that share the same user database. Use
smtp_sasl_password_maps parameter to specify where your password file is.

The client smtp_sasl_security_options parameter works just like server
smtpd_sasl_security_options (discussed earlier in the chapter) for the SMTP servers. If you
don't specify any options, the default allows all available mechanisms including plaintext but
not anonymous logins.

12.5.1 Procedure to Enable SMTP Client Authentication

Use the following steps to configure Postfix to provide a login and password when relaying mail.
In this example, you'll set up two different passwords for Postfix to authenticate when relaying
through any server for the domain ora.com and through a host called mail.postfix.org:

1. Create a file called /etc/postfix/sasl_passwd with entries for each host, login, and
password combination you need. Your file should resemble the following:

ora.com kdent:Rumpelstiltskin
mail.postfix.org kyle:quixote

2. Execute postmap on the file:

postmap /etc/postfix/sasl_passwd

3. Edit main.cf to turn on client authentication. Notice that you are now setting
smtp_sasl_auth_enable instead of smtpd_sasl_auth_enable as you did to turn on
authentication at the server. You must also set smtp_sasl_password_maps to point to
the password file you created:

smtp_sasl_auth_enable = yes
smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd

4. Reload Postfix so that it recognizes the changes in its main.cf configuration file:

postfix reload

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/ora.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail.postfix.org

Now, when the Postfix SMTP client attempts to relay messages through any of the domains or
hosts listed in /etc/postfix/sasl_passwd, it will offer the corresponding authentication
credentials. For example, if your Postfix smtp client connects to the server mail.ora.com, it
authenticates with the username kdent and the password Rumpelstiltskin.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/mail.ora.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 13. Transport Layer Security

Transport Layer Security, or TLS (formerly known as SSL), enhances TCP communications by
adding encryption for privacy and message integrity. RFC 3207 defines an extension to SMTP
known as STARTTLS. Its primary purpose is to provide privacy in peer-to-peer communications.
It can also give you assurances that your mail is not being delivered to a rogue system posing
as the server you think you're sending mail to. Another useful application is in combination with
SASL, to protect plaintext passwords that would otherwise be sent in the clear.

One nice benefit of TLS is that you can obtain the privacy and assurances of reliable server
identification without a previous arrangement between systems. Strong authentication is also
possible if your users' email clients support it. By using client certificates, which are
cryptographically signed identifiers (see sidebar), your mail server can be sure that connecting
clients are indeed who they claim to be. You can use client certificates in place of or in
conjunction with SASL authentication discussed in Chapter 12. There is administrative overhead
in managing client certificates and assisting users in configuring their email clients to use them,
while using TLS just to encrypt authentication credentials is fairly easy to set up.

It is important to note, however, that TLS is not meant to protect the contents of email
messages. When you encrypt the transmission between a client and server, everything
(including the message) is encrypted. However, TLS protects only the transmission between the
two systems. After the server receives a message, it is probably stored as plaintext. You can't
be sure if the message will be encrypted or not when the server forwards it to the next
destination, or when the final recipient downloads the message to read it. Unless you can
control and encrypt the path all the way from the originating client to the ultimate recipient of
the message, it will most likely pass in the clear at some point on its way to delivery. To
achieve end-to-end privacy you need a client solution such as PGP or S/MIME.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

13.1 Postfix and TLS

Support for TLS in Postfix is provided by a set of patches written by Lutz Jänicke. You can
follow the link for Add-on Software from the Postfix home page to download the patches. (See
Appendix C for information on building Postfix with the TLS patches.) If you are using a prebuilt
Postfix package for your platform, make sure that it has the TLS patches built in.

In addition to compiling Postfix to support TLS, you must also create and configure TLS
certificates. You need both a private key and a public key. The public key is a signed certificate
identifying your server. It is validated and digitally signed by a certificate authority (CA), which
attests that your certificate does, in fact, identify your system (see sidebar in TLS Certificates
Brief Overview). In addition to your own certificates, you must also have the public key of the
CA that signed your certificate.

You can register with any of the many CAs to obtain a signed certificate, or you can act as your
own CA. The clients connecting to your TLS-enabled server must recognize and acknowledge
the CA you use and agree to accept it as an authority to attest to your identity. Generally, it is
a fairly simple configuration option in email clients to accept a certificate and have the CA
public key added to its list of trusted authorities if it isn't listed already.

TLS Certificates Brief Overview

TLS uses public-key cryptography to allow a client and a server to communicate
privately. It also provides assurance that no one has tampered with transmitted
information and that the information is not forged because the protocol allows for
both the client and server to authenticate each other. Always keep in mind, however,
that the benefits of TLS are limited to just the end points of a given TLS connection.
What happens to any data before or after it passes between the client and server is
not protected by TLS.

Public-key cryptography uses a pair of complementary keys. One can be widely
distributed and the other is a secret key. Data encrypted with one key can be
decrypted with the other key and vice versa. Others can send you data encrypted
with your public key that only you can decrypt with your private one. In most
implementations, the private key can be used to create a digital signature of a block
of data. The public key can then be used to verify that a particular private key
created a given signature.

Moreover, your public key is associated with an identifier, referred to as its common
name (often the hostname of your server). Others can be sure your server is what it
claims to be by comparing the common name associated with its public key against
its DNS hostname or a name supplied during connection handshaking. In general,
you want everyone to have your public key, but your private key must be guarded at
all costs.

Public keys are digitally signed by CAs to create certificates. CAs are usually third-
party organizations that are trusted by both sides of the exchange. In theory, the
CA's digital signature indicates that it has verified the identity of the public-key
holder and attests that this public key belongs to this server.Chapter 13 A public key

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

validated by a CA is often referred to as a signed certificate. Your trust in a
certificate should extend only as far as your faith in the CA that signed it. The only
assurance that exists with certificates comes from the CA that attests to a certificate
holder's identity.

The public/private keys are actually used only at the beginning of a connection to
determine identities and to encrypt a randomly chosen session key. This single key is
used by both sides to encrypt and sign the rest of the exchange. A session key can
be used only for a single session, and then it is discarded.

Let's take a look at the exchange between a client and server. The client contacts a
server and requests an encrypted connection. On the Web, the client uses https;
with email, the client issues the STARTTLS command to indicate that it wants an
encrypted connection.

In practice, this has turned out to be a very difficult aspect of public-key
cryptography systems. There have been a number of high-profile failures revealing
that trust in a trusted certificate authority might be misplaced.

The server obliges by sending back its signed certificate, which indicates its common
name and the CA that has validated it. The client verifies the server's identity. It
checks to see if the signing CA is listed among those it trusts and that the common
name on the certificate is what it expects. If the certificate checks out, the client and
server determine a key agreement to generate a session key to be used for this
exchange and then discarded. The key agreement determination differs depending
on the type of cypher in use. The conversation continues with both sides now using
the private session key to encrypt and verify all transmissions.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

13.2 TLS Certificates

The TLS patches for Postfix were written using the OpenSSL libraries. The libraries come with
command-line tools for managing certificates, which you will need to generate certificates. For
Postfix purposes, all of your certificates must be in the PEM format, which is base64 encoded
data with some additional header lines. The default output for the OpenSSL tools is PEM, so you
won't have to convert any certificates you generate to use with Postfix. By default, the
OpenSSL tools are installed below /usr/local/ssl. The openssl command is the utility you'll use
most often in managing your certificates.

13.2.1 Becoming a CA

Your server certificates have to be signed by a CA. You can easily set yourself up as a CA to
sign your own certificates. The OpenSSL distribution includes a script to configure yourself as a
CA. From the SSL home directory, type the following:

misc/CA.pl -newca

Answer all of the prompts as requested. This sets up all of the necessary CA files below ./
demoCA. Later, when you issue the command to sign a certificate, the openssl command will
refer to these root certificates.

13.2.2 Generating Server Certificates

You can use the openssl command to generate the public and private keys for your server.
From the public key, you create a certificate signing request (CSR) to send to a CA for
validation. Once signed, your public certificate can be widely distributed, but your private keys
must be carefully guarded. In fact, many applications store encrypted private keys and require
a pass phrase to access them. You cannot use encrypted keys with Postfix, however, because
different components need read access to the keys as they are started by the master daemon.

The OpenSSL distribution includes scripts to help you generate keys and certificate-signing
requests, but the scripts encrypt the keys by default. Since you want to leave the keys
unencrypted, it's just as easy to use the openssl command directly. Execute the following
command to create a public and private key to be used with Postfix:

$ openssl req -new -nodes -keyout mailkey.pem \
 -out mailreq.pem -days 365

The openssl command with the -new option creates both a private key and a CSR. The -nodes
option tells openssl not to encrypt the key. -keyout and -out indicate the names of the files
where the private key and the CSR should be created. Finally, -days 365 says to make the
certificate valid for one year.

If you are using a third-party CA, follow its directions for getting your certificate request signed.
You will be sending in the mailreq.pem file created above. If you are acting as your own CA,
you can sign the file yourself with the following command:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

openssl ca -out mail_signed_cert.pem -infiles mailreq.pem

This produces the file mail_signed_cert.pem, which will serve as your signed certificate.

You probably want to copy all of your Postfix/TLS-related certificate files to a convenient
location. If you used all of the defaults, execute the following commands to move the certificate
files into the Postfix configuration directory:

cp /usr/local/ssl/mailkey.pem /etc/postfix
cp /usr/local/ssl/mail_signed_cert.pem /etc/postfix

These files represent your server private key and public certificate. Because you created the
private key without encrypting it, you must protect it by using permissions that are as
restrictive as possible. Use the following commands to make sure it is owned and readable only
by the root account.

chown root /etc/postfix/mailkey.pem
chmod 400 /etc/postfix/mailkey.pem

13.2.3 Installing CA Certificates

Your Postfix/TLS server must have access to the public certificate of the CA that signed your
server certificate and any CAs that signed certificates for your users. If a single CA signed both,
you need only one CA certificate. If you are acting as your own CA, copy the cacert.pem file
that was created after you ran the CA.pl script:

cp /usr/local/ssl/demoCA/cacert.pem /etc/postfix

If you used a third-party CA to sign your public certificate, place that organization's PEM-format
public certificate in the file /etc/postfix/cacert.pem. You will also need public certificates from
any CA that signed client certificates you intend to trust.

There are two different ways to add CA certificates to Postfix/TLS. The first keeps all of the
certificates together in a single file defined by the smtpd_tls_CAfile parameter. You simply
append new certificates to the existing file. If, for example, your CA certificates are stored in /
etc/postfix/cacert.pem, and you have a new certificate stored in a file called newCA.pem, use
the following commands to add your new CA certificate:

cp /etc/postfix/cacert.pem /etc/postfix/cacert.pem.old
cat newCA.pem >> /etc/postfix/cacert.pem

(Be sure to type two angle brackets so that you don't overwrite the file.)

The other option is to keep all of your CA certificates in separate files. This option makes
maintenance of CA certificates a little easier, but the certificates will not be automatically
available to a chrooted Postfix. Most likely you would choose this option if you have a lot of CA
certificates to deal with. The parameter smtpd_tls_CApath points to a directory where the CA
certificates are stored. To add additional certificates, simply copy a new certificate file into the

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root

directory and execute the c_rehash utility that comes with OpenSSL. For example, if you have a
new certificate stored in a file called newCA.pem and you store all of your certificate files in /etc/
postfix/certs, use the following commands to add it to your Postfix installation:

cp newCA.pem /etc/postfix/certs
c_rehash /etc/postfix/certs

13.2.4 Postfix/TLS Configuration

The TLS patches for Postfix introduce additional parameters for dealing with TLS within the
SMTP server. Following are some of the critical TLS parameters that you'll need for the basic
configuration. See the sample configuration file that comes with the patch distribution for
additional TLS parameters.

smtpd_use_tls

Turns on server TLS support. Otherwise, Postfix operates as it would without the TLS
patch. For example: smtp_use_tls = yes

smtpd_tls_key_file

Points to the file containing your server's private key. For example:
smtpd_tls_key_file = /etc/postfix/mailkey.pem

smtpd_tls_cert_file

Points to the file containing your server's signed certificate. For example:
smtpd_tls_cert_file = /etc/postfix/mail_signed_cert.pem

smtpd_tls_CAfile

Points to the file containing the public certificates identifying Certificate Authorities you
trust. For example: smtpd_tls_CAfile = /etc/postfix/cacert.pem

smtpd_tls_CApath

Points to a directory of files each containing a public certificate for a Certificate Authority
you trust. For example: smtpd_tls_CApath = /etc/postfix/certs

Once you set these parameters in your main.cf file and reload Postfix, your server will be ready
to handle encrypted connections.

13.2.5 Postfix/TLS Configuration Summary

Following is a summary of the steps to follow in order to set up Postfix to use TLS:

1. If it's not already installed on your system, install the OpenSSL distribution that you'll
need to generate TLS certificates.

2. Recompile and reinstall Postfix with the TLS patch (see Appendix C) or obtain a Postfix
distribution that includes the TLS code.

3. Generate server certificates including a certificate-signing request. You can validate the
signing request yourself if you're acting as your own CA or send it to a third-party CA for
validation.

4. Install your certificates (server secret key, signed public certificate, and your CA's public
certificate) into the Postfix directory.

5. Edit main.cf and set the following parameters for TLS:

smtpd_use_tls = yes
smtpd_tls_key_file = /etc/postfix/mailkey.pem
smtpd_tls_cert_file = /etc/postfix/mail_signed_cert.pem
smtpd_tls_CAfile = /etc/postfix/cacert.pem

If there are other TLS parameters that you want to set, do so here (see the TLS patches
documentation).

6. Reload Postfix so that it recognizes the changes in its main.cf configuration file:

postfix reload

Now, when a client requests an encrypted session, your server should be able to
respond appropriately.

13.2.6 Requiring Client-Side Certificates

You may want to use client-side certificates instead of, or in addition to, other SMTP
authentication techniques. Client-side certificates provide an excellent method of authentication
that can be very difficult to fake.

Client-side certificates must be signed by a CA. If you plan to have your users' certificates
signed by a third-party CA, you should follow the directions from your CA for creating client-
side certificates. You can also create client certificates and sign them yourself using tools from
the OpenSSL package.

13.2.6.1 Creating client certificates

Creating client certificates is just like creating the server certificate we saw earlier in the
chapter with the added step of converting the signed certificate into a format that email clients
can import. Most popular mail clients expect certificates in the PKCS12 format, which packages
together the signed certificate and private key and protects them with a password. If you use a

third-party CA, the company will most likely provide you or your users with the correct format
needed for your particular email client. If you are signing certificates yourself, you have to
create a PKCS12-formatted file to give to your users. The file is created with the user's signed
certificate, the private key corresponding to that certificate, and your own CA public certificate.

You have to create a separate certificate/key pair for each user you plan to authenticate with
certificates. You should decide on a policy for choosing a distinguished name. Generally, you
would use the individual's email address or the client machine's hostname when generating the
certificates. The steps below walk through creating a certificate for a user with the email
address kdent@ora.com:

1. Using the openssl command, generate a private and public key for your user.
Remember that your public key also has to be signed by a CA (possibly yourself):

$ openssl req -new -nodes -keyout kdentkey.pem \
 -out kdentreq.pem -days 365

This command creates both a private key and a CSR, as specified by the -new option.
The -nodes option tells openssl not to encrypt the key (see Section 13.2.2). -keyout
and -out indicate the names of the files where the private key and the CSR should be
created. Finally, -days 365 says to make the certificate valid for one year.

2. If you are using a third-party CA, follow their directions for getting your certificate
request signed. You will be sending them the kdentreq.pem file you created above. If
you are acting as your own CA, you can sign the file yourself with the following
command:

openssl ca -out kdent_signed_cert.pem -infiles kdentreq.pem

3. Once you have the signed certificate, convert it to a format that can be used by your
users' email clients:

openssl pkcs12 -in kdent_signed_cert.pem -inkey \
 kdentkey.pem -certfile /etc/postfix/cacert.pem -out kdent.p12 \
 -export -name "kdent@ora.com"

You will be prompted to provide a password for the file the command creates. You will
have to provide your user with the password you select. The -certfile option points to
your own CA certificate file. In this example, you're using the file as created by the CA.
pl script. Once finished, you can provide your user with the kdent.p12 file and the
password you used when creating it.

Your user should now be able to import the file into a mail client that supports the
PKCS12 format.

13.2.6.2 Configuring client-side certificate authentication

Postfix/TLS uses certificate fingerprints to identify acceptable certificates. A fingerprint is a
cryptographic hash calculated from a signed certificate. Fingerprints for each certificate are
stored in a standard Postfix lookup table (see Chapter 4). When a client presents a certificate,

Postfix/TLS calculates the fingerprint from the certificate and compares it to those listed in its
lookup table. If it finds a match, it permits the client to relay.

You need to calculate a fingerprint for each client certificate that you will accept. Many email
clients can produce a fingerprint for you, or if you created the certificate, you can easily
calculate a fingerprint with the openssl x509 command:

$ openssl x509 -fingerprint -noout -in kdent_signed_cert.pem \
 | cut -d= -f2
57:8E:95:63:67:CD:2B:96:7C:0A:3A:61:46:A5:95:EA

To continue the calculation:

1. Obtain a list of fingerprints for each of your users' client certificates. You can generate
them as described above or obtain them from your users if they can get them from their
email clients.

2. Create a file to store all of the client certificate fingerprints. For this example, you'll
create a file called /etc/postfix/clientcerts

3. Edit the clientcerts file to add each fingerprint. Since this is a standard Postfix lookup
table, you must also add a righthand value for each fingerprint, even though that value
is not used. Use a value that will help you to identify the fingerprint in the future. Your
resultant file should contain entries like the following for each of your users:

57:8E:95:63:67:CD:2B:96:7C:0A:3A:61:46:A5:95:EA kdent@ora.com

4. Execute postmap against the clientcerts file:

postmap /etc/postfix/clientcerts

5. Edit main.cf to add the following parameters:

relay_clientcerts = hash:/etc/postfix/clientcerts
smtpd_tls_ask_ccert = yes
smtpd_recipient_restrictions =
 permit_mynetworks
 permit_tls_clientcerts
 reject_unauth_destination

Note that smtpd_tls_ask_ccert has two c's for "client certificate." If you have already
defined the smtpd_recipient_restrictions parameter, add permit_tls_clientcerts
to the list of restriction rules.

6. Reload Postfix so that it recognizes the changes in its main.cf configuration file:

postfix reload

13.2.7 Configuring TLS/SMTP Client

Since you may have configurations where other email servers require your server to
authenticate when relaying mail, Postfix/TLS can also present a certificate when acting as an
SMTP client. Note that you are limited to only one certificate for your SMTP client unless you set
up additional SMTP transports in master.cf and configure them to use different client keys and
certificates.

If you are using a self-signed server certificate, you can use the same certificate and its
accompanying secret key as your client certificate. If a third-party CA signed your server
certificate, it's possible that it can be used only for the SMTP server. In which case, you can
generate a separate client certificate and have that signed too. Your client certificate's common
name should match the hostname of your system, as specified in the myhostname parameter.
Follow the same procedure that you used to create the server certificates. If you are using the
same certificates, you don't have to do anything; simply configure the TLS client parameters to
point to the same files as the server parameters.

The TLS patches for Postfix introduce the following parameters for dealing with TLS within the
SMTP client. See the sample configuration file that comes with the TLS distribution for
additional TLS parameters:

smtp_use_tls

Turns on client TLS support. Otherwise, Postfix operates as it would without the TLS
patch. Example: smtp_use_tls = yes

smtp_tls_key_file

Points to the file containing the private key used in conjunction with your client-signed
certificate. Example: smtp_tls_key_file = /etc/postfix/mailkey.pem

smtp_tls_cert_file

Points to the file containing your client-signed certificate. Example:
smtp_tls_cert_file = /etc/postfix/mail_signed_cert.pem

smtp_tls_CAfile

Points to the file containing the public certificates identifying the CAs that signed your
client certificate. Example: smtp_tls_CAfile = /etc/postfix/CAcert.pem

Assuming that you are using the same certificates that you used for your server, the procedure
to enable TLS in the SMTP client is quite simple:

1. Edit main.cf and set the following parameters:

smtp_use_tls = yes

smtp_tls_key_file = /etc/postfix/mailkey.pem
smtp_tls_cert_file = /etc/postfix/mail_signed_cert.pem
smtp_tls_CAfile = /etc/postfix/cacert.pem

If there are other TLS parameters that you want to set, do so here (see the TLS patches
documentation).

2. Reload Postfix so that it recognizes the changes in its main.cf configuration file:

postfix reload

Now, when Postfix connects to an SMTP server that requests a client certificate, it will provide
the necessary information.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 14. Content Filtering

A content filter is a utility that scans the headers and body of an email message, and usually
takes some action based on what it finds. The most common examples are anti-virus and anti-
spam programs. Viruses are commonly spread within the contents of email messages, and if
you cannot detect spam based on the connecting client or envelope information, you might
have better luck by inspecting the actual contents of a message. Filters might change
messages, redirect them, respond to them, or tag them for later processing by another tool.

