
Programming Python, 2nd Edition, O’Reilly

IT-SC book 1

Programming Python, 2nd Edition

Mark Lutz
Publisher: O'Reilly
2nd Edition March 2001
ISBN: 0-596-00085-5, 1256 pages

Programming Python focuses on advanced applications of
Python. Endorsed by Python creator Guido van Rossum, it
demonstrates advanced Python techniques, and addresses
software design issues such as reusability and object-
oriented programming. The enclosed platform-neutral CD-
ROM (view CD-ROM content online at
http://examples.oreilly.com/python2) has book examples
and various Python-related packages, including the full
Python Version 2.0 source code distribution.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 2

Enjoy the life together.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 3

Foreword

Preface
 "And Now for Something Completely Different . . . Again"
 Signs of the Python Times
 Why This Edition?
 Major Changes in This Edition
 Using the Examples and Demos
 Conventions Used in This Book
 Where to Look for Updates
 Contacting O'Reilly
 Acknowledgments

1. Introducing Python
 1.1 "And Now for Something Completely Different"
 1.2 The Life of Python
 1.3 The Compulsory Features List
 1.4 What's Python Good For?
 1.5 What's Python Not Good For?

I: System Interfaces

2. System Tools
 2.1 "The os.path to Knowledge"
 2.2 Why Python Here?
 2.3 System Scripting Overview
 2.4 The sys Module
 2.5 The os Module
 2.6 Script Execution Context
 2.7 Current Working Directory
 2.8 Command-Line Arguments
 2.9 Shell Environment Variables
 2.10 Standard Streams
 2.11 File Tools
 2.12 Directory Tools

3. Parallel System Tools
 3.1 "Telling the Monkeys What to Do"
 3.2 Forking Processes
 3.3 Threads
 3.4 Program Exits
 3.5 Interprocess Communication
 3.6 Pipes
 3.7 Signals
 3.8 Launching Programs on Windows
 3.9 Other System Tools

4. Larger System Examples I
 4.1 "Splits and Joins and Alien Invasions"
 4.2 Splitting and Joining Files
 4.3 Generating Forward-Link Web Pages
 4.4 A Regression Test Script
 4.5 Packing and Unpacking Files

Programming Python, 2nd Edition, O’Reilly

IT-SC book 4

 4.6 User-Friendly Program Launchers

5. Larger System Examples II
 5.1 "The Greps of Wrath"
 5.2 Fixing DOS Line Ends
 5.3 Fixing DOS Filenames
 5.4 Searching Directory Trees
 5.5 Visitor: Walking Trees Generically
 5.6 Copying Directory Trees
 5.7 Deleting Directory Trees
 5.8 Comparing Directory Trees

II: GUI Programming

6. Graphical User Interfaces
 6.1 "Here's Looking at You, Kid"
 6.2 Python GUI Development Options
 6.3 Tkinter Overview
 6.4 Climbing the GUI Learning Curve
 6.5 The End of the Tutorial
 6.6 Python/Tkinter for Tcl/Tk Converts

7. A Tkinter Tour, Part 1
 7.1 "Widgets and Gadgets and GUIs, Oh My!"
 7.2 Configuring Widget Appearance
 7.3 Toplevel Windows
 7.4 Dialogs
 7.5 Binding Events
 7.6 Message and Entry
 7.7 Checkbutton, Radiobutton, and Scale
 7.8 Running GUI Code Three Ways
 7.9 Images

8. A Tkinter Tour, Part 2
 8.1 "On Today's Menu: Spam, Spam, and Spam"
 8.2 Menus
 8.3 Listboxes and Scrollbars
 8.4 Text
 8.5 Canvas
 8.6 Grids
 8.7 Time Tools, Threads, and Animation
 8.8 The End of the Tour
 8.9 The PyDemos and PyGadgets Launchers

9. Larger GUI Examples
 9.1 "Building a Better Mouse Trap"
 9.2 Advanced GUI Coding Techniques
 9.3 Complete Program Examples
 9.4 PyEdit: A Text Editor Program/Object
 9.5 PyView: An Image and Notes Slideshow
 9.6 PyDraw: Painting and Moving Graphics
 9.7 PyClock: An Analog/Digital Clock Widget
 9.8 PyToe: A Tic-Tac-Toe Game Widget

Programming Python, 2nd Edition, O’Reilly

IT-SC book 5

 9.9 Where to Go from Here

III: Internet Scripting

10. Network Scripting
 10.1 "Tune in, Log on, and Drop out"
 10.2 Plumbing the Internet
 10.3 Socket Programming
 10.4 Handling Multiple Clients
 10.5 A Simple Python File Server

11. Client-Side Scripting
 11.1 "Socket to Me!"
 11.2 Transferring Files over the Net
 11.3 Processing Internet Email
 11.4 The PyMailGui Email Client
 11.5 Other Client-Side Tools

12. Server-Side Scripting
 12.1 "Oh What a Tangled Web We Weave"
 12.2 What's a Server-Side CGI Script?
 12.3 Climbing the CGI Learning Curve
 12.4 The Hello World Selector
 12.5 Coding for Maintainability
 12.6 More on HTML and URL Escapes
 12.7 Sending Files to Clients and Servers

13. Larger Web Site Examples I
 13.1 "Things to Do When Visiting Chicago"
 13.2 The PyMailCgi Web Site
 13.3 The Root Page
 13.4 Sending Mail by SMTP
 13.5 Reading POP Email
 13.6 Utility Modules
 13.7 CGI Script Trade-offs

14. Larger Web Site Examples II
 14.1 "Typos Happen"
 14.2 The PyErrata Web Site
 14.3 The Root Page
 14.4 Browsing PyErrata Reports
 14.5 Submitting PyErrata Reports
 14.6 PyErrata Database Interfaces
 14.7 Administrative Tools
 14.8 Designing for Reuse and Growth

15. Advanced Internet Topics
 15.1 "Surfing on the Shoulders of Giants"
 15.2 Zope: A Web Publishing Framework
 15.3 HTMLgen: Web Pages from Objects
 15.4 JPython (Jython): Python for Java
 15.5 Grail: A Python-Based Web Browser
 15.6 Python Restricted Execution Mode

Programming Python, 2nd Edition, O’Reilly

IT-SC book 6

 15.7 XML Processing Tools
 15.8 Windows Web Scripting Extensions
 15.9 Python Server Pages
 15.10 Rolling Your Own Servers in Python

IV: Assorted Topics

16. Databases and Persistence
 16.1 "Give Me an Order of Persistence, but Hold the Pickles"
 16.2 Persistence Options in Python
 16.3 DBM Files
 16.4 Pickled Objects
 16.5 Shelve Files
 16.6 SQL Database Interfaces
 16.7 PyForm: A Persistent Object Viewer

17. Data Structures
 17.1 "Roses Are Red, Violets Are Blue; Lists Are Mutable, and So Is Class Foo"
 17.2 Implementing Stacks
 17.3 Implementing Sets
 17.4 Binary Search Trees
 17.5 Graph Searching
 17.6 Reversing Sequences
 17.7 Permuting Sequences
 17.8 Sorting Sequences
 17.9 Data Structures Versus Python Built-ins
 17.10 PyTree: A Generic Tree Object Viewer

18. Text and Language
 18.1 "See Jack Hack. Hack, Jack, Hack"
 18.2 Strategies for Parsing Text in Python
 18.3 String Module Utilities
 18.4 Regular Expression Matching
 18.5 Parser Generators
 18.6 Hand-Coded Parsers
 18.7 PyCalc: A Calculator Program/Object

V: Integration

19. Extending Python
 19.1 "I Am Lost at C"
 19.2 C Extensions Overview
 19.3 A Simple C Extension Module
 19.4 The SWIG Integration Code Generator
 19.5 Wrapping C Environment Calls
 19.6 A C Extension Module String Stack
 19.7 A C Extension Type String Stack
 19.8 Wrapping C++ Classes with SWIG

20. Embedding Python
 20.1 "Add Python. Mix Well. Repeat."
 20.2 C Embedding API Overview
 20.3 Basic Embedding Techniques

Programming Python, 2nd Edition, O’Reilly

IT-SC book 7

 20.4 Registering Callback Handler Objects
 20.5 Using Python Classes in C
 20.6 ppembed: A High-Level Embedding API
 20.7 Other Integration Topics

VI: The End

21. Conclusion: Python and the Development Cycle
 21.1 "That's the End of the Book, Now Here's the Meaning of Life"
 21.2 "Something's Wrong with the Way We Program Computers"
 21.3 The "Gilligan Factor"
 21.4 Doing the Right Thing
 21.5 Enter Python
 21.6 But What About That Bottleneck?
 21.7 On Sinking the Titanic
 21.8 So What's Python: The Sequel
 21.9 In the Final Analysis...
 21.10 Postscript to the Second Edition

A. Recent Python Changes
 A.1 Major Changes in 2.0
 A.2 Major Changes in 1.6
 A.3 Major Changes Between 1.3 and 1.5.2

B. Pragmatics
 B.1 Installing Python
 B.2 Book Examples Distribution
 B.3 Environment Configuration
 B.4 Running Python Programs
 B.5 Python Internet Resources

C. Python Versus C++

Colophon

Programming Python, 2nd Edition, O’Reilly

IT-SC book 8

Foreword

Less than five years ago, I wrote the Foreword for the first edition of Programming
Python. Since then, the book has changed about as much as the language and the
Python community! I no longer feel the need to defend Python: the statistics and
developments listed in Mark's Preface speak for themselves.

In the past year, Python has made great strides. We released Python 2.0, a big step
forward, with new standard library features such as Unicode and XML support, and
several new syntactic constructs, including augmented assignment: you can now
write x += 1 instead of x = x+1. A few people wondered what the big deal was
(answer: instead of x, imagine dict[key] or list[index]), but overall this was a big hit
with those users who were already used to augmented assignment in other
languages.

Less warm was the welcome for the extended print statement, print>>file, a
shortcut for printing to a different file object than standard output. Personally, it's
the Python 2.0 feature I use most frequently, but most people who opened their
mouths about it found it an abomination. The discussion thread on the newsgroup
berating this simple language extension was one of the longest ever-apart from the
never-ending Python versus Perl thread.

Which brings me to the next topic. (No, not Python versus Perl. There are better
places to pick a fight than a Foreword.) I mean the speed of Python's evolution, a
topic dear to the heart of the author of this book. Every time I add a feature to
Python, another patch of Mark's hair turns gray-there goes another chapter out of
date! Especially the slew of new features added to Python 2.0, which appeared just
as he was working on this second edition, made him worry: what if Python 2.1 added
as many new things? The book would be out of date as soon as it was published!

Relax, Mark. Python will continue to evolve, but I promise that I won't remove things
that are in active use! For example, there was a lot of worry about the string
module. Now that string objects have methods, the string module is mostly
redundant. I wish I could declare it obsolete (or deprecated) to encourage Python
programmers to start using string methods instead. But given that a large majority
of existing Python code-even many standard library modules-imports the string
module, this change is obviously not going to happen overnight. The first likely
opportunity to remove the string module will be when we introduce Python 3000;
and even at that point, there will probably be a string module in the backwards
compatibility library for use with old code.

Python 3000?! Yes, that's the nickname for the next generation of the Python
interpreter. The name may be considered a pun on Windows 2000, or a reference to
Mystery Science Theater 3000, a suitably Pythonesque TV show with a cult following.
When will Python 3000 be released? Not for a loooooong time-although you won't
quite have to wait until the year 3000.

Originally, Python 3000 was intended to be a complete rewrite and redesign of the
language. It would allow me to make incompatible changes in order to fix problems
with the language design that weren't solvable in a backwards compatible way. The
current plan, however, is that the necessary changes will be introduced gradually

Programming Python, 2nd Edition, O’Reilly

IT-SC book 9

into the current Python 2.x line of development, with a clear transition path that
includes a period of backwards compatibility support.

Take, for example, integer division. In line with C, Python currently defines x/y with
two integer arguments to have an integer result. In other words, 1/2 yields 0! While
most dyed-in-the-wool programmers expect this, it's a continuing source of
confusion for newbies, who make up an ever-larger fraction of the (exponentially
growing) Python user population. From a numerical perspective, it really makes more
sense for the / operator to yield the same value regardless of the type of the
operands: after all, that's what all other numeric operators do. But we can't simply
change Python so that 1/2 yields 0.5, because (like removing the string module) it
would break too much existing code. What to do?

The solution, too complex to describe here in detail, will have to span several Python
releases, and involves gradually increasing pressure on Python programmers (first
through documentation, then through deprecation warnings, and eventually through
errors) to change their code. By the way, a framework for issuing warnings will be
introduced as part of Python 2.1. Sorry, Mark!

So don't expect the announcement of the release of Python 3000 any time soon.
Instead, one day you may find that you are already using Python 3000-only it won't
be called that, but rather something like Python 2.8.7. And most of what you've
learned in this book will still apply! Still, in the meantime, references to Python 3000
will abound; just know that this is intentionally vaporware in the purest sense of the
word. Rather than worry about Python 3000, continue to use and learn more about
the Python version that you do have.

I'd like to say a few words about Python's current development model. Until early
2000, there were hundreds of contributors to Python, but essentially all contributions
had to go through my inbox. To propose a change to Python, you would mail me a
context diff, which I would apply to my work version of Python, and if I liked it, I
would check it into my CVS source tree. (CVS is a source code version management
system, and the subject of several books.) Bug reports followed the same path,
except I also ended up having to come up with the patch. Clearly, with the
increasing number of contributions, my inbox became a bottleneck. What to do?

Fortunately, Python wasn't the only open source project with this problem, and a few
smart people at VA Linux came up with a solution: SourceForge! This is a dynamic
web site with a complete set of distributed project management tools available: a
public CVS repository, mailing lists (using Mailman, a very popular Python
application!), discussion forums, bug and patch managers, and a download area, all
made available to any open source project for the asking.

We currently have a development group of 30 volunteers with SourceForge checkin
privileges, and a development mailing list comprising twice as many folks. The
privileged volunteers have all sworn their allegiance to the BDFL (Benevolent Dictator
For Life-that's me :-). Introduction of major new features is regulated via a
lightweight system of proposals and feedback called Python Enhancement Proposals
(PEPs). Our PEP system proved so successful that it was copied almost verbatim by
the Tcl community when they made a similar transition from Cathedral to Bazaar.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 10

So, it is with confidence in Python's future that I give the floor to Mark Lutz.
Excellent job, Mark. And to finish with my favorite Monty Python quote: Take it
away, Eric, the orchestra leader!

Guido van Rossum
Reston, Virginia, January 2001

"And Now for Something Completely Different . . .
Again"

The first edition of this book was one of the first to present the Python language.
This second edition is an almost completely new advanced Python topics book,
designed to be a follow-up to the core language material in Learning Python and
supplemented by the reference material in Python Pocket Reference.

That is, this edition is focused on ways to use Python, rather than on the language
itself. Python development concepts are explored along the way -- in fact, they really
become meaningful only in the context of larger examples like those in this edition.
But in general, this text now assumes that you already have at least a passing
acquaintance with Python language fundamentals, and moves on to present the rest
of the Python story.

In this preface, I'll explain some of the rationales for this major rewrite, describe the
structure of this edition in more detail, and give a brief overview of how to use the
Python programs shipped on the enclosed CD-ROM (view CD-ROM content online at
http://examples.oreilly.com/python2). First of all, though, a history lesson is in
order.

Signs of the Python Times

It's been an exciting five years in the Python world. Since I wrote the first edition of
this book between 1995 and 1996, Python has grown from a new kid on the scripting
languages block to an established and widely used tool in companies around the
world. Although measuring the popularity of an open source (http://opensource.org)
and freely distributed tool such as Python is not always easy, most statistics
available reveal exponential growth in Python's popularity over the last five years.
Among the most recent signs of Python's explosive growth:

Books

As I write this in 2001, there are now over a dozen Python books on the market,
with almost that many more on the way (in 1995 there were none). Some of these
books are focused on a particular domain (e.g., Windows), and some are available in
German, French, and Japanese language editions.

Users

In 1999, one leading industry observer suggested that there were as many as
300,000 Python users worldwide, based on various statistics. Other estimates are
more optimistic still. In early 2000, for instance, the Python web site was already on
track to service 500,000 new Python interpreter downloads by year end (in addition

Programming Python, 2nd Edition, O’Reilly

IT-SC book 11

to other Python distribution mediums); this figure is likely closer to the true user-
base size as I write this book.

Press

Python is now regularly featured in industry publications. In fact, since 1995, Python
creator Guido van Rossum has appeared on the cover of prominent tech magazines
such as Linux Journal and Dr. Dobb's Journal; the latter publication gave him a
programming excellence award for Python.[1]

[1] As I was writing this book, Linux Journal also published a special Python
supplement with their May 2000 edition -- the cover of which, of course, featured a
naked man seated outdoors in front of a computer desk instead of a piano. If you
don't know why that is funny, you need to watch a few reruns from Python's
namesake, the Monty Python television series (consider it a first suggested exercise).
I'll say more about the implications of Python's name in the first chapter.

Applications

Real companies have adopted Python for real products. It has shown up animating
the latest Star Wars movie (Industrial Light & Magic), serving up maps and
directories on the Internet (Yahoo), guiding users through Linux operating system
installation (Red Hat), testing chips and boards (Intel), managing Internet discussion
forums (Egroups), scripting online games (Origin), talking to CORBA frameworks
(TCSI), implementing web site tools (Digital Creations' Zope), scripting wireless
products (Agilent), and much more.[2]

[2] See http://www.python.org for more details. Some companies don't disclose their
Python use for competitive reasons, though many eventually become known when
one of their web pages crashes and displays a Python error message in a browser.
Hewlett Packard is generally counted among companies thus "outed."

Newsgroup

User traffic on the main Python Internet newsgroup, comp.lang.python, has risen
dramatically too. For instance, according to eGroups (see
http://www.egroups.com/group/python-list), there were 76 articles posted on that
list in January 1994, and 2678 in January 2000 -- a 35-fold increase. Recent months
have been busier still (e.g., 4226 articles during June, 2000 alone -- roughly 140 per
day), and growth has been constant since the list's inception. This, and all other
user-base figures cited in this preface, are likely to have increased by the time you
read this text. But even at current traffic rates, Python forums are easily busy
enough to consume the full-time attention of anyone with full-time attention to burn.

Conferences

There are now two annual Python conferences, one of which is hosted by O'Reilly &
Associates. Attendance at Python conferences has roughly doubled in size every
year. An annual Python Day is now also held in Europe.

Group therapy

Regional Python user groups have begun springing up in numerous sites in the U.S.
and abroad, including Oregon, San Francisco, Washington D.C., Colorado, Italy,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 12

Korea, and England. Such groups work on Python-related enhancements, organize
Python events, and more.

Domains

Python has grown to embrace both Microsoft Windows developers, with new support
for COM and Active Scripting, as well as Java developers, with the new JPython
(renamed "Jython") Java-based implementation of the language. As we'll see in this
edition, the new COM support allows Python scripts to be both component server and
client; Active Scripting allows Python code to be embedded in HTML web page code
and run on either client or server; and JPython compiles Python scripts to Java
Virtual Machine code so that they can be run in Java-aware systems and can
seamlessly integrate Java class libraries for use by Python code. As an open source
tool for simplifying web site construction, the Python-based Zope web application
framework discussed in this edition has also begun capturing the attention of
webmasters and CGI coders.

Services

On the pragmatics front, commercial support, consulting, prepackaged distributions,
and professional training for Python are now readily available from a variety of
sources. For instance, the Python interpreter can be obtained on CDs and packages
sold by various companies (including Walnut Creek, Dr. Dobb's Journal, and
ActiveState), and Python usually comes prebuilt and free with most Linux operating
system distributions.

Jobs

It's now possible to make money as a Python programmer (without having to resort
to writing large, seminal books). As I write this book, the Python job board at
http://www.python.org/Jobs.html lists some 60 companies seeking Python
programmers in the U.S. and abroad. Searches for Python at popular employment
sites yield even more hits -- for instance, 285 Python-related jobs on Monster.com,
and 369 on dice.com. Not that anyone should switch jobs, of course, but it's nice to
know that you can now make a living by applying a language that also happens to be
a pleasure to use.

Tools

Python has also played host to numerous tools development efforts. Among the most
prominent as I write these words: the Software Carpentry project, which is
developing new core software tools in Python; ActiveState, which ison the verge of
releasing a set of Windows and Linux-focused Python development products; and
PythonWare, which is about to release an integrated Python development
environment and GUI builder.

Compilers

As I write this preface, ActiveState has also announced a new Python compiler for
the Microsoft .NET framework and C# language environment -- a true Python
compiler and independent implementation of the Python language that generates
DLL and EXE files, allows Python code to be developed under Visual Studio, and
provides seamless .NET integration for Python scripts. It promises to be a third

Programming Python, 2nd Edition, O’Reilly

IT-SC book 13

implementation of Python, along with the standard C-based Python, and the JPython
Java-based system.

Education

Python has also begun attracting the attention of educators, many of whom see
Python as a "Pascal of the 2000s" -- an ideal language for teaching programming,
due to its simplicity and structure. Part of this appeal was spawned by Guido van
Rossum's proposed Computer Programming for Everybody (CP4E) project, aimed at
making Python the language of choice for first-time programmers worldwide. At this
writing the future of CP4E itself is uncertain, but a Python special interest group
(SIG) has been formed to address education-related topics. Regardless of any
particular initiative's outcome, Python promises to make programming more
accessible to the masses of people who will surely soon grow tired of clicking
preprogrammed links, as they evolve from computer users to computer scripters.

In other words, it's not 1995 anymore. Much of the preceding list was unimaginable
when the first edition of this book was conceived. Naturally, this list is doomed to be
out of date even before this book hits the shelves, but it is nonetheless
representative of the sorts of milestones that have occurred over the last five years,
and will continue to occur for years to come. As a language optimized to address the
productivity demands of today's software world, Python's best is undoubtedly yet to
come.

So What's Python?

If you are looking for a concise definition of this book's topic, try this:

Python is a general-purpose open source computer programming language,
optimized for quality, productivity, portability, and integration. It is used by
hundreds of thousands of developers around the world, in areas such as
Internet scripting, systems programming, user interfaces, product
customization, and more.

Among other things, Python sports object-oriented programming (OOP); a
remarkably simple, readable, and maintainable syntax; integration with C
components; and a vast collection of precoded interfaces and utilities.
Although general-purpose, Python is often called a scripting language
because it makes it easy to utilize and direct other software components.
Perhaps Python's best asset is simply that it makes software development
more rapid and enjoyable. To truly understand how, read on.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 14

Why This Edition?

One consequence of the growing popularity of Python has been an influx of new
users, programming styles, and applications, all of which have conspired to make
parts of the first edition of this book prime for updates. Python itself has changed in
smaller ways, but important extensions have simplified various aspects of Python
development and merit new coverage.

Perhaps most relevant for this edition is that the Python "audience" has changed.
Over the last five years, Python has transitioned from an emerging language of
interest primarily to pioneers to a widely accepted tool used by programmers for
day-to-day development tasks. This edition has been refocused for this new Python
audience. You will find that it is now more of a nuts-and-bolts text, geared less
toward introducing and popularizing the language than to showing how to apply it for
realistically scaled programming tasks.

Because of the breadth of change, this edition is something of an entirely new book.
To readers who enjoyed the first edition, I would like to express my gratitude, and I
hope you will find the same spirit in this second edition. Although this is a major
rewrite, I have tried to retain as much of the original book's material and flavor as
possible (especially the jokes :-).

Since writing the first edition five years ago, I have also had the opportunity to teach
Python classes in the U.S. and abroad, and some of the new examples reflect
feedback garnered from these training sessions. The new application domain
examples reflect common interests and queries of both myself and my students.
Teaching Python to workers in the trenches, many of whom are now compelled to
use Python on the job, also inspired a new level of practicality that you will notice in
this edition's examples and topics.

Other new examples are simply the result of my having fun programming Python.
Yes, fun; I firmly believe that one of Python's greatest intangible assets is its ability
both to kindle the excitement of programming among newcomers, and to rekindle
the excitement among those who have toiled for years with more demanding tools.
As we will see in this edition, Python makes it incredibly easy to play with advanced
but practical tools such as threads, sockets, GUIs, web sites, and OOP -- areas that
can be both tedious and daunting in traditional compiled languages like C and C++.

Frankly, even after eight years as a bona fide Pythonista, I still find programming
most enjoyable when it is done in Python. Python is a wildly productive language,
and witnessing its application first-hand is an aesthetic delight. I hope this edition, as
much as the first, will demonstrate how to reap Python's productivity benefits and
communicate some of the satisfaction and excitement found in a rapid-development
tool such as Python.

Major Changes in This Edition

The best way to get a feel for any book is to read it, of course. But especially for
people who are familiar with the first edition, the next few sections go into more
detail about what is new in this edition.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 15

It's Been Updated for Python 2.0

This edition has been updated for Python 2.0, and the Graphical User Interface (GUI)
material has been updated for Tk versions 8.0 or later. Technically, this update was
begun under Python 1.5.2, but all examples were revisited for 2.0 before publication.

For the trivia buffs among you: release 2.0 was the first Python release following
Guido's move to BeOpen, while 1.6 was the last release from Guido's prior employer,
CNRI. Just before I finished this book's final draft and after the 2.0 release, Guido
and the core Python development team moved from BeOpen to Digital Creations,
home of the Zope web application construction kit, but this move is independent of
Python releases (see Chapter 1, for more details).

Release 2.0 introduces a few language extensions, but 2.0 and 1.6 are similar in
content, and the updates just add a handful of features. The examples in this book
should generally work with later Python releases. Remarkably, almost all examples in
the first edition still work five years later, with the latest Python releases; those that
didn't work required only small fixes (e.g., GUI call formats and C API interfaces).

On the other hand, although the core language hasn't changed much since the first
edition, a number of new constructs have been added, and we'll apply them all here.
Among these new Python features: module packages, class exceptions, pseudo-
private class attributes, unicode strings, the new regular expression module, new
Tkinter features such as the grid manager, standard dialogs, and top-level menus,
and so on. A new appendix summarizes all of the major changes in Python between
the first and second editions of this book.

In addition to the language changes, this book presents new Python tools and
applications that have emerged in recent years. Among them: the IDLE
programming interface, the JPython (a.k.a. "Jython") compiler, Active Scripting and
COM extensions, the Zope web framework, Python Server Pages (PSP), restricted
execution mode, the HTMLgen and SWIG code generators, thread support, CGI and
Internet protocol modules, and more (it's been a busy five years). Such applications
are the heart and soul of this second edition.

It's Been Refocused for a More Advanced Audience

This edition presents Python programming by advanced examples. Becoming
proficient in Python involves two distinct tasks: learning the core language itself, and
then learning how to apply it in applications. This edition addresses the latter (and
larger) of these tasks by presenting Python libraries, tools, and programming
techniques. Since this is a very different focus, I should say a few words about its
rationale here.

Because there were no other Python books on the horizon at the time, the first
edition was written to appeal to many audiences at once -- beginners and gurus
alike. Since then, another O'Reilly book, Learning Python, has been developed to
address the needs of beginners, and Python Pocket Reference was published for
readers seeking a short Python reference. As a result, the core language
introductory-level material and the original reference appendixes have been removed
from this book.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 16

Learning Python introduces the core language -- its syntax, datatypes, and so on --
using intentionally simplistic examples. Many have found it to be ideal for learning
the language itself, but Python can become even more interesting once you master
the basic syntax and can write simple examples at the interactive prompt. Very soon
after you've learned how to slice a list, you find yourself wanting to do real things,
like writing scripts to compare file directories, responding to user requests on the
Internet, displaying images in a window, reading email, and so on. Most of the day-
to-day action is in applying the language, not the language itself.

Programming Python focuses on the "everything else" of Python development. It
covers libraries and tools beyond the core language, which become paramount when
you begin writing real applications. It also addresses larger software design issues
such as reusability and OOP, which can only be illustrated in the context of
realistically scaled programs. In other words, Programming Python, especially in this
new edition, is designed to pick up where Learning Python leaves off.

Therefore, if you find this book too advanced, I encourage you to read Learning
Python as a prelude to this text, and return here for the rest of the story once you've
mastered the basics. Unless you already have substantial programming experience,
this edition might serve you best as a second Python text.

It Covers New Topics

Most of the changes in this edition were made to accommodate new topics. There
are new chapters and sections on Internet scripting, CGI scripts, operating system
interfaces, the SWIG integration code generator, advanced Tkinter topics, the
HTMLgen web page generator, JPython, threads, restricted execution mode, and
more. You should consult the Table of Contents for the full scoop, but here are some
of the new topics and structural changes you'll find in this edition:

Topics

The Internet, systems programming, Tkinter GUIs, and C integration domains get
much more attention, and are arguably now the main focus of this text. For instance,
you'll find six new chapters on Internet scripting, covering client-side tools, server-
side scripts and web sites, and advanced Internet topics and systems. Four new
chapters address systems topics: threads, directory processing, program launching,
and so on. And the GUI material has also grown from one chapter to a much more
complete four-chapter presentation, and now covers all widgets (including text and
canvas), as well as new grid, menu, and dialog support.

C integration

The C extending and embedding chapters have been expanded to cover new topics
such as SWIG (the way to mix Python with C/C++ libraries today) and present new
mixed-mode examples such as callback dispatch (extending plus embedding). C
integration is at the heart of many Python systems, but the examples in this domain
are inevitably complex, and involve large C programs that are only useful to C users.
In deference to readers who don't need to code C integrations, this material is now
isolated at the end of the text. Some of the C code listings are gone as well -- to
reduce page count, I have opted instead to point readers to C source files on the
enclosed CD-ROM where possible (see http://examples.oreilly.com/python2).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 17

Although later chapters build upon material in earlier chapters, topics in this edition
are covered fairly independently, and are associated by book parts. Because of that,
it's not too much of a stretch to consider this edition to be akin to four or five books
in one. Its top-level structure underscores its application topics focus:

Preface (you are here)
Chapter 1
Part I
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Part II
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Part III
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Part IV
Chapter 16
Chapter 17
Chapter 18
Part V
Chapter 19
Chapter 20
Part VI
Chapter 21
Appendix A
Appendix B
Appendix C

Two notes here: First of all, don't let these titles fool you -- although most have to
do with application topics, Python language features and general design concepts are
still explored along the way, in the context of real-world goals. Second, readers who
use Python as a standalone tool can safely skip the integration chapters, though I
still recommend a quick glance. C programming isn't nearly as fun or easy as Python
programming. Yet because integration is central to Python's role as a scripting tool, a
cursory understanding can be useful, regardless of whether you do integrating,
scripting, or both.

First edition readers will notice that most of this material is new, and even chapters
with old titles contain largely new material. Noticeably absent in this edition are the
original Sneak Preview, Mini Reference, Tutorial Appendix, and all of the old Part II --
a reflection of the new focus and intended readership.

It's More Example-Oriented

Programming Python, 2nd Edition, O’Reilly

IT-SC book 18

This book is largely about its examples. In this edition, old examples have been
extended to become more realistic (e.g., PyForm and PyCalc), and new examples
have been added throughout. Among the major examples, you'll find:

PyEdit

A Python/Tk text file editor object and program

PyView

A photo image and note-file slideshow

PyDraw

A paint program for drawing and moving image objects

PyTree

A tree data structure drawing program

PyClock

A Python/Tk analog and digital clock widget

PyToe

An AI-powered graphical tic-tac-toe program

PyForm

A persistent object table browser

PyCalc

A calculator widget in Python/Tk

PyMail

A Python/Tk POP and SMTP email client

PyFtp

A simple Python/Tk file-transfer GUI

PyErrata

A web-based error report system

PyMailCgi

A web-based email interface

Programming Python, 2nd Edition, O’Reilly

IT-SC book 19

There are also new mixed-mode C integration examples (e.g., callback registration
and class object processing), SWIG examples (with and without "shadow" classes for
C++), more Internet examples (FTP upload and download scripts, NNTP and HTTP
examples, email tools, and new socket and select module examples), many new
examples of Python threads, and new coverage of JPython, HTMLgen, Zope, Active
Scripting, COM, and Python database interfaces. Many of the new examples are
somewhat advanced, but of course this is now a somewhat advanced text.

In addition, the old Python/C embedding API (now called ppembed) has been
extended to support precompiling strings to bytecode, and the original calculator
example (now called PyCalc) has been beefed up to support keyboard entry, history
lists, colors, and more.

In fact, the new book examples tree distributed on this edition's CD-ROM (see
http://examples.oreilly.com/python2) is itself a fairly sophisticated Python software
system, and the examples within it have been upgraded structurally in a number of
important ways:

Examples tree

The entire examples distribution has been organized as one big Python module
package to facilitate cross-directory imports and avoid name-clashes with other
Python code installed on your computer. Using directory paths in import statements
(instead of a complex PYTHONPATH) also tends to make it easier to tell where
modules come from. Moreover, you now need to add only one directory to your
PYTHONPATH search-path setting for the entire book examples tree: the directory
containing the PP2E examples root directory. To reuse code in this book within your
own applications, simply import through the PP2E package root (e.g., from
PP2E.Launcher import which).

Example filenames

Module names are generally much less cryptic now. I punted on 8.3 DOS
compatibility long ago, and use more descriptive filenames. I've also fixed some old
all-uppercase filenames, which were a last vestige of MS-DOS.

Example titles

Labels of example listings now give the full directory pathname of the example's
source file to help you locate it in the examples distribution. For instance, an
example source-code file whose name is given as Example N-M:
PP2E\Internet\Ftp\sousa.py refers to the file sousa.py in the PP2E\Internet\Ftp
subdirectory of the examples distribution directory.[4]

[4] The "examples distribution directory" is the directory containing the top-level PP2E
directory of the book examples tree. On the CD (see
http://examples.oreilly.com/python2), it's the topmost Examples directory; if you've
copied the examples to your machine, it's wherever you copied (or unpacked) the
PP2E root directory. You can run most of the examples from the CD directly, but
you'll want to copy them to your hard drive to make changes, and to allow Python to
save .pyc compiled bytecode files for quicker startups.

Example command lines

Programming Python, 2nd Edition, O’Reilly

IT-SC book 20

Similarly, when a command line is shown typed after a prompt such as
C:\...\PP2E\System\Streams>, for example, it is really to be typed in the
PP2E\System\Streams subdirectory in your examples tree. Unix and Linux users:
please think / when you see \ in filename paths (my official excuse for which is
outlined in the next section).

Example launchers

Because it's just plain fun to click on things right away, there are new self-
configuring demo launcher programs (described later in this preface in Section
P.5.1), to give you a quick look at Python scripts in action with minimal configuration
requirements. You can generally run them straight off the book's CD without setting
any shell variables first.

It's More Platform-Neutral

Except for some C integration examples, the majority of the programs in this edition
were developed on my Windows 98 laptop, with an eye toward portability to Linux
and other platforms. In fact, some of the examples were born of my desire to
provide portable Python equivalents of tools missing on Windows (e.g., file splitters).
When programs are shown in action, it's usually on Windows; they are demonstrated
on the Red Hat Linux 6.x platform only if they exercise Unix-specific interfaces.

This is not a political statement at all -- I like Linux too. It's mostly a function of the
fact that I wrote this book with MS Word; when time is tight, it's more convenient to
run scripts on the same platform as your publishing tools than to frequently reboot
into Linux. Luckily, because Python has now become so portable to both Windows
and Linux, the underlying operating system is less of a concern to Python developers
than it once was. Python, its libraries, and its Tkinter GUI framework all work
extremely well on both platforms today.

Because I'm not a politician, though, I've tried to make the examples as platform-
neutral as possible, and point out platform-specific issues along the way. Generally
speaking, most of the scripts should work on common Python platforms unchanged.
For instance, all the GUI examples were tested on both Windows (98, 95) and Linux
(KDE, Gnome), and most of the command-line and thread examples were developed
on Windows but work on Linux too. Because Python's system interfaces are generally
built to be portable, this is easier than it may sound.

On the other hand, this book does delve into platform-specific topics where
appropriate. There is new coverage of many Windows-specific topics -- Active
Scripting, COM, program launch options, and so on. Linux and Unix readers will also
find material geared towards their platforms -- forks, pipes, and the like. There is
also new discussion of ways to edit and run Python programs on most major
platforms.

The one place where readers may still catch a glimpse of platform biases is in the
Python/C integration examples. For simplicity, the C compilation details covered in
this text are still somewhat Unix/Linux-biased. One can at least make a reasonable
case for such a focus -- not only does Linux come with C compilers for free, but its
development environment grew up around that language. On Windows, the C
extension code shown in this book will work, but you may need to use different build

Programming Python, 2nd Edition, O’Reilly

IT-SC book 21

procedures that vary per Windows compiler. O'Reilly has published an outstanding
text, Python Programming on Win32, that covers Windows-specific Python topics like
this, and should help address some of the disparity here. If you do Windows-specific
programming, please see that book for all Windows details skipped here.

But It's Still Not a Reference Manual

Please note that this edition, like the first, is still more of a tutorial than a
reference manual (despite sharing a title pattern with a popular Perl
reference text). This book aims to teach, not document. You can use its
table of contents and index to track down specifics, and the new structure
helps make this easy to do. But this edition is still designed to be used in
conjunction with, rather than to replace, Python reference manuals. Because
Python's manuals are free, well-written, available online, and change
frequently, it would be folly to devote space to parroting their contents. For
an exhaustive list of all tools available in the Python system, consult other
books (e.g., O'Reilly's Python Pocket Reference) or the standard manuals at
Python's web site and on this book's CD-ROM (see
http://examples.oreilly.com/python2).

Using the Examples and Demos

I want to briefly describe how to use the book's examples here. In general, though,
please see the following text files in the examples distribution directory for more
details:

README-root.txt: package structure notes

PP2E\README-PP2E.txt: general usage notes

PP2E\Config\setup-pp.bat: Windows configuration

PP2E\Config\setup-pp.csh: Unix and Linux configuration

Of these, the README-PP2E.txt file is the most informative, and the PP2E\Config
directory contains all configuration file examples. I give an overview here, but the
files listed give a complete description.

The Short Story

If you want to see some Python examples right away, do this:

Install Python from the book's CD-ROM (see http://examples.oreilly.com/python2),
unless it is already installed on your computer. On Windows, click on the name of the
self-installer program on the CD and do a default install (say "yes" or "next" to every
prompt). On other systems, see the README file (the gzipped source distribution on
the CD can be used to build Python locally).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 22

Start one of the following self-configuring scripts located in the top-level
Examples\PP2E directory on the CD (see http://examples.oreilly.com/python2).
Either click on their icons in your file explorer, or run them from your system prompt
(e.g., DOS console box, Linux Xterm) using command lines of the form python
script-name (you may need to use the full path to python if it's not on your
system):

Launch_PyDemos.pyw: the main Python/Tk demo launcher toolbar

Launch_PyGadgets_bar.pyw: a Python/Tk utilities launcher bar

Launch_PyGadgets.py: starts standard Python/Tk utilities

LaunchBrowser.py: opens web examples index in web browser

The Launch_* scripts start Python programs portably[5] and require only that Python
be installed -- you don't need to set environment variables first or tweak the
included PP2E\Config setup files to run them. LaunchBrowser will work if it can find a
web browser on your machine, even if you don't have an Internet link (though some
Internet examples won't work completely without a live link).

[5] All the demo and launcher scripts are written portably but are known to work only on
Windows 95/98 and Linux at the time of this writing; they may require minor changes on
other platforms. Apologies if you're using a platform that I could not test: Tk runs on
Windows, X11, and Macs; Python itself runs on everything from handheld PDAs to
mainframes; and my advance for writing this book wasn't as big as you may think.

If installing Python isn't an option, you can still run a few Python web demos by
visiting http://starship.python.net/~lutz/PyInternetDemos.html with your browser.
Because these examples execute scripts on a server, they tend to work best when
run live from this site, rather than from the book's CD.

The Details

To help organize the new examples, I've provided a demo launcher program,
PyDemos.pyw, in the top-level PP2E directory of the examples distribution. Figure P-
1 shows PyDemos in action on Windows after pressing a few buttons. The launcher
bar appears on the left of the screen; with it, you can run most of the major
graphical examples in the book with a mouse click. The demo launcher bar can also
be used to start major Internet book examples if a browser can be located on your
machine (see the following launcher description).

Besides launching demos, the PyDemos source code provides pointers to major
examples in the distribution; see its source code for details. You'll also find Linux
automated build scripts for the Python/C integration examples in the top-level
examples directory, which serve as indexes to major C examples.

Figure P-1. The PyDemos launcher with pop-ups and demos (Guido's photo
reprinted with permission from Dr. Dobb's Journal)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 23

I've also included a top-level program called PyGadgets.py, and its relative
PyGadgets_bar.pyw, to launch some of the more useful GUI book examples for real
use instead of demonstration (mostly, the programs I use often; configure as
desired). Figure P-2 shows what PyGadgets_bar looks like on Windows, along with a
few of the utilities that its buttons can launch. All of the programs are presented in
this book and included in the examples distribution. Most gadgets require a Python
with Tkinter support, but that is the default configuration for the standard Windows
port on the book's CD (see http://examples.oreilly.com/python2).

Figure P-2. The PyGadgets utilities launcher bar, with gadgets

Programming Python, 2nd Edition, O’Reilly

IT-SC book 24

To run the files listed in the prior paragraph directly, you'll need to set up your
Python module search path (see the top-level PP2E/Config/setup* files for hints).
But if you want to run a collection of Python demos from the book and don't want to
bother with setting up your environment first, simply run the self-launching utility
scripts in the PP2E directory instead: Launch_PyDemos.pyw, Launch_PyGadgets.py,
and Launch_PyGadgets_bar.pyw.

These Python-coded launcher scripts assume Python has already been installed, but
will automatically find your Python executable and the book examples distribution,
and set up your Python module and system search paths as needed to run the
demos. You can probably run these launch scripts by simply clicking on their names
in a file explorer, and you should also be able to run them directly from the book's
CD-ROM (see http://examples.oreilly.com/python2). See the comments at the top of
Launcher.py for more details (or read about these scripts in Chapter 4).

Many of the browser-based Internet examples from the book can also be found
online at http://starship.python.net/~lutz/PyInternetDemos.html, where you can
test-drive a few Python Internet scripting examples. Because these examples run in
your web browser, they can be tested even if you haven't installed Python (or
Python's Tk support) on your machine.

The PyDemos program also attempts to launch a web browser on the major example
web pages by starting the LaunchBrowser.py script in the examples root directory.
That script tries to find a usable browser on your machine, with generally good
results; see the script for more details if it fails. Provided LaunchBrowser can find a
browser on your machine, some demo buttons will pop up web pages automatically,
whether you have a live Internet connection or not (if not, you'll see local files in
your browser). Figure P-3 shows what the PyInternetDemos page looks like under
Internet Explorer on Windows.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 25

Figure P-3. The PyInternetDemos web page

Of special interest, the getfile.html link on this page allows you to view the source
code of any other file on the book's site -- HTML code, Python CGI scripts, and so on;
see Chapter 12 for details. To summarize, here is what you'll find in the top-level
PP2E directory of the book's examples distribution:

PyDemos.pyw

Button bar for starting major GUI and Internet examples

PyGadgets.py

Starts programs in non-demo mode for regular use

PyGadgets_bar.pyw

Button bar for starting PyGadgets on demand

Launch_*.py*

Starts PyDemos and PyGadgets programs using Launcher.py to autoconfigure search
paths (run these for a quick look)

Launcher.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 26

Used to start programs without environment settings -- finds Python, sets
PYTHONPATH, spawns Python programs

LaunchBrowser.py

Opens example web pages with an automatically located web browser, either live off
the Net or by opening local web page files; if started directly, opens the
PyInternetDemos index page

There are also subdirectories for examples from each major topic area of the book.

In addition, the top-level PP2E\PyTools directory contains Python-coded command-
line utilities for converting line-feeds in all example text files to DOS or Unix format
(useful if they look odd in your text editor), making all example files writable (useful
if you drag-and-drop off the book's CD (see http://examples.oreilly.com/python2),
deleting old .pyc bytecode files in the tree, and more. Again, see the distribution's
README-PP2E.txt file for more details on all example issues.

Where It's At

The book examples distribution can be found on the CD-ROM that accompanies this
book. See the CD's top-level README file for usage details, or browse the CD's
example root directory in your favorite file explorer for a quick tour.

In addition to the book examples, the CD also contains various Python-related
packages, including a full Windows self-installer program with Python and Tk support
(double-click and say "yes" at all prompts to install), the full Python source code
distribution (unpack and compile on your machine), and Python's standard
documentation set in HTML form (click to view in your web browser).

Extra open source packages such as the latest releases (at the time of publication) of
the SWIG code generator and JPython are also included, but you can always find up-
to-date releases of Python and other packages at Python's web site,
http://www.python.org.

Conventions Used in This Book

The following font conventions are used in this book:

Italic

Used for file and directory names, commands, to emphasize new terms when first
introduced, and for some comments within code sections

Constant width

Used for code listings and to designate modules, methods, options, classes,
functions, statements, programs, objects, and HTML tags

Constant width bold

Used in code sections to show user input

Programming Python, 2nd Edition, O’Reilly

IT-SC book 27

Constant width italic

Used to mark replaceables

This icon designates a note related to the nearby text.

 This icon designates a warning related to the nearby text.

Where to Look for Updates

As before, updates, corrections, and supplements for this book will be maintained at
the author's web site, http://www.rmi.net/~lutz. Look for the second edition's link on
that page for all supplemental information related to this version of the book. As for
the first edition, I will also be maintaining a log on this web site of Python changes
over time, which you should consider a supplement to this text.

Beginning with this edition, I am making available a user-driven book errata
reporting system on the World Wide Web, at this site:

http://starship.python.net/~lutz/PyErrata/pyerrata.html

There, you'll find forms for submitting book problem reports and comments, as well
as viewing the report database by various sort keys. Reports are stored in a publicly
browsable database by default, but an option lets you email them privately instead.
The PyErrata system also happens to be written in Python, and is an example
presented and shipped with this book; see Chapter 14. Figure P-4 shows what the
root page of PyErrata looks like.

Figure P-4. The PyErrata book updates site

Programming Python, 2nd Edition, O’Reilly

IT-SC book 28

If any of these addresses stop working over time, these pages might also be
accessible from O'Reilly's web site, http://www.oreilly.com.[6] I'm still happy to
receive direct emails from readers, of course, but the PyErrata site will hopefully
streamline the report-posting process.

[6] O'Reilly has an errata report system at their site too, and you should consider the union of
these two lists to be the official word on book bugs and updates.

Contacting O'Reilly

You can also address comments and questions about this book to the publisher:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

O'Reilly has a web page for this book, which lists errata, examples, and any
additional information. You can access this page at:

http://www.oreilly.com/catalog/python2/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

Programming Python, 2nd Edition, O’Reilly

IT-SC book 29

For more information about books, conferences, software, Resource Centers, and the
O'Reilly Network, see the O'Reilly web site at:

http://www.oreilly.com

Programming Python, 2nd Edition, O’Reilly

IT-SC book 30

Acknowledgments

In addition to the people I mentioned in the first edition's preface, I'd like to extend
appreciation to a few of the people who helped in some way during this second
edition project:

To this book's first editor, Frank Willison, for overseeing this update, as well as
championing the Python cause at O'Reilly and beyond. To this book's later editor,
Laura Lewin, for picking up the ball and lighting necessary fires.

To Python creator Guido van Rossum for making this stuff fun again.

To the people who took part in a review of an early draft of this edition: Eric
Raymond, Mark Hammond, David Ascher, Tim Peters, and Dave Beazley.

To Tim O'Reilly and the staff of O'Reilly & Associates, both for producing this book,
and supporting open source software in general.

To the Python community at large, for diligence, hard work, and humor -- both in the
early years and today. We've come far, but to steal a line from the 1970s: You aint'
seen nothin' yet.

And to the students of the many Python classes I have taught, as well as the scores
of readers who took the time to send me comments about the first edition; your
opinions helped shape this update.

Finally, a few personal notes of thanks. To my children, Michael, Samantha, and
Roxanne, for purpose. If they are at all representative of their generation, the future
of our species seems in very good hands. You'll have to pardon me if that sounds
proud; with kids like mine, it's impossible to feel otherwise.

And most of all to Lisa, the mother of those amazing kids. I owe her my largest debt
of gratitude, for everything from enduring my flights from reality while writing books
like this, to keeping me out of jail in our youth. No matter what the future may hold,
I'll always be glad that something threw us together two decades ago.

Mark Lutz
November 2000
Somewhere in Colorado

"When Billy Goes Down, He's Going
Down Fast"

The last five years have also been host to the rise of the open source
movement. Open source refers to software that is distributed free of charge
with full source code, and is usually the product of many developers working
in a loosely knit collaborative fashion. Python, the Linux operating system,
and many other tools such as Perl and the Apache web server fall into this
category. Partly because of its challenge to the dominance of mega-
companies, the open source movement has quickly spread through society

Programming Python, 2nd Edition, O’Reilly

IT-SC book 31

in profound ways.

Let me tell you about an event that recently underscored the scope of this
movement's impact on me. To understand this story, you first need to know
that as I was writing this book, I lived in a small town in Colorado not
generally known for being on the cutting edge of technological innovation.
To put that more colorfully, it's the sort of place that is sometimes called a
"cowboy town."

I was at a small local bookstore hunting for the latest Linux Journal. After
browsing for a while, I found a copy and walked it to the checkout. Behind
the counter were two clerks who looked as if they might be more at home at
a rodeo than behind the counter of this establishment. The older of the two
sported gray hair, a moustache, and the well-worn skin of a person
accustomed to life on a ranch. Both wore obligatory baseball caps. Cowboys,
to be sure.

As I put the magazine down, the elder clerk looked up for a moment, and
said, in classic cowboy drawl, "Linux, huh? I tell you what, when Billy goes
down, he's goin' down fast!" Of course, this was in reference to the widely
publicized competition between Linux and Bill Gates' Microsoft Windows,
spurred by the open source movement.

Now, in another time and place, these two might have instead been
discussing livestock and firearms over strong cups of coffee. Yet somehow,
somewhere, they had become passionate advocates of the Linux open
source operating system. After collecting my chin from the floor, we wound
up having a lively discussion about Linux, Microsoft, Python, and all things
open. You might even say we had a good-old time.

I'm not trying to express a preference for one operating system over
another here; both have merits, and Python runs equally well on either
platform (indeed, this book's examples were developed on both systems).
But I am amazed that an idea that software developers often take for
granted has had such a deep, mainstream impact. That seems a very
hopeful thing to me; if technology is to truly improve the quality of life in
the next millennium, we need all the cowboys we can get.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 32

Chapter 1. Introducing Python

1.1 "And Now for Something Completely
Different"

1.2 The Life of Python

1.3 The Compulsory Features List

1.4 What's Python Good For?

1.5 What's Python Not Good For?

1.1 "And Now for Something Completely Different"

This book is about using Python, a very high-level, object-oriented, open source[1]
programming language, designed to optimize development speed. Although it is
completely general-purpose, Python is often called an object-oriented scripting
language, partly because of its sheer ease of use, and partly because it is commonly
used to orchestrate or "glue" other software components in an application.

[1] Open source systems are sometimes called freeware, in that their source code is freely
distributed and community-controlled. Don't let that concept fool you, though; with roughly
half a million users in that community today, Python is very well supported.

If you are new to Python, chances are you've heard about the language somewhere,
but are not quite sure what it is about. To help you get started, this chapter provides
a nontechnical introduction to Python's features and roles. Most of it will make more
sense once you have seen real Python programs, but let's first take a quick pass
over the forest before wandering among the trees.

In the preface, I mentioned that Python emphasizes concepts such as quality,
productivity, portability, and integration. Since these four terms summarize most of
the reasons for using Python, I'd like to define them in a bit more detail:

Quality

Python makes it easy to write software that can be reused and maintained. It was
deliberately designed to raise development quality expectations in the scripting
world. Python's clear syntax and coherent design almost forces programmers to
write readable code -- a critical feature for software that may be changed by others.
The Python language really does look like it was designed, not accumulated. Python
is also well tooled for modern software reuse methodologies. In fact, writing high-
quality Python components that may be applied in multiple contexts is almost
automatic.

Productivity

Programming Python, 2nd Edition, O’Reilly

IT-SC book 33

Python is optimized for speed of development. It's easy to write programs fast in
Python, because the interpreter handles details you must code explicitly in lower-
level languages. Things like type declarations, memory management, and build
procedures are nowhere to be found in Python scripts. But fast initial development is
only one component of productivity. In the real world, programmers must write code
both for a computer to execute and for other programmers to read and maintain.
Because Python's syntax resembles executable pseudocode, it yields programs that
are easy to understand long after they have been written. In addition, Python
supports (but does not impose) advanced paradigms such as object-oriented
programming, which further boost developer productivity and shrink development
schedules.

Portability

Most Python programs run without change on almost every computer system in use
today. In fact, Python programs run today on everything from IBM mainframes and
Cray Supercomputers to notebook PCs and handheld PDAs. Although some platforms
offer nonportable extensions, the core Python language and libraries are platform-
neutral. For instance, most Python scripts developed on Linux will generally run on
Windows immediately, and vice versa -- simply copy the script over. Moreover, a
graphical user interface (GUI) program written with Python's standard Tkinter library
will run on the X Windows system, Microsoft Windows, and the Macintosh, with
native look-and-feel on each, and without modifying the program's source code at
all.

Integration

Python is designed to be integrated with other tools. Programs written in Python can
be easily mixed with and script (i.e., direct) other components of a system. Today,
for example, Python scripts can call out to existing C and C++ libraries, talk to Java
classes, integrate with COM and CORBA components, and more. In addition,
programs written in other languages can just as easily run Python scripts by calling C
and Java API functions, accessing Python-coded COM servers, and so on. Python is
not a closed box.

In an era of increasingly short development schedules, faster machines, and
heterogeneous applications, these strengths have proven to be powerful allies in
both small and large development projects. Naturally, there are other aspects of
Python that attract developers, such as its simple learning curve for developers and
users alike, libraries of precoded tools to minimize up-front development, and
completely free nature that cuts product development and deployment costs.

But Python's productivity focus is perhaps its most attractive and defining quality. As
I write this, the main problem facing the software development world is not just
writing programs quickly, but finding developers with time to write programs at all.
Developers' time has become paramount -- much more critical than execution speed.
There are simply more projects than programmers to staff them.

As a language optimized for developer productivity, Python seems to be the right
answer to the questions being asked by the development world. Not only can Python
developers implement systems quickly, but the resulting systems will be
maintainable, portable, and easily integrated with other application components.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 34

1.2 The Life of Python

Python was invented around 1990 by Guido van Rossum, when he was at CWI in
Amsterdam. Despite the reptiles, it is named after the BBC comedy series Monty
Python's Flying Circus, of which Guido is a fan (see the following silly sidebar). Guido
was also involved with the Amoeba distributed operating system and the ABC
language. In fact, the original motivation for Python was to create an advanced
scripting language for the Amoeba system.

But Python's design turned out to be general enough to address a wide variety of
domains. It's now used by hundreds of thousands of engineers around the world, in
increasingly diverse roles. Companies use Python today in commercial products, for
tasks such as testing chips and boards, developing GUIs, searching the Web,
animating movies, scripting games, serving up maps and email on the Internet,
customizing C++ class libraries, and much more.[2] In fact, because Python is a
completely general-purpose language, its target domains are only limited by the
scope of computers in general.

[2] See the preface for more examples of companies using Python in these ways, and see
http://www.python.org for a more comprehensive list of commercial applications.

Since it first appeared on the public domain scene in 1991, Python has continued to
attract a loyal following, and spawned a dedicated Internet newsgroup,
comp.lang.python, in 1994. And as the first edition of this book was being written in
1995, Python's home page debuted on the WWW at http://www.python.org -- still
the official place to find all things Python.

What's in a Name?

Python gets its name from the 1970s British TV comedy series, Monty
Python's Flying Circus. According to Python folklore, Guido van Rossum,
Python's creator, was watching reruns of the show at about the same time
he needed a name for a new language he was developing. And, as they say
in show business, "the rest is history."

Because of this heritage, references to the comedy group's work often show
up in examples and discussion. For instance, the name "Spam" has a special
connotation to Python users, and confrontations are sometimes referred to
as "The Spanish Inquisition." As a rule, if a Python user starts using phrases
that have no relation to reality, they're probably borrowed from the Monty
Python series or movies. Some of these phrases might even pop up in this
book. You don't have to run out and rent The Meaning of Life or The Holy
Grail to do useful work in Python, of course, but it can't hurt.

While "Python" turned out to be a distinctive name, it's also had some
interesting side effects. For instance, when the Python newsgroup,
comp.lang.python, came online in 1994, its first few weeks of activity were
almost entirely taken up by people wanting to discuss topics from the TV
show. More recently, a special Python supplement in the Linux Journal
magazine featured photos of Guido garbed in an obligatory "nice red

Programming Python, 2nd Edition, O’Reilly

IT-SC book 35

uniform."

There's still an occasional post from fans of the show on Python's news list.
For instance, one poster innocently offered to swap Monty Python scripts
with other fans. Had he known the nature of the forum, he might have at
least mentioned whether they ran under DOS or Unix.

To help manage Python's growth, organizations aimed at supporting Python
developers have taken shape over the years: among them, Python Software Activity
(PSA) was formed to help facilitate Python conferences and web sites, and the
Python Consortium was formed by organizations interested in helping to foster
Python's growth. Although the future of the PSA is unclear as I write these words, it
has helped to support Python through the early years.

Today, Guido and a handful of other key Python developers, are employed by a
company named Digital Creations to do Python development on a full-time basis.
Digital Creations, based in Virginia, is also home to the Python-based Zope web
application toolkit (see http://www.zope.org). However, the Python language is
owned and managed by an independent body, and remains a true open source,
community-driven system.

Other companies have Python efforts underway as well. For instance, ActiveState
and PythonWare develop Python tools, O'Reilly (the publisher of this book) and a
company named Foretech both organize annual Python conferences, and O'Reilly
manages a supplemental Python web site (see the O'Reilly Network's Python
DevCenter at http://www.oreillynet.com/python). The O'Reilly Python Conference is
held as part of the annual Open Source Software Convention. Although the world of
professional organizations and companies changes more frequently than do
published books, it seems certain that the Python language will continue to meet the
needs of its user community.

1.3 The Compulsory Features List

One way to describe a language is by listing its features. Of course, this will be more
meaningful after you've seen Python in action; the best I can do now is speak in the
abstract. And it's really how Python's features work together, that make it what it is.
But looking at some of Python's attributes may help define it; Table 1-1 lists some of
the common reasons cited for Python's appeal.

Table 1-1. Python Language Features

Features Benefits

No compile or link steps Rapid development cycle turnaround

No type declarations Simpler, shorter, and more flexible programs

Programming Python, 2nd Edition, O’Reilly

IT-SC book 36

Automatic memory management Garbage collection avoids bookkeeping code

High-level datatypes and operations Fast development using built-in object types

Object-oriented programming Code reuse, C++, Java, and COM integration

Embedding and extending in C Optimization, customization, system "glue"

Classes, modules, exceptions Modular "programming-in-the-large" support

A simple, clear syntax and design Readability, maintainability, ease of learning

Dynamic loading of C modules Simplified extensions, smaller binary files

Dynamic reloading of Python
modules

Programs can be modified without stopping

Universal "first-class" object model Fewer restrictions and special-case rules

Runtime program construction Handles unforeseen needs, end-user coding

Interactive, dynamic nature Incremental development and testing

Access to interpreter information Metaprogramming, introspective objects

Wide interpreter portability Cross-platform programming without ports

Compilation to portable bytecode Execution speed, protecting source code

Standard portable GUI framework Tkinter scripts run on X, Windows, and Macs

Standard Internet protocol support Easy access to email, FTP, HTTP, CGI, etc.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 37

Standard portable system calls Platform-neutral system scripting

Built-in and third-party libraries
Vast collection of precoded software
components

True open source software May be freely embedded and shipped

To be fair, Python is really a conglomeration of features borrowed from other
languages. It includes elements taken from C, C++, Modula-3, ABC, Icon, and
others. For instance, Python's modules came from Modula, and its slicing operation
from Icon (as far as anyone can seem to remember, at least). And because of
Guido's background, Python borrows many of ABC's ideas, but adds practical
features of its own, such as support for C-coded extensions.

1.4 What's Python Good For?

Because Python is used in a wide variety of ways, it's almost impossible to give an
authoritative answer to this question. In general, any application that can benefit
from the inclusion of a language optimized for speed of development is a good target
Python application domain. Given the ever-shrinking schedules in software
development, this a very broad category.

A more specific answer is less easy to formulate. For instance, some use Python as
an embedded extension language, while others use it exclusively as a standalone
programming tool. And to some extent, this entire book will answer this very
question -- it explores some of Python's most common roles. For now, here's a
summary of some of the more common ways Python is being applied today:

System utilities

Portable command-line tools, testing systems

Internet scripting

CGI web sites, Java applets, XML, ASP, email tools

Graphical user interfaces

With APIs such as Tk, MFC, Gnome, KDE

Component integration

C/C++ library front-ends, product customization

Database access

Persistent object stores, SQL database system interfaces

Programming Python, 2nd Edition, O’Reilly

IT-SC book 38

Distributed programming

With client/server APIs like CORBA, COM

Rapid-prototyping /development

Throwaway or deliverable prototypes

Language-based modules

Replacing special-purpose parsers with Python

And more

Image processing, numeric programming, AI, etc.

"Buses Considered Harmful"

The PSA organization described earlier was originally formed in response to
an early thread on the Python newsgroup, which posed the semiserious
question: "What would happen if Guido was hit by a bus?"

These days, Guido van Rossum is still the ultimate arbiter of proposed
Python changes, but Python's user base helps support the language, work
on extensions, fix bugs, and so on. In fact, Python development is now a
completely open process -- anyone can inspect the latest source-code files
or submit patches by visiting a web site (see http://www.python.org for
details).

As an open source package, Python development is really in the hands of a
very large cast of developers working in concert around the world. Given
Python's popularity, bus attacks seem less threatening now than they once
did; of course, I can't speak for Guido.

On the other hand, Python is not really tied to any particular application area at all.
For example, Python's integration support makes it useful for almost any system that
can benefit from a frontend, programmable interface. In abstract terms, Python
provides services that span domains. It is:

A dynamic programming language, for situations in which a compile/link step is
either impossible (on-site customization), or inconvenient (prototyping, rapid
development, system utilities)

A powerful but simple programming language designed for development speed, for
situations in which the complexity of larger languages can be a liability (prototyping,
end-user coding)

A generalized language tool, for situations where we might otherwise need to invent
and implement yet another "little language" (programmable system interfaces,
configuration tools)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 39

Given these general properties, Python can be applied to any area we're interested in
by extending it with domain libraries, embedding it in an application, or using it all
by itself. For instance, Python's role as a system tools language is due as much to its
built-in interfaces to operating system services as to the language itself. In fact,
because Python was built with integration in mind, it has naturally given rise to a
growing library of extensions and tools, available as off-the-shelf components to
Python developers. Table 1-2 names just a few; you can find more about most of
these components in this book or on Python's web site.

Table 1-2. A Few Popular Python Tools and Extensions

Domain Extensions

Systems programming Sockets, threads, signals, pipes, RPC calls, POSIX bindings

Graphical user interfaces Tk, PMW, MFC, X11, wxPython, KDE, Gnome

Database interfaces Oracle, Sybase, PostGres, mSQL, persistence, dbm

Microsoft Windows tools MFC, COM, ActiveX, ASP, ODBC, .NET

Internet tools JPython, CGI tools, HTML/XML parsers, email tools, Zope

Distributed objects DCOM, CORBA, ILU, Fnorb

Other popular tools SWIG, PIL, regular expressions, NumPy, cryptography

1.5 What's Python Not Good For?

To be fair again, some tasks are outside of Python's scope. Like all dynamic
languages, Python (as currently implemented) isn't as fast or efficient as static,
compiled languages like C. In many domains, the difference doesn't matter; for
programs that spend most of their time interacting with users or transferring data
over networks, Python is usually more than adequate to meet the performance
needs of the entire application. But efficiency is still a priority in some domains.

Because it is interpreted today,[3] Python alone usually isn't the best tool for delivery
of performance-critical components. Instead, computationally intensive operations
can be implemented as compiled extensions to Python, and coded in a low-level
language like C. Python can't be used as the sole implementation language for such
components, but it works well as a frontend scripting interface to them.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 40

[3] Python is "interpreted" in the same way that Java is: Python source code is automatically
compiled (translated) to an intermediate form called "bytecode," which is then executed by
the Python virtual machine (that is, the Python runtime system). This makes Python scripts
more portable and faster than a pure interpreter that runs raw source code or trees. But it
also makes Python slower than true compilers that translate source code to binary machine
code for the local CPU. Keep in mind, though, that some of these details are specific to the
standard Python implementation; the JPython (a.k.a. "Jython") port compiles Python scripts to
Java bytecode, and the new C#/.NET port compiles Python scripts to binary .exe files. An
optimizing Python compiler might make most of the performance cautions in this chapter
invalid (we can hope).

For example, numerical programming and image processing support has been added
to Python by combining optimized extensions with a Python language interface. In
such a system, once the optimized extensions have been developed, most of the
programming occurs at the higher-level Python scripting level. The net result is a
numerical programming tool that's both efficient and easy to use.

Moreover, Python can still serve as a prototyping tool in such domains. Systems may
be implemented in Python first, and later moved in whole or piecemeal to a language
like C for delivery. C and Python have distinct strengths and roles; a hybrid
approach, using C for compute-intensive modules, and Python for prototyping and
frontend interfaces, can leverage the benefits of both.

In some sense, Python solves the efficiency/flexibility tradeoff by not solving it at all.
It provides a language optimized for ease of use, along with tools needed to
integrate with other languages. By combining components written in Python and
compiled languages like C and C++, developers may select an appropriate mix of
usability and performance for each particular application. While it's unlikely that it
will ever be as fast as C, Python's speed of development is at least as important as
C's speed of execution in most modern software projects.

On Truth in Advertising

In this book's conclusion we will return to some of the bigger ideas
introduced in this chapter, after we've had a chance to study Python in
action. I want to point out up front, though, that my background is in
Computer Science, not marketing. I plan to be brutally honest in this book,
both about Python's features and its downsides. Despite the fact that Python
is one of the most easy-to-use programming languages ever created, there
are indeed some pitfalls, which we will examine in this book.

Let's start now. Perhaps the biggest pitfall you should know about is this
one: Python makes it incredibly easy to throw together a bad design quickly.
It's a genuine problem. Because developing programs in Python is so simple
and fast compared to traditional languages, it's easy to get wrapped up in
the act of programming itself, and pay less attention to the problem you are
really trying to solve.

In fact, Python can be downright seductive -- so much so that you may need
to consciously resist the temptation to quickly implement a program in
Python that works, and is arguably "cool," but leaves you as far from a
maintainable implementation of your original conception as you were when
you started. The natural delays built in to compiled language development --
fixing compiler error messages, linking libraries, and the like -- aren't there

Programming Python, 2nd Edition, O’Reilly

IT-SC book 41

to apply the brakes in Python work.

This isn't necessarily all bad. In most cases, the early designs that you
throw together fast are stepping stones to better designs that you later
keep. But be warned: even with a rapid development language like Python,
there is no substitute for brains -- it's always best to think before you start
typing code. To date, at least, no computer programing language has
managed to make intelligence obsolete.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 42

Part I: System Interfaces

This first technical part of the book presents Python's system programming tools --
interfaces to services in the underlying operating system, as well as the context of
an executing program. It consists of the following chapters:

Chapter 2. This chapter is a comprehensive look at commonly used system interface
tools, and will teach you how to process streams, files, directories, command-line
arguments, shell variables, and more. This chapter starts slowly, and is partially
meant as a reference.

Chapter 3. This chapter is an introduction to Python's library support for running
programs in parallel. Here, you'll find coverage of threads, process forks, pipes,
signals, and the like.

Chapter 4,and Chapter 5. This is a two-chapter collection of typical system
programming examples that draw upon the material of the first two chapters. Among
other things, Python scripts here demonstrate how to do things like split and join
files, compare and copy directories, generate web pages from templates, and launch
programs and web browsers portably. The second of these chapters focuses on
advanced file and directory examples; the first presents assorted system tools case
studies.

Although this part of the book emphasizes systems programming tasks, the tools
introduced are general-purpose, and are used often in later chapters.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 43

Chapter 2. System Tools

2.1 "The os.path to Knowledge"

2.2 Why Python Here?

2.3 System Scripting Overview

2.4 The sys Module

2.5 The os Module

2.6 Script Execution Context

2.7 Current Working Directory

2.8 Command-Line Arguments

2.9 Shell Environment Variables

2.10 Standard Streams

2.11 File Tools

2.12 Directory Tools

2.1 "The os.path to Knowledge"

This chapter begins our look at ways to apply Python to real programming tasks. In
this and the following chapters, we'll see how to use Python to write system tools,
graphical user interfaces, database applications, Internet scripts, web sites, and
more. Along the way we'll also study larger Python programming concepts in action:
code reuse, maintainability, object-oriented programming, and so on.

In this first part of the book, we begin our Python programming tour by exploring the
systems application domain -- scripts that deal with files, programs, and the
environment surrounding a program in general. Although the examples in this
domain focus on particular kinds of tasks, the techniques they employ will prove to
be useful in later parts of the book as well. In other words, you should begin your
journey here, unless you already are a Python systems programming wizard.

2.2 Why Python Here?

Programming Python, 2nd Edition, O’Reilly

IT-SC book 44

Python's system interfaces span application domains, but for the next four chapters,
most of our examples fall into the category of system tools -- programs sometimes
called command-line utilities, shell scripts, or some permutation of such words.
Regardless of their title, you are probably familiar with this sort of script already;
they accomplish tasks like processing files in a directory, launching test scripts, and
so on. Such programs historically have been written in nonportable and syntactically
obscure shell languages such as DOS batch files, csh, and awk.

Even in this relatively simple domain, though, some of Python's better attributes
shine brightly. For instance, Python's ease of use and extensive built-in library make
it simple (and even fun) to use advanced system tools such as threads, signals,
forks, sockets, and their kin; such tools are much less accessible under the obscure
syntax of shell languages and the slow development cycles of compiled languages.
Python's support for concepts like code clarity and object-oriented programming also
help us write shell tools that can be read, maintained, and reused. When using
Python, there is no need to start every new script from scratch.

Moreover, we'll find that Python not only includes all the interfaces we need to write
system tools, it also fosters script portability. By employing Python's standard
library, most system scripts written in Python are automatically portable to all major
platforms. A Python directory-processing script written in Windows, for instance, can
usually also be run in Linux without changing its source code at all -- simply copy
over the source code. If used well, Python is the only system scripting tool you need
to know.

"Batteries Included"

This chapter and those that follow deal with both the Python language and
its standard library. Although Python itself provides an easy-to-use scripting
language, much of the action in real Python development involves the vast
library of programming tools (some 200 modules at last count) that ship
with the Python package. In fact, the standard libraries are so powerful that
it is not uncommon to hear Python described by the term "batteries
included" -- a phrase generally credited to Frank Stajano, meaning that
most of what you need for real day-to-day work is already there for the
importing.

As we'll see, the standard libraries form much of the challenge in Python
programming. Once you've mastered the core language, you'll find that
most of your time is spent applying the built-in functions and modules that
come with the system. On the other hand, libraries are where most of the
fun happens. In practice, programs become most interesting when they
start using services external to the language interpreter: networks, files,
GUIs, databases, and so on. All of these are supported in the Python
standard library, a collection of precoded modules written in Python and C
that are installed with the Python interpreter.

Beyond the Python standard library, there is an additional collection of third-
party packages for Python that must be fetched and installed separately. At
this writing, most of these third-party extensions can be found via searches
and links at http://www.python.org, and at the "Starship" and "Vaults of
Parnassus" Python sites (also reachable from links at

Programming Python, 2nd Edition, O’Reilly

IT-SC book 45

http://www.python.org). If you have to do something special with Python,
chances are good that you can find a free and open source module that will
help. Most of the tools we'll employ in this text are a standard part of
Python, but I'll be careful to point out things that must be installed
separately.

2.3 System Scripting Overview

The next two sections will take a quick tour through sys and os, before this chapter
moves on to larger system programming concepts. As I'm not going to demonstrate
every item in every built-in module, the first thing I want to do is show you how to
get more details on your own. Officially, this task also serves as an excuse for
introducing a few core system scripting concepts -- along the way, we'll code a first
script to format documentation.

2.3.1 Python System Modules

Most system-level interfaces in Python are shipped in just two modules: sys and
os. That's somewhat oversimplified; other standard modules belong to this domain
too (e.g., glob, socket, thread, time, fcntl), and some built-in functions are
really system interfaces as well (e.g., open). But sys and os together form the
core of Python's system tools arsenal.

In principle at least, sys exports components related to the Python interpreter itself
(e.g., the module search path), and os contains variables and functions that map to
the operating system on which Python is run. In practice, this distinction may not
always seem clear-cut (e.g., the standard input and output streams show up in sys,
but they are at least arguably tied to operating system paradigms). The good news is
that you'll soon use the tools in these modules so often that their locations will be
permanently stamped on your memory.[1]

[1] They may also work their way into your subconscious. Python newcomers sometimes
appear on Internet discussion forums to express joy after "dreaming in Python" for the first
time. All possible Freudian interpretations aside, it's not bad as dream motifs go; after all,
there are worse languages to dream in.

The os module also attempts to provide a portable programming interface to the
underlying operating system -- its functions may be implemented differently on
different platforms, but they look the same everywhere to Python scripts. In
addition, the os module exports a nested submodule, os.path, that provides a
portable interface to file and directory processing tools.

2.3.2 Module Documentation Sources

As you can probably deduce from the preceding paragraphs, learning to write system
scripts in Python is mostly a matter of learning about Python's system modules.
Luckily, there are a variety of information sources to make this task easier -- from
module attributes to published references and books.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 46

For instance, if you want to know everything that a built-in module exports, you can
either read its library manual entry, study its source code (Python is open source
software, after all), or fetch its attribute list and documentation string interactively.
Let's import sys and see what it's got:

C:\...\PP2E\System> python
>>> import sys
>>> dir(sys)
['__doc__', '__name__', '__stderr__', '__stdin__',
'__stdout__', 'argv',
'builtin_module_names', 'copyright', 'dllhandle',
'exc_info', 'exc_type',
'exec_prefix', 'executable', 'exit', 'getrefcount',
'hexversion', 'maxint',
'modules', 'path', 'platform', 'prefix', 'ps1', 'ps2',
'setcheckinterval',
'setprofile', 'settrace', 'stderr', 'stdin', 'stdout',
'version', 'winver']

The dir function simply returns a list containing the string names of all the
attributes in any object with attributes; it's a handy memory-jogger for modules at
the interactive prompt. For example, we know there is something called
sys.version, because the name version came back in the dir result. If that's
not enough, we can always consult the __doc__ string of built-in modules:

>>> sys.__doc__
...
 ...lots of text deleted here...
...
count for an object (plus one :-)\012setcheckinterval() -
- control how often
the interpreter checks for events\012setprofile() -- set
the global profiling
function\012settrace() -- set the global debug tracing
function\012"

2.3.3 Paging Documentation Strings

The __doc__ built-in attribute usually contains a string of documentation, but may
look a bit weird when printed -- it's one long string with embedded line-feed
characters that print as \012, not a nice list of lines. To format these strings for
more humane display, I usually use a utility script like the one in Example 2-1.

Example 2-1. PP2E\System\more.py

split and interactively page a string or file of text;

Programming Python, 2nd Edition, O’Reilly

IT-SC book 47

import string

def more(text, numlines=15):
 lines = string.split(text, '\n')
 while lines:
 chunk = lines[:numlines]
 lines = lines[numlines:]
 for line in chunk: print line
 if lines and raw_input('More?') not in ['y', 'Y']:
break

if __name__ == '__main__':
 import sys # when run, not
imported
 more(open(sys.argv[1]).read(), 10) # page
contents of file on cmdline

The meat of this file is its more function, and if you know any Python at all, it should
be fairly straightforward -- it simply splits up a string around end-of-line characters,
and then slices off and displays a few lines at a time (15 by default) to avoid
scrolling off the screen. A slice expression lines[:15] gets the first 15 items in a
list, and lines[15:] gets the rest; to show a different number of lines each time,
pass a number to the numlines argument (e.g., the last line in Example 2-1 passes
10 to the numlines argument of the more function).

The string.split built-in call this script employs returns a list of sub-strings
(e.g., ["line", "line",...]). As we'll see later in this chapter, the end-of-line
character is always \n (which is \012 in octal escape form) within a Python script,
no matter what platform it is run upon. (If you don't already know why this matters,
DOS \r characters are dropped when read.)

2.3.4 Introducing the string Module

Now, this is a simple Python program, but it already brings up three important topics
that merit quick detours here: it uses the string module, reads from a file, and is
set up to be run or imported. The Python string module isn't a system-related tool
per se, but it sees action in most Python programs. In fact, it is going to show up
throughout this chapter and those that follow, so here is a quick review of some of
its more useful exports. The string module includes calls for searching and
replacing:

>>> import string
>>> string.find('xxxSPAMxxx', 'SPAM') # return
first offset
3
>>> string.replace('xxaaxxaa', 'aa', 'SPAM') # global
replacement

Programming Python, 2nd Edition, O’Reilly

IT-SC book 48

'xxSPAMxxSPAM'

>>> string.strip('\t Ni\n') # remove
whitespace
'Ni'

The string.find call returns the offset of the first occurrence of a substring, and
string.replace does global search and replacement. With this module,
substrings are just strings; in Chapter 18, we'll also see modules that allow regular
expression patterns to show up in searches and replacements. The string module
also provides constants and functions useful for things like case conversions:

>>> string.lowercase # case
constants, converters
'abcdefghijklmnopqrstuvwxyz'

>>> string.lower('SHRUBBERRY')
'shrubberry'

There are also tools for splitting up strings around a substring delimiter and putting
them back together with a substring between. We'll explore these tools later in this
book, but as an introduction, here they are at work:

>>> string.split('aaa+bbb+ccc', '+') # split
into substrings list
['aaa', 'bbb', 'ccc']
>>> string.split('a b\nc\nd') # default
delimiter: whitespace
['a', 'b', 'c', 'd']

>>> string.join(['aaa', 'bbb', 'ccc'], 'NI') # join
substrings list
'aaaNIbbbNIccc'
>>> string.join(['A', 'dead', 'parrot']) # default
delimiter: space
'A dead parrot'

These calls turn out to be surprisingly powerful. For example, a line of data columns
separated by tabs can be parsed into its columns with a single split call; the
more.py script uses it to split a string into a list of line strings. In fact, we can
emulate the string.replace call with a split/join combination:

>>> string.join(string.split('xxaaxxaa', 'aa'), 'SPAM') #
replace the hard way
'xxSPAMxxSPAM'

For future reference, also keep in mind that Python doesn't automatically convert
strings to numbers, or vice versa; if you want to use one like the other, you must
say so, with manual conversions:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 49

>>> string.atoi("42"), int("42"), eval("42") # string
to int conversions
(42, 42, 42)

>>> str(42), `42`, ("%d" % 42) # int to
string conversions
('42', '42', '42')

>>> "42" + str(1), int("42") + 1 #
concatenation, addition
('421', 43)

In the last command here, the first expression triggers string concatenation (since
both sides are strings) and the second invokes integer addition (because both
objects are numbers). Python doesn't assume you meant one or the other and
convert automatically; as a rule of thumb, Python tries to avoid magic when
possible. String tools will be covered in more detail later in this book (in fact, they
get a full chapter in Part IV), but be sure to also see the library manual for additional
string module tools.

As of Python 1.6, string objects have grown methods
corresponding to functions in the string module. For instance,
given a name X assigned to a string object, X.split()
now does the same work as string.split(X). In Example
2-1, that means that these two lines would be equivalent:

lines = string.split(text, '\n')
lines = text.split('\n')

but the latter form doesn't require an import statement. The
string module will still be around for the foreseeable future
and beyond, but string methods are likely to be the next
wave in the Python text-processing world.

2.3.5 File Operation Basics

The more.py script also opens the external file whose name is listed on the command
line with the built-in open function, and reads its text into memory all at once with
the file object read method. Since file objects returned by open are part of the core
Python language itself, I assume that you have at least a passing familiarity with
them at this point in the text. But just in case you've flipped into this chapter early
on in your Pythonhood, the calls:

open('file').read() # read entire file into
string

Programming Python, 2nd Edition, O’Reilly

IT-SC book 50

open('file').read(N) # read next N bytes into
string
open('file').readlines() # read entire file into
line strings list
open('file').readline() # read next line, through
'\n'

load a file's contents into a string, load a fixed size set of bytes into a string, load a
file's contents into a list of line strings, and load the next line in the file into a string,
respectively. As we'll see in a moment, these calls can also be applied to shell
commands in Python. File objects also have write methods for sending strings to
the associated file. File-related topics are covered in depth later in this chapter.

2.3.6 Using Programs Two Ways

The last few lines in the more.py file also introduce one of the first big concepts in
shell tool programming. They instrument the file to be used two ways: as script or
library. Every Python module has a built-in __name__ variable that is set by Python
to the string __main__ only when the file is run as a program, not when imported
as a library. Because of that, the more function in this file is executed automatically
by the last line in the file when this script is run as a top-level program, not when it
is imported elsewhere. This simple trick turns out to be one key to writing reusable
script code: by coding program logic as functions instead of top-level code, it can
also be imported and reused in other scripts.

The upshot is that we can either run more.py by itself, or import and call its more
function elsewhere. When running the file as a top-level program, we list the name
of a file to be read and paged on the command line: as we'll describe fully later in
this chapter, words typed in the command used to start a program show up in the
built-in sys.argv list in Python. For example, here is the script file in action paging
itself (be sure to type this command line in your PP2E\System directory, or it won't
find the input file; I'll explain why later):

C:\...\PP2E\System>python more.py more.py

split and interactively page a string or file of text;

import string

def more(text, numlines=15):
 lines = string.split(text, '\n')
 while lines:
 chunk = lines[:numlines]
More?y
 lines = lines[numlines:]
 for line in chunk: print line
 if lines and raw_input('More?') not in ['y', 'Y']:
break

Programming Python, 2nd Edition, O’Reilly

IT-SC book 51

if __name__ == '__main__':
 import sys # when run, not
imported
 more(open(sys.argv[1]).read(), 10) # page
contents of file on cmdline

When the more.py file is imported, we pass an explicit string to its more function,
and this is exactly the sort of utility we need for documentation text. Running this
utility on the sys module's documentation string gives us a bit more information
about what's available to scripts, in human-readable form:

>>> from more import more
>>> more(sys.__doc__)
This module provides access to some objects used or
maintained by the
interpreter and to functions that interact strongly with
the interpreter.

Dynamic objects:

argv -- command line arguments; argv[0] is the script
pathname if known
path -- module search path; path[0] is the script
directory, else ''
modules -- dictionary of loaded modules
exitfunc -- you may set this to a function to be called
when Python exits

stdin -- standard input file object; used by raw_input()
and input()
stdout -- standard output file object; used by the print
statement
stderr -- standard error object; used for error messages
 By assigning another file object (or an object that
behaves like a file)
 to one of these, it is possible to redirect all of the
interpreter's I/O.
More?

Pressing "y" (and the Enter key) here makes the function display the next few lines
of documentation, and then prompt again unless you've run past the end of the lines
list. Try this on your own machine to see what the rest of the module's
documentation string looks like.

2.3.7 Python Library Manuals

Programming Python, 2nd Edition, O’Reilly

IT-SC book 52

If that still isn't enough detail, your next step is to read the Python library manual's
entry for sys to get the full story. All of Python's standard manuals ship as HTML
pages, so you should be able to read them in any web browser you have on your
computer. They are available on this book's CD (view CD-ROM content online at
http://examples.oreilly.com/python2), and are installed with Python on Windows,
but here are a few simple pointers:

On Windows, click the Start button, pick Programs, select the Python entry there,
and then choose the manuals item. The manuals should magically appear on your
display within a browser like Internet Explorer.

On Linux, you may be able to click on the manuals' entries in a file explorer, or start
your browser from a shell command line and navigate to the library manual's HTML
files on your machine.

If you can't find the manuals on your computer, you can always read them online.
Go to Python's web site, http://www.python.org, and follow the documentation links.

However you get started, be sure to pick the "Library" manual for things like sys;
Python's standard manual set also includes a short tutorial, language reference,
extending references, and more.

2.3.8 Commercially Published References

At the risk of sounding like a marketing droid, I should mention that you can also
purchase the Python manual set, printed and bound; see the book information page
at http://www.python.org for details and links. Commercially published Python
reference books are also available today, including Python Essential Reference (New
Riders Publishing) and Python Pocket Reference (O'Reilly). The former is more
complete and comes with examples, but the latter serves as a convenient memory-
jogger once you've taken a library tour or two.[2] Also watch for O'Reilly's upcoming
book Python Standard Library.

[2] I also wrote the latter as a replacement for the reference appendix that appeared in the
first edition of this book; it's meant to be a supplement to the text you're reading. Since I'm
its author, though, I won't say more here . . . except that you should be sure to pick up a copy
for friends, coworkers, old college roommates, and every member of your extended family the
next time you're at the bookstore (yes, I'm kidding).

2.4 The sys Module

On to module details. As mentioned earlier, the sys and os modules form the core
of much of Python's system-related toolset. Let's now take a quick, interactive tour
through some of the tools in these two modules, before applying them in bigger
examples.

2.4.1 Platforms and Versions

Like most modules, sys includes both informational names and functions that take
action. For instance, its attributes give us the name of the underlying operating
system the platform code is running on, the largest possible integer on this machine,
and the version number of the Python interpreter running our code:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 53

C:\...\PP2E\System>python
>>> import sys
>>> sys.platform, sys.maxint, sys.version
('win32', 2147483647, '1.5.2 (#0, Apr 13 1999, 10:51:12)
[MSC 32 bit (Intel)]')
>>>
>>> if sys.platform[:3] == 'win': print 'hello windows'
...
hello windows

If you have code that must act differently on different machines, simply test the
sys.platform string as done here; although most of Python is cross-platform,
nonportable tools are usually wrapped in if tests like the one here. For instance,
we'll see later that program launch and low-level console interaction tools vary per
platform today -- simply test sys.platform to pick the right tool for the machine
your script is running on.

2.4.2 The Module Search Path

The sys module also lets us inspect the module search path both interactively and
within a Python program. sys.path is a list of strings representing the true search
path in a running Python interpreter. When a module is imported, Python scans this
list from left to right, searching for the module's file on each directory named in the
list. Because of that, this is the place to look to verify that your search path is really
set as intended.[3]

[3] It's not impossible that Python sees PYTHONPATH differently than you do. A syntax error in
your system shell configuration files may botch the setting of PYTHONPATH, even if it looks
fine to you. On Windows, for example, if a space appears around the = of a DOS set command
in your autoexec.bat file (e.g., set NAME = VALUE), you will actually set NAME to an empty
string, not VALUE !

The sys.path list is simply initialized from your PYTHONPATH setting plus system
defaults, when the interpreter is first started up. In fact, you'll notice quite a few
directories that are not on your PYTHONPATH if you inspect sys.path interactively
-- it also includes an indicator for the script's home directory (an empty string --
something I'll explain in more detail after we meet os.getcwd), and a set of
standard library directories that may vary per installation:

>>> sys.path
['', 'C:\\PP2ndEd\\examples', ...plus standard paths
deleted...]

Surprisingly, sys.path can actually be changed by a program too -- a script can
use list operations like append, del, and the like to configure the search path at
runtime. Python always uses the current sys.path setting to import, no matter
what you've changed it to be:

>>> sys.path.append(r'C:\mydir')
>>> sys.path

Programming Python, 2nd Edition, O’Reilly

IT-SC book 54

['', 'C:\\PP2ndEd\\examples', ...more deleted... ,
'C:\\mydir']

Changing sys.path directly like this is an alternative to setting your PYTHONPATH
shell variable, but not a very good one -- changes to sys.path are retained only
until the Python process ends, and must be remade every time you start a new
Python program or session.

Windows Directory Paths

Because backslashes normally introduce escape code sequences in Python
strings, Windows users should be sure to either double up on backslashes
when using them in DOS directory path strings (e.g., in "C:\\dir", \\ is
an escape sequence that really means \), or use raw string constants to
retain backslashes literally (e.g., r"C:\dir").

If you inspect directory paths on Windows (as in the sys.path interaction
listing), Python prints double \\ to mean a single \. Technically, you can
get away with a single \ in a string if it is followed by a character Python
does not recognize as the rest of an escape sequence, but doubles and raw
strings are usually easier than memorizing escape code tables.

Also note that most Python library calls accept either forward (/) or
backward (\) slashes as directory path separators, regardless of the
underlying platform. That is, / usually works on Windows too, and aids in
making scripts portable to Unix. Tools in the os and os.path modules,
described later in this chapter, further aid in script path portability.

2.4.3 The Loaded Modules Table

The sys module also contains hooks into the interpreter; sys.modules, for
example, is a dictionary containing one name:module entry for every module
imported in your Python session or program (really, in the calling Python process):

>>> sys.modules
{'os.path': <module 'ntpath' from 'C:\Program
Files\Python\Lib\ntpath.pyc'>,...

>>> sys.modules.keys()
['os.path', 'os', 'exceptions', '__main__', 'ntpath',
'strop', 'nt', 'sys',
'__builtin__', 'site', 'signal', 'UserDict', 'string',
'stat']
>>>
>>> sys
<module 'sys' (built-in)>
>>> sys.modules['sys']

Programming Python, 2nd Edition, O’Reilly

IT-SC book 55

<module 'sys' (built-in)>

We might use such a hook to write programs that display or otherwise process all the
modules loaded by a program (just iterate over the keys list of sys.modules).
sys also exports tools for getting an object's reference count used by Python's
garbage collector (getrefcount), checking which modules are built in to this
Python (builtin_module_names), and more.

2.4.4 Exception Details

Some of the sys module's attributes allow us to fetch all the information related to
the most recently raised Python exception. This is handy if we want to process
exceptions in a more generic fashion. For instance, the sys.exc_info function
returns the latest exception's type, value, and traceback object:

>>> try:
... raise IndexError
... except:
... print sys.exc_info()
...
(<class exceptions.IndexError at 7698d0>,
<exceptions.IndexError instance at
797140>, <traceback object at 7971a0>)

We might use such information to format our own error message to display in a GUI
pop-up window or HTML web page (recall that by default, uncaught exceptions
terminate programs with a Python error display). Portability note -- the most recent
exception type, value, and traceback objects are also available via other names:

>>> try:
... raise TypeError, "Bad Thing"
... except:
... print sys.exc_type, sys.exc_value
...
exceptions.TypeError Bad Thing

But these names represent a single, global exception, and are not specific to a
particular thread (threads are covered in the next chapter). If you mean to raise and
catch exceptions in multiple threads, exc_info() provides thread-specific
exception details.

2.4.5 Other sys Module Exports

The sys module exports additional tools we will meet in the context of larger topics
and examples later in this chapter and book. For instance:

Command-line arguments show up as a list of strings called sys.argv

Standard streams are available as stdin, stdout, and stderr

Programming Python, 2nd Edition, O’Reilly

IT-SC book 56

Program exit can be forced with sys.exit calls

Since these all lead us to bigger topics, though, we cover them in sections of their
own later in this and the next chapters.

2.5 The os Module

As mentioned, os contains all the usual operating-system calls you may have used
in your C programs and shell scripts. Its calls deal with directories, processes, shell
variables, and the like. Technically, this module provides POSIX tools -- a portable
standard for operating-system calls -- along with platform-independent directory
processing tools as nested module os.path. Operationally, os serves as a largely
portable interface to your computer's system calls: scripts written with os and
os.path can usually be run on any platform unchanged.

In fact, if you read the os module's source code, you'll notice that it really just
imports whatever platform-specific system module you have on your computer (e.g.,
nt, mac, posix). See the file os.py in the Python source library directory -- it
simply runs a from* statement to copy all names out of a platform-specific module.
By always importing os instead of platform-specific modules, though, your scripts
are mostly immune to platform implementation differences.

2.5.1 The Big os Lists

Let's take a quick look at the basic interfaces in os. If you inspect this module's
attributes interactively, you get a huge list of names that will vary per Python
release, will likely vary per platform, and isn't incredibly useful until you've learned
what each name means:

>>> import os
>>> dir(os)
['F_OK', 'O_APPEND', 'O_BINARY', 'O_CREAT', 'O_EXCL',
'O_RDONLY', 'O_RDWR',
'O_TEXT', 'O_TRUNC', 'O_WRONLY', 'P_DETACH', 'P_NOWAIT',
'P_NOWAITO',
'P_OVERLAY', 'P_WAIT', 'R_OK', 'UserDict', 'W_OK', 'X_OK',
'_Environ',
'__builtins__', '__doc__', '__file__', '__name__',
'_execvpe', '_exit',
'_notfound', 'access', 'altsep', 'chdir', 'chmod', 'close',
'curdir',
'defpath', 'dup', 'dup2', 'environ', 'error', 'execl',
'execle', 'execlp',
'execlpe', 'execv', 'execve', 'execvp', 'execvpe',
'fdopen', 'fstat', 'getcwd',
'getpid', 'i', 'linesep', 'listdir', 'lseek', 'lstat',
'makedirs', 'mkdir',

Programming Python, 2nd Edition, O’Reilly

IT-SC book 57

'name', 'open', 'pardir', 'path', 'pathsep', 'pipe',
'popen', 'putenv', 'read',
'remove', 'removedirs', 'rename', 'renames', 'rmdir',
'sep', 'spawnv',
'spawnve', 'stat', 'strerror', 'string', 'sys', 'system',
'times', 'umask',
'unlink', 'utime', 'write']

Besides all of these, the nested os.path module exports even more tools, most of
which are related to processing file and directory names portably:

>>> dir(os.path)
['__builtins__', '__doc__', '__file__', '__name__',
'abspath', 'basename',
'commonprefix', 'dirname', 'exists', 'expanduser',
'expandvars', 'getatime',
'getmtime', 'getsize', 'isabs', 'isdir', 'isfile',
'islink', 'ismount', 'join',
'normcase', 'normpath', 'os', 'split', 'splitdrive',
'splitext', 'splitunc',
'stat', 'string', 'varchars', 'walk']

2.5.2 Administrative Tools

Just in case those massive listings aren't quite enough to go on, let's experiment
with some of the simpler os tools interactively. Like sys, the os module comes with
a collection of informational and administrative tools:

>>> os.getpid()
-510737
>>> os.getcwd()
'C:\\PP2ndEd\\examples\\PP2E\\System'

>>> os.chdir(r'c:\temp')
>>> os.getcwd()
'c:\\temp'

As shown here, the os.getpid function gives the calling process's process ID (a
unique system-defined identifier for a running program), and os.getcwd returns
the current working directory. The current working directory is where files opened by
your script are assumed to live, unless their names include explicit directory paths.
That's why I told you earlier to run the following command in the directory where
more.py lives:

C:\...\PP2E\System>python more.py more.py

The input filename argument here is given without an explicit directory path (though
you could add one to page files in another directory). If you need to run in a different
working directory, call the os.chdir function to change to a new directory; your

Programming Python, 2nd Edition, O’Reilly

IT-SC book 58

code will run relative to the new directory for the rest of the program (or until the
next os.chdir call). This chapter has more to say about the notion of a current
working directory, and its relation to module imports, when it explores script
execution context later.

2.5.3 Portability Constants

The os module also exports a set of names designed to make cross-platform
programming simpler. The set includes platform-specific settings for path and
directory separator characters, parent and current directory indicators, and the
characters used to terminate lines on the underlying computer:[4]

[4] os.linesep comes back as \015\012 here -- the octal escape code equivalent of \r\n,
reflecting the carriage-return + line-feed line terminator convention on Windows. See the
discussion of end-of-line translations in Section 2.11 later in this chapter.

>>> os.pathsep, os.sep, os.pardir, os.curdir, os.linesep
(';', '\\', '..', '.', '\015\012')

Name os.sep whatever character is used to separate directory components on the
platform Python is running on; it is automatically preset to "\" on Windows, "/" for
POSIX machines, and ":" on the Mac. Similarly, os.pathsep provides the character
that separates directories on directory lists -- ":" for POSIX and ";" for DOS and
Windows. By using such attributes when composing and decomposing system-related
strings in our scripts, they become fully portable. For instance, a call of the form
string.split(dirpath,os.sep) will correctly split platform-specific directory
names into components, even though dirpath may look like "dir\dir" on Windows,
"dir/dir" on Linux, and "dir:dir" on Macintosh.

2.5.4 Basic os.path Tools

The nested module os.path provides a large set of directory-related tools of its
own. For example, it includes portable functions for tasks such as checking a file's
type (isdir, isfile, and others), testing file existence (exists), and fetching
the size of a file by name (getsize):

>>> os.path.isdir(r'C:\temp'),
os.path.isfile(r'C:\temp')
(1, 0)
>>> os.path.isdir(r'C:\config.sys'),
os.path.isfile(r'C:\config.sys')
(0, 1)
>>> os.path.isdir('nonesuch'),
os.path.isfile('nonesuch')
(0, 0)

>>> os.path.exists(r'c:\temp\data.txt')
0
>>> os.path.getsize(r'C:\autoexec.bat')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 59

260

The os.path.isdir and os.path.isfile calls tell us whether a filename is a
directory or a simple file; both return (false) if the named file does not exist. We also
get calls for splitting and joining directory path strings, which automatically use the
directory name conventions on the platform on which Python is running:

>>> os.path.split(r'C:\temp\data.txt')
('C:\\temp', 'data.txt')
>>> os.path.join(r'C:\temp', 'output.txt')
'C:\\temp\\output.txt'

>>> name = r'C:\temp\data.txt' #
Windows paths
>>> os.path.basename(name), os.path.dirname(name)
('data.txt', 'C:\\temp')

>>> name = '/home/lutz/temp/data.txt' #
Unix-style paths
>>> os.path.basename(name), os.path.dirname(name)
('data.txt', '/home/lutz/temp')

>>>
os.path.splitext(r'C:\PP2ndEd\examples\PP2E\PyDemos.pyw')
('C:\\PP2ndEd\\examples\\PP2E\\PyDemos', '.pyw')

Call os.path.split separates a filename from its directory path, and
os.path.join puts them back together -- all in entirely portable fashion, using
the path conventions of the machine on which they are called. The basename and
dirname calls here simply return the second and first items returned by a split
as a convenience, and splitext strips the file extension (after the last "."). This
module also has an abspath call that portably returns the absolute full directory
pathname of a file; it accounts for adding the current directory, ".." parents, and
more:

>>> os.getcwd()
'C:\\PP2ndEd\\cdrom\\WindowsExt'
>>> os.path.abspath('temp') # expand to
full path name
'C:\\PP2ndEd\\cdrom\\WindowsExt\\temp'
>>> os.path.abspath(r'..\examples') # relative
paths expanded
'C:\\PP2ndEd\\examples'
>>> os.path.abspath(r'C:\PP2ndEd\chapters') # absolute
paths unchanged
'C:\\PP2ndEd\\chapters'
>>> os.path.abspath(r'C:\temp\spam.txt') # ditto for
file names

Programming Python, 2nd Edition, O’Reilly

IT-SC book 60

'C:\\temp\\spam.txt'
>>> os.path.abspath('') # empty
string means the cwd
'C:\\PP2ndEd\\cdrom\\WindowsExt'

Because filenames are relative to the current working directory when they aren't fully
specified paths, the os.path.abspath function helps if you want to show users
what directory is truly being used to store a file. On Windows, for example, when
GUI-based programs are launched by clicking on file explorer icons and desktop
shortcuts, the execution directory of the program is the clicked file's home directory,
but that is not always obvious to the person doing the clicking; printing a file's
abspath can help.

2.5.5 Running Shell Commands from Scripts

The os module is also the place where we run shell commands from within Python
scripts. This concept is intertwined with others we won't cover until later in this
chapter, but since this a key concept employed throughout this part of the book, let's
take a quick first look at the basics here. Two os functions allow scripts to run any
command line that you can type in a console window:

os.system

Run a shell command from a Python script

os.popen

Run a shell command and connect to its input or output streams

2.5.5.1 What's a shell command?

To understand the scope of these calls, we need to first define a few terms. In this
text the term shell means the system that reads and runs command-line strings on
your computer, and shell command means a command-line string that you would
normally enter at your computer's shell prompt.

For example, on Windows, you can start an MS-DOS console window and type DOS
commands there -- things like dir to get a directory listing, type to view a file, names
of programs you wish to start, and so on. DOS is the system shell, and commands
like dir and type are shell commands. On Linux, you can start a new shell session by
opening an xterm window and typing shell commands there too -- ls to list
directories, cat to view files, and so on. There are a variety of shells available on
Unix (e.g., csh, ksh), but they all read and run command lines. Here are two shell
commands typed and run in an MS-DOS console box on Windows:

C:\temp>dir /B ...type a shell
command-line
about-pp.html ...its output shows up
here

Programming Python, 2nd Edition, O’Reilly

IT-SC book 61

python1.5.tar.gz ...DOS is the shell on
Windows
about-pp2e.html
about-ppr2e.html
newdir

C:\temp>type helloshell.py
a Python program
print 'The Meaning of Life'

2.5.5.2 Running shell commands

None of this is directly related to Python, of course (despite the fact that Python
command-line scripts are sometimes confusingly called "shell tools"). But because
the os module's system and popen calls let Python scripts run any sort of
command that the underlying system shell understands, our scripts can make use of
every command-line tool available on the computer, whether it's coded in Python or
not. For example, here is some Python code that runs the two DOS shell commands
typed at the shell prompt shown previously:

C:\temp>python
>>> import os
>>> os.system('dir /B')
about-pp.html
python1.5.tar.gz
about-pp2e.html
about-ppr2e.html
newdir
0

>>> os.system('type helloshell.py')
a Python program
print 'The Meaning of Life'
0

The "0"s at the end here are just the return values of the system call itself. The
system call can be used to run any command line that we could type at the shell's
prompt (here, C:\temp>). The command's output normally shows up in the Python
session's or program's standard output stream.

2.5.5.3 Communicating with shell commands

But what if we want to grab a command's output within a script? The os.system
call simply runs a shell command line, but os.popen also connects to the standard
input or output streams of the command -- we get back a file-like object connected
to the command's output by default (if we pass a "w" mode flag to popen, we
connect to the command's input stream instead). By using this object to read the
output of a command spawned with popen, we can intercept the text that would
normally appear in the console window where a command line is typed:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 62

>>> open('helloshell.py').read()
"# a Python program\012print 'The Meaning of Life'\012"

>>> text = os.popen('type helloshell.py').read()
>>> text
"# a Python program\012print 'The Meaning of Life'\012"

>>> listing = os.popen('dir /B').readlines()
>>> listing
['about-pp.html\012', 'python1.5.tar.gz\012',
'helloshell.py\012',
'about-pp2e.html\012', 'about-ppr2e.html\012',
'newdir\012']

Here, we first fetch a file's content the usual way (using Python files), then as the
output of a shell type command. Reading the output of a dir command lets us get a
listing of files in a directory which we can then process in a loop (we'll meet other
ways to obtain such a list later in this chapter). So far, we've run basic DOS
commands; because these calls can run any command line that we can type at a
shell prompt, they can also be used to launch other Python scripts:

>>> os.system('python helloshell.py') # run a Python
program
The Meaning of Life
0
>>> output = os.popen('python helloshell.py').read()
>>> output
'The Meaning of Life\012'

In all of these examples, the command-line strings sent to system and popen are
hardcoded, but there's no reason Python programs could not construct such strings
at runtime using normal string operations (+, %, etc.). Given that commands can be
dynamically built and run this way, system and popen turn Python scripts into
flexible and portable tools for launching and orchestrating other programs. For
example, a Python test "driver" script can be used to run programs coded in any
language (e.g., C++, Java, Python) and analyze their outputs. We'll explore such a
script in Section 4.4 in Chapter 4.

2.5.5.4 Shell command limitations

You should keep in mind two limitations of system and popen. First, although
these two functions themselves are fairly portable, their use is really only as portable
as the commands that they run. The preceding examples that run DOS dir and type
shell commands, for instance, work only on Windows, and would have to be changed
to run ls and cat commands on Unix-like platforms. As I wrote this, the popen call
on Windows worked for command-line programs only; it failed when called from a
program running on Windows with any sort of user interface (e.g., under the IDLE
Python development GUI). This has been improved in the Python 2.0 release --

Programming Python, 2nd Edition, O’Reilly

IT-SC book 63

popen now works much better on Windows -- but this fix naturally works only on
machines with the latest version of Python installed.

Second, it is important to remember that running Python files as programs this way
is very different, and generally much slower, than importing program files and calling
functions they define. When os.system and os.popen are called, they must start
a brand-new independent program running on your operating system (on Unix-like
platforms, they run the command in a newly forked process). When importing a
program file as a module, the Python interpreter simply loads and runs the file's code
in the same process, to generate a module object. No other program is spawned
along the way.[5]

[5] The Python execfile built-in function also runs a program file's code, but within the same
process that called it. It's similar to an import in that regard, but works more as if the file's
text had been pasted into the calling program at the place where the execfile call appears
(unless explicit global or local namespace dictionaries are passed). Unlike imports, execfile
unconditionally reads and executes a file's code (it may be run more than once per process),
and no module object is generated by the file's execution.

There are good reasons to build systems as separate programs too, and we'll later
explore things like command-line arguments and streams that allow programs to
pass information back and forth. But for most purposes, imported modules are a
faster and more direct way to compose systems.

If you plan to use these calls in earnest, you should also know that the os.system
call normally blocks (that is, pauses) its caller until the spawned command line exits.
On Linux and Unix-like platforms, the spawned command can generally be made to
run independently and in parallel with the caller, by adding an & shell background
operator at the end of the command line:

os.system("python program.py arg arg &")

On Windows, spawning with a DOS start command will usually launch the command
in parallel too:

os.system("start program.py arg arg")

The os.popen call generally does not block its caller -- by definition, the caller
must be able to read or write the file object returned -- but callers may still
occasionally become blocked under both Windows and Linux if the pipe object is
closed (e.g., when garbage is collected) before the spawned program exits, or the
pipe is read exhaustively (e.g., with its read() method). As we will see in the
next chapter, the Unix os.fork/exec and Windows os.spawnv calls can also be
used to run parallel programs without blocking.

Because the os system and popen calls also fall under the category of program
launchers, stream redirectors, and cross-process communication devices, they will
show up again in later parts of this and the following chapters, so we'll defer further
details for the time being.

2.5.6 Other os Module Exports

Programming Python, 2nd Edition, O’Reilly

IT-SC book 64

Since most other os module tools are even more difficult to appreciate outside the
context of larger application topics, we'll postpone a deeper look until later sections.
But to let you sample the flavor of this module, here is a quick preview for reference.
Among the os module's other weapons are these:

os.environ

Fetch and set shell environment variables

os.fork

Spawn a new child process on Unix

os.pipe

Communicate between programs

os.execlp

Start new programs

os.spawnv

Start new programs on Windows

os.open

Open a low-level descriptor-based file

os.mkdir

Create a new directory

os.mkfifo

Create a new named pipe

os.stat

Fetch low-level file information

os.remove

Delete a file by its pathname

os.path.walk

Apply a function to files in an entire directory tree

And so on. One caution up front: the os module provides a set of file open, read,
and write calls, but these all deal with low-level file access and are entirely distinct

Programming Python, 2nd Edition, O’Reilly

IT-SC book 65

from Python's built-in stdio file objects that we create with the built-in open
function. You should normally use the built-in open function (not the os module) for
all but very special file-processing needs.

Throughout this chapter, we will apply sys and os tools such as these to implement
common system-level tasks, but this book doesn't have space to provide an
exhaustive list of the contents of the modules we meet along the way. If you have
not already done so, you should become acquainted with the contents of modules
like os and sys by consulting the Python library manual. For now, let's move on to
explore additional system tools, in the context of broader system programming
concepts.

2.6 Script Execution Context

Python scripts don't run in a vacuum. Depending on platforms and startup
procedures, Python programs may have all sorts of enclosing context -- information
automatically passed-in to the program by the operating system when the program
starts up. For instance, scripts have access to the following sorts of system-level
inputs and interfaces:

Current working directory

os.getcwd gives access to the directory from which a script is started, and many
file tools use its value implicitly.

Command-line arguments

sys.argv gives access to words typed on the command line used to start the
program that serve as script inputs.

Shell variables

os.environ provides an interface to names assigned in the enclosing shell (or a
parent program) and passed in to the script.

Standard streams

sys.stdin, stdout, and stderr export the three input/output streams that are
at the heart of command-line shell tools.

Such tools can serve as inputs to scripts, configuration parameters, and so on. In the
next few sections, we will explore these context tools -- both their Python interfaces
and their typical roles.

2.7 Current Working Directory

The notion of the current working directory (CWD) turns out to be a key concept in
some scripts' execution: it's always the implicit place where files processed by the
script are assumed to reside, unless their names have absolute directory paths. As

Programming Python, 2nd Edition, O’Reilly

IT-SC book 66

we saw earlier, os.getcwd lets a script fetch the CWD name explicitly, and
os.chdir allows a script to move to a new CWD.

Keep in mind, though, that filenames without full pathnames map to the CWD, and
have nothing to do with your PYTHONPATH setting. Technically, the CWD is always
where a script is launched from, not the directory containing the script file.
Conversely, imports always first search the directory containing the script, not the
CWD (unless the script happens to also be located in the CWD). Since this distinction
is subtle and tends to trip up beginners, let's explore it in more detail.

2.7.1 CWD, Files, and Import Paths

When you run a Python script by typing a shell command line like python
dir1\dir2\file.py, the CWD is the directory you were in when you typed this
command, not dir1\dir2. On the other hand, Python automatically adds the identity
of the script's home directory to the front of the module search path, such that
file.py can always import other files in dir1\dir2, no matter where it is run from. To
illustrate, let's write a simple script to echo both its CWD and module search path:

C:\PP2ndEd\examples\PP2E\System>type whereami.py
import os, sys
print 'my os.getcwd =>', os.getcwd() # show my
cwd execution dir
print 'my sys.path =>', sys.path[:6] # show
first 6 import paths
raw_input() # wait
for keypress if clicked

Now, running this script in the directory in which it resides sets the CWD as
expected, and adds an empty string ('') to the front of the module search path, to
designate the CWD (we met the sys.path module search path earlier):

C:\PP2ndEd\examples\PP2E\System>set
PYTHONPATH=C:\PP2ndEd\examples
C:\PP2ndEd\examples\PP2E\System>python whereami.py
my os.getcwd => C:\PP2ndEd\examples\PP2E\System
my sys.path => ['', 'C:\\PP2ndEd\\examples', 'C:\\Program
Files\\Python
\\Lib\\plat-win', 'C:\\Program Files\\Python\\Lib',
'C:\\Program Files\\
Python\\DLLs', 'C:\\Program Files\\Python\\Lib\\lib-tk']

But if we run this script from other places, the CWD moves with us (it's the directory
where we type commands), and Python adds a directory to the front of the module
search path that allows the script to still see files in its own home directory. For
instance, when running from one level up (".."), the "System" name added to the
front of sys.path will be the first directory Python searches for imports within
whereami.py ; it points imports back to the directory containing the script run.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 67

Filenames without complete paths, though, will be mapped to the CWD
(C:\PP2ndEd\examples\PP2E), not the System subdirectory nested there:

C:\PP2ndEd\examples\PP2E\System>cd ..
C:\PP2ndEd\examples\PP2E>python System\whereami.py
my os.getcwd => C:\PP2ndEd\examples\PP2E
my sys.path => ['System', 'C:\\PP2ndEd\\examples',
... rest same...]

C:\PP2ndEd\examples\PP2E>cd ..
C:\PP2ndEd\examples>python PP2E\System\whereami.py
my os.getcwd => C:\PP2ndEd\examples
my sys.path => ['PP2E\\System', 'C:\\PP2ndEd\\examples',
... rest same...]

C:\PP2ndEd\examples\PP2E\System>cd PP2E\System\App
C:\PP2ndEd\examples\PP2E\System\App>python ..\whereami.py
my os.getcwd => C:\PP2ndEd\examples\PP2E\System\App
my sys.path => ['..', 'C:\\PP2ndEd\\examples', ... rest
same...]

The net effect is that filenames without directory paths in a script will be mapped to
the place where the command was typed (os.getcwd), but imports still have
access to the directory of the script being run (via the front of sys.path). Finally,
when a file is launched by clicking its icon, the CWD is just the directory that
contains the clicked file. The following output, for example, appears in a new DOS
console box, when whereami.py is double-clicked in Windows explorer:

my os.getcwd => C:\PP2ndEd\examples\PP2E\System
my sys.path => ['C:\\PP2NDED\\EXAMPLES\\PP2E\\SYSTEM',
'C:\\PP2ndEd\\examples',
'C:\\Program Files\\Python\\Lib\\plat-win', 'C:\\Program
Files\\Python\\Lib',
'C:\\Program Files\\Python\\DLLs']

In this case, both the CWD used for filenames and the first import search directory
are the directory containing the script file. This all usually works out just as you
expect, but there are two pitfalls to avoid:

Filenames might need to include complete directory paths if scripts cannot be sure
from where they will be run.

Command-line scripts cannot use the CWD to gain import visibility to files not in their
own directories; instead, use PYTHONPATH settings and package import paths to
access modules in other directories.

For example, files in this book can always import other files in their own home
directories without package path imports, regardless of how they are run (import
filehere) but must go through the PP2E package root to find files anywhere else
in the examples tree (from PP2E.dir1.dir2 import filethere) even if they

Programming Python, 2nd Edition, O’Reilly

IT-SC book 68

are run from the directory containing the desired external module. As usual for
modules, the PP2E\dir1\dir2 directory name could also be added to PYTHONPATH to
make filethere visible everywhere without package path imports (though adding
more directories to PYTHONPATH increases the likelihood of name clashes). In either
case, though, imports are always resolved to the script's home directory or other
Python search path settings, not the CWD.

2.7.2 CWD and Command Lines

This distinction between the CWD and import search paths explains why many
scripts in this book designed to operate in the current working directory (instead of
one whose name is passed in) are run with command lines like this:

C:\temp>python %X%\PyTools\cleanpyc-py.py
 process cwd

In this example, the Python script file itself lives in the directory
C:\PP2ndEd\examples\PP2E\PyTools, but because it is run from C:\temp, it
processes the files located in C:\temp (i.e., in the CWD, not in the script's home
directory). To process files elsewhere with such a script, simply cd to the directory to
be processed to change the CWD:

C:\temp>cd C:\PP2nEd\examples
C:\PP2ndEd\examples>python %X%\PyTools\cleanpyc-py.py
 process cwd

Because the CWD is always implied, a cd tells the script which directory to process in
no less certain terms that passing a directory name to the script explicitly like this:

C:\...\PP2E\PyTools>python find.py *.py C:\temp
 process named dir

In this command line, the CWD is the directory containing the script to be run (notice
that the script filename has no directory path prefix); but since this script processes
a directory named explicitly on the command line (C:\temp), the CWD is irrelevant.
Finally, if we want to run such a script located in some other directory to process
files located in some other directory, we can simply give directory paths to both:

C:\temp>python %X%\PyTools\find.py *.cxx
C:\PP2ndEd\examples\PP2E

Here, the script has import visibility to files in its PP2E\PyTools home directory and
processes files in the PP2E root, but the CWD is something else entirely (C:\temp).
This last form is more to type, of course, but watch for a variety of CWD and explicit
script-path command lines like these in this book.

Whenever you see a %X% in command lines like those in the
preceding examples, it refers to the value of the shell
environment variable named X. It's just a shorthand for the full
di t th f th PP2E b k l k t

Programming Python, 2nd Edition, O’Reilly

IT-SC book 69

directory pathname of the PP2E book examples package root
directory, which I use to point to scripts' files. On my machines,
it is preset in my PP2E\Config setup-pp* files like this:

set X=C:\PP2ndEd\examples\PP2E --DOS
setenv X /home/mark/PP2ndEd/examples/PP2E --
Unix/csh

That is, it is assigned and expanded to the directory where PP2E
lives on the system. See the Config\setup-pp* files for
more details, and see later in this chapter for more on shell
variables. You can instead type full paths everywhere you see
%X% in this book, but your fingers and your keyboard are
probably both better off if you set X to your examples root.

2.8 Command-Line Arguments

The sys module is also where Python makes available the words typed on the
command used to start a Python script. These words are usually referred to as
command-line arguments, and show up in sys.argv, a built-in list of strings. C
programmers may notice its similarity to the C "argv" array (an array of C strings).
It's not much to look at interactively, because no command-line arguments are
passed to start up Python in this mode:

>>> sys.argv
['']

To really see what arguments are about, we need to run a script from the shell
command line. Example 2-2 shows an unreasonably simple one that just prints the
argv list for inspection.

Example 2-2. PP2E\System\testargv.py

import sys
print sys.argv

Running this script prints the command-line arguments list; note that the first item is
always the name of the executed Python script file itself, no matter how the script
was started (see Executable Scripts on Unix later in this chapter):

C:\...\PP2E\System>python testargv.py
['testargv.py']

C:\...\PP2E\System>python testargv.py spam eggs cheese
['testargv.py', 'spam', 'eggs', 'cheese']

Programming Python, 2nd Edition, O’Reilly

IT-SC book 70

C:\...\PP2E\System>python testargv.py -i data.txt -o
results.txt
['testargv.py', '-i', 'data.txt', '-o', 'results.txt']

The last command here illustrates a common convention. Much like function
arguments, command-line options are sometimes passed by position, and sometimes
by name using a "-name value" word pair. For instance, the pair -i data.txt
means the -i option's value is data.txt (e.g., an input filename). Any words can
be listed, but programs usually impose some sort of structure on them.

Command-line arguments play the same role in programs that function arguments
do in functions: they are simply a way to pass information to a program that can
vary per program run. Because they don't have to be hardcoded, they allow scripts
to be more generally useful. For example, a file-processing script can use a
command-line argument as the name of the file it should process; see the more.py
script we met in Example 2-1 for a prime example. Other scripts might accept
processing mode flags, Internet addresses, and so on.

Once you start using command-line arguments regularly, though, you'll probably find
it inconvenient to keep writing code that fishes through the list looking for words.
More typically, programs translate the arguments list on startup into structures more
conveniently processed. Here's one way to do it: the script in Example 2-3 scans the
argv list looking for -optionname optionvalue word pairs, and stuffs them
into a dictionary by option name for easy retrieval.

Example 2-3. PP2E\System\testargv2.py

collect command-line options in a dictionary

def getopts(argv):
 opts = {}
 while argv:
 if argv[0][0] == '-': # find "-
name value" pairs
 opts[argv[0]] = argv[1] # dict key
is "-name" arg
 argv = argv[2:]
 else:
 argv = argv[1:]
 return opts

if __name__ == '__main__':
 from sys import argv # example
client code
 myargs = getopts(argv)
 if myargs.has_key('-i'):
 print myargs['-i']
 print myargs

Programming Python, 2nd Edition, O’Reilly

IT-SC book 71

You might import and use such a function in all your command-line tools. When run
by itself, this file just prints the formatted argument dictionary:

C:\...\PP2E\System>python testargv2.py
{}

C:\...\PP2E\System>python testargv2.py -i data.txt -o
results.txt
data.txt
{'-o': 'results.txt', '-i': 'data.txt'}

Naturally, we could get much more sophisticated here in terms of argument
patterns, error checking, and the like. We could also use standard and more
advanced command-line processing tools in the Python library to parse arguments;
see module getopt in the library manual for another option. In general, the more
configurable your scripts, the more you must invest on command-line processing
logic complexity.

Executable Scripts on Unix

Unix and Linux users: you can also make text files of Python source code
directly executable by adding a special line at the top with the path to the
Python interpreter and giving the file executable permission. For instance,
type this code into a text file called "myscript":

#!/usr/bin/python
print 'And nice red uniforms'

The first line is normally taken as a comment by Python (it starts with a #);
but when this file is run, the operating system sends lines in this file to the
interpreter listed after #! on line 1. If this file is made directly executable
with a shell command of the form chmod +x myscript, it can be run
directly, without typing python in the command, as though it were a binary
executable program:

% myscript a b c
And nice red uniforms

When run this way, sys.argv will still have the script's name as the first
word in the list: ["myscript", "a", "b", "c"], exactly as if the script had been
run with the more explicit and portable command form python myscript
a b c. Making scripts directly executable is really a Unix trick, not a Python
feature, but it's worth pointing out that it can be made a bit less machine-
dependent by listing the Unix env command at the top instead of a
hardcoded path to the Python executable:

#!/usr/bin/env python
print 'Wait for it...'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 72

When coded this way, the operating system will employ your environment
variable settings to locate your Python interpreter (your PATH variable, on
most platforms). If you run the same script on many machines, you need
only change your environment settings on each machine, not edit Python
script code. Of course, you can always run Python files with a more explicit
command line:

% python myscript a b c

This assumes that the python interpreter program is on your system's
search path setting (else you need to type its full path), but works on any
Python platform with a command line. Since this is more portable, I
generally use this convention in the book's examples, but consult your Unix
man pages for more details on any of the topics mentioned here. Even so,
these special #! lines will show up in many examples in this book just in
case readers want to run them as executables on Unix or Linux; on other
platforms, they are simply ignored as Python comments. Note that on
Windows NT/2000, you can usually type a script's filename directly (without
the "python" word) to make it go too, and you don't have to add a #! line
at the top.

2.9 Shell Environment Variables

Shell variables, sometimes known as environment variables, are made available to
Python scripts as os.environ, a Python dictionary-like object with one entry per
variable setting in the shell. Shell variables live outside the Python system; they are
often set at your system prompt or within startup files, and typically serve as
systemwide configuration inputs to programs.

In fact, by now you should be familiar with a prime example: the PYTHONPATH
module search path setting is a shell variable used by Python to import modules. By
setting it once in your system startup files, its value is available every time a Python
program is run. Shell variables can also be set by programs to serve as inputs to
other programs in an application; because their values are normally inherited by
spawned programs, they can be used as a simple form of interprocess
communication.

2.9.1 Fetching Shell Variables

In Python, the surrounding shell environment becomes a simple preset object, not
special syntax. Indexing os.environ by the desired shell variable's name string
(e.g., os.environ['USER']) is the moral equivalent of adding a dollar sign
before a variable name in most Unix shells (e.g., $USER), using surrounding percent
signs on DOS (%USER%), and calling getenv("USER") in a C program. Let's start
up an interactive session to experiment:

>>> import os
>>> os.environ.keys()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 73

['WINBOOTDIR', 'PATH', 'USER', 'PP2HOME', 'CMDLINE',
'PYTHONPATH', 'BLASTER',
'X', 'TEMP', 'COMSPEC', 'PROMPT', 'WINDIR', 'TMP']
>>> os.environ['TEMP']
'C:\\windows\\TEMP'

Here, the keys method returns a list of variables set, and indexing fetches the value
of shell variable TEMP on Windows. This works the same on Linux, but other
variables are generally preset when Python starts up. Since we know about
PYTHONPATH, let's peek at its setting within Python to verify its content:[6]

[6] For color, these results reflect an old path setting used during development; this variable
now contains just the single directory containing the PP2E root.

>>> os.environ['PYTHONPATH']
'C:\\PP2ndEd\\examples\\Part3;C:\\PP2ndEd\\examples\\Part2;
C:\\PP2ndEd\\
examples\\Part2\\Gui;C:\\PP2ndEd\\examples'
>>>
>>> import string
>>> for dir in string.split(os.environ['PYTHONPATH'],
os.pathsep):
... print dir
...
C:\PP2ndEd\examples\Part3
C:\PP2ndEd\examples\Part2
C:\PP2ndEd\examples\Part2\Gui
C:\PP2ndEd\examples

PYTHONPATH is a string of directory paths separated by whatever character is used
to separate items in such paths on your platform (e.g., ";" on DOS/Window, ":" on
Unix and Linux). To split it into its components, we pass string.split a delimiter
os.pathsep, a portable setting that gives the proper separator for the underlying
machine.

2.9.2 Changing Shell Variables

Like normal dictionaries, the os.environ object supports both key indexing and
assignment. As usual, assignments change the value of the key:

>>> os.environ['TEMP'] = r'c:\temp'
>>> os.environ['TEMP']
'c:\\temp'

But something extra happens here. In recent Python releases, values assigned to
os.environ keys in this fashion are automatically exported to other parts of the
application. That is, key assignments change both the os.environ object in the
Python program as well as the associated variable in the enclosing shell environment
of the running program's process. Its new value becomes visible to the Python

Programming Python, 2nd Edition, O’Reilly

IT-SC book 74

program, all linked-in C modules, and any programs spawned by the Python process.
Internally, key assignments to os.environ call os.putenv -- a function that
changes the shell variable outside the boundaries of the Python interpreter. To
demonstrate this how this works, we need a couple scripts that set and fetch shell
variables; the first is shown in Example 2-4.

Example 2-4. PP2E\System\Environment\setenv.py

import os
print 'setenv...',
print os.environ['USER'] # show current
shell variable value

os.environ['USER'] = 'Brian' # runs os.putenv
behind the scenes
os.system('python echoenv.py')

os.environ['USER'] = 'Arthur' # changes passed
to spawned programs
os.system('python echoenv.py') # and linked-in C
library modules

os.environ['USER'] = raw_input('?')
print os.popen('python echoenv.py').read()

This setenv.py script simply changes a shell variable, USER, and spawns another
script that echoes this variable's value, shown in Example 2-5.

Example 2-5. PP2E\System\Environment\echoenv.py

import os
print 'echoenv...',
print 'Hello,', os.environ['USER']

No matter how we run echoenv.py, it displays the value of USER in the enclosing
shell; when run from the command line, this value comes from whatever we've set
the variable to in the shell itself:

C:\...\PP2E\System\Environment>set USER=Bob

C:\...\PP2E\System\Environment>python echoenv.py
echoenv... Hello, Bob

When spawned by another script like setenv.py, though, echoenv.py gets whatever
USER settings its parent program has made:

C:\...\PP2E\System\Environment>python setenv.py
setenv... Bob
echoenv... Hello, Brian

Programming Python, 2nd Edition, O’Reilly

IT-SC book 75

echoenv... Hello, Arthur
?Gumby
echoenv... Hello, Gumby

C:\...\PP2E\System\Environment>echo %USER%
Bob

This works the same way on Linux. In general terms, a spawned program always
inherits environment settings from its parents. "Spawned" programs are programs
started with Python tools such as os.spawnv on Windows, the os.fork/exec
combination on Unix and Linux, and os.popen and os.system on a variety of
platforms -- all programs thus launched get the environment variable settings that
exist in the parent at launch time.[7]

[7] This is by default. Some program-launching tools also let scripts pass environment settings
different from their own to child programs. For instance, the os.spawnve call is like
os.spawnv, but accepts a dictionary argument representing the shell environment to be
passed to the started program. Some os.exec* variants (ones with an "e" at the end of their
names) similarly accept explicit environments; see the os.exec call formats in Chapter 3, for
more details.

Setting shell variables like this before starting a new program is one way to pass
information into the new program. For instance, a Python configuration script might
tailor the PYTHONPATH variable to include custom directories, just before launching
another Python script; the launched script will have the custom search path because
shell variables are passed down to children (in fact, watch for such a launcher script
to appear at the end of Chapter 4).

Notice the last command in the preceding example, though --
the USER variable is back to its original value after the top-level
Python program exits. Assignments to os.environ keys are
passed outside the interpreter and down the spawned programs
chain, but never back up to parent program processes (including
the system shell). This is also true in C programs that use the
putenv library call, and isn't a Python limitation per se. It's also
likely to be a nonissue if a Python script is at the top of your
application. But keep in mind that shell settings made within a
program only endure for that program's run, and that of its
spawned children.

2.10 Standard Streams

Module sys is also the place where the standard input, output, and error streams of
your Python programs live:

>>> for f in (sys.stdin, sys.stdout, sys.stderr): print f
...
<open file '<stdin>', mode 'r' at 762210>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 76

<open file '<stdout>', mode 'w' at 762270>
<open file '<stderr>', mode 'w' at 7622d0>

The standard streams are simply pre-opened Python file objects that are
automatically connected to your program's standard streams when Python starts up.
By default, they are all tied to the console window where Python (or a Python
program) was started. Because the print statement and raw_input functions are
really nothing more than user-friendly interfaces to the standard output and input
streams, they are similar to using stdout and stdin in sys directly:

>>> print 'hello stdout world'
hello stdout world

>>> sys.stdout.write('hello stdout world' + '\n')
hello stdout world

>>> raw_input('hello stdin world>')
hello stdin world>spam
'spam'

>>> print 'hello stdin world>',; sys.stdin.readline()[:-
1]
hello stdin world>eggs

'eggs'

Standard Streams on Windows

Windows users: if you click a .py Python program's filename in a Windows
file explorer to start it (or launch it with os.system), a DOS console box
automatically pops up to serve as the program's standard stream. If your
program makes windows of its own, you can avoid this console pop-up
window by naming your program's source-code file with a .pyw extension,
not .py. The .pyw extension simply means a .py source file without a DOS
pop-up on Windows.

One caveat: in the Python 1.5.2 release, .pyw files can only be run, not
imported -- the .pyw is not recognized as a module name. If you want a
program to both be run without a DOS console pop-up and be importable
elsewhere, you need both .py and .pyw files; the .pyw may simply serve as
top-level script logic that imports and calls the core logic in the .py. See
Section 9.4 in Chapter 9, for an example.

Also note that because printed output goes to this DOS pop-up when a
program is clicked, scripts that simply print text and exit will generate an
odd "flash" -- the DOS console box pops up, output is printed into it, and the
pop-up goes immediately away (not the most user-friendly of features!). To
keep the DOS pop-up box around so you can read printed output, simply
add a raw input() call at the bottom of your script to pause for an

Programming Python, 2nd Edition, O’Reilly

IT-SC book 77

Enter key press before exiting.

2.10.1 Redirecting Streams to Files and Programs

Technically, standard output (and print) text appears in the console window where
a program was started, standard input (and raw_input) text comes from the
keyboard, and standard error is used to print Python error messages to the console
window. At least that's the default. It's also possible to redirect these streams both
to files and other programs at the system shell, and to arbitrary objects within a
Python script. On most systems, such redirections make it easy to reuse and
combine general-purpose command-line utilities.

2.10.1.1 Redirecting streams to files

Redirection is useful for things like canned (precoded) test inputs: we can apply a
single test script to any set of inputs by simply redirecting the standard input stream
to a different file each time the script is run. Similarly, redirecting the standard
output stream lets us save and later analyze a program's output; for example,
testing systems might compare the saved standard output of a script with a file of
expected output, to detect failures.

Although it's a powerful paradigm, redirection turns out to be straightforward to use.
For instance, consider the simple read-evaluate-print loop program in Example 2-6.

Example 2-6. PP2E\System\Streams\teststreams.py

read numbers till eof and show squares

def interact():
 print 'Hello stream world' # print
sends to sys.stdout
 while 1:
 try:
 reply = raw_input('Enter a number>') #
raw_input reads sys.stdin
 except EOFError:
 break #
raises an except on eof
 else: # input
given as a string
 num = int(reply)
 print "%d squared is %d" % (num, num ** 2)
 print 'Bye'

if __name__ == '__main__':
 interact() #
when run, not imported

Programming Python, 2nd Edition, O’Reilly

IT-SC book 78

As usual, the interact function here is automatically executed when this file is
run, not when it is imported. By default, running this file from a system command
line makes that standard stream appear where you typed the Python command. The
script simply reads numbers until it reaches end-of-file in the standard input stream
(on Windows, end-of-file is usually the two-key combination Ctrl+Z; on Unix, type
Ctrl+D instead[8]):

[8] Notice that raw_input raises an exception to signal end-of-file, but file read methods
simply return an empty string for this condition. Because raw_input also strips the end-of-line
character at the end of lines, an empty string result means an empty line, so an exception is
necessary to specify the end-of-file condition. File read methods retain the end-of-line
character, and denote an empty line as \n instead of "". This is one way in which reading
sys.stdin directly differs from raw_input. The latter also accepts a prompt string that is
automatically printed before input is accepted.

C:\...\PP2E\System\Streams>python teststreams.py
Hello stream world
Enter a number>12
12 squared is 144
Enter a number>10
10 squared is 100
Enter a number>

But on both Windows and Unix-like platforms, we can redirect the standard input
stream to come from a file with the < filename shell syntax. Here is a command
session in a DOS console box on Windows that forces the script to read its input from
a text file, input.txt. It's the same on Linux, but replace the DOS type command with
a Unix cat command:

C:\...\PP2E\System\Streams>type input.txt
8
6

C:\...\PP2E\System\Streams>python teststreams.py <
input.txt
Hello stream world
Enter a number>8 squared is 64
Enter a number>6 squared is 36
Enter a number>Bye

Here, the input.txt file automates the input we would normally type interactively --
the script reads from this file instead of the keyboard. Standard output can be
similarly redirected to go to a file, with the > filename shell syntax. In fact, we
can combine input and output redirection in a single command:

C:\...\PP2E\System\Streams>python teststreams.py <
input.txt > output.txt

C:\...\PP2E\System\Streams>type output.txt
Hello stream world
Enter a number>8 squared is 64

Programming Python, 2nd Edition, O’Reilly

IT-SC book 79

Enter a number>6 squared is 36
Enter a number>Bye

This time, the Python script's input and output are both mapped to text files, not the
interactive console session.

2.10.1.2 Chaining programs with pipes

On Windows and Unix-like platforms, it's also possible to send the standard output of
one program to the standard input of another, using the | shell character between
two commands. This is usually called a "pipe" operation -- the shell creates a pipeline
that connects the output and input of two commands. Let's send the output of the
Python script to the standard "more" command-line program's input to see how this
works:

C:\...\PP2E\System\Streams>python teststreams.py <
input.txt | more

Hello stream world
Enter a number>8 squared is 64
Enter a number>6 squared is 36
Enter a number>Bye

Here, teststreams's standard input comes from a file again, but its output
(written by print statements) is sent to another program, not a file or window. The
receiving program is more -- a standard command-line paging program available on
Windows and Unix-like platforms. Because Python ties scripts into the standard
stream model, though, Python scripts can be used on both ends -- one Python
script's output can always be piped into another Python script's input:

C:\...\PP2E\System\Streams>type writer.py
print "Help! Help! I'm being repressed!"
print 42

C:\...\PP2E\System\Streams>type reader.py
print 'Got this" "%s"' % raw_input()
import sys
data = sys.stdin.readline()[:-1]
print 'The meaning of life is', data, int(data) * 2

C:\...\PP2E\System\Streams>python writer.py | python
reader.py
Got this" "Help! Help! I'm being repressed!"
The meaning of life is 42 84

This time, two Python programs are connected. Script reader gets input from script
writer; both scripts simply read and write, oblivious to stream mechanics. In
practice, such chaining of programs is a simple form of cross-program
communications. It makes it easy to reuse utilities written to communicate via

Programming Python, 2nd Edition, O’Reilly

IT-SC book 80

stdin and stdout in ways we never anticipated. For instance, a Python program
that sorts stdin text could be applied to any data source we like, including the
output of other scripts. Consider the Python command-line utility scripts in Examples
Example 2-7 and Example 2-8 that sort and sum lines in the standard input stream.

Example 2-7. PP2E\System\Streams\sorter.py

import sys
lines = sys.stdin.readlines() # sort stdin
input lines,
lines.sort() # send result to
stdout
for line in lines: print line, # for further
processing

Example 2-8. PP2E\System\Streams\adder.py

import sys, string
sum = 0
while 1:
 try:
 line = raw_input() # or call
sys.stdin.readlines():
 except EOFError: # or
sys.stdin.readline() loop
 break
 else:
 sum = sum + string.atoi(line) # int(line[:-1])
treats 042 as octal
print sum

We can apply such general-purpose tools in a variety of ways at the shell command
line, to sort and sum arbitrary files and program outputs:

C:\...\PP2E\System\Streams>type data.txt
123
000
999
042

C:\...\PP2E\System\Streams>python sorter.py < data.txt
 sort a file
000
042
123
999

Programming Python, 2nd Edition, O’Reilly

IT-SC book 81

C:\...\PP2E\System\Streams>type data.txt | python adder.py
 sum program output
1164

C:\...\PP2E\System\Streams>type writer2.py
for data in (123, 0, 999, 42):
 print '%03d' % data

C:\...\PP2E\System\Streams>python writer2.py | python
sorter.py sort py output
000
042
123
999

C:\...\PP2E\System\Streams>python writer2.py | python
sorter.py | python adder.py
1164

The last command here connects three Python scripts by standard streams -- the
output of each prior script is fed to the input of the next via pipeline shell syntax.

If you look closely, you'll notice that sorter reads all of stdin at once with the
readlines method, but adder reads one line at a time. If the input source is
another program, some platforms run programs connected by pipes in parallel. On
such systems, reading line-by-line works better if the data streams being passed
about are large -- readers need not wait until writers are completely finished to get
busy processing data. Because raw_input just reads stdin, the line-by-line
scheme used by adder can always be coded with sys.stdin too:

C:\...\PP2E\System\Streams>type adder2.py
import sys, string
sum = 0
while 1:
 line = sys.stdin.readline()
 if not line: break
 sum = sum + string.atoi(line[:-1])
print sum

Changing sorter to read line-by-line may not be a big performance boost, though,
because the list sort method requires the list to already be complete. As we'll see
in Chapter 17, manually coded sort algorithms are likely to be much slower than the
Python list sorting method.

2.10.1.3 Redirected streams and user interaction

At the start of the last section, we piped teststreams.py output into the standard
more command-line program with a command like this:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 82

C:\...\PP2E\System\Streams>python teststreams.py <
input.txt | more

But since we already wrote our own "more" paging utility in Python near the start of
this chapter, why not set it up to accept input from stdin too? For example, if we
change the last three lines of file more.py listed earlier in this chapter to this:

if __name__ == '__main__': # when
run, not when imported
 if len(sys.argv) == 1: # page
stdin if no cmd args
 more(sys.stdin.read())
 else:
 more(open(sys.argv[1]).read())

Then it almost seems as if we should be able to redirect the standard output of
teststreams.py into the standard input of more.py :

C:\...\PP2E\System\Streams>python teststreams.py <
input.txt | python ..\more.py
Hello stream world
Enter a number>8 squared is 64
Enter a number>6 squared is 36
Enter a number>Bye

This technique works in general for Python scripts. Here, teststreams.py takes input
from a file again. And, as in the last section, one Python program's output is piped to
another's input -- the more.py script in the parent ("..") directory.

2.10.1.3.1 Reading keyboard input

But there's a subtle problem lurking in the preceding more.py command. Really,
chaining only worked there by sheer luck: if the first script's output is long enough
for more to have to ask the user if it should continue, the script will utterly fail. The
problem is that the augmented more.py uses stdin for two disjoint purposes. It
reads a reply from an interactive user on stdin by calling raw_input, but now
also accepts the main input text on stdin. When the stdin stream is really
redirected to an input file or pipe, we can't use it to input a reply from an interactive
user; it contains only the text of the input source. Moreover, because stdin is
redirected before the program even starts up, there is no way to know what it meant
prior to being redirected in the command line.

If we intend to accept input on stdin and use the console for user interaction, we
have to do a bit more. Example 2-9 shows a modified version of the more script that
pages the standard input stream if called with no arguments, but also makes use of
lower-level and platform-specific tools to converse with a user at a keyboard if
needed.

Example 2-9. PP2E\System\moreplus.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 83

###

split and interactively page a string, file, or stream of
text to stdout; when run as a script, page stdin or file
whose name is passed on cmdline; if input is stdin, can't
use it for user reply--use platform-specific tools or
gui;
###

import sys, string

def getreply():
 """
 read a reply key from an interactive user
 even if stdin redirected to a file or pipe
 """
 if sys.stdin.isatty(): # if
stdin is console
 return raw_input('?') # read
reply line from stdin
 else:
 if sys.platform[:3] == 'win': # if stdin
was redirected
 import msvcrt # can't
use to ask a user
 msvcrt.putch('?')
 key = msvcrt.getche() # use
windows console tools
 msvcrt.putch('\n') # getch(
) does not echo key
 return key
 elif sys.platform[:5] == 'linux': # use
linux console device
 print '?', # strip
eoln at line end
 console = open('/dev/tty')
 line = console.readline()[:-1]
 return line
 else:
 print '[pause]' # else
just pause--improve me
 import time # see also
modules curses, tty
 time.sleep(5) # or copy
to temp file, rerun

Programming Python, 2nd Edition, O’Reilly

IT-SC book 84

 return 'y' # or gui
popup, tk key bind

def more(text, numlines=10):
 """
 split multi-line string to stdout
 """
 lines = string.split(text, '\n')
 while lines:
 chunk = lines[:numlines]
 lines = lines[numlines:]
 for line in chunk: print line
 if lines and getreply() not in ['y', 'Y']: break

if __name__ == '__main__': # when
run, not when imported
 if len(sys.argv) == 1: # if no
command-line arguments
 more(sys.stdin.read()) # page
stdin, no raw_inputs
 else:
 more(open(sys.argv[1]).read()) # else
page filename argument

Most of the new code in this version shows up in its getreply function. The file
isatty method tells us if stdin is connected to the console; if it is, we simply
read replies on stdin as before. Unfortunately, there is no portable way to input a
string from a console user independent of stdin, so we must wrap the non-stdin
input logic of this script in a sys.platform test:

On Windows, the built-in msvcrt module supplies low-level console input and
output calls (e.g., msvcrt.getch() reads a single key press).

On Linux, the system device file named /dev/tty gives access to keyboard input (we
can read it as though it were a simple file).

On other platforms, we simply run a built-in time.sleep call to pause for five
seconds between displays (this is not at all ideal, but is better than not stopping at
all, and serves until a better nonportable solution can be found).

Of course, we only have to add such extra logic to scripts that intend to interact with
console users and take input on stdin. In a GUI application, for example, we could
instead pop up dialogs, bind keyboard-press event to run callbacks, and so on (we'll
meet GUIs in Chapter 6).

Armed with the reusable getreply function, though, we can safely run our
moreplus utility in a variety of ways. As before, we can import and call this
module's function directly, passing in whatever string we wish to page:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 85

>>> from moreplus import more
>>> more(open('System.txt').read())
This directory contains operating system interface
examples.

Many of the examples in this unit appear elsewhere in the
examples
distribution tree, because they are actually used to manage
other
programs. See the README.txt files in the subdirectories
here
for pointers.

Also as before, when run with a command-line argument, this script interactively
pages through the named file's text:

C:\...\PP2E\System>python moreplus.py System.txt
This directory contains operating system interface
examples.

Many of the examples in this unit appear elsewhere in the
examples
distribution tree, because they are actually used to manage
other
programs. See the README.txt files in the subdirectories
here
for pointers.

C:\...\PP2E\System>python moreplus.py moreplus.py
###

split and interactively page a string, file, or stream of
text to stdout; when run as a script, page stdin or file
whose name is passed on cmdline; if input is stdin, can't
use it for user reply--use platform-specific tools or
gui;
###

import sys, string

def getreply():
?n

But now the script also correctly pages text redirected in to stdin from either a file
or command pipe, even if that text is too long to fit in a single display chunk. On
most shells, we send such input via redirection or pipe operators like these:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 86

C:\...\PP2E\System>python moreplus.py < moreplus.py
###

split and interactively page a string, file, or stream of
text to stdout; when run as a script, page stdin or file
whose name is passed on cmdline; if input is stdin, can't
use it for user reply--use platform-specific tools or
gui;
###

import sys, string

def getreply():
?n

C:\...\PP2E\System>type moreplus.py | python moreplus.py
###

split and interactively page a string, file, or stream of
text to stdout; when run as a script, page stdin or file
whose name is passed on cmdline; if input is stdin, can't
use it for user reply--use platform-specific tools or
gui;
###

import sys, string

def getreply():
?n

This works the same on Linux, but again use the cat command instead of type.
Finally, piping one Python script's output into this script's input now works as
expected, without botching user interaction (and not just because we got lucky):

C:\......\System\Streams>python teststreams.py < input.txt
| python ..\moreplus.py
Hello stream world
Enter a number>8 squared is 64
Enter a number>6 squared is 36
Enter a number>Bye

Here, the standard output of one Python script is fed to the standard input of another
Python script located in the parent directory: moreplus.py reads the output of
teststreams.py.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 87

All of the redirections in such command lines work only because scripts don't care
what standard input and output really are -- interactive users, files, or pipes between
programs. For example, when run as a script, moreplus.py simply reads stream
sys.stdin; the command-line shell (e.g., DOS on Windows, csh on Linux)
attaches such streams to the source implied by the command line before the script is
started. Scripts use the preopened stdin and stdout file objects to access those
sources, regardless of their true nature.

And for readers keeping count, we have run this single more pager script in four
different ways: by importing and calling its function, by passing a filename
command-line argument, by redirecting stdin to a file, and by piping a command's
output to stdin. By supporting importable functions, command-line arguments, and
standard streams, Python system tools code can be reused in a wide variety of
modes.

2.10.2 Redirecting Streams to Python Objects

All of the above standard stream redirections work for programs written in any
language that hooks into the standard streams, and rely more on the shell's
command-line processor than on Python itself. Command-line redirection syntax like
< filename and | program is evaluated by the shell, not Python. A more
Pythonesque form of redirection can be done within scripts themselves, by resetting
sys.stdin and sys.stdout to file-like objects.

The main trick behind this mode is that anything that looks like a file in terms of
methods will work as a standard stream in Python. The object's protocol, not the
object's specific datatype, is all that matters. That is:

Any object that provides file-like read methods can be assigned to sys.stdin to
make input come from that object's read methods.

Any object that defines file-like write methods can be assigned to sys.stdout; all
standard output will be sent to that object's methods.

Because print and raw_input simply call the write and readline methods of
whatever objects sys.stdout and sys.stdin happen to reference, we can use
this trick to both provide and intercept standard stream text with objects
implemented as classes. Example 2-10 shows a utility module that demonstrates this
concept.

Example 2-10. PP2E\System\Streams\redirect.py

file-like objects that save all standard output text in
a string, and provide standard input text from a string;
redirect runs a passed-in function with its output and
input streams reset to these file-like class objects;

Programming Python, 2nd Edition, O’Reilly

IT-SC book 88

import sys, string # get
built-in modules

class Output: # simulated
output file
 def __init__(self):
 self.text = '' # empty
string when created
 def write(self, string): # add a
string of bytes
 self.text = self.text + string
 def writelines(self, lines): # add each
line in a list
 for line in lines: self.write(line)

class Input: # simulated
input file
 def __init__(self, input=''): # default
argument
 self.text = input # save
string when created
 def read(self, *size): # optional
argument
 if not size: # read N
bytes, or all
 res, self.text = self.text, ''
 else:
 res, self.text = self.text[:size[0]],
self.text[size[0]:]
 return res
 def readline(self):
 eoln = string.find(self.text, '\n') # find
offset of next eoln
 if eoln == -1: # slice off
through eoln
 res, self.text = self.text, ''
 else:
 res, self.text = self.text[:eoln+1],
self.text[eoln+1:]
 return res

def redirect(function, args, input): # redirect
stdin/out
 savestreams = sys.stdin, sys.stdout # run a
function object
 sys.stdin = Input(input) # return
stdout text

Programming Python, 2nd Edition, O’Reilly

IT-SC book 89

 sys.stdout = Output()
 try:
 apply(function, args)
 except:
 sys.stderr.write('error in function! ')
 sys.stderr.write("%s, %s\n" % (sys.exc_type,
sys.exc_value))
 result = sys.stdout.text
 sys.stdin, sys.stdout = savestreams
 return result

This module defines two classes that masquerade as real files:

Output provides the write method protocol expected of output files, but saves all
output as it is written, in an in-memory string.

Input provides the protocol expected of input files, but provides input on demand
from an in-memory string, passed in at object construction time.

The redirect function at the bottom of this file combines these two objects to run
a single function with input and output redirected entirely to Python class objects.
The passed-in function so run need not know or care that its print statements,
raw_input calls, and stdin and stdout method calls are talking to a class
instead of a real file, pipe, or user.

To demonstrate, import and run the interact function at the heart of the
teststreams script we've been running from the shell (to use the redirection
utility function, we need to deal in terms of functions, not files). When run directly,
the function reads from the keyboard and writes to the screen, just as if it were run
as a program without redirection:

C:\...\PP2E\System\Streams>python
>>> from teststreams import interact
>>> interact()
Hello stream world
Enter a number>2
2 squared is 4
Enter a number>3
3 squared is 9
Enter a number
>>>

Now, let's run this function under the control of the redirection function in
redirect.py, and pass in some canned input text. In this mode, the interact
function takes its input from the string we pass in ('4\n5\n6\n' -- three lines
with explicit end-of-line characters), and the result of running the function is a string
containing all the text written to the standard output stream:

>>> from redirect import redirect

Programming Python, 2nd Edition, O’Reilly

IT-SC book 90

>>> output = redirect(interact, (), '4\n5\n6\n')
>>> output
'Hello stream world\012Enter a number>4 squared is
16\012Enter a number>
5 squared is 25\012Enter a number>6 squared is 36\012Enter
a number>Bye\012'

The result is a single, long string, containing the concatenation of all text written to
standard output. To make this look better, we can split it up with the standard
string module:

>>> from string import split
>>> for line in split(output, '\n'): print line
...
Hello stream world
Enter a number>4 squared is 16
Enter a number>5 squared is 25
Enter a number>6 squared is 36
Enter a number>Bye

Better still, we can reuse the more.py module we saw earlier in this chapter; it's less
to type and remember, and is already known to work well:

>>> from PP2E.System.more import more
>>> more(output)
Hello stream world
Enter a number>4 squared is 16
Enter a number>5 squared is 25
Enter a number>6 squared is 36
Enter a number>Bye

This is an artificial example, of course, but the techniques illustrated are widely
applicable. For example, it's straightforward to add a GUI interface to a program
written to interact with a command-line user. Simply intercept standard output with
an object like the Output class shown earlier, and throw the text string up in a
window. Similarly, standard input can be reset to an object that fetches text from a
graphical interface (e.g., a popped-up dialog box). Because classes are plug-and-
play compatible with real files, we can use them in any tool that expects a file. Watch
for a GUI stream-redirection module named guiStreams in Chapter 9.

2.10.3 Other Redirection Options

Earlier in this chapter, we also studied the built-in os.popen function, which
provides a way to redirect another command's streams from within a Python
program. As we saw, this function runs a shell command line (e.g., a string we would
normally type at a DOS or csh prompt), but returns a Python file-like object
connected to the command's input or output stream. Because of that, the
os.popen tool can be considered another way to redirect streams of spawned
programs, and a cousin to the techniques we just met: Its effect is much like the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 91

shell | command-line pipe syntax for redirecting streams to programs (in fact its
name means "pipe open"), but it is run within a script and provides a file-like
interface to piped streams. It's similar in spirit to the redirect function, but is
based on running programs (not calling functions), and the command's streams are
processed in the spawning script as files (not tied to class objects).

By passing in the desired mode flag, we redirect a spawned program's input or
output streams to a file in the calling scripts:

C:\...\PP2E\System\Streams>type hello-out.py
print 'Hello shell world'

C:\...\PP2E\System\Streams>type hello-in.py
input = raw_input()
open('hello-in.txt', 'w').write('Hello ' + input + '\n')

C:\...\PP2E\System\Streams>python
>>> import os
>>> pipe = os.popen('python hello-out.py') # 'r' is
default--read stdout
>>> pipe.read()
'Hello shell world\012'

>>> pipe = os.popen('python hello-in.py', 'w')
>>> pipe.write('Gumby\n') # 'w'--
write to program stdin
>>> pipe.close() # \n
at end is optional
>>> open('hello-in.txt').read()
'Hello Gumby\012'

The popen call is also smart enough to run the command string as an independent
process on Unix and Linux. There are additional popen-like tools in the Python
library that allow scripts to connect to more than one of the commands' streams. For
instance, the popen2 module includes functions for hooking into both a command's
input and output streams (popen2.popen2), and another for connecting to
standard error as well (popen2.popen3):

import popen2
childStdout, childStdin = popen2.popen2('python hello-in-
out.py')
childStdin.write(input)
output = childStdout.read()

childStdout, childStdin, childStderr =
popen2.popen3('python hello-in-out.py')

These two calls work much like os.popen, but connect additional streams. When I
originally wrote this, these calls only worked on Unix-like platforms, not on Windows,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 92

because they relied on a fork call in Python 1.5.2. As of the Python 2.0 release,
they now work well on Windows too.

Speaking of which: on Unix-like platforms, the combination of the calls os.fork,
os.pipe, os.dup, and some os.exec variants can be used to start a new
independent program with streams connected to the parent program's streams
(that's how popen2 works its magic). As such, it's another way to redirect streams,
and a low-level equivalent to tools like os.popen. See Chapter 3 for more on all
these calls, especially its section on pipes.

Python 2.0 now also makes the popen2 and popen3 calls
available in the os module. (For example, os.popen2 is the
same as popen2.popen2, except that the order of stdin and
stdout in the call's result tuple is swapped.) In addition, the
2.0 release extends the print statement to include an explicit
file to which output is to be sent. A statement of the form
print >>file stuff prints stuff to file, instead of
stdout. The net effect is similar to simply assigning
sys.stdout to an object.

Capturing the stderr Stream

We've been focusing on stdin and stdout redirection, but stderr can
be similarly reset to files, pipes, and objects. This is straightforward within a
Python script. For instance, assigning sys.stderr to another instance of a
class like Output in the preceding example allows your script to intercept
text written to standard error too. The popen3 call mentioned previously
also allows stderr to be intercepted within a script.

Redirecting standard error from a shell command line is a bit more complex,
and less portable. On most Unix-like systems, we can usually capture
stderr output by using shell-redirection syntax of the form command
2>&1. This won't work on Windows 9x platforms, though, and can even
vary per Unix shell; see your shell's manpages for more details.

2.11 File Tools

External files are at the heart of much of what we do with shell utilities. For instance,
a testing system may read its inputs from one file, store program results in another
file, and check expected results by loading yet another file. Even user interface and
Internet-oriented programs may load binary images and audio clips from files on the
underlying computer. It's a core programming concept.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 93

In Python, the built-in open function is the primary tool scripts use to access the
files on the underlying computer system. Since this function is an inherent part of
the Python language, you may already be familiar with its basic workings.
Technically, open gives direct access to the stdio filesystem calls in the system's C
library -- it returns a new file object that is connected to the external file, and has
methods that map more or less directly to file calls on your machine. The open
function also provides a portable interface to the underlying filesystem -- it works
the same on every platform Python runs on.

Other file-related interfaces in Python allow us to do things such as manipulate
lower-level descriptor-based files (module os), store objects away in files by key
(modules anydbm and shelve), and access SQL databases. Most of these are
larger topics addressed in Chapter 16. In this section, we take a brief tutorial look at
the built-in file object, and explore a handful of more advanced file-related topics. As
usual, you should consult the library manual's file object entry for further details and
methods we don't have space to cover here.

2.11.1 Built-in File Objects

For most purposes, the open function is all you need to remember to process files in
your scripts. The file object returned by open has methods for reading data (read,
readline, readlines), writing data (write, writelines), freeing system
resources (close), moving about in the file (seek), forcing data to be transferred
out of buffers (flush), fetching the underlying file handle (fileno), and more.
Since the built-in file object is so easy to use, though, let's jump right in to a few
interactive examples.

2.11.1.1 Output files

To make a new file, call open with two arguments: the external name of the file to
be created, and a mode string "w" (short for "write"). To store data on the file, call
the file object's write method with a string containing the data to store, and then
call the close method to close the file if you wish to open it again within the same
program or session:

C:\temp>python
>>> file = open('data.txt', 'w') # open output
file object: creates
>>> file.write('Hello file world!\n') # writes strings
verbatim
>>> file.write('Bye file world.\n')
>>> file.close() # closed on gc
and exit too

And that's it -- you've just generated a brand new text file on your computer, no
matter which computer you type this code on:

C:\temp>dir data.txt /B
data.txt

Programming Python, 2nd Edition, O’Reilly

IT-SC book 94

C:\temp>type data.txt
Hello file world!
Bye file world.

There is nothing unusual about the new file at all; here, I use the DOS dir and type
commands to list and display the new file, but it shows up in a file explorer GUI too.

2.11.1.1.1 Opening

In the open function call shown in the preceding example, the first argument can
optionally specify a complete directory path as part of the filename string; if we pass
just a simple filename without a path, the file will appear in Python's current working
directory. That is, it shows up in the place where the code is run -- here, directory
C:\temp on my machine is implied by the bare filename data.txt, so this really
creates a file at C:\temp\data.txt. See Section 2.7 earlier in this chapter for a
refresher on this topic.

Also note that when opening in "w" mode, Python either creates the external file if it
does not yet exist, or erases the file's current contents if it is already present on your
machine (so be careful out there).

2.11.1.1.2 Writing

Notice that we added an explicit \n end-of-line character to lines written to the file;
unlike the print statement, file write methods write exactly what they are
passed, without any extra formatting. The string passed to write shows up byte-
for-byte on the external file.

Output files also sport a writelines method, which simply writes all the strings in
a list one at a time, without any extra formatting added. For example, here is a
writelines equivalent to the two write calls shown earlier:

file.writelines(['Hello file world!\n', 'Bye file
world.\n'])

This call isn't as commonly used (and can be emulated with a simple for loop), but
is convenient in scripts that save output in a list to be written later.

2.11.1.1.3 Closing

The file close method used earlier finalizes file contents and frees up system
resources. For instance, closing forces buffered output data to be flushed out to disk.
Normally, files are automatically closed when the file object is garbage collected by
the interpreter (i.e., when it is no longer referenced), and when the Python session
or program exits. Because of that, close calls are often optional. In fact, it's
common to see file-processing code in Python like this:

open('somefile.txt').write("G'day Bruce\n")

Programming Python, 2nd Edition, O’Reilly

IT-SC book 95

Since this expression makes a temporary file object, writes to it immediately, and
does not save a reference to it, the file object is reclaimed and closed right away
without ever having called the close method explicitly.

But note that it's not impossible that this auto-close on reclaim
file feature may change in future Python releases. Moreover, the
JPython Java-based Python implementation discussed later does
not reclaim files as immediately as the standard Python system
(it uses Java's garbage collector). If your script makes many
files and your platform limits the number of open files per
program, explicit close calls are a robust habit to form.

2.11.1.2 Input files

Reading data from external files is just as easy as writing, but there are more
methods that let us load data in a variety of modes. Input text files are opened with
either a mode flag of "r" (for "read") or no mode flag at all (it defaults to "r" if
omitted). Once opened, we can read the lines of a text file with the readlines
method:

>>> file = open('data.txt', 'r') # open input
file object
>>> for line in file.readlines(): # read into
line string list
... print line, # lines have
'\n' at end
...
Hello file world!
Bye file world.

The readlines method loads the entire contents of the file into memory, and gives
it to our scripts as a list of line strings that we can step through in a loop. In fact,
there are many ways to read an input file:

file.read() returns a string containing all the bytes stored in the file.

file.read(N) returns a string containing the next N bytes from the file.

file.readline() reads through the next \n and returns a line string.

file.readlines() reads the entire file and returns a list of line strings.

Let's run these method calls to read files, lines, and bytes:

>>> file.seek(0) # go back to
the front of file

Programming Python, 2nd Edition, O’Reilly

IT-SC book 96

>>> file.read() # read
entire file into string
'Hello file world!\012Bye file world.\012'

>>> file.seek(0)
>>> file.readlines()
['Hello file world!\012', 'Bye file world.\012']

>>> file.seek(0)
>>> file.readline()
'Hello file world!\012'
>>> file.readline()
'Bye file world.\012'

>>> file.seek(0)
>>> file.read(1), file.read(8)
('H', 'ello fil')

All these input methods let us be specific about how much to fetch. Here are a few
rules of thumb about which to choose:

read() and readlines() load the entire file into memory all at once. That
makes them handy for grabbing a file's contents with as little code as possible. It
also makes them very fast, but costly for huge files -- loading a multi-gigabyte file
into memory is not generally a good thing to do.

On the other hand, because the readline() and read(N) calls fetch just part
of the file (the next line, or N-byte block), they are safer for potentially big files, but
a bit less convenient, and usually much slower. If speed matters and your files aren't
huge, read or readlines may be better choices.

By the way, the seek(0) call used repeatedly here means "go back to the start of
the file." In files, all read and write operations take place at the current position; files
normally start at offset when opened and advance as data is transferred. The seek
call simply lets us move to a new position for the next transfer operation. Python's
seek method also accepts an optional second argument having one of three values -
- 0 for absolute file positioning (the default), 1 to seek relative to the the current
position, and 2 to seek relative to the file's end. When seek is passed only an offset
argument as above, it's roughly a file rewind operation.