In this chapter we'll look at content filtering at your mail server, although that may not always
be your best option for filtering. MTA filtering is appropriate for filtering that should occur with
all or nearly all messages. If you need filtering that is configurable by user, the MTA is not the
best choice for it. Other types of filtering to consider are:

Mail delivery agent (MDA)

Configurable MDAs such as procmail or sieve allow users to manage their own delivery
configuration files. Generally, MDAs expect your users to edit their own configuration
files on the mail server system. If they don't have system accounts, you must provide
another means for them to configure their filtering, such as through a web-based
application.

Mail user agent (MUA)

You might also consider allowing your users to take advantage of filtering capabilities
within their email clients. If their client packages support filtering, this is an excellent
way to provide per-user filtering for virtual users that don't have system accounts on
your mail server. It has the added advantage of moving processor- and memory-
intensive scanning from the server out to multiple clients.

Postfix body and header checks

Postfix body and header checks can provide limited filtering. They cannot be configured
by the user, but they are probably the simplest to implement. See Chapter 11 for
information about setting them up.

A combination of MTA and MUA filters might make a nice compromise. The MTA filter can tag
messages with a value to be read by users' MUA filters. Users can then configure their own
filters to accept, reject, or categorize messages based on the tagged value.

An anti-virus filter is an excellent choice for MTA filtering. You can maintain it centrally and
block viruses before they even enter your network. Actions that should occur for every message
that enters your system are best handled by the MTA.

Postfix body and header checks, while powerful, can consider only one line of a message at a
time, and they're always applied to all messages. They don't offer a convenient way to set up

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

complex options for rejecting or redirecting messages. Anything more than simple filtering
should probably not be handled within a general MTA like Postfix.

Postfix provides two approaches for configuring external filters: commands that accept the
contents of email messages on their standard input or daemons that accept message contents
via SMTP or LMTP. With commands, a new process is started for every message, which can be
resource-intensive, particularly if the command has a high start-up cost. Daemon filters stay
resident and have the potential for better performance using fewer system resources. The
daemon method is somewhat more complicated to configure but provides a more robust
solution.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

14.1 Command-Based Filtering

The simplest way to set up content filtering is to use a program that runs as a command and
accepts the contents of a message on its standard input. Postfix delivers messages to your filter
command via the pipe mailer. Your filter command performs its checking and then gives the
filtered message back to Postfix using the Postfix sendmail command.

For this discussion, we'll assume that the filter command operates on mail that comes in
through the SMTP daemon but not on mail that is delivered locally (using the sendmail
command), so that your filter can use sendmail to give the message back to Postfix without
looping. Figure 14-1 illustrates the path messages follow once you put your filter in place.
Rather than passing the message to a delivery agent, the queue manager invokes the filter.

Figure 14-1. Mail-filtering command

Your filter program must be able to accept the message on its standard input and then deliver it
to the Postfix sendmail command. If you have a filtering program that doesn't handle input and
output in this way it should be easy enough to create a shell script wrapper to deal with those
details. In the Postfix distribution, the FILTER_README file contains an example of such a script.

14.1.1 Configuration

When you configure Postfix to use your filter program, you must specify a user that the
program runs as. You should create a pseudoaccount whose sole purpose is to run the filter.

Let's set up an example configuration and assume that you have a filter program named
simple_filt stored at /usr/local/bin and that you have created a pseudouser called filter to run
it. Edit your master.cf file to add an entry for your filter:

filter unix - n n - - pipe
 flags=Rq user=filter argv=/usr/local/bin/simple_filt

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/filter

 -f ${sender} -- ${recipient}

The first line contains all of the standard settings for a Postfix component entry with the last
column indicating that the message should be handled by the Postfix pipe daemon. The second
and third lines are a continuation of the first because of the whitespace at the beginning. They
contain options the pipe service will use when executing the command. The options R and q,
specified as flags, tell the pipe service to prepend a Return-Path: header and to quote
whitespace and special characters in the ${sender} and ${recipient} addresses that are
passed to the command. See the pipe(8) man page for other possible options.

The user= option is the filter pseudouser that you set up for running your filter command. The
argv option specifies the actual command along with its arguments to execute. The argument
list specified here (-f ${sender} -- ${recipient}) can be used exactly as is by the script
when it invokes the sendmail command to deliver the message back to Postfix. Your own filter
may require different arguments, but make sure you include the items you need to send the
message back to Postfix through the sendmail command. The ${recipient} variable is
expanded by the pipe daemon into multiple recipients up to the limit specified in the
filter_destination_recipient_limit parameter when a message has more than one
recipient.

In addition to the new component entry, you must also make a change to the smtpd entry in
master.cf to turn on filtering for all messages that are delivered to the SMTP daemon:

smtp inet n - n - - smtpd
 -o content_filter=filter:

Simply add the second line in the preceding example to your existing smtpd line. Don't forget
the initial whitespace to indicate that it is a continuation of the previous line. The
content_filter parameter is set equal to the entry you just created in master.cf for your filter
program. Set this option here rather than in main.cf because it should apply to the smtpd
daemon only and not for every message that enters the Postfix system. After you reload
Postfix, all messages coming in over SMTP will now be handled by your filter program.

A filter of this sort, although easy to configure, is not the most efficient method of filtering. It
requires that Postfix invoke a shell or interpreter and that the filter invoke sendmail to resubmit
the filtered message. If your program runs into problems—disk space or memory—for example,
there isn't a reliable way for it to report the exact problem back to Postfix. Daemon-based

filtering described in the next section offers a more robust solution with better performance.
[1]

[1] All else being equal. The performance depends largely on the content-filtering
program itself.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/filter
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

14.2 Daemon-Based Filtering

Daemon-based filtering offers a more advanced architecture over the command-based method
with lower cost in I/O and CPU usage. It can provide better error handling than is possible with
the command method. If implemented as a resident process, the startup overhead per message
is eliminated. A daemon-based content filter can pass email messages back and forth with
Postfix using the standard SMTP or LMTP protocol. Such a filter can run as a standalone
daemon or it can be started by Postfix if configured to do so in master.cf.

In this configuration, we want the content filter to handle all messages, whether delivered
locally (via sendmail) or to the smtpd daemon. You have to configure Postfix in master.cf to use
a special smtp client component to deliver the messages to your filter and an additional smtpd
daemon to receive messages back from your filter. Figure 14-2 illustrates how a filtered
message travels through Postfix to your content filter and back into Postfix for delivery. In this
diagram, the filter receives mail via localhost port 10025 from the additional smtp client and
submits it back to Postfix via localhost port 10026 to the additional smtpd server component.

Figure 14-2. Mail-filtering daemon

If the filter wants to reject a message, it should reply with an SMTP code of 550 along with the
reason for the rejection. Otherwise, it should accept the message and perform its operations
before passing it back to Postfix. If your filter rejects a message, Postfix bounces it back to the
sender address with the message your filter provides.

14.2.1 Configuration

For the purposes of this discussion, I'll assume that you are running a standalone content filter
daemon that listens for incoming messages using SMTP. After processing, it sends the message
back to Postfix using SMTP. The basic steps to configure this setup are:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

1. Create a pseudoaccount for your filter.

2. Install and configure your content filter.

3. Edit master.cf to add two additional Postfix components.

4. Edit main.cf to add the content_filter parameter.

5. Restart Postfix so that it recognizes the changes to its configuration files.

When setting up a daemon-based content filter, make sure it does not use the same hostname
that Postfix has set in its myhostname parameter, or the Postfix SMTP client will consider it an
error and not deliver the message to your filter. The rest of this section walks you through the
details of setting up a daemon-based content filter.

14.2.1.1 Creating a pseudoaccount

As with the simple filtering solution described earlier, you should create a pseudoaccount for
your filter. The account shouldn't have access to other resources on your system. If your filter
needs to write files, you should create a directory for that purpose. Your filter should be started
as the designated user or configured to become that user after starting. Check your filter's
configuration options. For this example, I'll assume that you've created a user called filter.

14.2.1.2 Installing a content filter

Your content filter package should provide you with instructions for installation and
configuration. In this example, assume that the filter listens on the loopback interface on port
10025. After processing messages, the filter should pass them back to Postfix on port 10026.
You should be able to configure your filter accordingly, or if your filter listens and reinjects on a
different port, keep that in mind as you follow the example. If possible, test your filter first to
make sure that it operates correctly before trying to connect it to Postfix.

14.2.1.3 Configuring additional Postfix components

You may encounter "mail loops back to myself" problems when creating additional SMTP
components. One solution is to give the additional component a different value for myhostname.

Edit master.cf to add the new components you need. A second smtp component will be used to
send messages to your content filter. (See Section 4.5 in Chapter 4 for more information on
editing master.cf.) We'll call this additional smtp entry chkmsg:

chkmsg unix - - n - 10 smtp
 -o myhostname=localhost

Later, when you turn on content filtering in main.cf, you'll tell Postfix to send the message to
your filter on port 10025 using this component.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/filter

In addition to the extra smtp client, you also need a second smtpd service to receive messages
back from the content filter program. The second smtpd instance is configured slightly
differently from the normal one because you want Postfix to handle traffic from your filter
differently from messages coming from outside. Set options with an entry like the following:

localhost:10026 inet n - n - 10 smtpd
 -o content_filter=
 -o local_recipient_maps=
 -o mynetworks=127.0.0.0/8
 -o smtpd_helo_restrictions=
 -o smtpd_client_restrictions=
 -o smtpd_sender_restrictions=
 -o smtpd_recipient_restrictions=permit_mynetworks,reject

This instance of smtpd is configured to listen on the loopback interface on port 10026. You
configure your filter to send the processed messages to this service. There are several options
in this example. These override the settings in the main.cf file and are explained below:

content_filter

The default smtpd instance has content filtering turned on in main.cf. This instance of
smtpd should not have the content filter process messages again.

local_recipient_maps

Some lookup maps convert an address when it is received by the external smtpd. When
your filter tries to reinject it, Postfix may not recognize the recipient and reject the
message. Set this option to blank to make sure the filtered messages are always
accepted from your filter.

mynetworks

Since your filter runs on the same system as Postfix, the filter and Postfix can
communicate over the local loopback interface, a pseudonetwork device not associated
with any real hardware interface. The loopback interface always uses an address of
127.0.0.1. Since 127 is the first byte of its address, it's a class A network that you
identify with a /8 network prefix. By setting mynetworks to the loopback network and
smtpd_recipient_restrictions to permit only this network, this instance of smtpd
accepts connections from your filter only and isn't exposed to any (potentially hostile)
traffic from the network.

smtpd_helo_restrictions, smtpd_client_restrictions, smtpd_sender_restrictions

You can turn off any restrictions that were already checked by the original smtpd
instance. If you're not already using these restrictions in main.cf, you don't need to turn
them off here.

smtpd_recipient_restrictions

Finally, tell smtpd to accept connections on the loopback interface and reject everything
else.

14.2.1.4 Turning on filtering

After you have made the necessary changes to master.cf, you have to configure Postfix to pass
all messages it receives to your content filter. Edit the main.cf file to add a line like the
following:

content_filter = chkmsg:[127.0.0.1]:10025

This parameter tells Postfix to pass messages to the content filter via the chkmsg service that
you created in master.cf. You also tell it to send the messages to port 10025, which should
match what you have configured your content filter program to use. Be sure to reload Postfix to
recognize the changes in its configuration files. Once Postfix is reloaded, it will start passing all
messages through your content filter for processing.

14.2.2 Daemon-Based Filter Example

To demonstrate setting up a daemon-based content filter, this section walks through installing
Vexira AntiVirus from Central Command. Vexira is a commercial anti-virus product available on
the Central Command web page, http://www.centralcommand.com/. Its Vexira AntiVirus for
Mail servers product is written to work with Postfix among other MTAs. It is available for Linux,
FreeBSD, and OpenBSD platforms. If you are using a different daemon-based anti-virus
solution, the configuration should be similar to the procedure presented here:

1. Install Vexira according to the documentation from Command Central. The rest of this
procedure assumes that your configuration files are in /etc per the installation
instructions.

2. Configure Vexira to listen on the local loopback interface on port 10024. Edit /etc/
vamailarmor.conf and set the parameter ListenAddress as follows:

ListenAddress localhost port 10024

3. Also set the ForwardTo parameter to pass messages back to Postfix over the loopback
interface on port 10025:

ForwardTo SMTP: localhost port 10025

4. Restart Vexira using the method or scripts installed on your system. See your Vexira
documentation.

5. Edit the Postfix main.cf file to have all messages sent to the Vexira daemon for virus
scanning. Edit the content_filter parameter as follows:

http://www.centralcommand.com/default.htm

content_filter = smtp:[127.0.0.1]:10024

6. Edit the Postfix master.cf file to add another SMTP daemon to accept messages back
from Vexira after virus scanning:

localhost:10025 inet n - n - 10 smtpd
 -o content_filter=
 -o local_recipient_maps=
 -o mynetworks=127.0.0.0/8
 -o smtpd_helo_restrictions=
 -o smtpd_client_restrictions=
 -o smtpd_sender_restrictions=
 -o smtpd_recipient_restrictions=permit_mynetworks,reject

7. Reload Postfix so that it recognizes the changes in its configuration files:

postfix reload

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

14.3 Other Considerations

You can run multiple content filters, if necessary, by chaining them. If, for example, you have
both an anti-virus and an anti-spam content filter, simply configure the first one to deliver to
the next one rather than immediately back to Postfix. The Postfix configuration doesn't have to
change from what's presented here. Only the final filter delivers the message back to Postfix.

Be aware of any email address rewriting that occurs before your filter receives a message.
When the filter resubmits a message, if the rewritten address isn't in one of the recipient maps,
Postfix will reject it. You may have to turn off address rewriting in your normal SMTP server and
configure it instead in your SMTP server that accepts messages back from your filter.

Some filters recommend that you configure them to accept mail in front of your normal MTA,
and then they pass the messages on to your MTA after processing. You probably do not want to
do this. Postfix is specifically designed to accept messages over an unfriendly network. A
content filter is specifically designed to deal with processing the contents of messages and
probably isn't optimized for dealing with the load and potential hazards of accepting
connections from the outside. Likewise some filters want to handle the final delivery of
messages without re-injecting them into Postfix. Again, Postfix offers a lot of flexibility and
security in dealing with the final disposition of messages that you might lose by delegating the
delivery to another package.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Chapter 15. External Databases

Postfix map files provide an easy and efficient mechanism for the many lookup operations
needed when handling email. In some situations, however, it can be more convenient to have
the information in a database separate from Postfix. A database can provide a central
repository available to many system or network services that need similar information, such as
account names and passwords. A database can be useful when redundant systems running
Postfix need to share the same configuration information. A central database might also be
more convenient when you have multiple people who need access to edit information.

Databases can also slow Postfix performance compared to normal index files. In general, if you
don't have a definite need for a database, you're better off with the standard Postfix maps. In
many cases you can get the best of both options by storing information in a database and
running regular scripts that update your Postfix files from the central data repository. But if
your environment requires instant access to revised data, an external database configuration
may be your only option.

In this chapter, we'll look at configuring Postfix to work with MySQL and LDAP. (Postfix also has
support for PostgreSQL as of Version 2.1.) In either case, Postfix must be compiled with
additional libraries to support the mysql and ldap map types. If you are using a prebuilt
package, make sure that it has support for the type of database you plan to use. If you built
your own Postfix, see Chapter 15 for information on compiling with the additional libraries.

You can easily check if your Postfix installation contains support for LDAP and MySQL with the
postconf -m command:

$ postconf -m
static
pcre
regexp
mysql
environ
proxy
ldap
btree
unix
hash

You should see either ldap or mysql or both listed among the map types.

While the databases you use with Postfix may contain a variety of information, conceptually
they work the same as Postfix maps. You have a key such as the recipient email address, and
you expect to get back a value associated with the key such as a forwarding address. How to
perform this with each type of database, MySQL and LDAP, is explained in the next sections.

It is a good practice to make sure your lookups work correctly with normal Postfix lookup
tables. Then duplicate your configuration with MySQL or LDAP lookups. Make sure that you get
the same results from both. In most cases, Postfix expects a lookup to return only one result.
Make sure that your database queries do not return multiple result values.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

15.1 MySQL

MySQL is an open source relational database system that uses Structured Query Language
(SQL) for querying and managing its data. You don't have to know SQL to use Postfix with
MySQL, but it will help to understand how they interact. Normally, you would use MySQL
because you already have a database of information about each user such as a full name,
account name, phone numbers, etc. You have to make sure your database includes the
information you need to accomplish a particular task with Postfix. A common use is to map an
email alias to the local account name. For this to work there must be one database column
containing email aliases and another with local account names. Postfix can query your database
with the recipient address of an email message as the key to look up the value of the local
account for delivery. Any of the Postfix lookup table parameters can work with MySQL queries.
You just have to figure out which columns contain the information you need.

15.1.1 MySQL Configuration

MySQL maps are specified like any other map in Postfix. You specify the map type and the file
containing the mappings. In the case of MySQL, however, the file you specify is not the lookup
map itself, but rather a file that contains configuration information that specifies how to get the
desired value from your database:

alias_maps = mysql:/etc/postfix/mysql-aliases.cf

The file mysql-aliases.cf contains configuration information that specifies how to get the
information from MySQL. The parameters for this file are explained below.

15.1.1.1 MySQL parameters

MySQL parameters provide the information necessary for Postfix to connect to your database
server and construct an SQL statement to look up the data it needs. These parameters are
placed in a MySQL map configuration file that functions like a Postfix configuration file with
blanks and comments ignored. Comments are marked by a # as the first character of a line.
You can have as many MySQL configuration files as needed in place of normal Postfix lookup
files. All of the MySQL parameters presented here are required except for
additional_conditions.

Figure 15-1 shows an SQL statement that Postfix creates using the parameters described.

Figure 15-1. Sample SQL statement

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

hosts

List of hostnames or IP addresses where a MySQL server is running. You can also
indicate a Unix domain socket by preceding a path to a socket with unix:. You should
list more than one host or socket only if you have multiple redundant database servers.
Each host is tried in the order listed until a successful query can be made. For example:

hosts = unix:/tmp/mysql.sock, db.example.com, 192.168.150.15

user

Account name to use when logging into the MySQL server.

password

Password to use when logging into the MySQL server.

dbname

The name of the database to use for the query.

table

The name of the table to use for the query.

select_field

The name of the column that contains the lookup value.

where_field

The name of the column that contains the key value.

additional_conditions

Additional comparisons for the WHERE clause of the SQL statement built by Postfix. You
must understand SQL to use this attribute. Set this parameter as if you are continuing
the SQL statement. For example:

additional_conditions = and mail_type = 'local'

15.1.2 MySQL Example

Let's go through an example illustrating a MySQL and Postfix configuration. The example.com
site uses a MySQL database to manage all of the users on its network. There is a database that
contains a variety of information about users on the network, including names, phone numbers,
etc. Among the tables in the database is one called email_address, which contains the
pertinent information for configuring Postfix. The database structure looks like the following:

+-----------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+-------------+------+-----+---------+-------+
localpart	varchar(15)		PRI		
type	varchar(15)	YES		NULL	
to_address	varchar(65)	YES		NULL	
password	varchar(65)	YES		NULL	
last_changed_by	varchar(15)	YES		NULL	
+-----------------+-------------+------+-----+---------+-------+

This table contains all of the email addresses that Postfix should accept mail for with the
localpart column providing the local part of the addresses. Some of the users maintain their
primary email accounts on other systems, so their example.com addresses are aliases that
forward messages to their primary email addresses elsewhere. The type column indicates
whether an address is delivered locally or forwarded to another address. The value forward
indicates that this address is an alias. If an address is forwarded, the to_address column
contains the address to forward messages to.

Table 15-1 contains the access information needed to configure Postfix in this scenario. You
should collect the same information about your own database before starting to configure
Postfix.

Table 15-1. MySQL database information for Postfix configuration

Access information: Values

Host mysql.example.com

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/example.com

Database name: user_accounts

Database table: email_address

Database user: kdent

Database password: Rumpelstiltskin

In addition to the general database information in Table 15-1, you will have to determine the
columns you need for the particular Postfix maps you are replacing with your MySQL table.
Example 15-1 shows a sample record from the database with the relevant columns for this
configuration. In this example, you'll be configuring the Postfix parameters
local_recipient_maps and alias_maps.

Example 15-1. Sample record from email_address table

+------------+----------+-------------------+
| localpart | type | to_address |
+------------+----------+-------------------+
| kdent | forward | kyle.dent@ora.com |
+------------+----------+-------------------+

15.1.2.1 Configuring local_recipient_maps

The local_recipient_maps parameter points to lists of local users that should receive email at
this system. By default it points to the user accounts and aliases on the system, so that mail
sent to a nonexistent user is rejected by the SMTP server. This lookup map is a bit different
from others in that it doesn't require a return value to map to. It matters only that the recipient
is in the lookup table or not. In this example, the MySQL database contains the list of all email
accounts that should receive mail on the system. You can point the local_recipient_maps
parameter to a MySQL configuration that extracts the list of email users. You'll use a file called
mysql-local.cf for the query configuration. First, set local_recipient_maps to point to the
query configuration file, indicating that the lookup type is mysql:

local_recipient_maps = mysql:/etc/postfix/mysql-local.cf

The file mysql-local.cf contains parameters for each of the items listed in Table 15-1, plus the
select_field and where_field for this specific query:

#
mysql-local.cf - local recipients for mail server.
#
hosts = mysql.example.com
user = kdent
password = Rumpelstiltskin

dbname = user_accounts
table = email_address

select_field = localpart
where_field = localpart

The select_field and where_field both point to the localpart column. The select_field in
this case is not particularly important since you don't need a value back from the map. You
don't need the additional_conditions parameter because you want every record that
appears in the table. After reloading, Postfix uses the MySQL configuration to determine local
users and reject mail for recipients not listed in the MySQL table.

You can easily check your MySQL configuration file with the postmap command:

$ postmap -q 'kdent' mysql:/etc/postfix/mysql-local.cf
kdent

The -q option tells postmap to query the map using the specified key. If your query has any
problems, postmap reports them to your terminal.

15.1.2.2 Configuring alias_maps

Some users do not receive their mail on this system, but rather have it forwarded to another
account. By pointing alias_maps to another MySQL configuration, you can obtain the list of
users that have aliases and determine what the forwarding address is. You'll use a file called
mysql-alias.cf for this query configuration. First, set the alias_maps parameter to point to the
query configuration file:

alias_maps = mysql:/etc/postfix/mysql-alias.cf

The mysql-alias.cf file contains the following parameters:

mysql-alias.cf - forwarding aliases
#
hosts = mysql.example.com
user = kdent
password = Rumpelstiltskin

dbname = user_accounts
table = email_address

select_field = to_address
where_field = localpart

additional_conditions = and type = 'forward'

In this case, you set the select_field to to_address since that's the value needed by
alias_maps to forward messages. You also specified additional_conditions because you

want only the addresses that have aliases. After reloading Postfix, it uses this MySQL
configuration to determine addresses with aliases and where messages should be forwarded.

15.1.2.3 Configuring virtual domains

MySQL databases are often used by sites that host many virtual domains. This last MySQL
example walks through configuring virtual mailbox domains. Be sure to read Chapter 8 for
information about virtual hosting in general, as this section discusses only the MySQL
configuration.

In this example, you'll use a table called email_address from a database called customer. The
table contains a record for every virtual address at all the domains the system accepts mail for.
It includes the following fields that are of interest:

domain

The virtual domain name for this record.

mail_address

The public email address that messages can be sent to. Messages are delivered to the
local virtual mail store.

mailbox

Contains the filename for delivery into the local mail store. The name should be relative
to the path set in virtual_mailbox_base. You can append the name with a slash for
maildir-style delivery.

Example 15-2 shows a sample record from the database with the relevant columns.

Example 15-2. Sample record for virtual mailbox alias

+------------+---------------+---------------+
| domain | mail_address | mailbox |
+------------+---------------+---------------+
| ora.com | kdent@ora.com | ora.com/kdent |
+------------+---------------+---------------+

In this example, all virtual deliveries occur under the same user and group, vmail:vmail. If
you require different user and group privileges for the different users or domains, you should
have additional columns for uid and gid in your table and then create mysql maps for them as
well.

You are using a static uid and gid for deliveries and your message store is simply a directory
on the local filesystem:

virtual_mailbox_base = /usr/local/vmail
virtual_uid_maps = static:1003
virtual_gid_maps = static:1003

The list of virtual domains and mailbox maps comes from two MySQL configuration files:

virtual_mailbox_domains = mysql:/etc/postfix/virtual_domains.cf
virtual_mailbox_maps = mysql:/etc/postfix/virtual_mailboxes.cf

The virtual_mailboxes.cf configuration maps email addresses to the mail store file where
messages should be delivered:

hosts = mysql.example.com
user = kdent
password = Rumpelstiltskin

dbname = customer
table = email_address
select_field = mailbox
where_field = mail_address

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

15.2 LDAP

LDAP is a protocol that provides access to directories of information. LDAP directories are
composed of entries that are organized into hierarchies. You have to understand how LDAP
works and how your own directory is organized to use it with Postfix. Many networks are
starting to make use of LDAP for user information, which makes it a nice way for Postfix to
determine what users and addresses it should accept mail for. If your organization uses an
LDAP directory, you can query your existing information for your Postfix configuration.

15.2.1 LDAP Configuration

LDAP maps are specified with the ldap map type and can be listed along with any other maps
for a given parameter. Unlike MySQL, LDAP parameters are all listed in main.cf. You have to
invent a name for the particular LDAP configuration you are creating and specify it with the
ldap map type. If you call your LDAP configuration ldapaliases, for example, set your alias
maps like this:

alias_maps = ldap:ldapaliases

The LDAP parameters for this configuration all start with the name you invented followed by the
name of the parameter. Thus, the LDAP server is identified by the parameter
name_server_host, so for the example above, the parameter is called
ldapaliases_server_host:

ldapaliases_server_host = ldap.example.com

The important LDAP parameters are defined below. The complete list is available in the
LDAP_README file that comes with the Postfix distribution:

name_search_base

The base DN from which to start the search. You have to know the naming context for
your directory so that you can specify the common container for your entries. Often it is
the root of the directory. Example: ldapaliases_search_base = dc=example, dc=com

name_scope

The scope of the search. There are three possible options for the scope: sub, base, and
one. Your directory hierarchy determines which value you need. The base option is
rarely useful. With sub the entire tree under the base is searched, and with one only
direct child nodes are searched. The _scope parameter defaults to sub if you don't
specify another value. Example: ldapaliases_scope = one

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

name_query_filter

The attributes and values that should form your search filter. The variable %s can be
used as a placeholder for the current recipient email address. Example:
ldapaliases_query_filter = (mailType=forward)

name_result_attribute

The attribute containing the value you want returned for this lookup. You can list
multiple attributes in order of preference. Example: ldapaliases_result_attribute =
email, rfc822Mailbox.

15.2.2 LDAP Example

A common use of LDAP with Postfix is to protect an internal mail server on a network that uses
an LDAP directory of user accounts. Postfix resides on a gateway system accepting messages
from the Internet, and relays them to the internal mail server. You want Postfix to reject
messages for unknown users on the network so that they are never accepted on your network.
By setting the local_recipient_maps parameter to query the LDAP directory, you can
configure Postfix so that it knows about all of the user accounts and can reject mail for
nonexistent accounts. On a large network there may be different mail systems serving different
groups of users. You can also set up Postfix to forward messages to the correct mail server for
a particular user by setting transport_maps to point email addresses to the correct internal
mail servers.

The LDAP directory includes attributes for mail and mailHost, where mail contains the public
email address for a user and mailHost is the internal server to which messages should be
forwarded. A sample item in the directory looks like the following:

dn: uid=kdent,ou=people,dc=example,dc=com
uid: kdent
cn: Kyle D. Dent
mail: kyle.dent@example.com
uidNumber: 1001
gidNumber: 1001
mailHost: mail1.example.com
homeDirectory: /home/kdent
mailType: forward
objectClass: people
userPassword: {crypt}hidden
accountStatus: active

Table 15-1 contains the LDAP directory information you need to configure Postfix in this
scenario. You should collect the hostname and base DN for your own directory before starting
to configure Postfix.

Table 15-2. LDAP directory information for Postfix configuration

Directory information Values

Host ldap.example.com

Base DN: dc=example,dc=com

For the local_recipient_maps lookup, you only have to know that an address exists in the
mail attribute. For forwarding messages to the correct internal mail server, you need the value
from the mailHost attribute.

15.2.2.1 Configuring local_recipient_maps

The local_recipient_maps parameter points to lists of local users that should receive email at
this system. By default it points to the user accounts and aliases that exist on the system, so
that mail sent to a nonexistent user is rejected by Postfix. In this example, the LDAP directory
contains the list of all email accounts that should receive mail on the system. You can set up an
ldap lookup map for local_recipient_maps. In the case of local_recipient_maps, the value
returned is not used for anything because you only need to know if the email address exists or
not. Use an LDAP configuration called "ldaplocal." First, set local_recipient_maps to use this
configuration:

local_recipient_maps = ldap:ldaplocal

The rest of the LDAP parameters for this configuration are set as follows:

ldaplocal_server_host = ldap.example.com
ldaplocal_search_base = dc=example, dc=com
ldaplocal_query_filter = (&(mail=%s)(accountStatus=active))
ldaplocal_result_attribute = uid

The ldaplocal_query_filter parameter compares the recipient email address to the mail
attribute in the directory. It also checks to make sure that the accountStatus attribute is set to
active. The result attribute is set to uid. For this lookup, you only need to know that the item
exists, but Postfix does require a non-blank result for the lookup.

After reloading Postfix, it uses the LDAP configuration to determine local users and reject mail
for recipients not listed in the LDAP directory.

You can easily check your LDAP configuration file with the postmap command:

$ postmap -q 'kdent' ldap:ldaplocal
kdent

The -q option tells postmap to query the map using the specified key. If your query has any

problems, postmap reports them to your terminal.

15.2.2.2 Configuring transport_maps

When messages received by Postfix have to be relayed to the correct internal mail server, use
transport_maps. Set transport_maps to use a new LDAP configuration called "ldaptransport":

transport_maps = ldap:ldaptransport

Because the LDAP directory returns just the name of the host, and you need a transport value
(transport:nexthop), you can use the _result_filter parameter to specify a template for
the results:

ldaptransport_result_filter = relay:%s

Also, configure the following parameters:

ldaptransport_server_host = ldap.example.com
ldaptransport_search_base = dc=example, dc=com
ldaptransport_query_filter = (&(mail=%s)(accountStatus=active))
ldaptransport_result_attribute = mailHost

Again, the ldaplocal_query_filter parameter compares the recipient email address to the
mail attribute in the directory and checks to make sure that the accountStatus attribute is set
to active. The result attribute is the value for the mailHost attribute, which is the email server
that should receive messages for the specified user. The result is expanded in the template
specified in ldaptransport_result_filter.

Be sure to reload Postfix for the new ldap transport map to go into effect.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Appendix A. Configuration Parameters

This appendix contains an alphabetical listing of parameters normally configured in the Postfix
main.cf file. The brief descriptions are only meant to give you an idea of the purpose of the
parameter. All of the parameters are fully documented in the sample configuration files and
manpages that come with the Postfix distribution. This quick reference can point you in the
right direction, but you will have to consult the body of this book or the online documentation
to understand how each parameter works.

All of the parameters are listed with a type of value that should be assigned to it. Most of the
value types are obvious. Those that require some explanation are described here:

Explicit list

The parameter requires one or more items from a specific list of possible values. See
the online documentation for a particular parameter to see what the possible values are.

Lookup tables

When a parameter points to lookup tables, the tables are specified with their map type
and the table name separated by a colon:

transport_map = hash:/etc/postfix/transport

Pathname

The complete path to a file.

Template

Some parameter values are specified as strings that contain macros:

smtpd_banner = $myhostname ESMTP $mail_name

The macros are expanded into their values at the time the parameter is used. See the
online documentation to find out what macros are allowed for a particular template
parameter.

Time units

Many parameters are specified as an amount of time:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

queue_run_delay = 1000s

They are assigned a value and a time unit abbreviation. Time unit abbreviations are
listed in Table A-1. If you leave off the time unit, each time parameter has a default unit
that it assumes for the value specified. You can check the online documentation to see
what the default unit is for a particular parameter.

Table A-1. Time units

Unit Abbreviation Example

Seconds s 1s

Minutes m 15m

Hours h 4h

Days d 5d

Weeks w 2w

All of the parameters have a default value (although for some the default is blank). Only
parameters that differ from their default values have to be specified in main.cf. The parameters
are listed here with their default values, but they sometimes change with Postfix releases. You
can check the default value for a parameter with the postconf command and its -d option:

$ postconf -d alias_maps
alias_maps = hash:/etc/aliases, nis:mail.aliases

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

A.1 Postfix Parameter Reference

bounce_notice_recipient

"2bounce" is one of several possible error classes. Each class of error can optionally generate
an error notice. 2bounce_notice_recipient designates the recipient address for "2bounce"
error notices.

Possible values:

email address

Default:

postmaster

Example:

2bounce_notice_recipient = postmaster

access_map_reject_code

SMTP response code sent when a request is rejected because of an access map restriction.

Possible values:

reply code

Default:

554

Example:

access_map_reject_code = 554

alias_maps

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

List of alias databases used by the local delivery agent.

Possible values:

alias maps

Default: hash:/etc/aliases, nis

mail.aliases

Example:

alias_maps = hash:/etc/aliases, nis:mail.aliases

allow_mail_to_files

Restricts or allows local mail delivery to external files when expanded from an alias file.

Possible values:

explicit list

Default:

alias,forward

Example:

allow_mail_to_files = alias, forward

allow_percent_hack

The percent hack is an old workaround that allowed sender-controlled routing of email
messages. Nowadays, DNS and mail routing are much more reliable, but Postfix continues to
support the hack. To turn off percent rewriting, set allow_percent_hack to no.

Possible values:

yes/no

Default:

yes

Example:

allow_percent_hack = yes

alternate_config_directories

The commands postqueue and postdrop have options to use a different directory when reading
the Postfix configuration file. Any nonstandard directories you plan to use must be listed in this
parameter.

Possible values:

directory

Default:

(null)

Example:

alternate_config_directories = /usr/local/postfix/conf

append_at_myorigin

Expands incomplete email addresses by appending the value from myorigin onto addresses
that consist of a local part only. Changes user to user@host.example.com.

Possible values:

yes/no

Default:

yes

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/user

Example:

append_at_myorigin = yes

authorized_verp_clients

VERP is a technique used with mailing lists to handle bounced messages. It combines the list
owner address and original recipient address with a special delimiter character.
authorized_verp_clients contains a list of host and domain names and IP addresses of
clients that are allowed to use the feature.

Possible values:

hosts/domains

Default:

$mynetworks

Example:

authorized_verp_clients = $mynetworks

berkeley_db_read_buffer_size

Buffer size to use when reading Berkeley DB hash or btree tables.

Possible values:

bytes

Default:

131072

Example:

berkeley_db_read_buffer_size = 131072

biff

biff is a small process that can notify local users when new mail has arrived. If you have no
local users, you should turn off biff notifications since they may affect the performance of the
mail server.

Possible values:

yes/no

Default:

yes

Example:

biff = yes

body_checks_size_limit

Limit on the amount of a message subject to body_checks filtering.

Possible values:

bytes

Default:

51200

Example:

body_checks_size_limit = 51200

bounce_service_name

Service the master daemon uses for maintaining log files with status information on messages
that cannot be delivered. You normally do not need to change this parameter.

Possible values:

service

Default:

bounce

Example:

bounce_service_name = bounce

canonical_maps

List of lookup tables used to map email addresses to their desired rewritten form.

Possible values:

lookup types

Default:

(null)

Example:

canonical_maps = hash:/etc/postfix/canonical_maps

command_directory

Location of Postfix administrative command-line tools such as postcat and postqueue.

Possible values:

directory

Default:

/usr/sbin

Example:

command_directory = /usr/sbin

command_time_limit

When the local delivery agent passes messages to a command, Postfix limits the amount of
time the command can execute. command_time_limit indicates the time limit.

Possible values:

time unit

Default:

1000s

Example:

command_time_limit = 1000s

content_filter

Transport to be used as a message filter. Postfix passes messages to the named transport.

Possible values:

transport

Default:

(null)

Example:

content_filter = myfilter

daemon_timeout

Amount of time Postfix daemons spend handling a request. When they exceed the specified
time, they voluntarily die.

Possible values:

time unit

Default:

18000s

Example:

daemon_timeout = 18000s

debug_peer_list

For help with troubleshooting, Postfix can increase logging for particular hosts that you might
be having problems with. debug_peer_list specifies a list of one or more hosts, domains, or
regular expression patterns whose logging should be increased by the degree specified in
debug_peer_level.

Possible values:

hosts/domains

Default:

(null)

Example:

debug_peer_list = example.com, mail.ora.com

default_destination_concurrency_limit

Postfix allows you to set a limit on the number of simultaneous deliveries to any transport in
master.cf. If you don't set an explicit limit for a transport, the value in
default_destination_concurrency_limit is used. Note that concurrency limits are per

destination as opposed to process limits, which are per transport.

Possible values:

count

Default:

20

Example:

default_destination_concurrency_limit = 20

default_extra_recipient_limit

Limit on the number of recipients for a transport when the queue manager preempts normal
delivery with a higher priority transport.

Possible values:

count

Default:

1000

Example:

default_extra_recipient_limit = 1000

default_process_limit

Process limits can be configured for any transport. If you don't set an explicit process limit for a
transport, the value in default_process_limit is used. Note that process limits are per
transport as opposed to concurrency limits, which are per destination.

Possible values:

count

Default:

100

Example:

default_process_limit = 100

default_recipient_limit

Limit on the number of recipients the queue manager stores in memory for a particular
transport.

Possible values:

count

Default:

10000

Example:

default_recipient_limit = 10000

default_verp_delimiters

VERP is a technique used with mailing lists to handle bounced messages. It combines the list
owner address and original recipient address with a special delimiter character. The
default_verp_delimiters parameter specifies which characters to use when constructing
VERP return addresses.

Possible values:

characters

Default:

+=

Example:

default_verp_delimiters = +=

defer_service_name

Service the master daemon uses for maintaining log files with status information on messages
that cannot be delivered. You normally do not need to change this parameter.

Possible values:

service

Default:

defer

Example:

defer_service_name = defer

delay_notice_recipient

"delay" is one of several possible error classes. Each class of error can optionally generate an
error notice. delay_notice_recipient designates the recipient address for "delay" error
notices.

Possible values:

email address

Default:

postmaster

Example:

delay_notice_recipient = postmaster

deliver_lock_attempts

Limit on the number of times Postfix tries to acquire an exclusive lock on a mailbox file.

Possible values:

count

Default:

20

Example:

deliver_lock_attempts = 20

disable_dns_lookups

Normally when Postfix determines where to deliver a message, it first looks up the DNS MX
records for the destination domain. If disable_dns_lookups is set, Postfix does not check for
MX records and delivers directly to the A record it finds for the destination domain.

Possible values:

yes/no

Default:

no

Example:

disable_dns_lookups = no

disable_mime_output_conversion

Normally Postfix converts 8-bit MIME format to 7-bit format when a remote system does not
advertise 8-bit MIME support. Set disable_mime_output_conversion to yes to turn off the

normal behavior.

Possible values:

yes/no

Default:

no

Example:

disable_mime_output_conversion = no

disable_vrfy_command

Normally Postfix allows the SMTP VRFY command. Set disable_vrfy_command to yes to disable
it.

Possible values:

yes/no

Default:

no

Example:

disable_vrfy_command = no

double_bounce_sender

A double bounce is produced when the original sender of a message cannot be notified that the
message was not delivered. The double_bounce_sender parameter specifies the sender
address Postfix uses for mail that should be discarded if it cannot be delivered. The specified
address should not be used for anything else since all messages addressed to it are silently
discarded.

Possible values:

email address

Default:

double-bounce

Example:

double_bounce_sender = double-bounce

empty_address_recipient

The destination address for notifications when mail with a null sender (<>) cannot be delivered.
For example, when a bounce notification, which uses a null sender, cannot be delivered, it is
sent to the address specified in empty_address_recipient.

Possible values:

email address

Default:

MAILER-DAEMON

Example:

empty_address_recipient = MAILER-DAEMON

error_service_name

Service the master daemon uses to generate error reports when a message cannot be
delivered. You normally do not need to change this parameter.

Possible values:

service

Default:

error

Example:

error_service_name = error

export_environment

List of environment variables that are exported to external processes such as deliveries to the
pipe service or external commands.

Possible values:

environment variables

Default:

TZ MAIL_CONFIG

Example:

export_environment = TZ, MAIL_CONFIG

fallback_relay

List of IP addresses, hosts, or domains to receive messages when the normal destination is not
found or is not reachable.

Possible values:

hosts/domains

Default:

(null)

Example:

fallback_relay = example.com

fast_flush_domains

The fast flush service allows the queue manager to retry immediate delivery of messages for a
particular domain upon request. The fast_flush_domains parameter specifies a list of IP
addresses, hosts, and domains that are eligible for the fast flush service.

Possible values:

hosts/domains

Default:

$relay_domains

Example:

fast_flush_domains = $relay_domains

fast_flush_refresh_time

The fast flush service allows the queue manager to retry immediate delivery of messages for a
particular domain upon request. The fast_flush_refresh_time parameter specifies a time
interval for automatically flushing messages that have not otherwise had redelivery requested.

Possible values:

time unit

Default:

12h

Example:

fast_flush_refresh_time = 12h

fork_attempts

Limit on the number of times Postfix tries to fork a process.