2.11.1.3 Other file object modes

Besides "w" and "r", most platforms support an "a" open mode string, meaning
"append." In this output mode, write methods add data to the end of the file, and
the open call will not erase the current contents of the file:

>>> file = open('data.txt', 'a') # open in append
mode: doesn't erase

Programming Python, 2nd Edition, O’Reilly

IT-SC book 97

>>> file.write('The Life of Brian') # added at end of
existing data
>>> file.close()
>>>
>>> open('data.txt').read() # open and read
entire file
'Hello file world!\012Bye file world.\012The Life of
Brian'

Most files are opened using the sorts of calls we just ran, but open actually allows
up to three arguments for more specific processing needs -- the filename, the open
mode, and a buffer size. All but the first of these are optional: if omitted, the open
mode argument defaults to "r" (input), and the buffer size policy is to enable
buffering on most platforms. Here are a few things you should know about all three
open arguments:

Filename

As mentioned, filenames can include an explicit directory path to refer to files in
arbitrary places on your computer; if they do not, they are taken to be names
relative to the current working directory (described earlier). In general, any filename
form you can type in your system shell will work in an open call. For instance, a
filename argument r'..\temp\spam.txt' on Windows means spam.txt in the
temp subdirectory of the current working directory's parent -- up one, and down to
directory temp.

Open mode

The open function accepts other modes too, some of which are not demonstrated in
this book (e.g., r+, w+, and a+ to open for updating, and any mode string with a "b"
to designate binary mode). For instance, mode r+ means both reads and writes are
allowed on the file, and wb writes data in binary mode (more on this in the next
section). Generally, whatever you could use as a mode string in the C language's
fopen call on your platform will work in the Python open function, since it really
just calls fopen internally. (If you don't know C, don't sweat this point.) Notice that
the contents of files are always strings in Python programs regardless of mode: read
methods return a string, and we pass a string to write methods.

Buffer size

The open call also takes an optional third buffer size argument, which lets you
control stdio buffering for the file -- the way that data is queued up before being
transferred to boost performance. If passed, means file operations are unbuffered
(data is transferred immediately), 1 means they are line buffered, any other positive
value means use a buffer of approximately that size, and a negative value means to
use the system default (which you get if no third argument is passed, and generally
means buffering is enabled). The buffer size argument works on most platforms, but
is currently ignored on platforms that don't provide the sevbuf system call.

2.11.1.4 Binary data files

Programming Python, 2nd Edition, O’Reilly

IT-SC book 98

The preceding examples all process simple text files. On most platforms, Python
scripts can also open and process files containing binary data -- JPEG images, audio
clips, and anything else that can be stored in files. The primary difference in terms of
code is the mode argument passed to the built-in open function:

>>> file = open('data.txt', 'wb') # open binary output
file
>>> file = open('data.txt', 'rb') # open binary input
file

Once you've opened binary files in this way, you may read and write their contents
using the same methods just illustrated: read, write, and so on. (readline and
readlines don't make sense here, though: binary data isn't line-oriented.)

In all cases, data transferred between files and your programs is represented as
Python strings within scripts, even if it is binary data. This works because Python
string objects can always contain character bytes of any value (though some may
look odd if printed). Interestingly, even a byte of value zero can be embedded in a
Python string; it's called \0 in escape-code notation, and does not terminate strings
in Python as it does in C. For instance:

>>> data = "a\0b\0c"
>>> data
'a\000b\000c'
>>> len(data)
5

Instead of relying on a terminator character, Python keeps track of a string's length
explicitly. Here, data references a string of length 5, that happens to contain two
zero-value bytes; they print in octal escape form as \000. Because no character
codes are reserved, it's okay to read binary data with zero bytes (and other values)
into a string in Python.

2.11.1.5 End-of-line translations on Windows

Strictly speaking, on some platforms you may not need the "b" at the end of the
open mode argument to process binary files; the "b" is simply ignored, so modes "r"
and "w" work just as well. In fact, the "b" in mode flag strings is usually only
required for binary files on Windows. To understand why, though, you need to know
how lines are terminated in text files.

For historical reasons, the end of a line of text in a file is represented by different
characters on different platforms: it's a single \n character on Unix and Linux, but
the two-character sequence \r\n on Windows.[9] That's why files moved between
Linux and Windows may look odd in your text editor after transfer -- they may still
be stored using the original platform's end-of-line convention. For example, most
Windows editors handle text in Unix format, but Notepad is a notable exception --
text files copied from Unix or Linux usually look like one long line when viewed in
Notepad, with strange characters inside (\n).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 99

[9] Actually, it gets worse: on the Mac, lines in text files are terminated with a single \r (not \n
or \r\n). Whoever said proprietary software was good for the consumer probably wasn't
speaking about users of multiple platforms, and certainly wasn't talking about programmers.

Python scripts don't normally need to care, because the Windows port (really, the
underlying C compiler on Windows) automatically maps the DOS \r\n sequence to a
single \n. It works like this -- when scripts are run on Windows:

For files opened in text mode, \r\n is translated to \n when input.

For files opened in text mode, \n is translated to \r\n when output.

For files opened in binary mode, no translation occurs on input or output.

On Unix-like platforms, no translations occur, regardless of open modes.

There are two important consequences of all these rules to keep in mind. First, the
end of line character is almost always represented as a single \n in all Python
scripts, regardless of how it is stored in external files on the underlying platform. By
mapping to and from \n on input and output, the Windows port hides the platform-
specific difference.

The second consequence of the mapping is more subtle: if you mean to process
binary data files on Windows, you generally must be careful to open those files in
binary mode ("rb", "wb"), not text mode ("r", "w"). Otherwise, the translations listed
previously could very well corrupt data as it is input or output. It's not impossible
that binary data would by chance contain bytes with values the same as the DOS
end-line characters, \r and \n. If you process such binary files in text mode on
Windows, \r bytes may be incorrectly discarded when read, and \n bytes may be
erroneously expanded to \r\n when written. The net effect is that your binary data
will be trashed when read and written -- probably not quite what you want! For
example, on Windows:

>>> len('a\0b\rc\r\nd') # 4
escape code bytes
8
>>> open('temp.bin', 'wb').write('a\0b\rc\r\nd') # write
binary data to file

>>> open('temp.bin', 'rb').read() #
intact if read as binary
'a\000b\015c\015\012d'

>>> open('temp.bin', 'r').read() # loses
a \r in text mode!
'a\000b\015c\012d'

>>> open('temp.bin', 'w').write('a\0b\rc\r\nd') # adds a
\r in text mode!
>>> open('temp.bin', 'rb').read()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 100

'a\000b\015c\015\015\012d'

This is only an issue when running on Windows, but using binary open modes "rb"
and "wb" for binary files everywhere won't hurt on other platforms, and will help
make your scripts more portable (you never know when a Unix utility may wind up
seeing action on your PC).

There are other times you may want to use binary file open modes too. For instance,
in Chapter 5, we'll meet a script called fixeoln_one that translates between DOS
and Unix end-of-line character conventions in text files. Such a script also has to
open text files in binary mode to see what end-of-line characters are truly present on
the file; in text mode, they would already be translated to \n by the time they
reached the script.

2.11.2 File Tools in the os Module

The os module contains an additional set of file-processing functions that are distinct
from the built-in file object tools demonstrated in previous examples. For instance,
here is a very partial list of os file-related calls:

os.open(path, flags, mode)

Opens a file, returns its descriptor

os.read(descriptor, N)

Reads at most N bytes, returns a string

os.write(descriptor, string)

Writes bytes in string to the file

os.lseek(descriptor, position)

Moves to position in the file

Technically, os calls process files by their descriptors -- integer codes or "handles"
that identify files in the operating system. Because the descriptor-based file tools in
os are lower-level and more complex than the built-in file objects created with the
built-in open function, you should generally use the latter for all but very special
file-processing needs.[10]

[10] For instance, to process pipes, described in Chapter 3. The Python pipe call returns two file
descriptors, which can be processed with os module tools or wrapped in a file object with
os.fdopen.

To give you the general flavor of this tool-set, though, let's run a few interactive
experiments. Although built-in file objects and os module descriptor files are
processed with distinct toolsets, they are in fact related -- the stdio filesystem
used by file objects simply adds a layer of logic on top of descriptor-based files.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 101

In fact, the fileno file object method returns the integer descriptor associated with
a built-in file object. For instance, the standard stream file objects have descriptors
0, 1, and 2; calling the os.write function to send data to stdout by descriptor
has the same effect as calling the sys.stdout.write method:

>>> import sys
>>> for stream in (sys.stdin, sys.stdout, sys.stderr):
... print stream.fileno(),
...
0 1 2

>>> sys.stdout.write('Hello stdio world\n') # write
via file method
Hello stdio world

>>> import os
>>> os.write(1, 'Hello descriptor world\n') # write
via os module
Hello descriptor world
23

Because file objects we open explicitly behave the same way, it's also possible to
process a given real external file on the underlying computer, through the built-in
open function, tools in module os, or both:

>>> file = open(r'C:\temp\spam.txt', 'w') # create
external file
>>> file.write('Hello stdio file\n') # write
via file method
>>>
>>> fd = file.fileno()
>>> print fd
3
>>> os.write(fd, 'Hello descriptor file\n') # write
via os module
22
>>> file.close()
>>>
C:\WINDOWS>type c:\temp\spam.txt # both
writes show up
Hello descriptor file
Hello stdio file

2.11.2.1 Open mode flags

So why the extra file tools in os? In short, they give more low-level control over file
processing. The built-in open function is easy to use, but is limited by the underlying
stdio filesystem that it wraps -- buffering, open modes, and so on, are all per

Programming Python, 2nd Edition, O’Reilly

IT-SC book 102

stdio defaults.[11] Module os lets scripts be more specific; for example, the
following opens a descriptor-based file in read-write and binary modes, by
performing a binary "or" on two mode flags exported by os:

[11] To be fair to the built-in file object, the open function accepts a mode "rb+", which is
equivalent to the combined mode flags used here, and can also be made nonbuffered with a
buffer size argument. Whenever possible, use open, not os.open.

>>> fdfile = os.open(r'C:\temp\spam.txt', (os.O_RDWR |
os.O_BINARY))
>>> os.read(fdfile, 20)
'Hello descriptor fil'
>>> os.lseek(fdfile, 0, 0) # go back
to start of file
0
>>> os.read(fdfile, 100) # binary
mode retains "\r\n"
'Hello descriptor file\015\012Hello stdio file\015\012'

>>> os.lseek(fdfile, 0, 0)
0
>>> os.write(fdfile, 'HELLO') #
overwrite first 5 bytes
5

On some systems, such open flags let us specify more advanced things like exclusive
access (O_EXCL) and nonblocking modes (O_NONBLOCK) when a file is opened.
Some of these flags are not portable across platforms (another reason to use built-in
file objects most of the time); see the library manual or run a dir(os) call on your
machine for an exhaustive list of other open flags available.

We saw earlier how to go from file object to field descriptor with the fileno file
method; we can also go the other way -- the os.fdopen call wraps a file descriptor
in a file object. Because conversions work both ways, we can generally use either
tool set -- file object, or os module:

>>> objfile = os.fdopen(fdfile)
>>> objfile.seek(0)
>>> objfile.read()
'HELLO descriptor file\015\012Hello stdio file\015\012'

2.11.2.2 Other os file tools

The os module also includes an assortment of file tools that accept a file pathname
string, and accomplish file-related tasks such as renaming (os.rename), deleting
(os.remove), and changing the file's owner and permission settings (os.chown,
os.chmod). Let's step through a few examples of these tools in action:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 103

>>> os.chmod('spam.txt', 0777) # enabled all
accesses

This os.chmod file permissions call passes a nine-bit bitstring, composed of three
sets of three bits each. From left to right, the three sets represent the file's owning
user, the file's group, and all others. Within each set, the three bits reflect read,
write, and execute access permissions. When a bit is "1" in this string, it means that
the corresponding operation is allowed for the assessor. For instance, octal 0777 is a
string of nine "1" bits in binary, so it enables all three kinds of accesses, for all three
user groups; octal 0600 means that the file can be only read and written by the user
that owns it (when written in binary, 0600 octal is really bits 110 000 000).

This scheme stems from Unix file permission settings, but works on Windows as well.
If it's puzzling, either check a Unix manpage for chmod, or see the fixreadonly
example in Chapter 5, for a practical application (it makes read-only files copied off a
CD-ROM writable).

>>> os.rename(r'C:\temp\spam.txt', r'C:\temp\eggs.txt')
(from, to)
>>>
>>> os.remove(r'C:\temp\spam.txt')
delete file
Traceback (innermost last):
 File "<stdin>", line 1, in ?
OSError: [Errno 2] No such file or directory:
'C:\\temp\\spam.txt'
>>>
>>> os.remove(r'C:\temp\eggs.txt')

The os.rename call used here changes a file's name; the os.remove file deletion
call deletes a file from your system, and is synonymous with os.unlink; the latter
reflects the call's name on Unix, but was obscure to users of other platforms. The os
module also exports the stat system call:

>>> import os
>>> info = os.stat(r'C:\temp\spam.txt')
>>> info
(33206, 0, 2, 1, 0, 0, 41, 968133600, 968176258, 968176193)

>>> import stat
>>> info[stat.ST_MODE], info[stat.ST_SIZE]
(33206, 41)

>>> mode = info[stat.ST_MODE]
>>> stat.S_ISDIR(mode), stat.S_ISREG(mode)
(0, 1)

The os.stat call returns a tuple of values giving low-level information about the
named file, and the stat module exports constants and functions for querying this

Programming Python, 2nd Edition, O’Reilly

IT-SC book 104

information in a portable way. For instance, indexing an os.stat result on offset
stat.ST_SIZE returns the file's size, and calling stat.S_ISDIR with the mode
item from an os.stat result checks whether the file is a directory. As shown
earlier, though, both of these operations are available in the os.path module too,
so it's rarely necessary to use os.stat except for low-level file queries:

>>> path = r'C:\temp\spam.txt'
>>> os.path.isdir(path), os.path.isfile(path),
os.path.getsize(path)
(0, 1, 41)

2.11.3 File Scanners

Unlike some shell-tool languages, Python doesn't have an implicit file-scanning loop
procedure, but it's simple to write a general one that we can reuse for all time. The
module in Example 2-11 defines a general file-scanning routine, which simply applies
a passed-in Python function to each line in an external file.

Example 2-11. PP2E\System\Filetools\scanfile.py

def scanner(name, function):
 file = open(name, 'r') # create a file
object
 while 1:
 line = file.readline() # call file methods
 if not line: break # until end-of-file
 function(line) # call a function
object
 file.close()

The scanner function doesn't care what line-processing function is passed in, and
that accounts for most of its generality -- it is happy to apply any single-argument
function that exists now or in the future to all the lines in a text file. If we code this
module and put it in a directory on PYTHONPATH, we can use it any time we need to
step through a file line-by-line. Example 2-12 is a client script that does simple line
translations.

Example 2-12. PP2E\System\Filetools\commands.py

#!/usr/local/bin/python
from sys import argv
from scanfile import scanner

def processLine(line): # define a
function
 if line[0] == '*': # applied to
each line
 print "Ms.", line[1:-1]

Programming Python, 2nd Edition, O’Reilly

IT-SC book 105

 elif line[0] == '+':
 print "Mr.", line[1:-1] # strip 1st and
last char
 else:
 raise 'unknown command', line # raise an
exception

filename = 'data.txt'
if len(argv) == 2: filename = argv[1] # allow file
name cmd arg
scanner(filename, processLine) # start the
scanner

If, for no readily obvious reason, the text file hillbillies.txt contains the following
lines:

*Granny
+Jethro
*Elly-Mae
+"Uncle Jed"

then our commands script could be run as follows:

C:\...\PP2E\System\Filetools>python commands.py
hillbillies.txt
Ms. Granny
Mr. Jethro
Ms. Elly-Mae
Mr. "Uncle Jed"

As a rule of thumb, though, we can usually speed things up by shifting processing
from Python code to built-in tools. For instance, if we're concerned with speed (and
memory space isn't tight), we can make our file scanner faster by using the
readlines method to load the file into a list all at once, instead of the manual
readline loop in Example 2-11:

def scanner(name, function):
 file = open(name, 'r') # create a file
object
 for line in file.readlines(): # get all lines
at once
 function(line) # call a function
object
 file.close()

And if we have a list of lines, we can work more magic with the map built-in function.
Here's a minimalist's version; the for loop is replaced by map, and we let Python
close the file for us when it is garbage-collected (or the script exits):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 106

def scanner(name, function):
 map(function, open(name, 'r').readlines())

But what if we also want to change a file while scanning it? Example 2-13 shows two
approaches: one uses explicit files, and the other uses the standard input/output
streams to allow for redirection on the command line.

Example 2-13. PP2E\System\Filetools\filters.py

def filter_files(name, function): # filter file
through function
 input = open(name, 'r') # create file
objects
 output = open(name + '.out', 'w') # explicit output
file too
 for line in input.readlines():
 output.write(function(line)) # write the
modified line
 input.close()
 output.close() # output has a
'.out' suffix

def filter_stream(function):
 import sys # no explicit
files
 while 1: # use standard
streams
 line = sys.stdin.readline() # or: raw_input(
)
 if not line: break
 print function(line), # or:
sys.stdout.write()

if __name__ == '__main__':
 filter_stream(lambda line: line) # copy stdin to
stdout if run

Since the standard streams are preopened for us, they're often easier to use. This
module is more useful when imported as a library (clients provide the line-processing
function); when run standalone it simply parrots stdin to stdout:

C:\...\PP2E\System\Filetools>python filters.py <
..\System.txt
This directory contains operating system interface
examples.

Many of the examples in this unit appear elsewhere in the
examples

Programming Python, 2nd Edition, O’Reilly

IT-SC book 107

distribution tree, because they are actually used to manage
other
programs. See the README.txt files in the subdirectories
here
for pointers.

Brutally observant readers may notice that this last file is named
filters.py (with an "s"), not filter.py. I originally named it the
latter, but changed its name when I realized that a simple
import of the filename (e.g., "import filter") assigns the module
to a local name "filter," thereby hiding the built-in filter
function. This is a built-in functional programming tool, not used
very often in typical scripts; but be careful to avoid picking built-
in names for module files. I will if you will.

2.11.4 Making Files Look Like Lists

One last file-related trick has proven popular enough to merit an introduction here.
Although file objects only export method calls (e.g., file.read()), it is easy to
use classes to make them look more like data structures, and hide some of the
underlying file call details. The module in Example 2-14 defines a FileList object
that "wraps" a real file to add sequential indexing support.

Example 2-14. PP2E\System\Filetools\filelist.py

class FileList:
 def __init__(self, filename):
 self.file = open(filename, 'r') # open and save
file
 def __getitem__(self, i): # overload
indexing
 line = self.file.readline()
 if line:
 return line # return the
next line
 else:
 raise IndexError # end 'for'
loops, 'in'
 def __getattr__(self, name):
 return getattr(self.file, name) # other attrs
from real file

This class defines three specially named methods:

The __init__ method is called whenever a new object is created.

The __getitem__ method intercepts indexing operations.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 108

The __getattr__ method handles undefined attribute references.

This class mostly just extends the built-in file object to add indexing. Most standard
file method calls are simply delegated (passed off) to the wrapped file by
__getattr__. Each time a FileList object is indexed, though, its
__getitem__ method returns the next line in the actual file. Since for loops work
by repeatedly indexing objects, this class lets us iterate over a wrapped file as
though it were an in-memory list:

>>> from filelist import FileList
>>> for line in FileList('hillbillies.txt'):
... print '>', line,
...
> *Granny
> +Jethro
> *Elly-Mae
> +"Uncle Jed"

This class could be made much more sophisticated and list-like too. For instance, we
might overload the + operation to concatenate a file onto the end of an output file,
allow random indexing operations that seek among the file's lines to resolve the
specified offset, and so on. But since coding all such extensions takes more space
than I have available here, I'll leave them as suggested exercises.

2.12 Directory Tools

One of the more common tasks in the shell utilities domain is applying an operation
to a set of files in a directory -- a "folder" in Windows-speak. By running a script on a
batch of files, we can automate (that is, script) tasks we might have to otherwise run
repeatedly by hand.

For instance, suppose you need to search all of your Python files in a development
directory for a global variable name (perhaps you've forgotten where it is used).
There are many platform-specific ways to do this (e.g., the grep command in Unix),
but Python scripts that accomplish such tasks will work on every platform where
Python works -- Windows, Unix, Linux, Macintosh, and just about any other in
common use today. Simply copy your script to any machine you wish to use it on,
and it will work, regardless of which other tools are available there.

2.12.1 Walking One Directory

The most common way to go about writing such tools is to first grab hold of a list of
the names of the files you wish to process, and then step through that list with a
Python for loop, processing each file in turn. The trick we need to learn here, then,
is how to get such a directory list within our scripts. There are at least three options:
running shell listing commands with os.popen, matching filename patterns with
glob.glob, and getting directory listings with os.listdir. They vary in
interface, result format, and portability.

2.12.1.1 Running shell listing commands with os.popen

Programming Python, 2nd Edition, O’Reilly

IT-SC book 109

Quick: How did you go about getting directory file listings before you heard of
Python? If you're new to shell tools programming, the answer may be: "Well, I
started a Windows file explorer and clicked on stuff," but I'm thinking in terms of less
GUI-oriented command-line mechanisms here (and answers submitted in Perl and
Tcl only get partial credit).

On Unix, directory listings are usually obtained by typing ls in a shell; on Windows,
they can be generated with a dir command typed in an MS-DOS console box.
Because Python scripts may use os.popen to run any command line we can type in
a shell, they also are the most general way to grab a directory listing inside a Python
program. We met os.popen earlier in this chapter; it runs a shell command string
and gives us a file object from which we can read the command's output. To
illustrate, let's first assume the following directory structures (yes, I have both dir
and ls commands on my Windows laptop; old habits die hard):

C:\temp>dir /B
about-pp.html
python1.5.tar.gz
about-pp2e.html
about-ppr2e.html
newdir

C:\temp>ls
about-pp.html about-ppr2e.html python1.5.tar.gz
about-pp2e.html newdir

C:\temp>ls newdir
more temp1 temp2 temp3

The newdir name is a nested subdirectory in C:\temp here. Now, scripts can grab a
listing of file and directory names at this level by simply spawning the appropriate
platform-specific command line, and reading its output (the text normally thrown up
on the console window):

C:\temp>python
>>> import os
>>> os.popen('dir /B').readlines()
['about-pp.html\012', 'python1.5.tar.gz\012', 'about-
pp2e.html\012',
'about-ppr2e.html\012', 'newdir\012']

Lines read from a shell command come back with a trailing end-line character, but
it's easy enough to slice off:

>>> for line in os.popen('dir /B').readlines():
... print line[:-1]
...
about-pp.html
python1.5.tar.gz
about-pp2e.html

Programming Python, 2nd Edition, O’Reilly

IT-SC book 110

about-ppr2e.html
newdir

Both dir and ls commands let us be specific about filename patterns to be matched
and directory names to be listed; again, we're just running shell commands here, so
anything you can type at a shell prompt goes:

>>> os.popen('dir *.html /B').readlines()
['about-pp.html\012', 'about-pp2e.html\012', 'about-
ppr2e.html\012']

>>> os.popen('ls *.html').readlines()
['about-pp.html\012', 'about-pp2e.html\012', 'about-
ppr2e.html\012']

>>> os.popen('dir newdir /B').readlines()
['temp1\012', 'temp2\012', 'temp3\012', 'more\012']

>>> os.popen('ls newdir').readlines()
['more\012', 'temp1\012', 'temp2\012', 'temp3\012']

These calls use general tools and all work as advertised. As we noted earlier, though,
the downsides of os.popen are that it is nonportable (it doesn't work well in a
Windows GUI application in Python 1.5.2 and earlier, and requires using a platform-
specific shell command), and it incurs a performance hit to start up an independent
program. The following two alternative techniques do better on both counts.

2.12.1.2 The glob module

The term "globbing" comes from the * wildcard character in filename patterns -- per
computing folklore, a * matches a "glob" of characters. In less poetic terms,
globbing simply means collecting the names of all entries in a directory -- files and
subdirectories -- whose names match a given filename pattern. In Unix shells,
globbing expands filename patterns within a command line into all matching file-
names before the command is ever run. In Python, we can do something similar by
calling the glob.glob built-in with a pattern to expand:

>>> import glob
>>> glob.glob('*')
['about-pp.html', 'python1.5.tar.gz', 'about-pp2e.html',
'about-ppr2e.html',
'newdir']

>>> glob.glob('*.html')
['about-pp.html', 'about-pp2e.html', 'about-ppr2e.html']

>>> glob.glob('newdir/*')
['newdir\\temp1', 'newdir\\temp2', 'newdir\\temp3',
'newdir\\more']

Programming Python, 2nd Edition, O’Reilly

IT-SC book 111

The glob call accepts the usual filename pattern syntax used in shells (e.g., ?
means any one character, * means any number of characters, and [] is a character
selection set).[12] The pattern should include a directory path if you wish to glob in
something other than the current working directory, and the module accepts either
Unix or DOS-style directory separators (/ or \). This call also is implemented without
spawning a shell command, and so is likely to be faster and more portable across all
Python platforms than the os.popen schemes shown earlier.

[12] In fact, glob just uses the standard fnmatch module to match name patterns; see the
fnmatch description later in this chapter in Section 2.12.3 for more details.

Technically speaking, glob is a bit more powerful than described so far. In fact,
using it to list files in one directory is just one use of its pattern-matching skills. For
instance, it can also be used to collect matching names across multiple directories,
simply because each level in a passed-in directory path can be a pattern too:

C:\temp>python
>>> import glob
>>> for name in glob.glob('*examples/L*.py'): print name
...
cpexamples\Launcher.py
cpexamples\Launch_PyGadgets.py
cpexamples\LaunchBrowser.py
cpexamples\launchmodes.py
examples\Launcher.py
examples\Launch_PyGadgets.py
examples\LaunchBrowser.py
examples\launchmodes.py

>>> for name in glob.glob(r'**\visitor_find*.py'): print
name
...
cpexamples\PyTools\visitor_find.py
cpexamples\PyTools\visitor_find_quiet2.py
cpexamples\PyTools\visitor_find_quiet1.py
examples\PyTools\visitor_find.py
examples\PyTools\visitor_find_quiet2.py
examples\PyTools\visitor_find_quiet1.py

In the first call here, we get back filenames from two different directories that
matched the *examples pattern; in the second, both of the first directory levels
are wildcards, so Python collects all possible ways to reach the base filenames. Using
os.popen to spawn shell commands only achieves the same effect if the underlying
shell or listing command does too.

2.12.1.3 The os.listdir call

The os module's listdir call provides yet another way to collect filenames in a
Python list. It takes a simple directory name string, not a filename pattern, and

Programming Python, 2nd Edition, O’Reilly

IT-SC book 112

returns a list containing the names of all entries in that directory -- both simple files
and nested directories -- for use in the calling script:

>>> os.listdir('.')
['about-pp.html', 'python1.5.tar.gz', 'about-pp2e.html',
'about-ppr2e.html',
'newdir']

>>> os.listdir(os.curdir)
['about-pp.html', 'python1.5.tar.gz', 'about-pp2e.html',
'about-ppr2e.html',
'newdir']

>>> os.listdir('newdir')
['temp1', 'temp2', 'temp3', 'more']

This too is done without resorting to shell commands, and so is portable to all major
Python platforms. The result is not in any particular order (but can be sorted with the
list sort method), returns base filenames without their directory path prefixes, and
includes names of both files and directories at the listed level.

To compare all three listing techniques, let's run them side by side on an explicit
directory here. They differ in some ways but are mostly just variations on a theme --
os.popen sorts names and returns end-of-lines, glob.glob accepts a pattern
and returns filenames with directory prefixes, and os.listdir takes a simple
directory name and returns names without directory prefixes:

>>> os.popen('ls C:\PP2ndEd').readlines()
['README.txt\012', 'cdrom\012', 'chapters\012', 'etc\012',
'examples\012',
'examples.tar.gz\012', 'figures\012', 'shots\012']

>>> glob.glob('C:\PP2ndEd*')
['C:\\PP2ndEd\\examples.tar.gz', 'C:\\PP2ndEd\\README.txt',
'C:\\PP2ndEd\\shots', 'C:\\PP2ndEd\\figures',
'C:\\PP2ndEd\\examples',
'C:\\PP2ndEd\\etc', 'C:\\PP2ndEd\\chapters',
'C:\\PP2ndEd\\cdrom']

>>> os.listdir('C:\PP2ndEd')
['examples.tar.gz', 'README.txt', 'shots', 'figures',
'examples', 'etc',
'chapters', 'cdrom']

Of these three, glob and listdir are generally better options if you care about
script portability, and listdir seems fastest in recent Python releases (but gauge
its performance yourself -- implementations may change over time).

2.12.1.4 Splitting and joining listing results

Programming Python, 2nd Edition, O’Reilly

IT-SC book 113

In the last example, I pointed out that glob returns names with directory paths, but
listdir gives raw base filenames. For convenient processing, scripts often need to
split glob results into base files, or expand listdir results into full paths. Such
translations are easy if we let the os.path module do all the work for us. For
example, a script that intends to copy all files elsewhere will typically need to first
split off the base filenames from glob results so it can add different directory names
on the front:

>>> dirname = r'C:\PP2ndEd'
>>> for file in glob.glob(dirname + '/*'):
... head, tail = os.path.split(file)
... print head, tail, '=>', ('C:\\Other\\' + tail)
...
C:\PP2ndEd examples.tar.gz => C:\Other\examples.tar.gz
C:\PP2ndEd README.txt => C:\Other\README.txt
C:\PP2ndEd shots => C:\Other\shots
C:\PP2ndEd figures => C:\Other\figures
C:\PP2ndEd examples => C:\Other\examples
C:\PP2ndEd etc => C:\Other\etc
C:\PP2ndEd chapters => C:\Other\chapters
C:\PP2ndEd cdrom => C:\Other\cdrom

Here, the names after the => represent names that files might be moved to.
Conversely, a script that means to process all files in a different directory than the
one it runs in will probably need to prepend listdir results with the target
directory name, before passing filenames on to other tools:

>>> for file in os.listdir(dirname):
... print os.path.join(dirname, file)
...
C:\PP2ndEd\examples.tar.gz
C:\PP2ndEd\README.txt
C:\PP2ndEd\shots
C:\PP2ndEd\figures
C:\PP2ndEd\examples
C:\PP2ndEd\etc
C:\PP2ndEd\chapters
C:\PP2ndEd\cdrom

2.12.2 Walking Directory Trees

Notice, though, that all of the preceding techniques only return the names of files in
a single directory. What if you want to apply an operation to every file in every
directory and subdirectory in a directory tree?

For instance, suppose again that we need to find every occurrence of a global name
in our Python scripts. This time, though, our scripts are arranged into a module
package : a directory with nested subdirectories, which may have subdirectories of

Programming Python, 2nd Edition, O’Reilly

IT-SC book 114

their own. We could rerun our hypothetical single-directory searcher in every
directory in the tree manually, but that's tedious, error-prone, and just plain no fun.

Luckily, in Python it's almost as easy to process a directory tree as it is to inspect a
single directory. We can either collect names ahead of time with the find module,
write a recursive routine to traverse the tree, or use a tree-walker utility built-in to
the os module. Such tools can be used to search, copy, compare, and otherwise
process arbitrary directory trees on any platform that Python runs on (and that's just
about everywhere).

2.12.2.1 The find module

The first way to go hierarchical is to collect a list of all names in a directory tree
ahead of time, and step through that list in a loop. Like the single-directory tools we
just met, a call to the find.find built-in returns a list of both file and directory
names. Unlike the tools described earlier, find.find also returns pathnames of
matching files nested in subdirectories, all the way to the bottom of a tree:

C:\temp>python
>>> import find
>>> find.find('*')
['.\\about-pp.html', '.\\about-pp2e.html', '.\\about-
ppr2e.html',
'.\\newdir', '.\\newdir\\more', '.\\newdir\\more\\xxx.txt',
'.\\newdir\\more\\yyy.txt', '.\\newdir\\temp1',
'.\\newdir\\temp2',
'.\\newdir\\temp3', '.\\python1.5.tar.gz']

>>> for line in find.find('*'): print line
...
.\about-pp.html
.\about-pp2e.html
.\about-ppr2e.html
.\newdir
.\newdir\more
.\newdir\more\xxx.txt
.\newdir\more\yyy.txt
.\newdir\temp1
.\newdir\temp2
.\newdir\temp3
.\python1.5.tar.gz

We get back a list of full pathnames, that each include the top-level directory's path.
By default, find collects names matching the passed-in pattern in the tree rooted at
the current working directory, known as ".". If we want a more specific list, we can
pass in both a filename pattern and a directory tree root to start at; here's how to
collect HTML filenames at "." and below:

>>> find.find('*.html', '.')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 115

['.\\about-pp.html', '.\\about-pp2e.html', '.\\about-
ppr2e.html']

Incidentally, find.find is also the Python library's equivalent to platform-specific
shell commands such as a find -print on Unix and Linux, and dir /B /S on DOS and
Windows. Since we can usually run such shell commands in a Python script with
os.popen, the following does the same work as find.find, but is inherently
nonportable, and must start up a separate program along the way:

>>> import os
>>> for line in os.popen('dir /B /S').readlines(): print
line,
...
C:\temp\about-pp.html
C:\temp\python1.5.tar.gz
C:\temp\about-pp2e.html
C:\temp\about-ppr2e.html
C:\temp\newdir
C:\temp\newdir\temp1
C:\temp\newdir\temp2
C:\temp\newdir\temp3
C:\temp\newdir\more
C:\temp\newdir\more\xxx.txt
C:\temp\newdir\more\yyy.txt

If the find calls don't seem to work in your Python, try
changing the import statement used to load the module from
import find to from PP2E.PyTools import find. Alas,
the Python standard library's find module has been marked as
"deprecated" as of Python 1.6. That means it may be deleted
from the standard Python distribution in the future, so pay
attention to the next section; we'll use its topic later to write our
own find module -- one that is also shipped on this book's CD
(see http://examples.oreilly.com/python2).

2.12.2.2 The os.path.walk visitor

To make it easy to apply an operation to all files in a tree, Python also comes with a
utility that scans trees for us, and runs a provided function at every directory along
the way. The os.path.walk function is called with a directory root, function
object, and optional data item, and walks the tree at the directory root and below. At
each directory, the function object passed in is called with the optional data item, the
name of the current directory, and a list of filenames in that directory (obtained from
os.listdir). Typically, the function we provide scans the filenames list to process
files at each directory level in the tree.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 116

That description might sound horribly complex the first time you hear it, but
os.path.walk is fairly straightforward once you get the hang of it. In the
following code, for example, the lister function is called from os.path.walk at
each directory in the tree rooted at ".". Along the way, lister simply prints the
directory name, and all the files at the current level (after prepending the directory
name). It's simpler in Python than in English:

>>> import os
>>> def lister(dummy, dirname, filesindir):
... print '[' + dirname + ']'
... for fname in filesindir:
... print os.path.join(dirname, fname) #
handle one file
...
>>> os.path.walk('.', lister, None)
[.]
.\about-pp.html
.\python1.5.tar.gz
.\about-pp2e.html
.\about-ppr2e.html
.\newdir
[.\newdir]
.\newdir\temp1
.\newdir\temp2
.\newdir\temp3
.\newdir\more
[.\newdir\more]
.\newdir\more\xxx.txt
.\newdir\more\yyy.txt

In other words, we've coded our own custom and easily changed recursive directory
listing tool in Python. Because this may be something we would like to tweak and
reuse elsewhere, let's make it permanently available in a module file, shown in
Example 2-15, now that we've worked out the details interactively.

Example 2-15. PP2E\System\Filetools\lister_walk.py

list file tree with os.path.walk
import sys, os

def lister(dummy, dirName, filesInDir): #
called at each dir
 print '[' + dirName + ']'
 for fname in filesInDir: #
includes subdir names
 path = os.path.join(dirName, fname) # add
dir name prefix

Programming Python, 2nd Edition, O’Reilly

IT-SC book 117

 if not os.path.isdir(path): #
print simple files only
 print path

if __name__ == '__main__':
 os.path.walk(sys.argv[1], lister, None) # dir
name in cmdline

This is the same code, except that directory names are filtered out of the filenames
list by consulting the os.path.isdir test, to avoid listing them twice (see -- it's
been tweaked already). When packaged this way, the code can also be run from a
shell command line. Here it is being launched from a different directory, with the
directory to be listed passed in as a command-line argument:

C:\...\PP2E\System\Filetools>python lister_walk.py C:\Temp
[C:\Temp]
C:\Temp\about-pp.html
C:\Temp\python1.5.tar.gz
C:\Temp\about-pp2e.html
C:\Temp\about-ppr2e.html
[C:\Temp\newdir]
C:\Temp\newdir\temp1
C:\Temp\newdir\temp2
C:\Temp\newdir\temp3
[C:\Temp\newdir\more]
C:\Temp\newdir\more\xxx.txt
C:\Temp\newdir\more\yyy.txt

The walk paradigm also allows functions to tailor the set of directories visited by
changing the file list argument in place. The library manual documents this further,
but it's probably more instructive to simply know what walk truly looks like. Here is
its actual Python-coded implementation for Windows platforms, with comments
added to help demystify its operation:

def walk(top, func, arg): # top is the
current dirname
 try:
 names = os.listdir(top) # get all
file/dir names here
 except os.error: # they have no
path prefix
 return
 func(arg, top, names) # run func with
names list here
 exceptions = ('.', '..')
 for name in names: # step over the
very same list

Programming Python, 2nd Edition, O’Reilly

IT-SC book 118

 if name not in exceptions: # but skip
self/parent names
 name = join(top, name) # add path
prefix to name
 if isdir(name):
 walk(name, func, arg) # descend into
subdirs here

Notice that walk generates filename lists at each level with os.listdir, a call
that collects both file and directory names in no particular order, and returns them
without their directory paths. Also note that walk uses the very same list returned
by os.listdir and passed to the function you provide, to later descend into
subdirectories (variable names). Because lists are mutable objects that can be
changed in place, if your function modifies the passed-in filenames list, it will impact
what walk does next. For example, deleting directory names will prune traversal
branches, and sorting the list will order the walk.

2.12.2.3 Recursive os.listdir traversals

The os.path.walk tool does tree traversals for us, but it's sometimes more
flexible, and hardly any more work, to do it ourself. The following script recodes the
directory listing script with a manual recursive traversal function. The mylister
function in Example 2-16 is almost the same as lister in the prior script, but calls
os.listdir to generate file paths manually, and calls itself recursively to descend
into subdirectories.

Example 2-16. PP2E\System\Filetools\lister_recur.py

list files in dir tree by recursion
import sys, os

def mylister(currdir):
 print '[' + currdir + ']'
 for file in os.listdir(currdir): # list
files here
 path = os.path.join(currdir, file) # add dir
path back
 if not os.path.isdir(path):
 print path
 else:
 mylister(path) # recur
into subdirs

if __name__ == '__main__':
 mylister(sys.argv[1]) # dir
name in cmdline

Programming Python, 2nd Edition, O’Reilly

IT-SC book 119

This version is packaged as a script too (this is definitely too much code to type at
the interactive prompt); its output is identical when run as a script:

C:\...\PP2E\System\Filetools>python lister_recur.py C:\Temp
[C:\Temp]
C:\Temp\about-pp.html
C:\Temp\python1.5.tar.gz
C:\Temp\about-pp2e.html
C:\Temp\about-ppr2e.html
[C:\Temp\newdir]
C:\Temp\newdir\temp1
C:\Temp\newdir\temp2
C:\Temp\newdir\temp3
[C:\Temp\newdir\more]
C:\Temp\newdir\more\xxx.txt
C:\Temp\newdir\more\yyy.txt

But this file is just as useful when imported and called elsewhere:

C:\temp>python
>>> from PP2E.System.Filetools.lister_recur import mylister
>>> mylister('.')
[.]
.\about-pp.html
.\python1.5.tar.gz
.\about-pp2e.html
.\about-ppr2e.html
[.\newdir]
.\newdir\temp1
.\newdir\temp2
.\newdir\temp3
[.\newdir\more]
.\newdir\more\xxx.txt
.\newdir\more\yyy.txt

We will make better use of most of this section's techniques in later examples in
Chapter 5, and this book at large. For example, scripts for copying and comparing
directory trees use the tree-walker techniques listed previously. Watch for these
tools in action along the way. If you are interested in directory processing, also see
the coverage of Python's old grep module in Chapter 5; it searches files, and can be
applied to all files in a directory when combined with the glob module, but simply
prints results and does not traverse directory trees by itself.

2.12.3 Rolling Your Own find Module

Over the last eight years, I've learned to trust Python's Benevolent Dictator. Guido
generally does the right thing, and if you don't think so, it's usually only because you
haven't yet realized how your own position is flawed. Trust me on this. On the other
hand, it's not completely clear why the standard find module I showed you seems

Programming Python, 2nd Edition, O’Reilly

IT-SC book 120

to have fallen into deprecation; it's a useful tool. In fact, I use it a lot -- it is often
nice to be able to grab a list of files to process in a single function call, and step
through it in a for loop. The alternatives -- os.path.walk, and recursive
functions -- are more code-y, and tougher for beginners to digest.

I suppose the find module's followers (if there be any) could have defended it in
long, drawn-out debates on the Internet, that would have spanned days or weeks,
been joined by a large cast of heroic combatants, and gone just about nowhere. I
decided to spend ten minutes whipping up a custom alternative instead. The module
in Example 2-17 uses the standard os.path.walk call described earlier to
reimplement a find operation for Python.

Example 2-17. PP2E\PyTools\find.py

#!/usr/bin/python

custom version of the now deprecated find module
in the standard library--import as "PyTools.find";
equivalent to the original, but uses os.path.walk,
has no support for pruning subdirs in the tree, and
is instrumented to be runnable as a top-level script;
results list sort differs slightly for some trees;
exploits tuple unpacking in function argument lists;

import fnmatch, os

def find(pattern, startdir=os.curdir):
 matches = []
 os.path.walk(startdir, findvisitor, (matches, pattern))
 matches.sort()
 return matches

def findvisitor((matches, pattern), thisdir, nameshere):
 for name in nameshere:
 if fnmatch.fnmatch(name, pattern):
 fullpath = os.path.join(thisdir, name)
 matches.append(fullpath)

if __name__ == '__main__':
 import sys
 namepattern, startdir = sys.argv[1], sys.argv[2]
 for name in find(namepattern, startdir): print name

There's not much to this file; but calling its find function provides the same utility
as the deprecated find standard module, and is noticeably easier than rewriting all
of this file's code every time you need to perform a find-type search. To process
every Python file in a tree, for instance, I simply type:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 121

from PP2E.PyTools import find
for name in find.find('*.py'):
 ...do something with name...

As a more concrete example, I use the following simple script to clean out any old
output text files located anywhere in the book examples tree:

C:\...\PP2E>type PyTools\cleanoutput.py
import os # delete old
output files in tree
from PP2E.PyTools.find import find # only need full
path if I'm moved
for filename in find('*.out.txt'): # use cat
instead of type in Linux
 print filename
 if raw_input('View?') == 'y':
 os.system('type ' + filename)
 if raw_input('Delete?') == 'y':
 os.remove(filename)

C:\temp\examples>python %X%\PyTools\cleanoutput.py
.\Internet\Cgi-Web\Basics\languages.out.txt
View?
Delete?
.\Internet\Cgi-Web\PyErrata\AdminTools\dbaseindexed.out.txt
View?
Delete?y

To achieve such code economy, the custom find module calls os.path.walk to
register a function to be called per directory in the tree, and simply adds matching
filenames to the result list along the way.

New here, though, is the fnmatch module -- a standard Python module that
performs Unix-like pattern matching against filenames, and was also used by the
original find. This module supports common operators in name pattern strings: *
(to match any number of characters), ? (to match any single character), and [...]
and [!...] (to match any character inside the bracket pairs, or not); other
characters match themselves.[13] To make sure that this alternative's results are
similar, I also wrote the test module shown in Example 2-18.

[13] Unlike the re module, fnmatch supports only common Unix shell matching operators, not
full-blown regular expression patterns; to understand why this matters, see Chapter 18 for
more details.

Example 2-18. PP2E\PyTools\find-test.py

###

test custom find; the builtin find module is deprecated:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 122

if it ever goes away completely, replace all "import
find"
with "from PP2E.PyTools import find" (or add PP2E\PyTools
to your path setting and just "import find"); this script
takes 4 seconds total time on my 650mhz Win98 notebook to
run 10 finds over a directory tree of roughly 1500 names;
###

import sys, os, string
for dir in sys.path:
 if string.find(os.path.abspath(dir), 'PyTools') != -1:
 print 'removing', repr(dir)
 sys.path.remove(dir) # else may import both finds
from PyTools, '.'!

import find # get deprecated builtin
(for now)
import PP2E.PyTools.find # later use: from
PP2E.PyTools import find
print find
print PP2E.PyTools.find

assert find.find != PP2E.PyTools.find.find # really
different?
assert string.find(str(find), 'Lib') != -1 # should
be after path remove
assert string.find(str(PP2E.PyTools.find), 'PyTools') != -1

startdir = r'C:\PP2ndEd\examples\PP2E'
for pattern in ('*.py', '*.html', '*.c', '*.cgi', '*'):
 print pattern, '=>'
 list1 = find.find(pattern, startdir)
 list2 = PP2E.PyTools.find.find(pattern, startdir)
 print len(list1), list1[-1]
 print len(list2), list2[-1]
 print list1 == list2,; list1.sort(); print list1 ==
list2

There is some magic at the top of this script that I need to explain. To make sure
that it can load both the standard library's find module and the custom one in
PP2E\PyTools, it must delete the entry (or entries) on the module search path that
point to the PP2E\PyTools directory, and import the custom version with a full
package directory -- PP2E.PyTools.find. If not, we'd always get the same find
module, the one in PyTools, no matter where this script is run from.

Here's why. Recall that Python always adds the directory containing a script being
run to the front of sys.path. If we didn't delete that entry here, the import

Programming Python, 2nd Edition, O’Reilly

IT-SC book 123

find statement would always load the custom find in PyTools, because the
custom find.py module is in the same directory as the find-test.py script. The script's
home directory would effectively hide the standard library's find. If that doesn't
make sense, go back and reread Section 2.7 earlier in this chapter.

Below is the output of this tester, along with a few command-line invocations; unlike
the original find, the custom version in Example 2-18 can be run as a command-line
tool too. If you study the test output closely, you'll notice that the custom find differs
only in an occasional sort order that I won't go into further here (the original find
module used a recursive function, not os.path.walk); the "0 1" lines mean that
results differ in order, but not content. Since find callers don't generally depend on
precise filename result ordering, this is trivial:

C:\temp>python %X%\PyTools\find-test.py
removing 'C:\\PP2ndEd\\examples\\PP2E\\PyTools'
<module 'find' from 'C:\Program Files\Python\Lib\find.pyc'>
<module 'PP2E.PyTools.find' from
'C:\PP2ndEd\examples\PP2E\PyTools\find.pyc'>
*.py =>
657 C:\PP2ndEd\examples\PP2E\tounix.py
657 C:\PP2ndEd\examples\PP2E\tounix.py
0 1
*.html =>
37 C:\PP2ndEd\examples\PP2E\System\Filetools\template.html
37 C:\PP2ndEd\examples\PP2E\System\Filetools\template.html
1 1
*.c =>
46 C:\PP2ndEd\examples\PP2E\Other\old-Integ\embed.c
46 C:\PP2ndEd\examples\PP2E\Other\old-Integ\embed.c
0 1
*.cgi =>
24 C:\PP2ndEd\examples\PP2E\Internet\Cgi-
Web\PyMailCgi\onViewSubmit.cgi
24 C:\PP2ndEd\examples\PP2E\Internet\Cgi-
Web\PyMailCgi\onViewSubmit.cgi
1 1
* =>
1519 C:\PP2ndEd\examples\PP2E\xferall.linux.csh
1519 C:\PP2ndEd\examples\PP2E\xferall.linux.csh
0 1

C:\temp>python %X%\PyTools\find.py *.cxx
C:\PP2ndEd\examples\PP2E
C:\PP2ndEd\examples\PP2E\Extend\Swig\Shadow\main.cxx
C:\PP2ndEd\examples\PP2E\Extend\Swig\Shadow\number.cxx

C:\temp>python %X%\PyTools\find.py *.asp
C:\PP2ndEd\examples\PP2E

Programming Python, 2nd Edition, O’Reilly

IT-SC book 124

C:\PP2ndEd\examples\PP2E\Internet\Other\asp-py.asp

C:\temp>python %X%\PyTools\find.py *.i
C:\PP2ndEd\examples\PP2E
C:\PP2ndEd\examples\PP2E\Extend\Swig\Environ\environ.i
C:\PP2ndEd\examples\PP2E\Extend\Swig\Shadow\number.i
C:\PP2ndEd\examples\PP2E\Extend\Swig\hellolib.i

C:\temp>python %X%\PyTools\find.py setup*.csh
C:\PP2ndEd\examples\PP2E
C:\PP2ndEd\examples\PP2E\Config\setup-pp-embed.csh
C:\PP2ndEd\examples\PP2E\Config\setup-pp.csh
C:\PP2ndEd\examples\PP2E\EmbExt\Exports\ClassAndMod\setup-
class.csh
C:\PP2ndEd\examples\PP2E\Extend\Swig\setup-swig.csh

[filename sort scheme]
C:\temp> python
>>> l = ['ccc', 'bbb', 'aaa', 'aaa.xxx', 'aaa.yyy',
'aaa.xxx.nnn']
>>> l.sort()
>>> l
['aaa', 'aaa.xxx', 'aaa.xxx.nnn', 'aaa.yyy', 'bbb', 'ccc']

Finally, if an example in this book fails in a future Python release because there is no
find to be found, simply change find-module imports in the source code to say
from PP2E.PyTools import find instead of import find. The former form
will find the custom find module in the book's example package directory tree; the
old module in the standard Python library is ignored (if it is still there at all). And if
you are brave enough to add the PP2E\PyTools directory itself to your PYTHONPATH
setting, all original import find statements will continue to work unchanged.

Better still, do nothing at all -- most find-based examples in this book automatically
pick the alternative by catching import exceptions, just in case they aren't located in
the PyTools directory:

try:
 import find
except ImportError:
 from PP2E.PyTools import find

The find module may be gone, but it need not be forgotten.

Python Versus csh

If you are familiar with other common shell script languages, it might be
useful to see how Python compares. Here is a simple script in a Unix shell
language called csh that mails all the files in the current working directory

Programming Python, 2nd Edition, O’Reilly

IT-SC book 125

having a suffix of .py (i.e., all Python source files) to a hopefully fictitious
address:

#!/bin/csh
foreach x (*.py)
 echo $x
 mail eric@halfabee.com -s $x < $x
end

The equivalent Python script looks similar:

#!/usr/bin/python
import os, glob
for x in glob.glob('*.py'):
 print x
 os.system('mail eric@halfabee.com -s %s < %s' %
(x, x))

but is slightly more verbose. Since Python, unlike csh, isn't meant just for
shell scripts, system interfaces must be imported, and called explicitly. And
since Python isn't just a string-processing language, character strings must
be enclosed in quotes as in C.

Although this can add a few extra keystrokes in simple scripts like this,
being a general-purpose language makes Python a better tool, once we
leave the realm of trivial programs. We could, for example, extend the
preceding script to do things like transfer files by FTP, pop up a GUI
message selector and status bar, fetch messages from an SQL database,
and employ COM objects on Windows -- all using standard Python tools.

Python scripts also tend to be more portable to other platforms than csh.
For instance, if we used the Python SMTP interface to send mail rather than
relying on a Unix command-line mail tool, the script would run on any
machine with Python and an Internet link (as we'll see in Chapter 11, SMTP
only requires sockets). And like C, we don't need $ to evaluate variables;
what else would you expect in a free language?

Programming Python, 2nd Edition, O’Reilly

IT-SC book 126

Chapter 3. Parallel System Tools

3.1 "Telling the Monkeys What to Do"

3.2 Forking Processes

3.3 Threads

3.4 Program Exits

3.5 Interprocess Communication

3.6 Pipes

3.7 Signals

3.8 Launching Programs on Windows

3.9 Other System Tools

3.1 "Telling the Monkeys What to Do"

Most computers spend a lot of time doing nothing. If you start a system monitor tool
and watch the CPU utilization, you'll see what I mean -- it's rare to see one hit
100%, even when you are running multiple programs.[1] There are just too many
delays built in to software: disk accesses, network traffic, database queries, waiting
for users to click a button, and so on. In fact, the majority of a modern CPU's
capacity is often spent in an idle state; faster chips help speed up performance
demand peaks, but much of their power can go largely unused.

[1] To watch on Windows, click the Start button, select Programs/Accessories/System
Tools/System Monitor, and monitor Processor Usage. The graph rarely climbed above 50% on
my laptop machine while writing this (at least until I typed while 1: pass in a Python
interactive session console window).

Early on in computing, programmers realized that they could tap into such unused
processing power, by running more than one program at the same time. By dividing
up the CPU's attention among a set of tasks, its capacity need not go to waste while
any given task is waiting for an external event to occur. The technique is usually
called parallel processing, because tasks seem to be performed at once, overlapping
and parallel in time. It's at the heart of modern operating systems, and gave rise to
the notion of multiple active-window computer interfaces we've all grown to take for
granted. Even within a single program, dividing processing up into tasks that run in
parallel can make the overall system faster, at least as measured by the clock on
your wall.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 127

Just as importantly, modern software systems are expected to be responsive to
users, regardless of the amount of work they must perform behind the scenes. It's
usually unacceptable for a program to stall while busy carrying out a request.
Consider an email-browser user interface, for example; when asked to fetch email
from a server, the program must download text from a server over a network. If you
have enough email and a slow enough Internet link, that step alone can take
minutes to finish. But while the download task proceeds, the program as a whole
shouldn't stall -- it still must respond to screen redraws, mouse clicks, etc.

Parallel processing comes to the rescue here too. By performing such long-running
tasks in parallel with the rest of the program, the system at large can remain
responsive no matter how busy some of its parts may be.

There are two built-in ways to get tasks running at the same time in Python --
process forks, and spawned threads. Functionally, both rely on underlying operating
system services to run bits of Python code in parallel. Procedurally, they are very
different in terms of interface, portability, and communication. At this writing,
process forks don't work on Windows (more on this in a later note), but Python's
thread support works on all major platforms. Moreover, there are additional
Windows-specific ways to launch programs that are similar to forks.

In this chapter, which is a continuation of our look at system interfaces available to
Python programmers, we explore Python's built-in tools for starting programs in
parallel, as well as communicating with those programs. In some sense, we've
already starting doing so -- the os.system and os.popen calls introduced and
applied in the prior chapter are a fairly portable way to spawn and speak with
command-line programs too. Here, our emphasis is on introducing more direct
techniques -- forks, threads, pipes, signals, and Windows-specific launcher tools. In
the next chapter (and the remainder of this book), we use these techniques in more
realistic programs, so be sure you understand the basics here before flipping ahead.

3.2 Forking Processes

Forked processes are the traditional way to structure parallel tasks, and are a
fundamental part of the Unix tool set. Forking is based on the notion of copying
programs: when a program calls the fork routine, the operating system makes a new
copy of that program in memory, and starts running that copy in parallel with the
original. Some systems don't really copy the original program (it's an expensive
operation), but the new copy works as if it was a literal copy.

After a fork operation, the original copy of the program is called the parent process,
and the copy created by os.fork is called the child process. In general, parents
can make any number of children, and children can create child processes of their
own -- all forked processes run independently and in parallel under the operating
system's control. It is probably simpler in practice than theory, though; the Python
script in Example 3-1 forks new child processes until you type a "q" at the console.

Example 3-1. PP2E\System\Processes\fork1.py

forks child processes until you type 'q'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 128

import os

def child():
 print 'Hello from child', os.getpid()
 os._exit(0) # else goes back to parent loop

def parent():
 while 1:
 newpid = os.fork()
 if newpid == 0:
 child()
 else:
 print 'Hello from parent', os.getpid(),
newpid
 if raw_input() == 'q': break

parent()

Python's process forking tools, available in the os module, are simply thin wrappers
over standard forking calls in the C library. To start a new, parallel process, call the
os.fork built-in function. Because this function generates a copy of the calling
program, it returns a different value in each copy: zero in the child process, and the
process ID of the new child in the parent. Programs generally test this result to begin
different processing in the child only; this script, for instance, runs the child
function in child processes only.[2]

[2] At least in the current Python implementation, calling os.fork in a Python script actually
copies the Python interpreter process (if you look at your process list, you'll see two Python
entries after a fork). But since the Python interpreter records everything about your running
script, it's okay to think of fork as copying your program directly. It really will, if Python
scripts are ever compiled to binary machine code.

Unfortunately, this won't work on Windows today; fork is at odds with the Windows
model, and a port of this call is still in the works. But because forking is ingrained
into the Unix programming model, this script works well on Unix and Linux:

[mark@toy]$ python fork1.py
Hello from parent 671 672
Hello from child 672

Hello from parent 671 673
Hello from child 673

Hello from parent 671 674
Hello from child 674
q

These messages represent three forked child processes; the unique identifiers of all
the processes involved are fetched and displayed with the os.getpid call. A subtle
point: The child process function is also careful to exit explicitly with an

Programming Python, 2nd Edition, O’Reilly

IT-SC book 129

os._exit call. We'll discuss this call in more detail later in this chapter, but if it's
not made, the child process would live on after the child function returns
(remember, it's just a copy of the original process). The net effect is that the child
would go back to the loop in parent and start forking children of its own (i.e., the
parent would have grandchildren). If you delete the exit call and rerun, you'll likely
have to type more than one "q" to stop, because multiple processes are running in
the parent function.

In Example 3-1, each process exits very soon after it starts, so there's little overlap
in time. Let's do something slightly more sophisticated to better illustrate multiple
forked processes running in parallel. Example 3-2 starts up 10 copies of itself, each
copy counting up to 10 with a one-second delay between iterations. The
time.sleep built-in call simply pauses the calling process for a number of seconds
(pass a floating-point value to pause for fractions of seconds).

Example 3-2. PP2E\System\Processes\fork-count.py

###

fork basics: start 10 copies of this program running in
parallel with the original; each copy counts up to 10
on the same stdout stream--forks copy process memory,
including file descriptors; fork doesn't currently work
on Windows: use os.spawnv to start programs on Windows
instead; spawnv is roughly like a fork+exec combination;
###

import os, time

def counter(count):
 for i in range(count):
 time.sleep(1)
 print '[%s] => %s' % (os.getpid(), i)

for i in range(10):
 pid = os.fork()
 if pid != 0:
 print 'Process %d spawned' % pid
 else:
 counter(10)
 os._exit(0)

print 'Main process exiting.'

When run, this script starts 10 processes immediately and exits. All 10 forked
processes check in with their first count display one second later, and every second
thereafter. Child processes continue to run, even if the parent process that created
them terminates:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 130

mark@toy]$ python fork-count.py
Process 846 spawned
Process 847 spawned
Process 848 spawned
Process 849 spawned
Process 850 spawned
Process 851 spawned
Process 852 spawned
Process 853 spawned
Process 854 spawned
Process 855 spawned
Main process exiting.
[mark@toy]$
[846] => 0
[847] => 0
[848] => 0
[849] => 0
[850] => 0
[851] => 0
[852] => 0
[853] => 0
[854] => 0
[855] => 0
[847] => 1
[846] => 1
 ...more output deleted...

The output of all these processes shows up on the same screen, because they all
share the standard output stream. Technically, a forked process gets a copy of the
original process's global memory, including open file descriptors. Because of that,
global objects like files start out with the same values in a child process. But it's
important to remember that global memory is copied, not shared -- if a child process
changes a global object, it changes its own copy only. (As we'll see, this works
differently in threads, the topic of the next section.)

3.2.1 The fork/exec Combination

Examples Example 3-1 and Example 3-2 child processes simply ran a function within
the Python program and exited. On Unix-like platforms, forks are often the basis of
starting independently running programs that are completely different from the
program that performed the fork call. For instance, Example 3-3 forks new
processes until we type "q" again, but child processes run a brand new program
instead of calling a function in the same file.

Example 3-3. PP2E\System\Processes\fork-exec.py

starts programs until you type 'q'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 131

import os

parm = 0
while 1:
 parm = parm+1
 pid = os.fork()
 if pid == 0:
copy process
 os.execlp('python', 'python', 'child.py',
str(parm)) # overlay program
 assert 0, 'error starting program'
shouldn't return
 else:
 print 'Child is', pid
 if raw_input() == 'q': break

If you've done much Unix development, the fork/exec combination will probably
look familiar. The main thing to notice is the os.execlp call in this code. In a
nutshell, this call overlays (i.e., replaces) the program running in the current process
with another program. Because of that, the combination of os.fork and
os.execlp means start a new process, and run a new program in that process --
in other words, launch a new program in parallel with the original program.

3.2.1.1 os.exec call formats

The arguments to os.execlp specify the program to be run by giving command-
line arguments used to start the program (i.e., what Python scripts know as
sys.argv). If successful, the new program begins running and the call to
os.execlp itself never returns (since the original program has been replaced,
there's really nothing to return to). If the call does return, an error has occurred, so
we code an assert after it that will always raise an exception if reached.

There are a handful of os.exec variants in the Python standard library; some allow
us to configure environment variables for the new program, pass command-line
arguments in different forms, and so on. All are available on both Unix and Windows,
and replace the calling program (i.e., the Python interpreter). exec comes in eight
flavors, which can be a bit confusing unless you generalize:

os.execv(program, commandlinesequence)

The basic "v" exec form is passed an executable program's name, along with a list
or tuple of command-line argument strings used to run the executable (that is, the
words you would normally type in a shell to start a program).

os.execl(program, cmdarg1, cmdarg2,... cmdargN)

The basic "l" exec form is passed an executable's name, followed by one or more
command-line arguments passed as individual function arguments. This is the same
as os.execv(program, (cmdarg1, cmdarg2,...)).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 132

os.execlp , os.execvp

Adding a "p" to the execv and execl names means that Python will locate the
executable's directory using your system search-path setting (i.e., PATH).

os.execle , os.execve

Adding an "e" to the execv and execl names means an extra, last argument is a
dictionary containing shell environment variables to send to the program.

os.execvpe , os.execlpe

Adding both "p" and "e" to the basic exec names means to use the search-path, and
accept a shell environment settings dictionary.

So, when the script in Example 3-3 calls os.execlp, individually passed
parameters specify a command line for the program to be run on, and the word
"python" maps to an executable file according to the underlying system search-path
setting ($PATH). It's as if we were running a command of the form python
child.py 1 in a shell, but with a different command-line argument on the end
each time.

3.2.1.2 Spawned child program

Just as when typed at a shell, the string of arguments passed to os.execlp by the
fork-exec script in Example 3-3 starts another Python program file, shown in
Example 3-4.

Example 3-4. PP2E\System\Processes\child.py

import os, sys
print 'Hello from child', os.getpid(), sys.argv[1]

Here is this code in action on Linux. It doesn't look much different from the original
fork1.py, but it's really running a new program in each forked process. The more
observant readers may notice that the child process ID displayed is the same in the
parent program and the launched child.py program -- os.execlp simply overlays a
program in the same process:

[mark@toy]$ python fork-exec.py
Child is 1094
Hello from child 1094 1

Child is 1095
Hello from child 1095 2

Child is 1096
Hello from child 1096 3
q

Programming Python, 2nd Edition, O’Reilly

IT-SC book 133

There are other ways to start up programs in Python, including the os.system and
os.popen we met in Chapter 2 (to start shell command lines), and the
os.spawnv call we'll meet later in this chapter (to start independent programs on
Windows); we further explore such process-related topics in more detail later in this
chapter. We'll also discuss additional process topics in later chapters of this book. For
instance, forks are revisited in Chapter 10, to deal with "zombies" -- dead processes
lurking in system tables after their demise.

3.3 Threads

Threads are another way to start activities running at the same time. They
sometimes are called "lightweight processes," and they are run in parallel like forked
processes, but all run within the same single process. For applications that can
benefit from parallel processing, threads offer big advantages for programmers:

Performance

Because all threads run within the same process, they don't generally incur a big
startup cost to copy the process itself. The costs of both copying forked processes
and running threads can vary per platform, but threads are usually considered less
expensive in terms of performance overhead.

Simplicity

Threads can be noticeably simpler to program too, especially when some of the more
complex aspects of processes enter the picture (e.g., process exits, communication
schemes, and "zombie" processes covered in Chapter 10).

Shared global memory

Also because threads run in a single process, every thread shares the same global
memory space of the process. This provides a natural and easy way for threads to
communicate -- by fetching and setting data in global vmemory. To the Python
programmer, this means that global (module-level) variables and interpreter
components are shared among all threads in a program: if one thread assigns a
global variable, its new value will be seen by other threads. Some care must be
taken to control access to shared global objects, but they are still generally simpler
to use than the sorts of process communication tools necessary for forked processes
we'll meet later in this chapter (e.g., pipes, streams, signals, etc.).

Portability

Perhaps most importantly, threads are more portable than forked processes. At this
writing, the os.fork is not supported on Windows at all, but threads are. If you
want to run parallel tasks portably in a Python script today, threads are likely your
best bet. Python's thread tools automatically account for any platform-specific thread
differences, and provide a consistent interface across all operating systems.

Using threads is surprisingly easy in Python. In fact, when a program is started it is
already running a thread -- usually called the "main thread" of the process. To start
new, independent threads of execution within a process, we either use the Python

Programming Python, 2nd Edition, O’Reilly

IT-SC book 134

thread module to run a function call in a spawned thread, or the Python
threading module to manage threads with high-level objects. Both modules also
provide tools for synchronizing access to shared objects with locks.

3.3.1 The thread Module

Since the basic thread module is a bit simpler than the more advanced threading
module covered later in this section, let's look at some of its interfaces first. This
module provides a portable interface to whatever threading system is available in
your platform: its interfaces work the same on Windows, Solaris, SGI, and any
system with an installed "pthreads" POSIX threads implementation (including Linux).
Python scripts that use the Python thread module work on all of these platforms
without changing their source code.

Let's start off by experimenting with a script that demonstrates the main thread
interfaces. The script in Example 3-5 spawns threads until you reply with a "q" at the
console; it's similar in spirit to (and a bit simpler than) the script in Example 3-1, but
goes parallel with threads, not forks.

Example 3-5. PP2E\System\Threads\thread1.py

spawn threads until you type 'q'

import thread

def child(tid):
 print 'Hello from thread', tid

def parent():
 i = 0
 while 1:
 i = i+1
 thread.start_new(child, (i,))
 if raw_input() == 'q': break

parent()

There are really only two thread-specific lines in this script: the import of the
thread module, and the thread creation call. To start a thread, we simply call the
thread.start_new function, no matter what platform we're programming on.[3]
This call takes a function object and an arguments tuple, and starts a new thread to
execute a call to the passed function with the passed arguments. It's almost like the
built-in apply function (and like apply, also accepts an optional keyword
arguments dictionary), but in this case, the function call begins running in
parallelwith the rest of the program.

[3] This call is also available as thread.start_new_thread, for historical reasons. It's possible
that one of the two names for the same function may become deprecated in future Python
releases, but both appear in this text's examples.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 135

Operationally speaking, the thread.start_new call itself returns immediately
with no useful value, and the thread it spawns silently exits when the function being
run returns (the return value of the threaded function call is simply ignored).
Moreover, if a function run in a thread raises an uncaught exception, a stack trace is
printed and the thread exits, but the rest of the program continues.

In practice, though, it's almost trivial to use threads in a Python script. Let's run this
program to launch a few threads; it can be run on both Linux and Windows this time,
because threads are more portable than process forks:

C:\...\PP2E\System\Threads>python thread1.py
Hello from thread 1

Hello from thread 2

Hello from thread 3

Hello from thread 4
q

Each message here is printed from a new thread, which exits almost as soon as it is
started. To really understand the power of threads running in parallel, we have to do
something more long-lived in our threads. The good news is that threads are both
easy and fun to play with in Python. Let's mutate the fork-count program of the
prior section to use threads. The script in Example 3-6 starts 10 copies of its
counter running in parallel threads.

Example 3-6. PP2E\System\Threads\thread-count.py

thread basics: start 10 copies of a function
running in parallel; uses time.sleep so that
main thread doesn't die too early--this kills
all other threads on both Windows and Linux;
stdout shared: thread outputs may be intermixed

import thread, time

def counter(myId, count): # this
function runs in threads
 for i in range(count):
 #time.sleep(1)
 print '[%s] => %s' % (myId, i)

for i in range(10): # spawn 10
threads
 thread.start_new(counter, (i, 3)) # each thread
loops 3 times

Programming Python, 2nd Edition, O’Reilly

IT-SC book 136

time.sleep(4)
print 'Main thread exiting.' # don't exit
too early

Each parallel copy of the counter function simply counts from zero up to two here.
When run on Windows, all 10 threads run at the same time, so their output is
intermixed on the standard output stream:

C:\...\PP2E\System\Threads>python thread-count.py
 ...some lines deleted...
[5] => 0
[6] => 0
[7] => 0
[8] => 0
[9] => 0
[3] => 1
[4] => 1
[1] => 0
[5] => 1
[6] => 1
[7] => 1
[8] => 1
[9] => 1
[3] => 2
[4] => 2
[1] => 1
[5] => 2
[6] => 2
[7] => 2
[8] => 2
[9] => 2
[1] => 2
Main thread exiting.

In fact, these threads' output is mixed arbitrarily, at least on Windows -- it may even
be in a different order each time you run this script. Because all 10 threads run as
independent entities, the exact ordering of their overlap in time depends on nearly
random system state at large at the time they are run.

If you care to make this output a bit more coherent, uncomment (that is, remove the
before) the time.sleep(1) call in the counter function and rerun the script.
If you do, each of the 10 threads now pauses for one second before printing its
current count value. Because of the pause, all threads check in at the same time with
the same count; you'll actually have a one-second delay before each batch of 10
output lines appears:

C:\...\PP2E\System\Threads>python thread-count.py
 ...some lines deleted...

Programming Python, 2nd Edition, O’Reilly

IT-SC book 137

[7] => 0
[6] => 0 pause...
[0] => 1
[1] => 1
[2] => 1
[3] => 1
[5] => 1
[7] => 1
[8] => 1
[9] => 1
[4] => 1
[6] => 1 pause...
[0] => 2
[1] => 2
[2] => 2
[3] => 2
[5] => 2
[9] => 2
[7] => 2
[6] => 2
[8] => 2
[4] => 2
Main thread exiting.

Even with the sleep synchronization active, though, there's no telling in what order
the threads will print their current count. It's random on purpose -- the whole point
of starting threads is to get work done independently, in parallel.

Notice that this script sleeps for four seconds at the end. It turns out that, at least on
my Windows and Linux installs, the main thread cannot exit while any spawned
threads are running; if it does, all spawned threads are immediately terminated.
Without the sleep here, the spawned threads would die almost immediately after
they are started. This may seem ad hoc, but isn't required on all platforms, and
programs are usually structured such that the main thread naturally lives as long as
the threads it starts. For instance, a user interface may start an FTP download
running in a thread, but the download lives a much shorter life than the user
interface itself. Later in this section, we'll see different ways to avoid this sleep with
global flags, and will also meet a "join" utility in a different module that lets us wait
for spawned threads to finish explicitly.

3.3.1.1 Synchronizing access to global objects

One of the nice things about threads is that they automatically come with a cross-
task communications mechanism: shared global memory. For instance, because
every thread runs in the same process, if one Python thread changes a global
variable, the change can be seen by every other thread in the process, main or child.
This serves as a simple way for a program's threads to pass information back and
forth to each other -- exit flags, result objects, event indicators, and so on.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 138

The downside to this scheme is that our threads must sometimes be careful to avoid
changing global objects at the same time -- if two threads change an object at once,
it's not impossible that one of the two changes will be lost (or worse, will corrupt the
state of the shared object completely). The extent to which this becomes an issue
varies per application, and is sometimes a nonissue altogether.

But even things that aren't obviously at risk may be at risk. Files and streams, for
example, are shared by all threads in a program; if multiple threads write to one
stream at the same time, the stream might wind up with interleaved, garbled data.
Here's an example: if you edit Example 3-6, comment-out the sleep call in
counter, and increase the per-thread count parameter from 3 to 100, you might
occasionally see the same strange results on Windows that I did:

C:\...\PP2E\System\Threads\>python thread-count.py | more
 ...more deleted...
[5] => 14
[7] => 14
[9] => 14
[3] => 15
[5] => 15
[7] => 15
[9] => 15
[3] => 16 [5] => 16 [7] => 16 [9] => 16

[3] => 17
[5] => 17
[7] => 17
[9] => 17
 ...more deleted...

Because all 10 threads are trying to write to stdout at the same time, once in a
while the output of more than one thread winds up on the same line. Such an oddity
in this script isn't exactly going to crash the Mars Lander, but it's indicative of the
sorts of clashes in time that can occur when our programs go parallel. To be robust,
thread programs need to control access to shared global items like this such that
only one thread uses it at once.[4]

[4] For a more detailed explanation of this phenomenon, see The Global Interpreter Lock and
Threads.

Luckily, Python's thread module comes with its own easy-to-use tools for
synchronizing access to shared objects among threads. These tools are based on the
concept of a lock -- to change a shared object, threads acquire a lock, make their
changes, and then release the lock for other threads to grab. Lock objects are
allocated and processed with simple and portable calls in the thread module, and
are automatically mapped to thread locking mechanisms on the underlying platform.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 139

For instance, in Example 3-7, a lock object created by thread.allocate_lock is
acquired and released by each thread around the print statement that writes to
the shared standard output stream.

Example 3-7. PP2E\System\Threads\thread-count-mutex.py

synchronize access to stdout: because it is
shared global, thread outputs may be intermixed

import thread, time

def counter(myId, count):
 for i in range(count):
 mutex.acquire()
 #time.sleep(1)
 print '[%s] => %s' % (myId, i)
 mutex.release()

mutex = thread.allocate_lock()
for i in range(10):
 thread.start_new_thread(counter, (i, 3))

time.sleep(6)
print 'Main thread exiting.'

Python guarantees that only one thread can acquire a lock at any given time; all
other threads that request the lock are blocked until a release call makes it available
for acquisition. The net effect of the additional lock calls in this script is that no two
threads will ever execute a print statement at the same point in time -- the lock
ensures mutually exclusive access to the stdout stream. Hence, the output of this
script is the same as the original thread_count.py, except that standard output text
is never munged by overlapping prints.

The Global Interpreter Lock and
Threads

Strictly speaking, Python currently uses a global interpreter lock mechanism,
which guarantees that at most one thread is running code within the Python
interpreter at any given point in time. In addition, to make sure that each
thread gets a chance to run, the interpreter automatically switches its
attention between threads at regular intervals (by releasing and acquiring
the lock after a number of bytecode instructions), as well as at the start of
long-running operations (e.g., on file input/output requests).

This scheme avoids problems that could arise if multiple threads were to
update Python system data at the same time. For instance, if two threads

Programming Python, 2nd Edition, O’Reilly

IT-SC book 140

were allowed to simultaneously change an object's reference count, the
result may be unpredictable. This scheme can also have subtle
consequences. In this chapter's threading examples, for instance, the
stdout stream is likely corrupted only because each thread's call to write
text is a long-running operation that triggers a thread switch within the
interpreter. Other threads are then allowed to run and make write requests
while a prior write is in progress.

Moreover, even though the global interpreter lock prevents more than one
Python thread from running at the same time, it is not enough to ensure
thread safety in general, and does not address higher-level synchronization
issues at all. For example, if more than one thread might attempt to update
the same variable at the same time, they should generally be given
exclusive access to the object with locks. Otherwise, it's not impossible that
thread switches will occur in the middle of an update statement's bytecode.
Consider this code:

import thread, time
count = 0

def adder():
 global count
 count = count + 1 # concurrently update a
shared global
 count = count + 1 # thread swapped out in
the middle of this

for i in range(100):
 thread.start_new(adder, ()) # start 100 update
threads
time.sleep(5)
print count

As is, this code fails on Windows due to the way its threads are interleaved
(you get a different result each time, not 200), but works if lock
acquire/release calls are inserted around the addition statements. Locks are
not strictly required for all shared object access, especially if a single thread
updates an object inspected by other threads. As a rule of thumb, though,
you should generally use locks to synchronize threads whenever update
rendezvous are possible, rather than relying on the current thread
implementation.

Interestingly, the above code also works if the thread-switch check interval
is made high enough to allow each thread to finish without being swapped
out. The sys.setcheckinterval(N) call sets the frequency with which
the interpreter checks for things like thread switches and signal handlers.
This interval defaults to 10, the number of bytecode instructions before a
switch; it does not need to be reset for most programs, but can be used to
tune thread performance. Setting higher values means that switches happen

Programming Python, 2nd Edition, O’Reilly

IT-SC book 141

less often: threads incur less overhead, but are less responsive to events.

If you plan on mixing Python with C, also see the thread interfaces
described in the Python/C API standard manual. In threaded programs, C
extensions must release and reacquire the global interpreter lock around
long-running operations, to let other Python threads run.

Incidentally, uncommenting the time.sleep call in this version's counter
function makes each output line show up one second apart. Because the sleep occurs
while a thread holds the lock, all other threads are blocked while the lock holder
sleeps. One thread grabs the lock, sleeps one second and prints; another thread
grabs, sleeps, and prints, and so on. Given 10 threads counting up to 3, the program
as a whole takes 30 seconds (10 x 3) to finish, with one line appearing per second.
Of course, that assumes that the main thread sleeps at least that long too; to see
how to remove this assumption, we need to move on to the next section.

3.3.1.2 Waiting for spawned thread exits

Thread module locks are surprisingly useful. They can form the basis of higher-level
synchronization paradigms (e.g., semaphores), and can be used as general thread
communication devices.[5] For example, Example 3-8 uses a global list of locks to
know when all child threads have finished.

[5] They cannot, however, be used to directly synchronize processes. Since processes are more
independent, they usually require locking mechanisms that are more long-lived and external
to programs. In Chapter 14, we'll meet a fcntl.flock library call that allows scripts to lock
and unlock files, and so is ideal as a cross-process locking tool.

Example 3-8. PP2E\System\Threads\thread-count-wait1.py

uses mutexes to know when threads are done
in parent/main thread, instead of time.sleep;
lock stdout to avoid multiple prints on 1 line;

import thread

def counter(myId, count):
 for i in range(count):
 stdoutmutex.acquire()
 print '[%s] => %s' % (myId, i)
 stdoutmutex.release()
 exitmutexes[myId].acquire() # signal main thread

stdoutmutex = thread.allocate_lock()
exitmutexes = []
for i in range(10):
 exitmutexes.append(thread.allocate_lock())

Programming Python, 2nd Edition, O’Reilly

IT-SC book 142

 thread.start_new(counter, (i, 100))

for mutex in exitmutexes:
 while not mutex.locked(): pass
print 'Main thread exiting.'

A lock's locked method can be used to check its state. To make this work, the
main thread makes one lock per child, and tacks them onto a global exitmutexes
list (remember, the threaded function shares global scope with the main thread). On
exit, each thread acquires its lock on the list, and the main thread simply watches for
all locks to be acquired. This is much more accurate than naively sleeping while child
threads run, in hopes that all will have exited after the sleep.

But wait -- it gets even simpler: since threads share global memory anyhow, we can
achieve the same effect with a simple global list of integers, not locks. In Example 3-
9, the module's namespace (scope) is shared by top-level code and the threaded
function as before -- name exitmutexes refers to the same list object in the main
thread and all threads it spawns. Because of that, changes made in a thread are still
noticed in the main thread without resorting to extra locks.

Example 3-9. PP2E\System\Threads\thread-count-wait2.py

uses simple shared global data (not mutexes) to
know when threads are done in parent/main thread;

import thread
stdoutmutex = thread.allocate_lock()
exitmutexes = [0] * 10

def counter(myId, count):
 for i in range(count):
 stdoutmutex.acquire()
 print '[%s] => %s' % (myId, i)
 stdoutmutex.release()
 exitmutexes[myId] = 1 # signal main thread

for i in range(10):
 thread.start_new(counter, (i, 100))

while 0 in exitmutexes: pass
print 'Main thread exiting.'

The main threads of both of the last two scripts fall into busy-wait loops at the end,
which might become significant performance drains in tight applications. If so, simply
add a time.sleep call in the wait loops to insert a pause between end tests and
free up the CPU for other tasks. Even threads must be good citizens.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 143

Both of the last two counting thread scripts produce roughly the same output as the
original thread_count.py -- albeit, without stdout corruption, and with different
random ordering of output lines. The main difference is that the main thread exits
immediately after (and no sooner than!) the spawned child threads:

C:\...\PP2E\System\Threads>python thread-count-wait2.py
 ...more deleted...
[2] => 98
[6] => 97
[0] => 99
[7] => 97
[3] => 98
[8] => 97
[9] => 97
[1] => 99
[4] => 98
[5] => 98
[2] => 99
[6] => 98
[7] => 98
[3] => 99
[8] => 98
[9] => 98
[4] => 99
[5] => 99
[6] => 99
[7] => 99
[8] => 99
[9] => 99
Main thread exiting.