Possible values:

count

Default:

5

Example:

fork_attempts = 5

forward_expansion_filter

When assigning path names to the forward_path parameter, you can use macros such as
$user that are expanded by Postfix to determine the path for the current message. The
forward_expansion_filter parameter specifies a list of characters that should be allowed
when expanding macros. Characters that are not permitted are replaced by underscores.

Possible values:

characters

Default:

(see example)

Example:

forward_expansion_filter =
 1234567890!@%-_=+:,./abcdefghijklmnopqrstuvwxyz\
 ABCDEFGHIJKLMNOPQRSTUVWXYZ

hash_queue_depth

Postfix creates a structure of subdirectories for each of its queues in order to organize queue
files. The hash_queue_depth parameter specifies the number of subdirectory levels below the
queue directories.

Possible values:

count

Default:

1

Example:

hash_queue_depth = 1

header_address_token_limit

Limit on the number of tokens (every word and every @ or . is a token, as defined in RFC
2822) in header addresses to be rewritten by Postfix. Excess tokens are silently discarded.

Possible values:

count

Default:

10240

Example:

header_address_token_limit = 10240

header_size_limit

Limit on the number of characters allowed in a message header. Excess text is silently
discarded.

Possible values:

bytes

Default:

102400

Example:

header_size_limit = 102400

home_mailbox

Postfix normally delivers messages to mailbox files in the mail spool. You can change the
delivery to mailbox files relative to users' home directories by specifying a path with the
home_mailbox parameter. Include a trailing slash to indicate maildir-style mailboxes.

Possible values:

pathname

Default:

(null)

Example:

home_mailbox = Mail/mbox

ignore_mx_lookup_error

Normally when Postfix gets no response from a nameserver for an MX lookup, it tries again
after some period of time. You can cause immediate lookups of A records by enabling
ignore_mx_lookup_error.

Possible values:

yes/no

Default:

no

Example:

ignore_mx_lookup_error = no

in_flow_delay

Causes Postfix to pause for the specified time before accepting a new message. You would need
to change this parameter only if you are experimenting with performance.

Possible values:

time unit

Default:

1s

Example:

in_flow_delay = 1s

initial_destination_concurrency

Initial number of delivery processes for a particular destination.

Possible values:

count

Default:

5

Example:

initial_destination_concurrency = 5

ipc_idle

Maximum idle time for internal communication channels. Once the maximum time has been

reached, Postfix components disconnect voluntarily.

Possible values:

time unit

Default:

100s

Example:

ipc_idle = 100s

line_length_limit

Limit on the length of any single line in a message. Lines that exceed the limit are broken up
and reconstructed at delivery time.

Possible values:

count

Default:

2048

Example:

line_length_limit = 2048

lmtp_connect_timeout

Limit on the amount of time the LMTP client waits to complete a TCP connection. Set the
parameter to 0 to disable timeouts.

Possible values:

time unit

Default:

0s

Example:

lmtp_connect_timeout = 0

lmtp_data_init_timeout

Limit on the amount of time the LMTP client waits for a response from the server after sending
the LMTP DATA command.

Possible values:

time unit

Default:

120s

Example:

lmtp_data_init_timeout = 120s

lmtp_lhlo_timeout

Limit on the amount of time the LMTP client waits for a response from the server after sending
the LMTP LHLO command.

Possible values:

time unit

Default:

300s

Example:

lmtp_lhlo_timeout = 300s

lmtp_quit_timeout

Limit on the amount of time the LMTP client waits for a response from the server after sending
the LMTP QUIT command.

Possible values:

time unit

Default:

300s

Example:

lmtp_quit_timeout = 300s

lmtp_rset_timeout

Limit on the amount of time the LMTP client waits for a response from the server after sending
the LMTP RSET command.

Possible values:

time unit

Default:

300s

Example:

lmtp_rset_timeout = 300s

lmtp_tcp_port

TCP port to use for LMTP connections if the lmtp service is not found in the services database.

Possible values:

port number

Default:

24

Example:

lmtp_tcp_port = 24

local_destination_concurrency_limit

Limit on the number of delivery processes to the same local recipient.

Possible values:

count

Default:

2

Example:

local_destination_concurrency_limit = 2

local_recipient_maps

List of lookup tables containing all email addresses that are local. It's used by the SMTP server
to reject messages for nonexistent users.

Possible values:

lookup tables

Default: proxy:unix

passwd.byname $alias_maps

Example:

local_recipient_maps = unix:passwd.byname $alias_maps

luser_relay

Destination address that should receive all messages for unknown recipients.

Possible values:

email address

Default:

(null)

Example:

luser_relay = info

mail_owner

System username that owns Postfix queue files. It's also used for running Postfix daemon
processes.

Possible values:

username

Default:

postfix

Example:

mail_owner = postfix

mail_spool_directory

Directory where mailbox files are kept.

Possible values:

directory

Default:

(system dependent)

Example:

mail_spool_directory = /var/mail

mailbox_command

An external command to use for final mailbox delivery. Commonly used for configuring an
external local delivery agent such as procmail.

Possible values:

pathname

Default:

(null)

Example:

mailbox_command = /usr/local/bin/procmail

mailbox_delivery_lock

Locking methods Postfix should use when delivering mail to files.

Possible values:

explicit list

Default:

(system dependent)

Example:

mailbox_delivery_lock = fcntl, dotlock

mailbox_transport

Transport to use for final mailbox delivery.

Possible values:

transport

Default:

(null)

Example:

mailbox_transport = cyrus

manpage_directory

Directory for Postfix manpages.

Possible values:

directory

Default:

(system dependent)

Example:

manpage_directory = /usr/local/man

masquerade_domains

Address masquerading hides the names of internal hosts by stripping internal hostnames off
before messages are sent out from a gateway system. The masquerade_domains parameter
specifies a list of domains that should be subject to address masquerading.

Possible values:

domains

Default:

(null)

Example:

masquerade_domains = example.com

max_idle

Maximum idle time a Postfix daemon process (except the queue manager) waits for a new
request.

Possible values:

time unit

Default:

100s

Example:

max_idle = 100s

maximal_backoff_time

Maximum time limit for Postfix to attempt redelivery of deferred messages. Each time a
message is deferred, the queue manager increases the amount of time it waits to attempt
delivery of that message again. The calculated increase of time is never allowed to exceed
maximal_backoff_time.

Possible values:

time unit

Default:

4000s

Example:

maximal_backoff_time = 4000s

message_size_limit

Limit on the size of any message your system will accept.

Possible values:

bytes

Default:

10240000

Example:

message_size_limit = 10240000

mime_header_checks

List of lookup tables containing patterns to match against each MIME header of incoming email
messages. Each pattern is listed with the action to take if there is a match.

Possible values:

lookup tables

Default:

$header_checks

Example:

mime_header_checks = regexp:/etc/postfix/mime_header_checks

minimal_backoff_time

Minimum time limit on how often Postfix attempts redelivery of deferred messages. Each time a
message is deferred, the queue manager increases the amount of time it waits to attempt
delivery of that message again. The calculated time is never less than minimal_backoff_time.

Possible values:

time unit

Default:

1000s

Example:

minimal_backoff_time = 1000s

mydomain

System's domain name.

Possible values:

domain

Default:

(system dependent)

Example:

mydomain = example.com

mynetworks

List of IP or network addresses that are allowed to relay messages through your mail server.
Either mynetworks or mynetworks_style can be used to designate hosts permitted to relay.
mynetworks has precedence over mynetworks_style.

Possible values:

net addresses

Default:

(system dependent)

Example:

mynetworks = 192.168.15.32/26

myorigin

Domain portion to append to message email addresses that contain localparts only.

Possible values:

domain

Default:

$myhostname

Example:

myorigin = $myhostname

newaliases_path

Full path to the Sendmail-compatibility newaliases command. newaliases is used to rebuild alias
databases.

Possible values:

pathname

Default:

(system dependent)

Example:

newaliases_path = /usr/bin/newaliases

notify_classes

List of recognized error classes that cause a notification to be sent. Notification email addresses
are configured in parameters named according to the class, class_notice_recipient.

Possible values:

explicit list

Default:

resource,software

Example:

notify_classes = resource, software

parent_domain_matches_subdomains

List of lookup map types where lookups should match the domain itself plus all of its
subdomains.

Possible values:

yes/no

Default:

(see example)

Example:

parent_domain_matches_subdomains = debug_peer_list, fast_flush_domains,
 mynetworks, permit_mx_backup_networks, qmqpd_authorized_clients,
 relay_domains, smtpd_access_maps

pickup_service_name

Service the master daemon uses to retrieve locally injected messages. You normally do not
need to change this parameter.

Possible values:

service

Default:

pickup

Example:

pickup_service_name = pickup

process_id_directory

Directory for lock files used by the master daemon. The specified path is relative to the Postfix
spool directory.

Possible values:

directory

Default:

pid

Example:

process_id_directory = pid

proxy_interfaces

When a Postfix server is running on an internal network behind a proxy or NAT device, and it
serves as the backup MX host for a domain, it's possible to get mail delivery loops when the
primary MX host is down. The proxy_interfaces specifies a list of network interface addresses
that receive mail via a proxy device. Postfix avoids mail loops with listed interfaces.

Possible values:

IP addresses

Default:

(null)

Example:

proxy_interfaces = 192.168.15.23

qmgr_clog_warn_time

Minimum time between warnings that a particular destination is clogging up the active queue. A
value of 0 disables the warnings.

Possible values:

time unit

Default:

300s

Example:

qmgr_clog_warn_time = 300s

qmgr_message_active_limit

Limit on the number of messages allowed in the active queue.

Possible values:

count

Default:

20000

Example:

qmgr_message_active_limit = 20000

qmgr_message_recipient_minimum

Minimum number of recipients stored in memory for each message.

Possible values:

count

Default:

10

Example:

qmgr_message_recipient_minimum = 10

qmqpd_error_delay

The QMQP service provides a centralized mail queue for a cluster of mail hosts. The
qmqpd_error_delay specifies the length of time the QMQP server should pause before sending
a negative reply to a client. The delay is meant to slow down misbehaving clients.

Possible values:

time unit

Default:

1s

Example:

qmqpd_error_delay = 1s

queue_directory

Directory for the Postfix queue.

Possible values:

directory

Default:

/var/spool/postfix

Example:

queue_directory = /var/spool/postfix

queue_run_delay

Amount of time between queue scans to check for deferred messages that are due for
redelivery attempt.

Possible values:

time unit

Default:

1000s

Example:

queue_run_delay = 1000s

rbl_reply_maps

List of lookup tables used to map RBL domain names to responses when rejecting messages
because of either reject_rbl or reject_rhsbl. If an RBL domain is not listed, the
default_rbl_reply provides the response.

Possible values:

lookup tables

Default:

(null)

Example:

rbl_reply_maps = hash:/etc/postfix/rbl_reply

recipient_canonical_maps

List of lookup tables used to map recipient email addresses to their desired rewritten form.
Operates the same as canonical_maps but only for recipient addresses.
recipient_canonical_maps has precedence over canonical_maps.

Possible values:

lookup tables

Default:

(null)

Example:

recipient_canonical_maps = hash:/etc/postfix/canonical

reject_code

SMTP response code to send when a request is rejected because of a client restriction.

Possible values:

reply code

Default:

554

Example:

reject_code = 554

relay_domains_reject_code

SMTP response code to send when a request is rejected due to a disallowed relay attempt.

Possible values:

reply code

Default:

554

Example:

relay_domains_reject_code = 554

relay_transport

Transport to use for delivering relayed messages.

Possible values:

transport

Default:

relay

Example:

relay_transport = relay

relocated_maps

List of lookup tables that map moved addresses or domains to their new locations.

Possible values:

lookup tables

Default:

(null)

Example:

relocated_maps = hash:/etc/postfix/relocated

resolve_dequoted_address

Specifies whether or not Postfix resolves addresses whose localparts contain user-specified
routing. Set to yes to have Postfix quote localparts containing special symbols such as the @
character for strict adherence to RFC 822.

Possible values:

yes/no

Default:

yes

Example:

resolve_dequoted_address = yes

sample_directory

Directory for sample Postfix configuration files. The sample files give examples and document
Postfix configuration parameters.

Possible values:

directory

Default:

/etc/postfix

Example:

sample_directory = /etc/postfix

sendmail_path

Full path to the Sendmail-compatibility sendmail command. sendmail is used primarily for
sending messages from a command line or from within scripts.

Possible values:

pathname

Default:

(system dependent)

Example:

sendmail_path = /usr/sbin/sendmail

setgid_group

Group ID used by Postfix for mail submission and queue management. Whatever group you use
should be dedicated for Postfix use only.

Possible values:

group

Default:

postdrop

Example:

setgid_group = postdrop

showq_service_name

Service used for reporting the Postfix mail queue status. You normally do not need to change
this parameter.

Possible values:

service

Default:

showq

Example:

showq_service_name = showq

smtp_bind_address

IP address of the interface the SMTP client should bind to when making connections to mail
servers. Setting this parameter is necessary only on multihomed systems where you explicitly
must use just one of the interfaces.

Possible values:

IP address

Default:

(null)

Example:

smtp_bind_address = 192.168.15.23

smtp_data_done_timeout

Limit on the amount of time the SMTP client waits for a response from the server after sending
the SMTP . (a single dot) indicating the end of the message contents.

Possible values:

time unit

Default:

600s

Example:

smtp_data_done_timeout = 600s

smtp_data_xfer_timeout

Limit on the amount of time the SMTP client waits while sending the message contents. If the
connection stalls for more than the specified value, the SMTP client terminates the connection.

Possible values:

time unit

Default:

180s

Example:

smtp_data_xfer_timeout = 180s

smtp_destination_recipient_limit

Limit on the number of recipients per message delivery going out via the SMTP client.

Possible values:

count

Default:

(see example)

Example:

smtp_destination_recipient_limit =
$default_destination_recipient_limit

smtp_helo_timeout

Limit on the amount of time the SMTP client waits for a response from the server after sending
the SMTP HELO command.

Possible values:

time unit

Default:

300s

Example:

smtp_helo_timeout = 300s

smtp_mail_timeout

Limit on the amount of time the SMTP client waits for a response from the server after sending
the SMTP MAIL FROM command.

Possible values:

time unit

Default:

300s

Example:

smtp_mail_timeout = 300s

smtp_pix_workaround_delay_time

Certain older Cisco PIX firewalls contain a bug that causes them to interfere with SMTP delivery
when the final period and CR/LF indicating the end of message content arrive in separate
packets. Postfix can automatically detect the problem and adjust for it by waiting before
sending the final period and CR/LF to give the socket send buffer a chance to empty out. The
smtp_pix_workaround_delay_time parameter specifies how long Postfix waits for the socket
send buffer to empty.

Possible values:

time unit

Default:

10s

Example:

smtp_pix_workaround_delay_time = 10s

smtp_quit_timeout

Limit on the amount of time the SMTP client waits for a response from the server after sending
the SMTP QUIT command.

Possible values:

time unit

Default:

300s

Example:

smtp_quit_timeout = 300s

smtp_rcpt_timeout

Limit on the amount of time the SMTP client waits for a response from the server after sending
the SMTP RCPT TO command.

Possible values:

time unit

Default:

300s

Example:

smtp_rcpt_timeout = 300s

smtp_skip_5xx_greeting

When an SMTP server responds with 5xx reply code, Postfix can either bounce the message or
move on to any additional mail exchangers for the destination domain to see if they are able to

accept the message. The parameter smtp_skip_5xx_greeting specifies whether or not Postfix
should react to the reply code or move on. A value of no causes Postfix to try additional mail
exchangers.

Possible values:

yes/no

Default:

yes

Example:

smtp_skip_5xx_greeting = yes

smtpd_banner

Text that follows the 220 status code in the SMTP greeting banner. If you change this
parameter, be sure to include $myhostname at the start of the text, according to RFC
requirements.

Possible values:

template

Default:

(see example)

Example:

smtpd_banner = $myhostname ESMTP $mail_name

smtpd_data_restrictions

List of UBE restrictions to apply when a client sends the SMTP DATA command.

Possible values:

UBE restrictions

Default:

(null)

Example:

smtpd_data_restrictions = reject_unauth_pipelining

smtpd_error_sleep_time

Length of time Postfix waits initially when a client causes an error. After the number of errors
exceeds the value in smtpd_soft_error_limit, Postfix increases the delay by one second for
every error.

Possible values:

time unit

Default:

1s

Example:

smtpd_error_sleep_time = 1s

smtpd_expansion_filter

List of characters that are allowed in macro expansion by the SMTP server.

Possible values:

characters

Default:

(see example)

Example:

smtpd_expansion_filter = \t\40!"#$%&'()*+,-./0123456789:;<=>?@ \

ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~

smtpd_helo_required

Specifies whether or not Postfix requires a client to start the SMTP conversation with the HELO/
EHLO command.

Possible values:

yes/no

Default:

no

Example:

smtpd_helo_required = no

smtpd_history_flush_threshold

Limit on the number of lines in the SMTP server command history.

Possible values:

count

Default:

100

Example:

smtpd_history_flush_threshold = 100

smtpd_noop_commands

List of SMTP commands that Postfix should accept but take no action on. Postfix always replies
to these noop commands with a status of "250 Ok."

Possible values:

explicit list

Default:

(null)

Example:

smtpd_noop_commands = vrfy, expn

smtpd_recipient_limit

Limit on the number of recipients allowed in RCPT TO commands for each message. Postfix
rejects RCPT TO commands once the limit is reached.

Possible values:

count

Default:

1000

Example:

smtpd_recipient_limit = 1000

smtpd_restriction_classes

List of administrator-defined restriction class names. Each defined class can be assigned to UBE
parameters.

Possible values:

list

Default:

(null)

Example:

smtpd_restriction_classes = myrestriction_a, myrestriction_b

smtpd_soft_error_limit

Number of errors after which Postfix should increase delays to one second for every error.

Possible values:

count

Default:

10

Example:

smtpd_soft_error_limit = 10

soft_bounce

Specifies whether or not mail that would normally be bounced should be queued for redelivery
attempts. Also converts any permanent rejection codes to temporary error codes. This
parameter is useful for testing out configuration changes to make sure that no mail is
permanently rejected.

Possible values:

yes/no

Default:

no

Example:

soft_bounce = no

strict_7bit_headers

Specifies whether or not Postfix should accept only 7-bit text in message headers as required
by the RFC. By default, if mail arrives with 8-bit text in the message headers it is rejected.

Possible values:

yes/no

Default:

no

Example:

strict_7bit_headers = no

strict_8bitmime_body

Specifies whether or not Postfix should reject messages that contain 8-bit text that is not
properly MIME-encoded.

Possible values:

yes/no

Default:

no

Example:

strict_8bitmime_body = no

strict_rfc821_envelopes

Specifies whether or not Postfix requires envelope addresses to be within angle brackets (<>)
and without extraneous information as required by the RFC.

Possible values:

yes/no

Default:

no

Example:

strict_rfc821_envelopes = no

swap_bangpath

UUCP uses the bang character (!) for routing email messages. The swap_bangpath parameter
specifies whether or not Postfix rewrites the bang as an at sign (@) for Internet email routing.

Possible values:

yes/no

Default:

yes

Example:

swap_bangpath = yes

syslog_name

Name to use with the process name in syslog records.

Possible values:

string

Default:

postfix

Example:

syslog_name = postfix

transport_retry_time

Time to wait before attempting to use a previously unavailable delivery transport.

Possible values:

time unit

Default:

60s

Example:

transport_retry_time = 60s

undisclosed_recipients_header

Header line to insert when no recipients are specified in any of the To: headers (e.g., To:,
Resent-To:, Cc:).

Possible values:

string

Default:

(see example)

Example:

undisclosed_recipients_header = To: undisclosed-recipients:;

unknown_client_reject_code

SMTP response code to send when a request is rejected due to the reject_unknown_client
restriction.

Possible values:

reply code

Default:

450

Example:

unknown_client_reject_code = 450

unknown_local_recipient_reject_code

SMTP response code to send when a request is rejected because it is addressed to a
nonexistent local user.

Possible values:

reply code

Default:

550

Example:

unknown_local_recipient_reject_code = 550

unknown_virtual_alias_reject_code

SMTP response code to send when a request is rejected because it is addressed to a
nonexistent user at one of your virtual alias domains.

Possible values:

reply code

Default:

550

Example:

unknown_virtual_alias_reject_code = 550

verp_delimiter_filter

VERP is a technique used with mailing lists to handle bounced messages. It combines the list
owner address and original recipient address with a special delimiter character. The
verp_delimiter_filter parameter specifies which characters Postfix accepts as VERP
delimiter characters.

Possible values:

characters

Default:

-=+

Example:

verp_delimiter_filter = -=+

virtual_alias_maps

List of lookup tables used to map virtual aliases to their destination email addresses.

Possible values:

lookup tables

Default:

(null)

Example:

virtual_alias_maps = hash:/etc/postfix/virtual_alias

virtual_mailbox_base

Base directory for virtual mailbox files. All mailbox files are found relative to the base directory.