Of course, threads are for much more than counting. We'll put shared global data
like this to more practical use in a later chapter, to serve as completion signals from
child processing threads transferring data over a network, to a main thread
controlling a Tkinter GUI user interface display (see Section 11.4 in Chapter 11).

3.3.2 The threading Module

The standard Python library comes with two thread modules -- thread , the basic
lower-level interface illustrated thus far, and threading, a higher-level interface
based on objects. The threading module internally uses the thread module to
implement objects that represent threads and common synchronization tools. It is
loosely based on a subset of the Java language's threading model, but differs in ways
that only Java programmers would notice.[6] Example 3-10 morphs our counting
threads example one last time to demonstrate this new module's interfaces.

[6] But in case this means you: Python's lock and condition variables are distinct objects, not
something inherent in all objects, and Python's Thread class doesn't have all the features of
Java's. See Python's library manual for further details.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 144

Example 3-10. PP2E\System\Threads\thread-classes.py

uses higher-level java like threading module object
join method (not mutexes or shared global vars) to
know when threads are done in parent/main thread;
see library manual for more details on threading;

import threading

class mythread(threading.Thread): # subclass
Thread object
 def __init__(self, myId, count):
 self.myId = myId
 self.count = count
 threading.Thread.__init__(self)
 def run(self): # run provides
thread logic
 for i in range(self.count): # still synch
stdout access
 stdoutmutex.acquire()
 print '[%s] => %s' % (self.myId, i)
 stdoutmutex.release()

stdoutmutex = threading.Lock() # same as
thread.allocate_lock()
threads = []
for i in range(10):
 thread = mythread(i, 100) # make/start 10
threads
 thread.start() # start run
method in a thread
 threads.append(thread)

for thread in threads:
 thread.join() # wait for
thread exits
print 'Main thread exiting.'

The output of this script is the same as that shown for its ancestors earlier (again,
randomly distributed). Using the threading module is largely a matter of
specializing classes. Threads in this module are implemented with a Thread object -
- a Python class which we customize per application by providing a run method that
defines the thread's action. For example, this script subclasses Thread with its own
mythread class; mythread's run method is what will be executed by the
Thread framework when we make a mythread and call its start method.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 145

In other words, this script simply provides methods expected by the Thread
framework. The advantage of going this more coding-intensive route is that we get a
set of additional thread-related tools from the framework "for free." The
Thread.join method used near the end of this script, for instance, waits until the
thread exits (by default); we can use this method to prevent the main thread from
exiting too early, rather than the time.sleep calls and global locks and variables
we relied on in earlier threading examples.

The example script also uses threading.Lock to synchronize stream access
(though this name is just a synonym for thread.allocate_lock in the current
implementation). Besides Thread and Lock, the threading module also includes
higher-level objects for synchronizing access to shared items (e.g., Semaphore,
Condition, Event), and more; see the library manual for details. For more
examples of threads and forks in general, see the following section and the examples
in Part III.

3.4 Program Exits

As we've seen, unlike C there is no "main" function in Python -- when we run a
program, we simply execute all the code in the top-level file, from top to bottom
(i.e., in the filename we listed in the command line, clicked in a file explorer, and so
on). Scripts normally exit when Python falls off the end of the file, but we may also
call for program exit explicitly with the built-in sys.exit function:

>>> sys.exit() # else exits on end of script

Interestingly, this call really just raises the built-in SystemExit exception. Because
of this, we can catch it as usual to intercept early exits and perform cleanup
activities; if uncaught, the interpreter exits as usual. For instance:

C:\...\PP2E\System>python
>>> import sys
>>> try:
... sys.exit() # see also: os._exit, Tk(
).quit()
... except SystemExit:
... print 'ignoring exit'
...
ignoring exit
>>>

In fact, explicitly raising the built-in SystemExit exception with a Python raise
statement is equivalent to calling sys.exit. More realistically, a try block would
catch the exit exception raised elsewhere in a program; the script in Example 3-11
exits from within a processing function.

Example 3-11. PP2E\System\Exits\testexit_sys.py

def later():

Programming Python, 2nd Edition, O’Reilly

IT-SC book 146

 import sys
 print 'Bye sys world'
 sys.exit(42)
 print 'Never reached'

if __name__ == '__main__': later()

Running this program as a script causes it to exit before the interpreter falls off the
end of the file. But because sys.exit raises a Python exception, importers of its
function can trap and override its exit exception, or specify a finally cleanup
block to be run during program exit processing:

C:\...\PP2E\System\Exits>python testexit_sys.py
Bye sys world

C:\...\PP2E\System\Exits>python
>>> from testexit_sys import later
>>> try:
... later()
... except SystemExit:
... print 'Ignored...'
...
Bye sys world
Ignored...
>>> try:
... later()
... finally:
... print 'Cleanup'
...
Bye sys world
Cleanup

C:\...\PP2E\System\Exits>

3.4.1 os Module Exits

It's possible to exit Python in other ways too. For instance, within a forked child
process on Unix we typically call the os._exit function instead of sys.exit,
threads may exit with a thread.exit call, and Tkinter GUI applications often end
by calling something named Tk().quit(). We'll meet the Tkinter module later
in this book, but os and thread exits merit a look here. When os._exit is called,
the calling process exits immediately rather than raising an exception that could be
trapped and ignored, as shown in Example 3-12.

Example 3-12. PP2E\System\Exits\testexit_os.py

def outahere():
 import os

Programming Python, 2nd Edition, O’Reilly

IT-SC book 147

 print 'Bye os world'
 os._exit(99)
 print 'Never reached'

if __name__ == '__main__': outahere()

Unlike sys.exit, os._exit is immune to both try/except and try/finally
interception:

C:\...\PP2E\System\Exits>python testexit_os.py
Bye os world

C:\...\PP2E\System\Exits>python
>>> from testexit_os import outahere
>>> try:
... outahere()
... except:
... print 'Ignored'
...
Bye os world

C:\...\PP2E\System\Exits>python
>>> from testexit_os import outahere
>>> try:
... outahere()
... finally:
... print 'Cleanup'
...
Bye os world

3.4.2 Exit Status Codes

Both the sys and os exit calls we just met accept an argument that denotes the exit
status code of the process (it's optional in the sys call, but required by os). After
exit, this code may be interrogated in shells, and by programs that ran the script as
a child process. On Linux, we ask for the "status" shell variable's value to fetch the
last program's exit status; by convention a nonzero status generally indicates some
sort of problem occurred:

[mark@toy]$ python testexit_sys.py
Bye sys world
[mark@toy]$ echo $status
42
[mark@toy]$ python testexit_os.py
Bye os world
[mark@toy]$ echo $status
99

Programming Python, 2nd Edition, O’Reilly

IT-SC book 148

In a chain of command-line programs, exit statuses could be checked along the way
as a simple form of cross-program communication. We can also grab hold of the exit
status of a program run by another script. When launching shell commands, it's
provided as the return value of an os.system call, and the return value of the
close method of an os.popen object; when forking programs, the exit status is
available through the os.wait and os.waitpid calls in a parent process. Let's
look at the shell commands case first:

[mark@toy]$ python
>>> import os
>>> pipe = os.popen('python testexit_sys.py')
>>> pipe.read()
'Bye sys world\012'
>>> stat = pipe.close() # returns exit code
>>> stat
10752
>>> hex(stat)
'0x2a00'
>>> stat >> 8
42

>>> pipe = os.popen('python testexit_os.py')
>>> stat = pipe.close()
>>> stat, stat >> 8
(25344, 99)

When using os.popen, the exit status is actually packed into specific bit positions
of the return value, for reasons we won't go into here; it's really there, but we need
to shift the result right by eight bits to see it. Commands run with os.system send
their statuses back through the Python library call:

>>> import os
>>> for prog in ('testexit_sys.py', 'testexit_os.py'):
... stat = os.system('python ' + prog)
... print prog, stat, stat >> 8
...
Bye sys world
testexit_sys.py 10752 42
Bye os world
testexit_os.py 25344 99

Unfortunately, neither the popen nor system interfaces for
fetching exit statuses worked reliably on Windows as I wrote
this. Moreover, fork isn't supported at all, and popen in
Python 1.5.2 and earlier fails in applications that create windows
(though it works in code run from DOS console command lines,
and works better in general in 2.0). On Windows:

>>> i t

Programming Python, 2nd Edition, O’Reilly

IT-SC book 149

>>> import os
>>> stat = os.system('python
testexit_sys.py')
Bye sys world
>>> print stat
0
>>> pipe = os.popen('python testexit_sys.py')
>>> print pipe.read(),
Bye sys world
>>> print pipe.close()
None
>>> os.fork
Traceback (innermost last):
 File"<stdin>", line 1, in ?
AttributeError: fork

For now, you may need to utilize Windows-specific tools to
accomplish such goals (e.g., os.spawnv, and running a DOS
start command with os.system ; see later in this chapter). Be
sure to watch for changes on this front, though; Python 2.0 fixes
Windows popen problems, and ActiveState, a company that
created a fork call for Perl on Windows, has begun focusing on
Python tools development.

To learn how to get the exit status from forked processes, let's write a simple forking
program: the script in Example 3-13 forks child processes and prints child process
exit statuses returned by os.wait calls in the parent, until a "q" is typed at the
console.

Example 3-13. PP2E\System\Exits\testexit_fork.py

###

fork child processes to watch exit status with os.wait;
fork works on Linux but not Windows as of Python 1.5.2;
note: spawned threads share globals, but each forked
process has its own copy of them--exitstat always the
same here but will vary if we start threads instead;
###

import os
exitstat = 0

def child(): # could
os.exit a script here

Programming Python, 2nd Edition, O’Reilly

IT-SC book 150

 global exitstat # change this
process's global
 exitstat = exitstat + 1 # exit status
to parent's wait
 print 'Hello from child', os.getpid(), exitstat
 os._exit(exitstat)
 print 'never reached'

def parent():
 while 1:
 newpid = os.fork() # start a
new copy of process
 if newpid == 0: # if in copy,
run child logic
 child() # loop until
'q' console input
 else:
 pid, status = os.wait()
 print 'Parent got', pid, status, (status >> 8)
 if raw_input() == 'q': break

parent()

Running this program on Linux (remember, fork also didn't work on Windows as I
wrote the second edition of this book) produces the following results:

[mark@toy]$ python testexit_fork.py
Hello from child 723 1
Parent got 723 256 1

Hello from child 724 1
Parent got 724 256 1

Hello from child 725 1
Parent got 725 256 1
q

If you study this output closely, you'll notice that the exit status (the last number
printed) is always the same -- the number 1. Because forked processes begin life as
copies of the process that created them, they also have copies of global memory.
Because of that, each forked child gets and changes its own exitstat global
variable, without changing any other process's copy of this variable.

3.4.3 Thread Exits

In contrast, threads run in parallel within the same process and share global
memory. Each thread in Example 3-14 changes the single shared global variable
exitstat.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 151

Example 3-14. PP2E\System\Exits\testexit_thread.py

###

spawn threads to watch shared global memory change;
threads normally exit when the function they run returns,
but thread.exit() can be called to exit calling thread;
thread.exit is the same as sys.exit and raising
SystemExit;
threads communicate with possibly locked global vars;
###

import thread
exitstat = 0

def child():
 global exitstat # process
global names
 exitstat = exitstat + 1 # shared
by all threads
 threadid = thread.get_ident()
 print 'Hello from child', threadid, exitstat
 thread.exit()
 print 'never reached'

def parent():
 while 1:
 thread.start_new_thread(child, ())
 if raw_input() == 'q': break

parent()

Here is this script in action on Linux; the global exitstat is changed by each
thread, because threads share global memory within the process. In fact, this is
often how threads communicate in general -- rather than exit status codes, threads
assign module-level globals to signal conditions (and use thread module locks to
synchronize access to shared globals if needed):

[mark@toy]$ /usr/bin/python testexit_thread.py
Hello from child 1026 1

Hello from child 2050 2

Hello from child 3074 3
q

Programming Python, 2nd Edition, O’Reilly

IT-SC book 152

Unlike forks, threads run on Windows today too; this program works the same there,
but thread identifiers differ -- they are arbitrary but unique among active threads,
and so may be used as dictionary keys to keep per-thread information:

C:\...\PP2E\System\Exits>python testexit_thread.py
Hello from child -587879 1

Hello from child -587879 2

Hello from child -587879 3
q

Speaking of exits, a thread normally exits silently when the function it runs returns,
and the function return value is ignored. Optionally, the thread.exit function can
be called to terminate the calling thread explicitly. This call works almost exactly like
sys.exit (but takes no return status argument), and works by raising a
SystemExit exception in the calling thread. Because of that, a thread can also
prematurely end by calling sys.exit, or directly raising SystemExit. Be sure to
not call os._exit within a thread function, though -- doing so hangs the entire
process on my Linux system, and kills every thread in the process on Windows!

When used well, exit status can be used to implement error-detection and simple
communication protocols in systems composed of command-line scripts. But having
said that, I should underscore that most scripts do simply fall off the end of the
source to exit, and most thread functions simply return; explicit exit calls are
generally employed for exceptional conditions only.

3.5 Interprocess Communication

As we saw earlier, when scripts spawn threads -- tasks that run in parallel within the
program -- they can naturally communicate by changing and inspecting shared
global memory. As we also saw, some care must be taken to use locks to
synchronize access to shared objects that can't be updated concurrently, but it's a
fairly straightforward communication model.

Things aren't quite as simple when scripts start processes and programs. If we limit
the kinds of communications that can happen between programs, there are many
options available, most of which we've already seen in this and the prior chapters.
For example, the following can all be interpreted as cross-program communication
devices:

Command-line arguments

Standard stream redirections

Pipes generated by os.popen calls

Program exit status codes

Shell environment variables

Programming Python, 2nd Edition, O’Reilly

IT-SC book 153

Even simple files

For instance, sending command-line options and writing to input streams lets us pass
in program execution parameters; reading program output streams and exit codes
gives us a way to grab a result. Because shell variable settings are inherited by
spawned programs, they provide another way to pass context in. Pipes made by
os.popen and simple files allow even more dynamic communication -- data can be
sent between programs at arbitrary times, not only at program start and exit.

Beyond this set, there are other tools in the Python library for doing IPC -- Inter-
Process Communication. Some vary in portability, and all vary in complexity. For
instance, in Chapter 10 of this text we will meet the Python socket module, which
lets us transfer data between programs running on the same computer, as well as
programs located on remote networked machines.

In this section, we introduce pipes -- both anonymous and named -- as well as
signals -- cross-program event triggers. Other IPC tools are available to Python
programmers (e.g., shared memory; see module mmap), but not covered here for
lack of space; search the Python manuals and web site for more details on other IPC
schemes if you're looking for something more specific.

3.6 Pipes

Pipes, another cross-program communication device, are made available in Python
with the built-in os.pipe call. Pipes are unidirectional channels that work
something like a shared memory buffer, but with an interface resembling a simple
file on each of two ends. In typical use, one program writes data on one end of the
pipe, and another reads that data on the other end. Each program only sees its end
of the pipes, and processes it using normal Python file calls.

Pipes are much more within the operating system, though. For instance, calls to read
a pipe will normally block the caller until data becomes available (i.e., is sent by the
program on the other end), rather than returning an end-of-file indicator. Because of
such properties, pipes are also a way to synchronize the execution of independent
programs.

3.6.1 Anonymous Pipe Basics

Pipes come in two flavors -- anonymous and named. Named pipes (sometimes called
"fifos") are represented by a file on your computer. Anonymous pipes only exist
within processes, though, and are typically used in conjunction with process forks as
a way to link parent and spawned child processes within an application -- parent and
child converse over shared pipe file descriptors. Because named pipes are really
external files, the communicating processes need not be related at all (in fact, they
can be independently started programs).

Since they are more traditional, let's start with a look at anonymous pipes. To
illustrate, the script in Example 3-15 uses the os.fork call to make a copy of the
calling process as usual (we met forks earlier in this chapter). After forking, the
original parent process and its child copy speak through the two ends of a pipe
created with os.pipe prior to the fork. The os.pipe call returns a tuple of two file

Programming Python, 2nd Edition, O’Reilly

IT-SC book 154

descriptors -- the low-level file identifiers we met earlier -- representing the input
and output sides of the pipe. Because forked child processes get copies of their
parents' file descriptors, writing to the pipe's output descriptor in the child sends
data back to the parent on the pipe created before the child was spawned.

Example 3-15. PP2E\System\Processes\pipe1.py

import os, time

def child(pipeout):
 zzz = 0
 while 1:
 time.sleep(zzz) # make
parent wait
 os.write(pipeout, 'Spam %03d' % zzz) # send to
parent
 zzz = (zzz+1) % 5 # goto 0
after 4

def parent():
 pipein, pipeout = os.pipe() # make 2-
ended pipe
 if os.fork() == 0: # copy
this process
 child(pipeout) # in copy,
run child
 else: # in
parent, listen to pipe
 while 1:
 line = os.read(pipein, 32) # blocks
until data sent
 print 'Parent %d got "%s" at %s' % (os.getpid(
), line, time.time())

parent()

If you run this program on Linux (pipe is available on Windows today, but fork is
not), the parent process waits for the child to send data on the pipe each time it calls
os.read. It's almost as if the child and parent act as client and server here -- the
parent starts the child and waits for it to initiate communication.[7] Just to tease, the
child keeps the parent waiting one second longer between messages with
time.sleep calls, until the delay has reached four seconds. When the zzz delay
counter hits 005, it rolls back down to 000 and starts again:

[7] We will clarify the notions of "client" and "server" in Chapter 10. There, we'll communicate
with sockets (which are very roughly like bidirectional pipes for networks), but the overall
conversation model is similar. Named pipes (fifos), described later, are a better match to the
client/server model, because they can be accessed by arbitrary, unrelated processes (no forks
are required). But as we'll see, the socket port model is generally used by most Internet
scripting protocols.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 155

[mark@toy]$ python pipe1.py
Parent 1292 got "Spam 000" at 968370008.322
Parent 1292 got "Spam 001" at 968370009.319
Parent 1292 got "Spam 002" at 968370011.319
Parent 1292 got "Spam 003" at 968370014.319
Parent 1292 got "Spam 004Spam 000" at 968370018.319
Parent 1292 got "Spam 001" at 968370019.319
Parent 1292 got "Spam 002" at 968370021.319
Parent 1292 got "Spam 003" at 968370024.319
Parent 1292 got "Spam 004Spam 000" at 968370028.319
Parent 1292 got "Spam 001" at 968370029.319
Parent 1292 got "Spam 002" at 968370031.319
Parent 1292 got "Spam 003" at 968370034.319

If you look closely, you'll see that when the child's delay counter hits 004, the parent
ends up reading two messages from the pipe at once -- the child wrote two distinct
messages, but they were close enough in time to be fetched as a single unit by the
parent. Really, the parent blindly asks to read at most 32 bytes each time, but gets
back whatever text is available in the pipe (when it becomes available at all). To
distinguish messages better, we can mandate a separator character in the pipe. An
end-of-line makes this easy, because we can wrap the pipe descriptor in a file object
with os.fdopen, and rely on the file object's readline method to scan up
through the next \n separator in the pipe. Example 3-16 implements this scheme.

Example 3-16. PP2E\System\Processes\pipe2.py

same as pipe1.py, but wrap pipe input in stdio file
object
to read by line, and close unused pipe fds in both
processes

import os, time

def child(pipeout):
 zzz = 0
 while 1:
 time.sleep(zzz) # make
parent wait
 os.write(pipeout, 'Spam %03d\n' % zzz) # send to
parent
 zzz = (zzz+1) % 5 # roll to
0 at 5

def parent():
 pipein, pipeout = os.pipe() # make 2-
ended pipe
 if os.fork() == 0: # in
child, write to pipe

Programming Python, 2nd Edition, O’Reilly

IT-SC book 156

 os.close(pipein) # close
input side here
 child(pipeout)
 else: # in
parent, listen to pipe
 os.close(pipeout) # close
output side here
 pipein = os.fdopen(pipein) # make
stdio input object
 while 1:
 line = pipein.readline()[:-1] # blocks
until data sent
 print 'Parent %d got "%s" at %s' % (os.getpid(
), line, time.time())

parent()

This version has also been augmented to close the unused end of the pipe in each
process (e.g., after the fork, the parent process closes its copy of the output side of
the pipe written by the child); programs should close unused pipe ends in general.
Running with this new version returns a single child message to the parent each time
it reads from the pipe, because they are separated with markers when written:

[mark@toy]$ python pipe2.py
Parent 1296 got "Spam 000" at 968370066.162
Parent 1296 got "Spam 001" at 968370067.159
Parent 1296 got "Spam 002" at 968370069.159
Parent 1296 got "Spam 003" at 968370072.159
Parent 1296 got "Spam 004" at 968370076.159
Parent 1296 got "Spam 000" at 968370076.161
Parent 1296 got "Spam 001" at 968370077.159
Parent 1296 got "Spam 002" at 968370079.159
Parent 1296 got "Spam 003" at 968370082.159
Parent 1296 got "Spam 004" at 968370086.159
Parent 1296 got "Spam 000" at 968370086.161
Parent 1296 got "Spam 001" at 968370087.159
Parent 1296 got "Spam 002" at 968370089.159

3.6.2 Bidirectional IPC with Pipes

Pipes normally only let data flow in one direction -- one side is input, one is output.
What if you need your programs to talk back and forth, though? For example, one
program might send another a request for information, and then wait for that
information to be sent back. A single pipe can't generally handle such bidirectional
conversations, but two pipes can -- one pipe can be used to pass requests to a
program, and another can be used to ship replies back to the requestor.[8]

[8] This really does have real-world applications. For instance, I once added a GUI interface to
a command-line debugger for a C-like programming language by connecting two processes

Programming Python, 2nd Edition, O’Reilly

IT-SC book 157

with pipes. The GUI ran as a separate process that constructed and sent commands to the
existing debugger's input stream pipe and parsed the results that showed up in the debugger's
output stream pipe. In effect, the GUI acted like a programmer typing commands at a
keyboard. By spawning command-line programs with streams attached by pipes, systems can
add new interfaces to legacy programs.

The module in Example 3-17 demonstrates one way to apply this idea to link the
input and output streams of two programs. Its spawn function forks a new child
program, and connects the input and output streams of the parent to the output and
input streams of the child. That is:

When the parent reads from its standard input, it is reading text sent to the child's
standard output.

When the parent writes to its standard output, it is sending data to the child's
standard input.

The net effect is that the two independent programs communicate by speaking over
their standard streams.

Example 3-17. PP2E\System\Processes\pipes.py

###

spawn a child process/program, connect my stdin/stdout
to child process's stdout/stdin -- my reads and writes
map to output and input streams of the spawned program;
much like popen2.popen2 plus parent stream redirection;
###

import os, sys

def spawn(prog, *args): # pass
progname, cmdline args
 stdinFd = sys.stdin.fileno() # get
descriptors for streams
 stdoutFd = sys.stdout.fileno() # normally
stdin=0, stdout=1

 parentStdin, childStdout = os.pipe() # make two
ipc pipe channels
 childStdin, parentStdout = os.pipe() # pipe
returns (inputfd, outoutfd)
 pid = os.fork() # make a copy
of this process
 if pid:
 os.close(childStdout) # in parent
process after fork:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 158

 os.close(childStdin) # close child
ends in parent
 os.dup2(parentStdin, stdinFd) # my
sys.stdin copy = pipe1[0]
 os.dup2(parentStdout, stdoutFd) # my
sys.stdout copy = pipe2[1]
 else:
 os.close(parentStdin) # in child
process after fork:
 os.close(parentStdout) # close
parent ends in child
 os.dup2(childStdin, stdinFd) # my
sys.stdin copy = pipe2[0]
 os.dup2(childStdout, stdoutFd) # my
sys.stdout copy = pipe1[1]
 args = (prog,) + args
 os.execvp(prog, args) # new program
in this process
 assert 0, 'execvp failed!' # os.exec
call never returns here

if __name__ == '__main__':
 mypid = os.getpid()
 spawn('python', 'pipes-testchild.py', 'spam') # fork
child program

 print 'Hello 1 from parent', mypid # to
child's stdin
 sys.stdout.flush() #
subvert stdio buffering
 reply = raw_input() # from
child's stdout
 sys.stderr.write('Parent got: "%s"\n' % reply) #
stderr not tied to pipe!

 print 'Hello 2 from parent', mypid
 sys.stdout.flush()
 reply = sys.stdin.readline()
 sys.stderr.write('Parent got: "%s"\n' % reply[:-1])

This spawn function in this module does not work on Windows -- remember, fork
isn't yet available there today. In fact, most of the calls in this module map straight
to Unix system calls (and may be arbitrarily terrifying on first glance to non-Unix
developers). We've already met some of these (e.g., os.fork), but much of this
code depends on Unix concepts we don't have time to address well in this text. But
in simple terms, here is a brief summary of the system calls demonstrated in this
code:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 159

os.fork copies the calling process as usual, and returns the child's process ID in
the parent process only.

os.execvp overlays a new program in the calling process; it's just like the
os.execlp used earlier but takes a tuple or list of command-line argument strings
(collected with the *args form in the function header).

os.pipe returns a tuple of file descriptors representing the input and output ends
of a pipe, as in earlier examples.

os.close(fd) closes descriptor-based file fd.

os.dup2(fd1,fd2) copies all system information associated with the file named
by file descriptor fd1 to the file named by fd2.

In terms of connecting standard streams, os.dup2 is the real nitty-gritty here. For
example, the call os.dup2(parentStdin,stdinFd) essentially assigns the
parent process's stdin file to the input end of one of the two pipes created; all
stdin reads will henceforth come from the pipe. By connecting the other end of this
pipe to the child process's copy of the stdout stream file with
os.dup2(childStdout,stdoutFd), text written by the child to its sdtdout
winds up being routed through the pipe to the parent's stdin stream.

To test this utility, the self-test code at the end of the file spawns the program
shown in Example 3-18 in a child process, and reads and writes standard streams to
converse with it over two pipes.

Example 3-18. PP2E\System\Processes\pipes-testchild.py

import os, time, sys
mypid = os.getpid()
parentpid = os.getppid()
sys.stderr.write('Child %d of %d got arg: %s\n' %
 (mypid, parentpid,
sys.argv[1]))
for i in range(2):
 time.sleep(3) # make parent process wait by
sleeping here
 input = raw_input() # stdin tied to pipe: comes
from parent's stdout
 time.sleep(3)
 reply = 'Child %d got: [%s]' % (mypid, input)
 print reply # stdout tied to pipe: goes
to parent's stdin
 sys.stdout.flush() # make sure it's sent now
else blocks

Here is our test in action on Linux; its output is not incredibly impressive to read, but
represents two programs running independently and shipping data back and forth

Programming Python, 2nd Edition, O’Reilly

IT-SC book 160

through a pipe device managed by the operating system. This is even more like a
client/server model (if you imagine the child as the server). The text in square
brackets in this output went from the parent process, to the child, and back to the
parent again -- all through pipes connected to standard streams:

[mark@toy]$ python pipes.py
Child 797 of 796 got arg: spam
Parent got: "Child 797 got: [Hello 1 from parent 796]"
Parent got: "Child 797 got: [Hello 2 from parent 796]"

3.6.2.1 Deadlocks, flushes, and unbuffered streams

These two processes engage in a simple dialog, but it's already enough to illustrate
some of the dangers lurking in cross-program communications. First of all, notice
that both programs need to write to stderr to display a message -- their stdout
streams are tied to the other program's input stream. Because processes share file
descriptors, stderr is the same in both parent and child, so status messages show
up in the same place.

More subtly, note that both parent and child call sys.stdout.flush after they
print text to the stdout stream. Input requests on pipes normally block the caller if
there is no data available, but it seems that shouldn't be a problem in our example --
there are as many writes as there are reads on the other side of the pipe. By default,
though, sys.stdout is buffered, so the printed text may not actually be
transmitted until some time in the future (when the stdio output buffers fill up). In
fact, if the flush calls are not made, both processes will get stuck waiting for input
from the other -- input that is sitting in a buffer and is never flushed out over the
pipe. They wind up in a deadlock state, both blocked on raw_input calls waiting
for events that never occur.

Keep in mind that output buffering is really a function of the filesystem used to
access pipes, not pipes themselves (pipes do queue up output data, but never hide it
from readers!). In fact it only occurs in this example because we copy the pipe's
information over to sys.stdout -- a built-in file object that uses stdio buffering
by default. However, such anomalies can also occur when using other cross-process
tools, such as the popen2 and popen3 calls introduced in Chapter 2.

In general terms, if your programs engage in a two-way dialogs like this, there are
at least three ways to avoid buffer-related deadlock problems:

As demonstrated in this example, manually flushing output pipe streams by calling
file flush method is an easy way to force buffers to be cleared.

It's possible to use pipes in unbuffered mode -- either use low-level os module calls
to read and write pipe descriptors directly, or (on most systems) pass a buffer size
argument of to os.fdopen to disable stdio buffering in the file object used to
wrap the descriptor. For fifos, described in the next section, do the same for open.

Simply use the -u Python command-line flag to turn off buffering for the
sys.stdout stream.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 161

The last technique merits a few more words. Try this: delete all the
sys.stdout.flush calls in both Examples Example 3-17 and Example 3-18 (files
pipes.py and pipes-testchild.py) and change the parent's spawn call in pipes.py to
this (i.e., add a -u command-line argument):

spawn('python', '-u', 'pipes-testchild.py', 'spam')

Then start the program with a command line like this: python -u pipes.py. It
will work as it did with manual stdout flush calls, because stdout will be
operating in unbuffered mode. Deadlock in general, though, is a bigger problem than
we have space to address here; on the other hand, if you know enough to want to do
IPC in Python, you're probably already a veteran of the deadlock wars.

3.6.3 Named Pipes (Fifos)

On some platforms, it is also possible to create a pipe that exists as a file. Such files
are called "named pipes" (or sometimes, "fifos"), because they behave just like the
pipes created within the previous programs, but are associated with a real file
somewhere on your computer, external to any particular program. Once a named
pipe file is created, processes read and write it using normal file operations. Fifos are
unidirectional streams, but a set of two fifos can be used to implement bidirectional
communication just as we did for anonymous pipes in the prior section.

Because fifos are files, they are longer-lived than in-process pipes and can be
accessed by programs started independently. The unnamed, in-process pipe
examples thus far depend on the fact that file descriptors (including pipes) are
copied to child processes. With fifos, pipes are accessed instead by a filename visible
to all programs regardless of any parent/child process relationships. Because of that,
they are better suited as IPC mechanisms for independent client and server
programs; for instance, a perpetually running server program may create and listen
for requests on a fifo, that can be accessed later by arbitrary clients not forked by
the server.

In Python, named pipe files are created with the os.mkfifo call, available today on
Unix-like platforms and Windows NT (but not on Windows 95/98). This only creates
the external file, though; to send and receive data through a fifo, it must be opened
and processed as if it were a standard file. Example 3-19 is a derivation of the
pipe2.py script listed earlier, written to use fifos instead of anonymous pipes.

Example 3-19. PP2E\System\Processes\pipefifo.py

named pipes; os.mkfifo not avaiable on Windows 95/98;
no reason to fork here, since fifo file pipes are
external to processes--shared fds are irrelevent;

import os, time, sys
fifoname = '/tmp/pipefifo' # must
open same name

Programming Python, 2nd Edition, O’Reilly

IT-SC book 162

def child():
 pipeout = os.open(fifoname, os.O_WRONLY) # open
fifo pipe file as fd
 zzz = 0
 while 1:
 time.sleep(zzz)
 os.write(pipeout, 'Spam %03d\n' % zzz)
 zzz = (zzz+1) % 5

def parent():
 pipein = open(fifoname, 'r') # open
fifo as stdio object
 while 1:
 line = pipein.readline()[:-1] # blocks
until data sent
 print 'Parent %d got "%s" at %s' % (os.getpid(),
line, time.time())

if __name__ == '__main__':
 if not os.path.exists(fifoname):
 os.mkfifo(fifoname) # create a
named pipe file
 if len(sys.argv) == 1:
 parent() # run as
parent if no args
 else: # else run
as child process
 child()

Because the fifo exists independently of both parent and child, there's no reason to
fork here -- the child may be started independently of the parent, as long as it opens
a fifo file by the same name. Here, for instance, on Linux the parent is started in one
xterm window, and then the child is started in another. Messages start appearing in
the parent window only after the child is started:

[mark@toy]$ python pipefifo.py
Parent 657 got "Spam 000" at 968390065.865
Parent 657 got "Spam 001" at 968390066.865
Parent 657 got "Spam 002" at 968390068.865
Parent 657 got "Spam 003" at 968390071.865
Parent 657 got "Spam 004" at 968390075.865
Parent 657 got "Spam 000" at 968390075.867
Parent 657 got "Spam 001" at 968390076.865
Parent 657 got "Spam 002" at 968390078.865

[mark@toy]$ file /tmp/pipefifo
/tmp/pipefifo: fifo (named pipe)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 163

[mark@toy]$ python pipefifo.py -child

3.7 Signals

For lack of a better analogy, signals are a way to poke a stick at a process. Programs
generate signals to trigger a handler for that signal in another process. The operating
system pokes too -- some signals are generated on unusual system events and may
kill the program if not handled. If this sounds a little like raising exceptions in Python
it should; signals are software-generated events, and the cross-process analog of
exceptions. Unlike exceptions, though, signals are identified by number, are not
stacked, and are really an asynchronous event mechanism controlled by the
operating system, outside the scope of the Python interpreter.

In order to make signals available to scripts, Python provides a signal module that
allows Python programs to register Python functions as handlers for signal events.
This module is available on both Unix-like platforms and Windows (though the
Windows version defines fewer kinds of signals to be caught). To illustrate the basic
signal interface, the script in Example 3-20 installs a Python handler function for the
signal number passed in as a command-line argument.

Example 3-20. PP2E\System\Processes\signal1.py

catch signals in Python; pass signal number N as a
command-line arg, use a "kill -N pid" shell command
to send this process a signal; most signal handlers
restored by Python after caught (see network scripting
chapter for SIGCHLD details); signal module avaiable
on Windows, but defines only a few signal types there;

import sys, signal, time
def now(): return time.ctime(time.time()) # current
time string

def onSignal(signum, stackframe): # python
signal handler
 print 'Got signal', signum, 'at', now() # most
handlers stay in effect

signum = int(sys.argv[1])
signal.signal(signum, onSignal) # install
signal handler
while 1: signal.pause() # wait for
signals (or: pass)

There are only two signal module calls at work here:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 164

signal.signal takes a signal number and function object, and installs that
function to handle that signal number when it is raised. Python automatically
restores most signal handlers when signals occur, so there is no need to recall this
function within the signal handler itself to re-register the handler. That is, except for
SIGCHLD, a signal handler remains installed until explicitly reset (e.g., by setting
the handler to SIG_DFL to restore default behavior, or to SIG_IGN to ignore the
signal). SIGCHLD behavior is platform-specific.

signal.pause makes the process sleep until the next signal is caught. A
time.sleep call is similar but doesn't work with signals on my Linux box -- it
generates an interrupted system call error. A busy while 1: pass loop here would
pause the script too, but may squander CPU resources.

Here is what this script looks like running on Linux: a signal number to watch for
(12) is passed in on the command line, and the program is made to run in the
background with a & shell operator (available in most Unix-like shells):

[mark@toy]$ python signal1.py 12 &
[1] 809
[mark@toy]$ ps
 PID TTY TIME CMD
 578 ttyp1 00:00:00 tcsh
 809 ttyp1 00:00:00 python
 810 ttyp1 00:00:00 ps
[mark@toy]$ kill -12 809
[mark@toy]$ Got signal 12 at Fri Sep 8 00:27:01 2000
kill -12 809
[mark@toy]$ Got signal 12 at Fri Sep 8 00:27:03 2000
kill -12 809
[mark@toy]$ Got signal 12 at Fri Sep 8 00:27:04 2000

[mark@toy]$ kill -9 809 # signal 9 always kills
the process

Inputs and outputs are a bit jumbled here, because the process prints to the same
screen used to type new shell commands. To send the program a signal, the kill shell
command takes a signal number and a process ID to be signalled (809); every time
a new kill command sends a signal, the process replies with a message generated by
a Python signal handler function.

The signal module also exports a signal.alarm function for scheduling a
SIGALRM signal to occur at some number of seconds in the future. To trigger and
catch timeouts, set the alarm and install a SIGALRM handler as in Example 3-21.

Example 3-21. PP2E\System\Processes\signal2.py

set and catch alarm timeout signals in Python;
time.sleep doesn't play well with alarm (or signal

Programming Python, 2nd Edition, O’Reilly

IT-SC book 165

in general in my Linux PC), so call signal.pause
here to do nothing until a signal is received;

import sys, signal, time
def now(): return time.ctime(time.time())

def onSignal(signum, stackframe): # python
signal handler
 print 'Got alarm', signum, 'at', now() # most
handlers stay in effect

while 1:
 print 'Setting at', now()
 signal.signal(signal.SIGALRM, onSignal) # install
signal handler
 signal.alarm(5) # do
signal in 5 seconds
 signal.pause() # wait for
signals

Running this script on Linux causes its onSignal handler function to be invoked
every five seconds:

[mark@toy]$ python signal2.py
Setting at Fri Sep 8 00:27:53 2000
Got alarm 14 at Fri Sep 8 00:27:58 2000
Setting at Fri Sep 8 00:27:58 2000
Got alarm 14 at Fri Sep 8 00:28:03 2000
Setting at Fri Sep 8 00:28:03 2000
Got alarm 14 at Fri Sep 8 00:28:08 2000
Setting at Fri Sep 8 00:28:08 2000

Generally speaking, signals must be used with cautions not made obvious by the
examples we've just seen. For instance, some system calls don't react well to being
interrupted by signals, and only the main thread can install signal handlers and
respond to signals in a multithreaded program.

When used well, though, signals provide an event-based communication mechanism.
They are less powerful than data streams like pipes, but are sufficient in situations
where you just need to tell a program that something important has occurred at all,
and not pass along any details about the event itself. Signals are sometimes also
combined with other IPC tools. For example, an initial signal may inform a program
that a client wishes to communicate over a named pipe -- the equivalent of tapping
someone's shoulder to get their attention before speaking. Most platforms reserve
one or more SIGUSR signal numbers for user-defined events of this sort.

3.8 Launching Programs on Windows

Programming Python, 2nd Edition, O’Reilly

IT-SC book 166

Suppose just for a moment, that you've been asked to write a big Python book, and
want to provide a way for readers to easily start the book's examples on just about
any platform that Python runs on. Books are nice, but it's awfully fun to be able to
click on demos right away. That is, you want to write a general and portable launcher
program in Python, for starting other Python programs. What to do?

In this chapter, we've seen how to portably spawn threads, but these are simply
parallel functions, not external programs. We've also learned how to go about
starting new, independently running programs, with both the fork/exec
combination, and tools for launching shell commands such as os.popen. Along the
way, though, I've also been careful to point out numerous times that the os.fork
call doesn't work on Windows today, and os.popen fails in Python release 1.5.2
and earlier when called from a GUI program on Windows; either of these constraints
may be improved by the time you read this book (e.g., 2.0 improves os.popen on
Windows), but they weren't quite there yet as I wrote this chapter. Moreover, for
reasons we'll explore later, the os.popen call is prone to blocking (pausing) its
caller in some scenarios.

Luckily, there are other ways to start programs in the Python standard library, albeit
in platform-specific fashion:

The os.spawnv and os.spawnve calls launch programs on Windows, much like a
fork/exec call combination on Unix-like platforms.

The os.system call can be used on Windows to launch a DOS start command,
which opens (i.e., runs) a file independently based on its Windows filename
associations, as though it were clicked.

Tools in the Python win32all extensions package provide other, less standardized
ways to start programs (e.g., the WinExec call).

3.8.1 The os.spawnv Call

Of these, the spawnv call is the most complex, but also the most like forking
programs in Unix. It doesn't actually copy the calling process (so shared descriptor
operations won't work), but can be used to start a Windows program running
completely independent of the calling program. The script in Example 3-22 makes
the similarity more obvious -- it launches a program with a fork/exec combination
in Linux, or an os.spawnv call on Windows.

Example 3-22. PP2E\System\Processes\spawnv.py

###

start up 10 copies of child.py running in parallel;
use spawnv to launch a program on Windows (like
fork+exec)
P_OVERLAY replaces, P_DETACH makes child stdout go
nowhere

Programming Python, 2nd Edition, O’Reilly

IT-SC book 167

###

import os, sys

for i in range(10):
 if sys.platform[:3] == 'win':
 pypath = r'C:\program files\python\python.exe'
 os.spawnv(os.P_NOWAIT, pypath, ('python',
'child.py', str(i)))
 else:
 pid = os.fork()
 if pid != 0:
 print 'Process %d spawned' % pid
 else:
 os.execlp('python', 'python', 'child.py',
str(i))
print 'Main process exiting.'

Call os.spawnv with a process mode flag, the full directory path to the Python
interpreter, and a tuple of strings representing the DOS command line with which to
start a new program. The process mode flag is defined by Visual C++ (whose library
provides the underlying spawnv call); commonly used values include:

P_OVERLAY: spawned program replaces calling program, like os.exec

P_DETACH: starts a program with full independence, without waiting

P_NOWAIT: runs the program without waiting for it to exit; returns its handle

P_WAIT: runs the program and pauses until it finishes; returns its exit code

Run a dir(os) call to see other process flags available, and either run a few tests
or see VC++ documentation for more details; things like standard stream connection
policies vary between the P_DETACH and P_NOWAIT modes in subtle ways. Here is
this script at work on Windows, spawning 10 independent copies of the child.py
Python program we met earlier in this chapter:

C:\...\PP2E\System\Processes>type child.py
import os, sys
print 'Hello from child', os.getpid(), sys.argv[1]

C:\...\PP2E\System\Processes>python spawnv.py
Hello from child -583587 0
Hello from child -558199 2
Hello from child -586755 1
Hello from child -562171 3
Main process exiting.
Hello from child -581867 6

Programming Python, 2nd Edition, O’Reilly

IT-SC book 168

Hello from child -588651 5
Hello from child -568247 4
Hello from child -563527 7
Hello from child -543163 9
Hello from child -587083 8

Notice that the copies print their output in random order, and the parent program
exits before all children do; all these programs are really running in parallel on
Windows. Also observe that the child program's output shows up in the console box
where spawnv.py was run; when using P_NOWAIT standard output comes to the
parent's console, but seems to go nowhere when using P_DETACH instead (most
likely a feature, when spawning GUI programs).

The os.spawnve call works the same as os.spawnv, but accepts an extra fourth
dictionary argument to specify a different shell environment for the spawned
program (which, by default, inherits all the parent's settings).

3.8.2 Running DOS Command Lines

The os.system and os.popen calls can be used to start command lines on
Windows just as on Unix-like platforms (but with the portability caveats about
popen mentioned earlier). On Windows, though, the DOS start command combined
with os.system provides an easy way for scripts to launch any file on the system,
using Windows filename associations. Starting a program file this way makes it run
as independently as its starter. Example 3-23 demonstrates these launch techniques.

Example 3-23. PP2E\System\Processes\dosstart.py

###

start up 5 copies of child.py running in parallel;
- on Windows, os.system always blocks its caller,
and os.popen currently fails in a GUI programs
- using DOS start command pops up a DOS box (which goes
away immediately when the child.py program exits)
- running child-wait.py with DOS start, 5 independent
DOS console windows popup and stay up (1 per program)
DOS start command uses file name associations to know
to run Python on the file, as though double-clicked in
Windows explorer (any filename can be started this way);
###

import os, sys

for i in range(5):
 #print os.popen('python child.py ' + str(i)).read(
)[:-1]

Programming Python, 2nd Edition, O’Reilly

IT-SC book 169

 #os.system('python child.py ' + str(i))
 #os.system('start child.py ' + str(i))
 os.system('start child-wait.py ' + str(i))
print 'Main process exiting.'

Uncomment one of the lines in this script's for loop to experiment with these
schemes on your computer. On mine, when run with either of the first two calls in
the loop uncommented, I get the following sort of output -- the text printed by five
spawned Python programs:

C:\...\PP2E\System\Processes>python dosstart.py
Hello from child -582331 0
Hello from child -547703 1
Hello from child -547703 2
Hello from child -547651 3
Hello from child -547651 4
Main process exiting.

The os.system call usually blocks its caller until the spawned program exits;
reading the output of a os.popen call has the same blocking effect (the reader
waits for the spawned program's output to be complete). But with either of the last
two statements in the loop uncommented, I get output that simply looks like this:

C:\...\PP2E\System\Processes>python dosstart.py
Main process exiting.

In both cases, I also see five new and completely independent DOS console windows
appear on my display; when the third line in the loop is uncommented, all the DOS
boxes go away right after they appear; when the last line in the loop is active, they
remain on the screen after the dosstart program exits because the child-wait
script pauses for input before exit.

3.8.2.1 Using the DOS start command

To understand why, you first need to know how the DOS start command works in
general. Roughly, a DOS command line of the form start command works as if
command were typed in the Windows "Run" dialog box available in the Start button
menu. If command is a filename, it is opened exactly as if its name had been
double-clicked in the Windows Explorer file selector GUI.

For instance, the following three DOS commands automatically start Internet
Explorer on a file index.html, my registered image viewer program on a uk-1.jpg,
and my sound media player program on file sousa.au. Windows simply opens the file
with whatever program is associated to handle filenames of that form. Moreover, all
three of these programs run independently of the DOS console box where the
command is typed:

C:\temp>start c:\stuff\website\public_html\index.html
C:\temp>start c:\stuff\website\public_html\uk-1.jpg

Programming Python, 2nd Edition, O’Reilly

IT-SC book 170

C:\...\PP2E\System\Processes>start
..\..\Internet\Ftp\sousa.au

Now, because the start command can run any file and command line, there is no
reason it cannot also be used to start an independently running Python program:

C:\...\PP2E\System\Processes>start child.py 1

Because Python is registered to open names ending in .py when it is installed, this
really does work -- script child.py is launched independently of the DOS console
window, even though we didn't provide the name or path of the Python interpreter
program. Because child.py simply prints a message and exits, though, the result isn't
exactly satisfying: a new DOS window pops up to serve as the script's standard
output, and immediately goes away when the child exits (it's that Windows "flash
feature" described earlier!). To do better, add a raw_input call at the bottom of
the program file to wait for a key press before exiting:

C:\...\PP2E\System\Processes>type child-wait.py
import os, sys
print 'Hello from child', os.getpid(), sys.argv[1]
raw_input("Press <Enter>") # don't flash on Windows

C:\...\PP2E\System\Processes>start child-wait.py 2

Now the child's DOS window pops up and stays up after the start command has
returned. Pressing the Enter key in the pop-up DOS window makes it go away.

3.8.2.2 Using start in Python scripts

Since we know that Python's os.system and os.popen can be called by a script
to run any command line that can be typed at a DOS shell prompt, we can also start
independently running programs from a Python script by simply running a DOS start
command line. For instance:

C:\...\PP2E>python
>>> import os
>>>
>>> cmd = r'start c:\stuff\website\public_html\index.html'
start IE browser
>>> os.system(cmd)
runs independent
0
>>> file = r'gui\gifs\pythonPowered.gif' #
start image viewer
>>> os.system('start ' + file) #
IE opens .gif for me
0
>>> os.system('start ' + 'Gui/gifs/PythonPowered.gif') #
fwd slashes work too

Programming Python, 2nd Edition, O’Reilly

IT-SC book 171

0
>>> os.system(r'start Internet\Ftp\sousa.au') #
start media bar
0

The four Python os.system calls here start whatever web-page browser, image
viewer, and sound player are registered on your machine to open .html, .gif, and .au
files (unless these programs are already running). The launched programs run
completely independent of the Python session -- when running a DOS start
command, os.system does not wait for the spawned program to exit. For instance,
Figure 3-1 shows the .gif file handler in action on my machine, generated by both
the second and third os.system calls in the preceding code.

Figure 3-1. Started image viewer (Internet Explorer)

Now, since we also know that a Python program be can started from a command
line, this yields two ways to launch Python programs:

C:\...\PP2E>python
>>> os.system(r'python Gui\TextEditor\textEditor.pyw') #
start and wait
0
>>> os.system(r'start Gui\TextEditor\textEditor.pyw') #
start, go on
0

When running a python command, the os.system call waits (blocks) for the
command to finish. When running a start command it does not -- the launched
Python program (here, PyEdit, a text editor GUI we'll meet in Chapter 9) runs
independent of the os.system caller. And finally, that's why the following call in
dosstart.py generates a new, independent instance of child-wait.py :

C:\...\PP2E\System\Processes>python
>>> os.system('start child-wait.py 1')
0

When run, this call pops up a new, independent DOS console window to serve as the
standard input and output streams of the child-wait program. It truly is independent
-- in fact, it keeps running if we exit both this Python interpreter session and the
DOS console box where the command was typed.[9] An os.popen call can launch a
start command too; but since it normally starts commands independently anyhow,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 172

the only obvious advantages of start here are the pop-up DOS box, and the fact that
Python need not be in the system search path setting:

[9] And remember, if you want to start a Python GUI program this way and not see the new
DOS standard stream console box at all, simply name the script child-wait.pyw ; the "w" on
the end tells the Windows Python port to avoid the DOS box. For DOS jockeys: the start
command also allows a few interesting options: /m (run minimized), /max (run maximized), /r
(run restored -- the default), and /w (don't return until the other program exits -- this adds
caller blocking if you need it). Type start /? for help. And for any Unix developers peeking
over the fence: you can also launch independent programs with os.system -- append the &
background operator to the command line.

>>> file = os.popen('start child-wait.py 1') # versus:
python child-wait...
>>> file.read()
'Hello from child -413849 1\012Press <Enter>'

Which scheme to use, then? Using os.system or os.popen to run a python
command works fine, but only if your users have added the python.exe directory to
their system search path setting. Running a DOS start command is often a simpler
alternative to both running python commands and calling the os.spawnv
function, since filename associations are automatically installed along with Python,
and os.spawnv requires a full directory path to the Python interpreter program
(python.exe). On the other hand, running start commands with os.system calls
can fail on Windows for very long command-line strings:

>>> os.system('start child-wait.py ' + 'Z'*425) # okay-
425 Zs in dos popup
0
>>> os.system('start child-wait.py ' + 'Z'*450) # fails-
msg, not exception
Access is denied.
0
>>> os.popen('python child-wait.py ' + 'Z'*500).read()
works if PATH set
>>> os.system('python child-wait.py ' + 'Z'*500) #
works if PATH set

>>> pypath = r'C:\program files\python\python.exe' #
this works too
>>> os.spawnv(os.P_NOWAIT, pypath, ('python', 'child-
wait.py', 'Z'*500))

As a rule of thumb, use os.spawnv if your commands are (or may be) long. For
instance, we'll meet a script in Chapter 4, that launches web browsers to view HTML
files; even though a start command applied to an HTML file will automatically start a
browser program, this script instead must use os.spawnv to accommodate
potentially long directory paths in HTML filenames.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 173

For more information on other Windows-specific program launcher tools, see
O'Reilly's Python Programming on Win32. Other schemes are even less standard
than those shown here, but are given excellent coverage in that text.

3.8.3 A Portable Program-Launch Framework

With all these different ways to start programs on different platforms, it can be
difficult to remember what tools to use in a given situation. Moreover, some of these
tools are called in ways that are complicated enough to easily forget (for me, at
least). I write scripts that need to launch Python programs often enough that I
eventually wrote a module to try and hide most of the underlying details. While I was
at it, I made this module smart enough to automatically pick a launch scheme based
on the underlying platform. Laziness is the mother of many a useful module.

Example 3-24 collects many of the techniques we've met in this chapter in a single
module. It implements an abstract superclass, LaunchMode, which defines what it
means to start a Python program, but doesn't define how. Instead, its subclasses
provide a run method that actually starts a Python program according to a given
scheme, and (optionally) define an announce method to display a program's name
at startup time.

Example 3-24. PP2E\launchmodes.py

###

launch Python programs with reusable launcher scheme
classes;
assumes 'python' is on your system path (but see
Launcher.py)
###

import sys, os, string
pycmd = 'python' # assume it is on your system path

class LaunchMode:
 def __init__(self, label, command):
 self.what = label
 self.where = command
 def __call__(self): # on call, ex: button
press callback
 self.announce(self.what)
 self.run(self.where) # subclasses must
define run()
 def announce(self, text): # subclasses may
redefine announce()
 print text # methods instead
of if/elif logic
 def run(self, cmdline):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 174

 assert 0, 'run must be defined'

class System(LaunchMode): # run
shell commands
 def run(self, cmdline): #
caveat: blocks caller
 os.system('%s %s' % (pycmd, cmdline)) # unless
'&' added on Linux

class Popen(LaunchMode): #
caveat: blocks caller
 def run(self, cmdline): # since
pipe closed too soon
 os.popen(pycmd + ' ' + cmdline) # 1.5.2
fails in Windows GUI

class Fork(LaunchMode):
 def run(self, cmdline):
 assert hasattr(os, 'fork') # for
linux/unix today
 cmdline = string.split(cmdline) #
convert string to list
 if os.fork() == 0: #
start new child process
 os.execvp(pycmd, [pycmd] + cmdline) # run
new program in child

class Start(LaunchMode):
 def run(self, cmdline): # for
windows only
 assert sys.platform[:3] == 'win' # runs
independent of caller
 os.system('start ' + cmdline) # uses
Windows associations

class Spawn(LaunchMode): # for
windows only
 def run(self, cmdline): # run
python in new process
 assert sys.platform[:3] == 'win' # runs
independent of caller
 #pypath = r'C:\program files\python\python.exe'
 try:
get path to python
 pypath = os.environ['PP2E_PYTHON_FILE']
run by launcher?

Programming Python, 2nd Edition, O’Reilly

IT-SC book 175

 except KeyError:
if so configs env
 from Launcher import which, guessLocation
 pypath = which('python.exe', 0) or
guessLocation('python.exe', 1,0)
 os.spawnv(os.P_DETACH, pypath, ('python', cmdline))
P_NOWAIT: dos box

class Top_level(LaunchMode):
 def run(self, cmdline): # new
window, same process
 assert 0, 'Sorry - mode not yet implemented' #
tbd: need GUI class info

if sys.platform[:3] == 'win':
 PortableLauncher = Spawn # pick best
launcher for platform
else: # need to tweak
this code elsewhere
 PortableLauncher = Fork

class QuietPortableLauncher(PortableLauncher):
 def announce(self, text):
 pass

def selftest():
 myfile = 'launchmodes.py'
 program = 'Gui/TextEditor/textEditor.pyw ' + myfile
assume in cwd
 raw_input('default mode...')
 launcher = PortableLauncher('PyEdit', program)
 launcher()
no block

 raw_input('system mode...')
 System('PyEdit', program)()
blocks

 raw_input('popen mode...')
 Popen('PyEdit', program)()
blocks

 if sys.platform[:3] == 'win':
 raw_input('DOS start mode...')
no block
 Start('PyEdit', program)()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 176

if __name__ == '__main__': selftest()

Near the end of the file, the module picks a default class based on the
sys.platform attribute: PortableLauncher is set to a class that uses
spawnv on Windows and one that uses the fork/exec combination elsewhere. If
you import this module and always use its PortableLauncher attribute, you can
forget many of the platform-specific details enumerated in this chapter.

To run a Python program, simply import the PortableLauncher class, make an
instance by passing a label and command line (without a leading "python" word),
and then call the instance object as though it were a function. The program is started
by a call operation instead of a method, so that the classes in this module can be
used to generate callback handlers in Tkinter-based GUIs. As we'll see in the
upcoming chapters, button-presses in Tkinter invoke a callable-object with no
arguments; by registering a PortableLauncher instance to handle the press
event, we can automatically start a new program from another program's GUI.

When run standalone, this module's selftest function is invoked as usual. On
both Windows and Linux, all classes tested start a new Python text editor program
(the upcoming PyEdit GUI program again) running independently with its own
window. Figure 3-2 shows one in action on Windows; all spawned editors open the
launchmodes.py source file automatically, because its name is passed to PyEdit as a
command-line argument. As coded, both System and Popen block the caller until
the editor exits, but PortableLauncher (really, Spawn or Fork) and Start do
not:[10]

[10] This is fairly subtle. Technically, Popen only blocks its caller because the input pipe to the
spawned program is closed too early, when the os.popen call's result is garbage-collected in
Popen.run; os.popen normally does not block (in fact, assigning its result here to a global
variable postpones blocking, but only until the next Popen object run frees the prior result).
On Linux, adding a & to the end of the constructed command line in the System and
Popen.run methods makes these objects no longer block their callers when run. Since the
fork/exec, spawnv, and system/start schemes seem at least as good in practice, these
Popen block states have not been addressed. Note too that the Start scheme does not
generate a DOS console pop-up window in the self-test, only because the text editor program
file's name ends in a .pyw extension; starting .py program files with os.system normally
creates the console pop-up box.

C:\...\PP2E>python launchmodes.py
default mode...
PyEdit
system mode...
PyEdit
popen mode...
PyEdit
DOS start mode...
PyEdit

Figure 3-2. PyEdit program spawned from launchmodes

Programming Python, 2nd Edition, O’Reilly

IT-SC book 177

As a more practical application, this file is also used by launcher scripts designed to
run examples in this book in a portable fashion. The PyDemos and PyGadgets scripts
at the top of this book's examples directory tree (view CD-ROM content online at
http://examples.oreilly.com/python2) simply import PortableLauncher, and
register instances to respond to GUI events. Because of that, these two launcher
GUIs run on both Windows and Linux unchanged (Tkinter's portability helps too, of
course). The PyGadgets script even customizes PortableLauncher to update a
label in a GUI at start time:

class Launcher(launchmodes.PortableLauncher): # use
wrapped launcher class
 def announce(self, text): #
customize to set GUI label
 Info.config(text=text)

We'll explore these scripts in Part II (but feel free to peek at the end of Chapter 8,
now). Because of this role, the Spawn class in this file uses additional tools to search
for the Python executable's path -- required by os.spawnv. It calls two functions
exported by a file Launcher.py to find a suitable python.exe, whether or not the user
has added its directory to their system PATH variable's setting. The idea is to start
Python programs, even if Python hasn't been installed in the shell variables on the
local machine. Because we're going to meet Launcher.py in Chapter 4, though, I'm
going to postpone further details for now.

3.9 Other System Tools

Programming Python, 2nd Edition, O’Reilly

IT-SC book 178

In this and the prior chapters, we've met most of the commonly used system tools in
the Python library. Along the way, we've also learned how to use them to do useful
things like start programs, process directories, and so on. The next two chapters are
something of a continuation of this topic -- they use the tools we've just met to
implement scripts that do useful and more realistic system-level work, so read on for
the rest of this story.

Still, there are other system-related tools in Python that appear even later in this
text. For instance:

Sockets (used to communicate with other programs and networks) are introduced in
Chapter 10.

Select calls (used to multiplex among tasks) are also introduced in Chapter 10 as a
way to implement servers.

File locking calls in the fcntl module appear in Chapter 14.

Regular expressions (string pattern matching used by many text processing tools)
don't appear until Chapter 18.

Moreover, things like forks and threads are used extensively in the Internet scripting
chapters: see the server implementations in Chapter 10 and the FTP and email GUIs
in Chapter 11. In fact, most of this chapter's tools will pop up constantly in later
examples in this book -- about what one would expect of general-purpose, portable
libraries.

Last but not necessarily least, I'd like to point out one more time that there are
many additional tools in the Python library that don't appear in this book at all --
with some 200 library modules, Python book authors have to pick and choose their
topics frugally! As always, be sure to browse the Python library manuals early and
often in your Python career.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 179

Chapter 4. Larger System Examples I

4.1 "Splits and Joins and Alien Invasions"

4.2 Splitting and Joining Files

4.3 Generating Forward-Link Web Pages

4.4 A Regression Test Script

4.5 Packing and Unpacking Files

4.6 User-Friendly Program Launchers

4.1 "Splits and Joins and Alien Invasions"

This chapter and the next continue our look at the system utilities domain in Python.
They present a collection of larger Python scripts that do real systems work --
comparing and copying directory trees, splitting files, searching files and directories,
testing other programs, configuring program shell environments, launching web
browsers, and so on. To make this collection easier to absorb, it's been split into a
two-chapter set. This chapter presents assorted Python system utility programs that
illustrate typical tasks and techniques in this domain. The next chapter presents
larger Python programs that focus on more advanced file and directory tree
processing.

Although the main point of these two case-study chapters is to give you a feel for
realistic scripts in action, the size of these examples also gives us an opportunity to
see Python's support for development paradigms like OOP and reuse at work. It's
really only in the context of nontrivial programs like the ones we'll meet here that
such tools begin to bear tangible fruit. These chapters also emphasize the "why" of
systems tools, not just the "how" -- along the way, I'll point out real-world needs
met by the examples we'll study, to help you put the details in context.

One note up front: these chapters move quickly, and a few of their examples are
largely just listed for independent study. Because all the scripts here are all heavily
documented and use Python system tools described in the prior two chapters, I won't
go through all code in detail. You should read the source code listings and
experiment with these programs on your own computer, to get a better feel for how
to combine system interfaces to accomplish realistic tasks. They are all available in
source code form on the book's CD-ROM (view CD-ROM content online at
http://examples.oreilly.com/python2), and most work on all major platforms.

I should also mention that these are programs I really use -- not examples written
just for this book. In fact, they were coded over years and perform widely differing
tasks, so there is no obvious common thread to connect the dots here. On the other
hand, they help explain why system tools are useful in the first place, demonstrate

Programming Python, 2nd Edition, O’Reilly

IT-SC book 180

larger development concepts that simpler examples cannot, and bear collective
witness to the simplicity and portability of automating system tasks with Python.
Once you've mastered the basics, you'll probably wish you had done so sooner.

4.2 Splitting and Joining Files

Like most kids, mine spend a lot of time on the Internet. As far as I can tell, it's the
thing to do these days. Among this latest generation, computer geeks and gurus
seem to be held with the same sort of esteem that rock stars once were by mine.
When kids disappear into their rooms, chances are good that they are hacking on
computers, not mastering guitar riffs. It's probably healthier than some of the
diversions of my own misspent youth, but that's a topic for another kind of book.

But if you have teenage kids and computers, or know someone who does, you
probably know that it's not a bad idea to keep tabs on what those kids do on the
Web. Type your favorite four-letter word in almost any web search engine and you'll
understand the concern -- it's much better stuff than I could get during my teenage
career. To sidestep the issue, only a few of the machines in my house have Internet
feeds.

Now, while they're on one of these machines, my kids download lots of games. To
avoid infecting our Very Important Computers with viruses from public-domain
games, though, my kids usually have to download games on a computer with an
Internet feed, and transfer them to their own computers to install. The problem is
that game files are not small; they are usually much too big to fit on a floppy (and
burning a CD takes away valuable game playing time).

If all the machines in my house ran Linux, this would be a nonissue. There are
standard command-line programs on Unix for chopping a file into pieces small
enough to fit on a floppy (split), and others for putting the pieces back together to
recreate the original file (cat). Because we have all sorts of different machines in the
house, though, we needed a more portable solution.

4.2.1 Splitting Files Portably

Since all the computers in my house run Python, a simple portable Python script
came to the rescue. The Python program in Example 4-1 distributes a single file's
contents among a set of part files, and stores those part files in a directory.

Example 4-1. PP2E\System\Filetools\split.py

#!/usr/bin/python

split a file into a set of portions; join.py puts them
back together; this is a customizable version of the
standard unix split command-line utility; because it
is written in Python, it also works on Windows and can
be easily tweaked; because it exports a function, it
can also be imported and reused in other applications;

Programming Python, 2nd Edition, O’Reilly

IT-SC book 181

import sys, os
kilobytes = 1024
megabytes = kilobytes * 1000
chunksize = int(1.4 * megabytes) #
default: roughly a floppy

def split(fromfile, todir, chunksize=chunksize):
 if not os.path.exists(todir): # caller
handles errors
 os.mkdir(todir) # make
dir, read/write parts
 else:
 for fname in os.listdir(todir): # delete
any existing files
 os.remove(os.path.join(todir, fname))
 partnum = 0
 input = open(fromfile, 'rb') # use
binary mode on Windows
 while 1: #
eof=empty string from read
 chunk = input.read(chunksize) # get
next part <= chunksize
 if not chunk: break
 partnum = partnum+1
 filename = os.path.join(todir, ('part%04d' %
partnum))
 fileobj = open(filename, 'wb')
 fileobj.write(chunk)
 fileobj.close() # or
simply open().write()
 input.close()
 assert partnum <= 9999 # join
sort fails if 5 digits
 return partnum

if __name__ == '__main__':
 if len(sys.argv) == 2 and sys.argv[1] == '-help':
 print 'Use: split.py [file-to-split target-dir
[chunksize]]'
 else:
 if len(sys.argv) < 3:
 interactive = 1
 fromfile = raw_input('File to be split? ')
input if clicked
 todir = raw_input('Directory to store part
files? ')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 182

 else:
 interactive = 0
 fromfile, todir = sys.argv[1:3]
args in cmdline
 if len(sys.argv) == 4: chunksize =
int(sys.argv[3])
 absfrom, absto = map(os.path.abspath, [fromfile,
todir])
 print 'Splitting', absfrom, 'to', absto, 'by',
chunksize

 try:
 parts = split(fromfile, todir, chunksize)
 except:
 print 'Error during split:'
 print sys.exc_type, sys.exc_value
 else:
 print 'Split finished:', parts, 'parts are in',
absto
 if interactive: raw_input('Press Enter key') #
pause if clicked

By default, this script splits the input file into chunks that are roughly the size of a
floppy disk -- perfect for moving big files between electronically isolated machines.
Most important, because this is all portable Python code, this script will run on just
about any machine, even ones without a file splitter of their own. All it requires is an
installed Python. Here it is at work splitting the Python 1.5.2 self-installer executable
on Windows:

C:\temp>echo %X% shorthand shell variable
C:\PP2ndEd\examples\PP2E

C:\temp>ls -l py152.exe
-rwxrwxrwa 1 0 0 5028339 Apr 16 1999
py152.exe

C:\temp>python %X%\System\Filetools\split.py -help
Use: split.py [file-to-split target-dir [chunksize]]

C:\temp>python %X%\System\Filetools\split.py py152.exe
pysplit
Splitting C:\temp\py152.exe to C:\temp\pysplit by 1433600
Split finished: 4 parts are in C:\temp\pysplit

C:\temp>ls -l pysplit
total 9821
-rwxrwxrwa 1 0 0 1433600 Sep 12 06:03
part0001

Programming Python, 2nd Edition, O’Reilly

IT-SC book 183

-rwxrwxrwa 1 0 0 1433600 Sep 12 06:03
part0002
-rwxrwxrwa 1 0 0 1433600 Sep 12 06:03
part0003
-rwxrwxrwa 1 0 0 727539 Sep 12 06:03
part0004

Each of these four generated part files represent one binary chunk of file py152.exe,
small enough to fit comfortably on a floppy disk. In fact, if you add the sizes of the
generated part files given by the ls command, you'll come up with 5,028,339 bytes -
- exactly the same as the original file's size. Before we see how to put these files
back together again, let's explore a few of the splitter script's finer points.

4.2.1.1 Operation modes

This script is designed to input its parameters in either interactive or command-line
modes; it checks the number of command-line arguments to know in which mode it
is being used. In command-line mode, you list the file to be split and the output
directory on the command line, and can optionally override the default part file size
with a third command-line argument.

In interactive mode, the script asks for a filename and output directory at the
console window with raw_input, and pauses for a keypress at the end before
exiting. This mode is nice when the program file is started by clicking on its icon --
on Windows, parameters are typed into a pop-up DOS box that doesn't automatically
disappear. The script also shows the absolute paths of its parameters (by running
them through os.path.abspath) because they may not be obvious in interactive
mode. We'll see examples of other split modes at work in a moment.

4.2.1.2 Binary file access

This code is careful to open both input and output files in binary mode (rb, wb),
because it needs to portably handle things like executables and audio files, not just
text. In Chapter 2, we learned that on Windows, text-mode files automatically map
\r\n end-of-line sequences to \n on input, and map \n to \r\n on output. For
true binary data, we really don't want any \r characters in the data to go away
when read, and we don't want any superfluous \r characters to be added on output.
Binary-mode files suppress this \r mapping when the script is run on Windows, and
so avoid data corruption.

4.2.1.3 Manually closing files

This script also goes out of its way to manually close its files. For instance:

 fileobj = open(partname, 'wb')
 fileobj.write(chunk)
 fileobj.close()

As we also saw in Chapter 2, these three lines can usually be replaced with this
single line:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 184

open(partname, 'wb').write(chunk)

This shorter form relies on the fact that the current Python implementation
automatically closes files for you when file objects are reclaimed (i.e., when they are
garbage collected, because there are no more references to the file object). In this
line, the file object would be reclaimed immediately, because the open result is
temporary in an expression, and is never referenced by a longer-lived name. The
input file similarly is reclaimed when the split function exits.

As I was writing this chapter, though, there was some possibility that this automatic-
close behavior may go away in the future.[1] Moreover, the JPython Java-based
Python implementation does not reclaim unreferenced objects as immediately as the
standard Python. If you care about the Java port (or one possible future), your script
may potentially create many files in a short amount of time, and your script may run
on a machine that has a limit on the number of open files per program, then close
manually. The close calls in this script have never been necessary for my
purposes, but because the split function in this module is intended to be a
general-purpose tool, it accommodates such worst-case scenarios.

[1] I hope this doesn't happen -- such a change would be a major break from backward
compatibility, and could impact Python systems all over the world. On the other hand, it's just
a possibility for a future mutation of Python. I'm told that publishers of technical books love
language changes, and this isn't a text on politics.

4.2.2 Joining Files Portably

Back to moving big files around the house. After downloading a big game program
file, my kids generally run the previous splitter script by clicking on its name in
Windows Explorer and typing filenames. After a split, they simply copy each part file
onto its own floppy, walk the floppies upstairs, and recreate the split output directory
on their target computer by copying files off the floppies. Finally, the script in
Example 4-2 is clicked or otherwise run to put the parts back together.

Example 4-2. PP2E\System\Filetools\join.py

#!/usr/bin/python

join all part files in a dir created by split.py.
This is roughly like a 'cat fromdir/* > tofile' command
on unix, but is a bit more portable and configurable,
and exports the join operation as a reusable function.
Relies on sort order of file names: must be same length.
Could extend split/join to popup Tkinter file selectors.

import os, sys
readsize = 1024

def join(fromdir, tofile):
 output = open(tofile, 'wb')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 185

 parts = os.listdir(fromdir)
 parts.sort()
 for filename in parts:
 filepath = os.path.join(fromdir, filename)
 fileobj = open(filepath, 'rb')
 while 1:
 filebytes = fileobj.read(readsize)
 if not filebytes: break
 output.write(filebytes)
 fileobj.close()
 output.close()

if __name__ == '__main__':
 if len(sys.argv) == 2 and sys.argv[1] == '-help':
 print 'Use: join.py [from-dir-name to-file-name]'
 else:
 if len(sys.argv) != 3:
 interactive = 1
 fromdir = raw_input('Directory containing part
files? ')
 tofile = raw_input('Name of file to be
recreated? ')
 else:
 interactive = 0
 fromdir, tofile = sys.argv[1:]
 absfrom, absto = map(os.path.abspath, [fromdir,
tofile])
 print 'Joining', absfrom, 'to make', absto

 try:
 join(fromdir, tofile)
 except:
 print 'Error joining files:'
 print sys.exc_type, sys.exc_value
 else:
 print 'Join complete: see', absto
 if interactive: raw_input('Press Enter key') #
pause if clicked

After running the join script, they still may need to run something like zip, gzip,
or tar to unpack an archive file, unless it's shipped as an executable;[2] but at least
they're much closer to seeing the Starship Enterprise spring into action. Here is a
join in progress on Windows, combining the split files we made a moment ago:

[2] See also the built-in module gzip.py in the Python standard library; it provides tools for
reading and writing gzip files, usually named with a .gz filename extension. It can be used to
unpack gzipped files, and serves as an all-Python equivalent of the standard gzip and gunzip
command-line utility programs. This built-in module uses another called zlib that implements

Programming Python, 2nd Edition, O’Reilly

IT-SC book 186

gzip-compatible data compressions. In Python 2.0, see also the new zipfile module for
handling ZIP format archives (different from gzip).

C:\temp>python %X%\System\Filetools\join.py -help
Use: join.py [from-dir-name to-file-name]

C:\temp>python %X%\System\Filetools\join.py pysplit
mypy152.exe
Joining C:\temp\pysplit to make C:\temp\mypy152.exe
Join complete: see C:\temp\mypy152.exe

C:\temp>ls -l mypy152.exe py152.exe
-rwxrwxrwa 1 0 0 5028339 Sep 12 06:05
mypy152.exe
-rwxrwxrwa 1 0 0 5028339 Apr 16 1999
py152.exe

C:\temp>fc /b mypy152.exe py152.exe
Comparing files mypy152.exe and py152.exe
FC: no differences encountered

The join script simply uses os.listdir to collect all the part files in a directory
created by split, and sorts the filename list to put the parts back together in the
correct order. We get back an exact byte-for-byte copy of the original file (proved by
the DOS fc command above; use cmp on Unix).

Some of this process is still manual, of course (I haven't quite figured out how to
script the "walk the floppies upstairs" bit yet), but the split and join scripts
make it both quick and simple to move big files around. Because this script is also
portable Python code, it runs on any platform we care to move split files to. For
instance, it's typical for my kids to download both Windows and Linux games; since
this script runs on either platform, they're covered.

4.2.2.1 Reading by blocks or files

Before we move on, there are a couple of details worth underscoring in the join
script's code. First of all, notice that this script deals with files in binary mode, but
also reads each part file in blocks of 1K bytes each. In fact, the readsize setting
here (the size of each block read from an input part file) has no relation to
chunksize in split.py (the total size of each output part file). As we learned in
Chapter 2, this script could instead read each part file all at once:

filebytes = open(filepath, 'rb').read()
output.write(filebytes)

The downside to this scheme is that it really does load all of a file into memory at
once. For example, reading a 1.4M part file into memory all at once with the file
object read method generates a 1.4M string in memory to hold the file's bytes.
Since split allows users to specify even larger chunk sizes, the join script plans
for the worst and reads in terms of limited-size blocks. To be completely robust, the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 187

split script could read its input data in smaller chunks too, but this hasn't become
a concern in practice.

4.2.2.2 Sorting filenames

If you study this script's code closely, you may also notice that the join scheme it
uses relies completely on the sort order of filenames in the parts directory. Because
it simply calls the list sort method on the filenames list returned by os.listdir,
it implicitly requires that filenames have the same length and format when created
by split. The splitter uses zero-padding notation in a string formatting expression
('part%04d') to make sure that filenames all have the same number of digits at
the end (four), much like this list:

>>> list = ['xx008', 'xx010', 'xx006', 'xx009', 'xx011',
'xx111']
>>> list.sort()
>>> list
['xx006', 'xx008', 'xx009', 'xx010', 'xx011', 'xx111']

When sorted, the leading zero characters in small numbers guarantee that part files
are ordered for joining correctly. Without the leading zeroes, join would fail
whenever there were more than nine part files, because the first digit would
dominate:

>>> list = ['xx8', 'xx10', 'xx6', 'xx9', 'xx11', 'xx111']
>>> list.sort()
>>> list
['xx10', 'xx11', 'xx111', 'xx6', 'xx8', 'xx9']

Because the list sort method accepts a comparison function as an argument, we
could in principle strip off digits in filenames and sort numerically:

>>> list = ['xx8', 'xx10', 'xx6', 'xx9', 'xx11', 'xx111']
>>> list.sort(lambda x, y: cmp(int(x[2:]), int(y[2:])))
>>> list
['xx6', 'xx8', 'xx9', 'xx10', 'xx11', 'xx111']

But that still implies that filenames all must start with the same length substring, so
this doesn't quite remove the file naming dependency between the split and join
scripts. Because these scripts are designed to be two steps of the same process,
though, some dependencies between them seem reasonable.

4.2.3 Usage Variations

Let's run a few more experiments with these Python system utilities to demonstrate
other usage modes. When run without full command-line arguments, both split
and join are smart enough to input their parameters interactively. Here they are
chopping and gluing the Python self-installer file on Windows again, with parameters
typed in the DOS console window:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 188

C:\temp>python %X%\System\Filetools\split.py
File to be split? py152.exe
Directory to store part files? splitout
Splitting C:\temp\py152.exe to C:\temp\splitout by 1433600
Split finished: 4 parts are in C:\temp\splitout
Press Enter key

C:\temp>python %X%\System\Filetools\join.py
Directory containing part files? splitout
Name of file to be recreated? newpy152.exe
Joining C:\temp\splitout to make C:\temp\newpy152.exe
Join complete: see C:\temp\newpy152.exe
Press Enter key

C:\temp>fc /B py152.exe newpy152.exe
Comparing files py152.exe and newpy152.exe
FC: no differences encountered

When these program files are double-clicked in a file explorer GUI, they work the
same way (there usually are no command-line arguments when launched this way).
In this mode, absolute path displays help clarify where files are really at. Remember,
the current working directory is the script's home directory when clicked like this, so
the name tempsplit actually maps to a source code directory; type a full path to
make the split files show up somewhere else:

 [in a popup DOS console box when split is clicked]
File to be split? c:\temp\py152.exe
Directory to store part files? tempsplit
Splitting c:\temp\py152.exe to
C:\PP2ndEd\examples\PP2E\System\Filetools\
tempsplit by 1433600
Split finished: 4 parts are in
C:\PP2ndEd\examples\PP2E\System\Filetools\
tempsplit
Press Enter key

 [in a popup DOS console box when join is clicked]
Directory containing part files? tempsplit
Name of file to be recreated? c:\temp\morepy152.exe
Joining C:\PP2ndEd\examples\PP2E\System\Filetools\tempsplit
to make
c:\temp\morepy152.exe
Join complete: see c:\temp\morepy152.exe
Press Enter key

Because these scripts package their core logic up in functions, though, it's just as
easy to reuse their code by importing and calling from another Python component:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 189

C:\temp>python
>>> from PP2E.System.Filetools.split import split
>>> from PP2E.System.Filetools.join import join
>>>
>>> numparts = split('py152.exe', 'calldir')
>>> numparts
4
>>> join('calldir', 'callpy152.exe')
>>>
>>> import os
>>> os.system(r'fc /B py152.exe callpy152.exe')
Comparing files py152.exe and callpy152.exe
FC: no differences encountered
0

A word about performance: All the split and join tests shown so far process a
5M file, but take at most one second of real wall-clock time to finish on my Win-
dows 98 300 and 650 MHz laptop computers -- plenty fast for just about any use I
could imagine. (They run even faster after Windows has cached information about
the files involved.) Both scripts run just as fast for other reasonable part file sizes
too; here is the splitter chopping up the file into 500,000- and 50,000-byte parts:

C:\temp>python %X%\System\Filetools\split.py py152.exe
tempsplit 500000
Splitting C:\temp\py152.exe to C:\temp\tempsplit by 500000
Split finished: 11 parts are in C:\temp\tempsplit

C:\temp>ls -l tempsplit
total 9826
-rwxrwxrwa 1 0 0 500000 Sep 12 06:29
part0001
-rwxrwxrwa 1 0 0 500000 Sep 12 06:29
part0002
-rwxrwxrwa 1 0 0 500000 Sep 12 06:29
part0003
-rwxrwxrwa 1 0 0 500000 Sep 12 06:29
part0004
-rwxrwxrwa 1 0 0 500000 Sep 12 06:29
part0005
-rwxrwxrwa 1 0 0 500000 Sep 12 06:29
part0006
-rwxrwxrwa 1 0 0 500000 Sep 12 06:29
part0007
-rwxrwxrwa 1 0 0 500000 Sep 12 06:29
part0008
-rwxrwxrwa 1 0 0 500000 Sep 12 06:29
part0009

Programming Python, 2nd Edition, O’Reilly

IT-SC book 190

-rwxrwxrwa 1 0 0 500000 Sep 12 06:29
part0010
-rwxrwxrwa 1 0 0 28339 Sep 12 06:29
part0011

C:\temp>python %X%\System\Filetools\split.py py152.exe
tempsplit 50000
Splitting C:\temp\py152.exe to C:\temp\tempsplit by 50000
Split finished: 101 parts are in C:\temp\tempsplit

C:\temp>ls tempsplit
part0001 part0014 part0027 part0040 part0053 part0066
part0079 part0092
part0002 part0015 part0028 part0041 part0054 part0067
part0080 part0093
part0003 part0016 part0029 part0042 part0055 part0068
part0081 part0094
part0004 part0017 part0030 part0043 part0056 part0069
part0082 part0095
part0005 part0018 part0031 part0044 part0057 part0070
part0083 part0096
part0006 part0019 part0032 part0045 part0058 part0071
part0084 part0097
part0007 part0020 part0033 part0046 part0059 part0072
part0085 part0098
part0008 part0021 part0034 part0047 part0060 part0073
part0086 part0099
part0009 part0022 part0035 part0048 part0061 part0074
part0087 part0100
part0010 part0023 part0036 part0049 part0062 part0075
part0088 part0101
part0011 part0024 part0037 part0050 part0063 part0076
part0089
part0012 part0025 part0038 part0051 part0064 part0077
part0090
part0013 part0026 part0039 part0052 part0065 part0078
part0091

Split can take longer to finish, but only if the part file's size is set small enough to
generate thousands of part files -- splitting into 1006 parts works, but runs slower
(on my computer this split and join take about five and two seconds, respectively,
depending on what other programs are open):

C:\temp>python %X%\System\Filetools\split.py py152.exe
tempsplit 5000
Splitting C:\temp\py152.exe to C:\temp\tempsplit by 5000
Split finished: 1006 parts are in C:\temp\tempsplit

Programming Python, 2nd Edition, O’Reilly

IT-SC book 191

C:\temp>python %X%\System\Filetools\join.py tempsplit
mypy152.exe
Joining C:\temp\tempsplit to make C:\temp\py152.exe
Join complete: see C:\temp\py152.exe

C:\temp>fc /B py152.exe mypy152.exe
Comparing files py152.exe and mypy152.exe
FC: no differences encountered

C:\temp>ls -l tempsplit
 ...1000 lines deleted...
-rwxrwxrwa 1 0 0 5000 Sep 12 06:30
part1001
-rwxrwxrwa 1 0 0 5000 Sep 12 06:30
part1002
-rwxrwxrwa 1 0 0 5000 Sep 12 06:30
part1003
-rwxrwxrwa 1 0 0 5000 Sep 12 06:30
part1004
-rwxrwxrwa 1 0 0 5000 Sep 12 06:30
part1005
-rwxrwxrwa 1 0 0 3339 Sep 12 06:30
part1006

Finally, the splitter is also smart enough to create the output directory if it doesn't
yet exist, or clear out any old files there if it does exist. Because the joiner combines
whatever files exist in the output directory, this is a nice ergonomic touch -- if the
output directory was not cleared before each split, it would be too easy to forget that
a prior run's files are still there. Given that my kids are running these scripts, they
need to be as forgiving as possible; your user base may vary, but probably not by
much.

C:\temp>python %X%\System\Filetools\split.py py152.exe
tempsplit 700000
Splitting C:\temp\py152.exe to C:\temp\tempsplit by 700000
Split finished: 8 parts are in C:\temp\tempsplit

C:\temp>ls -l tempsplit
total 9827
-rwxrwxrwa 1 0 0 700000 Sep 12 06:32
part0001
-rwxrwxrwa 1 0 0 700000 Sep 12 06:32
part0002
-rwxrwxrwa 1 0 0 700000 Sep 12 06:32
part0003
...
 ...only new files here...
...

Programming Python, 2nd Edition, O’Reilly

IT-SC book 192

-rwxrwxrwa 1 0 0 700000 Sep 12 06:32
part0006
-rwxrwxrwa 1 0 0 700000 Sep 12 06:32
part0007
-rwxrwxrwa 1 0 0 128339 Sep 12 06:32
part0008

4.3 Generating Forward-Link Web Pages

Moving is rarely painless, even in the brave new world of cyberspace. Changing your
web site's Internet address can lead to all sorts of confusion -- you need to ask
known contacts to use the new address, and hope that others will eventually stumble
onto it themselves. But if you rely on the Internet, moves are bound to generate at
least as much confusion as an address change in the real world.

Unfortunately, such site relocations are often unavoidable. Both ISPs (Internet
Service Providers) and server machines come and go over the years. Moreover,
some ISPs let their service fall to intolerable levels; if you are unlucky enough to
have signed up with such an ISP, there is not much recourse but to change
providers, and that often implies a change of web addresses.[3]

[3] It happens. In fact, most people who spend any substantial amount of time in cyberspace
probably could tell a horror story or two. Mine goes like this: I had an account with an ISP that
went completely offline for a few weeks in response to a security breach by an ex-employee.
Worse, personal email was not only disabled, but queued up messages were permanently lost.
If your livelihood depends on email and the Web as much as mine does, you'll appreciate the
havoc such an outage can wreak.

Imagine, though, that you are an O'Reilly author, and have published your web site's
address in multiple books sold widely all over the world. What to do, when your ISP's
service level requires a site change? Notifying the tens or hundreds of thousands of
readers out there isn't exactly a practical solution.

Probably the best you can do is to leave forwarding instructions at the old site, for
some reasonably long period of time -- the virtual equivalent of a "We've Moved"
sign in a storefront window. On the Web, such a sign can also send visitors to the
new site automatically: simply leave a page at the old site containing a hyperlink to
the page's address at the new site. With such forward-link files in place, visitors to
the old addresses will be only one click away from reaching the new ones.

That sounds simple enough. But because visitors might try to directly access the
address of any file at your old site, you generally need to leave one forward-link file
for every old file -- HTML pages, images, and so on. If you happen to enjoy doing
lots of mindless typing, you could create each forward-link file by hand. But given
that my home site contains 140 files today, the prospect of running one editor
session per file was more than enough motivation for an automated solution.

4.3.1 Page Template File

Here's what I came up with. First of all, I create a general page template text file,
shown in Example 4-3, to describe how all the forward-link files should look, with
parts to be filled in later.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 193

Example 4-3. PP2E\System\Filetools\template.html

<HTML><BODY>
<H1>This page has moved</H1>

<P>This page now lives at this address:

<P>
http://$server$/$home$/$file$

<P>Please click on the new address to jump to this page,
and
update any links accordingly.
</P>

<HR>
<H3>Why the move? - The ISP
story</H3>

</BODY></HTML>

To fully understand this template, you have to know something about HTML -- a web
page description language that we'll explore in Chapter 12. But for the purposes of
this example, you can ignore most of this file and focus on just the parts surrounded
by dollar signs: the strings $server$, $home$, and $file$ are targets to be
replaced with real values by global text substitutions. They represent items that vary
per site relocation and file.

4.3.2 Page Generator Script

Now, given a page template file, the Python script in Example 4-4 generates all the
required forward-link files automatically.

Example 4-4. PP2E\System\Filetools\site-forward.py

Create forward link pages for relocating a web site.
Generates one page for every existing site file;
upload the generated files to your old web site.
Performance note: the first 2 string.replace calls
could be moved out of the for loop, but this runs
in < 1 second on my Win98 machine for 150 site files.
Lib note: the os.listdir call can be replaced with:
sitefiles = glob.glob(sitefilesdir + os.sep + '*')
but then the file/directory names must be split
with: dirname, filename = os.path.split(sitefile);

Programming Python, 2nd Edition, O’Reilly

IT-SC book 194

import os, string
servername = 'starship.python.net' # where site is
relocating to
homedir = '~lutz/home' # where site will
be rooted
sitefilesdir = 'public_html' # where site files
live locally
uploaddir = 'isp-forward' # where to store
forward files
templatename = 'template.html' # template for
generated pages

try:
 os.mkdir(uploaddir) # make upload dir
if needed
except OSError: pass

template = open(templatename).read() # load or import
template text
sitefiles = os.listdir(sitefilesdir) # filenames, no
directory prefix

count = 0
for filename in sitefiles:
 fwdname = os.path.join(uploaddir, filename) # or
+ os.sep + filename
 print 'creating', filename, 'as', fwdname

 filetext = string.replace(template, '$server$',
servername) # insert text
 filetext = string.replace(filetext, '$home$',
homedir) # and write
 filetext = string.replace(filetext, '$file$',
filename) # file varies
 open(fwdname, 'w').write(filetext)
 count = count + 1

print 'Last file =>\n', filetext
print 'Done:', count, 'forward files created.'

Notice that the template's text is loaded by reading a file ; it would work just as well
to code it as an imported Python string variable (e.g., a triple-quoted string in a
module file). Also observe that all configuration options are assignments at the top of
the script, not command-line arguments; since they change so seldom, it's
convenient to type them just once in the script itself.

But the main thing worth noticing here is that this script doesn't care what the
template file looks like at all; it simply performs global substitutions blindly in its

Programming Python, 2nd Edition, O’Reilly

IT-SC book 195

text, with a different filename value for each generated file. In fact, we can change
the template file any way we like, without having to touch the script. Such a division
of labor can be used in all sorts of contexts -- generating "makefiles," form-letters,
and so on. In terms of library tools, the generator script simply:

Uses os.listdir to step through all the filenames in the site's directory

Uses string.replace to perform global search-and-replace operations that fill in
the $-delimited targets in the template file's text

Uses os.path.join and built-in file objects to write the resulting text out to a
forward-link file of the same name, in an output directory

The end result is a mirror-image of the original web site directory, containing only
forward-link files generated from the page template. As an added bonus, the
generator script can be run on just about any Python platform -- I can run it on both
my Windows laptop (where my web site files are maintained), as well as a Unix
server where I keep a copy of my site. Here it is in action on Windows:

C:\Stuff\Website>python %X%\System\Filetools\site-
forward.py
creating about-hopl.html as isp-forward\about-hopl.html
creating about-lp-toc.html as isp-forward\about-lp-toc.html
creating about-lp.html as isp-forward\about-lp.html
creating about-pp-japan.html as isp-forward\about-pp-
japan.html
...
 ...more lines deleted...
...
creating whatsold.html as isp-forward\whatsold.html
creating xlate-lp.html as isp-forward\xlate-lp.html
creating about-pp2e.html as isp-forward\about-pp2e.html
creating about-ppr2e.html as isp-forward\about-ppr2e.html
Last file =>
<HTML><BODY>
<H1>This page has moved</H1>

<P>This page now lives at this address:

<P><A HREF="http://starship.python.net/~lutz/home/about-
ppr2e.html">
http://starship.python.net/~lutz/home/about-ppr2e.html

<P>Please click on the new address to jump to this page,
and
update any links accordingly.
</P>

<HR>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 196

<H3>Why the move? - The ISP
story</H3>

</BODY></HTML>

Done: 137 forward files created.

To verify this script's output, double-click on any of the output files to see what they
look like in a web browser (or run a start command in a DOS console on Windows,
e.g., start isp-forward\about-ppr2e.html). Figure 4-1 shows what one
generated page looks like on my machine.

Figure 4-1. Site-forward output file page

To complete the process, you still need to install the forward links: upload all the
generated files in the output directory to your old site's web directory. If that's too
much to do by hand too, be sure to also see the FTP site upload scripts in Chapter
11, for an automatic way to do it with Python (PP2E\Internet\Ftp\uploadflat.py will
do the job). Once you've caught the scripting bug, you'll be amazed at how much
manual labor Python can automate.

4.4 A Regression Test Script

As we've seen, Python provides interfaces to a variety of system services, along with
tools for adding others. Example 4-5 shows some commonly used services in action.
It implements a simple regression-test system, by running a command-line program
with a set of given input files and comparing the output of each run to the prior run's
results. This script was adapted from an automated testing system I wrote to catch
errors introduced by changes in program source files; in a big system, you might not
know when a fix is really a bug in disguise.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 197

Example 4-5. PP2E\System\Filetools\regtest.py

#!/usr/local/bin/python
import os, sys # get unix,
python services
from stat import ST_SIZE # or use
os.path.getsize
from glob import glob # file name
expansion
from os.path import exists # file exists
test
from time import time, ctime # time functions

print 'RegTest start.'
print 'user:', os.environ['USER'] # environment
variables
print 'path:', os.getcwd() # current
directory
print 'time:', ctime(time()), '\n'
program = sys.argv[1] # two command-
line args
testdir = sys.argv[2]

for test in glob(testdir + '/*.in'): # for all
matching input files
 if not exists('%s.out' % test):
 # no prior results
 os.system('%s < %s > %s.out 2>&1' % (program, test,
test))
 print 'GENERATED:', test
 else:
 # backup, run, compare
 os.rename(test + '.out', test + '.out.bkp')
 os.system('%s < %s > %s.out 2>&1' % (program, test,
test))
 os.system('diff %s.out %s.out.bkp > %s.diffs' %
((test,)*3))
 if os.stat(test + '.diffs')[ST_SIZE] == 0:
 print 'PASSED:', test
 os.remove(test + '.diffs')
 else:
 print 'FAILED:', test, '(see %s.diffs)' % test

print 'RegTest done:', ctime(time())

Some of this script is Unix-biased. For instance, the 2>&1 syntax to redirect
stderr works on Unix and Windows NT/2000, but not on Windows 9x, and the diff

Programming Python, 2nd Edition, O’Reilly

IT-SC book 198

command line spawned is a Unix utility. You'll need to tweak such code a bit to run
this script on some platforms. Also, given the improvements to the os module's
popen calls in Python 2.0, they have now become a more portable way to redirect
streams in such a script, and an alternative to shell command redirection syntax.

But this script's basic operation is straightforward: for each filename with an .in
suffix in the test directory, this script runs the program named on the command line
and looks for deviations in its results. This is an easy way to spot changes (called
"regressions") in the behavior of programs spawned from the shell. The real secret of
this script's success is in the filenames used to record test information: within a
given test directory testdir :

testdir/test.in files represent standard input sources for program runs.

testdir/test.in.out files represent the output generated for each input file.

testdir/test.in.out.bkp files are backups of prior .in.out result files.

testdir/test.in.diffs files represent regressions; output file differences.

Output and difference files are generated in the test directory, with distinct suffixes.
For example, if we have an executable program or script called shrubbery, and a
test directory called test1 containing a set of .in input files, a typical run of the tester
might look something like this:

% regtest.py shrubbery test1
RegTest start.
user: mark
path: /home/mark/stuff/python/testing
time: Mon Feb 26 21:13:20 1996

FAILED: test1/t1.in (see test1/t1.in.diffs)
PASSED: test1/t2.in
FAILED: test1/t3.in (see test1/t3.in.diffs)
RegTest done: Mon Feb 26 21:13:27 1996

Here, shrubbery is run three times, for the three .in canned input files, and the
results of each run are compared to output generated for these three inputs the last
time testing was conducted. Such a Python script might be launched once a day, to
automatically spot deviations caused by recent source code changes (e.g., from a
cron job on Unix).

We've already met system interfaces used by this script; most are fairly standard
Unix calls, and not very Python-specific to speak of. In fact, much of what happens
when we run this script occurs in programs spawned by os.system calls. This
script is really just a driver ; because it is completely independent of both the
program to be tested and the inputs it will read, we can add new test cases on the
fly by dropping a new input file in a test directory.

So given that this script just drives other programs with standard Unix-like calls, why
use Python here instead of something like C ? First of all, the equivalent program in

Programming Python, 2nd Edition, O’Reilly

IT-SC book 199

C would be much longer: it would need to declare variables, handle data structures,
and more. In C, all external services exist in a single global scope (the linker's
scope); in Python, they are partitioned into module namespaces (os, sys, etc.) to
avoid name clashes. And unlike C, the Python code can be run immediately, without
compiling and linking; changes can be tested much quicker in Python. Moreover, with
just a little extra work we could make this script run on Windows 9x too. As you can
probably tell by now, Python excels when it comes to portability and productivity.

Because of such benefits, automated testing is a very common role for Python
scripts. If you are interested in using Python for testing, be sure to see Python's web
site (http://www.python.org) for other available tools (e.g., the PyUnit system).

Testing Gone Bad?

Once we learn about sending email from Python scripts in Chapter 11, you
might also want to augment this script to automatically send out email when
regularly run tests fail. That way, you don't even need to remember to
check results. Of course, you could go further still.

One company I worked at added sound effects to compiler test scripts; you
got an audible round of applause if no regressions were found, and an
entirely different noise otherwise. (See the end of this chapter and
playfile.py in Chapter 11 for audio hints.)

Another company in my development past ran a nightly test script that
automatically isolated the source code file check-in that triggered a test
regression, and sent a nasty email to the guilty party (and their supervisor).
Nobody expects the Spanish Inquisition!

4.5 Packing and Unpacking Files

Many moons ago (about five years), I used machines that had no tools for bundling
files into a single package for easy transport. The situation is this: you have a large
set of text files lying around that you need to transfer to another computer. These
days, tools like tar are widely available for packaging many files into a single file
that can be copied, uploaded, mailed, or otherwise transferred in a single step. Even
Python itself has grown to support zip archives in the 2.0 standard library (see
module zipfile).

Before I managed to install such tools on my PC, though, portable Python scripts
served just as well. Example 4-6 copies all the files listed on the command line to the
standard output stream, separated by marker lines.

Example 4-6. PP2E\System\App\Clients\textpack.py

#!/usr/local/bin/python
import sys # load the system
module

Programming Python, 2nd Edition, O’Reilly

IT-SC book 200

marker = ':'*10 + 'textpak=>' # hopefully unique
separator

def pack():
 for name in sys.argv[1:]: # for all command-line
arguments
 input = open(name, 'r') # open the next input
file
 print marker + name # write a separator
line
 print input.read(), # and write the file's
contents

if __name__ == '__main__': pack() # pack files listed on
cmdline

The first line in this file is a Python comment (#...), but it also gives the path to
the Python interpreter using the Unix executable-script trick discussed in Chapter 2.
If we give textpack.py executable permission with a Unix chmod command, we can
pack files by running this program file directly from a Unix shell, and redirect its
standard output stream to the file we want the packed archive to show up in. It
works the same on Windows, but we just type the interpreter name "python"
instead:

C:\...\PP2E\System\App\Clients\test>type spam.txt
SPAM
spam

C:\......\test>python ..\textpack.py spam.txt eggs.txt
ham.txt > packed.all

C:\......\test>type packed.all
::::::::::textpak=>spam.txt
SPAM
spam
::::::::::textpak=>eggs.txt
EGGS
::::::::::textpak=>ham.txt
ham

Running the program this way creates a single output file called packed.all, which
contains all three input files, with a header line giving the original file's name before
each file's contents. Combining many files into one like this makes it easy to transfer
in a single step -- only one file need be copied to floppy, emailed, and so on. If you
have hundreds of files to move, this can be a big win.

After such a file is transferred, though, it must somehow be unpacked on the
receiving end, to recreate the original files. To do so, we need to scan the combined
file line by line, watching for header lines left by the packer to know when a new

Programming Python, 2nd Edition, O’Reilly

IT-SC book 201

file's contents begins. Another simple Python script, shown in Example 4-7, does the
trick.

Example 4-7. PP2E\System\App\Clients\textunpack.py

#!/usr/local/bin/python
import sys
from textpack import marker # use common
seperator key
mlen = len(marker) # file names
after markers

for line in sys.stdin.readlines(): # for all
input lines
 if line[:mlen] != marker:
 print line, # write real
lines
 else:
 sys.stdout = open(line[mlen:-1], 'w') # or make
new output file

We could code this in a function like we did in textpack, but there is little point
here -- as written, the script relies on standard streams, not function parameters.
Run this in the directory where you want unpacked files to appear, with the packed
archive file piped in on the command line as the script's standard input stream:

C:\......\test\unpack>python ..\..\textunpack.py <
..\packed.all

C:\......\test\unpack>ls
eggs.txt ham.txt spam.txt

C:\......\test\unpack>type spam.txt
SPAM
Spam

4.5.1 Packing Files "++"

So far so good; the textpack and textunpack scripts made it easy to move lots
of files around, without lots of manual intervention. But after playing with these and
similar scripts for a while, I began to see commonalities that almost cried out for
reuse. For instance, almost every shell tool I wrote had to scan command-line
arguments, redirect streams to a variety of sources, and so on. Further, almost
every command-line utility wound up with a different command-line option pattern,
because each was written from scratch.

The following few classes are one solution to such problems. They define a class
hierarchy that is designed for reuse of common shell tool code. Moreover, because of
the reuse going on, every program that ties into its hierarchy sports a common look-

Programming Python, 2nd Edition, O’Reilly

IT-SC book 202

and-feel in terms of command-line options, environment variable use, and more. As
usual with object-oriented systems, once you learn which methods to overload, such
a class framework provides a lot of work and consistency for free. The module in
Example 4-8 adapts the textpack script's logic for integration into this hierarchy.

Example 4-8. PP2E\System\App\Clients\packapp.py

#!/usr/local/bin/python

pack text files into one, separated by marker line;
% packapp.py -v -o target src src...
% packapp.py *.txt -o packed1
>>> apptools.appRun('packapp.py', args...)
>>> apptools.appCall(PackApp, args...)

from textpack import marker
from PP2E.System.App.Kinds.redirect import StreamApp

class PackApp(StreamApp):
 def start(self):
 StreamApp.start(self)
 if not self.args:
 self.exit('packapp.py [-o target]? src src...')
 def run(self):
 for name in self.restargs():
 try:
 self.message('packing: ' + name)
 self.pack_file(name)
 except:
 self.exit('error processing: ' + name)
 def pack_file(self, name):
 self.setInput(name)
 self.write(marker + name + '\n')
 while 1:
 line = self.readline()
 if not line: break
 self.write(line)

if __name__ == '__main__': PackApp().main()

Here, PackApp inherits members and methods that handle:

Operating system services

Command-line processing

Input/output stream redirection

Programming Python, 2nd Edition, O’Reilly

IT-SC book 203

from the StreamApp class, imported from another Python module file (listed in
Example 4-10). StreamApp provides a "read/write" interface to redirected streams,
and provides a standard "start/run/stop" script execution protocol. PackApp simply
redefines the start and run methods for its own purposes, and reads and writes
itself to access its standard streams. Most low-level system interfaces are hidden by
the StreamApp class; in OOP terms, we say they are encapsulated.

This module can both be run as a program, and imported by a client (remember,
Python sets a module's name to __main_ _ when it's run directly, so it can tell the
difference). When run as a program, the last line creates an instance of the
PackApp class, and starts it by calling its main method -- a method call exported
by StreamApp to kick off a program run:

C:\......\test>python ..\packapp.py -v -o packedapp.all
spam.txt eggs.txt ham.txt
PackApp start.
packing: spam.txt
packing: eggs.txt
packing: ham.txt
PackApp done.

C:\......\test>type packedapp.all
::::::::::textpak=>spam.txt
SPAM
spam
::::::::::textpak=>eggs.txt
EGGS
::::::::::textpak=>ham.txt
ham

This has the same effect as the textpack.py script, but command-line options (-v for
verbose mode, -o to name an output file) are inherited from the StreamApp
superclass. The unpacker in Example 4-9 looks similar when migrated to the OO
framework, because the very notion of running a program has been given a standard
structure.

Example 4-9. PP2E\System\App\Clients\unpackapp.py

#!/usr/bin/python

unpack a packapp.py output file;
% unpackapp.py -i packed1 -v
apptools.appRun('unpackapp.py', args...)
apptools.appCall(UnpackApp, args...)

import string
from textpack import marker

Programming Python, 2nd Edition, O’Reilly

IT-SC book 204

from PP2E.System.App.Kinds.redirect import StreamApp

class UnpackApp(StreamApp):
 def start(self):
 StreamApp.start(self)
 self.endargs() # ignore more -o's,
etc.
 def run(self):
 mlen = len(marker)
 while 1:
 line = self.readline()
 if not line:
 break
 elif line[:mlen] != marker:
 self.write(line)
 else:
 name = string.strip(line[mlen:])
 self.message('creating: ' + name)
 self.setOutput(name)

if __name__ == '__main__': UnpackApp().main()

This subclass redefines start and run methods to do the right thing for this script
-- prepare for and execute a file unpacking operation. All the details of parsing
command-line arguments and redirecting standard streams are handled in
superclasses:

C:\......\test\unpackapp>python ..\..\unpackapp.py -v -i
..\packedapp.all
UnpackApp start.
creating: spam.txt
creating: eggs.txt
creating: ham.txt
UnpackApp done.

C:\......\test\unpackapp>ls
eggs.txt ham.txt spam.txt

C:\......\test\unpackapp>type spam.txt
SPAM
spam

Running this script does the same job as the original textunpack.py, but we get
command-line flags for free (-i specifies the input files). In fact, there are more
ways to launch classes in this hierarchy than I have space to show here. A command
line pair, -i -, for instance, makes the script read its input from stdin, as though
it were simply piped or redirected in the shell:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 205

C:\......\test\unpackapp>type ..\packedapp.all | python
..\..\unpackapp.py -i -
creating: spam.txt
creating: eggs.txt
creating: ham.txt

4.5.2 Application Hierarchy Superclasses

This section lists the source code of StreamApp and App -- the classes that do all
this extra work on behalf of PackApp and UnpackApp. We don't have space to go
through all this code in detail, so be sure to study these listings on your own for
more information. It's all straight Python code.

I should also point out that the classes listed in this section are just the ones used by
the object-oriented mutations of the textpack and textunpack scripts. They
represent just one branch of an overall application framework class tree, that you
can study on this book's CD (see http://examples.oreilly.com/python2 and browse
directory PP2E\System\App). Other classes in the tree provide command menus,
internal string-based file streams, and so on. You'll also find additional clients of the
hierarchy that do things like launch other shell tools, and scan Unix-style email
mailbox files.

4.5.2.1 StreamApp: Adding stream redirection

StreamApp adds a few command-line arguments (-i, -o) and input/output stream
redirection to the more general App root class listed later; App in turn defines the
most general kinds of program behavior, to be inherited in Examples Example 4-8,
Example 4-9, and Example 4-10, i.e., in all classes derived from App.

Example 4-10. PP2E\System\App\Kinds\redirect.py

###
#####################
App subclasses for redirecting standard streams to files
###
#####################

import sys
from PP2E.System.App.Bases.app import App

###
#####################
an app with input/output stream redirection
###
#####################

class StreamApp(App):
 def __init__(self, ifile='-', ofile='-'):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 206

 App.__init__(self) #
call superclass init
 self.setInput(ifile or self.name + '.in') #
default i/o file names
 self.setOutput(ofile or self.name + '.out') #
unless '-i', '-o' args

 def closeApp(self): #
not __del__
 try:
 if self.input != sys.stdin: #
may be redirected
 self.input.close() #
if still open
 except: pass
 try:
 if self.output != sys.stdout: #
don't close stdout!
 self.output.close() #
input/output exist?
 except: pass

 def help(self):
 App.help(self)
 print '-i <input-file |"-"> (default: stdin or
per app)'
 print '-o <output-file|"-"> (default: stdout or
per app)'

 def setInput(self, default=None):
 file = self.getarg('-i') or default or '-'
 if file == '-':
 self.input = sys.stdin
 self.input_name = '<stdin>'
 else:
 self.input = open(file, 'r') #
cmdarg | funcarg | stdin
 self.input_name = file #
cmdarg '-i -' works too

 def setOutput(self, default=None):
 file = self.getarg('-o') or default or '-'
 if file == '-':
 self.output = sys.stdout
 self.output_name = '<stdout>'
 else:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 207

 self.output = open(file, 'w') # error
caught in main()
 self.output_name = file # make
backups too?

class RedirectApp(StreamApp):
 def __init__(self, ifile=None, ofile=None):
 StreamApp.__init__(self, ifile, ofile)
 self.streams = sys.stdin, sys.stdout
 sys.stdin = self.input # for
raw_input, stdin
 sys.stdout = self.output # for
print, stdout

 def closeApp(self): # not
__del__
 StreamApp.closeApp(self) # close
files?
 sys.stdin, sys.stdout = self.streams # reset
sys files

###

to add as a mix-in (or use multiple-inheritance...)
###

class RedirectAnyApp:
 def __init__(self, superclass, *args):
 apply(superclass.__init__, (self,) + args)
 self.super = superclass
 self.streams = sys.stdin, sys.stdout
 sys.stdin = self.input # for
raw_input, stdin
 sys.stdout = self.output # for
print, stdout

 def closeApp(self):
 self.super.closeApp(self) # do the
right thing
 sys.stdin, sys.stdout = self.streams # reset
sys files

4.5.2.2 App: The root class

Programming Python, 2nd Edition, O’Reilly

IT-SC book 208

The top of the hierarchy knows what it means to be a shell application, but not how
to accomplish a particular utility task (those parts are filled in by subclasses). App,
listed in Example 4-11, exports commonly used tools in a standard and simplified
interface, and a customizable start/run/stop method protocol that abstracts
script execution. It also turns application objects into file-like objects: when an
application reads itself, for instance, it really reads whatever source its standard
input stream has been assigned to by other superclasses in the tree (like
StreamApp).

Example 4-11. PP2E\System\App\Bases\app.py

###
#####################
an application class hierarchy, for handling top-level
components;
App is the root class of the App hierarchy, extended in
other files;
###
#####################

import sys, os, traceback
AppError = 'App class error' #
errors raised here

class App: #
the root class
 def __init__(self, name=None):
 self.name = name or self.__class__.__name__ #
the lowest class
 self.args = sys.argv[1:]
 self.env = os.environ
 self.verbose = self.getopt('-v') or
self.getenv('VERBOSE')
 self.input = sys.stdin
 self.output = sys.stdout
 self.error = sys.stderr #
stdout may be piped
 def closeApp(self): # not
__del__: ref's?
 pass #
nothing at this level
 def help(self):
 print self.name, 'command-line arguments:' #
extend in subclass
 print '-v (verbose)'

 ##############################
 # script environment services

Programming Python, 2nd Edition, O’Reilly

IT-SC book 209

 ##############################

 def getopt(self, tag):
 try: # test "-x"
command arg
 self.args.remove(tag) # not real
argv: > 1 App?
 return 1
 except:
 return 0
 def getarg(self, tag, default=None):
 try: # get "-x
val" command arg
 pos = self.args.index(tag)
 val = self.args[pos+1]
 self.args[pos:pos+2] = []
 return val
 except:
 return default # None:
missing, no default
 def getenv(self, name, default=''):
 try: # get "$x"
environment var
 return self.env[name]
 except KeyError:
 return default
 def endargs(self):
 if self.args:
 self.message('extra arguments ignored: ' +
`self.args`)
 self.args = []
 def restargs(self):
 res, self.args = self.args, [] # no more
args/options
 return res
 def message(self, text):
 self.error.write(text + '\n') # stdout
may be redirected
 def exception(self):
 return (sys.exc_type, sys.exc_value) # the last
exception
 def exit(self, message='', status=1):
 if message:
 self.message(message)
 sys.exit(status)
 def shell(self, command, fork=0, inp=''):
 if self.verbose:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 210

 self.message(command) #
how about ipc?
 if not fork:
 os.system(command) #
run a shell cmd
 elif fork == 1:
 return os.popen(command, 'r').read()
get its output
 else: #
readlines too?
 pipe = os.popen(command, 'w')
 pipe.write(inp) #
send it input
 pipe.close()

 ###
 # input/output-stream methods for the app itself;
 # redefine in subclasses if not using files, or
 # set self.input/output to file-like objects;
 ###

 def read(self, *size):
 return apply(self.input.read, size)
 def readline(self):
 return self.input.readline()
 def readlines(self):
 return self.input.readlines()
 def write(self, text):
 self.output.write(text)
 def writelines(self, text):
 self.output.writelines(text)

 ###
 # to run the app
 # main() is the start/run/stop execution protocol;
 ###

 def main(self):
 res = None
 try:
 self.start()
 self.run()
 res = self.stop() # optional
return val
 except SystemExit: # ignore if
from exit()
 pass

Programming Python, 2nd Edition, O’Reilly

IT-SC book 211

 except:
 self.message('uncaught: ' + `self.exception(
)`)
 traceback.print_exc()
 self.closeApp()
 return res

 def start(self):
 if self.verbose: self.message(self.name + '
start.')
 def stop(self):
 if self.verbose: self.message(self.name + ' done.')
 def run(self):
 raise AppError, 'run must be redefined!'

4.5.2.3 Why use classes here?

Now that I've listed all this code, some readers might naturally want to ask, "So why
go to all this trouble?" Given the amount of extra code in the OO version of these
scripts, it's a perfectly valid question. Most of the code listed in Example 4-11 is
general-purpose logic, designed to be used by many applications. Still, that doesn't
explain why the packapp and unpackapp OO scripts are larger than the original
equivalent textpack and textunpack non-OO scripts.

The answers will become more apparent after the first few times you don't have to
write code to achieve a goal, but there are some concrete benefits worth
summarizing here:

Encapsulation

StreamApp clients need not remember all the system interfaces in Python, because
StreamApp exports its own unified view. For instance, arguments, streams, and
shell variables are split across Python modules (e.g., sys.argv, sys.stdout,
os.environ); in these classes, they are all collected in the same single place.

Standardization

From the shell user's perspective, StreamApp clients all have a common look-and-
feel, because they inherit the same interfaces to the outside world from their
superclasses (e.g., -i and -v flags).

Maintenance

All the common code in the App and StreamApp superclasses must be debugged
only once. Moreover, localizing code in superclasses makes it easier to understand
and change in the future.

Reuse

Programming Python, 2nd Edition, O’Reilly

IT-SC book 212

Such a framework can provide an extra precoded utility we would otherwise have to
recode in every script we write (command-line argument extraction, for instance).
That holds true both now and in the future -- services added to the App root class
become immediately usable and customizable among all applications derived from
this hierarchy.

Utility

Because file access isn't hardcoded in PackApp and UnpackApp, they can easily
take on new behavior, just by changing the class they inherit from. Given the right
superclass, PackApp and UnpackApp could just as easily read and write to strings
or sockets, as to text files and standard streams.

Although it's not obvious until you start writing larger class-based systems, code
reuse is perhaps the biggest win for class-based programs. For instance, in Chapter
9, we will reuse the OO-based packer and unpacker scripts by invoking them from a
menu GUI like this:

from PP2E.System.App.Clients.packapp import PackApp
...get dialog inputs, glob filename patterns

app = PackApp(ofile=output) # run with
redirected output
app.args = filenames # reset cmdline args
list
app.main()

from PP2E.System.App.Clients.unpackapp import UnpackApp
...get dialog input

app = UnpackApp(ifile=input) # run with input
from file
app.main() # execute app
class

Because these classes encapsulate the notion of streams, they can be imported and
called, not just run as top-level scripts. Further, their code is reusable two ways: not
only do they export common system interfaces for reuse in subclasses, but they can
also be used as software components as in the previous code listing. See the
PP2E\Gui\Shellgui directory for the full source code of these clients.

Python doesn't impose OO programming, of course, and you can get a lot of work
done with simpler functions and scripts. But once you learn how to structure class
trees for reuse, going the extra OO mile usually pays off in the long run.

4.6 User-Friendly Program Launchers

Suppose, for just a moment, that you wish to ship Python programs to an audience
that may be in the very early stages of evolving from computer user to computer

Programming Python, 2nd Edition, O’Reilly

IT-SC book 213

programmer. Maybe you are shipping a Python application to nontechnical users; or
perhaps you're interested in shipping a set of cool Python demo programs on a
Python book's CD-ROM (see http://examples.oreilly.com/python2). Whatever the
reason, some of the people who will use your software can't be expected to do any
more than click a mouse -- much less edit their system configuration files to set
things like PATH and PYTHONPATH per your programs' assumptions. Your software
will have to configure itself.

Luckily, Python scripts can do that too. In the next two sections, we're going to see
two modules that aim to automatically launch programs with minimal assumptions
about the environment on the host machine:

Launcher.py is a library of tools for automatically configuring the shell environment
in preparation for launching a Python script. It can be used to set required shell
variables -- both the PATH system program search path (used to find the "python"
executable), and the PYTHONPATH module search path (used to resolve imports
within scripts). Because such variable settings made in a parent program are
inherited by spawned child programs, this interface lets scripts preconfigure search
paths for other scripts.

LaunchBrowser.py aims to portably locate and start an Internet browser program on
the host machine to view a local file or remote web page. It uses tools in
Launcher.py to search for a reasonable browser to run.

Both of these modules are designed to be reusable in any context where you want
your software to be user-friendly. By searching for files and configuring
environments automatically, your users can avoid (or at least postpone) having to
learn the intricacies of environment configuration.

4.6.1 Launcher Module Clients

The two modules in this section see action in many of this book's examples. In fact,
we've already used some of these tools. The launchmodes script we met at the
end of the prior chapter imported Launcher functions to hunt for the local
python.exe interpreter's path, needed by os.spawnv calls. That script could have
assumed that everyone who installs it on their machine will edit its source code to
add their own Python location; but the technical know-how required for even that
task is already light-years beyond many potential users.[4] It's much nicer to invest a
negligible amount of startup time to locate Python automatically.

[4] You gurus and wizards out there will just have to take my word for it. One of the very first
things you learn from flying around the world teaching Python to beginners is just how much
knowledge developers take for granted. In the book Learning Python, for example, my co-
author and I directed readers to do things like "open a file in your favorite text editor" and
"start up a DOS command console." We had no shortage of email from beginners wondering
what in the world we meant.

The two modules listed in Examples Example 4-14 and Example 4-15, together with
launchmodes, also form the core of the demo-launcher programs at the top of the
examples distribution on this book's CD (see http://examples.oreilly.com/python2).
There's nothing quite like being able to witness programs in action first-hand, so I
wanted to make it as easy as possible to launch Python examples in the book.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 214

Ideally, they should run straight off the CD when clicked, and not require readers to
wade through a complex environment installation procedure.

However, many demos perform cross-directory imports, and so require the book's
module package directories to be installed in PYTHONPATH; it is not enough just to
click on some programs' icons at random. Moreover, when first starting out, users
can't be assumed to have added the Python executable to their system search path
either; the name "python" might not mean anything in the shell.

At least on platforms tested thus far, the following modules solve such configuration
problems. For example, script Launch_PyDemos.pyw in the root directory
automatically configures the system and Python execution environments using
Launcher.py tools, and then spawns PyDemos.py, a Tkinter GUI Demo interface we'll
meet later in this book. PyDemos in turn uses launchmodes to spawn other
programs, that also inherit the environment settings made at the top. The net effect
is that clicking any of the Launch_* scripts starts Python programs even if you
haven't touched your environment settings at all.

You still need to install Python if it's not present, of course, but the Python Windows
self-installer is a simple point-and-click affair too. Because searches and
configuration take extra time, it's still to your advantage to eventually configure your
environment settings and run programs like PyDemos directly, instead of through the
launcher scripts. But there's much to be said for instant gratification when it comes
to software.

These tools will show up in other contexts later in this text, too. For instance, the
PyMail email interface we'll meet in Chapter 11 uses Launcher to locate its own
source code file; since it's impossible to know what directory it will be run from, the
best it can do is search. Another GUI example, big_gui, will use a similar
Launcher tool to locate canned Python source-distribution demo programs in
arbitrary and unpredictable places on the underlying computer.

The LaunchBrowser script in Example 4-15 also uses Launcher to locate
suitable web browsers, and is itself used to start Internet demos in the PyDemos and
PyGadgets launcher GUIs -- that is, Launcher starts PyDemos, which starts
LaunchBrowser, which uses Launcher. By optimizing generality, these modules
also optimize reusability.

4.6.2 Launching Programs Without Environment Settings

Because the Launcher.py file is heavily documented, I won't go over its fine points in
narrative here. Instead, I'll just point out that all of its functions are useful by
themselves, but the main entry point is the launchBookExamples function near
the end; you need to work your way from the bottom of this file up to glimpse its
larger picture.

The launchBookExamples function uses all the others, to configure the
environment and then spawn one or more programs to run in that environment. In
fact, the top-level demo launcher scripts shown in Examples Example 4-12 and
Example 4-13 do nothing more than ask this function to spawn GUI demo interface
programs we'll meet later (e.g., PyDemos.pyw, PyGadgets_bar.pyw). Because the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 215

GUIs are spawned indirectly through this interface, all programs they spawn inherit
the environment configurations too.

Example 4-12. PP2E\Launch_PyDemos.pyw

#!/bin/env python

PyDemos + environment search/config first
run this if you haven't setup your paths yet
you still must install Python first, though

import Launcher
Launcher.launchBookExamples(['PyDemos.pyw'], 0)

Example 4-13. PP2E\Launch_PyGadgets_bar.pyw

#!/bin/env python

PyGadgets_bar + environment search/config first
run this if you haven't setup your paths yet
you still must install Python first, though

import Launcher
Launcher.launchBookExamples(['PyGadgets_bar.pyw'], 0)

When run directly, PyDemos.pyw and PyGadgets_bar.pyw instead rely on the
configuration settings on the underlying machine. In other words, Launcher
effectively hides configuration details from the GUI interfaces, by enclosing them in a
configuration program layer. To understand how, study Example 4-14.

Example 4-14. PP2E\Launcher.py

#!/usr/bin/env python
"""

Tools to find files, and run Python demos even if your
environment has
not been manually configured yet. For instance, provided
you have already
installed Python, you can launch Tk demos directly off the
book's CD by
double-clicking this file's icon, without first changing
your environment
config files. Assumes Python has been installed first
(double-click on the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 216

python self-install exe on the CD), and tries to guess
where Python and the
examples distribution live on your machine. Sets Python
module and system
search paths before running scripts: this only works
because env settings
are inherited by spawned programs on both windows and
linux. You may want
to tweak the list of directories searched for speed, and
probably want to
run one of the Config/setup-pp files at startup time to
avoid this search.
This script is friendly to already-configured path
settings, and serves to
demo platform-independent directory path processing.
Python programs can
always be started under the Windows port by clicking (or
spawning a 'start'
DOS command), but many book examples require the module
search path too.

"""

import sys, os, string

def which(program, trace=1):
 """
 Look for program in all dirs in the system's search
 path var, PATH; return full path to program if found,
 else None. Doesn't handle aliases on Unix (where we
 could also just run a 'which' shell cmd with os.popen),
 and it might help to also check if the file is really
 an executable with os.stat and the stat module, using
 code like this: os.stat(filename)[stat.ST_MODE] & 0111
 """
 try:
 ospath = os.environ['PATH']
 except:
 ospath = '' # okay if not set
 systempath = string.split(ospath, os.pathsep)
 if trace: print 'Looking for', program, 'on',
systempath
 for sysdir in systempath:
 filename = os.path.join(sysdir, program) #
adds os.sep between

Programming Python, 2nd Edition, O’Reilly

IT-SC book 217

 if os.path.isfile(filename): #
exists and is a file?
 if trace: print 'Found', filename
 return filename
 else:
 if trace: print 'Not at', filename
 if trace: print program, 'not on system path'
 return None

def findFirst(thisDir, targetFile, trace=0):
 """
 Search directories at and below thisDir for a file
 or dir named targetFile. Like find.find in standard
 lib, but no name patterns, follows unix links, and
 stops at the first file found with a matching name.
 targetFile must be a simple base name, not dir path.
 """
 if trace: print 'Scanning', thisDir
 for filename in os.listdir(thisDir):
skip . and ..
 if filename in [os.curdir, os.pardir]:
just in case
 continue
 elif filename == targetFile:
check name match
 return os.path.join(thisDir, targetFile)
stop at this one
 else:
 pathname = os.path.join(thisDir, filename)
recur in subdirs
 if os.path.isdir(pathname):
stop at 1st match
 below = findFirst(pathname, targetFile,
trace)
 if below: return below

def guessLocation(file,
isOnWindows=(sys.platform[:3]=='win'), trace=1):
 """
 Try to find directory where file is installed
 by looking in standard places for the platform.
 Change tries lists as needed for your machine.
 """
 cwd = os.getcwd() #
directory where py started

Programming Python, 2nd Edition, O’Reilly

IT-SC book 218

 tryhere = cwd + os.sep + file # or
os.path.join(cwd, file)
 if os.path.exists(tryhere): # don't
search if it is here
 return tryhere #
findFirst(cwd,file) descends
 if isOnWindows:
 tries = []
 for pydir in [r'C:\Python20', r'C:\Program
Files\Python']:
 if os.path.exists(pydir):
 tries.append(pydir)
 tries = tries + [cwd, r'C:\Program Files']
 for drive in 'CGDEF':
 tries.append(drive + ':\\')
 else:
 tries = [cwd, os.environ['HOME'], '/usr/bin',
'/usr/local/bin']
 for dir in tries:
 if trace: print 'Searching for %s in %s' % (file,
dir)
 try:
 match = findFirst(dir, file)
 except OSError:
 if trace: print 'Error while searching', dir
skip bad drives
 else:
 if match: return match
 if trace: print file, 'not found! - configure your
environment manually'
 return None

PP2EpackageRoots = [# python
module search path
 #'%sPP2E' % os.sep, # pass
in your own elsewhere
 ''] # ''
adds examplesDir root

def configPythonPath(examplesDir,
packageRoots=PP2EpackageRoots, trace=1):
 """
 Setup the Python module import search-path directory
 list as necessary to run programs in the book examples

Programming Python, 2nd Edition, O’Reilly

IT-SC book 219

 distribution, in case it hasn't been configured
already.
 Add examples package root, plus nested package roots.
 This corresponds to the setup-pp* config file settings.
 os.environ assignments call os.putenv internally in
1.5,
 so these settings will be inherited by spawned
programs.
 Python source lib dir and '.' are automatically
searched;
 unix|win os.sep is '/' | '\\', os.pathsep is ':' | ';'.
 sys.path is for this process only--must set os.environ.
 adds new dirs to front, in case there are two installs.
 could also try to run platform's setup-pp* file in this
 process, but that's non-portable, slow, and error-
prone.
 """
 try:
 ospythonpath = os.environ['PYTHONPATH']
 except:
 ospythonpath = '' # okay if not set
 if trace: print 'PYTHONPATH start:\n', ospythonpath
 addList = []
 for root in packageRoots:
 importDir = examplesDir + root
 if importDir in sys.path:
 if trace: print 'Exists', importDir
 else:
 if trace: print 'Adding', importDir
 sys.path.append(importDir)
 addList.append(importDir)
 if addList:
 addString = string.join(addList, os.pathsep) +
os.pathsep
 os.environ['PYTHONPATH'] = addString + ospythonpath
 if trace: print 'PYTHONPATH updated:\n',
os.environ['PYTHONPATH']
 else:
 if trace: print 'PYTHONPATH unchanged'

def configSystemPath(pythonDir, trace=1):
 """
 Add python executable dir to system search path if
needed
 """
 try:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 220

 ospath = os.environ['PATH']
 except:
 ospath = '' # okay if not set
 if trace: print 'PATH start', ospath
 if (string.find(ospath, pythonDir) == -1 and
not found?
 string.find(ospath, string.upper(pythonDir)) == -
1): # case diff?
 os.environ['PATH'] = ospath + os.pathsep +
pythonDir
 if trace: print 'PATH updated:', os.environ['PATH']
 else:
 if trace: print 'PATH unchanged'

def runCommandLine(pypath, exdir, command, isOnWindows=0,
trace=1):
 """
 Run python command as an independent program/process on
 this platform, using pypath as the Python executable,
 and exdir as the installed examples root directory.
 Need full path to python on windows, but not on unix.
 On windows, a os.system('start ' + command) is similar,
 except that .py files pop up a dos console box for i/o.
 Could use launchmodes.py too but pypath is already
known.
 """
 command = exdir + os.sep + command # rooted in
examples tree
 os.environ['PP2E_PYTHON_FILE'] = pypath # export
directories for
 os.environ['PP2E_EXAMPLE_DIR'] = exdir # use in
spawned programs

 if trace: print 'Spawning:', command
 if isOnWindows:
 os.spawnv(os.P_DETACH, pypath, ('python', command))
 else:
 cmdargs = [pypath] + string.split(command)
 if os.fork() == 0:
 os.execv(pypath, cmdargs) # run prog
in child process

def launchBookExamples(commandsToStart, trace=1):
 """
 Toplevel entry point: find python exe and

Programming Python, 2nd Edition, O’Reilly

IT-SC book 221

 examples dir, config env, spawn programs
 """
 isOnWindows = (sys.platform[:3] == 'win')
 pythonFile = (isOnWindows and 'python.exe') or
'python'
 examplesFile = 'README-PP2E.txt'
 if trace:
 print os.getcwd(), os.curdir, os.sep, os.pathsep
 print 'starting on %s...' % sys.platform

 # find python executable: check system path, then guess
 pypath = which(pythonFile) or guessLocation(pythonFile,
isOnWindows)
 assert pypath
 pydir, pyfile = os.path.split(pypath) #
up 1 from file
 if trace:
 print 'Using this Python executable:', pypath
 raw_input('Press <enter> key')

 # find examples root dir: check cwd and others
 expath = guessLocation(examplesFile, isOnWindows)
 assert expath
 updir = string.split(expath, os.sep)[:-2] #
up 2 from file
 exdir = string.join(updir, os.sep) #
to PP2E pkg parent
 if trace:
 print 'Using this examples root directory:', exdir
 raw_input('Press <enter> key')

 # export python and system paths if needed
 configSystemPath(pydir)
 configPythonPath(exdir)
 if trace:
 print 'Environment configured'
 raw_input('Press <enter> key')

 # spawn programs
 for command in commandsToStart:
 runCommandLine(pypath, os.path.dirname(expath),
command, isOnWindows)

if __name__ == '__main__':
 #
 # if no args, spawn all in the list of programs below

Programming Python, 2nd Edition, O’Reilly

IT-SC book 222

 # else rest of cmd line args give single cmd to be
spawned
 #
 if len(sys.argv) == 1:
 commandsToStart = [
 'Gui/TextEditor/textEditor.pyw', #
either slash works
 'Lang/Calculator/calculator.py', # os
normalizes path
 'PyDemos.pyw',
 #'PyGadgets.py',
 'echoEnvironment.pyw'
]
 else:
 commandsToStart = [string.join(sys.argv[1:], ' ')
]
 launchBookExamples(commandsToStart)
 import time
 if sys.platform[:3] == 'win': time.sleep(10) # to
read msgs if clicked

One way to understand the Launcher script is to trace the messages it prints along
the way. When run by itself without a PYTHONPATH setting, the script finds a
suitable Python and the examples root directory (by hunting for its README file),
uses those results to configure PATH and PYTHONPATH settings if needed, and
spawns a precoded list of program examples. To illustrate, here is a launch on
Windows with an empty PYTHONPATH:

C:\temp\examples>set PYTHONPATH=

C:\temp\examples>python Launcher.py
C:\temp\examples . \ ;
starting on win32...
Looking for python.exe on ['C:\\WINDOWS', 'C:\\WINDOWS',
'C:\\WINDOWS\\COMMAND', 'C:\\STUFF\\BIN.MKS', 'C:\\PROGRAM
FILES\\PYTHON']
Not at C:\WINDOWS\python.exe
Not at C:\WINDOWS\python.exe
Not at C:\WINDOWS\COMMAND\python.exe
Not at C:\STUFF\BIN.MKS\python.exe
Found C:\PROGRAM FILES\PYTHON\python.exe
Using this Python executable: C:\PROGRAM
FILES\PYTHON\python.exe
Press <enter> key
Using this examples root directory: C:\temp\examples
Press <enter> key
PATH start
C:\WINDOWS;C:\WINDOWS;C:\WINDOWS\COMMAND;C:\STUFF\BIN.MKS;

Programming Python, 2nd Edition, O’Reilly

IT-SC book 223

C:\PROGRAM FILES\PYTHON
PATH unchanged
PYTHONPATH start:

Adding C:\temp\examples\Part3
Adding C:\temp\examples\Part2
Adding C:\temp\examples\Part2\Gui
Adding C:\temp\examples
PYTHONPATH updated:
C:\temp\examples\Part3;C:\temp\examples\Part2;C:\temp\examp
les\Part2\Gui;
C:\temp\examples;
Environment configured
Press <enter> key
Spawning:
C:\temp\examples\Part2/Gui/TextEditor/textEditor.pyw
Spawning:
C:\temp\examples\Part2/Lang/Calculator/calculator.py
Spawning: C:\temp\examples\PyDemos.pyw
Spawning: C:\temp\examples\echoEnvironment.pyw

Four programs are spawned with PATH and PYTHONPATH preconfigured according to
the location of your Python interpreter program, the location of your examples
distribution tree, and the list of required PYTHONPATH entries in script variable
PP2EpackageRoots.

The PYTHONPATH directories that are added by preconfiguration
steps may be different when you run this script, because the
PP2EpackageRoots variable may have an arbitrarily different
setting by the time this book's CD is burned. In fact, to make
this example more interesting, the outputs listed were generated
at a time when the book's PYTHONPATH requirements were
much more complex than they are now:

PP2EpackageRoots = [
 '%sPart3' % os.sep, # python module search
path
 '%sPart2' % os.sep, # required
by book demos
 '%sPart2%sGui' %
((os.sep,)*2),
 ''] # '' adds
examplesDir root

Since then, the tree has been reorganized so that only one
directory needs to be added to the module search path -- the
one containing the PP2E root directory. That makes it easier to

fi (l t i dd d t PYTHONPATH) b t

Programming Python, 2nd Edition, O’Reilly

IT-SC book 224

configure (only one entry is added to PYTHONPATH now), but
the code still supports a list of entries for generality. Like most
developers, I can't resist playing with the directories.

When used by the PyDemos launcher script, Launcher does not pause for key
presses along the way (the trace argument is passed in false). Here is the output
generated when using the module to launch PyDemos with PYTHONPATH already set
to include all the required directories; the script both avoids adding settings
redundantly, and retains any exiting settings already in your environment:

C:\PP2ndEd\examples>python Launch_PyDemos.pyw
Looking for python.exe on ['C:\\WINDOWS', 'C:\\WINDOWS',
'C:\\WINDOWS\\COMMAND', 'C:\\STUFF\\BIN.MKS', 'C:\\PROGRAM
FILES\\PYTHON']
Not at C:\WINDOWS\python.exe
Not at C:\WINDOWS\python.exe
Not at C:\WINDOWS\COMMAND\python.exe
Not at C:\STUFF\BIN.MKS\python.exe
Found C:\PROGRAM FILES\PYTHON\python.exe
PATH start
C:\WINDOWS;C:\WINDOWS;C:\WINDOWS\COMMAND;C:\STUFF\BIN.MKS;
C:\PROGRAM FILES\PYTHON
PATH unchanged
PYTHONPATH start:
C:\PP2ndEd\examples\Part3;C:\PP2ndEd\examples\Part2;C:\PP2n
dEd\examples\
Part2\Gui;C:\PP2ndEd\examples
Exists C:\PP2ndEd\examples\Part3
Exists C:\PP2ndEd\examples\Part2
Exists C:\PP2ndEd\examples\Part2\Gui
Exists C:\PP2ndEd\examples
PYTHONPATH unchanged
Spawning: C:\PP2ndEd\examples\PyDemos.pyw

And finally, here is the trace output of a launch on my Linux system; because
Launcher is written with portable Python code and library calls, environment
configuration and directory searches work just as well there:

[mark@toy ~/PP2ndEd/examples]$ unsetenv PYTHONPATH
[mark@toy ~/PP2ndEd/examples]$ python Launcher.py
/home/mark/PP2ndEd/examples . / :
starting on linux2...
Looking for python on ['/home/mark/bin', '.', '/usr/bin',
'/usr/bin', '/usr/local/
bin', '/usr/X11R6/bin', '/bin', '/usr/X11R6/bin',
'/home/mark/
bin', '/usr/X11R6/bin', '/home/mark/bin', '/usr/X11R6/bin']

Programming Python, 2nd Edition, O’Reilly

IT-SC book 225

Not at /home/mark/bin/python
Not at ./python
Found /usr/bin/python
Using this Python executable: /usr/bin/python
Press <enter> key
Using this examples root directory:
/home/mark/PP2ndEd/examples
Press <enter> key
PATH start
/home/mark/bin:.:/usr/bin:/usr/bin:/usr/local/bin:/usr/X11R
6/bin:/bin:/
usr
/X11R6/bin:/home/mark/bin:/usr/X11R6/bin:/home/mark/bin:/us
r/X11R6/bin
PATH unchanged
PYTHONPATH start:

Adding /home/mark/PP2ndEd/examples/Part3
Adding /home/mark/PP2ndEd/examples/Part2
Adding /home/mark/PP2ndEd/examples/Part2/Gui
Adding /home/mark/PP2ndEd/examples
PYTHONPATH updated:
/home/mark/PP2ndEd/examples/Part3:/home/mark/PP2ndEd/exampl
es/Part2:/home/
mark/PP2ndEd/examples/Part2/Gui:/home/mark/PP2ndEd/examples
:
Environment configured
Press <enter> key
Spawning:
/home/mark/PP2ndEd/examples/Part2/Gui/TextEditor/textEditor
.py
Spawning:
/home/mark/PP2ndEd/examples/Part2/Lang/Calculator/calculato
r.py
Spawning: /home/mark/PP2ndEd/examples/PyDemos.pyw
Spawning: /home/mark/PP2ndEd/examples/echoEnvironment.pyw

In all of these launches, the Python interpreter was found on the system search-
path, so no real searches were performed (the "Not at" lines near the top represent
the module's which function). In a moment, we'll also use the Launcher's which
and guessLocation functions to look for web browsers in a way that kicks off
searches in standard install directory trees. Later in the book, we'll use this module
in other ways -- for instance, to search for demo programs and source code files
somewhere on the machine, with calls of this form:

C:\temp>python
>>> from PP2E.Launcher import guessLocation
>>> guessLocation('hanoi.py')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 226

Searching for hanoi.py in C:\Program Files\Python
Searching for hanoi.py in C:\temp\examples
Searching for hanoi.py in C:\Program Files
Searching for hanoi.py in C:\
'C:\\PP2ndEd\\cdrom\\Python1.5.2\\SourceDistribution\\Unpac
ked\\Python-1.5.2
\\Demo\\tkinter\\guido\\hanoi.py'

>>> from PP2E.Launcher import findFirst
>>> findFirst('.', 'PyMailGui.py')
'.\\examples\\Internet\\Email\\PyMailGui.py'

Such searches aren't necessary if you can rely on an environment variable to give at
least part of the path to a file; for instance, paths scripts within the PP2E examples
tree can be named by joining the PP2EHOME shell variable, with the rest of the
script's path (assuming the rest of the script's path won't change, and we can rely on
that shell variable being set everywhere).

Some scripts may also be able to compose relative paths to other scripts using the
sys.path[0] home-directory indicator added for imports (see Section 2.7). But in
cases where a file can appear at arbitrary places, searches like those shown
previously are sometimes the best scripts can do. The earlier hanoi.py program file,
for example, can be anywhere on the underlying machine (if present at all);
searching is a more user-friendly final alternative than simply giving up.

Finding Programs on Windows

Per a tip from a Python Windows guru, it may also be possible to determine
the location of the installed Python interpreter on Windows with platform-
specific code like this:

import _winreg
try:
 keyname = "SOFTWARE\\Microsoft\\Windows\\"
 +
 "CurrentVersion\\AppPaths\\python.exe"
 pyexe =_winreg.QueryValue(
 _winreg.HKEY_LOCAL_MACHINE, keyname)
except _winreg.error:
 # not found

This code uses the _winreg module (new as of Python 1.6) to find Python
if it has been installed correctly. The same sort of code will work for most
other well-installed applications (e.g., web browsers), but not for some
other kinds of files (e.g., Python scripts). It's also too Windows-specific to
cover better in this text; see Windows resources for more details.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 227

4.6.3 Launching Web Browsers Portably

Web browsers can do amazing things these days. They can serve as document
viewers, remote program launchers, database interfaces, media players, and more.
Being able to open a browser on a local or remote page file from within a script
opens up all kinds of interesting user-interface possibilities. For instance, a Python
system might automatically display its HTML-coded documentation when needed, by
launching the local web browser on the appropriate page file.[5] Because most
browsers know how to present pictures, audio files, and movie clips, opening a
browser on such a file is also a simple way for scripts to deal with multimedia.

[5] For example, the PyDemosdemo bar GUI we'll meet in Chapter 8, has buttons that
automatically open a browser on web pages related to this book when pressed -- the
publisher's site, the Python home page, my update files, and so on.

The last script listed in this chapter is less ambitious than Launcher.py, but equally
reusable: LaunchBrowser.py attempts to provide a portable interface for starting a
web browser. Because techniques for launching browsers vary per platform, this
script provides an interface that aims to hide the differences from callers. Once
launched, the browser runs as an independent program, and may be opened to view
either a local file or a remote page on the Web.

Here's how it works. Because most web browsers can be started with shell command
lines, this script simply builds and launches one as appropriate. For instance, to run a
Netscape browser on Linux, a shell command of the form netscape url is run,
where url begins with "file://" for local files, and "http://" for live remote-page
accesses (this is per URL conventions we'll meet in more detail later, in Chapter 12).
On Windows, a shell command like start url achieves the same goal. Here are
some platform-specific highlights:

Windows platforms

On Windows, the script either opens browsers with DOS start commands, or
searches for and runs browsers with the os.spawnv call. On this platform,
browsers can usually be opened with simple start commands (e.g.,
os.system("start xxx.html")). Unfortunately, start relies on the underlying
filename associations for web page files on your machine, picks a browser for you
per those associations, and has a command-line length limit that this script might
exceed for long local file paths or remote page addresses.

Because of that, this script falls back on running an explicitly named browser with
os.spawnv, if requested or required. To do so, though, it must find the full path to
a browser executable. Since it can't assume that users will add it to the PATH system
search path (or this script's source code), the script searches for a suitable browser
with Launcher module tools in both directories on PATH and in common places
where executables are installed on Windows.

Unix-like platforms

On other platforms, the script relies on os.system and the system PATH setting on
the underlying machine. It simply runs a command line naming the first browser on
a candidates list that it can find on your PATH setting. Because it's much more likely

Programming Python, 2nd Edition, O’Reilly

IT-SC book 228

that browsers are in standard search directories on platforms like Unix and Linux
(e.g., /usr/bin), the script doesn't look for a browser elsewhere on the machine.
Notice the & at the end of the browser command-line run; without it, os.system
calls block on Unix-like platforms.

All of this is easily customized (this is Python code, after all), and you may need to
add additional logic for other platforms. But on all of my machines, the script makes
reasonable assumptions that allow me to largely forget most of the platform-specific
bits previously discussed; I just call the same launchBrowser function
everywhere. For more details, let's look at Example 4-15.

Example 4-15. PP2E\LaunchBrowser.py

#!/bin/env python
###

Launch a web browser to view a web page, portably. If
run
in '-live' mode, assumes you have a Internet feed and
opens
a page at a remote site. Otherwise, assumes the page is
a
full file path name on your machine, and opens the page
file
locally. On Unix/Linux, finds first browser on your
$PATH.
On Windows, tries DOS "start" command first, or searches
for
the location of a browser on your machine for os.spawnv
by
checking PATH and common Windows executable directories.
You
may need to tweak browser executable name/dirs if this
fails.
This has only been tested in Win98 and Linux, so you may
need
to add more code for other machines (mac:
ic.launcurl(url)?).
###

import os, sys
from Launcher import which, guessLocation # file search
utilities
useWinStart = 1 # 0=ignore
name associations
onWindows = sys.platform[:3] == 'win'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 229

helptext = "Usage: LaunchBrowser.py [-file path | -live
path site]"
#browser = r'c:\"Program
Files"\Netscape\Communicator\Program\netscape.exe'

defaults
Mode = '-file'
Page = os.getcwd() + '/Internet/Cgi-
Web/PyInternetDemos.html'
Site = 'starship.python.net/~lutz'

def launchUnixBrowser(url, verbose=1): # add
your platform if unique
 tries = ['netscape', 'mosaic', 'lynx'] # order
your preferences here
 for program in tries:
 if which(program): break # find
one that is on $path
 else:
 assert 0, 'Sorry - no browser found'
 if verbose: print 'Running', program
 os.system('%s %s &' % (program, url)) # or
fork+exec; assumes $path

def launchWindowsBrowser(url, verbose=1):
 if useWinStart and len(url) <= 400: # on
windows: start or spawnv
 try: # spawnv
works if cmd too long
 if verbose: print 'Starting'
 os.system('start ' + url) # try
name associations first
 return # fails
if cmdline too long
 except: pass
 browser = None # search
for a browser exe
 tries = ['IEXPLORE.EXE', 'netscape.exe'] # try
explorer, then netscape
 for program in tries:
 browser = which(program) or guessLocation(program,
1)
 if browser: break
 assert browser != None, 'Sorry - no browser found'
 if verbose: print 'Spawning', browser
 os.spawnv(os.P_DETACH, browser, (browser, url))

Programming Python, 2nd Edition, O’Reilly

IT-SC book 230

def launchBrowser(Mode='-file', Page=Page, Site=None,
verbose=1):
 if Mode == '-live':
 url = 'http://%s/%s' % (Site, Page) # open
page at remote site
 else:
 url = 'file://%s' % Page # open
page on this machine
 if verbose: print 'Opening', url
 if onWindows:
 launchWindowsBrowser(url, verbose) # use
windows start, spawnv
 else:
 launchUnixBrowser(url, verbose) # assume
$path on unix, linux

if __name__ == '__main__':
 # get command-line args
 argc = len(sys.argv)
 if argc > 1: Mode = sys.argv[1]
 if argc > 2: Page = sys.argv[2]
 if argc > 3: Site = sys.argv[3]
 if Mode not in ['-live', '-file']:
 print helptext
 sys.exit(1)
 else:
 launchBrowser(Mode, Page, Site)

4.6.3.1 Launching browsers with command lines

This module is designed to be both run and imported. When run by itself on my
Windows machine, Internet Explorer starts up. The requested page file is always
displayed in a new browser window when os.spawnv is applied, but in the
currently open browser window (if any) when running a start command:

C:\...\PP2E>python LaunchBrowser.py
Opening file://C:\PP2ndEd\examples\PP2E/Internet/Cgi-
Web/PyInternetDemos.html
Starting

The seemingly odd mix of forward and backward slashes in the URL here works fine
within the browser; it pops up the window shown in Figure 4-2.

Figure 4-2. Launching a Windows browser on a local file

Programming Python, 2nd Edition, O’Reilly

IT-SC book 231

By default, a start command is spawned; to see the browser search procedure in
action on Windows, set the script's useWinStart variable to 0. The script will
search for a browser on your PATH settings, and then in common Windows install
directories hardcoded in Launcher.py :

C:\...\PP2E>python LaunchBrowser.py
 -file
C:\Stuff\Website\public_html\about-pp.html
Opening file://C:\Stuff\Website\public_html\about-pp.html
Looking for IEXPLORE.EXE on ['C:\\WINDOWS', 'C:\\WINDOWS',
'C:\\WINDOWS\\COMMAND', 'C:\\STUFF\\BIN.MKS', 'C:\\PROGRAM
FILES\\PYTHON']
Not at C:\WINDOWS\IEXPLORE.EXE
Not at C:\WINDOWS\IEXPLORE.EXE
Not at C:\WINDOWS\COMMAND\IEXPLORE.EXE
Not at C:\STUFF\BIN.MKS\IEXPLORE.EXE
Not at C:\PROGRAM FILES\PYTHON\IEXPLORE.EXE
IEXPLORE.EXE not on system path
Searching for IEXPLORE.EXE in C:\Program Files\Python
Searching for IEXPLORE.EXE in C:\PP2ndEd\examples\PP2E
Searching for IEXPLORE.EXE in C:\Program Files
Spawning C:\Program Files\Internet Explorer\IEXPLORE.EXE

If you study these trace message you'll notice that the browser wasn't on the system
search path, but was eventually located in a local C:\Program Files subdirectory --
this is just the Launcher module's which and guessLocation functions at
work. As coded, the script searches for Internet Explorer first; if that's not to your
liking, try changing the script's tries list to make Netscape first:

C:\...\PP2E>python LaunchBrowser.py
Opening file://C:\PP2ndEd\examples\PP2E/Internet/Cgi-
Web/PyInternetDemos.html
Looking for netscape.exe on ['C:\\WINDOWS', 'C:\\WINDOWS',
'C:\\WINDOWS\\COMMAND', 'C:\\STUFF\\BIN.MKS', 'C:\\PROGRAM
FILES\\PYTHON']

Programming Python, 2nd Edition, O’Reilly

IT-SC book 232

Not at C:\WINDOWS\netscape.exe
Not at C:\WINDOWS\netscape.exe
Not at C:\WINDOWS\COMMAND\netscape.exe
Not at C:\STUFF\BIN.MKS\netscape.exe
Not at C:\PROGRAM FILES\PYTHON\netscape.exe
netscape.exe not on system path
Searching for netscape.exe in C:\Program Files\Python
Searching for netscape.exe in C:\PP2ndEd\examples\PP2E
Searching for netscape.exe in C:\Program Files
Spawning C:\Program
Files\Netscape\Communicator\Program\netscape.exe

Here, the script eventually found Netscape in a different install directory on the local
machine. Besides automatically finding a user's browser for them, this script also
aims to be portable. When running this file unchanged on Linux, the local Netscape
browser starts, if it lives on your PATH; otherwise, others are tried:

[mark@toy ~/PP2ndEd/examples/PP2E]$ python LaunchBrowser.py
Opening
file:///home/mark/PP2ndEd/examples/PP2E/Internet/Cgi-
Web/PyInternetDemos.html
Looking for netscape on ['/home/mark/bin', '.', '/usr/bin',
'/usr/bin',
'/usr/local/bin', '/usr/X11R6/bin', '/bin',
'/usr/X11R6/bin', '/home/mark/
bin', '/usr/X11R6/bin', '/home/mark/bin', '/usr/X11R6/bin']
Not at /home/mark/bin/netscape
Not at ./netscape
Found /usr/bin/netscape
Running netscape
[mark@toy ~/PP2ndEd/examples/PP2E]$

I have Netscape installed, so running the script this way on my machine generates
the window shown in Figure 4-3, seen under the KDE window manager.

Figure 4-3. Launching a browser on Linux

Programming Python, 2nd Edition, O’Reilly

IT-SC book 233

If you have an Internet connection, you can open pages at remote servers too -- the
next command opens the root page at my site on the starship.python.netserver,
located somewhere on the East Coast the last time I checked:

C:\...\PP2E>python LaunchBrowser.py -live ~lutz
starship.python.net
Opening http://starship.python.net/~lutz
Starting

In Chapter 8, we'll see that this script is also run to start Internet examples in the
top-level demo launcher system: the PyDemos script presented in that chapter
portably opens local or remote web page files with this button-press callback:

[File mode]
 pagepath = os.getcwd() + '/Internet/Cgi-Web'
 demoButton('PyErrata',
 'Internet-based errata report system',
 'LaunchBrowser.py -file
%s/PyErrata/pyerrata.html' % pagepath)

[Live mode]
 site = 'starship.python.net/~lutz'
 demoButton('PyErrata',
 'Internet-based errata report system',
 'LaunchBrowser.py -live
PyErrata/pyerrata.html ' + site)

4.6.3.2 Launching browsers with function calls

Programming Python, 2nd Edition, O’Reilly

IT-SC book 234

Other programs can spawn LaunchBrowser.py command lines like those shown
previously with tools like os.system, as usual; but since the script's core logic is
coded in a function, it can just as easily be imported and called:

>>> from PP2E.LaunchBrowser import launchBrowser
>>>
launchBrowser(Page=r'C:\Stuff\Website\Public_html\about-
pp.html')
Opening file://C:\Stuff\Website\Public_html\about-pp.html
Starting
>>>

When called like this, launchBrowser isn't much different from spawning a start
command on DOS or a netscape command on Linux, but the Python
launchBrowser function is designed to be a portable interface for browser startup
across platforms. Python scripts can use this interface to pop up local HTML
documents in web browsers; on machines with live Internet links, this call even lets
scripts open browsers on remote pages on the Web:

>>> launchBrowser(Mode='-live', Page='index.html',
Site='www.python.org')
Opening http://www.python.org/index.html
Starting

>>> launchBrowser(Mode='-live',
Page='~lutz/PyInternetDemos.html',
... Site='starship.python.net')
Opening
http://starship.python.net/~lutz/PyInternetDemos.html
Starting

On my computer, the first call here opens a new Internet Explorer GUI window if
needed, dials out through my modem, and fetches the Python home page from
http://www.python.org on both Windows and Linux -- not bad for a single function
call. The second call does the same, but with a web demos page we'll explore later.

4.6.3.3 A Python "multimedia extravaganza"

I mentioned earlier that browsers are a cheap way to present multimedia. Alas, this
sort of thing is best viewed live, so the best I can do is show startup commands
here. The next command line and function call, for example, display two GIF images
in Internet Explorer on my machine (be sure to use full local pathnames). The result
of the first of these is captured in Figure 4-4.

C:\...\PP2E>python LaunchBrowser.py
 -file
C:\PP2ndEd\examples\PP2E\Gui\gifs\hills.gif
Opening file://C:\PP2ndEd\examples\PP2E\Gui\gifs\hills.gif
Starting

Programming Python, 2nd Edition, O’Reilly

IT-SC book 235

C:\temp>python
>>> from LaunchBrowser import launchBrowser
>>>
launchBrowser(Page=r'C:\PP2ndEd\examples\PP2E\Gui\gifs\mp_l
umberjack.gif')
Opening
file://C:\PP2ndEd\examples\PP2E\Gui\gifs\mp_lumberjack.gif
Starting

Figure 4-4. Launching a browser on an image file

The next command line and call open the sousa.au audio file on my machine too; the
second of these downloads the file from http://www.python.org first. If all goes as
planned, they'll make the Monty Python theme song play on your computer too:

C:\PP2ndEd\examples>python LaunchBrowser.py
 -file
C:\PP2ndEd\examples\PP2E\Internet\Ftp\sousa.au
Opening
file://C:\PP2ndEd\examples\PP2E\Internet\Ftp\sousa.au
Starting

>>> launchBrowser(Mode='-live',
... Site='www.python.org',
... Page='ftp/python/misc/sousa.au',
... verbose=0)
>>>

Of course, you could just pass these filenames to a spawned start command on
Windows, or run the appropriate handler program directly with something like
os.system. But opening these files in a browser is a more portable approach --
you don't need to keep track of a set of file-handler programs per platform. Provided
your scripts use a portable browser launcher like LaunchBrowser, you don't even
need to keep track of a browser per platform.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 236

In closing, I want to point out that LaunchBrowser reflects browsers that I tend to
use. For instance, it tries to find Internet Explorer before Netscape on Windows, and
prefers Netscape over Mosaic and Lynx on Linux, but you should feel free to change
these choices in your copy of the script. In fact, both LaunchBrowser and
Launcher make a few heuristic guesses when searching for files that may not
make sense on every computer. As always, hack on; this is Python, after all.

Reptilian Minds Think Alike

A postscript: roughly one year after I wrote the LaunchBrowser script,
Python release 2.0 sprouted a new standard library module that serves a
similar purpose: webbrowser.open(url) also attempts to provide a
portable interface for launching browsers from scripts. This module is more
complex, but likely to support more options than the LaunchBrowser
script presented here (e.g., Macintosh browsers are directly supported with
the Mac ic.launcurl(url) call -- a call I'd add to LaunchBrowser
too, if I had a Mac lying around the office). See the library manual in
releases 2.0 and later for details.

Just before publication, I stumbled onto another script called FixTk.py in the
lib-tk subdirectory of the Python source library; at least in Python 1.5.2, this
script tries to locate the Tcl/Tk 8.0 DLLs on Windows by checking common
install directories, in order to allow Python/Tkinter programs to work without
Tcl/Tk PATH settings. It doesn't recursively search directory trees like the
Launcher module presented in this chapter, and may be defunct by the
time you read this (Tk is copied into Python's own install directory as of
Python 2.0), but it is similar in spirit to some of the tools in this chapter's
last section.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 237

Chapter 5. Larger System Examples II

5.1 "The Greps of Wrath"

5.2 Fixing DOS Line Ends

5.3 Fixing DOS Filenames

5.4 Searching Directory Trees

5.5 Visitor: Walking Trees Generically

5.6 Copying Directory Trees

5.7 Deleting Directory Trees

5.8 Comparing Directory Trees

5.1 "The Greps of Wrath"

This chapter continues our exploration of systems programming case studies. Here,
the focus is on Python scripts that perform more advanced kinds of file and directory
processing. The examples in this chapter do system-level tasks such as converting
files, comparing and copying directories, and searching files and directories for
strings -- a task idiomatically known as "grepping."

Most of the tools these scripts employ were introduced in Chapter 2. Here, the goal
is to show these tools in action, in the context of more useful and realistic programs.
As in the prior chapter, learning about Python programming techniques such as OOP
and encapsulation is also a hidden subgoal of most of the examples presented here.

5.2 Fixing DOS Line Ends

When I wrote the first edition of this book, I shipped two copies of every example file
on the CD-ROM (view CD-ROM content online at
http://examples.oreilly.com/python2) -- one with Unix line-end markers, and one
with DOS markers. The idea was that this would make it easy to view and edit the
files on either platform. Readers would simply copy the examples directory tree
designed for their platform onto their hard drive, and ignore the other one.

If you read Chapter 2, you know the issue here: DOS (and by proxy, Windows)
marks line ends in text files with the two characters \r\n (carriage-return, line-
feed), but Unix uses just a single \n. Most modern text editors don't care -- they
happily display text files encoded in either format. Some tools are less forgiving,
though. I still occasionally see odd \r characters when viewing DOS files on Unix, or

Programming Python, 2nd Edition, O’Reilly

IT-SC book 238

an entire file in a single line when looking at Unix files on DOS (the Notepad
accessory does this on Windows, for example).

Because this is only an occasional annoyance, and because it's easy to forget to keep
two distinct example trees in sync, I adopted a different policy for this second
edition: we're shipping a single copy of the examples (in DOS format), along with a
portable converter tool for changing to and from other line-end formats.

The main obstacle, of course, is how to go about providing a portable and easy to
use converter -- one that runs "out of the box" on almost every computer, without
changes or recompiles. Some Unix platforms have commands like fromdos and
dos2unix, but they are not universally available even on Unix. DOS batch files and
csh scripts could do the job on Windows and Unix, respectively, but neither solution
works on both platforms.

Fortunately, Python does. The scripts presented in Examples Example 5-1, Example
5-3, and Example 5-4 convert end-of-line markers between DOS and Unix formats;
they convert a single file, a directory of files, and a directory tree of files. In this
section, we briefly look at each of the three scripts, and contrast some of the system
tools they apply. Each reuses the prior's code, and becomes progressively more
powerful in the process.

The last of these three scripts, Example 5-4, is the portable converter tool I was
looking for; it converts line ends in the entire examples tree, in a single step.
Because it is pure Python, it also works on both DOS and Unix unchanged; as long as
Python is installed, it is the only line converter you may ever need to remember.

5.2.1 Converting Line Ends in One File

These three scripts were developed in stages on purpose, so I could first focus on
getting line-feed conversions right, before worrying about directories and tree
walking logic. With that scheme in mind, Example 5-1 addresses just the task of
converting lines in a single text file.

Example 5-1. PP2E\PyTools\fixeoln_one.py

###
########
Use: "python fixeoln_one.py [tounix|todos] filename".
Convert end-of-lines in the single text file whose name
is passed
in on the command line, to the target format (tounix or
todos).
The _one, _dir, and _all converters reuse the convert
function
here. convertEndlines changes end-lines only if
necessary:
lines that are already in the target format are left
unchanged,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 239

so it's okay to convert a file > once with any of the 3
fixeoln
scripts. Notes: must use binary file open modes for this
to
work on Windows, else default text mode automatically
deletes
the \r on reads, and adds an extra \r for each \n on
writes;
Mac format not supported; PyTools\dumpfile.py shows raw
bytes;
###
########

import os
listonly = 0 # 1=show file to be changed, don't rewrite

def convertEndlines(format, fname): #
convert one file
 if not os.path.isfile(fname): #
todos: \n => \r\n
 print 'Not a text file', fname #
tounix: \r\n => \n
 return #
skip directory names

 newlines = []
 changed = 0
 for line in open(fname, 'rb').readlines():
use binary i/o modes
 if format == 'todos': #
else \r lost on Win
 if line[-1:] == '\n' and line[-2:-1] != '\r':
 line = line[:-1] + '\r\n'
 changed = 1
 elif format == 'tounix': #
avoids IndexError
 if line[-2:] == '\r\n': #
slices are scaled
 line = line[:-2] + '\n'
 changed = 1
 newlines.append(line)

 if changed:
 try: #
might be read-only
 print 'Changing', fname

Programming Python, 2nd Edition, O’Reilly

IT-SC book 240

 if not listonly: open(fname,
'wb').writelines(newlines)
 except IOError, why:
 print 'Error writing to file %s: skipped (%s)'
% (fname, why)

if __name__ == '__main__':
 import sys
 errmsg = 'Required arguments missing:
["todos"|"tounix"] filename'
 assert (len(sys.argv) == 3 and sys.argv[1] in ['todos',
'tounix']), errmsg
 convertEndlines(sys.argv[1], sys.argv[2])
 print 'Converted', sys.argv[2]

This script is fairly straightforward as system utilities go; it relies primarily on the
built-in file object's methods. Given a target format flag and filename, it loads the
file into a lines list using the readlines method, converts input lines to the target
format if needed, and writes the result back to the file with the writelines
method if any lines were changed:

C:\temp\examples>python %X%\PyTools\fixeoln_one.py tounix
PyDemos.pyw
Changing PyDemos.pyw
Converted PyDemos.pyw

C:\temp\examples>python %X%\PyTools\fixeoln_one.py todos
PyDemos.pyw
Changing PyDemos.pyw
Converted PyDemos.pyw

C:\temp\examples>fc PyDemos.pyw %X%\PyDemos.pyw
Comparing files PyDemos.pyw and
C:\PP2ndEd\examples\PP2E\PyDemos.pyw
FC: no differences encountered

C:\temp\examples>python %X%\PyTools\fixeoln_one.py todos
PyDemos.pyw
Converted PyDemos.pyw

C:\temp\examples>python %X%\PyTools\fixeoln_one.py toother
nonesuch.txt
Traceback (innermost last):
 File "C:\PP2ndEd\examples\PP2E\PyTools\fixeoln_one.py",
line 45, in ?
 assert (len(sys.argv) == 3 and sys.argv[1] in ['todos',
'tounix']), errmsg

Programming Python, 2nd Edition, O’Reilly

IT-SC book 241

AssertionError: Required arguments missing:
["todos"|"tounix"] filename

Here, the first command converts the file to Unix line-end format (tounix), and the
second and fourth convert to the DOS convention -- all regardless of the platform on
which this script is run. To make typical usage easier, converted text is written back
to the file in place, instead of to a newly created output file. Notice that this script's
filename has a "_" in it, not a "-"; because it is meant to be both run as a script and
imported as a library, its filename must translate to a legal Python variable name in
importers (fixeoln-one.py won't work for both roles).