Possible values:

directory

Default:

(null)

Example:

virtual_mailbox_base = /usr/local/virtual_mail

virtual_mailbox_limit

Limit on the size of virtual mailbox files. For maildir-style mailboxes, it limits only individual file
sizes, not the overall mailbox. The value here must not be smaller than message_size_limit.

Possible values:

bytes

Default:

51200000

Example:

virtual_mailbox_limit = 51200000

virtual_mailbox_maps

List of lookup tables used to map virtual mailbox addresses to their mailbox files. Mailbox file
paths are relative to virtual_mailbox_base.

Possible values:

lookup tables

Default:

(null)

Example:

virtual_mailbox_maps = hash:/etc/postfix/virtual_mailbox

virtual_transport

Default transport to use for delivering messages to virtual mailbox addresses.

Possible values:

transport

Default:

virtual

Example:

virtual_transport = virtual

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Appendix B. Postfix Commands

Postfix command-line tools are listed below. Each one is fully documented in a manpage that
comes with the Postfix distribution. This appendix is meant to give you an idea of what each
command is used for. You should refer to the manpages for complete information about each of
the commands:

postalias

Creates or queries alias databases.

postcat

Prints the contents of queue files, allowing administrators to display the text of a
message in the queue.

postconf

Displays or changes Postfix parameters. Can display one parameter at a time, or the
entire list of parameters.

postdrop

Injects a message into the maildrop directory for delivery by Postfix.

postfix

Starts and stops the Postfix system. Can also be used for other Postfix maintenance,
such as checking the configuration and flushing the queue.

postkick

Sends a request to a particular Postfix service. Meant to provide a way for shell scripts
to communicate with Postfix services.

postlock

Locks a specified file for exclusive access. Provides a means for shell scripts to use
Postfix-compatible locking.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

postlog

Logs specified information to the system-logging facility. Provides a means for shell
scripts to log information easily in a style similar to Postfix.

postmap

Creates or queries lookup maps. Much of the Postfix configuration information is kept in
lookup tables that are created by the postmap command.

postqueue

Provides user-level access to the Postfix queue. Changes to the queue requiring super-
user privileges are managed by the postsuper command.

postsuper

Provides super-user access to the Postfix queue. Allows an administrator to delete
messages, place them on hold and release them from hold, and repair the queue
structure, if necessary.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Appendix C. Compiling and Installing Postfix

The general steps to build Postfix from the source files are to obtain the software bundle,
uncompress it, compile it, and install it. The tools you need are common on nearly all
distributions of Unix: gzip, tar, make, and a C compiler. Postfix generally expects the GNU gcc
compiler, but you can also build it with your platform's native compiler, as long as it supports
ANSI C.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

C.1 Obtaining Postfix

The official Postfix web site (http://www.postfix.org/) has a download link that displays a list of
mirrors from which you can get the software. You should select the mirror that is closest to
you. Get the package you want by selecting the "Source code" link under either the Official or
Experimental release (see Chapter 1). The examples here assume that you have downloaded a
file called postfix-2.0.10.tar.gz. If the file you download is different, change the filename
accordingly in the commands in the examples.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
http://www.postfix.org/default.htm
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

C.2 Postfix Compiling Primer

Before we move on to the specifics of building Postfix, let's take a look at some of the basics
when compiling C code.

The options for a particular build are usually contained within a description file normally called
Makefile. The make utility uses the Makefile to determine prerequisites, dependencies, and
options to use when building a package. Using this information, make calls a compiler to create
object files, and then a linker (usually called ld) to link them together into executables.

Since the Postfix distribution creates its own Makefile, you don't have to worry about editing
that (and you shouldn't edit it, since any changes you make would likely get overwritten later).
Options that Postfix needs in its Makefile are defined in environment variables such as CCARGS.
The INSTALL file that comes with the Postfix distribution discusses all of the available options.
We'll look at some of the more common ones here.

The following environment variables are available to set compile-time options. You should use
quotes around the values to retain spaces or other shell metacharacters:

AUXLIBS

Tells the linker where to look for additional libraries that are not in the standard
locations. For example, if you build support for an add-on package, you may have to
indicate where the libraries are for that package.

CC

Specifies a particular compiler to use. If you want to use a compiler other than the one
Postfix selects, set this variable to your compiler. Postfix normally uses gcc except on
platforms where the native compiler is known to work better. You can check the
makedefs file to see which compiler Postfix uses by default on your system.

CCARGS

Provides additional arguments to the compiler. If your compiler allows special options or
your supporting files are not located in default directories, indicate those options with
this variable.

DEBUG

The DEBUG parameter specifies debugging levels for the compiler to use when building
the Postfix binaries. Turning on debugging produces extra information that a debugger
can use. You can also turn off debugging features completely to build Postfix for a
production system.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

OPT

The OPT parameter specifies optimization levels for the compiler to use when building
Postfix binaries. Additional optimization may increase performance but at the cost of
longer compilation and more memory. You can probably accept the defaults that Postfix
selects for your platform.

C.2.1 Compiler Options

Compiler options are set in the CCARGS variable. C source code files require header files that
define certain functions and variables. The standard location for header files is the /usr/include
directory. If your header files are located somewhere else, you have to tell the compiler where
to look for them. The -I compiler option is used to specify additional directories where the
compiler might find header files. If you are linking with libraries from external packages, the
header files might be located where the package is installed rather than in the standard
location. A common convention for external packages is to install header files in /usr/local/
include. If you want to tell the compiler to look in that directory as well as the standard location
when building Postfix, specify the options and directory with CCARGS:

CCARGS='-I/usr/local/include/'

Use additional -I options for each additional directory the compiler should search.

Postfix uses conditional compilation during its build, depending on which libraries or other
resources are available on your system. It defines certain macros based on what it discovers
about your system or based on options you have selected. The -D option provides a way to
define macros at the time you compile Postfix. Add-on packages for Postfix require that you
define a particular macro to tell Postfix to include it when building. For example, if you want to
include support for MySQL, you define the HAS_MYSQL macro:

CCARGS='-DHAS_MYSQL'

C.2.2 Linker Options

Linker options are set in the AUXLIBS variable. After Postfix has compiled the object files, it
links them together with required libraries into executable files. The standard location for
system libraries is /usr/lib. To tell the linker to search additional directories for libraries, use the
-L option:

AUXLIBS='-L/usr/local/lib'

You must also tell the linker which specific libraries to link in. The -l option is used to name
specific libraries. The library files must be in a standard location or a directory indicated with
the -L option. Library archive files are named starting with lib, followed by their name,
followed by the extension, which is normally .a for static libraries and .so or .sl for shared
objects or shared libraries. When you use the -l option, you leave off the initial lib and the
extension of the library file. To link with the MySQL client library for example, where the library

file is called libmysqlclient.a, the -l option is specified as follows:

AUXLIBS='-L/usr/local/lib -lmysqlclient'

Most linkers choose runtime or dynamic libraries over the static versions. Runtime libraries are
linked when a program is running rather than during compilation. At compile time, the linker
adds information so the program can find the libraries when it is executed. If you always install
all of your dynamic libraries in a standard location such as /usr/lib, your system won't have any
trouble finding the libraries at runtime. However, some external packages install libraries in
nonstandard directories such that they cannot be found at runtime. Different systems use
different conventions for locating dynamic libraries using fixed path information and
environment variables. Be sure to configure your system to be able to find your dynamic
libraries or make sure that the libraries are installed in your system's standard directories.
Another option is to provide the actual path to specific libraries when you build your programs.

The linker uses an argument to include directories in a runtime search path for dynamic
libraries. The argument differs depending on your linker and platform. The GNU linker (Linux,
FreeBSD) uses -rpath, as does IRIX. Solaris, on the other hand uses -R, and HP-UX uses +b.
Consult the manpage for your linker, ld(1), to see which argument you should use to set the
runtime library search path.

Using the SSL library as an example, if your libssl.so file is located in /usr/local/lib and you are
building Postfix on FreeBSD or another system that uses rpath, define AUXLIBS as follows:

AUXLIBS='-L/usr/local/lib -rpath/usr/local/lib -lssl'

When linking Postfix with external libraries, if you have multiple versions of the libraries
installed, it is very important to make sure that you link Postfix with the version you need. Also,
make sure that the library version you link to corresponds to the correct version of the header
files you include. Version mismatch problems are often the source of compiler errors.
Sometimes the compiler does not complain, in which case your build may succeed, but you're
likely to find unusual errors from Postfix at runtime that can be tricky to track down.

gcc and Unrecognized Linker Options

Some versions of gcc do not understand all of the linker options you might use, and
generate errors when compiling. The -rpath option is a common one. The compiler
generates an error like gcc: unrecognized option '-rpath'. Since this option is
really meant for the linker and gcc doesn't really have to recognize it, there is an
easy workaround. The gcc compiler uses the -Wl, argument to indicate that certain
options should be passed to the linker and otherwise ignored. In this case, when you
specify the -rpath option, do it with -Wl:

AUXLIBS='-L/usr/local/lib -Wl,-rpath,/usr/local/lib -lssl'

See the gcc(1) manpage for more information.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

C.3 Building Postfix

The source file that you download is in a compressed, tar archive and must be uncompressed
using the gzip command. In the same directory as the downloaded bundle, type the following:

$ gzip -d postfix-2.0.10.tar.gz

This uncompresses the file and produces a tar file without the .gz extension. Next, untar the
file:

$ tar -xf postfix-2.0.10.tar

This creates a directory called postfix-2.0.10 below the current directory. Set that directory as
your current directory for the rest of the compilation:

$ cd postfix-2.0.10

If you accept all of the default parameters for building Postfix, compiling is as simple as
executing make in the top-level directory of the distribution:

$ make

Executing make creates a Makefile for your particular platform, which is in turn used to compile
Postfix for your system. If you don't need any changes to the default build, you can skip ahead
to the Section C.4 section.

C.3.1 Customizing Your Build

The file makedefs contains platform-specific information that Postfix uses when configuring the
package for your system. If you are curious, you can look at the file to see which parameters
Postfix uses for your platform. It identifies your environment and creates the macros and
definitions that are used in the Makefile for building Postfix on your system. The resultant
Makefile is invoked by the make command which in turn calls your compiler and linker to build
the Postfix system. When you type make as above, all of this happens automatically, so you
don't normally need to worry about this file.

If you want to change any of the parameters for your environment, you can execute the build
in two steps. The command make makefiles creates a new Makefile based on parameters that
you specify on the command line. To set specific parameters, simply define variables on the
command line. For example, you can use a different compiler from the default that Postfix
chooses for your environment. The following example works on an HP-UX system to be sure
that make finds the correct compiler:

$ make makefiles CC="/opt/ansic/bin/cc -Ae"

You would, of course, specify the path to your own compiler plus any necessary options. If you

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

need to specify an additional directory for header files on your system, define CCARGS to include
your directory:

$ make makefiles CCARGS="-I /usr/local/include/"

And, of course, you can combine options:

$ make makefiles CC="/opt/ansic/bin/cc -Ae" CCARGS="-I /usr/local/include"

C.3.2 Modifying Postfix Defaults

Postfix provides a lot of flexibility through its configuration files. Nearly all of Postfix's runtime
parameters, including the various directories it uses, can be set in its configuration file except,
of course, the location of the configuration file itself. You can change the location by defining
DEF_CONFIG_DIR within the CCARGS variable:

$ make makefiles CCARGS='-DDEF_CONFIG_DIR=\"/usr/local/etc/postfix\"'

The single and double quotation marks and backslashes are important since the value for
DEF_CONFIG_DIR should itself be quoted. After compilation, Postfix looks for its main.cf
configuration file in the directory /usr/local/etc/postfix instead of the default directory, /etc/
postfix.

You can use combinations of all the examples above to configure the environment you need. If
your command line starts to get complicated, you might want to create a simple shell script to
execute it for you. See Section C.7 later in this appendix.

Once you have used make makefiles with your specific options to create your Makefile, execute
make to build Postfix:

$ make

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

C.4 Installation

After you have successfully compiled Postfix, you are ready to install it. You will have to be the
root user in order to perform the installation steps.

You need to create a dedicated account that will own the Postfix queue and most of its
processes. The account should not permit logins and does not need a shell or a home directory.
Use your normal administrative tools to create an account. You can set the password to * and
its home directory and shell to invalid paths (something like /bin/false or /dev/null). By
convention the username should be postfix. The entry in /etc/passwd should resemble the
following:

postfix:*:1001:1001:postfix:/no/where:/bin/false

You must also create a dedicated group that is not used by any user account, including the
postfix account you just created. By convention the group name is postdrop. On most systems
you create groups be editing the /etc/group. Add a line like the following:

postdrop:*:1007:

Remember that Postfix is a replacement for Sendmail, and in order to maintain compatibility it
installs its own sendmail binary in place of your existing one. You may want to rename the
existing one to save it from being overwritten. Depending on your platform your existing
sendmail is commonly in /usr/sbin/sendmail or /usr/lib/sendmail. You should be able to
determine the exact location of your sendmail by executing:

whereis sendmail

This may list a number of files. You are looking for the binary that has no extension. Once you
have found it, rename it to move it out of the way:

mv /usr/sbin/sendmail /usr/sbin/sendmail.orig

You will also want to rename two other files that will be replaced by Postfix: mailq and
newaliases. These are commonly found in the /usr/bin directory, but you can use the whereis
command to locate them if necessary. These commands might be symbolic links on your
systems:

mv /usr/bin/mailq /usr/bin/mailq.orig
mv /usr/bin/newaliases /usr/bin/newaliases.orig

Now you are ready to run the installation script.

Make sure you are still the root user and still in the Postfix distribution directory. Execute the
installation script:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postfix
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postfix
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postdrop
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/root

make install

After checking that everything is built, the installation script asks you a few questions about
setting up Postfix on your system:

install_root: [/]

The install_root directory is the root directory of your system. The only time you would want to
change this is if you are creating an installable package. Package builders often want to keep all
of the files together in a separate subdirectory in order to bundle them up when creating an
installable distribution:

tempdir: [/home/kdent/postfix-2.0.10]

The tempdir directory is a place where the installation script can write temporary files. It
defaults to your current directory and cleans up after itself. If for some reason you want the
installation script to use another directory, specify it here:

config_directory: [/etc/postfix]
daemon_directory: [/usr/libexec/postfix]
command_directory: [/usr/sbin]
queue_directory: [/var/spool/postfix]
sendmail_path: [/usr/lib/sendmail]
newaliases_path: [/usr/bin/newaliases]
mailq_path: [/usr/bin/mailq]

You should probably accept the defaults for the questions that involve the location of the
various Postfix files. Just be sure that the default values presented by the installation script
match the directories you found with the whereis command for your original copies of sendmail,
newaliases, and mailq. If they don't, you should type in the correct path when the installation
script prompts you for it.

mail_owner: [postfix]

The mail_owner defaults to postfix, and assuming that you followed the instructions earlier,
you can accept that value. If you created an account with a different username, enter that here.

setgid_group: [postdrop]

The setgid property defaults to postdrop, and assuming you followed the instructions earlier,
you can accept that value. If you created a group with a different name, enter that here.

manpage_directory: [/usr/local/man]

For installation of the Postfix man pages, you can accept the default or type in a more
appropriate place on your system.

sample_directory: [/etc/postfix]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postfix
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/postdrop

The sample configuration files contain explanations for Postfix parameters and should be
included in your installation. If you prefer not to have them in your configuration directory, you
can specify a different location here.

readme_directory: [no]

The Postfix distribution includes several README files with additional information about
particular features and add-on packages. These are less critical for the regular maintenance of
your Postfix server than the sample configuration files, but if you would like to include them on
your system, specify a path where they should be installed. If you don't install them, they are
still available in the distribution directory.

The installation script then installs all of the necessary files.

C.4.1 Upgrading

If Postfix is already installed on your system, you can upgrade it when you have a new
compilation or version to install. It's usually best to stop Postfix before performing the upgrade.
The upgrade process is not interactive but requires that the main.cf file exist on your system
already:

postfix stop
make upgrade
postfix start

Postfix checks for changed files and replaces them with newer versions from your new
compilation. Be sure to check the log file after restarting Postfix.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

C.5 Compiling Add-on Packages

This section walks through building Postfix with various add-on packages that are mentioned in
the book. Before recompiling Postfix with any additional packages, it is important to first clean
up from any previous builds. Execute the following:

$ make tidy

Now you'll be starting with a clean source tree for your new builds. Each of the examples below
takes you through creating a new Makefile. Once you've accomplished that, simply type:

$ make

to rebuild Postfix. If your new build is successful, you can upgrade your currently installed
Postfix:

make upgrade

If you hadn't previously installed Postfix, use make install instead.

C.5.1 Cyrus SASL

See Chapter 12 for information on Cyrus SASL and Postfix. You can download the source for the
Cyrus SASL libraries from the Carnegie Mellon web site at http://asg.web.cmu.edu/sasl/sasl-
library.html. Note that this book assumes that you are working with SASL Version 2.x libraries.
Follow the instructions for building the Cyrus SASL2 libraries. There is also a SASL_README file
that comes with the Postfix distribution.

One issue when compiling Cyrus SASL that affects Postfix is whether or not to include support
for certain Microsoft clients that authenticate using a nonstandard mechanism. The standard
plain-text authentication mechanism is identified as PLAIN, but these clients use LOGIN. If you
need to support such clients, be sure that the libraries are built with the workaround enabled
using the --enable-login option when you run configure.

When you install the libraries, be sure to note their location. This example assumes that they
are installed in /usr/local/lib and that the header files are located below /usr/local/include. If
you are using different locations, adjust the examples accordingly.

To build Postfix with SASL support, you must define the USE_SASL_AUTH macro and specify the
directories for the libraries and header files. You must also link against the libsasl2.so library
file. Run make tidy if necessary. Build your Makefile with the following options:

$ make makefiles CCARGS='-DUSE_SASL_AUTH -I/usr/local/include/sasl' \
 AUXLIBS='-L/usr/local/lib -lsasl2'

Remember that if you must provide the path to your libraries to the runtime linker, include the

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
http://asg.web.cmu.edu/sasl/sasl-library.html
http://asg.web.cmu.edu/sasl/sasl-library.html

correct runtime search path argument:

$ make makefiles CCARGS='-DUSE_SASL_AUTH -I/usr/local/include/sasl' \
 AUXLIBS='-L/usr/local/lib -lsasl2 -rpath /usr/local/lib'

If your linker uses an argument other than rpath, be sure to specify the correct one.

C.5.2 TLS

See Chapter 13 for information on the TLS patches and Postfix. You can find the web site for
the TLS patches from the "Add-on Software" page of the Postfix web site. Since this add-on
modifies the Postfix source, make sure you get the correct download for your version of Postfix.
For this example, assume the downloaded file is called pfixtls-0.8.13-2.0.10-0.9.7b.tar.gz. If
the file you download is different, adjust the examples accordingly.

This add-on depends on the OpenSSL library, which you must install first if it's not already on
your system. Check the documentation that comes with the TLS distribution to make sure you
have the correct version of OpenSSL. For this example, assume that your OpenSSL libraries are
installed in /usr/local/ssl/lib and the header files are in /usr/local/ssl/include. If your installation
differs, adjust the example accordingly.

The TLS modifications to the Postfix source are all contained in the file pfixtls.diff, and you use
the patch command to apply the differences to your Postfix source. You should uncompress and
untar the TLS patch in a subdirectory that is at the same level as your Postfix directory such
that if your current directory is the one above the Postfix source, you can see both the Postfix
directory and the TLS patch directory:

$ pwd
/home/kdent
$ ls -ld pfixtls-0.8.13-2.0.10-0.9.7b postfix-2.0.10
drwxr-xr-x 5 kdent kdent 512 May 14 2002 pfixtls-0.8.13-2.0.10-0.9.7b
drwxr-xr-x 15 kdent kdent 1024 May 31 17:31 postfix-2.0.10

From that directory apply the patch as follows:

$ patch -p0 < pfixtls-0.8.13-2.0.10-0.9.7b/pfixtls.diff

patch reports the changes as it makes them until it finishes and displays "done" on your
terminal.

Go back to the Postfix distribution directory to build Postfix with TLS support. You must define
the HAS_SSL macro and specify the directories for the SSL libraries and header files. You must
also link against the libssl.so (or libssl.a) and libcrypto.so (or libcrypto.a) library files. Run
make tidy if necessary. Build your Makefile with the following options:

$ make makefiles CCARGS='-DHAS_SSL -I/usr/local/ssl/include' \
 AUXLIBS='-L/usr/local/ssl/lib -lcrypto -lssl'

Remember that if you must provide the path to your libraries to the runtime linker, include the

correct runtime search path argument:

$ make makefiles CCARGS='-DUSE_SASL_AUTH -I/usr/local/ssl/include' \
 AUXLIBS='-L/usr/local/ssl/lib -lcrypto -lssl -rpath /usr/local/ssl/lib'

If your linker uses an argument other than rpath, be sure to specify the correct one.