In all the examples in this chapter that change files in directory
trees, the C:\temp\examples and C:\temp\cpexamples
directories used in testing are full copies of the real PP2E
examples root directory. I don't always show the copy
commands used to create these test directories along the way
(at least not until we've written our own in Python).

5.2.1.1 Slinging bytes and verifying results

The fc DOS file-compare command in the preceding interaction confirms the
conversions, but to better verify the results of this Python script, I wrote another,
shown in Example 5-2.

Example 5-2. PP2E\PyTools\dumpfile.py

import sys
bytes = open(sys.argv[1], 'rb').read()
print '-'*40
print repr(bytes)

print '-'*40
while bytes:
 bytes, chunk = bytes[4:], bytes[:4] # show 4-
bytes per line
 for c in chunk: print oct(ord(c)), '\t', # show
octal of binary value
 print

print '-'*40
for line in open(sys.argv[1], 'rb').readlines():
 print repr(line)

To give a clear picture of a file's contents, this script opens a file in binary mode (to
suppress automatic line-feed conversions), prints its raw contents (bytes) all at
once, displays the octal numeric ASCII codes of it contents four bytes per line, and

Programming Python, 2nd Edition, O’Reilly

IT-SC book 242

shows its raw lines. Let's use this to trace conversions. First of all, use a simple text
file to make wading through bytes a bit more humane:

C:\temp>type test.txt
a
b
c

C:\temp>python %X%\PyTools\dumpfile.py test.txt
--
'a\015\012b\015\012c\015\012'
--
0141 015 012 0142
015 012 0143 015
012
--
'a\015\012'
'b\015\012'
'c\015\012'

The test.txt file here is in DOS line-end format -- the escape sequence \015\012
displayed by the dumpfile script is simply the DOS \r\n line-end marker in octal
character-code escapes format. Now, converting to Unix format changes all the DOS
\r\n markers to a single \n (\012) as advertised:

C:\temp>python %X%\PyTools\fixeoln_one.py tounix test.txt
Changing test.txt
Converted test.txt

C:\temp>python %X%\PyTools\dumpfile.py test.txt
--
'a\012b\012c\012'
--
0141 012 0142 012
0143 012
--
'a\012'
'b\012'
'c\012'

And converting back to DOS restores the original file format:

C:\temp>python %X%\PyTools\fixeoln_one.py todos test.txt
Changing test.txt
Converted test.txt

C:\temp>python %X%\PyTools\dumpfile.py test.txt
--

Programming Python, 2nd Edition, O’Reilly

IT-SC book 243

'a\015\012b\015\012c\015\012'
--
0141 015 012 0142
015 012 0143 015
012
--
'a\015\012'
'b\015\012'
'c\015\012'

C:\temp>python %X%\PyTools\fixeoln_one.py todos test.txt
makes no changes
Converted test.txt

5.2.1.2 Nonintrusive conversions

Notice that no "Changing" message is emitted for the last command just run,
because no changes were actually made to the file (it was already in DOS format).
Because this program is smart enough to avoid converting a line that is already in
the target format, it is safe to rerun on a file even if you can't recall what format the
file already uses. More naive conversion logic might be simpler, but may not be
repeatable. For instance, a string.replace call can be used to expand a Unix \n
to a DOS \r\n (\015\012), but only once:

>>> import string
>>> lines = 'aaa\nbbb\nccc\n'
>>> lines = string.replace(lines, '\n', '\r\n') #
okay: \r added
>>> lines
'aaa\015\012bbb\015\012ccc\015\012'
>>> lines = string.replace(lines, '\n', '\r\n') #
bad: double \r
>>> lines
'aaa\015\015\012bbb\015\015\012ccc\015\015\012'

Such logic could easily trash a file if applied to it twice.[1] To really understand how
the script gets around this problem, though, we need to take a closer look at its use
of slices and binary file modes.

[1] In fact, see the files old_todos.py, old_tounix.py, and old_toboth.py in the PyTools directory
on the examples CD (see http://examples.oreilly.com/python2) for a complete earlier
implementation built around string.replace. It was repeatable for to-Unix changes, but not
for to-DOS conversion (only the latter may add characters). The fixeoln scripts here were
developed as a replacement, after I got burned by running to-DOS conversions twice.

5.2.1.3 Slicing strings out-of-bounds

This script relies on subtle aspects of string slicing behavior to inspect parts of each
line without size checks. For instance:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 244

The expression line[-2:] returns the last two characters at the end of the line (or
one or zero characters, if the line isn't at least two characters long).

A slice like line[-2:-1] returns the second to last character (or an empty string,
if the line is too small to have a second to last character).

The operation line[:-2] returns all characters except the last two at the end (or
an empty string, if there are fewer than three characters).

Because out-of-bounds slices scale slice limits to be in-bounds, the script doesn't
need to add explicit tests to guarantee that the line is big enough to have end-line
characters at the end. For example:

>>> 'aaaXY'[-2:], 'XY'[-2:], 'Y'[-2:], ''[-2:]
('XY', 'XY', 'Y', '')

>>> 'aaaXY'[-2:-1], 'XY'[-2:-1], 'Y'[-2:-1], ''[-2:-1]
('X', 'X', '', '')

>>> 'aaaXY'[:-2], 'aaaY'[:-1], 'XY'[:-2], 'Y'[:-1]
('aaa', 'aaa', '', '')

If you imagine characters like \r and \n instead of the X and Y here, you'll
understand how the script exploits slice scaling to good effect.

5.2.1.4 Binary file mode revisited

Because this script aims to be portable to Windows, it also takes care to open files in
binary mode, even though they contain text data. As we've seen, when files are
opened in text mode on Windows, \r is stripped from \r\n markers on input, and
\r is added before \n markers on output. This automatic conversion allows scripts
to represent the end-of-line marker as \n on all platforms. Here, though, it would
also mean that the script would never see the \r it's looking for to detect a DOS-
encoded line -- the \r would be dropped before it ever reached the script:

>>> open('temp.txt', 'w').writelines(['aaa\n', 'bbb\n'])
>>> open('temp.txt', 'rb').read()
'aaa\015\012bbb\015\012'
>>> open('temp.txt', 'r').read()
'aaa\012bbb\012'

Without binary open mode, this can lead to fairly subtle and incorrect behavior on
Windows. For example, if files are opened in text mode, converting in "todos" mode
on Windows would actually produce double \r characters: the script might convert
the stripped \n to \r\n, which is then expanded on output to \r\r\n !

>>> open('temp.txt', 'w').writelines(['aaa\r\n',
'bbb\r\n'])
>>> open('temp.txt', 'rb').read()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 245

'aaa\015\015\012bbb\015\015\012'

With binary mode, the script inputs a full \r\n, so no conversion is performed.
Binary mode is also required for output on Windows, to suppress the insertion of \r
characters; without it, the "tounix" conversion would fail on that platform.[2]

[2] But wait -- it gets worse. Because of the auto-deletion and insertion of \r characters in
Windows text mode, we might simply read and write files in text mode to perform the "todos"
line conversion when run on Windows; the file interface will automatically add the \r on
output if it's missing. However, this fails for other usage modes -- "tounix" conversions on
Windows (only binary writes can omit the \r), and "todos" when running on Unix (no \r is
inserted). Magic is not always our friend.

If all that is too subtle to bear, just remember to use the "b" in file open mode
strings if your scripts might be run on Windows, and you mean to process either true
binary data or text data as it is actually stored in the file.

Macintosh Line Conversions

As coded, the convertEndlines function does not support Macintosh
single \r line terminators at all. It neither converts to Macintosh
terminators from DOS and Unix format (\r\n and \n to \r), nor converts
from Macintosh terminators to DOS or Unix format (\r to \r\n or \n).
Files in Mac format pass untouched through both the "todos" and "tounix"
conversions in this script (study the code to see why). I don't use a Mac, but
some readers may.

Since adding Mac support would make this code more complex, and since I
don't like publishing code in books unless it's been well tested, I'll leave
such an extension as an exercise for the Mac Python users in the audience.
But for implementation hints, see file PP2E\PyTools\fixeoln_one_mac.py on
the CD (see http://examples.oreilly.com/python2). When run on Windows, it
does to-Mac conversions:

C:\temp>python %X%\PyTools\fixeoln_one_mac.py tomac
test.txt
Changing test.txt
Converted test.txt

C:\temp>python %X%\PyTools\dumpfile.py test.txt
--
'a\015b\015c\015'
--
0141 015 0142 015
0143 015
--
'a\015b\015c\015'

but fails to convert files already in Mac format to Unix or DOS, because the
file readlines method does not treat a bare \r as a line break on that

Programming Python, 2nd Edition, O’Reilly

IT-SC book 246

platform. The last output line is a single file line, as far as Windows is
concerned; converting back to DOS just adds a single \n at its end.

5.2.2 Converting Line Ends in One Directory

Armed with a fully debugged single file converter, it's an easy step to add support for
converting all files in a single directory. Simply call the single file converter on every
filename returned by a directory listing tool. The script in Example 5-3 uses the
glob module we met in Chapter 2Chapter 2 to grab a list of files to convert.

Example 5-3. PP2E\PyTools\fixeoln_dir.py

Use: "python fixeoln_dir.py [tounix|todos] patterns?".
convert end-lines in all the text files in the current
directory (only: does not recurse to subdirectories).
Reuses converter in the single-file _one version.

import sys, glob
from fixeoln_one import convertEndlines
listonly = 0
patts = ['*.py', '*.pyw', '*.txt', '*.cgi', '*.html', #
text file names
 '*.c', '*.cxx', '*.h', '*.i', '*.out', #
in this package
 'README*', 'makefile*', 'output*', '*.note']

if __name__ == '__main__':
 errmsg = 'Required first argument missing: "todos" or
"tounix"'
 assert (len(sys.argv) >= 2 and sys.argv[1] in ['todos',
'tounix']), errmsg

 if len(sys.argv) > 2: # glob anyhow:
'*' not applied on dos
 patts = sys.argv[2:] # though not
really needed on linux
 filelists = map(glob.glob, patts) # name matches in
this dir only

 count = 0
 for list in filelists:
 for fname in list:
 if listonly:
 print count+1, '=>', fname

Programming Python, 2nd Edition, O’Reilly

IT-SC book 247

 else:
 convertEndlines(sys.argv[1], fname)
 count = count + 1

 print 'Visited %d files' % count

This module defines a list, patts, containing filename patterns that match all the
kinds of text files that appear in the book examples tree; each pattern is passed to
the built-in glob.glob call by map, to be separately expanded into a list of
matching files. That's why there are nested for loops near the end -- the outer loop
steps through each glob result list, and the inner steps through each name within
each list. Try the map call interactively if this doesn't make sense:

>>> import glob
>>> map(glob.glob, ['*.py', '*.html'])
[['helloshell.py'], ['about-pp.html', 'about-pp2e.html',
'about-ppr2e.html']]

This script requires a convert mode flag on the command line, and assumes that it is
run in the directory where files to be converted live; cd to the directory to be
converted before running this script (or change it to accept a directory name
argument too):

C:\temp\examples>python %X%\PyTools\fixeoln_dir.py tounix
Changing Launcher.py
Changing Launch_PyGadgets.py
Changing LaunchBrowser.py
 ...lines deleted...
Changing PyDemos.pyw
Changing PyGadgets_bar.pyw
Changing README-PP2E.txt
Visited 21 files

C:\temp\examples>python %X%\PyTools\fixeoln_dir.py todos
Changing Launcher.py
Changing Launch_PyGadgets.py
Changing LaunchBrowser.py
 ...lines deleted...
Changing PyDemos.pyw
Changing PyGadgets_bar.pyw
Changing README-PP2E.txt
Visited 21 files

C:\temp\examples>python %X%\PyTools\fixeoln_dir.py todos
makes no changes
Visited 21 files

C:\temp\examples>fc PyDemos.pyw %X%\PyDemos.pyw

Programming Python, 2nd Edition, O’Reilly

IT-SC book 248

Comparing files PyDemos.pyw and
C:\PP2ndEd\examples\PP2E\PyDemos.pyw
FC: no differences encountered

Notice that the third command generated no "Changing" messages again. Because
the convertEndlines function of the single-file module is reused here to perform
the actual updates, this script inherits that function's repeatability : it's okay to rerun
this script on the same directory any number of times. Only lines that require
conversion will be converted. This script also accepts an optional list of filename
patterns on the command line, to override the default patts list of files to be
changed:

C:\temp\examples>python %X%\PyTools\fixeoln_dir.py tounix
*.pyw *.csh
Changing echoEnvironment.pyw
Changing Launch_PyDemos.pyw
Changing Launch_PyGadgets_bar.pyw
Changing PyDemos.pyw
Changing PyGadgets_bar.pyw
Changing cleanall.csh
Changing makeall.csh
Changing package.csh
Changing setup-pp.csh
Changing setup-pp-embed.csh
Changing xferall.linux.csh
Visited 11 files

C:\temp\examples>python %X%\PyTools\fixeoln_dir.py tounix
*.pyw *.csh
Visited 11 files

Also notice that the single-file script's convertEndlines function performs an
initial os.path.isfile test to make sure the passed-in filename represents a file,
not a directory; when we start globbing with patterns to collect files to convert, it's
not impossible that a pattern's expansion might include the name of a directory
along with the desired files.

Unix and Linux users: Unix-like shells automatically glob (i.e.,
expand) filename pattern operators like * in command lines
before they ever reach your script. You generally need to quote
such patterns to pass them in to scripts verbatim (e.g.,
"*.py").The fixeoln_dir script will still work if you don't—
its glob.glob calls will simply find a single matching filename
for each already-globbed name, and so have no effect:

>>>glob.glob('PyDemos.pyw')
['PyDemos.pyw']

Programming Python, 2nd Edition, O’Reilly

IT-SC book 249

Patterns are not pre-globbed in the DOS shell, though, so the
glob.glob calls here are still a good idea in scripts that aspire
to be as portable as this one.

5.2.3 Converting Line Ends in an Entire Tree

Finally, Example 5-4 applies what we've already learned to an entire directory tree.
It simply runs the file-converter function to every filename produced by tree-walking
logic. In fact, this script really just orchestrates calls to the original and already
debugged convertEndlines function.

Example 5-4. PP2E\PyTools\fixeoln_all.py

Use: "python fixeoln_all.py [tounix|todos] patterns?".
find and convert end-of-lines in all text files at and
below the directory where this script is run (the dir
you are in when you type 'python'). If needed, tries to
use the Python find.py library module, else reads the
output of a unix-style find command; uses a default
filename patterns list if patterns argument is absent.
This script only changes files that need to be changed,
so it's safe to run brute-force from a root-level dir.

import os, sys, string
debug = 0
pyfind = 0 # force py find
listonly = 0 # 1=show find results only

def findFiles(patts, debug=debug, pyfind=pyfind):
 try:
 if sys.platform[:3] == 'win' or pyfind:
 print 'Using Python find'
 try:
 import find # use
python-code find.py
 except ImportError: # use
mine if deprecated!
 from PP2E.PyTools import find # may
get from my dir anyhow
 matches = map(find.find, patts) #
startdir default = '.'
 else:
 print 'Using find executable'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 250

 matches = []
 for patt in patts:
 findcmd = 'find . -name "%s" -print' % patt
run find command
 lines = os.popen(findcmd).readlines()
remove endlines
 matches.append(map(string.strip, lines))
lambda x: x[:-1]
 except:
 assert 0, 'Sorry - cannot find files'
 if debug: print matches
 return matches

if __name__ == '__main__':
 from fixeoln_dir import patts
 from fixeoln_one import convertEndlines

 errmsg = 'Required first argument missing: "todos" or
"tounix"'
 assert (len(sys.argv) >= 2 and sys.argv[1] in ['todos',
'tounix']), errmsg

 if len(sys.argv) > 2: # quote in unix
shell
 patts = sys.argv[2:] # else tries to
expand
 matches = findFiles(patts)

 count = 0
 for matchlist in matches: # a list of
lists
 for fname in matchlist: # one per
pattern
 if listonly:
 print count+1, '=>', fname
 else:
 convertEndlines(sys.argv[1], fname)
 count = count + 1
 print 'Visited %d files' % count

On Windows, the script uses the portable find.find built-in tool we met in
Chapter 2 (either Python's or the hand-rolled equivalent)[3] to generate a list of all
matching file and directory names in the tree; on other platforms, it resorts to
spawning a less portable and probably slower find shell command just for illustration
purposes.

[3] Recall that the home directory of a running script is always added to the front of sys.path
to give the script import visibility to other files in the script's directory. Because of that, this
script would normally load the PP2E\PyTools\find.py module anyhow (not the one in the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 251

Python library), by just saying import find; it need not specify the full package path in the
import. The try handler and full path import are useful here only if this script is moved to a
different source directory. Since I move files a lot, I tend to code with self-inflicted worst-case
scenarios in mind.

Once the file pathname lists are compiled, this script simply converts each found file
in turn using the single-file converter module's tools. Here is the collection of scripts
at work converting the book examples tree on Windows; notice that this script also
processes the current working directory (CWD; cd to the directory to be converted
before typing the command line), and that Python treats forward and backward
slashes the same in the program filename:

C:\temp\examples>python %X%/PyTools/fixeoln_all.py tounix
Using Python find
Changing .\LaunchBrowser.py
Changing .\Launch_PyGadgets.py
Changing .\Launcher.py
Changing .\Other\cgimail.py
 ...lots of lines deleted...
Changing .\EmbExt\Exports\ClassAndMod\output.prog1
Changing .\EmbExt\Exports\output.prog1
Changing .\EmbExt\Regist\output
Visited 1051 files

C:\temp\examples>python %X%/PyTools/fixeoln_all.py todos
Using Python find
Changing .\LaunchBrowser.py
Changing .\Launch_PyGadgets.py
Changing .\Launcher.py
Changing .\Other\cgimail.py
 ...lots of lines deleted...
Changing .\EmbExt\Exports\ClassAndMod\output.prog1
Changing .\EmbExt\Exports\output.prog1
Changing .\EmbExt\Regist\output
Visited 1051 files

C:\temp\examples>python %X%/PyTools/fixeoln_all.py todos
Using Python find
Not a text file .\Embed\Inventory\Output
Not a text file .\Embed\Inventory\WithDbase\Output
Visited 1051 files

The first two commands convert over 1000 files, and usually take some eight
seconds of real-world time to finish on my 650 MHz Windows 98 machine; the third
takes only six seconds, because no files have to be updated (and fewer messages
have to be scrolled on the screen). Don't take these figures too seriously, though;
they can vary by system load, and much of this time is probably spent scrolling the
script's output to the screen.

5.2.3.1 The view from the top

Programming Python, 2nd Edition, O’Reilly

IT-SC book 252

This script and its ancestors are shipped on the book's CD, as that portable converter
tool I was looking for. To convert all examples files in the tree to Unix line-terminator
format, simply copy the entire PP2E examples tree to some "examples" directory on
your hard drive, and type these two commands in a shell:

cd examples/PP2E
python PyTools/fixeoln_all.py tounix

Of course, this assumes Python is already installed (see the CD's README file for
details; see http://examples.oreilly.com/python2), but will work on almost every
platform in use today.[4] To convert back to DOS, just replace "tounix" with "todos"
and rerun. I ship this tool with a training CD for Python classes I teach too; to
convert those files, we simply type:

[4] Except Macs, perhaps -- see Macintosh Line Conversions earlier in this chapter. To convert
to Mac format, try replacing the script's import of fixeoln_one to load fixeoln_one_mac.

cd Html\Examples
python ..\..\Tools\fixeoln_all.py tounix

Once you get accustomed to the command lines, you can use this in all sorts of
contexts. Finally, to make the conversion easier for beginners to run, the top-level
examples directory includes tounix.py and todos.py scripts that can be simply
double-clicked in a file explorer GUI; Example 5-5 shows the "tounix" converter.

Example 5-5. PP2E\tounix.py

#!/usr/local/bin/python
###
###########
Run me to convert all text files to UNIX/Linux line-feed
format.
You only need to do this if you see odd '\r' characters
at the end
of lines in text files in this distribution, when they
are viewed
with your text editor (e.g., vi). This script converts
all files
at and below the examples root, and only converts files
that have
not already been converted (it's okay to run this
multiple times).

Since this is a Python script which runs another Python
script,
you must install Python first to run this program; then
from your
system command-line (e.g., a xterm window), cd to the
directory

Programming Python, 2nd Edition, O’Reilly

IT-SC book 253

where this script lives, and then type "python
tounix.py". You
may also be able to simply click on this file's icon in
your file
system explorer, if it knows what '.py' file are.
###
###########

import os
prompt = """
This program converts all text files in the book
examples distribution to UNIX line-feed format.
Are you sure you want to do this (y=yes)? """

answer = raw_input(prompt)
if answer not in ['y', 'Y', 'yes']:
 print 'Cancelled'
else:
 os.system('python PyTools/fixeoln_all.py tounix')

This script addresses the end user's perception of usability, but other factors impact
programmer usability -- just as important to systems that will be read or changed by
others. For example, the file, directory, and tree converters are coded in separate
script files, but there is no law against combining them into a single program that
relies on a command-line arguments pattern to know which of the three modes to
run. The first argument could be a mode flag, tested by such a program:

if mode == '-one':
 ...
elif mode == '-dir':
 ...
elif mode == '-all:
 ...

That seems more confusing than separate files per mode, though; it's usually much
easier to botch a complex command line than to type a specific program file's name.
It will also make for a confusing mix of global names, and one very big piece of code
at the bottom of the file. As always, simpler is usually better.

5.3 Fixing DOS Filenames

The heart of the prior script was findFiles, a function than knows how to portably
collect matching file and directory names in an entire tree, given a list of filename
patterns. It doesn't do much more than the built-in find.find call, but can be
augmented for our own purposes. Because this logic was bundled up in a function,
though, it automatically becomes a reusable tool.

For example, the next script imports and applies findFiles, to collect all file
names in a directory tree, by using the filename pattern * (it matches everything). I

Programming Python, 2nd Edition, O’Reilly

IT-SC book 254

use this script to fix a legacy problem in the book's examples tree. The names of
some files created under MS-DOS were made all uppercase; for example, spam.py
became SPAM.PY somewhere along the way. Because case is significant both in
Python and on some platforms, an import statement like "import spam" will
sometimes fail for uppercase filenames.

To repair the damage everywhere in the thousand-file examples tree, I wrote and
ran Example 5-6. It works like this: For every filename in the tree, it checks to see if
the name is all uppercase, and asks the console user whether the file should be
renamed with the os.rename call. To make this easy, it also comes up with a
reasonable default for most new names -- the old one in all-lowercase form.

Example 5-6. PP2E\PyTools\fixnames_all.py

Use: "python ..\..\PyTools\fixnames_all.py".
find all files with all upper-case names at and below
the current directory ('.'); for each, ask the user for
a new name to rename the file to; used to catch old
uppercase file names created on MS-DOS (case matters on
some platforms, when importing Python module files);
caveats: this may fail on case-sensitive machines if
directory names are converted before their contents--the
original dir name in the paths returned by find may no
longer exist; the allUpper heuristic also fails for
odd filenames that are all non-alphabetic (ex: '.');

import os, string
listonly = 0

def allUpper(name):
 for char in name:
 if char in string.lowercase: # any lowercase
letter disqualifies
 return 0 # else all upper,
digit, or special
 return 1

def convertOne(fname):
 fpath, oldfname = os.path.split(fname)
 if allUpper(oldfname):
 prompt = 'Convert dir=%s file=%s? (y|Y)' % (fpath,
oldfname)
 if raw_input(prompt) in ['Y', 'y']:
 default = string.lower(oldfname)
 newfname = raw_input('Type new file name
(enter=%s): ' % default)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 255

 newfname = newfname or default
 newfpath = os.path.join(fpath, newfname)
 os.rename(fname, newfpath)
 print 'Renamed: ', fname
 print 'to: ', str(newfpath)
 raw_input('Press enter to continue')
 return 1
 return 0

if __name__ == '__main__':
 patts = "*" # inspect all
file names
 from fixeoln_all import findFiles # reuse finder
function
 matches = findFiles(patts)

 ccount = vcount = 0
 for matchlist in matches: # list of
lists, one per pattern
 for fname in matchlist: # fnames are
full directory paths
 print vcount+1, '=>', fname # includes
names of directories
 if not listonly:
 ccount = ccount + convertOne(fname)
 vcount = vcount + 1
 print 'Converted %d files, visited %d' % (ccount,
vcount)

As before, the findFiles function returns a list of simple filename lists,
representing the expansion of all patterns passed in (here, just one result list, for the
wildcard pattern *).[5] For each file and directory name in the result, this script's
convertOne function prompts for name changes; an os.path.split and an
os.path.join call combination portably tacks the new filename onto the old
directory name. Here is a renaming session in progress on Windows:

[5] Interestingly, using string '*' for the patterns list works the same as using list ['*'] here,
only because a single-character string is a sequence that contains itself; compare the results
of map(find.find, '*') with map(find.find, ['*']) interactively to verify.

C:\temp\examples>python %X%\PyTools\fixnames_all.py
Using Python find
1 => .\.cshrc
2 => .\LaunchBrowser.out.txt
3 => .\LaunchBrowser.py
...
 ...more deleted...
...

Programming Python, 2nd Edition, O’Reilly

IT-SC book 256

218 => .\Ai
219 => .\Ai\ExpertSystem
220 => .\Ai\ExpertSystem\TODO
Convert dir=.\Ai\ExpertSystem file=TODO? (y|Y)n
221 => .\Ai\ExpertSystem__init__.py
222 => .\Ai\ExpertSystem\holmes
223 => .\Ai\ExpertSystem\holmes\README.1ST
Convert dir=.\Ai\ExpertSystem\holmes file=README.1ST?
(y|Y)y
Type new file name (enter=readme.1st):
Renamed: .\Ai\ExpertSystem\holmes\README.1st
to: .\Ai\ExpertSystem\holmes\readme.1st
Press enter to continue
224 => .\Ai\ExpertSystem\holmes\README.2ND
Convert dir=.\Ai\ExpertSystem\holmes file=README.2ND?
(y|Y)y
Type new file name (enter=readme.2nd): readme-more
Renamed: .\Ai\ExpertSystem\holmes\README.2nd
to: .\Ai\ExpertSystem\holmes\readme-more
Press enter to continue
...
 ...more deleted...
...
1471 => .\todos.py
1472 => .\tounix.py
1473 => .\xferall.linux.csh
Converted 2 files, visited 1473

This script could simply convert every all-uppercase name to an all-lowercase
equivalent automatically, but that's potentially dangerous (some names might
require mixed-case). Instead, it asks for input during the traversal, and shows the
results of each renaming operation along the way.

5.3.1 Rewriting with os.path.walk

Notice, though, that the pattern-matching power of the find.find call goes
completely unused in this script. Because it always must visit every file in the tree,
the os.path.walk interface we studied in Chapter 2 would work just as well, and
avoids any initial pause while a filename list is being collected (that pause is
negligible here, but may be significant for larger trees). Example 5-7 is an equivalent
version of this script that does its tree traversal with the walk callbacks-based
model.

Example 5-7. PP2E\PyTools\fixnames_all2.py

###

Use: "python ..\..\PyTools\fixnames_all2.py".

Programming Python, 2nd Edition, O’Reilly

IT-SC book 257

same, but use the os.path.walk interface, not find.find;
to make this work like the simple find version, puts of
visiting directories until just before visiting their
contents (find.find lists dir names before their
contents);
renaming dirs here can fail on case-sensitive platforms
too--walk keeps extending paths containing old dir names;
###

import os
listonly = 0
from fixnames_all import convertOne

def visitname(fname):
 global ccount, vcount
 print vcount+1, '=>', fname
 if not listonly:
 ccount = ccount + convertOne(fname)
 vcount = vcount + 1

def visitor(myData, directoryName, filesInDirectory): #
called for each dir
 visitname(directoryName) # do
dir we're in now,
 for fname in filesInDirectory: #
and non-dir files here
 fpath = os.path.join(directoryName, fname) #
fnames have no dirpath
 if not os.path.isdir(fpath):
 visitname(fpath)

ccount = vcount = 0
os.path.walk('.', visitor, None)
print 'Converted %d files, visited %d' % (ccount, vcount)

This version does the same job, but visits one extra file (the topmost root directory),
and may visit directories in a different order (os.listdir results are unordered).
Both versions run in under a dozen seconds for the example directory tree on my
computer.[6] We'll revisit this script, as well as the fixeoln line-end fixer, in the
context of a general tree-walker class hierarchy later in this chapter.

[6] Very subtle thing: both versions of this script might fail on platforms where case matters, if
they rename directoriesalong the way. If a directory is renamed before the contents of that
directory have been visited (e.g., a directory SPAM renamed to spam), then later reference to
the directory's contents using the old name (e.g., SPAM/filename) will no longer be valid on
case-sensitive platforms. This can happen in the find.find version, because directories can
and do show up in the result list before their contents. It's also a potential with the
os.path.walk version, because the prior directory path (with original directory names) keeps
being extended at each level of the tree. I only use this script on Windows (DOS), so I haven't

Programming Python, 2nd Edition, O’Reilly

IT-SC book 258

been bitten by this in practice. Workarounds -- ordering find result lists, walking trees in a
bottom-up fashion, making two distinct passes for files and directories, queuing up directory
names on a list to be renamed later, or simply not renaming directories at all -- are all
complex enough to be delegated to the realm of reader experiments. As a rule of thumb,
changing a tree's names or structure while it is being walked is a risky venture.

5.4 Searching Directory Trees

Engineers love to change things. As I was writing this book, I found it almost
irresistible to move and rename directories, variables, and shared modules in the
book examples tree, whenever I thought I'd stumbled on to a more coherent
structure. That was fine early on, but as the tree became more intertwined, this
became a maintenance nightmare. Things like program directory paths and module
names were hardcoded all over the place -- in package import statements, program
startup calls, text notes, configuration files, and more.

One way to repair these references, of course, is to edit every file in the directory by
hand, searching each for information that has changed. That's so tedious as to be
utterly impossible in this book's examples tree, though; as I wrote these words, the
example tree contained 118 directories and 1342 files! (To count for yourself, run a
command-line python PyTools/visitor.py 1 in the PP2E examples root
directory.) Clearly, I needed a way to automate updates after changes.

5.4.1 Greps and Globs in Shells and Python

There is a standard way to search files for strings on Unix and Linux systems: the
command-line program grep and its relatives list all lines in one or more files
containing a string or string pattern.[7] Given that Unix shells expand (i.e., "glob")
filename patterns automatically, a command such as grep popen *.py will search
a single directory's Python files for string "popen". Here's such a command in action
on Windows (I installed a commercial Unix-like fgrep program on my Windows 98
laptop because I missed it too much there):

[7] In fact, the act of searching files often goes by the colloquial name "grepping" among
developers who have spent any substantial time in the Unix ghetto.

C:\...\PP2E\System\Filetools>fgrep popen *.py
diffall.py:# - we could also os.popen a diff (unix) or fc
(dos)
dirdiff.py:# - use os.popen('ls...') or glob.glob +
os.path.split
dirdiff6.py: files1 = os.popen('ls %s' %
dir1).readlines()
dirdiff6.py: files2 = os.popen('ls %s' %
dir2).readlines()
testdirdiff.py: expected = expected + os.popen(test %
'dirdiff').read()
testdirdiff.py: output = output + os.popen(test %
script).read()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 259

DOS has a command for searching files too -- find, not to be confused with the Unix
find directory walker command:

C:\...\PP2E\System\Filetools>find /N "popen" testdirdiff.py

---------- testdirdiff.py
[8] expected = expected + os.popen(test %
'dirdiff').read()
[15] output = output + os.popen(test % script).read(
)

You can do the same within a Python script, by either running the previously
mentioned shell command with os.system or os.popen, or combining the grep
and glob built-in modules. We met the glob module in Chapter 2; it expands a
filename pattern into a list of matching filename strings (much like a Unix shell). The
standard library also includes a grep module, which acts like a Unix grep command:
grep.grep prints lines containing a pattern string among a set of files. When used
with glob, the effect is much like the fgrep command:

>>> from grep import grep
>>> from glob import glob
>>> grep('popen', glob('*.py'))
diffall.py: 16: # - we could also os.popen a diff (unix)
or fc (dos)
dirdiff.py: 12: # - use os.popen('ls...') or glob.glob +
os.path.split
dirdiff6.py: 19: files1 = os.popen('ls %s' %
dir1).readlines()
dirdiff6.py: 20: files2 = os.popen('ls %s' %
dir2).readlines()
testdirdiff.py: 8: expected = expected +
os.popen(test % 'dirdiff')...
testdirdiff.py: 15: output = output +
os.popen(test % script).read()

>>> import glob, grep
>>> grep.grep('system', glob.glob('*.py'))
dirdiff.py: 16: # - on unix systems we could do something
similar by
regtest.py: 18: os.system('%s < %s > %s.out 2>&1'
% (program, ...
regtest.py: 23: os.system('%s < %s > %s.out 2>&1'
% (program, ...
regtest.py: 24: os.system('diff %s.out %s.out.bkp
> %s.diffs' ...

The grep module is written in pure Python code (no shell commands are run), is
completely portable, and accepts both simple strings and general regular expression

Programming Python, 2nd Edition, O’Reilly

IT-SC book 260

patterns as the search key (regular expressions appear later in this text).
Unfortunately, it is also limited in two major ways:

It simply prints matching lines instead of returning them in a list for later processing.
We could intercept and split its output by redirecting sys.stdin to an object
temporarily (Chapter 2 showed how), but that's fairly inconvenient.[8]

[8] Due to its limitations, the grep module has been tagged as "deprecated" as of
Python 1.6, and may disappear completely in future releases. It was never intended
to become a widely reusable tool. Use other tree-walking techniques in this book to
search for strings in files, directories, and trees. Of the original Unix-like grep, glob,
and find modules in Python's library, only glob remains nondeprecated today (but
see also the custom find implementation presented in Chapter 4).

More crucial here, the grep/glob combination still inspects only a single directory ;
as we also saw in Chapter 2, we need to do more to search all files in an entire
directory tree.

On Unix systems, we can work around the second of these limitations by running a
grep shell command from within a find shell command. For instance, the following
Unix command line:

find . -name "*.py" -print -exec fgrep popen {} \;

would pinpoint lines and files at and below the current directory that mention
"popen". If you happen to have a Unix-like find command on every machine you will
ever use, this is one way to process directories.

5.4.1.1 Cleaning up bytecode files

I used to run the script in Example 5-8 on some of my machines to remove all .pyc
bytecode files in the examples tree before packaging or upgrading Pythons (it's not
impossible that old binary bytecode files are not forward-compatible with newer
Python releases).

Example 5-8. PP2E\PyTools\cleanpyc.py

find and delete all "*.pyc" bytecode files at and below
the directory where this script is run; this assumes a
Unix-like find command, and so is very non-portable; we
could instead use the Python find module, or just walk
the directry trees with portable Python code; the find
-exec option can apply a Python script to each file too;

import os, sys

if sys.platform[:3] == 'win':
 findcmd = r'c:\stuff\bin.mks\find . -name "*.pyc" -
print'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 261

else:
 findcmd = 'find . -name "*.pyc" -print'
print findcmd

count = 0
for file in os.popen(findcmd).readlines(): # for
all file names
 count = count + 1 # have \n
at the end
 print str(file[:-1])
 os.remove(file[:-1])

print 'Removed %d .pyc files' % count

This script uses os.popen to collect the output of a commercial package's find
program installed on one of my Windows computers, or else the standard find tool
on the Linux side. It's also completely nonportable to Windows machines that don't
have the commercial find program installed, and that includes other computers in
my house, and most of the world at large.

Python scripts can reuse underlying shell tools with os.popen, but by so doing they
lose much of the portability advantage of the Python language. The Unix find
command is both not universally available, and is a complex tool by itself (in fact,
too complex to cover in this book; see a Unix manpage for more details). As we saw
in Chapter 2, spawning a shell command also incurs a performance hit, because it
must start a new independent program on your computer.

To avoid some of the portability and performance costs of spawning an underlying
find command, I eventually recoded this script to use the find utilities we met and
wrote Chapter 2. The new script is shown in Example 5-9.

Example 5-9. PP2E\PyTools\cleanpyc-py.py

find and delete all "*.pyc" bytecode files at and below
the directory where this script is run; this uses a
Python find call, and so is portable to most machines;
run this to delete .pyc's from an old Python release;
cd to the directory you want to clean before running;

import os, sys, find # here, gets PyTools find

count = 0
for file in find.find("*.pyc"): # for all file names
 count = count + 1
 print file
 os.remove(file)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 262

print 'Removed %d .pyc files' % count

This works portably, and avoids external program startup costs. But find is really
just a tree-searcher that doesn't let you hook into the tree search -- if you need to
do something unique while traversing a directory tree, you may be better off using a
more manual approach. Moreover, find must collect all names before it returns; in
very large directory trees, this may introduce significant performance and memory
penalties. It's not an issue for my trees, but your trees may vary.

5.4.2 A Python Tree Searcher

To help ease the task of performing global searches on all platforms I might ever
use, I coded a Python script to do most of the work for me. Example 5-10 employs
standard Python tools we met in the preceding chapters:

os.path.walk to visit files in a directory

sting.find to search for a string in a text read from a file

os.path.splitext to skip over files with binary-type extensions

os.path.join to portably combine a directory path and filename

os.path.isdir to skip paths that refer to directories, not files

Because it's pure Python code, though, it can be run the same way on both Linux
and Windows. In fact, it should work on any computer where Python has been
installed. Moreover, because it uses direct system calls, it will likely be faster than
using op.popen to spawn a find command that spawns many grep commands.

Example 5-10. PP2E\PyTools\search_all.py

Use: "python ..\..\PyTools\search_all.py string".
search all files at and below current directory
for a string; uses the os.path.walk interface,
rather than doing a find to collect names first;

import os, sys, string
listonly = 0
skipexts = ['.gif', '.exe', '.pyc', '.o', '.a'] #
ignore binary files

def visitfile(fname, searchKey): #
for each non-dir file
 global fcount, vcount #
search for string

Programming Python, 2nd Edition, O’Reilly

IT-SC book 263

 print vcount+1, '=>', fname #
skip protected files
 try:
 if not listonly:
 if os.path.splitext(fname)[1] in skipexts:
 print 'Skipping', fname
 elif string.find(open(fname).read(),
searchKey) != -1:
 raw_input('%s has %s' % (fname, searchKey))
 fcount = fcount + 1
 except: pass
 vcount = vcount + 1

def visitor(myData, directoryName, filesInDirectory): #
called for each dir
 for fname in filesInDirectory: # do
non-dir files here
 fpath = os.path.join(directoryName, fname) #
fnames have no dirpath
 if not os.path.isdir(fpath): #
myData is searchKey
 visitfile(fpath, myData)

def searcher(startdir, searchkey):
 global fcount, vcount
 fcount = vcount = 0
 os.path.walk(startdir, visitor, searchkey)

if __name__ == '__main__':
 searcher('.', sys.argv[1])
 print 'Found in %d files, visited %d' % (fcount,
vcount)

This file also uses the sys.argv command-line list and the __name__ trick for
running in two modes. When run standalone, the search key is passed on the
command line; when imported, clients call this module's searcher function
directly. For example, to search (grep) for all appearances of directory name "Part2"
in the examples tree (an old directory that really did go away!), run a command line
like this in a DOS or Unix shell:

C:\...\PP2E>python PyTools\search_all.py Part2
1 => .\autoexec.bat
2 => .\cleanall.csh
3 => .\echoEnvironment.pyw
4 => .\Launcher.py
.\Launcher.py has Part2
5 => .\Launcher.pyc
Skipping .\Launcher.pyc

Programming Python, 2nd Edition, O’Reilly

IT-SC book 264

6 => .\Launch_PyGadgets.py
7 => .\Launch_PyDemos.pyw
8 => .\LaunchBrowser.out.txt
.\LaunchBrowser.out.txt has Part2
9 => .\LaunchBrowser.py
.\LaunchBrowser.py has Part2
...
 ...more lines deleted
...
1339 => .\old_Part2\Basics\unpack2b.py
1340 => .\old_Part2\Basics\unpack3.py
1341 => .\old_Part2\Basics__init__.py
Found in 74 files, visited 1341

The script lists each file it checks as it goes, tells you which files it is skipping (names
that end in extensions listed in variable skipexts that imply binary data), and
pauses for an Enter key press each time it announces a file containing the search
string (bold lines). A solution based on find could not pause this way; although
trivial in this example, find doesn't return until the entire tree traversal is finished.
The search_all script works the same when imported instead of run, but there is
no final statistics output line (fcount and vcount live in the module, and so would
have to be imported to be inspected here):

>>> from PP2E.PyTools.search_all import searcher
>>> searcher('.', '-exec') # find files with
string '-exec'
1 => .\autoexec.bat
2 => .\cleanall.csh
3 => .\echoEnvironment.pyw
4 => .\Launcher.py
5 => .\Launcher.pyc
Skipping .\Launcher.pyc
6 => .\Launch_PyGadgets.py
7 => .\Launch_PyDemos.pyw
8 => .\LaunchBrowser.out.txt
9 => .\LaunchBrowser.py
10 => .\Launch_PyGadgets_bar.pyw
11 => .\makeall.csh
12 => .\package.csh
.\package.csh has -exec
 ...more lines deleted...

However launched, this script tracks down all references to a string in an entire
directory tree -- a name of a changed book examples file, object, or directory, for
instance.[9]

[9] See the coverage of regular expressions in Chapter 18. The search_all script here
searches for a simple string in each file with string.find, but it would be trivial to extend it
to search for a regular expression pattern match instead (roughly, just replace string.find

Programming Python, 2nd Edition, O’Reilly

IT-SC book 265

with a call to a regular expression object's search method). Of course, such a mutation will be
much more trivial after we've learned how to do it.

5.5 Visitor: Walking Trees Generically

Armed with the portable search_all script from Example 5-10, I was able to
better pinpoint files to be edited, every time I changed the book examples tree
structure. At least initially, I ran search_all to pick out suspicious files in one
window, and edited each along the way by hand in another window.

Pretty soon, though, this became tedious too. Manually typing filenames into editor
commands is no fun, especially when the number of files to edit is large. The search
for "Part2" shown earlier returned 74 files, for instance. Since there are at least
occasionally better things to do than manually start 74 editor sessions, I looked for a
way to automatically run an editor on each suspicious file.

Unfortunately, search_all simply prints results to the screen. Although that text
could be intercepted and parsed, a more direct approach that spawns edit sessions
during the search may be easier, but may require major changes to the tree search
script as currently coded. At this point, two thoughts came to mind.

First, I knew it would be easier in the long-run to be able to add features to a
general directory searcher as external components, not by changing the original
script. Because editing files was just one possible extension (what about automating
text replacements too?), a more generic, customizable, and reusable search
component seemed the way to go.

Second, after writing a few directory walking utilities, it became clear that I was
rewriting the same sort of code over and over again. Traversals could be even
further simplified by wrapping common details for easier reuse. The
os.path.walk tool helps, but its use tends to foster redundant operations (e.g.,
directory name joins), and its function-object-based interface doesn't quite lend itself
to customization the way a class can.

Of course, both goals point to using an OO framework for traversals and searching.
Example 5-11 is one concrete realization of these goals. It exports a general
FileVisitor class that mostly just wraps os.path.walk for easier use and
extension, as well as a generic SearchVisitor class that generalizes the notion of
directory searches. By itself, SearchVisitor simply does what search_all did,
but it also opens up the search process to customization -- bits of its behavior can be
modified by overloading its methods in subclasses. Moreover, its core search logic
can be reused everywhere we need to search; simply define a subclass that adds
search-specific extensions.

Example 5-11. PP2E\PyTools\visitor.py

###

Test: "python ..\..\PyTools\visitor.py testmask
[string]".
Uses OOP, classes, and subclasses to wrap some of the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 266

details of using os.path.walk to walk and search;
testmask
is an integer bitmask with 1 bit per available selftest;
see also: visitor_edit/replace/find/fix*/.py subclasses,
and the fixsitename.py client script in Internet\Cgi-Web;
###

import os, sys, string
listonly = 0

class FileVisitor:
 """
 visits all non-directory files below startDir;
 override visitfile to provide a file handler
 """
 def __init__(self, data=None, listonly=0):
 self.context = data
 self.fcount = 0
 self.dcount = 0
 self.listonly = listonly
 def run(self, startDir=os.curdir): #
default start='.'
 os.path.walk(startDir, self.visitor, None)
 def visitor(self, data, dirName, filesInDir): #
called for each dir
 self.visitdir(dirName) #
do this dir first
 for fname in filesInDir: #
do non-dir files
 fpath = os.path.join(dirName, fname) #
fnames have no path
 if not os.path.isdir(fpath):
 self.visitfile(fpath)
 def visitdir(self, dirpath): #
called for each dir
 self.dcount = self.dcount + 1 #
override or extend me
 print dirpath, '...'
 def visitfile(self, filepath): #
called for each file
 self.fcount = self.fcount + 1 #
override or extend me
 print self.fcount, '=>', filepath #
default: print name

class SearchVisitor(FileVisitor):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 267

 """
 search files at and below startDir for a string
 """
 skipexts = ['.gif', '.exe', '.pyc', '.o', '.a'] #
skip binary files
 def __init__(self, key, listonly=0):
 FileVisitor.__init__(self, key, listonly)
 self.scount = 0
 def visitfile(self, fname): #
test for a match
 FileVisitor.visitfile(self, fname)
 if not self.listonly:
 if os.path.splitext(fname)[1] in self.skipexts:
 print 'Skipping', fname
 else:
 text = open(fname).read()
 if string.find(text, self.context) != -1:
 self.visitmatch(fname, text)
 self.scount = self.scount + 1
 def visitmatch(self, fname, text):
process a match
 raw_input('%s has %s' % (fname, self.context))
override me lower

self-test logic
dolist = 1
dosearch = 2 # 3=do list and search
donext = 4 # when next test added

def selftest(testmask):
 if testmask & dolist:
 visitor = FileVisitor()
 visitor.run('.')
 print 'Visited %d files and %d dirs' %
(visitor.fcount, visitor.dcount)

 if testmask & dosearch:
 visitor = SearchVisitor(sys.argv[2], listonly)
 visitor.run('.')
 print 'Found in %d files, visited %d' %
(visitor.scount, visitor.fcount)

if __name__ == '__main__':
 selftest(int(sys.argv[1])) # e.g., 5 = dolist |
dorename

Programming Python, 2nd Edition, O’Reilly

IT-SC book 268

This module primarily serves to export classes for external use, but it does
something useful when run standalone too. If you invoke it as a script with a single
argument "1", it makes and runs a FileVisitor object, and prints an exhaustive
listing of every file and directory at and below the place you are at when the script is
invoked (i.e., ".", the current working directory):

C:\temp>python %X%\PyTools\visitor.py 1
. ...
1 => .\autoexec.bat
2 => .\cleanall.csh
3 => .\echoEnvironment.pyw
4 => .\Launcher.py
5 => .\Launcher.pyc
6 => .\Launch_PyGadgets.py
7 => .\Launch_PyDemos.pyw
 ...more deleted...
479 => .\Gui\Clock\plotterGui.py
480 => .\Gui\Clock\plotterText.py
481 => .\Gui\Clock\plotterText1.py
482 => .\Gui\Clock__init__.py
.\Gui\gifs ...
483 => .\Gui\gifs\frank.gif
484 => .\Gui\gifs\frank.note
485 => .\Gui\gifs\gilligan.gif
486 => .\Gui\gifs\gilligan.note
 ...more deleted...
1352 => .\PyTools\visitor_fixnames.py
1353 => .\PyTools\visitor_find_quiet2.py
1354 => .\PyTools\visitor_find.pyc
1355 => .\PyTools\visitor_find_quiet1.py
1356 => .\PyTools\fixeoln_one.doc.txt
Visited 1356 files and 119 dirs

If you instead invoke this script with a "2" as its first argument, it makes and runs a
SearchVisitor object, using the second argument as the search key. This form is
equivalent to running the search_all.py script we met earlier; it pauses for an Enter
key press after each matching file is reported (lines in bold font here):

C:\temp\examples>python %X%\PyTools\visitor.py 2 Part3
. ...
1 => .\autoexec.bat
2 => .\cleanall.csh
.\cleanall.csh has Part3
3 => .\echoEnvironment.pyw
4 => .\Launcher.py
.\Launcher.py has Part3
5 => .\Launcher.pyc
Skipping .\Launcher.pyc

Programming Python, 2nd Edition, O’Reilly

IT-SC book 269

6 => .\Launch_PyGadgets.py
7 => .\Launch_PyDemos.pyw
8 => .\LaunchBrowser.out.txt
9 => .\LaunchBrowser.py
10 => .\Launch_PyGadgets_bar.pyw
11 => .\makeall.csh
.\makeall.csh has Part3
...
 ...more deleted
...
1353 => .\PyTools\visitor_find_quiet2.py
1354 => .\PyTools\visitor_find.pyc
Skipping .\PyTools\visitor_find.pyc
1355 => .\PyTools\visitor_find_quiet1.py
1356 => .\PyTools\fixeoln_one.doc.txt
Found in 49 files, visited 1356

Technically, passing this script a first argument "3" runs both a FileVisitor and
a SearchVisitor (two separate traversals are performed). The first argument is
really used as a bitmask to select one or more supported self-tests -- if a test's bit is
on in the binary value of the argument, the test will be run. Because 3 is 011 in
binary, it selects both a search (010) and a listing (001). In a more user-friendly
system we might want to be more symbolic about that (e.g., check for "-search" and
"-list" arguments), but bitmasks work just as well for this script's scope.

Text Editor War and Peace

In case you don't know, the vi setting used in the visitor_edit.py script is a
Unix text editor; it's available for Windows too, but is not standard there. If
you run this script, you'll probably want to change its editor setting on
your machine. For instance, "emacs" should work on Linux, and "edit" or
"notepad" should work on all Windows boxes.

These days, I tend to use an editor I coded in Python (PyEdit), so I'll leave
the editor wars to more politically-minded readers. In fact, changing the
script to assign editor either of these ways:

 editor = r'python Gui\TextEditor\textEditor.pyw'
 editor = r'start Gui\TextEditor\textEditor.pyw'

will open the matched file in a pure and portable Python text editor GUI --
one coded in Python with the Tkinter interface, which runs on all major GUI
platforms, and which we'll meet in Chapter 9. If you read about the start
command in Chapter 3, you know that the first editor setting pauses the
traversal while the editor runs, but the second does not (you'll get as many
PyEdit windows as there are matched files).

This may fail, however, for very long file directory names (remember,
os.system has a length limit unlike os.spawnv). Moreover, the path to

Programming Python, 2nd Edition, O’Reilly

IT-SC book 270

the textEditor.pyw program may vary depending on where you are when
you run visitor_edit.py (i.e., the CWD). There are ways around this latter
problem:

Prefixing the script's path string with the value of the PP2EHOME shell
variable, fetched with os.environ; with the standard book setup scripts,
PP2EHOME gives the absolute root directory, from which the editor script's
path can be found.

Prefixing the path with sys.path[0] and a '../' to exploit the fact that
the first import directory is always the script's home directory (see Section
2.7 in Chapter 2).

Windows shortcuts or Unix links to the editor script from the CWD.

Searching for the script naively with Launcher.findFirst or
guessLocation, described near the end of Chapter 4.

But these are all beyond the scope of a sidebar on text editor politics.

5.5.1 Editing Files in Directory Trees

Now, after genericizing tree traversals and searches, it's an easy step to add
automatic file editing in a brand-new, separate component. Example 5-12 defines a
new EditVisitor class that simply customizes the visitmatch method of the
SearchVisitor class, to open a text editor on the matched file. Yes, this is the
complete program -- it needs to do something special only when visiting matched
files, and so need provide only that behavior; the rest of the traversal and search
logic is unchanged and inherited.

Example 5-12. PP2E\PyTools\visitor_edit.py

###

Use: "python PyTools\visitor_edit.py string".
add auto-editor start up to SearchVisitor in an external
component (subclass), not in-place changes; this version
automatically pops up an editor on each file containing
the
string as it traverses; you can also use editor='edit' or
'notepad' on windows; 'vi' and 'edit' run in console
window;
editor=r'python Gui\TextEditor\textEditor.pyw' may work
too;
caveat: we might be able to make this smarter by sending
a search command to go to the first match in some
editors;

Programming Python, 2nd Edition, O’Reilly

IT-SC book 271

###

import os, sys, string
from visitor import SearchVisitor
listonly = 0

class EditVisitor(SearchVisitor):
 """
 edit files at and below startDir having string
 """
 editor = 'vi' # ymmv
 def visitmatch(self, fname, text):
 os.system('%s %s' % (self.editor, fname))

if __name__ == '__main__':
 visitor = EditVisitor(sys.argv[1], listonly)
 visitor.run('.')
 print 'Edited %d files, visited %d' % (visitor.scount,
visitor.fcount)

When we make and run an EditVisitor, a text editor is started with the
os.system command-line spawn call, which usually blocks its caller until the
spawned program finishes. On my machines, each time this script finds a matched
file during the traversal, it starts up the vi text editor within the console window
where the script was started; exiting the editor resumes the tree walk.

Let's find and edit some files. When run as a script, we pass this program the search
string as a command argument (here, the string "-exec" is the search key, not an
option flag). The root directory is always passed to the run method as ".", the
current run directory. Traversal status messages show up in the console as before,
but each matched file now automatically pops up in a text editor along the way.
Here, the editor is started eight times:

C:\...\PP2E>python PyTools\visitor_edit.py -exec
1 => .\autoexec.bat
2 => .\cleanall.csh
3 => .\echoEnvironment.pyw
4 => .\Launcher.py
5 => .\Launcher.pyc
Skipping .\Launcher.pyc
 ...more deleted...
1340 => .\old_Part2\Basics\unpack2.py
1341 => .\old_Part2\Basics\unpack2b.py
1342 => .\old_Part2\Basics\unpack3.py
1343 => .\old_Part2\Basics__init__.py
Edited 8 files, visited 1343

Programming Python, 2nd Edition, O’Reilly

IT-SC book 272

This, finally, is the exact tool I was looking for to simplify global book examples tree
maintenance. After major changes to things like shared modules and file and
directory names, I run this script on the examples root directory with an appropriate
search string, and edit any files it pops up as needed. I still need to change files by
hand in the editor, but that's often safer than blind global replacements.

5.5.2 Global Replacements in Directory Trees

But since I brought it up: given a general tree traversal class, it's easy to code a
global search-and-replace subclass too. The FileVisitor subclass in Example 5-
13, ReplaceVisitor, customizes the visitfile method to globally replace any
appearances of one string with another, in all text files at and below a root directory.
It also collects the names of all files that were changed in a list, just in case you wish
to go through and verify the automatic edits applied (a text editor could be
automatically popped up on each changed file, for instance).

Example 5-13. PP2E\PyTools\visitor_replace.py

###

Use: "python PyTools\visitor_replace.py fromStr toStr".
does global search-and-replace in all files in a
directory
tree--replaces fromStr with toStr in all text files; this
is powerful but dangerous!! visitor_edit.py runs an
editor
for you to verify and make changes, and so is much safer;
use CollectVisitor to simply collect a list of matched
files;
###

import os, sys, string
from visitor import SearchVisitor
listonly = 0

class ReplaceVisitor(SearchVisitor):
 """
 change fromStr to toStr in files at and below startDir;
 files changed available in obj.changed list after a run
 """
 def __init__(self, fromStr, toStr, listonly=0):
 self.changed = []
 self.toStr = toStr
 SearchVisitor.__init__(self, fromStr, listonly)
 def visitmatch(self, fname, text):
 fromStr, toStr = self.context, self.toStr
 text = string.replace(text, fromStr, toStr)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 273

 open(fname, 'w').write(text)
 self.changed.append(fname)

if __name__ == '__main__':
 if raw_input('Are you sure?') == 'y':
 visitor = ReplaceVisitor(sys.argv[1], sys.argv[2],
listonly)
 visitor.run(startDir='.')
 print 'Visited %d files' % visitor.fcount
 print 'Changed %d files:' % len(visitor.changed)
 for fname in visitor.changed: print fname

To run this script over a directory tree, go to the directory to be changed and run the
following sort of command line, with "from" and "to" strings. On my current machine,
doing this on a 1354-file tree and changing 75 files along the way takes roughly six
seconds of real clock time when the system isn't particularly busy:

C:\temp\examples>python %X%/PyTools/visitor_replace.py
Part2 SPAM2
Are you sure?y
. ...
1 => .\autoexec.bat
2 => .\cleanall.csh
3 => .\echoEnvironment.pyw
4 => .\Launcher.py
5 => .\Launcher.pyc
Skipping .\Launcher.pyc
6 => .\Launch_PyGadgets.py
 ...more deleted...
1351 => .\PyTools\visitor_find_quiet2.py
1352 => .\PyTools\visitor_find.pyc
Skipping .\PyTools\visitor_find.pyc
1353 => .\PyTools\visitor_find_quiet1.py
1354 => .\PyTools\fixeoln_one.doc.txt
Visited 1354 files
Changed 75 files:
.\Launcher.py
.\LaunchBrowser.out.txt
.\LaunchBrowser.py
.\PyDemos.pyw
.\PyGadgets.py
.\README-PP2E.txt
 ...more deleted...
.\PyTools\search_all.out.txt
.\PyTools\visitor.out.txt
.\PyTools\visitor_edit.py

[to delete, use an empty toStr]

Programming Python, 2nd Edition, O’Reilly

IT-SC book 274

C:\temp\examples>python %X%/PyTools/visitor_replace.py SPAM
""

This is both wildly powerful and dangerous. If the string to be replaced is something
that can show up in places you didn't anticipate, you might just ruin an entire tree of
files by running the ReplaceVisitor object defined here. On the other hand, if
the string is something very specific, this object can obviate the need to
automatically edit suspicious files. For instance, we will use this approach to
automatically change web site addresses in HTML files in Chapter 12; the addresses
are likely too specific to show up in other places by chance.

5.5.3 Collecting Matched Files in Trees

The scripts so far search and replace in directory trees, using the same traversal
code base (module visitor). Suppose, though, that you just want to get a Python
list of files in a directory containing a string. You could run a search and parse the
output messages for "found" messages. Much simpler, simply knock off another
SearchVisitor subclass to collect the list along the way, as in Example 5-14.

Example 5-14. PP2E\PyTools\visitor_collect.py

###

Use: "python PyTools\visitor_collect.py searchstring".
CollectVisitor simply collects a list of matched files,
for
display or later processing (e.g., replacement, auto-
editing);
###

import os, sys, string
from visitor import SearchVisitor

class CollectVisitor(SearchVisitor):
 """
 collect names of files containing a string;
 run this and then fetch its obj.matches list
 """
 def __init__(self, searchstr, listonly=0):
 self.matches = []
 SearchVisitor.__init__(self, searchstr, listonly)
 def visitmatch(self, fname, text):
 self.matches.append(fname)

if __name__ == '__main__':
 visitor = CollectVisitor(sys.argv[1])
 visitor.run(startDir='.')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 275

 print 'Found these files:'
 for fname in visitor.matches: print fname

CollectVisitor is just tree search again, with a new kind of specialization --
collecting files, instead of printing messages. This class is useful from other scripts
that mean to collect a matched files list for later processing; it can be run by itself as
a script too:

C:\...\PP2E>python PyTools\visitor_collect.py -exec
...
 ...more deleted...
...
1342 => .\old_Part2\Basics\unpack2b.py
1343 => .\old_Part2\Basics\unpack3.py
1344 => .\old_Part2\Basics__init__.py
Found these files:
.\package.csh
.\README-PP2E.txt
.\readme-old-pp1E.txt
.\PyTools\cleanpyc.py
.\PyTools\fixeoln_all.py
.\System\Processes\output.txt
.\Internet\Cgi-Web\fixcgi.py

5.5.3.1 Suppressing status messages

Here, the items in the collected list are displayed at the end -- all the files containing
the string "-exec". Notice, though, that traversal status messages are still printed
along the way (in fact, I deleted about 1600 lines of such messages here!). In a tool
meant to be called from another script, that may be an undesirable side effect; the
calling script's output may be more important than the traversal's.

We could add mode flags to SearchVisitor to turn off status messages, but that
makes it more complex. Instead, the following two files show how we might go about
collecting matched filenames without letting any traversal messages show up in the
console, all without changing the original code base. The first, shown in Example 5-
15, simply takes over and copies the search logic, without print statements. It's a bit
redundant with SearchVisitor, but only in a few lines of mimicked code.

Example 5-15. PP2E\PyTools\visitor_collect_quiet1.py

###

Like visitor_collect, but avoid traversal status messages
###

import os, sys, string
from visitor import FileVisitor, SearchVisitor

Programming Python, 2nd Edition, O’Reilly

IT-SC book 276

class CollectVisitor(FileVisitor):
 """
 collect names of files containing a string, silently;
 """
 skipexts = SearchVisitor.skipexts
 def __init__(self, searchStr):
 self.matches = []
 self.context = searchStr
 def visitdir(self, dname): pass
 def visitfile(self, fname):
 if (os.path.splitext(fname)[1] not in self.skipexts
and
 string.find(open(fname).read(), self.context)
!= -1):
 self.matches.append(fname)

if __name__ == '__main__':
 visitor = CollectVisitor(sys.argv[1])
 visitor.run(startDir='.')
 print 'Found these files:'
 for fname in visitor.matches: print fname

When this class is run, only the contents of the matched filenames list show up at
the end; no status messages appear during the traversal. Because of that, this form
may be more useful as a general-purpose tool used by other scripts:

C:\...\PP2E>python PyTools\visitor_collect_quiet1.py -exec
Found these files:
.\package.csh
.\README-PP2E.txt
.\readme-old-pp1E.txt
.\PyTools\cleanpyc.py
.\PyTools\fixeoln_all.py
.\System\Processes\output.txt
.\Internet\Cgi-Web\fixcgi.py

A more interesting and less redundant way to suppress printed text during a
traversal is to apply the stream redirection tricks we met in Chapter 2. Example 5-16
sets sys.stdin to a NullOut object that throws away all printed text for the
duration of the traversal (its write method does nothing).

The only real complication with this scheme is that there is no good place to insert a
restoration of sys.stdout at the end of the traversal; instead, we code the restore
in the __del__ destructor method, and require clients to delete the visitor to
resume printing as usual. An explicitly called method would work just as well, if you
prefer less magical interfaces.

Example 5-16. PP2E\PyTools\visitor_collect_quiet2.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 277

###

Like visitor_collect, but avoid traversal status messages
###

import os, sys, string
from visitor import SearchVisitor

class NullOut:
 def write(self, line): pass

class CollectVisitor(SearchVisitor):
 """
 collect names of files containing a string, silently
 """
 def __init__(self, searchstr, listonly=0):
 self.matches = []
 self.saveout, sys.stdout = sys.stdout, NullOut()
 SearchVisitor.__init__(self, searchstr, listonly)
 def __del__(self):
 sys.stdout = self.saveout
 def visitmatch(self, fname, text):
 self.matches.append(fname)

if __name__ == '__main__':
 visitor = CollectVisitor(sys.argv[1])
 visitor.run(startDir='.')
 matches = visitor.matches
 del visitor
 print 'Found these files:'
 for fname in matches: print fname

When this script is run, output is identical to the prior run -- just the matched
filenames at the end. Perhaps better still, why not code and debug just one verbose
CollectVisitor utility class, and require clients to wrap calls to its run method
in the redirect.redirect function we wrote back in Example 2-10 ?

>>> from PP2E.PyTools.visitor_collect import CollectVisitor
>>> from PP2E.System.Streams.redirect import redirect
>>> walker = CollectVisitor('-exec') #
object to find '-exec'
>>> output = redirect(walker.run, ('.',), '') #
function, args, input
>>> for line in walker.matches: print line #
print items in list
...
.\package.csh

Programming Python, 2nd Edition, O’Reilly

IT-SC book 278

.\README-PP2E.txt

.\readme-old-pp1E.txt

.\PyTools\cleanpyc.py

.\PyTools\fixeoln_all.py

.\System\Processes\output.txt

.\Internet\Cgi-Web\fixcgi.py

The redirect call employed here resets standard input and output streams to file-
like objects for the duration of any function call; because of that, it's a more general
way to suppress output than recoding every outputter. Here, it has the effect of
intercepting (and hence suppressing) printed messages during a
walker.run('.') traversal. They really are printed, but show up in the string
result of the redirect call, not on the screen:

>>> output[:60]
'. ...\0121 => .\\autoexec.bat\0122 => .\\cleanall.csh\0123
=> .\\echoEnv'

>>> import string
>>> len(output), len(string.split(output, '\n'))
bytes, lines
(67609, 1592)

>>> walker.matches
['.\\package.csh', '.\\README-PP2E.txt', '.\\readme-old-
pp1E.txt',
'.\\PyTools\\cleanpyc.py', '.\\PyTools\\fixeoln_all.py',
'.\\System\\Processes\\output.txt',
'.\\Internet\\Cgi-Web\\fixcgi.py']

Because redirect saves printed text in a string, it may be less appropriate than
the two quiet CollectVisitor variants for functions that generate much output.
Here, for example, 67,609 bytes of output was queued up in an in-memory string
(see the len call results); such a buffer may or may not be significant in some
applications.

In more general terms, redirecting sys.stdout to dummy objects as done here is
a simple way to turn off outputs (and is the equivalent to the Unix notion of
redirecting output to file /dev/null -- a file that discards everything sent to it). For
instance, we'll pull this trick out of the bag again in the context of server-side
Internet scripting, to prevent utility status messages from showing up in generated
web page output streams.[10]

[10] For the impatient: see commonhtml.runsilent in the PyMailCgi system presented in
Chapter 13. It's a variation on redirect.redirect that discards output as it is printed
(instead of retaining it in a string), returns the return value of the function called (not the
output string), and lets exceptions pass via a try/finally statement (instead of catching and
reporting them with a try/except). It's still redirection at work, though.

5.5.4 Recoding Fixers with Visitors

Programming Python, 2nd Edition, O’Reilly

IT-SC book 279

Be warned: once you've written and debugged a class that knows how to do
something useful like walking directory trees, it's easy for it to spread throughout
your system utility libraries. Of course, that's the whole point of code reuse. For
instance, very soon after writing the visitor classes presented in the prior sections, I
recoded both the fixnames_all.py and fixeoln_all.py directory walker scripts listed
earlier in Examples Example 5-6 and Example 5-4, respectively, to use visitor
instead of proprietary tree-walk logic (they both originally used find.find).
Example 5-17 combines the original convertLines function (to fix end-of-lines in
a single file) with visitor's tree walker class, to yield an alternative implementation of
the line-end converter for directory trees.

Example 5-17. PP2E\PyTools\visitor_fixeoln.py

###

Use: "python visitor_fixeoln.py todos|tounix".
recode fixeoln_all.py as a visitor subclass: this version
uses os.path.walk, not find.find to collext all names
first;
limited but fast: if os.path.splitext(fname)[1] in patts:
###

import visitor, sys, fnmatch, os
from fixeoln_dir import patts
from fixeoln_one import convertEndlines

class EolnFixer(visitor.FileVisitor):
 def visitfile(self, fullname): #
match on basename
 basename = os.path.basename(fullname) #
to make result same
 for patt in patts: #
else visits fewer
 if fnmatch.fnmatch(basename, patt):
 convertEndlines(self.context, fullname)
 self.fcount = self.fcount + 1 #
could break here
 #
but results differ
if __name__ == '__main__':
 walker = EolnFixer(sys.argv[1])
 walker.run()
 print 'Files matched (converted or not):',
walker.fcount

As we saw in Chapter 2, the built-in fnmatch module performs Unix shell-like
filename matching; this script uses it to match names to the previous version's

Programming Python, 2nd Edition, O’Reilly

IT-SC book 280

filename patterns (simply looking for filename extensions after a "." is simpler, but
not as general):

C:\temp\examples>python %X%/PyTools/visitor_fixeoln.py
tounix
. ...
Changing .\echoEnvironment.pyw
Changing .\Launcher.py
Changing .\Launch_PyGadgets.py
Changing .\Launch_PyDemos.pyw
 ...more deleted...
Changing .\PyTools\visitor_find.py
Changing .\PyTools\visitor_fixnames.py
Changing .\PyTools\visitor_find_quiet2.py
Changing .\PyTools\visitor_find_quiet1.py
Changing .\PyTools\fixeoln_one.doc.txt
Files matched (converted or not): 1065

C:\temp\examples>python %X%/PyTools/visitor_fixeoln.py
tounix
 ...more deleted...
.\Extend\Swig\Shadow ...
.\ ...
.\EmbExt\Exports ...
.\EmbExt\Exports\ClassAndMod ...
.\EmbExt\Regist ...
.\PyTools ...
Files matched (converted or not): 1065

If you run this script and the original fixeoln_all.py on the book examples tree, you'll
notice that this version visits two fewer matched files. This simply reflects the fact
that fixeoln_all also collects and skips over two directory names for its patterns
in the find.find result (both called "Output"). In all other ways, this version
works the same way even when it could do better -- adding a break statement after
the convertEndlines call here avoids visiting files that appear redundantly in the
original's find results lists.

The first command here takes roughly six seconds on my computer, and the second
takes about four (there are no files to be converted). That's faster than the eight-
and six-second figures for the original find.find-based version of this script, but
they differ in amount of output, and benchmarks are usually much more subtle than
you imagine. Most of the real clock time is likely spent scrolling text in the console,
not doing any real directory processing. Since both are plenty fast for their intended
purposes, finer-grained performance figures are left as exercises.

The script in Example 5-18 combines the original convertOne function (to rename
a single file or directory) with the visitor's tree walker class, to create a directory
tree-wide fix for uppercase filenames. Notice that we redefine both file and directory
visitation methods here, as we need to rename both.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 281

Example 5-18. PP2E\PyTools\visitor_fixnames.py

###

recode fixnames_all.py name case fixer with the Visitor
class
note: "from fixnames_all import convertOne" doesn't help
at
top-level of the fixnames class, since it is assumed to
be a
method and called with extra self argument (an
exception);
###

from visitor import FileVisitor

class FixnamesVisitor(FileVisitor):
 """
 check filenames at and below startDir for uppercase
 """
 import fixnames_all
 def __init__(self, listonly=0):
 FileVisitor.__init__(self, listonly=listonly)
 self.ccount = 0
 def rename(self, pathname):
 if not self.listonly:
 convertflag =
self.fixnames_all.convertOne(pathname)
 self.ccount = self.ccount + convertflag
 def visitdir(self, dirname):
 FileVisitor.visitdir(self, dirname)
 self.rename(dirname)
 def visitfile(self, filename):
 FileVisitor.visitfile(self, filename)
 self.rename(filename)

if __name__ == '__main__':
 walker = FixnamesVisitor()
 walker.run()
 allnames = walker.fcount + walker.dcount
 print 'Converted %d files, visited %d' %
(walker.ccount, allnames)

This version is run like the original find.find based version, fixnames_all,
but visits one more name (the top-level root directory), and there is no initial delay
while filenames are collected on a list -- we're using os.path.walk again, not

Programming Python, 2nd Edition, O’Reilly

IT-SC book 282

find.find. It's also close to the original os.path.walk version of this script,
but is based on a class hierarchy, not direct function callbacks:

C:\temp\examples>python %X%/PyTools/visitor_fixnames.py
 ...more deleted...
303 => .__init__.py
304 => .__init__.pyc
305 => .\Ai\ExpertSystem\holmes.tar
306 => .\Ai\ExpertSystem\TODO
Convert dir=.\Ai\ExpertSystem file=TODO? (y|Y)
307 => .\Ai\ExpertSystem__init__.py
308 => .\Ai\ExpertSystem\holmes\cnv
309 => .\Ai\ExpertSystem\holmes\README.1ST
Convert dir=.\Ai\ExpertSystem\holmes file=README.1ST?
(y|Y)
 ...more deleted...
1353 => .\PyTools\visitor_find.pyc
1354 => .\PyTools\visitor_find_quiet1.py
1355 => .\PyTools\fixeoln_one.doc.txt
Converted 1 files, visited 1474

Both of these fixer scripts work roughly the same as the originals, but because the
directory walking logic lives in just one file (visitor.py), it only needs to be debugged
once. Moreover, improvements in that file will automatically be inherited by every
directory-processing tool derived from its classes. Even when coding system-level
scripts, reuse and reduced redundancy pay off in the end.

5.5.5 Fixing File Permissions in Trees

Just in case the preceding visitor-client sections weren't quite enough to convince
you of the power of code reuse, another piece of evidence surfaced very late in this
book project. It turns out that copying files off a CD using Windows drag-and-drop
makes them read-only in the copy. That's less than ideal for the book examples
directory on the enclosed CD (see http://examples.oreilly.com/python2) -- you must
copy the directory tree onto your hard drive to be able to experiment with program
changes (naturally, files on CD can't be changed in place). But if you copy with drag-
and-drop, you may wind up with a tree of over 1000 read-only files.

Since drag-and-drop is perhaps the most common way to copy off a CD on Windows,
I needed a portable and easy-to-use way to undo the read-only setting. Asking
readers to make these all writable by hand would be impolite to say the least.
Writing a full-blown install system seemed like overkill. Providing different fixes for
different platforms doubles or triples the complexity of the task.

Much better, the Python script in Example 5-19 can be run in the root of the copied
examples directory to repair the damage of a read-only drag-and-drop operation. It
specializes the traversal implemented by the FileVisitor class again -- this time
to run an os.chmod call on every file and directory visited along the way.

Example 5-19. PP2E\PyTools\fixreadonly-all.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 283

#!/usr/bin/env python
###

Use: python PyTools\fixreadonly-all.py
run this script in the top-level examples directory after
copying all examples off the book's CD-ROM, to make all
files writeable again--by default, copying files off the
CD with Windows drag-and-drop (at least) creates them as
read-only on your hard drive; this script traverses
entire
dir tree at and below the dir it is run in (all subdirs);
###

import os, string
from PP2E.PyTools.visitor import FileVisitor #
os.path.walk wrapper
listonly = 0

class FixReadOnly(FileVisitor):
 def __init__(self, listonly=0):
 FileVisitor.__init__(self, listonly=listonly)
 def visitDir(self, dname):
 FileVisitor.visitfile(self, fname)
 if self.listonly:
 return
 os.chmod(dname, 0777)
 def visitfile(self, fname):
 FileVisitor.visitfile(self, fname)
 if self.listonly:
 return
 os.chmod(fname, 0777)

if __name__ == '__main__':
 # don't run auto if clicked
 go = raw_input('This script makes all files writeable;
continue?')
 if go != 'y':
 raw_input('Canceled - hit enter key')
 else:
 walker = FixReadOnly(listonly)
 walker.run()
 print 'Visited %d files and %d dirs' %
(walker.fcount, walker.dcount)

As we saw in Chapter 2, the built-in os.chmod call changes the permission settings
on an external file (here, to 0777 -- global read, write, and execute permissions).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 284

Because os.chmod and the FileVisitor's operations are portable, this same
script will work to set permissions in an entire tree on both Windows and Unix-like
platforms. Notice that it asks whether you really want to proceed when it first starts
up, just in case someone accidentally clicks the file's name in an explorer GUI. Also
note that Python must be installed before this script can be run to make files
writable; that seems a fair assumption to make of users about to change Python
scripts.

C:\temp\examples>python PyTools\fixreadonly-all.py
This script makes all files writeable; continue?y
. ...
1 => .\autoexec.bat
2 => .\cleanall.csh
3 => .\echoEnvironment.pyw
 ...more deleted...
1352 => .\PyTools\visitor_find.pyc
1353 => .\PyTools\visitor_find_quiet1.py
1354 => .\PyTools\fixeoln_one.doc.txt
Visited 1354 files and 119 dirs

5.6 Copying Directory Trees

The next three sections conclude this chapter by exploring a handful of additional
utilities for processing directories (a.k.a. "folders") on your computer with Python.
They present directory copy, deletion, and comparison scripts that demonstrate
system tools at work. All of these were born of necessity, are generally portable
among all Python platforms, and illustrate Python development concepts along the
way.

Some of these scripts do something too unique for the visitor module's classes
we've been applying in early sections of this chapter, and so require more custom
solutions (e.g., we can't remove directories we intend to walk through). Most have
platform-specific equivalents too (e.g., drag-and-drop copies), but the Python
utilities shown here are portable, easily customized, callable from other scripts, and
surprisingly fast.

5.6.1 A Python Tree Copy Script

My CD writer sometimes does weird things. In fact, copies of files with odd names
can be totally botched on the CD, even though other files show up in one piece.
That's not necessarily a show-stopper -- if just a few files are trashed in a big CD
backup copy, I can always copy the offending files to floppies one at a time.
Unfortunately, Windows drag-and-drop copies don't play nicely with such a CD: the
copy operation stops and exits the moment the first bad file is encountered. You only
get as many files as were copied up to the error, but no more.

There may be some magical Windows setting to work around this feature, but I gave
up hunting for one as soon as I realized that it would be easier to code a copier in
Python. The cpall.py script in Example 5-20 is one way to do it. With this script, I
control what happens when bad files are found -- skipping over them with Python

Programming Python, 2nd Edition, O’Reilly

IT-SC book 285

exception handlers, for instance. Moreover, this tool works with the same interface
and effect on other platforms. It seems to me, at least, that a few minutes spent
writing a portable and reusable Python script to meet a need is a better investment
than looking for solutions that work on only one platform (if at all).