C.5.3 MySQL

See Chapter 15 for information on MySQL and Postfix. This add-on depends on the MySQL
client library and the zlib compression library, which you must install first if they're not already
on your system. This example assumes that your MySQL library is installed in /usr/local/lib/
mysql with its header files in /usr/local/include/mysql and that the zlib library is in /usr/lib. If
your installation differs, adjust the example accordingly. There is a MYSQL_README file that
comes with the Postfix distribution with information about building Postfix with support for
MySQL.

To build Postfix with MySQL support, you must define the HAS_MYSQL macro and specify the
directories for the MySQL library and header files. You must link against the libmysqlclient.so
and the libz.so library files. You must also link against the libm.so math library file, which is
standard on Unix systems. Run make tidy if necessary. Build your Makefile with the following
options:

$ make makefiles 'CCARGS=-DHAS_MYSQL -I/usr/local/include/mysql' \
 'AUXLIBS=-L/usr/local/lib/mysql -lmysqlclient -lz -lm'

Remember that if you must provide the path to your libraries to the runtime linker, include the
correct runtime search path argument:

$ make makefiles 'CCARGS=-DHAS_MYSQL -I/usr/local/include/mysql' \
 'AUXLIBS=-L/usr/local/lib/mysql -lmysqlclient -lz -lm \
 -rpath /usr/local/lib/mysql'

If your linker uses an argument other than rpath, be sure to specify the correct one.

C.5.4 LDAP

See Chapter 15 for information on LDAP and Postfix. This add-on depends on LDAP libraries,
which you must install first if they're not already on your system. There are commercial
libraries available as well as an open source package from http://www.openldap.org/. This
example assumes that you have LDAP libraries installed in /usr/local/lib/ and LDAP header files
in /usr/local/include. If your installation differs, adjust the example accordingly. There is an
LDAP_README file that comes with the Postfix distribution with information about building
Postfix with support for LDAP.

To build Postfix with LDAP support, you must define the HAS_LDAP macro and specify the
directories for the LDAP libraries and header files. You must link against the libldap.so library
file and also the liblber.so library file, which defines encoding routines for the LDAP protocol.
Run make tidy if necessary. Build your Makefile with the following options:

http://www.openldap.org/default.htm

$ make makefiles CCARGS='-I/usr/local/include -DHAS_LDAP' \
 AUXLIBS='-L/usr/local/lib -lldap -L/usr/local/lib -llber'

Remember that if you must provide the path to your libraries to the runtime linker, include the
correct runtime search path argument:

$ make makefiles CCARGS='-I/usr/local/include -DHAS_LDAP' \
 AUXLIBS='-L/usr/local/lib -lldap -L/usr/local/lib -llber \
 -rpath /usr/local/lib'

If your linker uses an argument other than rpath, be sure to specify the correct one.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

C.6 Common Problems

If you run into problems, check the various README files for information about your build.
Frequently, they contain information about problems you might run into. Certainly, if there is a
README file specific to your platform, be sure to read it. Some possible problems are
mentioned below. Exact messages vary depending on your platform and compiler, so the
following are general errors similar to what you might see when building Postfix.

C.6.1 Compile Time

No such file or directory

Make sure that the path to your compiler is correct. If you specified a compiler by
setting CC when building your Makefile (for example, make makefiles CC="/path"),
double-check the path you typed. If the path to your compiler came from the Postfix
makedefs file, you might need to override it with:

$ make makefiles CC="/path/to/your/compiler"

Another possibility is to have Postfix call your compiler without a path, assuming its
directory is in your environment path:

$ make makefiles CC="cc"

Could not open source file

Make sure that the path to your include files is correct. The include files are normally
stored in /usr/include. If your system uses a different path for some reason, you will
have to specify it with the -I option set in CCARGS:

$ make makefiles CCARGS="-I/path/to/include"

If you already specified a path with -I double-check your typing.

Unresolved (or undefined) symbol

Make sure that the library paths you specified with the -L option are correct and that
you have specified the libraries themselves correctly with the -l option.

Warnings from header files

If you see errors associated with a header file like mail_conf.h, you may not be using an

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

ANSI C compiler. Nearly all platforms ship with a compiler that is used to reconfigure
the kernel, but they do not all include an ANSI C compiler that you can use for
development. You may have to contact your vendor to get an ANSI C compiler if you
want to build Postfix. Also, the GNU gcc compiler works on nearly all platforms and is
available as open source software. If you are using the compiler for HP-UX, you must
use the -Ae flag to compile in ANSI mode. Include it in your CCARGS variable:

$ make makefiles CCARGS="-Ae"

Don't know how to

You have probably lost your Makefile or never had one. You can easily create your
Makefile by executing the command:

$ make -f Makefile.init makefiles

After that completes, try your build again.

C.6.2 Runtime

Error in loading shared libraries

Make sure that you specified either the -rpath or -R option when you built Postfix and
that the paths specified are correct. Be sure that you are using the correct option for
your platform. You may have to check the manpage for ld(1) to be sure.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

C.7 Wrapping Things Up

You can mix and match any of the options or add on libraries described in this appendix to build
Postfix for your environment. If your command line for building the Postfix Makefile is getting a
little complicated, you should probably create a simple shell script that invokes the options and
additional libraries you need. Creating a build script has the added advantage of documenting
the options you used when you last built Postfix. Feel free to include plenty of comments to
yourself to explain the reasons you are including an option or not, and how you came to that
decision. The following is an example of a shell script you might use, although you will certainly
need to customize it for your own environment. This example includes all of the add-on libraries
we've discussed. You should exclude the ones you don't need:

#
Simple script to create a Makefile to build Postfix.
#

#
Remember to start by cleaning up or uncomment this line
to have this script do it every time.
#
#make tidy

#
Specify all of our options and supporting libraries
#
make makefiles \
 CCARGS='-DUSE_SASL_AUTH -DHAS_SSL -DHAS_MYSQL -DHAS_LDAP \
 -I/usr/local/include/sasl -I/usr/local/ssl/include \
 -I/usr/local/include/mysql -I/usr/local/include' \
 AUXLIBS='-L/usr/local/lib -L/usr/local/ssl/lib \
 -L/usr/local/lib/mysql -L/usr/local/lib \
 -lsasl2 -lcrypto -lssl -lmysqlclient -lz -lm -lldap -llber \
 -rpath /usr/local/lib/mysql -rpath /usr/local/lib \
 -rpath /usr/local/ssl/lib'

To build Postfix, type:

$ sh build.sh
$ make

The first command creates your Makefile with the options you need. The second executes the
build.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Appendix D. Frequently Asked Questions

I can't seem to receive messages. What does this error mean: "<test@example.com>: mail for
example.com loops back to myself"?

Postfix reports this error when a DNS reply points to your mail server, but Postfix has
not been configured to accept mail for the domain. Postfix accepts mail for domains
listed in mydestination, relay_domains, virtual_mailbox_domains,
virtual_alias_domains, and domains that resolve to IP addresses listed in
inet_interfaces and proxy_interfaces. Your domain must be listed in one of these
parameters.

When I make changes to configuration files or lookup tables, do I have to reload Postfix?

It depends on the type of file you are changing. Changes in files that Postfix reads into
memory at startup require a reload. Examples of such files are main.cf, master.cf, and
any lookup table using regular expressions. DB or DBM files are not read into memory
and don't require reloading Postfix when they are changed.

Is there some kind of "include" directive for main.cf?

No. Most administrators with complex configurations create a Makefile that will cat the
necessary files together. If you have other regular administrative tasks, add them to
your Makefile too. Your Makefile should have an entry that looks something like this:

main.cf: file1 file2 file3
 cat file1 file2 file3 > main.cf.new
 mv main.cf.new main.cf

Then type make main.cf to rebuild your configuration file.

How can I get confirmation of mail deliveries?

This is not currently available in Postfix.

How can I add or append a disclaimer (or other text) to the bottom of every email that gets
sent from my mail server?

By design this is not implemented in Postfix directly. It's not the job of an MTA, and it's
not as simple a problem as it seems because of MIME and digital signatures. MIME
messages have a structure that can be very complex. Digital signatures attest to the
fact that a signed message has not been modified. Adding a footer to the bottom of a
message breaks both of these. Some people add short text to the headers of email

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

messages, but the text is not likely to be seen by most users. The real solution is to
configure your clients to add whatever text is required.

Having said that, it is possible to configure a content filter that appends the text for you. Follow
the directions for configuring Postfix to work with a content filter. Your filter should be MIME-
aware, and you should be aware that digital signatures will no longer work.

How can I save a copy of every message?

Specify an address in the always_bcc parameter. It will receive copies of all messages.

How can I enable quota or size limits on users' mailboxes?

This is not really a function of Postfix, although you may achieve what you're looking for
with the mailbox_size_limit. Be aware that if you use maildir-style mailboxes, this
parameter limits only the size of individual mail files and not the size of the entire
mailbox. Mailbox quotas are best enforced by the mail store itself, which might be done
through normal operating system accounting or your POP/IMAP server configuration.

When Postfix sends a bounce message, it tells the sender, "For further assistance, please send
mail to <postmaster>". But I want it to include my domain name in the address, e.g.,
<postmaster@example.com>. How can I do that?

The idea behind this message is that users should contact their own postmasters for
assistance, since the local postmaster is quite possibly the one who has to deal with the
problem. If you definitely want to make the change, you have to modify the source code.

I have aliases where only the first address in the list receives messages. The others can receive
mail fine when sent to them directly, but when they're part of an alias, their messages don't
arrive.

If you are using an external program for delivery, it might not handle more than one
address at a time. Such is the case with maildrop, for example. To make sure that
Postfix passes messages for delivery one at a time, set the
transport_destination_recipient_limit parameter in main.cf to 1. transport is the
name of the transport method making the deliveries. If you are using maildrop, the
parameter looks like the following:

maildrop_destination_recipient_limit = 1

I have a few interfaces on my system. How can I get Postfix to bind to only one of them?

Specify the IP address of the interface you want Postfix to use in the inet_interfaces
parameter.

With Sendmail, I used to get a warning notice when a message couldn't be delivered for four
hours or so. Can I get that with Postfix?

This is controlled by the delay_warning_time parameter. By default it's set to 0 for
"never".

I'm trying to test alias lists to see which addresses are expanded from particular lists. With
other mail servers, I used the EXPN command to get a full recipient list, but it doesn't seem to
work with Postfix.

Postfix does not support EXPN. Because of Postfix's architecture and concern for
security, the unprivileged SMTP server doesn't know anything about local aliases. It's
the privileged local delivery agent that actually expands aliases at the point of delivery.
If you use a mailing-list manager, it most likely has a command to tell you who is on the
list, or you may have to check the aliases file on the mail server system.

What's the difference between mailbox_transport and mailbox_command?

The mailbox_transport parameter is set to a service from master.cf, while
mailbox_command refers to an actual command on the mail server filesystem. There are
a few parameters that can affect mailbox delivery. The parameters in order of
preference are mailbox_transport, mailbox_command_maps, mailbox_command, and
home_mailbox.

All of my internal systems relay through my mail gateway. Is there a way to remove or hide the
hostnames and IP addresses of my internal systems from the messages headers before they go
out?

Add header checks that match the header lines showing your internal systems and
specify the IGNORE action for them.

How can I tell Postfix to forward all messages that are sent to nonexistent mailboxes to a
particular user?

You can specify an address in the luser_relay parameter and disable
local_recipient_maps:

luser_relay = info
local_recipient_maps =

Be careful if you do this. With the prevalence of spam, the address you specify is liable
to catch a large amount of junk mail.

According to my configuration, Postfix should be replying with a permanent error code (554),
but it keeps sending a temporary one (454). Why is it doing that?

You probably have soft_bounce turned on.

I have a whole bunch of mail queued up that I know I don't need. Is there any way to delete all
of the queued messages?

postsuper -d ALL

Note that the word ALL must be all capital letters, and that executing this command
deletes all of the mail in your queue.

Where does Postfix log its information?

Postfix logs messages to your system's syslogd daemon. Check your system
documentation to find the actual log file.

Postfix seems to be ignoring the MX record and trying to deliver directly to the A record system.
Is this normal?

It's normal if you have:

disable_dns_lookups = yes

specified in main.cf. You might also have a transport map specified in brackets, in which
case Postfix delivers directly to the system:

example.com smtp:[mail.example.com]

I get a lot of spam with a blank envelope sender address. How can I block these?

You don't want to block messages based on the fact that they have a null return path.
Accepting null envelope addresses is required by the standards. The technique is used to
prevent looping of error notifications. You'll have to identify the spam by some other
means.

I'm using header_checks and body_checks to block spam, but some legitimate email is blocked
by my checks. Is there any way to whitelist some mail so that the header and body checks are
not applied?

No. Header and body checks are applied to every message and should be used for
simple checks that can easily be applied to all mail. If you need anything more
sophisticated, you should set up a content filter that has the smarts you need.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Postfix: The Definitive Guide is a dove. Doves belong to the class
Aves (birds) and the order Columbiformes (doves and pigeons), to which the now-extinct dodo
bird (Raphus cucullatus) also belonged. Their family, Columbidae, includes over 300 species of
pigeons and doves, including the common rock dove or feral pigeon (Columba livia).

In 1679, the French astronomer Augustin Royer discovered the dove-shaped constellation
Columba. A constellation in the southern hemisphere, located near Puppis and Caelum,
Columba's stars were originally part of the constellation Canis Major.

Reg Aubry was the production editor and copyeditor, and Matt Hutchinson was the proofreader
for Postfix: The Definitive Guide . Colleen Gorman and Claire Cloutier provided quality control.
Mary Agner provided production assistance. Ellen Troutman-Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman.
The cover image is an original illustration created by Susan Hart. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil
Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert Romano and
Jessamyn Read, using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning
icons were drawn by Christopher Bing. This colophon was written by Leanne Soylemez and Reg
Aubry.

The online edition of this book was created by the Safari production group (John Chodacki,
Becki Maisch, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools
written and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_9961534.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

! (exclamation point)

 marking messages in hold queue

 preventing rewriting of domain names

" (quotation marks)

 in alias definitions

 lookup tables and

 parameter values and

(root prompt)

$ (dollar sign)

 command prompt

 in configuration variables

% (command prompt)

* (asterisk), for messages in active queue

.forward files

/ (slash)

 in file pointers

 in regular expression keys

/etc/passwd file

? (question mark), ending wakeup time with

\ (backslash), continuing long command lines in Unix

| (vertical bar), commands as alias targets

2bounce_notice_recipient parameter

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

A records

 domains without

 for mail exchangers

 MTA routing of email with

 for MX hosts

access maps

 client checking with 2nd

 actions to take after checking

 example configuration

 regular expression tables for

access_map_reject_code PARameter

account names, excluding from masquerading

active attacks

active queue 2nd 3rd 4th

 messages marked with asterisk (*)

additional_conditions parameter 2nd 3rd

address classes

 masquerading all

addresses, email

 address completion, turning off

 as alias targets

 blocking spam from [See spam]

 client-based rules, restrictions to check

 correction by cleanup daemon

 creating text file for mailing lists

 deleting queued messages by

 format in message header (RFC 2822)

 handling by trivial-rewrite daemon

 identifying spam from

 legitimate return address appropriated by spammers

 rewriting

 with canonical_maps lookup table

 canonical addresses

 masquerading hostnames

 relocated users

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

 unknown users

 sender and recipient, sent during SMTP transaction

administration

 logging

 pseudo account for processes

 queue management [See queue manager]

 root privileges and

 running Postfix at system startup

 writing an initialization script

 starting, stopping, and reloading Postfix

administrator, email (postmaster)

agents, email [See also MDAs; MTAs; MUAs]

 listing of

alias files

 building alias database files

 delivery to command or file specified in

 format of

 important aliases

 locating aliases

 restrictions on targets

alias_database parameter 2nd

 adding Mailman alias file to

 adding Majordomo alias file to

alias_maps parameter 2nd 3rd

 adding Mailman alias file to

 additional alias files for mailing list

 configuring for MySQL/Postfix

 editing to add Majordomo alias file

 LDAP, setting for

aliases

 checking before local part of email address

 checking by local delivery agent

 hostname, canonical name for (CNAME)

 hosts in MX records

 mailing list

 owner

 sending message to test list

 mailing list,

 creating

 Mailman

 creating file for storing

 Majordomo, creating file for

 system database of, correct format

 virtual

 catchall addresses with

 lookup table for

 virtual alias

 addresses

 lookup file

allow_mail_to_commands

allow_mail_to_files parameter 2nd

allow_percent_hack parameter

alternate_config_directories parameter

ANONYMOUS authentication mechanism

anonymous logins

append_at_myorigin parameter

 turning off address completion

append_dot_mydomain parameter

 turning off address completion

approve command (Majordomo)

architecture, Postfix

 components

 how messages enter Postfix system

 email forwarding

 email notifications

 local email submission

 network email

 mail delivery

 local

 other delivery agents

 other messages

 relay messages

 virtual alias messages

 virtual mailbox messages

 queue manager

 tracing a message through

arrival time, messages in queue

ASCII characters in email message body

assignment with a comment (parameter example)

attached message headers, checking for

attachments with file extensions, rejecting all messages with

attacks

 active

 dictionary [See dictionary attacks]

 distributed denial-of-service, use of hijacked systems for

 indicated by increasingly frequent errors from a client

 malicious program sending garbage commands

AUTH SMTP command

authentication

 certificate 2nd [See also TLS]3rd

 client-side certificates

 framework

 choosing

 specifying for SASL use with Postfix 2nd 3rd

 identity

 IMAP server, Cyrus SASL library

 mechanism

 choosing

 SASL [See SASL]

 SMTP

 relay control with

authoritative domain nameservers

authorization identity

authorized_verp_clients parameter

auto-responders, configuring virtual

auto_transition feature of Cyrus SASL

automatic reply program

auxiliary property plug-ins

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

backscatter

backup MX

base64 encoding of credentials

Berkeley DB, Cyrus IMAP and

berkeley_db_read_buffer_size parameter

biff

bin and daemon (pseudo accounts)

binary format, aliases file

BIND (DNS server application)

blacklisted sites

 DNS-based Blacklists (DNSBL)

 realtime blacklist checking restrictions

 realtime blacklists

 client restrictions based on

body of email messages

 checks during client-based spam detection

 content filtering with body checks

body_checks parameter 2nd

 pattern comparison in

body_checks_size_limit parameter 2nd

bounce daemon

bounce_service_name parameter

bounce_size_limit parameter

bounced messages

 mailing list

 spam sent to non-existent users

broken_sasl_auth_clients parameter

btree (lookup table database)

buffer overflow attacks

building Postfix 2nd [See also compiling Postfix]3rd

 customizing your build

 modifying defaults

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

C code, compiling

CA [See Certificate Authority]

canonical addresses

canonical domain

canonical names for hostname aliases

canonical_maps parameter 2nd 3rd 4th

 assigning lookup table to

Carnegie Mellon University, Cyrus IMAP

catchall addresses

 virtual alias

 virtual mailbox

Certificate Authority (CA)

 client certificates signed by

 digital signature of public keys

 public certificates identifying

certificate signing request (CSR)

certificates

 authentication by

 CA, installing

 TLS

 becoming a CA

 client-side

 public-key cryptography, use of

check_client_access restriction

check_helo_access restriction

check_recipient_access restriction

check_sender_access restriction

chroot 2nd

 executing correct script for your system

 in master.cf file

 Postfix running in, DNS file and

class_notice_recipient parameter

class_transport parameter

classes

 address

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

 error

cleanup daemon 2nd

 error messages, checking

 fixing email addresses

 queue manager, notifying of incoming mail

client certificates

 common name

 creating

 fingerprints for

client errors, increasingly frequent

client-based spam detection

 configuring rules for

 defining rules with restriction classes

 DNS-based blacklists

 rules, restrictions assigned to

 access maps

 DNS restrictions

 generic restrictions

 how restrictions work

 listing restrictions

 other restrictions

 realtime blacklists

 restriction definitions

 SMTP conversations

 SMTP rules and restrictions

 strict syntax restrictions

 testing new restrictions

 spammer tactics to circumvent

client-side certificate authentication [See certificates]

client/server authentication, agreement on mechanism

client_access file

clientcerts file

CNAME records 2nd

command prompts, Unix

command used to execute a service (master.cf)

command-line tools

 for managing certificates

 queues

 deleting messages

 displaying messages

 flushing messages

 holding messages

 listing messages

 requeuing messages

 resolving domain names

command_directory parameter

command_time_limit parameter

commands

 as alias targets

 content filtering 2nd

 configuration

 delivery to

 automatic reply program

 configuring virtual auto-responder

 configuring virtual mailing list manager

 executing your own with pipe daemon

 Postfix

 default directory for

 specified in alias files, deliveries to

 Unix, documentation in man pages

comments (in main.cf file)

common name

 client certificate

 public key

compile time errors

compiling Postfix [See also building Postfix]

 add-on packages

 Cyrus SASL

 LDAP

 MySQL

 TLS

 common problems

 compiler options

 linker options

 primer

 script to create a Makefile

completion of email addresses, turning off

components, Postfix

concurrent delivery attempts

configuration [See also configuration files]2nd

 chroot environment

 default directories

 default, as Unix mail server

 MTA identity

 mydestination parameter

 myhostname and mydomain parameters

 myorigin parameter

 parameters

 Postfix anti-spam example

 Postfix/TLS

 summary of

 receiving limits

 relay (mail delivery agents) control

 certificate authentication

 relay control

 dynamic IP solutions

 restricting relay access

 SMTP authentication

 rewriting addresses

 canonical addresses

 masquerading hostnames

 relocated users

 unknown users

 spam checks for Postfix

 categories of spam detection

 client-detection rules

 content checking

 customized restriction classes

 strict syntax parameters

 starting Postfix, first time

 aliases file, system

 hostname

configuration files

 /etc/postfix directory

 alias files

 alias database, building

 format of

 important aliases

 locating aliases

 restrictions on targets

 BIND, for a domain

 Cyrus

 default directory for

 lookup tables

 database formats

 format of

 other formats

 parameters that take lists

 regular expressions, using

 search order

 main.cf file

 configuration variables

 line continuation

 multiple values for parameters

 majordomo.cf

 master daemon (main.cf and master.cf)

 master.cf [See master.cf file]

 mysql-local.cf

 sample 2nd

content filtering

 address rewriting and

 command-based

 configuration of

 configuring external filters

 daemon-based

 configuration of

 example of

 filters configured to accept mail before MTA

 mail delivery agents (MDAs)

 mail transfer agents (MTAs)

 mail user agents (MUAs)

 MTA and MUA filters, combining

 Postfix body and header checks

 running multiple filters by chaining them

content filters

 evading with HTML code in message body

 redirecting message to after client access map check

 separate, sending messge through after content checking

 separate, using to detect spam

content-based spam detection

 comparing patterns

 configuring Postfix for

 content checking actions

 content checking configuration

 content checking parameters

 labeling spam with content filters

 spammer tactics to circumvent

content_filter parameter 2nd

 turning on daemon-based filtering

continuation of lines

 email message header fields

 in lookup table files

 main.cf file

corrupt queue 2nd 3rd

credentials

 authentication mechanism for exchanging

 encoded exchange of

 encryption with TLS

 OTP authentication, for SMTP clients

cryptography, public-key

 client certificates

 generating server certificates

CSR (certificate signing request)

cur directory

Cyrus IMAP

 Postfix and

 example

 server

Cyrus SASL libraries 2nd 3rd

 SASL and SASLv2 development tracks

 saslauthd authentication server

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

daemon (pseudo account)

daemon_directory parameter

daemons

 chrooted, making all resources available to

 content filtering 2nd

 configuration

 example of

 default Postfix directory for

 master daemon, control by

 options for

DATA command (SMTP) 2nd

database formats in lookup tables

databases, external

 LDAP

 configuration

 example Postfix/LDAP configuration

 MySQL

 configuration

 MySQL/Postfix configuration example

days (d)

dbm (lookup table database)

dbname parameter

debug_peer_list parameter

debugging

 domain name resolution

 enabling information for

 tracing service failures in chroot

default_database_type parameter 2nd

default_destination_concurrency_limit parameter 2nd

default_destination_recipient_limit parameter

default_extra_recipient_limit parameter

default_privs parameter

default_process_limit parameter 2nd 3rd

default_recipient_limit parameter

default_verp_delimiters parameter

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

defer daemon

defer_service_name parameter

defer_transports parameter

deferred messages

 deferring delivery 2nd

 deferring mail relay

 reason for inability to deliver

 time in queue, specifying

deferred queue 2nd 3rd

 redelivery attempts, scheduling

definitions

 of aliases

 parameter, in main.cf

delay_notice_recipient parameter

delayed messages, information about

delays

 introducing with each client error

 scheduling delivery attempts for deferred mail

deleting queued messages

deliver_lock_attempts parameter

Delivered-To: header

delivery agents for email [See MDAs]

delivery attempts for deferred mail, scheduling

delivery of mail 2nd

 disallowing/allowing to commands and files

 handling by queue manager

 corrupt messages

 error notifications

 local messages

 message header To: address and

 with multiple recipients

 other delivery agents

 LMTP

 pipe daemon

 other messages

 Postfix

 queueing messages and retrying periodically

 relay messages

 spam, labeling as

 virtual alias messages

 virtual mailbox messages

delivery transports

denial-of-service attacks (DOS)

 distributed

dictionary attacks

 luser_relay parameter, using

 nodictionary password mechanism

dig tool

DIGEST-MD5 mechanism

digital signatures

directories

 default, for Postfix

 Postfix configuration files

disable_dns_lookups parameter

disable_mime_output_conversion parameter

disable_vrfy_command parameter

discarding messages

 after content checking

displaying queued messages

distinguished name

distributed denial-of-service attacks

DNS (Domain Name System)

 blacklists based on 2nd

 checking rules restrictions, client-based spam detection 2nd

 configuration of virtual domains

 definition of

 email routing

 BIND configuration file

 MX records

 host lookup problems

 MX records

 backup MX

 overview of

 hierarchical hostnames

 resource records for domains

 receiving mail and

 sending mail and

 Postfix configuration options

 reverse PTR records

DNSBL (DNS-based Blacklists) 2nd

documentation

 with Postfix distribution

 Postfix, online, web sites, and mailing list

 Unix (man pages)

Domain Name System [See DNS]

domain names

 in email addresses

 fully-qualified

 rejection of client requests based on

 strict syntax restrictions for clients

 hostname masquerading and

 for local delivery

 myorigin parameter, appending to email addresses with

 for relay domains

 for virtual aliasing

 for virtual mailboxes

domains

 authoritative nameservers for

 fast_flush_domains parameter

 hosting multiple

 delivery to commands

 mailbox file ownership

 separate domains with system accounts

 separate domains with virtual accounts

 separate message store

 shared domains with system accounts

 mail exchangers for (MX records)

 matching in lookup tables

 parameters dealing with

 relay

 resource records database

 specifying domain for SASL user account

 types and parameters, listing of

DOS (denial-of-service) attacks 2nd

dotlock (locking type)

double_bounce_sender parameter

DRAC (Dynamic Relay Authorization Control)

dynamic IP addresses, SMTP client authentication and

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

ease-of-use (Postfix)

echo command -n switch

egrep command, finding Postfix logging messages with

EHLO command (SMTP)

 requiring with strict syntax parameter

email

 DNS and

 Internet 2nd

 agents, summary listing of

 DNS and

 envelope addresses and message headers

 format of addresses

 history of

 limiting incoming

 MDA (message delivery agent)

 message and address format in header (RFC 2822)

 message format

 MTAs (mail transfer agents)

 MUAs (mail user agents)

 POP/IMAP, mailbox access and

 Postfix security 2nd 3rd

 postmaster

 protocols 2nd

 rejected or bounced messages

 RFCs (Request for Comments)

 SMTP

 software packages for

empty_address_recipient parameter

encode_sasl_plain (Perl script)

encoding

 credentials in base64

 exchange of credentials

 HTML in messages to avoid spam detection

encryption, TLS

end of email message, indicating in SMTP

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

enhanced SMTP (ESMTP)

envelope addresses

 address masquerading and

 faking by spammers

 strict formatting rules in SMTP RFC

error_service_name parameter

errors

 codes for, SMTP

 compile time

 email, notifications for

 host

 lookup problems

 mailing list, sending notifications to list owner 2nd

 messages about deferred or bounced email

 run time

ESMTP (enhanced SMTP)

ETRN command

expand_owner_alias parameter

expansion of incomplete email addresses, turning off

Experimental Release package

export_environment parameter

external databases

 using for lookup values

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

fallback_relay parameter

fallback_transport parameter

false-positive spam identification

fast flushing 2nd

fast_flush_domains parameter 2nd 3rd

fast_flush_refresh_time parameter

Fax deliveries, configuring Postfix for

fcnt (locking type)

fifo

file locking

file permissions, Majordomo and

filenames as alias targets

files (specified in alias files), deliveries to

filter_destination_recipient_limit parameter

fingerprints for client certificates

flexibility (of Postfix)

flock (locking type)

flush daemon

 wakeup for

flushing queued messages

 fast flushing

fork_attempts parameter

forward_expansion_filter parameter

forward_path parameter

forwarding email 2nd [See also alias files; aliases]

 aliases and

 by local delivery agent

 local delivery

 virtual alias messages

frequently asked questions

fully qualified domain names, strict syntax restrictions based on

fully qualified hostname

 rejection of client requests based on

 system

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

gateways

 inbound mail

 outbound mail

 UUCP, setting up

generic restriction rules 2nd

gethostname function

groups

 deliveries to virtual mailbox files

 group id (GID) for process invoking Mailman

 postdrop group

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

hard links, chroot and

hash type (lookup table database)

hash_queue_depth parameter

header checks

 comparing with patterns in lookup table

 content filtering with

header_address_token_limit parameter

header_checks parameter 2nd

 regular expressions in file

header_size_limit parameter

headers

 address masquerading

 checking in client-based spam detection

 Delivered-To:

 fields in

 insertion by trivial-rewrite daemon

 mailing list messages, example of

 To: address in

HELO command (SMTP)

 requiring with strict syntax parameter

 restriction list, tracing

 smtpd_helo restrictions

hiding names of internal hosts

hierarchical naming of hosts

hold queue

 messages marked with exclamation point (!)

 moving messages into

 moving messages out of

 placing message in after client access map check

 placing messages in after content checking

home_mailbox parameter 2nd

host [See also DNS; hostnames]2nd

 destination, for inet transports

 inet socket

 lookup problems

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

 tool

hosting multiple domains

 delivery to commands

 automatic reply program

 configuring virtual auto-responder

 configuring virtual mailing list manager

 mailbox file ownership

 Postfix configuration for, deciding on

 separate domains with system accounts

 separate domains with virtual accounts

 catachall addresses

 mailbox file ownership

 virtual aliases

 separate message store

 shared domains with system accounts

hostname command (Unix)

hostnames

 client restrictions based on strict syntax

 client-based rules, restrictions for checking

 connected SMTP client, sent with HELO

 for mail exchangers, in MX records

 identifying spam from

 mapping to IP addresses [See also DNS]

 mapping to IP addresses to

 masquerading

 spam blocking based on during SMTP conversation

 system

 fully qualified

 parameters dealing with

hosts parameter, seting for MySQL

hours (h)

HTML code in message body to avoid spam detection 2nd

https

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

ignore_mx_lookup_error parameter

ignoring headers or lines from body of message

IMAP [See also POP/IMAP]2nd

 Cyrus IMAP

 POP versus

in_flow_delay parameter

inbound mail gateway

include files

 as alias targets

 security risks with

incoming email, limiting

incoming queue 2nd

incomplete email addresses, turning off address completion for

inet sockets

 LMTP server using

inet target

info file

initial_destination_concurrency parameter 2nd

initialization scripts for Unix systems

input/output

 standard input and standard output, Unix

installing daemon-based content filter

installing Postfix 2nd

 upgrading

Internet

 email and

 major email protocols

 MDA (message delivery agent)

 MTAs (mail transfer agents)

 MUAs (mail user agents)

 software packages for email

Internet Engineering Task Force (IETF)

 web site

Internet Mail Application Protocol [See IMAP]

IP addresses

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

 client-based rules, restrictions for checking

 dynamic, SMTP authentication of client

 for mail exchangers, in MX records

 identifying spam from 2nd

 mapping hostnames to [See DNS]

 PTR records associated with

 for remote users

 reverse lookup of hostname for

ipc_idle parameter

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

Kerberos authentication

key agreement

key/value pairs

 in canonical maps lookup table

 in lookup tables, format of

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

labeling spam and delivering with spam tag

LDAP 2nd

 compiling

 configuration

 directory

 example Postfix/LDAP configuration

 Postfix support for, checking

left hand side (or LHS) of email addresses

line continuation

 in lookup table files

 in main.cf file

line_length_limit parameter 2nd

link files, chroot and

listing messages in queues

lists, parameters that accept

 lookup tables and

LMTP (Local Mail Transfer Protocol) 2nd

 Postfix and Cyrus IMAP

 Postfix and Cyrus IMAP example

lmtp delivery agent

lmtp_connect_timeout parameter

lmtp_data_init_timeout parameter

lmtp_lhlo_timeout parameter

lmtp_quit_timeout parameter

lmtp_tcp_port parameter

local addresses

 LHS aliases

local delivery

 .forward files

 alias

 domain listings in mydestination parameter

 Local Mail Transfer Protocol [See LMTP]

 mailbox

 message store formats

 maildir

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

 mbox

 mbox versus maildir

 recipients, listing of

local delivery agent 2nd 3rd

local delivery transport

local domains

 virtual mailing list, parallel version of

local email submission (to Postfix)

local part, email addresses

 my_origin, appended to supply domain

 searching for in lookup tables

local_destination_concurrency_limit parameter 2nd

local_recipient_maps parameter 2nd

 configuring for LDAP

 configuring for MySQL/Postfix

 preventing rejection of mail for unknown users

 setting to query LDAP directory

local_transport parameter

 LMTP and Unix domain socket, using

 Postfix delivery of messages to Cyrus IMAP

locking files

logging

 mail log file

 Postfix startup problems

 SMTP

 syslog daemon (syslogd)

 verbose, turning on

LOGIN authentication mechanism

login names (Unix)

lookup tables 2nd

 access maps

 aliases [See alias files]

 assigning parameters to

 assigning to canonical_maps

 canonical addresses, mapping

 canonical_maps

 content checking

 regular expressions in

 database formats

 default directory for

 dynamic updates of user IP addresses

 format of

 other formats

 parameters that take lists

 regular expression

 relocated addresses or domains

 search order in

 sender addresses mapped to SASL logins

 transport

 for virtual mailbox addresses

 virtual alias addresses 2nd

luser_relay parameter 2nd

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

mail [See also email, Internet]

 incoming, limiting

 relaying

 backup MX

 client authentication for

 inbound mail gateway

 outbound

 transport maps

 UUCP, fax and others

mail delivery agents [See MDAs]

mail delivery loops

 Majordomo moderator approval and

 preventing with myhostname values

mail exchangers

 A records for

 aliases and

 backup MX

 fast flushing

 relay recipients

 DNS MX records 2nd [See also MX records]3rd

 host preference values

 hostname instead of IP address in MX record

 Postfix server as MX host

 preference values in MX records

MAIL FROM command (SMTP) 2nd

 checking address supplied by client with

 no valid DNS entry with

 reject_unknown_sender_domain rule and

mail log file

mail servers, DNS and

mail transfer agents [See MTAs]2nd [See MTAs]

mail user agents [See MUAs]

mail_owner parameter 2nd

mail_spool_directory parameter 2nd

mailbox access [See message stores POP/IMAP]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

mailbox delivery

mailbox file ownership

mailbox names, required (RFC 2142)

mailbox_command parameter

mailbox_delivery_lock parameter

mailbox_transport parameter

 Postfix, passing messages to Cyrus IMAP

maildir format

 configuring Postfix to use

 mbox versus

 virtual mailbox files

maildrop directory 2nd

mailing list for virtual domain, configuring manager for

Mailing List Managers [See MLMs]

mailing lists

 additional alias files for

 creating simple

 MLMs

 Mailman

 Majordomo

 owners of

 separate list files

 simple, creating through alias facility

 testing by sending message to alias

Mailman

 configure, running with GID for mailman group

 creating a list

 aliases, storing in separate file

 initializing mailing list with newlist

 group id (GID) of invoking process

 Python, requirement for

mailman user account and group name

mailq command

main.cf

 configuration for components, overriding in master.cf

main.cf file 2nd

 changes in, reloading Postfix for

 configuration variables

 editing

 limits on incoming mail, configuring

 line continuation in

 multiple values for parameters

 pointer to file containing

 rules (Postfix UBE), default setting for

 strict syntax parameters

Majordomo

 aliases table

 creating a list

 aliases database

 aliases file

 info file message to new members

 obtaining and installing Majordomo

 Perl, verifying for

 potential problems with file permissions

 subscribing to the list

 testing installation

majordomo.cf file

malicious program sending garbage commands

man pages

 with Postfix distribution

man-in-the-middle attacks

manpage_directory parameter

MANPATH variable

map types

 alias files

 regular expression lookup tables

masquerade_classes parameter

masquerade_domains parameter 2nd

 preserving domain names from stripping

 setting to hide/show subdomains

masquerade_exceptions parameter

masquerading hostnames

master daemon 2nd

master.cf file 2nd

 chroot

 chrooting individual components

 command (to execute a service)

 filtering of messages delivered by smtpd

 maxproc 2nd

 overriding configuration information in main.cf

 private

 sample file

 service name

 transport

 transport type 2nd

 unpriv

 wakeup

matching patterns [See regular expressions]

max_idle parameter

maximal_backoff_time parameter 2nd

maximal_queue_lifetime parameter 2nd

maxproc (master.cf) 2nd

mbox format 2nd

 virtual mailbox files

MDAs (mail delivery agents)

 content filtering by

 defined

 spam filtering

 specialized, using to set up per-user UBE rules

message ID

message stores

 delivery to nonstandard with LMTP

 formats

 maildir 2nd

 mbox 2nd

 mbox versus maildir

 Postfix and POP/IMAP agreement on

 message retrieval with POP and IMAP

 separate, hosting virtual domains with

 shell access to (on Unix)

message_size_limit parameter 2nd

messages, email

 content-based spam detection

 delivery by Postfix

 local

 other delivery agents

 other messages

 relay messages

 virtual alias messages

 virtual mailbox messages

 format for message and address in header (RFC 2822)

 format of

 how they enter Postfix system

 email forwarding

 email notifications

 local email submission

 network email

 inspecting content for prhrases common to spam

 queueing by Postfix

 spam, actions Postfix can take with 2nd

 tracing through Postfix

MIME encoding

 converting strings to

mime_header_checks parameter 2nd

minimal_backoff_time parameter 2nd

minutes (m)

MLMs (Mailing List Managers) 2nd

 Mailman

 configure, running with mailman GID

 creating a list

 Python, requirement for

 Majordomo

 creating list

mmencode command

modular design, Postfix

MTAs (mail transfer agents)

 content filtering

 defined

 mail exchangers, specified in MX records

 message headers and

 rejecting or bouncing messages

 routing email with DNS MX records

 SMTP protocol, use of

MUAs (mail user agents)

 content filtering by

 defined

 message headers and

 POP/IMAP and SMTP

 POP/IMAP servers, message retrieval from

 SMTP protocol, use of

 spam filtering

mutual_auth (password mechanism)

MX records

 backup MX

 DNS checking rules, client restrictions based on

 domains without

 host preference values

 Postfix lookups of

 rules for

mydestination parameter 2nd

 destination domains handled by local transport

 virtual domains, adding to

mydomain parameter 2nd

myhostname parameter 2nd

 daemon-based filters and

mynetworks parameter 2nd

 configuring for daemon-based filter

 outbound mail relay

mynetworks_style parameter

myorigin parameter 2nd 3rd

MySQL 2nd

 compiling

 configuration of

 MySQL parameters

 example of MySQL/Postfix configuration

 Postfix support for, checking

mysql-local.cf file

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

named pipes (fifo transport type)

names

 fifo transport type

 inet transport in master.cf

 unix transport type

nameservers for domains

namespaces (separate), for virtual domains

nested_header_checks parameter

network email

 entering Postfix system

 message delivery with Postfix

network/netmask notation

networks

 deliveries between mail systems on same

 IP addresses, lookup tables for lists of

 sockets (inet transportation type)

new directory (maildir)

newaliases command 2nd 3rd 4th

newaliases_path parameter

newlist command (Mailman)

NIS

noactive (password mechanism)

noanonymous (password mechanism)

nobody account

nodictionary (password mechanism)

non_fqdn_reject_code parameter

noplaintext (password mechanims)

notifications of email errors [See also errors]2nd 3rd

notify_classes parameter 2nd

nslookup tool

nsswitch.conf file

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

Official Release package

One-Time Passwords [See OTP authentication mechanism]

open relays 2nd

 anonymous authentication mechanism and

 DNS-based blacklists of

 preventing with Postfix UBE rules

openssl command

 generating public/private key for user

 generating public/private keys for your server

 signing your own certificate

OpenSSL libraries

openssl x509 command

operating systems, precompiled Postfix packages for

other client checks (restrictions)

OTP authentication mechanism

outbound mail relay

outgoing messages, controlling resources for

owner_request_special parameter

owners of mailing lists, bounce notification message to

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

PAM, using as SASL authentication framework

parameters

 content-checking

 documentation in sample files

 for domain types

 LDAP

 main.cf and sample configuration files, listing in

 MySQL

 SASL password authentication

 strict syntax

 system hostname and domain

 TLS within SMTP client

 TLS within SMTP server

parent_domain_matches_subdomains parameter 2nd

password parameter, setting for MySQL

passwords

 authentication framework, choosing

 authentication mechanism for, specifying

 protecting with TLS

 SASL authentication for storing and verifying

 SASL, using as authentication framework

 Unix system passwords as SASL framework

pathnames

paths, specifying with variable expansion

pattern matching [See regular expressions]

pcre (Perl-compatible regular expressions)