Example 5-20. PP2E\System\Filetools\cpall.py

Usage: "python cpall.py dir1 dir2".
Recursive copy of a directory tree. Works like a
unix "cp -r dirFrom/* dirTo" command, and assumes
that dirFrom and dirTo are both directories. Was
written to get around fatal error messages under
Windows drag-and-drop copies (the first bad file
ends the entire copy operation immediately), but
also allows you to customize copy operations.
May need more on Unix--skip links, fifos, etc.

import os, sys
verbose = 0
dcount = fcount = 0
maxfileload = 100000
blksize = 1024 * 8

def cpfile(pathFrom, pathTo, maxfileload=maxfileload):
 """
 copy file pathFrom to pathTo, byte for byte
 """
 if os.path.getsize(pathFrom) <= maxfileload:
 bytesFrom = open(pathFrom, 'rb').read() # read
small file all at once
 open(pathTo, 'wb').write(bytesFrom) # need b
mode on Windows
 else:
 fileFrom = open(pathFrom, 'rb') # read
big files in chunks
 fileTo = open(pathTo, 'wb') # need b
mode here too
 while 1:
 bytesFrom = fileFrom.read(blksize) # get one
block, less at end
 if not bytesFrom: break # empty
after last chunk
 fileTo.write(bytesFrom)

def cpall(dirFrom, dirTo):
 """

Programming Python, 2nd Edition, O’Reilly

IT-SC book 286

 copy contents of dirFrom and below to dirTo
 """
 global dcount, fcount
 for file in os.listdir(dirFrom): #
for files/dirs here
 pathFrom = os.path.join(dirFrom, file)
 pathTo = os.path.join(dirTo, file) #
extend both paths
 if not os.path.isdir(pathFrom): #
copy simple files
 try:
 if verbose > 1: print 'copying', pathFrom,
'to', pathTo
 cpfile(pathFrom, pathTo)
 fcount = fcount+1
 except:
 print 'Error copying', pathFrom, to,
pathTo, '--skipped'
 print sys.exc_type, sys.exc_value
 else:
 if verbose: print 'copying dir', pathFrom,
'to', pathTo
 try:
 os.mkdir(pathTo) #
make new subdir
 cpall(pathFrom, pathTo) #
recur into subdirs
 dcount = dcount+1
 except:
 print 'Error creating', pathTo, '--skipped'
 print sys.exc_type, sys.exc_value

def getargs():
 try:
 dirFrom, dirTo = sys.argv[1:]
 except:
 print 'Use: cpall.py dirFrom dirTo'
 else:
 if not os.path.isdir(dirFrom):
 print 'Error: dirFrom is not a directory'
 elif not os.path.exists(dirTo):
 os.mkdir(dirTo)
 print 'Note: dirTo was created'
 return (dirFrom, dirTo)
 else:
 print 'Warning: dirTo already exists'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 287

 if dirFrom == dirTo or (hasattr(os.path,
'samefile') and

os.path.samefile(dirFrom, dirTo)):
 print 'Error: dirFrom same as dirTo'
 else:
 return (dirFrom, dirTo)

if __name__ == '__main__':
 import time
 dirstuple = getargs()
 if dirstuple:
 print 'Copying...'
 start = time.time()
 apply(cpall, dirstuple)
 print 'Copied', fcount, 'files,', dcount,
'directories',
 print 'in', time.time() - start, 'seconds'

This script implements its own recursive tree traversal logic, and keeps track of both
the "from" and "to" directory paths as it goes. At every level, it copies over simple
files, creates directories in the "to" path, and recurs into subdirectories with "from"
and "to" paths extended by one level. There are other ways to code this task (e.g.,
other cpall variants on the book's CD change the working directory along the way
with os.chdir calls), but extending paths on descent works well in practice.

Notice this script's reusable cpfile function -- just in case there are multigigabyte
files in the tree to be copied, it uses a file's size to decide whether it should be read
all at once or in chunks (remember, the file read method without arguments really
loads the while file into an in-memory string). Also note that this script creates the
"to" directory if needed, but assumes it is empty when a copy starts up; be sure to
remove the target directory before copying a new tree to its name (more on this in
the next section).

Here is a big book examples tree copy in action on Windows; pass in the name of the
"from" and "to" directories to kick off the process, and run a rm shell command (or
similar platform-specific tool) to delete the target directory first:

C:\temp>rm -rf cpexamples

C:\temp>python %X%\system\filetools\cpall.py examples
cpexamples
Note: dirTo was created
Copying...
Copied 1356 files, 118 directories in 2.41999995708 seconds

C:\temp>fc /B examples\System\Filetools\cpall.py
 cpexamples\System\Filetools\cpall.py
Comparing files examples\System\Filetools\cpall.py and

Programming Python, 2nd Edition, O’Reilly

IT-SC book 288

cpexamples\System\Filetools\cpall.py
FC: no differences encountered

This run copied a tree of 1356 files and 118 directories in 2.4 seconds on my 650
MHz Windows 98 laptop (the built-in time.time call can be used to query the
system time in seconds). It runs a bit slower if programs like MS Word are open on
the machine, and may run arbitrarily faster or slower for you. Still, this is at least as
fast as the best drag-and-drop I've timed on Windows.

So how does this script work around bad files on a CD backup? The secret is that it
catches and ignores file exceptions, and keeps walking. To copy all the files that are
good on a CD, I simply run a command line like this:

C:\temp>python %X%\system\filetools\cpall_visitor.py
 g:\PP2ndEd\examples\PP2E
cpexamples

Because the CD is addressed as "G:" on my Windows machine, this is the command-
line equivalent of drag-and-drop copying from an item in the CD's top-level folder,
except that the Python script will recover from errors on the CD and get the rest. In
general, cpall can be passed any absolute directory path on your machine -- even
ones that mean devices like CDs. To make this go on Linux, try a root directory like
/dev/cdrom to address your CD drive.

5.6.2 Recoding Copies with a Visitor-Based Class

When I first wrote the cpall script just discussed, I couldn't see a way that the
visitor class hierarchy we met earlier would help -- two directories needed to be
traversed in parallel (the original and the copy), and visitor is based on climbing
one tree with os.path.walk. There seemed no easy way to keep track of where
the script is at in the copy directory.

The trick I eventually stumbled onto is to not keep track at all. Instead, the script in
Example 5-21 simply replacesthe "from" directory path string with the "to" directory
path string, at the front of all directory and pathnames passed-in from
os.path.walk. The results of the string replacements are the paths that the
original files and directories are to be copied to.

Example 5-21. PP2E\System\Filetools\cpall_visitor.py

Use: "python cpall_visitor.py fromDir toDir"
cpall, but with the visitor classes and os.path.walk;
the trick is to do string replacement of fromDir with
toDir at the front of all the names walk passes in;
assumes that the toDir does not exist initially;

import os

Programming Python, 2nd Edition, O’Reilly

IT-SC book 289

from PP2E.PyTools.visitor import FileVisitor
from cpall import cpfile, getargs
verbose = 1

class CpallVisitor(FileVisitor):
 def __init__(self, fromDir, toDir):
 self.fromDirLen = len(fromDir) + 1
 self.toDir = toDir
 FileVisitor.__init__(self)
 def visitdir(self, dirpath):
 toPath = os.path.join(self.toDir,
dirpath[self.fromDirLen:])
 if verbose: print 'd', dirpath, '=>', toPath
 os.mkdir(toPath)
 self.dcount = self.dcount + 1
 def visitfile(self, filepath):
 toPath = os.path.join(self.toDir,
filepath[self.fromDirLen:])
 if verbose: print 'f', filepath, '=>', toPath
 cpfile(filepath, toPath)
 self.fcount = self.fcount + 1

if __name__ == '__main__':
 import sys, time
 fromDir, toDir = sys.argv[1:3]
 if len(sys.argv) > 3: verbose = 0
 print 'Copying...'
 start = time.time()
 walker = CpallVisitor(fromDir, toDir)
 walker.run(startDir=fromDir)
 print 'Copied', walker.fcount, 'files,', walker.dcount,
'directories',
 print 'in', time.time() - start, 'seconds'

This version accomplishes roughly the same goal as the original, but has made a few
assumptions to keep code simple -- the "to" directory is assumed to not exist
initially, and exceptions are not ignored along the way. Here it is copying the book
examples tree again on Windows:

C:\temp>rm -rf cpexamples

C:\temp>python %X%\system\filetools\cpall_visitor.py
 examples
cpexamples -quiet
Copying...
Copied 1356 files, 119 directories in 2.09000003338 seconds

C:\temp>fc /B examples\System\Filetools\cpall.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 290

 cpexamples\System\Filetools\cpall.py
Comparing files examples\System\Filetools\cpall.py and
cpexamples\System\Filetools\cpall.py
FC: no differences encountered

Despite the extra string slicing going on, this version runs just as fast as the original.
For tracing purposes, this version also prints all the "from" and "to" copy paths
during the traversal, unless you pass in a third argument on the command line, or
set the script's verbose variable to 0:

C:\temp>python %X%\system\filetools\cpall_visitor.py
examples cpexamples
Copying...
d examples => cpexamples\
f examples\autoexec.bat => cpexamples\autoexec.bat
f examples\cleanall.csh => cpexamples\cleanall.csh
 ...more deleted...
d examples\System => cpexamples\System
f examples\System\System.txt =>
cpexamples\System\System.txt
f examples\System\more.py => cpexamples\System\more.py
f examples\System\reader.py => cpexamples\System\reader.py
 ...more deleted...
Copied 1356 files, 119 directories in 2.31000006199 seconds

5.7 Deleting Directory Trees

Both of the copy scripts in the last section work as planned, but they aren't very
forgiving of existing directory trees. That is, they implicitly assume that the "to"
target directory is either empty or doesn't exist at all, and fail badly if that isn't the
case. Presumably, you will first somehow delete the target directory on your
machine. For my purposes, that was a reasonable assumption to make.

The copiers could be changed to work with existing "to" directories too (e.g., ignore
os.mkdir exceptions), but I prefer to start from scratch when copying trees; you
never know what old garbage might be laying around in the "to" directory. So when
testing the copies above, I was careful to run a rm -rf cpexamples command line
to recursively delete the entire cpexamples directory tree before copying another
tree to that name.

Unfortunately, the rm command used to clear the target directory is really a Unix
utility that I installed on my PC from a commercial package; it probably won't work
on your computer. There are other platform-specific ways to delete directory trees
(e.g., deleting a folder's icon in a Windows explorer GUI), but why not do it once in
Python for every platform? Example 5-22 deletes every file and directory at and
below a passed-in directory's name. Because its logic is packaged as a function, it is
also an importable utility that can be run from other scripts. Because it is pure
Python code, it is a cross-platform solution for tree removal.

Example 5-22. PP2E\System\Filetools\rmall.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 291

#!/usr/bin/python
###

Use: "python rmall.py directoryPath directoryPath..."
recursive directory tree deletion: removes all files and
directories at and below directoryPaths; recurs into
subdirs
and removes parent dir last, because os.rmdir requires
that
directory is empty; like a Unix "rm -rf directoryPath"
###

import sys, os
fcount = dcount = 0

def rmall(dirPath): # delete
dirPath and below
 global fcount, dcount
 namesHere = os.listdir(dirPath)
 for name in namesHere: # remove
all contents first
 path = os.path.join(dirPath, name)
 if not os.path.isdir(path): # remove
simple files
 os.remove(path)
 fcount = fcount + 1
 else: # recur to
remove subdirs
 rmall(path)
 os.rmdir(dirPath) # remove
now-empty dirPath
 dcount = dcount + 1

if __name__ == '__main__':
 import time
 start = time.time()
 for dname in sys.argv[1:]: rmall(dname)
 tottime = time.time() - start
 print 'Removed %d files and %d dirs in %s secs' %
(fcount, dcount, tottime)

The great thing about coding this sort of tool in Python is that it can be run with the
same command-line interface on any machine where Python is installed. If you don't
have a rm -rf type command available on your Windows, Unix, or Macintosh
computer, simply run the Python rmall script instead:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 292

C:\temp>python %X%\System\Filetools\cpall.py examples
cpexamples
Note: dirTo was created
Copying...
Copied 1379 files, 121 directories in 2.68999993801 seconds

C:\temp>python %X%\System\Filetools\rmall.py cpexamples
Removed 1379 files and 122 dirs in 0.549999952316 secs

C:\temp>ls cpexamples
ls: File or directory "cpexamples" is not found

Here, the script traverses and deletes a tree of 1379 files and 122 directories in
about half a second -- substantially impressive for a noncompiled programming
language, and roughly equivalent to the commercial rm -rf program I purchased
and installed on my PC.

One subtlety here: this script must be careful to delete the contents of a directory
before deleting the directory itself -- the os.rmdir call mandates that directories
must be empty when deleted (and throws an exception if they are not). Because of
that, the recursive calls on subdirectories need to happen before the os.mkdir call.
Computer scientists would recognize this as a postorder, depth-first tree traversal,
since we process parent directories after their children. This also makes any
traversals based on os.path.walk out of the question: we need to return to a
parent directory to delete it after visiting its descendents.

To illustrate, let's run interactive os.remove and os.rmdir calls on a cpexample
directory containing files or nested directories:

>>> os.path.isdir('cpexamples')
1
>>> os.remove('cpexamples')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
OSError: [Errno 2] No such file or directory: 'cpexamples'
>>> os.rmdir('cpexamples')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
OSError: [Errno 13] Permission denied: 'cpexamples'

Both calls always fail if the directory is not empty. But now, delete the contents of
cpexamples in another window and try again:

>>> os.path.isdir('cpexamples')
1
>>> os.remove('cpexamples')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
OSError: [Errno 2] No such file or directory: 'cpexamples'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 293

>>> os.rmdir('cpexamples')
>>> os.path.exists('cpexamples')
0

The os.remove still fails -- it's only meant for deleting nondirectory items -- but
os.rmdir now works because the directory is empty. The upshot of this is that a
tree deletion traversal must generally remove directories "on the way out."

5.7.1 Recoding Deletions for Generality

As coded, the rmall script only processes directory names and fails if given names
of simple files, but it's trivial to generalize the script to eliminate that restriction. The
recoding in Example 5-23 accepts an arbitrary command-line list of file and directory
names, deletes simple files, and recursively deletes directories.

Example 5-23. PP2E\System\Filetools\rmall2.py

#!/usr/bin/python
###

Use: "python rmall2.py fileOrDirPath fileOrDirPath..."
like rmall.py, alternative coding, files okay on cmd line
###

import sys, os
fcount = dcount = 0

def rmone(pathName):
 global fcount, dcount
 if not os.path.isdir(pathName): # remove
simple files
 os.remove(pathName)
 fcount = fcount + 1
 else: # recur
to remove contents
 for name in os.listdir(pathName):
 rmone(os.path.join(pathName, name))
 os.rmdir(pathName) # remove
now-empty dirPath
 dcount = dcount + 1

if __name__ == '__main__':
 import time
 start = time.time()
 for name in sys.argv[1:]: rmone(name)
 tottime = time.time() - start

Programming Python, 2nd Edition, O’Reilly

IT-SC book 294

 print 'Removed %d files and %d dirs in %s secs' %
(fcount, dcount, tottime)

This shorter version runs the same, and just as fast, as the original:

C:\temp>python %X%\System\Filetools\cpall.py examples
cpexamples
Note: dirTo was created
Copying...
Copied 1379 files, 121 directories in 2.52999997139 seconds

C:\temp>python %X%\System\Filetools\rmall2.py cpexamples
Removed 1379 files and 122 dirs in 0.550000071526 secs

C:\temp>ls cpexamples
ls: File or directory "cpexamples" is not found

but can also be used to delete simple files:

C:\temp>python %X%\System\Filetools\rmall2.py spam.txt
eggs.txt
Removed 2 files and 0 dirs in 0.0600000619888 secs

C:\temp>python %X%\System\Filetools\rmall2.py spam.txt
eggs.txt cpexamples
Removed 1381 files and 122 dirs in 0.630000042915 secs

As usual, there is more than one way to do it in Python (though you'll have to try
harder to find many spurious ways). Notice that these scripts trap no exceptions; in
programs designed to blindly delete an entire directory tree, exceptions are all likely
to denote truly bad things. We could get more fancy, and support filename patterns
by using the built-in fnmatch module along the way too, but this was beyond the
scope of these script's goals (for pointers on matching, see Example Example 5-17,
and also find.py in Chapter 2).

5.8 Comparing Directory Trees

Engineers can be a paranoid sort (but you didn't hear that from me). At least I am.
It comes from decades of seeing things go terribly wrong, I suppose. When I create
a CD backup of my hard drive, for instance, there's still something a bit too magical
about the process to trust the CD writer program to do the right thing. Maybe I
should, but it's tough to have a lot of faith in tools that occasionally trash files, and
seem to crash my Windows 98 machine every third Tuesday of the month. When
push comes to shove, it's nice to be able to verify that data copied to a backup CD is
the same as the original -- or at least spot deviations from the original -- as soon as
possible. If a backup is ever needed, it will be really needed.

Because data CDs are accessible as simple directory trees, we are once again in the
realm of tree walkers -- to verify a backup CD, we simply need to walk its top-level
directory. We've already written a generic walker class (the visitor module), but

Programming Python, 2nd Edition, O’Reilly

IT-SC book 295

it won't help us here directly: we need to walk two directories in parallel and inspect
common files along the way. Moreover, walking either one of the two directories
won't allow us to spot files and directories that only exist in the other. Something
more custom seems in order here.

5.8.1 Finding Directory Differences

Before we start coding, the first thing we need to clarify is what it means to compare
two directory trees. If both trees have exactly the same branch structure and depth,
this problem reduces to comparing corresponding files in each tree. In general,
though, the trees can have arbitrarily different shapes, depth, and so on.

More generally, the contents of a directory in one tree may have more or fewer
entries than the corresponding directory in the other tree. If those differing contents
are filenames, there is no corresponding file to compare; if they are directory names,
there is no corresponding branch to descend through. In fact, the only way to detect
files and directories that appear in one tree but not the other is to detect differences
in each level's directory.

In other words, a tree comparison algorithm will also have to perform directory
comparisons along the way. Because this is a nested, and simpler operation, let's
start by coding a single-directory comparison of filenames in Example 5-24.

Example 5-24. PP2E\System\Filetools\dirdiff.py

#!/bin/env python

use: python dirdiff.py dir1-path dir2-path
compare two directories to find files that exist
in one but not the other; this version uses the
os.listdir function and list difference; note
that this script only checks filename, not file
contents--see diffall.py for an extension that
does the latter by comparing .read() results;

import os, sys

def reportdiffs(unique1, unique2, dir1, dir2):
 if not (unique1 or unique2):
 print 'Directory lists are identical'
 else:
 if unique1:
 print 'Files unique to', dir1
 for file in unique1:
 print '...', file
 if unique2:
 print 'Files unique to', dir2
 for file in unique2:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 296

 print '...', file

def unique(seq1, seq2):
 uniques = [] # return items in
seq1 only
 for item in seq1:
 if item not in seq2:
 uniques.append(item)
 return uniques

def comparedirs(dir1, dir2):
 print 'Comparing', dir1, 'to', dir2
 files1 = os.listdir(dir1)
 files2 = os.listdir(dir2)
 unique1 = unique(files1, files2)
 unique2 = unique(files2, files1)
 reportdiffs(unique1, unique2, dir1, dir2)
 return not (unique1 or unique2) # true if
no diffs

def getargs():
 try:
 dir1, dir2 = sys.argv[1:] # 2
command-line args
 except:
 print 'Usage: dirdiff.py dir1 dir2'
 sys.exit(1)
 else:
 return (dir1, dir2)

if __name__ == '__main__':
 dir1, dir2 = getargs()
 comparedirs(dir1, dir2)

Given listings of names in two directories, this script simply picks out unique names
in the first, unique names in the second, and reports any unique names found as
differences (that is, files in one directory but not the other). Its comparedirs
function returns a true result if no differences were found -- useful for detecting
differences in callers.

Let's run this script on a few directories; differences are detected and reported as
names unique in either passed-in directory pathname. Notice that this is only a
structural comparison that just checks names in listings, not file contents (we'll add
the latter in a moment):

C:\temp>python %X%\system\filetools\dirdiff.py examples
cpexamples
Comparing examples to cpexamples

Programming Python, 2nd Edition, O’Reilly

IT-SC book 297

Directory lists are identical

C:\temp>python %X%\system\filetools\dirdiff.py
 examples\PyTools
cpexamples\PyTools
Comparing examples\PyTools to cpexamples\PyTools
Files unique to examples\PyTools
... visitor.py

C:\temp>python %X%\system\filetools\dirdiff.py
 examples\System\Filetools

cpexamples\System\Filetools
Comparing examples\System\Filetools to
cpexamples\System\Filetools
Files unique to examples\System\Filetools
... dirdiff2.py
Files unique to cpexamples\System\Filetools
... cpall.py

The unique function is the heart of this script: it performs a simple list difference
operation. Here's how it works apart from the rest of this script's code:

>>> L1 = [1, 3, 5, 7, 9]
>>> L2 = [2, 3, 6, 8, 9]
>>> from dirdiff import unique
>>> unique(L1, L2) # items in L1 but not
in L2
[1, 5, 7]
>>> unique(L2, L1) # items in L2 but not
in L1
[2, 6, 8]

These two lists have objects 3 and 9 in common; the rest appear only in one of the
two. When applied to directories, unique items represent tree differences, and
common items are names of files or subdirectories that merit further comparisons or
traversal. There are other ways to check this code; see the dirdiff variants in the
book's CD for a few.

5.8.2 Finding Tree Differences

Now all we need is a tree walker that applies dirdiff at each level to pick out
unique files and directories, explicitly compares the contents of files in common, and
descends through directories in common. Example 5-25 fits the bill.

Example 5-25. PP2E\System\Filetools\diffall.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 298

Usage: "python diffall.py dir1 dir2".
recursive tree comparison--report files that exist
in only dir1 or dir2, report files of same name in
dir1 and dir2 with differing contents, and do the
same for all subdirectories of the same names in
and below dir1 and dir2; summary of diffs appears
at end of output (but search redirected output for
"DIFF" and "unique" strings for further details);

import os, dirdiff

def intersect(seq1, seq2):
 commons = [] # items in seq1 and seq2
 for item in seq1:
 if item in seq2:
 commons.append(item)
 return commons

def comparedirs(dir1, dir2, diffs, verbose=0):
 # compare filename lists
 print '-'*20
 if not dirdiff.comparedirs(dir1, dir2):
 diffs.append('unique files at %s - %s' % (dir1,
dir2))

 print 'Comparing contents'
 files1 = os.listdir(dir1)
 files2 = os.listdir(dir2)
 common = intersect(files1, files2)

 # compare contents of files in common
 for file in common:
 path1 = os.path.join(dir1, file)
 path2 = os.path.join(dir2, file)
 if os.path.isfile(path1) and os.path.isfile(path2):
 bytes1 = open(path1, 'rb').read()
 bytes2 = open(path2, 'rb').read()
 if bytes1 == bytes2:
 if verbose: print file, 'matches'
 else:
 diffs.append('files differ at %s - %s' %
(path1, path2))
 print file, 'DIFFERS'

 # recur to compare directories in common
 for file in common:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 299

 path1 = os.path.join(dir1, file)
 path2 = os.path.join(dir2, file)
 if os.path.isdir(path1) and os.path.isdir(path2):
 comparedirs(path1, path2, diffs, verbose)

if __name__ == '__main__':
 dir1, dir2 = dirdiff.getargs()
 mydiffs = []
 comparedirs(dir1, dir2, mydiffs) # changes
mydiffs in-place
 print '='*40 # walk, report
diffs list
 if not mydiffs:
 print 'No diffs found.'
 else:
 print 'Diffs found:', len(mydiffs)
 for diff in mydiffs: print '-', diff

At each directory in the tree, this script simply runs the dirdiff tool to detect
unique names, and then compares names in common by intersecting directory lists.
Since we've already studied the tree-walking tools this script employs, let's jump
right into a few example runs. When run on identical trees, status messages scroll
during the traversal, and a "No diffs found" message appears at the end:

C:\temp>python %X%\system\filetools\diffall.py examples
cpexamples

Comparing examples to cpexamples
Directory lists are identical
Comparing contents

Comparing examples\old_Part2 to cpexamples\old_Part2
Directory lists are identical
Comparing contents

 ...more lines deleted...

Comparing examples\EmbExt\Regist to
cpexamples\EmbExt\Regist
Directory lists are identical
Comparing contents

Comparing examples\PyTools to cpexamples\PyTools
Directory lists are identical
Comparing contents
==
No diffs found.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 300

To show how differences are reported, we need to generate a few. Let's run the
global search-and-replace script we met earlier, to change a few files scattered about
one of the trees (see -- I told you global replacement could trash your files!):

C:\temp\examples>python %X%\PyTools\visitor_replace.py -
exec SPAM
Are you sure?y
...
1355 => .\PyTools\visitor_find_quiet1.py
1356 => .\PyTools\fixeoln_one.doc.txt
Visited 1356 files
Changed 8 files:
.\package.csh
.\README-PP2E.txt
.\readme-old-pp1E.txt
.\temp
.\remp
.\Internet\Cgi-Web\fixcgi.py
.\System\Processes\output.txt
.\PyTools\cleanpyc.py

While we're at it, let's remove a few common files so directory uniqueness
differences show up on the scope too; the following three removal commands will
make two directories differ (the last two commands impact the same directory in
different trees):

C:\temp>rm cpexamples\PyTools\visitor.py
C:\temp>rm cpexamples\System\Filetools\dirdiff2.py
C:\temp>rm examples\System\Filetools\cpall.py

Now, rerun the comparison walker to pick out differences, and pipe its output report
to a file for easy inspection. The following lists just the parts of the output report that
identify differences. In typical use, I inspect the summary at the bottom of the report
first, and then search for strings "DIFF" and "unique" in the report's text if I need
more information about the differences summarized:

C:\temp>python %X%\system\filetools\diffall.py examples
cpexamples > diffs
C:\temp>type diffs

Comparing examples to cpexamples
Directory lists are identical
Comparing contents
package.csh DIFFERS
README-PP2E.txt DIFFERS
readme-old-pp1E.txt DIFFERS
temp DIFFERS
remp DIFFERS

Programming Python, 2nd Edition, O’Reilly

IT-SC book 301

Comparing examples\old_Part2 to cpexamples\old_Part2
Directory lists are identical
Comparing contents

...

Comparing examples\Internet\Cgi-Web to
cpexamples\Internet\Cgi-Web
Directory lists are identical
Comparing contents
fixcgi.py DIFFERS

...

Comparing examples\System\Filetools to
cpexamples\System\Filetools
Files unique to examples\System\Filetools
... dirdiff2.py
Files unique to cpexamples\System\Filetools
... cpall.py
Comparing contents

...

Comparing examples\System\Processes to
cpexamples\System\Processes
Directory lists are identical
Comparing contents
output.txt DIFFERS

...

Comparing examples\PyTools to cpexamples\PyTools
Files unique to examples\PyTools
... visitor.py
Comparing contents
cleanpyc.py DIFFERS
==
Diffs found: 10
- files differ at examples\package.csh -
cpexamples\package.csh
- files differ at examples\README-PP2E.txt -
cpexamples\README-PP2E.txt
- files differ at examples\readme-old-pp1E.txt -
cpexamples\readme-old-pp1E.txt
- files differ at examples\temp - cpexamples\temp
- files differ at examples\remp - cpexamples\remp

Programming Python, 2nd Edition, O’Reilly

IT-SC book 302

- files differ at examples\Internet\Cgi-Web\fixcgi.py -
 cpexamples\Internet\Cgi-Web\fixcgi.py
- unique files at examples\System\Filetools -
 cpexamples\System\Filetools
- files differ at examples\System\Processes\output.txt -
 cpexamples\System\Processes\output.txt
- unique files at examples\PyTools - cpexamples\PyTools
- files differ at examples\PyTools\cleanpyc.py -
cpexamples\PyTools\cleanpyc.py

I added line breaks and tabs in a few of these output lines to make them fit on this
page, but the report is simple to understand. Ten differences were found -- the eight
files we changed (trashed) with the replacement script, and the two directories we
threw out of sync with the three rm remove commands.

5.8.2.1 Verifying CD backups

So how does this script placate CD backup paranoia? To double-check my CD writer's
work, I run a command like the following. I can also use a command like this to find
out what has been changed since the last backup. Again, since the CD is "G:" on my
machine when plugged in, I provide a path rooted there; use a root such as
/dev/cdrom on Linux:

C:\temp>python %X%\system\filetools\diffall.py
 examples g:\PP2ndEd\examples\PP2E >
exdiffs091500

C:\temp>more exdiffs091500

Comparing examples to g:\PP2ndEd\examples\PP2E
Files unique to examples
... .cshrc
Comparing contents
tounix.py DIFFERS

Comparing examples\old_Part2 to
g:\PP2ndEd\examples\PP2E\old_Part2
Directory lists are identical
Comparing contents

 ...more
visitor_fixeoln.py DIFFERS
visitor_fixnames.py DIFFERS
==
Diffs found: 41
- unique files at examples - g:\PP2ndEd\examples\PP2E
- files differ at examples\tounix.py -
g:\PP2ndEd\examples\PP2E\tounix.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 303

 ...more

The CD spins, the script compares, and a summary of 41 differences appears at the
end of the report (in this case, representing changes to the examples tree since the
latest backup CD was burned). For an example of a full difference report, see file
exdiffs091500 on the book's CD. More typically, this is what turns up for most of my
example backups -- files with a leading "." are not copied to the CD:

C:\temp>python %X%\System\Filetools\diffall.py
 examples g:\PP2ndEd\examples\PP2E
...

Comparing examples\Config to
g:\PP2ndEd\examples\PP2E\Config
Files unique to examples\Config
... .cshrc
Comparing contents
==
Diffs found: 1
- unique files at examples\Config -
g:\PP2ndEd\examples\PP2E\Config

And to really be sure, I run the following global comparison command against the
true book directory, to verify the entire book tree backup on CD:

C:\>python %X%\System\Filetools\diffall.py PP2ndEd
G:\PP2ndEd

Comparing PP2ndEd to G:\PP2ndEd
Files unique to G:\PP2ndEd
... examples.tar.gz
Comparing contents
README.txt DIFFERS

 ...more

Comparing PP2ndEd\examples\PP2E\Config to
G:\PP2ndEd\examples\PP2E\Config
Files unique to PP2ndEd\examples\PP2E\Config
... .cshrc
Comparing contents

 ...more

Comparing PP2ndEd\chapters to G:\PP2ndEd\chapters
Directory lists are identical
Comparing contents
ch01-intro.doc DIFFERS

Programming Python, 2nd Edition, O’Reilly

IT-SC book 304

ch04-os3.doc DIFFERS
ch05-gui1.doc DIFFERS
ch06-gui2.doc DIFFERS

 ...more
==
Diffs found: 11
- unique files at PP2ndEd - G:\PP2ndEd
- files differ at PP2ndEd\README.txt -
G:\PP2ndEd\README.txt
 ...more

This particular run indicates that I've changed a "readme" file, four chapter files, and
a bunch more since the last backup; if run immediately after making a backup, only
the .cshrc unique file shows up on diffall radar. This global comparison can take
a few minutes -- it performs byte-for-byte comparisons of all chapter files and screen
shots, the examples tree, an image of the book's CD, and more, but it's an accurate
and complete verification. Given that this book tree contained roughly 119M of data
in 7300 files and 570 directories the last time I checked, a more manual verification
procedure without Python's help would be utterly impossible.

Finally, it's worth noting that this script still only detects differences in the tree, but
does not give any further details about individual file differences. In fact, it simply
loads and compares the binary contents of corresponding files with a single string
comparison -- it's a simple yes/no result.[11] If and when I need more details about
how two reported files actually differ, I either edit the files, or run the file-
comparison command on the host platform (e.g., fc on Windows/DOS, diff or cmp on
Unix and Linux). That's not a portable solution for this last step; but for my
purposes, just finding the differences in a 1300-file tree was much more critical than
reporting which lines differ in files flagged in the report.

[11] We might try to do a bit better here, by opening text files in text mode to ignore line-
terminator differences, but it's not clear that such differences should be blindly ignored (what
if the caller wants to know if line-end markers have been changed?). We could also be smarter
by avoiding the load and compare steps for files that differ in size, and read files in small
chunks, instead of all at once, to minimize memory requirements for huge files (see earlier
examples such as the cpall script for hints). For my comparisons, such optimizations are
unnecessary.

Of course, since we can always run shell commands in Python, this last step could be
automated by spawning a diff or fc command with os.popen as differences are
encountered (or after the traversal, by scanning the report summary). Because
Python excels at processing files and strings, though, it's possible to go one step
further and code a Python equivalent of the fc and diff commands. Since this is
beyond both this script's scope and this chapter's size limits, that will have to await
the attention of a curious reader.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 305

Part II: GUI Programming

This part of the book shows you how to apply Python to build portable graphical user
interfaces, primarily with Python's standard Tkinter library. The following chapters
cover this topic in depth:

Chapter 6. This chapter outlines GUI options available to Python developers, and
then presents a tutorial that illustrates core Tkinter coding concepts in the context of
simple user interfaces.

Chapter 7. This chapter begins a tour of the Tkinter library -- its widget set and
related tools. This first tour chapter covers simpler library tools and widgets: pop-up
windows, various types of buttons, and so on.

Chapter 8. This chapter continues the library tour begun in the prior chapter. It
presents the rest of the Tkinter widget library -- menus, images, text, canvases,
grids, and time-based events and animation.

Chapter 9. This chapter pulls the earlier chapters' ideas together to implement a
collection of user interfaces. It begins with a look at GUI automation techniques, and
concludes by presenting larger GUIs -- clocks, text editors, drawing programs, image
viewers, and more.

As in the first part of this book, the material presented here is applicable to a wide
variety of domains and will be utilized again to build domain-specific user interfaces
in later chapters of this book.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 306

Chapter 6. Graphical User Interfaces

6.1 "Here's Looking at You, Kid"

6.2 Python GUI Development Options

6.3 Tkinter Overview

6.4 Climbing the GUI Learning Curve

6.5 The End of the Tutorial

6.6 Python/Tkinter for Tcl/Tk Converts

6.1 "Here's Looking at You, Kid"

For most software systems, a graphical user interface (GUI) has become an expected
part of the package. Even if the GUI acronym is new to you, chances are that you
are already familiar with such interfaces -- the windows, buttons, and menus that we
use to interact with software programs. In fact, most of what we do on computers
today is done with some sort of point-and-click graphical interface. From web
browsers to system tools, programs are routinely dressed-up with a GUI component
to make them more flexible and easy to use.

In this part of the book, we will learn how to make Python scripts sprout such
graphical interfaces too, by studying examples of programming with the Tkinter
module -- a portable GUI library that is a standard part of the Python system. As
we'll see, it's easy to program user interfaces in Python scripts, thanks both to the
simplicity of the language and the power of its GUI libraries. As an added bonus,
GUIs programmed in Python with Tkinter are automatically portable to all major
computer systems.

6.1.1 GUI Programming Topics

Because GUIs are a major area, I want to say a few more words about this part of
the book. To make them easier to absorb, GUI programming topics are split over the
next four chapters of this book:

This chapter begins with a quick Tkinter tutorial to teach coding basics. Interfaces
are kept simple here on purpose, so you can master the fundamentals before moving
on to the following chapter's interfaces. On the other hand, this chapter covers all
the basics: event processing, the pack geometry manager, using inheritance and
composition in GUIs, and more. As we'll see, OOP (object-oriented programming)
isn't required for Tkinter, but it makes GUIs structured and reusable.

Chapter 7 and Chapter 8 take you on a tour of the Tkinter widget set.[1] Roughly,
Chapter 7, presents simple widgets, and Chapter 8, covers more advanced widgets

Programming Python, 2nd Edition, O’Reilly

IT-SC book 307

and related tools. Most of the interfaces devices you're accustomed to seeing show
up here: sliders, menus, dialogs, images, and their kin. These two chapters are not a
fully complete Tkinter reference (which could easily fill a large book by itself), but
should be enough to help you get started coding substantial Python GUIs. The
examples in these chapters are focused on widgets and Tkinter tools, but Python's
support for code reuse is also explored along the way.

[1] The term "widget set" refers to the objects used to build familiar point-and-click
user interface devices -- push-buttons, sliders, input fields, and so on. Tkinter comes
with Python classes that correspond to all the widgets you're accustomed to seeing in
graphical displays. Besides widgets, Tkinter also comes with tools for other activities,
such as scheduling events to occur, waiting for socket data to arrive, and so on.

Chapter 9, presents more complex examples that use coding and widget techniques
presented in the three preceding chapters. It begins with an exploration of
techniques for automating common GUI tasks with Python. Although Tkinter is a full-
featured library, a small amount of reusable Python code can make its interfaces
even more powerful and easy to use. This chapter wraps up by presenting a handful
of complete GUI programs that implement text editors, image viewers, clocks, and
more.

Because GUIs are really cross-domain tools, other GUI examples will also show up
throughout the remainder of this book. For example, we'll later see email GUIs,
calculators, tree viewers, table browsers, and so on. See the fourth GUI chapter for a
list of forward pointers to other Tkinter examples in this text.

One point I'd like to make right away: most GUIs are dynamic and interactive
interfaces, and the best I can do here is show static screen shots representing
selected states in the interactions such programs implement. This really won't do
justice to most examples. If you are not working along with the examples already, I
encourage you to run the GUI examples in this and later chapters on your own.

On Windows, the standard Python install comes with Tkinter support built-in, so all
these examples should work immediately. For other systems, Pythons with Tkinter
support are readily available as well (see Appendix B, and the top-level README-
PP2E.txt file for more details). It's worth whatever extra install details you may need
to absorb, though; experimenting with these programs is a great way to learn about
both GUI programming, and Python itself.

Has Anyone Noticed That "GUI" Are
the First Three Letters of "GUIDO"?

Python's creator didn't originally set out to build a GUI development tool,
but Python's ease of use and rapid turnaround have made this one of its
primary roles. From an implementation perspective, GUIs in Python are
really just instances of C extensions, and extendability was one of the main
ideas behind Python. When a script builds push-buttons and menus, it
ultimately talks to a C library; and when a script responds to a user event, a
C library ultimately talks back to Python.

But from a practical point of view, GUIs are a critical part of modern
systems, and an ideal domain for a tool like Python. As we'll see, Python's

Programming Python, 2nd Edition, O’Reilly

IT-SC book 308

simple syntax and object-oriented flavor blend well with the GUI model --
it's natural to represent each device drawn on a screen as a Python class.
Moreover, Python's quick turnaround lets programmers experiment with
alternative layouts and behavior rapidly, in ways not possible with traditional
development techniques. In fact, you can usually make a change to a
Python-based GUI, and observe its effects in a matter of seconds. Don't try
this with C or C++.

6.2 Python GUI Development Options

Before we start wading into the Tkinter pond, let's begin with some perspective on
Python GUI options in general. Because Python has proven to be such a good match
for GUI work, this domain has seen much activity in recent years. In fact, although
Tkinter is the most widely used GUI toolkit in Python, there is a variety of ways to
program user interfaces in Python today. Some are specific to Windows or X
Windows,[2] some are cross-platform solutions, and all have followings and strong
points all their own. To be fair to all the alternatives, here is a brief inventory of GUI
toolkits available to Python programmers as I write these words:

[2] In this book, "Windows" refers to the Microsoft Windows interface common on PCs, and "X
Windows" refers to the X11 interface most commonly found on Unix and Linux platforms.
These two interfaces are generally tied to the Microsoft and Unix platforms, respectively. It's
possible to run X Windows on top of a Microsoft operating system and Windows emulators on
Unix and Linux, but not common.

Tkinter (shipped with Python)

An open-source, portable GUI library, used as the de facto standard for GUI
development in Python. Tkinter makes it easy to build simple GUIs quickly, and can
be straightforwardly augmented with larger component frameworks in Python.
Python scripts that use Tkinter to build GUIs run portably on Windows, X Windows
(Unix), and Macintosh, and display a native look-and-feel on each of these. The
underlying Tk library used by Tkinter is a standard in the open source world at large,
and is also used by the Perl and Tcl scripting languages.

wxPython (http://wxpython.org)

An open-source Python interface for wxWindows -- a portable GUI class framework
originally written to be used from the C++ programming language. The wxPython
system is an extension module that wraps wxWindows classes. This library is
generally considered to excel at building sophisticated interfaces, and is probably the
second most popular Python GUI toolkit today, behind Tkinter. At this writing,
wxPython code is portable to Windows and Unix-like platforms, but not the
Macintosh. The underlying wxWindows library best supports Windows and GTK (on
Unix), but it is generally portable to Windows, Unix-like platforms, and the
Macintosh.

JPython (http://www.jython.org)

As we will see in Chapter 15, JPython (a.k.a. "Jython") is a Python port for Java,
which gives Python scripts seamless access to Java class libraries on the local

Programming Python, 2nd Edition, O’Reilly

IT-SC book 309

machine. Because of that, Java GUI libraries such as swing and awt become
another way to construct GUIs in Python code run by the JPython system. Such
solutions are obviously Java-specific, and limited in portability to the portability of
Java and its libraries. A new package named jTkinter also provides a Tkinter port
to JPython using Java's JNI; if installed, Python scripts may also use Tkinter to build
GUIs under JPython.

KDE and Qt (http://www.thekompany.com/projects/pykde)
Gnome and GTK (ftp://ftp.daa.com.au/pub/james/python)

On Linux, developers can find Python interfaces to the underlying GUI libraries at the
core of the KDE and Gnome window systems. The PyKDE and PyQt extension
packages provide access to KDE development libraries (PyKDE requires PyQt). The
gnome-python and PyGTK extension packages export Gnome and GTK toolkit calls
for use in Python scripts (gnome-python requires PyGTK). Both of these sets of
extensions are as portable as the underlying libraries they use. Today, the Qt class
library runs on Unix and Windows, KDE runs on Linux and Unix platforms, and GTK
and Gnome run on Linux and Unix platforms (though a Windows port of GTK is in the
works). See relevant web sites for more recent details.

MFC (http://www.python.org/windows)

The Windows win32all.exe extensions package for Python, available at Python's web
site and on this book's CD-ROM, includes wrappers for the Microsoft Foundation
Classes (MFC) framework -- a development library that includes user interface
components. With the Windows extensions, Python programs can construct Windows
GUIs using the same MFC calls applied in languages such as Visual C++. Pythonwin,
an MFC sample program that implements a Python development GUI, is included
with the extensions package. This is a Windows-only solution, but may be an
appealing option for developers with a prior intellectual investment in using the MFC
framework from Visual C++.

WPY (http://www.python.org/ftp/python/wpy)

An MFC-like GUI library for Python, ported to run on both X Windows for Unix (where
it uses Tk) and Windows for PCs (where it uses MFC). WPY scripts run unchanged on
each platform, but use MFC coding styles.

X11 (http://www.cwi.nl/ftp/sjoerd/index.html)

Interfaces to the raw X Windows and Motif libraries also exist for Python. They
provide maximum control over the X11 development environment, but are an X-only
solution.

There are other lesser-known GUI toolkits for Python, and new ones are likely to
emerge by the time you read this book (e.g., the newly announced Python port to
the .NET framework on Windows may offer user interface options as well).[3]
Moreover, package and web site names like those in this list mutate over time. For
an up-to-date list of available tools, see http://www.python.org and the new "Vaults
of Parnassus" third-party packages site currently at http://www.vex.net/parnassus.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 310

[3] In Part III, we'll learn how to build user interfaces within a web browser. For now, we'll
focus on more traditional GUIs that may or may not be connected to a network.

6.3 Tkinter Overview

Of all these GUI options, though, Tkinter is by far the de facto standard way to
implement portable user interfaces in Python today, and the focus of this part of the
book. Tkinter's portability, availability, accessibility, documentation, and extensions
have made it the most widely used Python GUI solution for many years running.
Here are some of the reasons why:

Accessibility

Tkinter is generally regarded as a lightweight toolkit, and one of the simplest GUI
solutions for Python available today. Unlike larger frameworks, it is easy to get
started in Tkinter right away, without first having to grasp a much larger class
interaction model. As we'll see, programmers can create simple Tkinter GUIs in a few
lines of Python code, and scale up to writing industrial-strength GUIs gradually.

Portability

A Python script that builds a GUI with Tkinter will run without source code changes
on all major window platforms today: Microsoft Windows, X Windows (on Unix and
Linux), and the Macintosh. Further, that same script will provide a native look-and-
feel to its users on each of these platforms. A Python/Tkinter script looks like a
Windows program on Windows; on Unix and Linux, it provides the same interaction
but sports an appearance familiar to X Windows users; and on the Mac, it looks like a
Mac program should.

Availability

Tkinter is a standard module in the Python library, shipped with the interpreter. If
you have Python, you have Tkinter. Moreover, most Python installation packages
(including the standard Python self-installer for Windows) come with Tkinter support
bundled. Because of that, scripts written to use the Tkinter module work immediately
on most Python interpreters, without any extra installation steps.[4] Tkinter is also
generally better supported than its alternatives today. Because the underlying Tk
library is also used by the Tcl and Perl programming languages, it tends to receive
more development time and effort than other toolkits available.

[4] Some Python distributions on Unix-like platforms still come without Tk support
bundled, so you may need to add it on your machine. On some Unix and Linux
platforms, you may also need to set your Tcl/Tk library shell variables to use Tkinter.
See Appendix B for install details; you can usually sidestep Tk build details by finding
an alternative Python distribution with Tk bundled (e.g., Linux RPMs).

Naturally, other factors such as documentation and extensions are important when
using a GUI toolkit too; let's take a quick look at the story Tkinter has to tell on
these fronts as well.

6.3.1 Tkinter Documentation

Programming Python, 2nd Edition, O’Reilly

IT-SC book 311

This book explores Tkinter fundamentals and most widgets tools, and should be
enough to get started with substantial GUI development in Python. On the other
hand, it is not an exhaustive reference to the Tkinter library. Happily, at least one
book dedicated to using Tkinter in Python is now commercially available as I write
this paragraph, and others are on the way (see the Python books list at
http://www.python.org for details). Besides books, you can also now find Tkinter
documentation online; a complete set of Tkinter manuals is currently maintained on
the web at http://www.pythonware.com/library.

In addition, because the underlying Tk toolkit used by Tkinter is also a de facto
standard in the open source scripting community at large, other documentation
sources apply. For instance, because Tk has also been adopted by the Tcl and Perl
programming languages, Tk-oriented books and documentation written for both of
these are directly applicable to Python/Tkinter as well (albeit, with some syntactic
mapping).

Frankly, I learned Tkinter by studying Tcl/Tk texts and references -- just replace Tcl
strings with Python objects and you have additional reference libraries at your
disposal (see Table 6-2, the Tk to Tkinter conversion guide, at the end of this
chapter for help reading Tk documentation). For instance, the Tcl/Tk Pocket
Reference (O'Reilly) can serve as a nice supplement to the Tkinter tutorial material in
this part of the book. Moreover, since Tk concepts are familiar to a large body of
programmers, Tk support is also readily available on the Net.

6.3.2 Tkinter Extensions

Because Tkinter is so widely used, programmers also have access to precoded
Python extensions designed to work with or augment it. For instance:

PIL (http://www.pythonware.com/products/pil/)

The Python Imaging Library is an open source extension package that adds image-
processing tools to Python. Among other things, it extends the basic Tkinter image
object set, to add support for displaying many image file types (see Section 7.9 at
the end of Chapter 7 for details). Besides developing PIL, PythonWare is also building
GUI development tools for Python and Tkinter programming, known as PythonWorks;
visit their web site for more details.

PMW (http://www.dscpl.com.au/pmw)

Python Mega Widgets is an extension toolkit for building high-level compound
widgets in Python using the Tkinter module. It extends the Tkinter API with a
collection of more sophisticated widgets for advanced GUI development, and a
framework for implementing some of your own. Among the precoded and extensible
megawidgets shipped with the package are notebooks, comboboxes, selection
widgets, paned widgets, scrolled widgets, dialog windows, button boxes, and an
interface to the Blt graph widget. The interface to PMW megawidgets is similar to
that of basic Tkinter widgets, so Python scripts can freely mix PMW megawidgets
with standard Tkinter widgets.

IDLE (shipped with Python)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 312

The IDLE integrated Python development environment is both written in Python with
Tkinter and shipped and installed with the Python package (if you have a recent
Python interpreter, you should have IDLE too -- on Windows, click the Start button,
select the Programs menu, and click the Python entry to find it). As described in
Appendix B, IDLE provides syntax-coloring text editors for Python code, point-and-
click debugging, and more, and is an example of Tkinter's utility.

If you plan on doing any commercial-grade GUI development with Tkinter, you'll
probably want to explore extensions such as PMW and PIL after learning Tkinter
basics in this text. They can save development time and add pizzazz to your GUIs.
See the Python-related web sites mentioned earlier for up-to-date details and links.

6.3.3 Tkinter Structure

From a more nuts-and-bolts perspective, Tkinter is an integration system that
implies a somewhat unique program structure. We'll see what this means in terms of
code in a moment, but here is a brief introduction to some of the terms and concepts
at the core of Python GUI programming.

Strictly speaking, Tkinter is simply the name of Python's interface to Tk -- a GUI
library originally written for use with the Tcl programming language, and developed
by Tcl's creator, John Ousterhout. Python's Tkinter module talks to Tk, and the Tk
API in turn interfaces with the underlying window system: Microsoft Windows, X
Windows on Unix, or Macintosh.

Python's Tkinter adds a software layer on top of Tk that allows Python scripts to call
out to Tk to build and configure interfaces, and routes control back to Python scripts
that handle user-generated events (e.g., mouseclicks). That is, GUI calls are
internally routed from Python script, to Tkinter, to Tk; GUI events are routed from
Tk, to Tkinter, and back to a Python script. In Part V, we'll know these transfers by
their C integration terms, extending and embedding.[5]

[5] Since I brought it up: Tkinter is structured as a combination of the Python-coded Tkinter
module file, and an extension module called _tkinter that is written in C. _tkinter interfaces
with the Tk library and dispatches callbacks back to Python objects using embedding tools;
Tkinter adds a class-based interface on top of _tkinter. You should always import Tkinter
(not _tkinter) in your scripts, though; the latter is an implementation module for internal use
only (it was oddly named for a reason).

Luckily, Python programmers don't normally need to care about all this call routing
going on internally; they simply make widgets and register Python functions to
handle widget events. Because of the overall structure, though, event handlers are
usually known as callback handlers, because the GUI library "calls back" to Python
code when events occur.

In fact, we'll find that Python/Tkinter programs are entirely event-driven: they build
displays and register handlers for events, and then do nothing but wait for events to
occur. During the wait, the Tk GUI library runs an event loop that watches for
mouseclicks, keyboard presses, and so on. All application program processing
happens in the registered callback handlers, in response to events. Further, any
information needed across events must be stored in long-lived references like global
variables and class instance attributes. The notion of a traditional linear program

Programming Python, 2nd Edition, O’Reilly

IT-SC book 313

control-flow doesn't really apply in the GUI domain; you need to think in terms of
smaller chunks.

In Python, Tk also becomes object-oriented just because Python is object-oriented:
the Tkinter layer exports Tk's API as Python classes. With Tkinter, we can either use
a simple function-call approach to create widgets and interfaces, or apply OO
techniques such as inheritance and composition to customize and extend the base
set of Tkinter classes. Larger Tkinter GUIs generally are constructed as trees of
linked Tkinter widget objects, and are often implemented as Python classes to
provide structure and retain state information between events. As we'll see in this
part of the book, a Tkinter GUI coded with classes almost by default becomes a
reusable software component.

6.4 Climbing the GUI Learning Curve

On to the details. Let's start out by quickly stepping through a few small examples
that illustrate basic concepts, and show the windows they create on the screen. The
examples will become more sophisticated as we move along.

6.4.1 "Hello World" in Four Lines (or Less)

The usual first example for GUI systems is to show how to display a "Hello World"
message in a window. As coded in Example 6-1, it's just four lines in Python.

Example 6-1. PP2E\Gui\Intro\gui1.py

from Tkinter import Label #
get a widget object
widget = Label(None, text='Hello GUI world!') #
make one
widget.pack() #
arrange it
widget.mainloop() #
start event loop

This is a complete Python Tkinter GUI program. When this script is run, we get a
simple window with a label in the middle; it looks like Figure 6-1 on Windows.

Figure 6-1. "Hello World" (gui1) on Windows

This isn't much to write home about yet; but notice that this is a completely
functional, independent window on the computer's display. It can be maximized to
take up the entire screen, minimized to hide it in the system bar, and resized. Click
on the window's "X" box in the top right to kill the window and exit the program.

The script that builds this window is also fully portable -- when this same file is run
on Linux it produces a similar window, but it behaves according to the underlying

Programming Python, 2nd Edition, O’Reilly

IT-SC book 314

Linux window manager. For instance, Figures Figure 6-2 and Figure 6-3 show this
simple script in action on the Linux X Windows system, under the KDE and Gnome
window managers, respectively. Even on the same operating system, the same
Python code yields a different look and feel for different window systems.

Figure 6-2. "Hello World" on Linux with KDE

Figure 6-3. "Hello World" on Linux with Gnome

The same script file would look different still when run on Macintosh and other Unix-
like window managers. On all platforms, though, its basic functional behavior will be
the same.

6.4.2 Tkinter Coding Basics

The gui1 script is a trivial example, but it illustrates steps common to most Tkinter
programs. This Python code:

Loads a widget class from the Tkinter module

Makes an instance of the imported Label class

Packs (arranges) the new Label in its parent widget

Calls mainloop to bring up the window and start the Tkinter event loop

The mainloop method called last puts the label on the screen and enters a Tkinter
wait state, which watches for user-generated GUI events. Within the mainloop
function, Tkinter internally monitors things like the keyboard and mouse, to detect
user-generated events. Because of this model, the mainloop call here never
returns to our script while the GUI is displayed on-screen.[6] As we'll see when we
reach larger scripts, the only way we can get anything done after calling mainloop
is to register callback handlers to respond to events.

[6] Technically, the mainloop call returns to your script only after the Tkinter event loop exits.
This normally happens when the GUI's main window is closed, but may also occur in response
to explicit quit method calls that terminate nested event loops but leave the GUI at large
open. You'll see why this matters in Chapter 7.

Note that you really need both steps 3 and 4 to open this script's GUI. To display a
GUI's window at all, you need to call mainloop; to display widgets within the
window they must be packed (or otherwise arranged) so that the Tkinter geometry
manager knows about them. In fact, if you call either mainloop or pack without
calling the other, your window won't show up as expected: a mainloop without a

Programming Python, 2nd Edition, O’Reilly

IT-SC book 315

pack shows an empty window, and a pack without a mainloop in a script shows
nothing since the script never enters an event wait state (try it). Since the concepts
illustrated by this simple script are at the core of most Tkinter programs, let's take a
deeper look a some of them before moving on.

6.4.2.1 Making widgets

When widgets are constructed in Tkinter, we can specify how they should be
configured. The gui1 script passes two arguments to the Label class constructor:

The first is a parent-widget object, which we want the new label to be attached to.
Here, None means: "attach the new Label to the default top-level window of this
program." Later, we'll pass real widgets in this position, to attach our labels to other
container objects.

The second is a configuration option for the Label, passed as a keyword argument:
the text option specifies a text string to appear as the label's message. Most widget
constructors accept multiple keyword arguments for specifying a variety of options
(color, size, callback handlers, and so on). Most widget configuration options have
reasonable defaults per platform, though, and this accounts for much of Tkinter's
simplicity -- you only need to set most options if you wish to do something custom.

As we'll see, the parent-widget argument is the hook we use to build-up complex
GUIs as widget trees. Tkinter works on a "what-you-build-is-what-you-get" principle:
we construct widget object trees as models of what we want to see on the screen,
and then ask the tree to display itself by calling mainloop.

6.4.2.2 Geometry managers

The pack widget method called by the gui1 script invokes the packer geometry
manager -- one of three ways to control how widgets are arranged in a window.
Tkinter geometry managers simply arrange one or more widgets within a container
(sometimes called a parent, or master). Both top-level windows and frames (a
special kind of widget we'll meet later) can serve as containers, and containers may
be nested inside other containers to build hierarchical displays.

The packer geometry manager uses constraint option settings to automatically
position widgets in a window. Scripts supply higher-level instructions (e.g., "attach
this widget to the top of its container, and stretch it to fill its space vertically"), not
absolute pixel coordinates. Because such constraints are so abstract, the packer
provides a powerful and easy-to-use layout system. In fact, you don't even have to
specify constraints -- if you don't pass any arguments to pack, you get default
packing, which attaches the widget to side top.

We'll visit the packer repeatedly in this chapter, and use it in many of the examples
in this book. In Chapter 8 we will also meet an alternative grid geometry manager
and layout system that arranges widgets within a container in tabular form (i.e., by
rows and columns). A third alternative, the placer geometry manager system, is
described in Tk documentation, but not in this book; it's less popular than the pack
and grid managers, and can be difficult to use for larger GUIs.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 316

6.4.2.3 Running GUI programs

Like all Python code, the module in Example 6-1 can be started in a number of ways:
by running it as a top-level program file:

C:\...\PP2E\Gui\Intro>python gui1.py

by importing it from a Python session or another module file:

>>> import gui1

by running it as a Unix executable, if we add the special #! line at the top:

% gui1.py &

and in any other way that Python programs can be launched on your platform. For
instance, the script can also be run by clicking on the file's name in a Windows file
explorer, and its code can be typed interactively at the >>> prompt. It can even be
run from a C program, by calling the appropriate embedding API function (see
Chapter 20, for details).

In other words, there really are no special rules to follow when running GUI Python
code. The Tkinter interface (and Tk itself) are linked into the Python interpreter.
When a Python program calls GUI functions, they're simply passed to the embedded
GUI system behind the scenes. That makes it easy to write command-line tools that
pop up windows; they are run the same way as the purely text-based scripts we
studied in the prior part of this book.

6.4.2.4 Avoiding DOS consoles on Windows

Earlier in this book we learned that if a program's name ends in a .pyw extension
instead of .py, the Windows Python port does not pop up a DOS console box to serve
as its standard streams when the file is launched by clicking its filename icon. Now
that we've finally started making windows of our own, that filename trick will start to
become even more useful.

If you just want to see the windows that your script makes no matter how it is
launched, be sure to name your GUI scripts with a .pyw if they might be run on
Windows. For instance, clicking on the file in Example 6-2 in a Windows explorer
creates just the window in Figure 6-1.

Example 6-2. PP2E\Gui\Intro\gui1.pyw

...same as gui1.py...

You can also avoid the DOS popup on Windows by running the program with the
pythonw.exe executable, not python.exe (in fact, .pyw files are simply registered to
be opened by pythonw). On Linux, the .pyw doesn't hurt, but isn't necessary -- there
is no notion of a streams popup on Unix-like machines. On the other hand, if your
GUI scripts might run on Windows in the future, adding an extra "w" at the end of
their names now might save porting effort later. In this book, .py filenames are still

Programming Python, 2nd Edition, O’Reilly

IT-SC book 317

sometimes used to pop up console windows for viewing printed messages on
Windows.

6.4.3 Tkinter Coding Alternatives

As you might expect, there are a variety of ways to code the gui1 example. For
instance, if you want to make all your Tkinter imports more explicit in your script,
grab the whole module and prefix all its names with the module's name, as in
Example 6-3.

Example 6-3. PP2E\Gui\Intro\gui1b.py - import versus from

import Tkinter
widget = Tkinter.Label(None, text='Hello GUI world!')
widget.pack()
widget.mainloop()

That will probably get tedious in realistic examples, though -- Tkinter exports dozens
of widget classes and constants that show up all over Python GUI scripts. In fact, it is
usually easier to use a * to import everything from the Tkinter module by name in
one shot. This is demonstrated in Example 6-4.

Example 6-4. PP2E\Gui\Intro\gui1c.py - roots, sides, pack in-place

from Tkinter import *
root = Tk()
Label(root, text='Hello GUI world!').pack(side=TOP)
root.mainloop()

The Tkinter module goes out of its way to only export things that we really need, so
it's one of the few for which the * import form is relatively safe to apply.[7] The TOP
constant in the pack call here, for instance, is one of those many names exported
by the Tkinter module. It's simply a variable name (TOP="top") preassigned in
Tkconstants, a module automatically loaded by Tkinter.

[7] If you study file Tkinter.py in the Python source library, you'll notice that top-level module
names not meant for export start with a single underscore. Python never copies over such
names when a module is accessed with the * form of the from statement.

When widgets are packed, we can specify which side of their parent they should be
attached to -- TOP, BOTTOM, LEFT, or RIGHT. If no side option is sent to pack
(as in prior examples), a widget is attached to its parent's TOP by default. In
general, larger Tkinter GUIs can be constructed as sets of rectangles, attached to the
appropriate sides of other, enclosing rectangles. As we'll see later, Tkinter arranges
widgets in a rectangle according to both their packing order and their side
attachment options. When widgets are gridded, they are assigned row and column
numbers instead. None of this will become very meaningful, though, until we have
more than one widget in a window, so let's move on.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 318

Notice that this version calls the pack method right away after creating the label,
without assigning it a variable. If we don't need to save a widget, we can pack it in
place like this to eliminate a statement. We'll use this form when a widget is
attached to a larger structure and never again referenced. This can be tricky if you
assign the pack result, though, but I'll postpone an explanation of why until we've
covered a few more basics.

We also use a Tk widget class instance as the parent here, instead of None. Tk
represents the main ("root") window of the program -- the one that starts when the
program does. Tk is also used as the default parent widget, both when we don't pass
any parent to other widget calls, and when we pass the parent as None. In other
words, widgets are simply attached to the main program window by default. This
script just makes this default behavior explicit, by making and passing the Tk object
itself. In Chapter 7, we'll see that Toplevel widgets are typically used to generate
new pop-up windows that operate independently of the program's main window.

In Tkinter, some widget methods are exported as functions too, and this lets us
shave Example 6-5 to just three lines of code.

Example 6-5. PP2E\Gui\Intro\gui1d.py - a minimal version

from Tkinter import *
Label(text='Hello GUI world!').pack()
mainloop()

The Tkinter mainloop can be called with or without a widget (i.e., as a function or
method). We didn't pass Label a parent argument in this version either: it simply
defaults to None when omitted (which in turn defaults to Tk). But relying on that
default is less useful once we start building larger displays -- things like labels are
more typically attached to other widget containers.

6.4.3.1 Widget resizing basics

Top-level windows, like the one all of the coding variants seen thus far build, can
normally be resized by the user -- simply drag out the window with your mouse.
Figure 6-4 shows how our window looks when it is expanded.

Figure 6-4. Expanding gui1

This isn't very good -- the label stays attached to the top of the parent window
instead of staying in the middle on expansion -- but it's easy to improve on this with
a pair of pack options, demonstrated in Example 6-6.

Example 6-6. PP2E\Gui\Intro\gui1e.py - expansion

Programming Python, 2nd Edition, O’Reilly

IT-SC book 319

from Tkinter import *
Label(text='Hello GUI world!').pack(expand=YES, fill=BOTH)
mainloop()

When widgets are packed, we can specify whether a widget should expand to take
up all available space, and if so, how it should stretch to fill that space. By default,
widget are not expanded when their parent is. But in this script, names YES and
BOTH (imported from the Tkinter module) specify that the label should grow along
with its parent, the main window. It does, in Figure 6-5.

Figure 6-5. gui1e with widget resizing

Technically, the packer geometry manager assigns a size to each widget in a display,
based on what it contains (text string lengths, etc.). By default, a widget only can
occupy its allocated space, and is no bigger than its assigned size. The expand and
fill options let us be more specific about such things:

The expand=YES option asks the packer to expand the allocated space for the
widget in general, into any unclaimed space in the widget's parent.

The fill option can be used to stretch the widget to occupy all of its allocated
space.

Combinations of these two options produce different layout and resizing effects,
some of which only become meaningful when there are multiple widgets in a
window. For example, using expand without fill centers the widget in the
expanded space, and the fill option can specify vertical stretching only (fill=Y),
horizontal stretching only (fill=X), or both (fill=BOTH). By providing these
constraints and attachment sides for all widgets in a GUI, we can control the layout
in fairly precise terms. In later chapters, we'll find that the grid geometry manager
uses a different resizing protocol entirely.

This all can be confusing the first time you hear it, and we'll return to this later. But
if you're not sure what an expand and fill combination will do, simply try it out --
this is Python after all. For now, remember that the combination of expand=YES
and fill=BOTH is perhaps the most common setting; it means "expand my space
allocation to occupy all available space, and stretch me to fill the expanded space in
both directions." For our "Hello World" example, the net result is that label grows as
the window is expanded, and so is always centered.

6.4.3.2 Configuring widget options and window titles

Programming Python, 2nd Edition, O’Reilly

IT-SC book 320

So far, we've been telling Tkinter what to display on our label by passing its text as a
keyword argument in label constructor calls. It turns out that there are two other
ways to specify widget configuration options. In Example 6-7, the text option of the
label is set after it is constructed, by assigning to the widget's text key -- widget
objects overload index operations such that options are also available as mapping
keys, much like a dictionary.

Example 6-7. PP2E\Gui\Intro\guif.py - option keys

from Tkinter import *
widget = Label()
widget['text'] = 'Hello GUI world!'
widget.pack(side=TOP)
mainloop()

More commonly, widget options can be set after construction by calling the widget
config method, as in Example 6-8.

Example 6-8. PP2E\Gui\Intro\gui1g.py - config and titles

from Tkinter import *
root = Tk()
widget = Label(root)
widget.config(text='Hello GUI world!')
widget.pack(side=TOP, expand=YES, fill=BOTH)
root.title('gui1g.py')
root.mainloop()

The config method (which can also be called by its synonym, configure) can be
called at any time after construction to change the appearance of a widget on the fly.
For instance, we could call this label's config method again later in the script to
change the text that it displays; watch for such dynamic reconfigurations in later
examples in this part of the book.

Notice that this version also calls a root.title method -- this call sets the label
that appears at the top of the window, as pictured in Figure 6-6. In general terms,
top-level windows like the Tk root here export window-manager interfaces: things
that have to do with the border around the window, not its contents.

Figure 6-6. gui1g with expansion and a window title

Programming Python, 2nd Edition, O’Reilly

IT-SC book 321

Just for fun, this version also centers the label on resizes by setting the expand and
fill pack options too. In fact, this version makes just about everything explicit,
and is more representative of how labels are often coded in full-blown interfaces --
their parents, expansion policies, and attachments are usually all spelled out, rather
than defaulted.

6.4.3.3 One more for old times' sake

Finally, if you are both a minimalist and nostalgic for old Python code, you can also
program this "Hello World" example as in Example 6-9.

Example 6-9. PP2E\Gui\Intro\gui1-old.py - dictionary calls

from Tkinter import *
Label(None, {'text': 'Hello GUI world!', Pack: {'side':
'top'}}).mainloop()

This makes the window in just two lines -- albeit gruesome ones! This scheme relies
on an old coding style that was widely used until Python 1.3 that passed
configuration options in a dictionary instead of keyword arguments.[8] In this scheme,
packer options can be sent as values of the key Pack (a class in the Tkinter
module).

[8] In fact, Python's pass-by-name keyword arguments were first introduced to help clean up
Tkinter calls like this. Internally, keyword arguments really are passed as a dictionary (which
can be collected with the **name argument form in a def header), so the two schemes are
similar in implementation. But they vary widely in the amount of characters you need to type
and debug.

The dictionary call scheme still works, and you may see it in old Python code, but
please don't do this -- use keywords to pass options, and explicit pack method calls
in your Tkinter scripts instead. In fact, the only reason I didn't cut this example
completely is that dictionaries can still be useful if you want to compute and pass a
set of options dynamically. On the other hand, the built-in apply function now also
allows you to pass an explicit dictionary of keyword arguments in its third argument
slot, so there's no compelling reason to ever use the pre-1.3 Tkinter dictionary call
form at all.

6.4.3.4 Packing widgets without saving them

In gui1c.py (shown in Example 6-4), I started packing labels without assigning them
to names. This works, and is an entirely valid coding style; but because it tends to
confuse beginners at first glance, I need to explain why it works in more detail here.

In Tkinter, Python class objects correspond to real objects displayed on a screen; we
make the Python object to make a screen object, and call the Python object's
methods to configure that screen object. Because of this correspondence, the
lifetime of the Python object must generally correspond to the lifetime of the
corresponding object on the screen.

Luckily, Python scripts don't usually need to care about managing object lifetimes. In
fact, they do not normally need to maintain a reference to widget objects created

Programming Python, 2nd Edition, O’Reilly

IT-SC book 322

along the way at all, unless they plan to reconfigure those objects later. For instance,
it's common in Tkinter programming to pack a widget immediately after creating it, if
no further reference to the widget is required:

Label(text='hi').pack() # okay

This expression is evaluated left to right as usual -- it creates a new label, and then
immediately calls the new object's pack method, to arrange it in the display. Notice,
though, that the Python Label object is temporary in this expression; because it is
not assigned to a name, it would normally be garbage collected (destroyed and
reclaimed) by Python immediately after running its pack method.

However, because Tkinter emits Tk calls when objects are constructed, the label will
be drawn on the display as expected, even though we haven't held on to the
corresponding Python object in our script. In fact, Tkinter internally cross-links
widget objects into a long-lived tree used to represent the display, so the Label
object made during this statement really is retained, even if not by our code.[9]

[9] Ex-Tcl programmers in the audience may be interested to know that Python not only builds
the widget tree internally, but uses it to automatically generate widget pathname strings
coded manually in Tcl/Tk (e.g., .panel.row.cmd). Python uses the addresses of widget class
objects to fill in the path components, and records path names in the widget tree. A label
attached to a container, for instance, might have an assigned name like .8220096.8219408
inside Tkinter. You don't need to care, though -- simply make and link widget objects by
passing parents, and let Python manage pathname details based on the object tree. See the
end of this chapter for more on Tk/Tkinter mappings.

In other words, your scripts don't generally need to care about widget object
lifetimes, and it's okay to make widgets and pack them right away in the same
statement. But that does not mean that it's okay to say something like this:

widget = Label(text='hi').pack() # wrong!
...use widget...

This statement almost seems like it should assign a newly packed label to name
widget, but it does not. In fact, it's really a notorious Tkinter beginner's mistake.
The widget pack method packs the widget but does not return the widget thus
packed. Really, pack returns the Python object None; after such a statement,
widget will be a reference to None, and any further widget operations through that
name will fail. For instance, the following fails too, for the same reason:

Label(text='hi').pack().mainloop() # wrong!

Since pack returns None, asking for its mainloop attribute generates an
exception (as it should). If you really want to both pack a widget and retain a
reference to it, say this instead:

widget = Label(text='hi') # okay too
widget.pack()
...use widget...

This form is a bit more verbose, but is less tricky than packing a widget in the same
statement that creates it, and allows you to hold onto the widget for later

Programming Python, 2nd Edition, O’Reilly

IT-SC book 323

processing. On the other hand, scripts that compose layouts often add widgets once
and for all when they are created, and never need to reconfigure them later;
assigning to long-lived names in such program is pointless and unnecessary.[10]

[10] In Chapter 7, we'll meet two exceptions to this rule. Scripts must manually retain a
reference to image objects because the underlying image data is discarded if the Python
image object is garbage-collected. Tkinter variable class objects temporarily unset an
associated Tk variable if reclaimed, but this is uncommon and less harmful.

6.4.4 Adding Buttons and Callbacks

So far, we've learned how to display messages in labels, and met Tkinter core
concepts along the way. Labels are nice for teaching the basics, but user interfaces
usually need to do a bit more -- like actually responding to users. The program in
Example 6-10 creates the window in Figure 6-7.

Example 6-10. PP2E\Gui\Intro\gui2.py

import sys
from Tkinter import *
widget = Button(None, text='Hello widget world',
command=sys.exit)
widget.pack()
widget.mainloop()

Figure 6-7. A button on the top

Here, instead of making a label, we create an instance of the Tkinter Button class.
It's attached to the default top-level as before, on the default TOP packing side. But
the main thing to notice here is the button's configuration arguments: we set an
option called command to the sys.exit function.

For buttons, the command option is the place where we specify a callback handler
function to be run when the button is later pressed. In effect, we use command to
register an action for Tkinter to call when a widget's event occurs. The callback
handler used here isn't very interesting: as we learned in an earlier chapter, the
built-in sys.exit function simply shuts down the calling program. Here, that
means pressing this button makes the window go away.

Just as for labels, there are other ways to code buttons. Example 6-11 is a version
that packs the button in place without assigning it to a name, attaches it to the
LEFT side of its parent window explicitly, and specifies root.quit as the callback
handler -- a standard Tk object method that shuts down the GUI, and so ends the
program (really, it ends the current mainloop event loop call).

Example 6-11. PP2E\Gui\Intro\gui2b.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 324

from Tkinter import *
root = Tk()
Button(root, text='press',
command=root.quit).pack(side=LEFT)
root.mainloop()

This version produces the window in Figure 6-8. Because we didn't tell the button to
expand into all available space, it does not.

Figure 6-8. A button on the left

In both of the last two examples, pressing the button makes the GUI program exit.
In older Tkinter code, you may sometimes see the string "exit" assigned to the
command option to make the GUI go away when pressed. This exploits a tool in the
underlying Tk library, and is less Pythonic than sys.exit or root.quit.

6.4.4.1 Widget resizing revisited: expansion

Even with a GUI this simple, there are many ways to lay out its appearance with
Tkinter's constraint-based pack geometry manager. For example, to center the
button in its window, add an expand=YES option to the button's pack method call,
and generate a window like Figure 6-9. This makes the packer allocate all available
space to the button, but does not stretch the button to fill that space.

Figure 6-9. side=LEFT, expand=YES

If you want the button to be given all available space, and to stretch to fill all of its
assigned space horizontally, add expand=YES and fill=X keyword arguments to
the pack call, and create the scene in Figure 6-10.

Figure 6-10. side=LEFT, expand=YES, fill=X

This makes the button fill the whole window initially (its allocation is expanded, and
it is stretched to fill that allocation). It also makes the button grow as the parent
window is resized. As shown in Figure 6-11, the button in this window does expand
when its parent expands, but only along the X horizontal axis.

Figure 6-11. Resizing with expand=YES, fill=X

Programming Python, 2nd Edition, O’Reilly

IT-SC book 325

To make the button grow in both directions, specify both expand=YES and
fill=BOTH in the pack call; now, resizing the window makes the button grow in
general, as shown in Figure 6-12. In fact, for a good time, maximize this window to
fill the entire screen; you'll get one very big Tkinter button indeed.

Figure 6-12. Resizing with expand=YES, fill=BOTH

In more complex displays, such a button will only expand if all of the widgets it is
contained by are set to expand too. Here, the button's only parent is the Tk root
window of the program, so parent expandability isn't yet an issue. We will revisit the
packer geometry manager when we meet multiple-widget displays later in this
tutorial, and again when we study the alternative grid call in Chapter 8.

6.4.5 Adding User-Defined Callback Handlers

In the simple button examples in the previous section, the callback handler was
simply an existing function that killed the GUI program. It's not much more work to
register callback handlers that do something a bit more useful. Example 6-12 defines
a callback handler of its own in Python.

Example 6-12. PP2E\Gui\Intro\gui3.py

from Tkinter import *

def quit(): # a custom
callback handler
 print 'Hello, I must be going...' # kill windows
and process
 import sys; sys.exit()

widget = Button(None, text='Hello event world',
command=quit)
widget.pack()
widget.mainloop()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 326

The window created by this script is shown in Figure 6-13. This script and its GUI are
almost identical to the last example. But here, the command option specifies a
function we've defined locally. When the button is pressed, Tkinter calls the quit
function in this file to handle the event. Inside quit, the print statement types a
message on the program's stdout stream, and the GUI process exits as before.

Figure 6-13. A button that runs a Python function

As usual, stdout is normally the window that the program was started from, unless
it's been redirected to a file. It's a pop-up DOS console if you run this program by
clicking it on Windows -- add a raw_input call before sys.exit if you have
trouble seeing the message before the pop-up disappears. Here's what the printed
output looks like back in standard stream world when the button is pressed; it is
generated by a Python function called automatically by Tkinter:

C:\...\PP2E\Gui\Intro>python gui3.py
Hello, I must be going...

C:\...\PP2E\Gui\Intro>

Normally, such messages would be displayed in another window, but we haven't
gotten far enough to know how just yet. Callback functions usually do more, of
course (and may even pop up new windows altogether), but this example illustrates
the basics.

In general, callback handlers can be any callable object: functions, anonymous
functions generated with lambda expressions, bound methods of class or type
instances, or class instances that inherit a __call__ operator overload method. For
Button press callbacks, callback handlers always receive no arguments (other than
a self, for bound-methods).

6.4.5.1 Lambda callback handlers

To make the last paragraph a bit more concrete, let's take a quick look at some
other ways to code the callback handler in this example. Recall that the Python
lambda expression generates a new, unnamed function object when run. If we need
extra data passed in to the handler function, we can register lambda expressions
with default argument values to specify the extra data needed. We'll see how this
can be useful later in this part of the book, but to illustrate the basic idea, Example
6-13 shows what this example looks like when recoded to use a lambda instead of a
def.

Example 6-13. PP2E\Gui\Intro\gui3b.py

from Tkinter import *

Programming Python, 2nd Edition, O’Reilly

IT-SC book 327

from sys import stdout, exit # lambda
generates a function
widget = Button(None, # but contains
just an expression
 text='Hello event world',
 command=(lambda: stdout.write('Hello lambda
world\n') or exit()))
widget.pack()
widget.mainloop()

This code is a bit tricky because lambdas can only contain an expression; to emulate
the original script, this version uses an or operator to force two expressions to be
run, and writes to stdout to mimic a print. More typically, lambdas are used to
pass along extra data to a callback handler using defaults:

def handler(X, Y): # would normallly be called
with no args
 use original X and Y here...
X = something here...
Y = something else
here...
Button(text='ni', command=(lambda save1=X, save2=Y:
handler(save1, save2)))

Although Tkinter invokes command callbacks with no arguments, such a lambda can
be used to provide an indirect anonymous function that wraps the real handler call,
and passes along information that existed when the GUI was first constructed. Since
default arguments are evaluated and saved when the lambda runs (not when its
result is later called), they are a way to remember objects that must be accessed
again later, during event processing. We'll see this put to more concrete use later. If
its syntax confuses you, remember that a lambda expression like the one in the
preceding code can usually be coded as a simple nested def statement instead:

X =
something here...
Y =
something else here...
def func(save1=X, save2=Y): handler(save1, save2)
Button(text='ni', command=func)

6.4.5.2 Bound method callback handlers

Class bound methods work particularly well as callback handlers too: they record
both an instance to send the event to, and an associated method to call. As a
preview, Example 6-14 shows Example 6-12 rewritten to register a bound class
method, instead of a function or lambda result.

Example 6-14. PP2E\Gui\Intro\gui3c.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 328

from Tkinter import *

class HelloClass:
 def __init__(self):
 widget = Button(None, text='Hello event world',
command=self.quit)
 widget.pack()
 def quit(self):
 print 'Hello class method world' # self.quit is
a bound method
 import sys; sys.exit() # retains the
self+quit pair

HelloClass()
mainloop()

On a button press, Tkinter calls this class's quit method with no arguments as
usual. But really, is does receive one argument -- the original self object -- even
though Tkinter doesn't pass it explicitly. Because the self.quit bound method
retains both self and quit, it's compatible with a simple function call; Python
automatically passes the self argument along to the method function. Conversely,
registering an unbound method like HelloClass.quit won't work, because there
is no self object to pass along when the event later occurs.

Later, we'll see that class callback handler coding schemes provide a natural place to
remember information for use on events too: simply assign it to self instance
attributes:

class someGuiClass:
 def __init__(self):
 self.X = something here...
 self.Y = something else here...
 Button(text='Hi', command=self.handler)
 def handler(self):
 use self.X, self.Y here...

Because the event will be dispatched to this class's method with a reference to the
original instance object, self gives access to attributes that retain original data.

6.4.5.3 Callable class object callback handlers

Because Python class instance objects can also be called if they inherit a __call__
method to intercept the operation, we can pass one of these to serve as a callback
handler too, as in Example 6-15.

Example 6-15. PP2E\Gui\Intro\gui3d.py

from Tkinter import *

Programming Python, 2nd Edition, O’Reilly

IT-SC book 329

class HelloCallable:
 def __init__(self): # __init__ run
on object creation
 self.msg = 'Hello __call__ world'
 def __call__(self):
 print self.msg # __call__ run
later when called
 import sys; sys.exit() # class object
looks like a function

widget = Button(None, text='Hello event world',
command=HelloCallable())
widget.pack()
widget.mainloop()

Here, the HelloCallable instance registered with command can be called like a
normal function too -- Python invokes its __call__ method to handle the call
operation made in Tkinter on the button press. Notice that self.msg is used to
retain information for use on events here; self is the original instance when the
special __call__ method is automatically invoked.

All four gui3 variants create the same GUI window, but print different messages to
stdout when their button is pressed:

C:\...\PP2E\Gui\Intro>python gui3.py
Hello, I must be going...

C:\...\PP2E\Gui\Intro>python gui3b.py
Hello lambda world

C:\...\PP2E\Gui\Intro>python gui3c.py
Hello class method world

C:\...\PP2E\Gui\Intro>python gui3d.py
Hello __call__ world

There are good reasons for each callback coding scheme (function, lambda, class
method, callable class), but we need to move on to larger examples to uncover them
in less theoretical terms.

6.4.5.4 Other Tkinter callback protocols

For future reference, also keep in mind that using command options to intercept
user-generated button press events is just one way to register callbacks in Tkinter.
In fact, there are a variety of ways for Tkinter scripts to catch events:

Button command options

Programming Python, 2nd Edition, O’Reilly

IT-SC book 330

As we've just seen, button press events are intercepted by providing a callable object
in widget command options. This is true of other kinds of button-like widgets we'll
meet in Chapter 7 (e.g., radio and check buttons, scales).

Menu command options

In the upcoming Tkinter tour chapters, we'll also find that a command option is used
to specify callback handlers for menu selections.

Scrollbar protocols

Scrollbar widgets register handlers with command options too, but they have a
unique event protocol that allows them to be cross-linked with the widget they are
meant to scroll (e.g., listboxes, text displays, and canvases): moving the scrollbar
automatically moves the widget, and vice versa.