PEM format for certificates

performance, Postfix and

Perl

 deleting queued messages by email address, script for

 encode_sasl_plain.pl script

 Majordomo approve script

 Majordomo, requirement for

Perl-compatible regular expressions (pcre)

permit restriction 2nd

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

permit_auth_destination parameter

permit_mynetworks parameter 2nd

permit_sasl_authenticated restriction 2nd

permit_tls_clientcerts

persistent message storage

PGP

pickup daemon 2nd

 wakeup for

pickup_service_name parameter

pipe daemon

 delivering messages through

 executing your own commands with

 pipe delivery agent

 variable expansion of recipients list

pipelining, reject_unauth_pipelining rule

pipes, named (fifo transport)

PKCS12 format, client certificates

PLAIN mechanism (authentication) 2nd

plaintext passwords

 noplaintext mechanism

 use with saslauthd daemon

plug-ins, auxprop

pointers to files

POP

pop-before-smtp

POP/IMAP

 clients logging on before SMTP authentication

 email software packages

 handing messages to in LMTP protocol

 local delivery and

 LMTP

 maildir message store format

 mbox message store format

 message store format, choice of

 nonstandard message stores

 mailbox access and

 passing mail for virtual domains to

 POP versus IMAP

 Postfix deliveries to virtual accounts and

 Postfix, cooperation with

 separate user database, sharing

 virtual mailboxes, setting up

Portable Operating System Interface (POSIX)

ports

 destination, for inet transport delivery

 inet socket

 well-known, for SMTP (port 25)

POSIX extended regular expressions [See regexp]

Post Office Protocol [See POP POP/IMAP]

postalias command 2nd

postcat command

 -q option (displaying queue contents)

 shell script wrapper for

postconf command 2nd

 -h myhostname

 -l (locking) option

 -m (map) option

 -m option, checking for MySQL and LDAP support

postdrop command 2nd

postdrop group

Postfix

 compatibility with Sendmail

 online documentation, web sites, and mailing list

 role in message delivery

 web site for information and source code

postfix command 2nd

 starting, stopping, and reloading Postfix

postfix user

postkick command

postlock command

postlog command

postmap command 2nd

 -q option, testing lookup tables

 checking LDAP configuration with

 checking MySQL configuration file

 executing against clientcerts file

 executing against virtual alias lookup table

 executing on virtual aliases file

 testing canonical file with

 testing regular expressions with

postmaster

 error notices sent to

postqueue command 2nd 3rd

 -f (flush) option 2nd

 -p option, listing all messages with

 -s (site) option 2nd

postsuper command 2nd 3rd

 -d (delete) option

 -d ALL (deleting all queued messages)

 -h (hold) option

 -H option (moving message to normal queue)

 -r (requeue) option

precompiled Postfix packages for operating systems

preference values for mail exchangers

 Postfix SMTP client, handling by

printf command

private column (master.cf)

privilege levels for processes

 unpriv (master.cf)

process_id_directory parameter

processes

 limit to (maxproc, in master.cf)

 limiting for available transports

 Postfix, security and

 pseudo account for

 shells and

 Unix, standard input/standard output

protocols for email

 IMAP

 POP

 POP/IMAP, mailbox access and

 SMTP

 email submission and

proxy servers, abuse by spammers

proxy_interfaces parameter

pseudo-accounts

 for daemon-based filter

 for filter program

 on Unix

PTR records

 DNS checking rules, client restrictions based on

 reverse mapping to a hostname

public-key cryptography

 client certificates

 generating server certificates

Python, Mailman requirement for

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

qmgr daemon [See queue management]

qmgr_clog_warn_time parameter

qmgr_message_active_limit parameter

qmgr_message_recipient_minimum parameter

qmqpd_error_delay parameter

queue ID

 displaying queue contents by

queue management

 qmgr daemon, how it works

 corrupt messages

 deferred mail

 error notifications

 message delivery

 queue scheduling

 tools for

 deleting messages

 displaying messages

 flushing messages

 holding messages

 listing messages

 requeuing messages

queue manager [See also queue management]2nd

 network email, handling

queue manager, Postfix

queue scans

 scheduled intervals for

 specifying time between

queue_directory parameter 2nd

 chroot location, specifying

 root directories for chrooted services

queue_minfree parameter

queue_run_delay parameter 2nd 3rd

queueing messages

queues [See also (see also queue management; entries under individual queue names]]

 default Postfix directory for

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

 incoming, active, deferred, hold, and corrupt

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

rbl_reply_maps parameter

RCPT TO command (SMTP) 2nd

 checking address client supplied with

 rejection of client after

realtime blacklists

 client restrictions based on

 restrictions based on

Received: header

receiving limits

 errors from a client

 recipients for a single message

 for any transport type 2nd

receiving mail, DNS and

receiving messages (Postfix system) 2nd

 email forwarding

 email notifications

 local email submission

 network email

recipient addresses

 for queued messages

recipient_canonical_maps parameter 2nd

recipients

 for error messages

 local delivery, listing of

 multiple, for a message

 relayed mail

 variable expansion of list by pipe daemon

recursive lookups

redelivery attempts for deferred messages

regexp

regular expressions

 content checking parameters, lookup tables for

 in lookup tables

 lookup tables for access maps

 lookup tables for content checking

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

 Perl-compatible (pcre)

 POSIX extended (regexp)

 testing with postmap command

reject restriction 2nd

reject_code parameter

reject_invalid_hostname parameter 2nd 3rd

reject_non_fqdn_hostname

reject_non_fqdn_recipient

reject_non_fqdn_sender

reject_rbl_client

reject_rhsbl_client

reject_rhsbl_sender

reject_sender_login_mismatch

reject_unauth_destination parameter 2nd

reject_unauth_pipelining

reject_unknown_client

reject_unknown_hostname

reject_unknown_recipient_domain

reject_unknown_sender_domain 2nd

rejected messages 2nd [See also response codes]

 default time lapse before notifying client

 Postfix reply codes to client

rejecting messages

 after content checking

 after checking access maps for clients

 spam

 choosing 4xx or 5xx response codes

 immediately during SMTP conversation

 for unknown users

relay addresses

 delivery of messages to

relay control

 client-side certificate authentication

 dynamic IP solutions

 restricting relay access

 SMTP authentication

relay delivery transport

relay domains

relay_domains parameter 2nd 3rd

 configuring mail gateway to internal system

 sites

 flushing messages destined for

relay_domains_reject_code parameter

relay_recipient_maps parameter

 lists of valid recipients for

relay_transport parameter

relayhost parameter

relaying mail

 backup MX

 fast flushing

 relay recipients list

 client authentication for

 inbound mail gateway

 open relays, use by spammers

 outbound

 relay recipients

 spammer practices

 systems hijacked by spammers for

 transport maps

 entries

 postponing mail delivery

 UUCP, fax and others

reliability (of Postfix)

reloading Postfix

 for main.cf changes to take effect

 postfix reload command, using

relocated users, address rewriting for

relocated_maps parameter 2nd 3rd

remote users

 IP addresses for

 SASL authentication of

reply codes [See response codes]

repository for suspected spam

Request for Comments [See RFCs]

requeuing messages

resolv.conf file

resolve_dequoted_address parameter

resource errors

resource records

 command-line tools for querying

response codes

 hard and soft reject responses

 for messages rejected by Postfix

 rejected request from unknown client

 rejecting spam with 4xx or 5xx codes

 request rejected for unknown hostname

 requests rejected for non fully-qualified hostname

 requests rejected for non fully-qualified recipient address

 requests rejected for unknown recipient domain

 requests rejected for unknown sender domain

 SMTP 2nd

restriction classes 2nd

 examples of

 exceptions to normal restrictions

restrictions

 assigned to client-detection rules

 access maps

 definitions of

 DNS restrictions

 example restriction

 generic restrictions

 how they work

 listing

 other

 realtime blacklists

 SMTP rules and restrictions 2nd

 strict syntax

 testing new

 permit_sasl_authenticated

 Postfix anti-spam example

 reject_sender_login_mismatch

 tracing a restriction list

retrieving mail from message store [See POP/IMAP]

reverse lookup of IP addresses to hostnames

reverse PTR mapping to a hostname

RFC 2142 (required mailbox names)

RFC 2554, "SMTP Service Extension for Authentication"

RFC 2821 (SMTP protocol)

RFC 2822 (email headers, message and address format)

RFC 3207, SMTP extension known as STARTTLS

RFC 822 (email message format)

RFC 882 (defining DNS service)

RFCs (Request for Comments)

right hand side (or RHS) of email addresses

root account

 # prompt

 aliases and owner identity

 services requiring root privileges

 system aliases pointed to

routing email

 DNS MX records

 rules for

 DNS, BIND configuration file

 incoming mail

 MX records

run time errors

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

S/Key [See OTP authentication mechanism]

S/MIME

sample configuration files

sample_directory parameter 2nd

SASL authentication 2nd

 choosing authentication framework

 choosing authentication mechanism

 client authentication for STMP server

 configuring Postfix for

 configuration summary

 enabling SASL

 parameters for SASL authentication

 permitting authenticated users

 preventing sender spoofing

 specifying a framework

 specifying password mechanisms

 overview

 Postfix, using with

 requirements for

 SASLv2

 testing authentication configuration

 SMTP client authentication

saslauthd daemon

 -a option

sasldb auxiliary property plug-in

saslpasswd2 command

saving spam into a suspected spam repository

search order, lookup tables

seconds (s)

security 2nd

 chroot environment for services

 design factors preventing attacks

 include files and

 modular Postfix architecture

 shells and processes

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

 Simple Authentication and Security Layer [See SASL]

 Transport Layer Security [See TLS]

select_field parameter 2nd 3rd

sender

 of message in queue

sender addresses

 indicated in MAIL FROM command [See MAIL FROM command]

 spoofing, prevention of

sender_canonical_maps parameter

sending mail, DNS and

 Postfix configuration options

 reverse PTR records

Sendmail

 -q option, specifying time between queue scans

 alias files, format compatible with

 Postfix compatibility with

 security problems as privileged process

sendmail command 2nd 3rd 4th

sendmail_path parameter

separate domains

 with system accounts

 with virtual accounts

service name (master.cf file)

session key (TLS)

setgid_group parameter

shared domains

shell script (wrapper for postcat command)

shells, processes and

showq_service_name parameter

signed certificate

 acting as your own CA

 converting to users' email client format

 server

Simple Authentication and Security Layer [See SASL authentication]

Simple Mail Transport Protocol [See SMTP]

sites

 blacklisted [See blacklisted sites]

 eligible for fast flushing

 flushing messages destined for

size

 limiting for incoming messages

 of messages in queue

SMTP 2nd

 client authentication

 enabling

 client authentication with SASL protocol

 client-based rules and restrictions, listing of

 client-based spam detection during transaction

 conversation, with client-detection rules

 deferring all deliveries

 email software packages

 email submission

 enhancements for

 envelope addresses, specifying

 ETRN command

 logging of conversation

 mail delivery outside of system

 overview of

 Postfix/TLS configuration

 receipt/delivery of messages by Postfix

 rejecting spam immediately during conversation

 response codes for Postfix requests

 response codes, listed with definitions

 SASL authentication for telnet client

 STARTTLS extension

 strict syntax

 checking restrictions, client-based rules

 parameters

 TLS client, configuring

SMTP authentication

 for clients with dynamic IP addresses

smtp client service, creating specialized

smtp delivery agent 2nd

smtp transport

smtp_bind_address parameter

smtp_connect_timeout parameter

smtp_data_done_timeout parameter

smtp_data_xfer_timeout parameter

smtp_destination_concurrency_limit parameter

smtp_helo_timeout parameter

smtp_mail_timeout parameter

smtp_pix_workaround_delay_time parameter

smtp_quit_timeout parameter

smtp_randomize_addresses parameter

smtp_rcpt_timeout parameter

smtp_sasl_auth_enable parameter

smtp_sasl_password_maps parameter 2nd

smtp_sasl_security_options parameter

smtp_skip_5xx_greeting parameter

smtp_tls_CAfile parameter

smtp_tls_cert_file parameter

smtp_tls_key_file parameter

smtp_use_tls parameter

smtpd daemon 2nd

 limits on incoming mail, enforcement of

smtpd.conf file

 saslauthd, Postfix use for authentication

smtpd_banner parameter

smtpd_client_restrictions

 daemon-based filters and

smtpd_client_restrictions parameter

smtpd_data_restrictions parameters 2nd

smtpd_delay_reject parameter

smtpd_error_sleep_time parameter 2nd

smtpd_expansion_filter parameter

smtpd_hard_error_limit parameter

smtpd_helo_required parameter 2nd

smtpd_helo_restrictions 2nd 3rd

 daemon-based filters and

smtpd_history_flush_threshold parameter

smtpd_noop_commands parameter

smtpd_recipient_limit parameter

smtpd_recipient_restrictions parameter 2nd 3rd

 adding permit_tls_clientcerts to restriction rules

 setting for daemon-based filter

smtpd_restriction_classes parameter

smtpd_sasl_auth_enable parameter 2nd

smtpd_sasl_security_options parameter

smtpd_sender_login_maps parameter

smtpd_sender_restrictions 2nd

 daemon-based filters and

smtpd_soft_error_limit parameter 2nd

smtpd_tls_ask_ccert parameter

smtpd_tls_CAfile parameter

smtpd_tls_CApath parameter

smtpd_tls_cert_file parameter

smtpd_tls_key_file parameter

smtpd_use_tls parameter

socket_type parameter

sockets

 LMTP server

 SMTP client connections to Postfix

 Unix-domain or TCP, for LMTP deliveries

soft_bounce parameter

 testing new restrictions

software errors

software packages for Internet email

spam

 anti-spam actions

 blocking with relay control

 configuring Postfix to check

 categories of spam detection

 client-detection rules

 content checking

 customized restriction classes

 strict syntax parameters

 detection of

 client-based

 content-based

 misidentifying legitimate messages as spam

 primary methods for

 spammer tactics to circumvent

 dishonest components to

 incomplete addresses, use of

 luser_relay parameter and

 open realys

 Postfix anti-spam example

 problems caused by

 restriction list, tracing

special characters, quoting in alias definitions

spoofing sender addresses, preventing

SQL statement created by Postfix

SSL (Secure Sockets Layer) [See TLS]

standard error (stderr)

standard input (stdin)

standard output (stdout)

standards adherence, filtering spam by [See strict syntax checking]

starting Postfix with postfix start command

starting Postfix, first time

 aliases file, system

 hostname for system

STARTTLS command

status codes, SMTP server replies

stopping Postfix (postfix stop command)

storage of email messages

strace

strict syntax

 parameters for

strict syntax checking

 client restrictions based on 2nd

 parameters for

strict_7bit_headers parameter

strict_8bitmime_body parameter

strict_rfc821_envelopes parameter 2nd

strong authentication

subdomains, masquerade domain names and

subnets, specifying with network/netmask notation

subscribing to Majordomo list

superuser [See root account]

swap_bangpath parameter

symbolic names for ports

symlinks

 chroot and

 for initialization script

syntax, strict adherence to standards [See strict syntax checking]

syslog daemon

syslog_name parameter

system accounts

 separate virtual domains with

 shared domains with

system aliases

system log files

system startup

 running Postfix at

 writing an initialization script

 starting saslauthd automatically at

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

table parameter (MySQL)

targets for aliases

 restricting in alias files

TCP sockets, listening for LMTP deliveries

telnet, testing SASL authentication with

text editors, editing main.cf file

time limits on deferred mail redelivery attempts

time units 2nd

TLS (Transport Layer Security) 2nd 3rd

 certificates

 becoming a CA

 client-side

 generating server certificates

 installing CA certificates

 public-key cryptography, use of

 compiling

 configuring TLS-SMTP client

 Postfix and

 Postfix/TLS configuration

 summary of

tmp directory (maildir)

To: address in email message headers

tracing message through Postfix

tracing service failures in chroot environment

Transport Layer Security [See TLS]

transport maps

 entries

 host

 port

 right hand side values, formats for

 transport

 postponing mail delivery

 deferring delivery

 deferring mail relay

transport table, listing of delivery agents

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

transport types

 inet, unix, and fifo

 master.cf file entry for

 valid service names for

transport_destination_recipient_limit parameter 2nd

transport_maps parameter

 configuring for LDAP

 lookup table, search order in

 pointing to transport lookup table

transport_retry_time parameter

transports

 message delivery, configuration for

 Postfix delivery

trivial-rewrite daemon 2nd

 routing information, determining for queue manager

truss

tusc

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

UBE (Unsolicited Bulk Email) [See spam]

UIDs (user ids), Unix

undeliverable messages, information about

undisclosed_recipients_header parameter

Unix

 command prompts

 hostname command

 initialization scripts for

 login names and UIDs

 long lines, continuation with backslashes

 man pages

 Postfix and

 pseudo accounts

 shell access to message store

 shell process, Postfix and

 standard input/standard output

 superuser (root) account

 system passwords as SASL authentication framework

unix (transportation type)

Unix-domain sockets, listening for LMTP deliveries

unknown_address_reject_code parameter 2nd

unknown_client_reject_code parameter 2nd

unknown_hostname_reject_code parameter

unknown_local_recipient_reject_code parameter

unknown_virtual_alias_reject_code parameter

Unsolicited Bulk Email (UBE) [See spam]

upgrading Postfix

user accounts

 SASL, creating for SMTP server

 separate domains with virtual accounts

 mailbox file ownership

 system

 separate virtual domains with

 shared domains with

 system and virtual

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

 virtual, separate domains with

user parameter, setting for MySQL

users

 .forward files, checking by local delivery agent

 NIS database of

 passwords [See passwords]

 postfix user

 relocated, address rewriting for

 spam, labeling for

 unknown

UUCP, setting up gateway for

uuencoding

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

variable expansion

variables

 configuration

 specifying path with variable expansion

Venema, Wietse

verbose logging information

verp_delimiter_filter parameter

Vexira AntiVirus for mail servers

virtual accounts

 separate domains with

 separate password database for SMTP users

virtual alias addresses 2nd

virtual aliases

 catchall addresses with

virtual delivery agent 2nd

virtual delivery transport

virtual domains 2nd

 DNS configuration

 MySQL configuration

 Postfix handling of mail for

virtual mailbox addresses

virtual mailbox catchall address

virtual mailbox domains, virtual delivery transport for

virtual mailboxes

virtual mailing list manager, configuring

virtual_alias_domains parameter 2nd 3rd

virtual_alias_maps parameter 2nd 3rd 4th 5th 6th

virtual_gid_maps parameter

virtual_mailbox_base parameter 2nd 3rd

virtual_mailbox_domains parameter 2nd 3rd

 listing virtual domains for mail acceptance

virtual_mailbox_limit parameter

virtual_mailbox_maps parameter 2nd 3rd

 pointing to lookup file with valid addresses

virtual_transport parameter 2nd

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

virtual_uid_maps parameter

viruses

 anti-virus filters 2nd

 scanning for with header checks

 Vexira AntiVirus program

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

wakeup (master.cf)

warn_if_reject parameter

warning message after content checking

web site, Postfix online documentation

weeks (w)

well-known ports (port 25 for SMTP servers)

where_field parameter (MySQL) 2nd

whitelist applications (pre-approval for sending mail)

WHOSON

[Team LiB]

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/NFO/lib.html

	Disco local
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_main.html
	Team LiB
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_toc.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-preface-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-preface-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-preface-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-preface-3-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-preface-3-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-preface-3-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-preface-3-sect-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-preface-3-sect-5.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-1-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-1-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-1-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-1-sect-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-1-sect-5.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-2-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-2-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-3-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-3-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-3-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-3-sect-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-3-sect-5.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-4-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-4-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-4-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-4-sect-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-4-sect-5.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-4-sect-6.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-4-sect-7.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-4-sect-8.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-4-sect-9.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-5.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-5-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-5-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-6.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-6-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-6-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-6-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-6-sect-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-7.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-7-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-7-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-7-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-7-sect-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-7-sect-5.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-8.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-8-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-8-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-8-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-8-sect-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-8-sect-5.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-9.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-9-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-9-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-9-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-9-sect-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-9-sect-5.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-10.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-10-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-10-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11-sect-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11-sect-5.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11-sect-6.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11-sect-7.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11-sect-8.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11-sect-9.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11-sect-10.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-11-sect-11.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-12.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-12-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-12-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-12-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-12-sect-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-12-sect-5.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-13.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-13-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-13-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-14.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-14-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-14-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-14-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-15.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-15-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-chp-15-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-a.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-a-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-b.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-c.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-c-sect-1.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-c-sect-2.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-c-sect-3.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-c-sect-4.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-c-sect-5.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-c-sect-6.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-c-sect-7.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-app-d.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_postfix-colophon.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_SYMBOL.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_A.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_B.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_C.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_D.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_E.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_F.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_G.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_H.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_I.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_K.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_L.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_M.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_N.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_O.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_P.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_Q.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_R.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_S.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_T.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_U.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_V.html
	file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Postfix%20The%20Definitive%20Guide/0596002122_index_W.html