General widget bind methods

A more general Tkinter event bind method mechanism can be used to register
callback handlers for lower-level interface events -- key presses, mouse movement
and clicks, and so on. Unlike command callbacks, bind callbacks receive an event
object argument (an instance of the Tkinter Event class), that gives context about
the event -- subject widget, screen coordinates, etc.

Window manager protocols

In addition, scripts can also intercept window manager events (e.g., window close
requests) by tapping into the window manager protocol method mechanism
available on top-level window objects: setting a handler for WM_DELETE_WINDOW,
for instance, takes over window close buttons.

Scheduled event callbacks

Finally, Tkinter scripts can also register callback handlers to be called in special
contexts, such as timer expirations, input data arrival, and event-loop idle states.
Scripts can also pause for state-change events related to windows and special
variables. We'll meet these event interfaces in more detail near the end of Chapter 8.

6.4.5.5 Binding events

Of all these, bind is the most general, but also perhaps the most complex. We'll
study it in more detail later, but to let you sample its flavor now, Example 6-16 uses
bind,not command, to catch button presses.

Example 6-16. PP2E\Gui\Intro\gui3e.py

from Tkinter import *

def hello(event):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 331

 print 'Press twice to exit' # on single-
left click

def quit(event): # on double-
left click
 print 'Hello, I must be going...' # event gives
widget, x/y, etc.
 import sys; sys.exit()

widget = Button(None, text='Hello event world')
widget.pack()
widget.bind('<Button-1>', hello) # bind left
mouse clicks
widget.bind('<Double-1>', quit) # bind double-
left clicks
widget.mainloop()

In fact, this version doesn't specify a command option for the button at all. Instead,
it binds lower-level callback handlers for both left mouseclicks (<Button-1>) and
double-left mouseclicks (<Double-1>) within the button's display area. The bind
method accepts a large set of such event identifiers in a variety of formats, which
we'll meet in Chapter 7.

When run, this script makes the same window again (see Figure 6-13). Clicking on
the button once prints a message but doesn't exit; you need to double-click on the
button now to exit as before. Here is the output after clicking twice and double-
clicking once (a double-click fires the single-click callback first):

C:\...\PP2E\Gui\Intro>python gui3e.py
Press twice to exit
Press twice to exit
Press twice to exit
Hello, I must be going...

Although this script intercepts button clicks manually, the end result is roughly the
same; widget-specific protocols like button command options are really just higher-
level interfaces to events you can also catch with bind.

We'll meet bind and all of the other Tkinter event callback handler hooks again in
more detail later in this book. First, though, let's focus on building GUIs larger than a
single button, and other ways to use classes in GUI work.

6.4.6 Adding Multiple Widgets

It's time to start building user interfaces with more than one widget. Example 6-17
makes the window shown in Figure 6-14.

Example 6-17. PP2E\Gui\Intro\gui4.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 332

from Tkinter import *

def greeting():
 print 'Hello stdout world!...'

win = Frame()
win.pack()
Label(win, text='Hello container world').pack(side=TOP)
Button(win, text='Hello', command=greeting).pack(side=LEFT)
Button(win, text='Quit',
command=win.quit).pack(side=RIGHT)

win.mainloop()

Figure 6-14. A multiple-widget window

This example makes a Frame widget (another Tkinter class), and attaches three
other widget objects to it, a Label and two Buttons, by passing the Frame as
their first argument. In Tkinter terms, we say that the Frame becomes a parent to
the other three widgets. Both buttons on this display trigger callbacks:

Pressing the Hello button triggers the greeting function defined within this file,
which prints to stdout again.

Pressing the Quit button calls the standard Tkinter quit method, inherited by win
from the Frame class (Frame.quit has the same effect as the Tk.quit we used
earlier).

Here is the stdout text that shows up on Hello button presses, wherever this
script's standard streams may be:

C:\...\PP2E\Gui\Intro>python gui4.py
Hello stdout world!...
Hello stdout world!...
Hello stdout world!...
Hello stdout world!...

The notion of attaching widgets to containers turns out to be at the core of layouts in
Tkinter. Before we go into more detail on that topic, though, let's get small.

6.4.6.1 Widget resizing revisited: clipping

Earlier, we saw how to make widgets expand along with their parent window, by
passing expand and fill options to the pack geometry manager. Now that we

Programming Python, 2nd Edition, O’Reilly

IT-SC book 333

have a window with more than one widget, I can let you in on one of the more useful
secrets in the packer. As a rule, widgets packed first are clipped last, when a window
is shrunk. That is, the order in which you pack items determines which will be cut out
of the display if it is made too small -- widgets packed later are cut out first. For
example, Figure 6-15 shows what happens when the gui4 window is shrunk
interactively.

Figure 6-15. gui4 gets small

Try reordering the label and button lines in the script and see what happens when
the window shrinks; the first packed is always the last to go away. For instance, if
the label is packed last, Figure 6-16 shows that it is clipped first even though it is
attached to the top: side attachments and packing order both impact the overall
layout, but only packing order matters when windows shrink.

Figure 6-16. Label packed last, clipped first

Tkinter keeps track of the packing order internally to make this work. Scripts can
plan ahead for shrinkage by calling pack methods of more important widgets first.
For instance, on the upcoming Tkinter tour we'll meet code that builds menus and
toolbars at the top and bottom of the window; to make sure these are lost last as a
window is shrunk, they are packed first, before the application components in the
middle. Similarly, displays that include scrollbars normally pack them before the
items they scroll (e.g., text, lists), so that the scrollbars remain as the window
shrinks.

6.4.6.2 Attaching widgets to frames

In larger terms, the critical innovation in this example is its use of frames: Frame
widgets are just containers for other widgets, and so give rise to the notion of GUIs
as widget hierarchies, or trees. Here, win serves as an enclosing window for the
other three widgets. In general, though, by attaching widgets to frames, and frames
to other frames, we can build up arbitrary GUI layouts. Simply divide the user
interface into a set of increasingly smaller rectangles, implement each as a Tkinter
Frame, and attach basic widgets to the frame in the desired screen position.

In this script, by specifying win in the first argument to the Label and Button
constructors, they are attached to the Frame by Tkinter (they become children of
the win parent). win itself is attached to the default top-level window, since we
didn't pass a parent to the Frame constructor. When we ask win to run itself (by
calling mainloop), Tkinter draws all the widgets in the tree we've built.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 334

The three child widgets also provide pack options now: the side arguments tell
which part of the containing frame (i.e., win) to attach the new widget to. The label
hooks onto the top, and the buttons attach to the sides. TOP, LEFT, and RIGHT are
all preassigned string variables imported from Tkinter. Arranging widgets is a bit
more subtle than simply giving a side, though, but we need to take a quick detour
into packer geometry management details to see why.

6.4.6.3 Packing order and side attachments

When a widget tree is displayed, child widgets appear inside their parents, and are
arranged according to their order of packing and their packing options. Because of
this, the order in which widgets are packed not only gives their clipping order, it also
determines how their side settings play out in the generated display.

Here's how the packer's layout system works:

The packer starts out with an available space cavity that includes the entire parent
container (e.g., the whole Frame or top-level window).

As each widget is packed on a side, that widget is given the entire requested side in
the remaining space cavity, and the space cavity is shrunk.

Later pack requests are given an entire side of what is left, after earlier pack
requests have shrunk the cavity.

After widgets are given cavity space, expand divides up any space left, and fill
and anchor stretch and position widgets within their assigned space.

For instance, if you recode the gui4 child widget creation logic like this:

Button(win, text='Hello', command=greeting).pack(side=LEFT)
Label(win, text='Hello container world').pack(side=TOP)
Button(win, text='Quit',
command=win.quit).pack(side=RIGHT)

You will wind up with the very different display in Figure 6-17, even though you've
only moved the label code one line down in the source file (contrast with Figure 6-
14).

Figure 6-17. Packing the label second

Despite its side setting, the label does not get the entire top of the window now,
and you have to think in terms of shrinking cavities to understand why. Because the
Hello button is packed first, it is given the entire LEFT side of the Frame. Next, the
label is given the entire TOP side of what is left. Finally, the Quit button gets the
RIGHT side of the remainder -- a rectangle to the right of the Hello button and

Programming Python, 2nd Edition, O’Reilly

IT-SC book 335

under the label. When this window shrinks, widgets are clipped in reverse order of
their packing: the Quit button disappears first, followed by the label.[11] In the original
version of this example, the label spans the entire top side just because it is the first
packed, not because of its side option.

[11] Technically, the packing steps are just rerun again after a window resize. But since this
means that there won't be enough space left for widgets packed last when the window
shrinks, it works the same as saying that widgets packed first are clipped last.

6.4.6.4 The packer's expand and fill revisited

Beyond all this, the fill option we met earlier can be used to stretch the widget to
occupy all the space in the cavity side it has been given, and any cavity space left
after all packing is evenly allocated among widgets with the expand=YES we saw
before. For example, coding this way makes the window in Figure 6-18:

Button(win, text='Hello', command=greeting).pack(side=LEFT,
fill=Y)
Label(win, text='Hello container world').pack(side=TOP)
Button(win, text='Quit', command=win.quit).pack(side=RIGHT,
expand=YES, fill=X)

Figure 6-18. Packing with expand and fill options

To make these all grow along with their window, though, we also need to make the
container frame expandable -- widgets only expand beyond their initial packer
arrangement if all of their parents expand too:

win = Frame()
win.pack(side=TOP, expand=YES, fill=BOTH)
Button(win, text='Hello', command=greeting).pack(side=LEFT,
fill=Y)
Label(win, text='Hello container world').pack(side=TOP)
Button(win, text='Quit', command=win.quit).pack(side=RIGHT,
expand=YES,fill=X)

When this code runs, the Frame is assigned the entire top side of its parent as
before (that is, the top parcel of the root window); but because it is now marked to
expand into unused space in its parent and fill that space both ways, it and all its
attached children expand along with the window. Figure 6-19 shows how.

Figure 6-19. gui4 gets big with an expandable frame

Programming Python, 2nd Edition, O’Reilly

IT-SC book 336

6.4.6.5 Using anchor to position instead of stretch

And as if that isn't flexible enough, packer also allows widgets to be positioned within
their allocated space with an anchor option, instead of filling that space with a
fill. The anchor option accepts Tkinter constants identifying all eight points of
the compass (N, NE, NW, S, etc.) and CENTER as its value (e.g., anchor=NW). It
instructs the packer to position the widget at the desired position within its allocated
space, if the space allocated for the widget is larger than the space needed to display
the widget.

The default anchor is CENTER, so widgets show up in the middle of their space (the
cavity side they were given) unless they are positioned with anchor, or stretched
with fill. To demonstrate, change gui4 to use this sort of code:

Button(win, text='Hello', command=greeting).pack(side=LEFT,
anchor=N)
Label(win, text='Hello container world').pack(side=TOP)
Button(win, text='Quit',
command=win.quit).pack(side=RIGHT)

The only thing new here is that the Hello button is anchored to the north side of its
space allocation. Because this button was packed first, it got the entire left side of
the parent frame -- more space than needed to show the button, so it shows up in
the middle of that side by default as in Figure 6-17 (i.e., anchored to the center).
Setting the anchor to N moves it to the top of its side, as shown in Figure 6-20.

Figure 6-20. Anchoring a button to the north

Keep in mind that fill and anchor are applied after a widget has been allocated
cavity side space by its side, packing order, and expand extra space request. By
playing with packing orders, sides, fills, and anchors, you can generate lots of layout
and clipping effects, and you should take a few moments to experiment with
alternatives if you haven't already. In the original version of this example, for
instance, the label spans the entire top side just because it is the first packed.

As we'll see later, frames can be nested in other frames too, to make more complex
layouts. In fact, because each parent container is a distinct space cavity, this
provides a sort of escape mechanism for the packer cavity algorithm: to better

Programming Python, 2nd Edition, O’Reilly

IT-SC book 337

control where a set of widgets show up, simply pack them within a nested subframe,
and attach the frame as a package to a larger container. A row of pushbuttons, for
example, might be easier laid out in a frame of its own than mixed with other
widgets in the display directly.

Finally, also keep in mind that the widget tree created by these examples is really an
implicit one; Tkinter internally records the relationships implied by passed parent
widget arguments. In OOP terms, this is a composition relationship -- the Frame
contains a Label and Buttons; let's look at inheritance relationships next.

6.4.7 Customizing Widgets with Classes

You don't have to use OOP in Tkinter scripts, but it can definitely help. As we just
saw, Tkinter GUIs are built up as class-instance object trees. Here's another way
Python's OOP features can be applied to GUI models: specializing widgets by
inheritance. Example 6-18 builds the window in Figure 6-21.

Example 6-18. PP2E\Gui\Intro\gui5.py

from Tkinter import *

class HelloButton(Button):
 def __init__(self, parent=None, **config): #
add callback method
 Button.__init__(self, parent, config) #
and pack myself
 self.pack()
 self.config(command=self.callback)
 def callback(self): #
default press action
 print 'Goodbye world...' #
replace in subclasses
 self.quit()

if __name__ == '__main__':
 HelloButton(text='Hello subclass world').mainloop()

Figure 6-21. A button subclass in action

This example isn't anything special to look at: it just displays a single button that
prints a message and exits when pressed. But this time, it is a button widget we
created on our own. The HelloButton class inherits everything from the Tkinter
Button class, but adds a callback method and constructor logic to set the
command option to self.callback, a bound method of the instance. When the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 338

button is pressed this time, the new widget class's callback method is invoked,
not a simple function.

The **config argument here is assigned unmatched keyword arguments; they're
passed along to the Button constructor. We met the config widget method called
in HelloButton's constructor earlier; it is just an alternative way to pass
configuration options after the fact (instead of passing constructor arguments).

So what's the point of subclassing widgets like this? It allows widgets to be
configured by subclassing, instead of passing in options. HelloButton is a true
button; we pass in configuration options as usual when one is made. But we can also
specify callback handlers by overriding the callback method in subclasses, as
shown in Example 6-19.

Example 6-19. PP2E\Gui\Intro\gui5b.py

from gui5 import HelloButton

class MyButton(HelloButton): # subclass HelloButton
 def callback(self): # redefine press-
handler method
 print "Ignoring press!..."

if __name__ == '__main__':
 MyButton(None, text='Hello subclass world').mainloop()

Instead of exiting, this MyButton button prints to stdout and stays up when
pressed. Here is its standard output after being pressed a few times:

C:\PP2ndEd\examples\PP2E\Gui\Intro>python gui5b.py
Ignoring press!...
Ignoring press!...
Ignoring press!...
Ignoring press!...

Whether it's simpler to customize widgets by subclassing or passing in options is
probably a matter of taste. But the point to notice is that Tk becomes truly object-
oriented in Python, just because Python is object-oriented: we can specialize widget
classes using normal class-based OO techniques. The next example provides yet
another way to arrange for specialization.

6.4.8 Reusable GUI Components with Classes

Larger GUI interfaces are often built up as subclasses of Frame, with callback
handlers implemented as methods. This structure gives us a natural place to store
information between events: instance attributes record state. It also allows us to
both specialize GUIs by overriding their methods in new subclasses, and attach them
to larger GUI structures to reuse them as general components. For instance, a GUI
text editor implemented as a Frame subclass can be attached to and configured by

Programming Python, 2nd Edition, O’Reilly

IT-SC book 339

any number of other GUIs; if done well, we can plug such a text editor into any user
interface that needs text editing tools.

We'll meet such a text editor component in Chapter 9. For now, Example 6-20 is a
simple example to illustrate the concept. Script gui6.py produces the window in
Figure 6-22.

Example 6-20. PP2E\Gui\Intro\gui6.py

from Tkinter import *

class Hello(Frame): # an
extended Frame
 def __init__(self, parent=None):
 Frame.__init__(self, parent) # do
superclass init
 self.pack()
 self.data = 42
 self.make_widgets() # attach
widgets to self
 def make_widgets(self):
 widget = Button(self, text='Hello frame world!',
command=self.message)
 widget.pack(side=LEFT)
 def message(self):
 self.data = self.data + 1
 print 'Hello frame world %s!' % self.data

if __name__ == '__main__': Hello().mainloop()

Figure 6-22. A custom Frame in action

This example pops up a single button window. When pressed, the button triggers the
self.message bound method to print to stdout again. Here is the output after
pressing this button four times; notice how self.data (a simple counter here)
retains its state between presses:

C:\...\PP2E\Gui\Intro>python gui6.py
Hello frame world 43!
Hello frame world 44!
Hello frame world 45!
Hello frame world 46!

This may seem like a roundabout way to show a Button (we did it in fewer lines in
Examples Example 6-10, Example 6-11, and Example 6-12). But the Hello class

Programming Python, 2nd Edition, O’Reilly

IT-SC book 340

provides an enclosing organizational structure for building GUIs. In the examples
prior to the last section, we made GUIs using a function-like approach: we called
widget constructors as though they were functions and hooked widgets together
manually by passing in parents to widget construction calls. There was no notion of
an enclosing context, apart from the global scope of the module file containing the
widget calls. This works for simple GUIs, but can make for brittle code when building
up larger GUI structures.

But by subclassing Frame as we've done here, the class becomes an enclosing
context for the GUI:

Widgets are added by attaching objects to self, an instance of a Frame container
subclass (e.g., Button).

Callback handlers are registered as bound methods of self, and so are routed back
to code in the class (e.g., self.message).

State information is retained between events by assigning to attributes of self,
visible to all callback methods in the class (e.g., self.data).

It's easy to make multiple copies of such a GUI component, because each class
instance is a distinct namespace.

In a sense, entire GUIs become specialized Frame objects, with extensions for an
application. Classes can also provide protocols for building widgets (e.g., the
make_widgets method here), handle standard configuration chores (like setting
window manager options), and so on. In short, Frame subclasses provide a simple
way to organize collections of other widget-class objects.

6.4.8.1 Attaching class components

Perhaps more important, subclasses of Frame are true widgets: they can be further
extended and customized by subclassing, and can be attached to enclosing widgets.
For instance, to attach the entire package of widgets that a class builds to something
else, simply create an instance of the class with a real parent widget passed in. To
illustrate, running the script in Example 6-21 creates the window shown in Figure 6-
23.

Example 6-21. PP2E\Gui\Intro\gui6b.py

from sys import exit
from Tkinter import * # get Tk widget
classes
from gui6 import Hello # get the subframe
class

parent = Frame(None) # make a container
widget
parent.pack()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 341

Hello(parent).pack(side=RIGHT) # attach Hello
instead of running it

Button(parent, text='Attach', command=exit).pack(side=LEFT)
parent.mainloop()

Figure 6-23. An attached class component on the right

This script just adds Hello's button to the right side of parent -- a container
Frame. In fact, the button on the right in this window represents an embedded
component: its button really represents an attached Python class object. Pressing
the embedded class's button on the right prints a message as before; pressing the
new button exits the GUI by a sys.exit call:

C:\...\PP2E\Gui\Intro>python gui6b.py
Hello frame world 43!
Hello frame world 44!
Hello frame world 45!
Hello frame world 46!

In more complex GUIs, we might instead attach large Frame subclasses to other
container components and develop each independently. For instance, Example 6-22
is yet another specialized Frame itself, but attaches an instance of the original
Hello class in a more OO fashion. When run as a top-level program, it creates a
window identical to the one shown in Figure 6-23.

Example 6-22. PP2E\Gui\Intro\gui6c.py

from Tkinter import * # get Tk widget
classes
from gui6 import Hello # get the subframe
class

class HelloContainer(Frame):
 def __init__(self, parent=None):
 Frame.__init__(self, parent)
 self.pack()
 self.makeWidgets()
 def makeWidgets(self):
 Hello(self).pack(side=RIGHT) # attach a Hello
to me
 Button(self, text='Attach',
command=self.quit).pack(side=LEFT)

if __name__ == '__main__': HelloContainer().mainloop()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 342

This looks and works exactly like gui6b, but registers the added button's callback
handler as self.quit, which is just the standard quit widget method this class
inherits from Frame. The window this time represents two Python classes at work --
the embedded component's widgets on the right (the original Hello button), and the
container's widgets on the left.

Naturally, this is a simple example (we only attached a single button here, after all).
But in more practical user interfaces, the set of widget class objects attached in this
way can be much larger. Imagine replacing the Hello call in this script with a call to
attach an already-coded and fully debugged calculator object, and you'll begin to
better understand the power of this paradigm. If we code all of our GUI components
as classes, they automatically become a library of reusable widgets, which we can
combine in other applications as often as we like.

6.4.8.2 Extending class components

When GUIs are built with classes, there are a variety of ways to reuse their code in
other displays. To extend Hello instead of attaching it, we just override some of its
methods in a new subclass (which itself becomes a specialized Frame widget). This
technique is shown in Example 6-23.

Example 6-23. PP2E\Gui\Intro\gui6d.py

from Tkinter import *
from gui6 import Hello

class HelloExtender(Hello):
 def make_widgets(self): # extend
method here
 Hello.make_widgets(self)
 Button(self, text='Extend',
command=self.quit).pack(side=RIGHT)
 def message(self):
 print 'hello', self.data #
redefine method here

if __name__ == '__main__': HelloExtender().mainloop()

This subclass's make_widgets method here first builds the superclass's widgets,
then adds a second Extend button on the right, as shown in Figure 6-24.

Figure 6-24. A customized class's widgets, on the left

Programming Python, 2nd Edition, O’Reilly

IT-SC book 343

Because it redefines the message method, pressing the original superclass's button
on the left now prints a different string to stdout (when searching up from self,
the message attribute is found first in this subclass, not the superclass):

C:\...\PP2E\Gui\Intro>python gui6d.py
hello 42
hello 42
hello 42
hello 42

But pressing the new Extend button on the right, added by this subclass, exits
immediately, since the quit method (inherited from Hello, which inherits it from
Frame) is the added button's callback handler. The net effect is that this class
customizes the original, to add a new button and change message's behavior.

Although this example is simple, it demonstrates a technique that can be powerful in
practice -- to change a GUI's behavior, we can write a new class that customizes its
parts, rather than changing the existing GUI code in place. The main code need be
debugged only once, and customized with subclasses as unique needs arise.

The moral of this story is that Tkinter GUIs can be coded without ever writing a
single new class, but using classes to structure your GUI code makes it much more
reusable in the long run. If done well, you can both attach already-debugged
components to new interfaces, and specialize their behavior in new external
subclasses as needed for custom requirements. Either way, the initial up-front
investment to use classes is bound to save coding time in the end.

6.4.8.3 Standalone container classes

Before we move on, I want to point out that it's possible to reap most of the benefits
previously mentioned by creating standalone classes not derived from Tkinter
Frames or other widgets. For instance, the class in Example 6-24 generates the
window shown in Figure 6-25.

Example 6-24. PP2E\Gui\Intro\gui7.py

from Tkinter import *

class HelloPackage: # not a
widget subbclass
 def __init__(self, parent=None):
 self.top = Frame(parent) # embed a
Frame
 self.top.pack()
 self.data = 0
 self.make_widgets() # attach
widgets to self.top
 def make_widgets(self):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 344

 Button(self.top, text='Bye',
command=self.top.quit).pack(side=LEFT)
 Button(self.top, text='Hye',
command=self.message).pack(side=RIGHT)
 def message(self)):
 self.data = self.data + 1
 print 'Hello number', self.data

if __name__ == '__main__': HelloPackage().top.mainloop()

Figure 6-25. A standalone class package in action

When run, the Hye button here prints to stdout, and Bye closes and exits the GUI,
much as before:

C:\...\PP2E\Gui\Intro>python gui7.py
Hello number 1
Hello number 2
Hello number 3
Hello number 4

Also as before, self.data retains state between events, and callbacks are routed
to the self.message method within this class. Unlike before, the HelloPackage
class is not itself a kind of Frame widget. In fact, it's not a kind of anything -- it only
serves as a generator of namespaces for storing away real widget objects and state.
Because of that, widgets are attached to a self.top (an embedded Frame), not
self. Moreover, all references to the object as widget must descend to the
embedded frame -- as in the top.mainloop call to start the GUI.

This makes for a bit more coding within the class, but avoids potential name clashes
with both attributes added to self by the Tkinter framework, and existing Tkinter
widget methods. For instance, if you define a config method in your class, it will
hide the config call exported by Tkinter. With the standalone class package in this
example, you only get the methods and instance attributes that your class defines.

In practice, Tkinter doesn't use very many names, so this is not generally a big
concern.[12] It can happen, of course; but frankly, I've never seen a real Tkinter name
clash in widget subclasses in some eight years of Python coding. Moreover, using
standalone classes is not without other downsides. Although they can generally be
attached and subclassed as before, they are not quite plug-and-play compatible with
real widget objects. For instance, the configuration calls made in Example 6-21for
the Frame subclass fail in Example 6-25.

[12] If you study the Tkinter.py module's source code, you'll notice that many of the attribute
names it creates start with a single underscore to make them unique; others do not because
they are potentially useful outside of the Tkinter implementation (e.g., self.master,
self.children). Oddly, most of Tkinter still does not use the new Python "pseudo-private

Programming Python, 2nd Edition, O’Reilly

IT-SC book 345

attributes" trick of prefixing attribute names with two leading underscores to automatically
add the enclosing class's name, and thus localize them to the creating class. If Tkinter is ever
rewritten to employ this feature, name clashes will be much less common in widget
subclasses.

Example 6-25. PP2E\Gui\Intro\gui7b.py

from Tkinter import *
from gui7 import HelloPackage # or get from gui7c--
__getattr__ added

frm = Frame()
frm.pack()
Label(frm, text='hello').pack()

part = HelloPackage(frm)
part.pack(side=RIGHT) # fails!--need
part.top.pack(side=RIGHT)
frm.mainloop()

This won't quite work, because part isn't really a widget. To treat it as such, you
must descend to part.top before making GUI configurations, and hope that the
name top never changes. The class could make this better by defining a method
that always routes unknown attribute fetches to the embedded Frame, as in
Example 6-26.

Example 6-26. PP2E\Gui\Intro\gui7c.py

import gui7
from Tkinter import *

class HelloPackage(gui7.HelloPackage):
 def __getattr__(self, name):
 return getattr(self.top, name) # pass off to a
real widget

if __name__ == '__main__': HelloPackage().top.mainloop()

But that then requires even more extra coding in standalone package classes. As
usual, though, the significance of all these trade-offs varies per application.

6.5 The End of the Tutorial

In this chapter, we have learned the core concepts of Python/Tkinter programming,
and met a handful of simple widget objects along the way -- labels, buttons, frames,
and the packer geometry manager. We've seen enough to construct simple
interfaces, but have really only scratched the surface of the Tkinter widget set.

In the next two chapters, we will apply what we've learned here to study the rest of
the Tkinter library, and learn how to use it to generate the kinds of interfaces you

Programming Python, 2nd Edition, O’Reilly

IT-SC book 346

expect to see in realistic GUI programs. As a preview and roadmap, Table 6-1 lists
the kinds of widgets we'll meet there, in roughly their order of appearance. Note that
this table lists only widget classes; along the way, we will also meet a few additional
widget-related topics that don't appear in this table.

Table 6-1. Tkinter Widget Classes

Widget Class Description

Label A simple message area

Button A simple labeled pushbutton widget

Frame A container for attaching and arranging other widget objects

Toplevel, Tk A new window managed by the window manager

Message A multiline label

Entry A simple single-line text-entry field

Checkbutton A two-state button widget, typically used for multiple-choice selections

Radiobutton A two-state button widget, typically used for single-choice selections

Scale A slider widget with scalable positions

PhotoImage An image object used for displaying full-color images on other widgets

BitmapImage An image object used for displaying bitmap images on other widgets

Menu A set of options associated with a Menubutton or top-level window

Menubutton A button that opens a Menu of selectable options and submenus

Programming Python, 2nd Edition, O’Reilly

IT-SC book 347

Scrollbar A control for scrolling other widgets (e.g., listbox, canvas, text)

Listbox A list of selection names

Text A multiline text browse/edit widget, with support for fonts, etc.

Canvas A graphic drawing area, which supports lines, circles, photos, text, etc.

We've already met the Label, Button, and Frame in this chapter's tutorial. To
make the remaining topics easier to absorb, they are split over the next two
chapters: Chapter 7 covers the first widgets in this table up to but not including
Menu, and Chapter 8 presents widgets lower in this table.

Besides the widget classes in this table, there are additional classes and tools in the
Tkinter library, many of which we'll explore in the following two chapters as well:

Geometry management

pack, grid, place

Tkinter linked variables

StringVar, IntVar, DoubleVar, BooleanVar

Composite widgets

Dialog, ScrolledText, OptionMenu

Scheduled callbacks

Widget after, wait, and update methods

Other tools

Standard dialogs, clipboard, bind and Event, widget configuration options, custom
and modal dialogs, animation techniques

Most Tkinter widgets are familiar user interface devices. Some are remarkably rich in
functionality. For instance, the Text class implements a sophisticated multiline text
widget that supports fonts, colors, and special effects, and is powerful enough to
implement a web browser, and the Canvas class provides extensive drawing tools
powerful enough for image-processing applications. Beyond this, Tkinter extensions
such as PMW add even richer widgets to a GUI programmer's toolbox.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 348

6.6 Python/Tkinter for Tcl/Tk Converts

At the start of this chapter, I mentioned that Tkinter is Python's interface to the Tk
GUI library, originally written for the Tcl language. To help readers migrating from
Tcl to Python, and to summarize some of the main topics we met in this chapter, this
section contrasts Python's Tk interface with Tcl's. This mapping also helps make Tk
references written for other languages more useful to Python developers.

In general terms, Tcl's command-string view of the world differs widely from
Python's object-based approach to programming. In terms of Tk programming,
though, the syntactic differences are fairly small. Here are some of the main
distinctions in Python's Tkinter interface:

Creation

Widgets are created as class instance objects by calling a widget class.

Masters (parents)

Parents are previously created objects, passed to widget-class constructors.

Widget options

Options are constructor or config keyword arguments, or indexed keys.

Operations

Widget operations (actions) become Tkinter widget class object methods.

Callbacks

Callback handlers are any callable objects: function, method, lambda, etc.

Extension

Widgets are extended using Python class inheritance mechanisms.

Composition

Interfaces are constructed by attaching objects, not concatenating names.

Linked variables (next chapter)

Variables associated with widgets are Tkinter class objects with methods.

In Python, widget creation commands (e.g., button) are Python class names that
start with an uppercase letter (e.g., Button), two-word widget operations (e.g.,
add command) become a single method name with an underscore (e.g.,
add_command), and the "configure" method can be abbreviated as "config" as in
Tcl. In Chapter 7, we will also see that Tkinter "variables" associated with widgets

Programming Python, 2nd Edition, O’Reilly

IT-SC book 349

take the form of class instance objects (e.g., StringVar, IntVar) with get and
set methods, not simple Python or Tcl variable names. Table 6-2 shows some of the
primary language mappings in more concrete terms.

Table 6-2. Tk to Tkinter Mappings

Operation Tcl/Tk Python/Tkinter

Creation frame .panel panel = Frame()

Masters button .panel.quit quit = Button(panel)

Options button .panel.go -fg black go = Button(panel, fg='black')

Configure .panel.go config -bg red
go.config(bg='red')
go['bg'] = 'red'

Actions .popup invoke popup.invoke()

Packing pack .panel -side left -fill x panel.pack(side=LEFT, fill=X)

Some of these differences are more than just syntactic, of course. For instance,
Python builds an internal widget object tree based on parent arguments passed to
widget constructors, without ever requiring concatenated widget pathname strings.
Once you've made a widget object, you can use it directly by reference. Tcl coders
can hide some dotted pathnames by manually storing them in variables, but that's
not quite the same as Python's purely object-based model.

Once you've written a few Python/Tkinter scripts, though, the coding distinctions in
the Python object world will probably seem trivial. At the same time, Python's
support for OO techniques adds an entirely new component to Tk development; you
get the same widgets, plus Python's support for code structure and reuse.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 350

Chapter 7. A Tkinter Tour, Part 1

7.1 "Widgets and Gadgets and GUIs, Oh My!"

7.2 Configuring Widget Appearance

7.3 Toplevel Windows

7.4 Dialogs

7.5 Binding Events

7.6 Message and Entry

7.7 Checkbutton, Radiobutton, and Scale

7.8 Running GUI Code Three Ways

7.9 Images

7.1 "Widgets and Gadgets and GUIs, Oh My!"

This chapter is a continuation of our look at GUI programming in Python. The
previous chapter used simple widgets to demonstrate the fundamentals of Tkinter
coding in Python -- buttons, labels, and the like. That was simple by design: it's
easier to grasp the big GUI picture if widget interface details don't get in the way.
But now that we've seen the basics, this chapter and the next move on to present a
tour of more advanced widget objects and tools available in the Tkinter library.

As we'll find, this is where GUI scripting starts getting both practical and fun. In
these two chapters we'll meet classes that build the interface devices you expect to
see in real programs -- sliders, checkboxes, menus, scrolled lists, dialogs, graphics,
and so on. After these chapters, the last GUI chapter moves on to present larger
GUIs that utilize the coding techniques and the interfaces shown in all prior GUI
chapters. In these two chapters, though, examples are small and self-contained so
that we can focus on widget details.

7.1.1 This Chapter's Topics

Technically, we've already used a handful of simple widgets in Chapter 6. So far
we've met Label, Button, Frame, and Tk, and studied pack geometry management
concepts along the way. Although these are all basic, they are representative of
Tkinter interfaces in general, and can be workhorses in typical GUIs. Frame
containers, for instance, are the basis of hierarchical display layout.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 351

In this and the following chapter, we'll explore additional options for widgets we've
already seen, and move beyond the basics to cover the rest of the Tkinter widget
set. Here are some of the widgets and topics we'll explore in this chapter:

Toplevel and Tk widgets

Message and Entry widgets

Checkbutton, Radiobutton, and Scale widgets

Images: PhotoImage and BitmapImage objects

Dialogs: both standard and custom

Widget configuration options

Low-level event binding

Tkinter variable objects

Chapter 8, concludes the tour by presenting the remainder of the Tkinter library's
tool set: menus, text, canvases, animation, and more.

To make this tour interesting, I'll also introduce a few notions of component reuse
along the way. For instance, some later examples will be built using components
written for prior examples. Although these two tour chapters introduce widget
interfaces, this book is really about Python programming in general; as we'll see,
Tkinter programming in Python can be much more than simply drawing circles and
arrows.

7.2 Configuring Widget Appearance

So far, all the buttons and labels in examples have been rendered with a default
look-and-feel that is standard for the underlying platform. That usually means gray
on Windows, with my machine's color scheme. Tkinter widgets can be made to look
arbitrarily different, though, using a handful of widget and packer options.

Because I generally can't resist the temptation to customize widgets in examples, I
want to cover this topic early on the tour. Example 7-1 introduces some of the
configuration options available in Tkinter.

Example 7-1. PP2E\Gui\Tour\config-label.py

from Tkinter import *
root = Tk()
labelfont = ('times', 20, 'bold') # family, size,
style
widget = Label(root, text='Hello config world')
widget.config(bg='black', fg='yellow') # yellow text on
black label
widget.config(font=labelfont) # use a larger font

Programming Python, 2nd Edition, O’Reilly

IT-SC book 352

widget.config(height=3, width=20) # initial size:
lines,chars
widget.pack(expand=YES, fill=BOTH)
root.mainloop()

Remember, we can call a widget's config method to reset its options at any time,
instead of passing them all to the object's constructor. Here, we use it to set options
that produce the window in Figure 7-1.

Figure 7-1. A custom label appearance

This may not be completely obvious unless you run this script on a real computer
(alas, I can't show it in color here), but the label's text here shows up in yellow on a
black background, and with a font that's very different from what we've seen so far.
In fact, this script customizes the label in number of ways:

Color

By setting the bg option of the label widget here, its background is displayed in
black; the fg option similarly changes the foreground (text) color of the widget to
yellow. These color options work on most Tkinter widgets, and accept either a simple
color name (e.g., 'blue') or a hexadecimal string. Most of the color names you are
familiar with are supported (unless you happen to work for Crayola). You can also
pass a hexadecimal color identifier string to these options to be more specific; they
start with a # and name a color by its red, green, and blue saturations, with an equal
number of bits in the string for each. For instance, '#ff0000' specifies eight bits per
color, and defines pure red -- "f" means four "1" bits in hexadecimal. We'll come
back to this hex form when we meet the color selection dialog later in this chapter.

Size

The label is given a preset size in lines high and characters wide by setting its
height and width attributes. You can use this setting to make the widget larger than
the Tkinter geometry manager would by default.

Font

This script specifies a custom font for the label's text by setting the label's font
attribute to a three-item tuple giving the font family, size, and style (here: Times,
20-point, and bold). Font style can be normal, bold, roman, italic, underline,
overstrike, and combinations of these (e.g., "bold italic"). Tkinter guarantees that
Times, Courier, and Helvetica font family names exist on all platforms, but others
may work too (e.g., system gives the system font on Windows). Font settings like
this work on all widgets with text, such as labels, buttons, entry fields, listboxes, and
Text (the latter of which can display more than one font at once with "tags"). The

Programming Python, 2nd Edition, O’Reilly

IT-SC book 353

font option still accepts older X-style font indicators -- long strings with dashes and
stars -- but the new tuple font indicator form is more platform independent.

Layout and expansion

Finally, the label is made generally expandable and stretched by setting the pack
expand and fill options we met in the last chapter; the label grows as the window
does. If you maximize this window, its black background fills the whole screen and
the yellow message is centered in the middle -- try it.

In this script, the net effect of all these settings is that this label looks radically
different then the ones we've been making so far. It no longer follows the Windows
standard look-and-feel, but such conformance isn't always important. Tkinter
provides additional ways to customize appearance, not used by this script:

Border and relief

A bd=N widget option can be used to set border width, and a relief=S option can
specify a border style; S can be FLAT, SUNKEN, RAISED, GROOVE, SOLID, or RIDGE -- all
constants exported by the Tkinter module.

Cursor

A cursor option can be given to change the appearance of the mouse pointer when
it moves over the widget. For instance, cursor='gumby' changes the pointer to a
Gumby figure (the green kind). Other common cursor names used in this book
include watch, pencil, cross, and hand2.

State

Some widgets also support the notion of a state, which impacts their appearance.
For example, a state=DISABLED option will generally stipple (gray out) a widget on
screen, and make it unresponsive; NORMAL does not.

Padding

Extra space can be added around many widgets (e.g., buttons, labels, and text) with
the padx=N and pady=N options. Interestingly, you can set these options both in pack
calls (where it adds empty space around the widget in general), and in a widget
object itself (where it makes the widget larger).

To illustrate some of these extra settings, Example 7-2 configures the custom button
captured in Figure 7-2 and changes the mouse pointer when above it.

Example 7-2. PP2E\Gui\Tour\config-button.py

from Tkinter import *
widget = Button(text='Spam', padx=10, pady=10)
widget.pack(padx=20, pady=20)
widget.config(cursor='gumby')
widget.config(bd=8, relief=RAISED)
widget.config(bg='dark green', fg='white')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 354

widget.config(font=('helvetica', 20, 'underline italic'))
mainloop()

Figure 7-2. Config button at work

To see the effects generated by these two script's settings, try out a few changes on
your computer. Most widgets can be given a custom appearance in the same way,
and we'll see such options used repeatedly in this text. We'll also meet operational
configurations, such as focus (for focusing input), and more. In fact, widgets can
have dozens of options; most have reasonable defaults that produce a native look-
and-feel on each windowing platform, and this is one reason for Tkinter's simplicity.
But Tkinter lets you build more custom displays when you want to.

7.3 Toplevel Windows

Tkinter GUIs always have a root window, whether you get it by default or create it
explicitly by calling the Tk object constructor. This main root window is the one that
opens when your program runs, and is where you generally pack your most
important widgets. In addition, Tkinter scripts can create any number of independent
windows, generated and popped up on demand, by creating Toplevel widget
objects.

Each Toplevel object created produces a new window on the display, and
automatically adds it to the program's GUI event-loop processing stream (you don't
need to call the mainloop method of new windows to activate them). Example 7-3
builds a root and two pop-up windows.

Example 7-3. PP2E\Gui\Tour\toplevel0.py

import sys
from Tkinter import Toplevel, Button, Label

win1 = Toplevel() # two independent windows
win2 = Toplevel() # but part of same process

Button(win1, text='Spam', command=sys.exit).pack()
Button(win2, text='SPAM', command=sys.exit).pack()

Label(text='Popups').pack() # on default Tk() root window
win1.mainloop()

The toplevel0 script gets a root window by default (that's what the Label is
attached to, since it doesn't specify a real parent), but also creates two standalone
Toplevel windows that appear and function independently of the root window, as
seen in Figure 7-3.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 355

Figure 7-3. Two Toplevel windows and a root window

The two Toplevel windows on the right are full-fledged windows; they can be
independently iconified, maximized, and so on. Toplevels are typically used to
implement multiple-window displays, and pop-up modal and nonmodal dialogs (more
on dialogs in the next section). They stay up until explicitly destroyed, or the
application that created them exits.

But it's important to know that although Toplevels are independently active
windows, they are not separate processes -- if your program exits, all its windows
are erased, including all Toplevel windows it may have created. We'll learn how to
work around this rule later by launching independent GUI programs.

7.3.1 Toplevel and Tk Widgets

A Toplevel is roughly like a Frame that is split off into its own window, and has
additional methods that allow you to deal with top-level window properties. The Tk
widget is roughly like a Toplevel, but is used to represent the application root
window. We got one for free in Example 7-3 because the Label had a default parent;
in other scripts, we've made the Tk root more explicit by creating it directly like this:

root = Tk()
Label(root, text='Popups').pack() # on explicit Tk() root window
root.mainloop()

In fact, because Tkinter GUIs are built as a hierarchy, you always get a root window
by default, whether it is named explicitly like this or not. You should generally use
the root to display top-level information of some sort -- if you don't attach widgets to
the root, it shows up as an odd empty window when you run your script. Technically,
you can suppress the default root creation logic and make multiple root windows
with the Tk widget, as in Example 7-4.

Example 7-4. PP2E\Gui\Tour\toplevel1.py

import Tkinter
from Tkinter import Tk, Button
Tkinter.NoDefaultRoot()

win1 = Tk() # two independent root windows
win2 = Tk()

Button(win1, text='Spam', command=win1.destroy).pack()
Button(win2, text='SPAM', command=win2.destroy).pack()
win1.mainloop()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 356

When run, this script displays the two pop-up windows of the screen shot in Figure
7-3 only (there is no third root window). But it's more common to use the Tk root as
a main window, and create Toplevel widgets for an application's pop-up windows.

7.3.2 Top-Level Window Protocols

Both Tk and Toplevel widgets export extra methods and features tailored for their
top-level role, as illustrated by Example 7-5.

Example 7-5. PP2E\Gui\Tour\toplevel2.py

popup three new window, with style
destroy() kills one window, quit() kills all windows and app;
top-level windows have title, icon (on Unix), iconify/deiconify
and protocol for wm events; there always is an app root window,
whether by default or created as an explicit Tk() object; all
top-level windows are containers, but never packed or gridded;
Toplevel is like frame, but is a new window, and can have menu;

from Tkinter import *
root = Tk() #
explicit root

trees = [('The Larch!', 'light blue'),
 ('The Pine!', 'light green'),
 ('The Giant Redwood!', 'red')]

for (tree, color) in trees:
 win = Toplevel(root) # new
window
 win.title('Sing...') # set
border
 win.protocol('WM_DELETE_WINDOW', lambda:0) #
ignore close

 msg = Button(win, text=tree, command=win.destroy) # kills
one win
 msg.pack(expand=YES, fill=BOTH)
 msg.config(padx=10, pady=10, bd=10, relief=RAISED)
 msg.config(bg='black', fg=color, font=('times', 30, 'bold italic'))

root.title('Lumberjack demo')
Label(root, text='Main window', width=30).pack()
Button(root, text='Quit All', command=root.quit).pack() # kills
all app
root.mainloop()

This program adds widgets to the Tk root window, immediately pops up three
Toplevel windows with attached buttons, and uses special top-level protocols. When
run, it generates the scene captured in living black-and-white by Figure 7-4 (the
buttons' text shows up blue, green, and red on a color display).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 357

Figure 7-4. Three Toplevel windows with configurations

There are a few operational details worth noticing here, all of which are more
obvious if you run this script on your machine:

Intercepting closes: protocol

Because the window manager close event has been intercepted by this script using
the top-level widget protocol method, pressing the X in the top-right corner doesn't
do anything in the three Toplevel pop-ups. The name string WM_DELETE_WINDOW
identifies the close operation. You can use this interface to disallow closes apart from
the widgets your script creates -- the function created by this script's lambda:0 does
nothing but return zero.

Killing one window: destroy

Pressing the big black buttons in any one of the three pop-ups only kills that pop-up,
because the pop-up runs the widget destroy method. The other windows live on,
much as you would expect of a pop-up dialog window.

Killing all windows: quit

To kill all the windows at once and end the GUI application (really, its active
mainloop call), the root window's button runs the quit method instead. Pressing the
root window's button ends the application.

Window titles: title

As introduced in Chapter 6, top-level window widgets (Tk and Toplevel) have a
title method that lets you change the text displayed on the top border. Here, the
window title text is set to the string "Sing..." to override the default "tk".

Geometry management

Top-level windows are containers for other widgets, much like a standalone Frame.
Unlike frames, though, top-level window widgets are never themselves packed (or

Programming Python, 2nd Edition, O’Reilly

IT-SC book 358

gridded, or placed). To embed widgets, this script passes its windows as parent
arguments to label and button constructors.

In addition, top-level window widgets support other kinds of protocols that we will
utilize later on this tour:

State

The iconify and withdraw top-level widget methods allow scripts to hide and erase
a window on the fly; deiconify redraws a hidden or erased window. The state
method queries a window's state (it returns "iconic", "withdrawn", or "normal"), and
lift and lower raise and lower a window with respect to others. See the alarm
scripts near the end of Chapter 8 for usage.

Menus

Each top-level window can have its own window menus too; both the Tk and
Toplevel widgets have a menu option used to associate a horizontal menu bar of
pull-down option lists. This menu bar looks as it should on each platform on which
your scripts are run. We'll explore menus early in Chapter 8.

Notice that this script passes its Toplevel constructor calls an explicit parent widget
-- the Tk root window (that is, Toplevel(root)). Toplevels can be associated with
a parent like other widgets, even though they are not visually embedded in their
parents. I coded the script this way to avoid what seems like an odd feature; if
coded instead like this:

win = Toplevel() # new window

If no Tk root yet exists, this call actually generates a default Tk root window to serve
as the Toplevel's parent, just like any other widget call without a parent argument.
The problem is that this makes the position of the following line crucial:

root = Tk() # explicit root

If this line shows up above the Toplevel calls, it creates the single root window as
expected. But if you move this line below the Toplevel calls, Tkinter creates a
default Tk root window that is different than the one created by the script's explicit
Tk call. You wind up with two Tk roots just as in Example 7-5. Move the Tk call below
the Toplevel calls and rerun it to see what I mean -- you'll get a fourth window that
is completely empty! As a rule of thumb, to avoid such oddities, make your Tk root
windows early and explicit.

All of the top-level protocol interfaces are only available on top-level window
widgets, but you can often access them by going through other widgets' master
attributes -- links to the widget parents. For example, to set the title of a window in
which a frame is contained, say something like this:

theframe.master.title('Spam demo') # master is the container window

Programming Python, 2nd Edition, O’Reilly

IT-SC book 359

Naturally, you should only do so if you're sure that the frame will only be used in one
kind of window. General-purpose attachable components coded as classes, for
instance, should leave window property settings to their client applications.

Top-level widgets have additional tools, some of which we may not meet in this
book. For instance, under Unix window managers, you can also call icon-related
methods to change the bitmap used for top-level windows (iconbitmask), and set
the name used on the window's icon (iconname). Because such icon options are only
useful when scripts run on Unix, see other Tk and Tkinter resources for more details
on this topic. For now, the next scheduled stop on this tour explores one of the more
common uses of top-level windows.

7.4 Dialogs

Dialogs are windows popped up by a script to provide or request additional
information. They come in two flavors, modal and nonmodal:

Modal dialogs block the rest of the interface until the dialog window is dismissed;
users must reply to the dialog before the program continues.

Nonmodal dialogs can remain on screen indefinitely without interfering with other
windows in the interface; they can usually accept inputs at any time.

Regardless of their modality, dialogs are generally implemented with the Toplevel
window object we met in the prior section, whether you make the Toplevel or not.
There are essentially three ways to present pop-up dialogs to users with Tkinter: by
using common dialog calls, by using the now-dated Dialog object, and by creating
custom dialog windows with Toplevels and other kinds of widgets. Let's explore the
basics of all three schemes.

7.4.1 Standard (Common) Dialogs

Because standard dialog calls are simpler, let's start here first. Tkinter comes with a
collection of precoded dialog windows that implement many of the most common
pop-ups programs generate -- file selection dialogs, error and warning pop-ups, and
question and answer prompts. They are called standard dialogs (and sometimes
"common" dialogs), because they are part of the Tkinter library, and use platform-
specific library calls to look like they should on each platform. A Tkinter file open
dialog, for instance, looks like any other on Windows.

All standard dialog calls are modal (they don't return until the dialog box is dismissed
by the user), and block the program's main window while displayed. Scripts can
customize these dialogs' windows by passing message text, titles, and the like. Since
they are so simple to use, let's jump right into Example 7-6.

Example 7-6. PP2E\Gui\Tour\dlg1.pyw

from Tkinter import *
from tkMessageBox import *

def callback():

Programming Python, 2nd Edition, O’Reilly

IT-SC book 360

 if askyesno('Verify', 'Do you really want to quit?'):
 showwarning('Yes', 'Quit not yet implemented')
 else:
 showinfo('No', 'Quit has been cancelled')

errmsg = 'Sorry, no Spam allowed!'
Button(text='Quit', command=callback).pack(fill=X)
Button(text='Spam', command=(lambda: showerror('Spam',
errmsg))).pack(fill=X)
mainloop()

A lambda anonymous function is used here to wrap the call to showerror, so that it
is passed two hardcoded arguments (remember, button press callbacks get no
arguments from Tkinter itself). When run, this script creates the main window in
Figure 7-5.

Figure 7-5. dlg1 main window: buttons to trigger pop-ups

Pressing this window's Quit button pops up the dialog in Figure 7-6, by calling the
standard askyesno function in the tkmessagebox module. This looks different on
Unix and Macintosh, but looks like you'd expect when run on Windows. This dialog
blocks the program until the user clicks one of its buttons; if the dialog's Yes button
is clicked (or the Enter key is pressed), the dialog call returns with a true value and
the script pops up the standard dialog in Figure 7-7 by calling showwarning.

Figure 7-6. dlg1 askyesno dialog (Windows)

Figure 7-7. dlg1 showwarning dialog

There is nothing the user can do with Figure 7-7's dialog but press OK. If No is
clicked in Figure 7-6's quit verification dialog, a showinfo call makes the pop-up in
Figure 7-8 instead. Finally, if the Spam button is clicked in the main window, the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 361

standard dialog captured in Figure 7-9 is generated with the standard showerror
call.

Figure 7-8. dlg1 showinfo dialog

Figure 7-9. dlg1 showerror dialog

This all makes for a lot of window pop-ups, of course, and you need to be careful not
to rely on these dialogs too much (it's generally better to use input fields in long-
lived windows, than to distract the user with pop-ups). But where appropriate, such
pop-ups save coding time and provide a nice native look-and-feel.

7.4.1.1 A "smart" and reusable quit button

Let's put some of these canned dialogs to better use. Example 7-7 implements an
attachable Quit button that uses standard dialogs to verify the quit request. Because
it's a class, it can be attached and reused in any application that needs a verifying
Quit button. Because it uses standard dialogs, it looks as it should on each GUI
platform.

Example 7-7. PP2E\Gui\Tour\quitter.py

a quit button that verifies exit requests;
to reuse, attach an instance to other guis

from Tkinter import * # get widget classes
from tkMessageBox import askokcancel # get canned std dialog

class Quitter(Frame): # subclass our GUI
 def __init__(self, parent=None): # constructor method
 Frame.__init__(self, parent)
 self.pack()
 widget = Button(self, text='Quit', command=self.quit)
 widget.pack(side=LEFT)
 def quit(self):
 ans = askokcancel('Verify exit', "Really quit?")
 if ans: Frame.quit(self)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 362

if __name__ == '__main__': Quitter().mainloop()

This module is mostly meant to be used elsewhere, but puts up the button it
implements when run standalone. Figure 7-10 shows the Quit button itself in the
upper left, and the askokcancel verification dialog popped up when Quit is pressed.

Figure 7-10. Quitter, with askokcancel dialog

If you press OK here, Quitter runs the Frame quit method to end the GUI to which
this button is attached (really, the mainloop call). But to really understand how such
a spring-loaded button can be useful, we need to move on to study a client GUI in
the next section.

7.4.1.2 A dialog demo launcher bar

So far, we've seen a handful of standard dialogs, but there quite a few more. But
rather than just throwing these up in dull screen shots, let's write a Python demo
script to generate them on demand. Here's one way to do it. First of all, in Example
7-8 we write a module to define a table that maps a demo name to a standard dialog
call (and use lambda to wrap the call if we need to pass extra arguments to the
dialog function).

Example 7-8. PP2E\Gui\Tour\dialogTable.py

define a name:callback demos table

from tkFileDialog import askopenfilename # get standard
dialogs
from tkColorChooser import askcolor # they live in
Lib/lib-tk
from tkMessageBox import askquestion, showerror
from tkSimpleDialog import askfloat

demos = {
 'Open': askopenfilename,
 'Color': askcolor,
 'Query': lambda: askquestion('Warning', 'You typed "rm
*"\nConfirm?'),
 'Error': lambda: showerror('Error!', "He's dead, Jim"),
 'Input': lambda: askfloat('Entry', 'Enter credit card number')
}

Programming Python, 2nd Edition, O’Reilly

IT-SC book 363

I put this table in a module so that it might be reused as the basis of other demo
scripts later (dialogs are more fun than printing to stdout). Next, we'll write a
Python script, Example 7-9, that simply generates buttons for all of this table's
entries -- use its keys as button labels, and its values as button callback handlers.

Example 7-9. PP2E\Gui\Tour\demoDlg.py

from Tkinter import * # get base widget set
from dialogTable import demos # button callback handlers
from quitter import Quitter # attach a quit object to me

class Demo(Frame):
 def __init__(self, parent=None):
 Frame.__init__(self, parent)
 self.pack()
 Label(self, text="Basic demos").pack()
 for (key, value) in demos.items():
 Button(self, text=key, command=value).pack(side=TOP,
fill=BOTH)
 Quitter(self).pack(side=TOP, fill=BOTH)

if __name__ == '__main__': Demo().mainloop()

This script creates the window shown in Figure 7-11 when run as a standalone
program; it's a bar of demo buttons, that simply route control back to the values of
the table in module dialogTable when pressed.

Figure 7-11. demoDlg main window

Notice that because this script is driven by the contents of the dialogTable module's
dictionary, we can change the set of demo buttons displayed by changing just
dialogTable (we don't need to change any executable code in demoDlg). Also note
that the Quit button here is an attached instance of the Quitter class of the prior
section -- it's at least one bit of code that you never have to write again.

We've already seen some of the dialogs triggered by this demo bar window's other
buttons, so I'll just step through the new ones here. Pressing the main window's
Query button, for example, generates the standard pop-up in Figure 7-12.

Figure 7-12. demoDlg query, askquestion dialog

Programming Python, 2nd Edition, O’Reilly

IT-SC book 364

This askquestion dialog looks like the askyesno we saw earlier, but actually returns
either string "yes" or "no" (askyesno and askokcancel return 1 or 0, true or false).
Pressing the demo bar's Input button generates the standard askfloat dialog box
shown in Figure 7-13.

Figure 7-13. demoDlg input, askfloat dialog

This dialog automatically checks the input for valid floating-point syntax before it
returns, and is representative of a collection of single-value input dialogs
(askinteger and askstring prompt for integer and string inputs too). It returns the
input as a floating-point number object (not a string) on the OK button and enter key
presses, or the Python None object if the user clicks Cancel. Its two relatives return
the input as integer and string objects instead.

When the demo bar's Open button is pressed, we get the standard file open dialog
made by calling askopenfilename, and captured in Figure 7-14. This is Windows
look-and-feel; it looks radically different on Linux, but appropriately so.

Figure 7-14. demoDlg open, askopenfilename dialog

A similar dialog for selecting a save-as filename is produced by calling
asksaveasfilename (see the Text widget section under Section 8.4 in Chapter 8 for
an example). Both file dialogs let the user navigate through the filesystem to select a
subject filename, returned with its full directory pathname when Open is pressed; an

Programming Python, 2nd Edition, O’Reilly

IT-SC book 365

empty string comes back if Cancel is pressed instead. Both also have additional
protocols not demonstrated by this example:

They can be passed a filetypes keyword argument -- a set of name patterns used
to select files, that appear in the "Files of type" pulldown at the bottom of the dialog.

They can be passed an initialdir (start directory), initialfile (for "File name"),
title (for the dialog window), defaultextension (appended if the selection has
none), and parent (to appear as an embedded child, instead of a pop-up dialog).

They can be made to remember the last directory selected, by using exported
objects instead of these function calls.

We'll use most of these interfaces later in the book, especially for the file dialogs in
the PyEdit example in Chapter 9 (but feel free to flip ahead for more details now).
Finally, the demo bar's Color button triggers a standard askcolor call, which
generates the standard color selection dialog shown in Figure 7-15.

Figure 7-15. demoDlg color, askcolor dialog

If you press its OK button it returns a data structure the identifies the selected color,
which can be used in all color contexts in Tkinter. It includes RGB values and a
hexadecimal color string (e.g., ((160, 160, 160), '#a0a0a0')). More on how this
tuple can be useful in a moment. If you press Cancel, the script gets back a tuple
containing two nones (Nones of the Python variety, that is).

7.4.1.3 Printing dialog results (and passing callback data with lambdas)

The dialog demo launcher bar displays standard dialogs, and can be made to display
others by simply changing the dialogTable module it imports. As coded, though, it
really only shows dialogs; it would also be nice to see their return values so we know
how to use them in scripts. Example 7-10 adds printing of standard dialog results to
the stdout standard output stream.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 366

Example 7-10. PP2E\Gui\Tour\demoDlg-print.py

same, but show returns values of dialog calls;
the lambda saves data from the local scope to be
passed to the handler (button handlers normally
get no args) and works like this def statement:
def func(self=self, name=key): self.printit(name)

from Tkinter import * # get base widget set
from dialogTable import demos # button callback handlers
from quitter import Quitter # attach a quit object to me

class Demo(Frame):
 def __init__(self, parent=None):
 Frame.__init__(self, parent)
 self.pack()
 Label(self, text="Basic demos").pack()
 for (key, value) in demos.items():
 func = (lambda self=self, name=key: self.printit(name))
 Button(self, text=key, command=func).pack(side=TOP,
fill=BOTH)
 Quitter(self).pack(side=TOP, fill=BOTH)
 def printit(self, name):
 print name, 'returns =>', demos[name]() # fetch, call,
print

if __name__ == '__main__': Demo().mainloop()

This script builds the same main button-bar window, but notice that the callback
handler is an anonymous function made with a lambda now, not a direct reference to
dialog calls in the imported dialogTable dictionary:

 func = (lambda self=self, name=key: self.printit(name))

This is the first time we've actually used lambda like this, so let's get the facts
straight. Because button press callbacks are run with no arguments, if we need to
pass extra data to the handler it must be wrapped in an object that remembers that
extra data and passes it along. Here, a button press runs the function generated by
the lambda -- an indirect call layer that retains information from the enclosing scope
by assigning it to default arguments. The net effect is that the real handler, printit,
receives an extra name argument giving the demo associated with the button
pressed, even though this argument wasn't passed back from Tkinter itself.

Notice, though, that this lambda assigns both self and key to defaults, to retain
them for use on callbacks. Like all functions, lambda results only have access to their
local scope, the enclosing global module scope, and the built-in names scope -- not
the local scope of the method function that created them, and that is where name
self really lives. Because bound methods remember both a self object and a
method function, this lambda could also be written like this:

func = (lambda handler=self.printit, name=key: handler(name))

Programming Python, 2nd Edition, O’Reilly

IT-SC book 367

You can also use a callable class object here that retains state as instance attributes
(see the tutorial's __call__ example in Chapter 6 for hints). But as a rule of thumb,
if you want a lambda's result to use any names from the enclosing scope when later
called, simply pass them in as defaults.

When run, this script prints dialog return values; here is the output after clicking all
the demos buttons in the main window, and picking both Cancel/No and OK/Yes
buttons in each dialog:

C:\...\PP2E\Gui\Tour>python demoDlg-print.py
Error returns => ok
Input returns => None
Input returns => 3.14159
Open returns =>
Open returns => C:/PP2ndEd/examples/PP2E/Gui/Tour/demoDlg-print.py
Query returns => no
Query returns => yes
Color returns => (None, None)
Color returns => ((160, 160, 160), '#a0a0a0')

Now that I've shown you these dialog results, I want to next show you how one of
them can actually be useful.

7.4.1.4 Letting users select colors on the fly

The standard color selection dialog isn't just another pretty face -- scripts can pass
the hexadecimal color string it returns to the bg and fg widget color configuration
options we met earlier. That is, bg and fg accept both a color name (e.g., "blue")
and an askcolor result strings that starts with a # (e.g., the #a0a0a0 in the last
output line of the prior section).

This adds another dimension of customization to Tkinter GUIs: Rather than hard-
coding colors in your GUI products, you can provide a button that pops up color
selectors that let users choose color preferences on the fly. Simply pass the color
string to widget config methods in callback handlers, as in Example 7-11.

Example 7-11. PP2E\Gui\Tour\setcolor.py

from Tkinter import *
from tkColorChooser import askcolor

def setBgColor():
 (triple, hexstr) = askcolor()
 if hexstr:
 print hexstr
 push.config(bg=hexstr)

root = Tk()
push = Button(root, text='Set Background Color', command=setBgColor)
push.config(height=3, font=('times', 20, 'bold'))
push.pack(expand=YES, fill=BOTH)
root.mainloop()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 368

This script makes the window in Figure 7-16 when launched (its button's background
is a sort of green, but you'll have to trust me on this). Pressing the button pops up
the color selection dialog shown earlier; the color you pick in that dialog becomes the
background color of this button after you press OK.

Figure 7-16. setcolor main window

Color strings are also printed to the stdout stream (the console window); run this on
your computer to experiment with available color settings:

C:\...\PP2E\Gui\Tour>python setcolor.py
#c27cc5
#5fe28c
#69d8cd

7.4.1.5 Other standard dialog calls

We've seen most of the standard dialogs and will use these pop-ups in examples
throughout the rest of this book. But for more details on other calls and options
available, either consult other Tkinter documentation, or browse the source code of
the modules used at the top of the dialogTable module; all are simple Python files
installed in the lib-tk subdirectory of the Python source library on your machine. And
keep this demo bar example filed away for future reference; we'll reuse it later in the
tour when we meet other button-like widgets.

7.4.2 The Old-Style Dialog Module

In older Python code, you may see dialogs occasionally coded with the standard
Dialog module. This is a bit dated now, and uses an X Windows look-and-feel; but
just in case you run across such code in your Python maintenance excursions,
Example 7-12 gives you a feel for the interface.

Example 7-12. PP2E\Gui\Tour\dlg-old.py

from Tkinter import *
from Dialog import Dialog

class OldDialogDemo(Frame):
 def __init__(self, master=None):
 Frame.__init__(self, master)
 Pack.config(self) # same as self.pack()
 Button(self, text='Pop1', command=self.dialog1).pack()
 Button(self, text='Pop2', command=self.dialog2).pack()
 def dialog1(self):
 ans = Dialog(self,
 title = 'Popup Fun!',
 text = 'An example of a popup-dialog '
 'box, using older "Dialog.py".',
 bitmap = 'questhead',

Programming Python, 2nd Edition, O’Reilly

IT-SC book 369

 default = 0, strings = ('Yes', 'No', 'Cancel'))
 if ans.num == 0: self.dialog2()
 def dialog2(self):
 Dialog(self, title = 'HAL-9000',
 text = "I'm afraid I can't let you do that,
Dave...",
 bitmap = 'hourglass',
 default = 0, strings = ('spam', 'SPAM'))

if __name__ == '__main__': OldDialogDemo().mainloop()

You supply Dialog a tuple of button labels and a message, and get back the index of
the button pressed (the leftmost is index zero). Dialog windows are modal: the rest
of the application's windows are disabled until the Dialog receives a response from
the user. When you press the Pop2 button in the main window created by this script,
the second dialog pops up, as shown in Figure 7-17.

Figure 7-17. Old-style dialog

This is running on Windows, and as you can see, is nothing like what you would
expect on that platform for a question dialog. In fact, this dialog generates an X
Windows look-and-feel, regardless of the underlying platform. Because of both
Dialog's appearance and the extra complexity required to program it, you are
probably better off using the standard dialog calls of the prior section instead.

7.4.3 Custom Dialogs

The dialogs we've seen so far all have a standard appearance and interaction. They
are fine for many purposes, but often we need something a bit more custom. For
example, forms that request multiple field inputs (e.g., name, age, shoe size) aren't
directly addressed by the common dialog library. We could pop-up one single-input
dialog in turn for each requested field, but that isn't exactly user-friendly.

Custom dialogs support arbitrary interfaces, but they are also the most complicated
to program. Even so, there's not much to it -- simply create a pop-up window as a
Toplevel with attached widgets, and arrange a callback handler to fetch user inputs
entered in the dialog (if any) and destroy the window. To make such a custom dialog
modal, we also need to wait for a reply, by giving the window input focus, making
other windows inactive, and waiting for an event. Example 7-13 illustrates the
basics.

Example 7-13. PP2E\Gui\Tour\dlg-custom.py

import sys

Programming Python, 2nd Edition, O’Reilly

IT-SC book 370

from Tkinter import *
makemodal = (len(sys.argv) > 1)

def dialog():
 win = Toplevel() # make a new
window
 Label(win, text='Hard drive reformatted!').pack() # add a few
widgets
 Button(win, text='OK', command=win.destroy).pack() # set destroy
callback
 if makemodal:
 win.focus_set() # take over input focus,
 win.grab_set() # disable other windows while I'm
open,
 win.wait_window() # and wait here until win destroyed
 print 'dialog exit' # else returns right away

root = Tk()
Button(root, text='popup', command=dialog).pack()
root.mainloop()

This script is set up to create a pop-up dialog window in either modal or nonmodal
mode, depending on its makemodal global variable. If it is run with no command-line
arguments, it picks nonmodal style, captured in Figure 7-18.

Figure 7-18. Nonmodal custom dialogs at work

The window in the upper right is the root window here; pressing its "popup" button
creates a new pop-up dialog window. Because dialogs are nonmodal in this mode,
the root window remains active after a dialog is popped up. In fact, nonmodal dialogs
never block other windows, so you can keep pressing the root's button to generate
as many copies of the pop-up window as will fit on your screen. Any or all of the
pop-ups can be killed by pressing their OK buttons, without killing other windows in
this display.

7.4.3.1 Making custom dialogs modal

Now, when the script is run with a command-line argument (e.g., python dlg-
custom.py 1), it makes its pop-ups modal instead. Because modal dialogs grab all of
the interface's attention, the main window becomes inactive in this mode until the
pop-up is killed; you can't even click on it to reactivate it while the dialog is open.
Because of that, you can never make more than one copy of the pop-up on screen at
once, as shown in Figure 7-19.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 371

Figure 7-19. A modal custom dialog at work

In fact, the call to the dialog function in this script doesn't return until the dialog
window on the left is dismissed by pressing its OK button. The net effect is that
modal dialogs impose a function call-like model on an otherwise event-driven
programming model -- user inputs can be processed right away, not in a callback
handler triggered at some arbitrary point in the future.

Forcing such a linear control flow on a GUI takes a bit of extra work, though. The
secret to locking other windows and waiting for a reply boils down to three lines of
code, which are a general pattern repeated in most custom modal dialogs:

win.focus_set()

Makes the window take over the application's input focus, as if it had been clicked
with the mouse to make it the active window. This method is also known by
synonym focus, and it's also common to set the focus on an input widget within the
dialog (e.g., an Entry) rather than the entire window.

win.grab_set()

Disables all other windows in the application until this one is destroyed. The user
cannot interact with other windows in the program while a grab is set.

win.wait_window()

Pauses the caller until the win widget is destroyed, but keeps the main event-
processing loop (mainloop) active during the pause. That means that the GUI at
large remains active during the wait; its windows redraw themselves if covered and
uncovered, for example. When the window is destroyed with the destroy method, it
is erased from the screen, the application grab is automatically released, and this
method call finally returns.

Because the script waits for a window destroy event, it must also arrange for a
callback handler to destroy the window in response to interaction with widgets in the
dialog window (the only window active). This example's dialog is simply
informational, so its OK button calls the window's destroy method. In user-input
dialogs, we might instead install an Enter key-press callback handler that fetches
data typed into an Entry widget, and then calls destroy (see later in this chapter).

7.4.3.2 Other ways to be modal

Modal dialogs are typically implemented by waiting for a newly created pop-up
window's destroy event, as in this example. But other schemes are viable too. For
example, it's possible to create dialog windows ahead of time, and show and hide
them as needed with the top-level window's deiconify and withdraw methods (see

Programming Python, 2nd Edition, O’Reilly

IT-SC book 372

the alarm scripts in Chapter 8 under Section 8.7 for details). Given that window
creation speed is generally fast enough as to appear instantaneous today, this is
much less common than making and destroying a window from scratch on each
interaction.

It's also possible to implement a modal state by waiting for a Tkinter variable to
change its value, instead of waiting for a window to be destroyed. See this chapter's
discussion of Tkinter variables (which are class objects, not normal Python variables)
and the wait_variable method discussed near the end of Chapter 8 for more
details. This scheme allows a long-lived dialog box's callback handler to signal a state
change to a waiting main program, without having to destroy the dialog box.

Finally, if you call the mainloop method recursively, the call won't return until the
widget quit method has been invoked. The quit method terminates a mainloop call,
and so normally ends a GUI program. But it will simply exit a recursive mainloop
level if one is active. Because of this, modal dialogs can also be written without wait
method calls if you are careful. For instance, Example 7-14 works the same as dlg-
custom.

Example 7-14. PP2E\Gui\Tour\dlg-recursive.py

from Tkinter import *

def dialog():
 win = Toplevel() # make a new
window
 Label(win, text='Hard drive reformatted!').pack() # add a few
widgets
 Button(win, text='OK', command=win.quit).pack() # set quit
callback
 win.protocol('WM_DELETE_WINDOW', win.quit) # quit on wm
close too!

 win.focus_set() # take over input focus,
 win.grab_set() # disable other windows while I'm open,
 win.mainloop() # and start a nested event loop to wait
 win.destroy()
 print 'dialog exit'

root = Tk()
Button(root, text='popup', command=dialog).pack()
root.mainloop()

If you go this route, be sure to call quit instead of destroy in dialog callback
handlers (destroy doesn't terminate the mainloop level), and be sure to use
protocol to make the window border close button call quit too (or else it doesn't
end the recursive mainloop level call, and will generate odd error messages when
your program finally exits). Because of this extra complexity, you're probably better
off using wait_window or wait_variable, not recursive mainloop calls.

We'll see how to build form-like dialogs with labels and input fields later in this
chapter when we meet Entry, and again when we study the grid manager in
Chapter 8. For more custom dialog examples, see ShellGui (Chapter 9), PyMailGui

Programming Python, 2nd Edition, O’Reilly

IT-SC book 373

(Chapter 11), PyCalc (Chapter 18), and the nonmodal form.py (Chapter 10). Here,
we're moving on to learn more about events that will prove to be useful currency at
later tour destinations.

7.5 Binding Events

We met the bind widget method in the last chapter, when we used it to catch button
presses in the tutorial. Because bind is commonly used in conjunction with other
widgets (e.g., to catch return key presses for input boxes), we're going to make a
stop early on the tour here as well. Example 7-15 illustrates more bind event
protocols.

Example 7-15. PP2E\Gui\Tour\bind.py

from Tkinter import *

def showPosEvent(event):
 print 'Widget=%s X=%s Y=%s' % (event.widget, event.x, event.y)

def showAllEvent(event):
 print event
 for attr in dir(event):
 print attr, '=>', getattr(event, attr)

def onKeyPress(event):
 print 'Got key press:', event.char

def onArrowKey(event):
 print 'Got up arrow key press'

def onReturnKey(event):
 print 'Got return key press'

def onLeftClick(event):
 print 'Got left mouse button click:',
 showPosEvent(event)

def onRightClick(event):
 print 'Got right mouse button click:',
 showPosEvent(event)

def onMiddleClick(event):
 print 'Got middle mouse button click:',
 showPosEvent(event)
 showAllEvent(event)

def onLeftDrag(event):
 print 'Got left mouse button drag:',
 showPosEvent(event)

def onDoubleLeftClick(event):
 print 'Got double left mouse click',
 showPosEvent(event)
 tkroot.quit()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 374

tkroot = Tk()
labelfont = ('courier', 20, 'bold') # family, size,
style
widget = Label(tkroot, text='Hello bind world')
widget.config(bg='red', font=labelfont) # red background,
large font
widget.config(height=5, width=20) # initial size:
lines,chars
widget.pack(expand=YES, fill=BOTH)

widget.bind('<Button-1>', onLeftClick) # mouse button
clicks
widget.bind('<Button-3>', onRightClick)
widget.bind('<Button-2>', onMiddleClick) # middle=both on
some mice
widget.bind('<Double-1>', onDoubleLeftClick) # click left twice
widget.bind('<B1-Motion>', onLeftDrag) # click left and
move

widget.bind('<KeyPress>', onKeyPress) # all keyboard
presses
widget.bind('<Up>', onArrowKey) # arrow button
pressed
widget.bind('<Return>', onReturnKey) # return/enter key
pressed
widget.focus() # or bind keypress
to tkroot
tkroot.title('Click Me')
tkroot.mainloop()

Most of this file consists of callback handler functions triggered when bound events
occur. As we learned in Chapter 6, these callbacks all receive an event object
argument that gives details about the event that fired. Technically, this argument is
an instance of the Tkinter Event class, and its details are attributes; most of the
callbacks simply trace events by displaying relevant event attributes.

When run, this script makes the window shown in Figure 7-20; it's mostly intended
just as a surface for clicking and pressing event triggers.

Figure 7-20. A bind window for the clicking

The black-and-white medium of the book you're holding won't really do justice to this
script -- when run live, it uses the configuration options shown earlier to make the
window show up as black on red, with a large Courier font. You'll have to take my
word for it (or run this on your own).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 375

But the main point of this example is to demonstrate other kinds of event binding
protocols at work. We saw a script that intercepted left and double-left mouseclicks
with the widget bind method earlier; the script here demonstrates other kinds of
events that are commonly caught with bind:

<KeyPress>

To catch the press of a single key on the keyboard, register a handler for the
<KeyPress> event identifier; this is a low-level way to input data in GUI programs
than the Entry widget covered in the next section. The key pressed is returned in
ASCII form in the event object passed to the callback handler (event.char). Other
attributes in the event structure identify the key pressed in lower-level detail. Key
presses can be intercepted by the top-level root window widget or a widget that has
been assigned keyboard focus with the focus method used by this script.

<B1-Motion>

This script also catches mouse motion while a button is held down: the registered
<B1-Motion> event handler is called every time the mouse is moved while the left
button is pressed, and receives the current X/Y coordinates of the mouse pointer in
its event argument (event.x, event.y). Such information can be used to implement
object moves, drag-and-drop, pixel-level painting, and so on (e.g., see the PyDraw
examples in Chapter 9).

<Button-3> , <Button-2>

This script also catches right and middle mouse button clicks (known as buttons 3
and 2). To make the middle button 2 click work on a two-button mouse, try clicking
both buttons at the same time; if that doesn't work, check your mouse setting in
your properties interface (Control Panel on Windows).

<Return> , <Up>

To catch more specific kinds of key presses, this script registers for the Return/Enter
and up-arrow key press events; these events would otherwise be routed to the
general <KeyPress> handler, and require event analysis.

Here is what shows up in the stdout output stream, after a left click, right click, left
click and drag, a few key presses, a Return and up-arrow press, and a final double-
left click to exit. When you press the left mouse button and drag it around on the
display, you'll get lots of drag event messages -- one is printed for every move
during the drag (and one Python callback is run for each):

C:\...\PP2E\Gui\Tour>python bind.py
Got left mouse button click: Widget=.7871632 X=209 Y=79
Got right mouse button click: Widget=.7871632 X=209 Y=79
Got left mouse button click: Widget=.7871632 X=83 Y=63
Got left mouse button drag: Widget=.7871632 X=83 Y=65
Got left mouse button drag: Widget=.7871632 X=84 Y=66
Got left mouse button drag: Widget=.7871632 X=85 Y=66
Got left mouse button drag: Widget=.7871632 X=85 Y=67
Got left mouse button drag: Widget=.7871632 X=85 Y=68
Got key press: s

Programming Python, 2nd Edition, O’Reilly

IT-SC book 376

Got key press: p
Got key press: a
Got key press: m
Got key press: 1
Got key press: -
Got key press: 2
Got key press: .
Got return key press
Got up arrow key press
Got left mouse button click: Widget=.7871632 X=85 Y=68
Got double left mouse click Widget=.7871632 X=85 Y=68

For mouse-related events, callbacks print the X and Y coordinates of the mouse
pointer, in the event object passed in. Coordinates are usually measured in pixels
from the upper-left corner (0,0), but are relative to the widget being clicked. Here's
what is printed for a left, middle, and double-left click. Notice that the middle-click
callback dumps the entire argument -- all of the Event object's attributes. Different
event types set different event attributes; most key presses put something in char,
for instance:

C:\...\PP2E\Gui\Tour>python bind.py
Got left mouse button click: Widget=.7871632 X=163 Y=18
Got middle mouse button click: Widget=.7871632 X=152 Y=110
<Tkinter.Event instance at 7b3640>
char => ??
height => 0
keycode => 2
keysym => ??
keysym_num => 2
num => 2
send_event => 0
serial => 14
state => 0
time => 5726238
type => 4
widget => .7871632
width => 0
x => 152
x_root => 156
y => 110
y_root => 133
Got left mouse button click: Widget=.7871632 X=152 Y=110
Got double left mouse click Widget=.7871632 X=152 Y=110

Besides the ones illustrated in this example, there are additional kinds of bindable
events that a Tkinter script can register to catch. For example:

<ButtonRelease> fires when a button is released (<ButtonPress> is run when the
button first goes down).

<Motion> is triggered when a mouse pointer is moved.

<Enter> and <Leave> handlers intercept mouse entry and exit in a window's display
area (useful for automatically highlighting a widget).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 377

<Configure> is invoked when the window is resized, repositioned, and so on (e.g.,
the event object's width and height give the new window size).

<Destroy> is invoked when the window widget is destroyed (and differs from the
protocol mechanism for window manager close button presses).

<FocusIn> and <FocusOut> are run as the widget gains and loses focus.

<Map> and <Unmap> are run when a window is opened and iconified.

<Escape>, <BackSpace>, and <Tab> catch other special key presses.

<Down>, <Left>, and <Right> catch other arrow key presses.

This is not a complete list, and event names can be written with a somewhat
sophisticated syntax all their own. For example:

Modifiers can be added to event identifiers to make them even more specific; for
instance, <B1-Motion> means moving the mouse with the left button pressed, and
<KeyPress-a> refers to pressing the "a" key only.

Synonyms can be used for some common event names; for instance, <ButtonPress-
1>, <Button-1>, and <1> all mean a left mouse button press, and <KeyPress-a> and
<Key-a> both mean the "a" key. All forms are case-sensitive : use <Key-Escape>,
not <KEY-ESCAPE>.

Virtual event identifiers can be defined within double bracket pairs (e.g.,
<<PasteText>>) to refer to a selection of one or more event sequences.

In the interest of space, though, we'll defer to other Tk and Tkinter reference sources
for an exhaustive list of details on this front. Alternatively, changing some of the
settings in the example script and rerunning can help clarify some event behavior
too; this is Python, after all.

7.6 Message and Entry

The Message and Entry widgets allow for display and input of simple text. Both are
essentially functional subsets of the Text widget we'll meet later -- Text can do
everything Message and Entry can, but not vice versa.

7.6.1 Message

The Message widget is simply a place to display text. Although the standard
showinfo dialog we met earlier is perhaps a better way to display pop-up messages,
Message splits up long strings automatically and flexibly, and can be embedded
inside container widgets anytime you need to add some read-only text to a display.
Moreover, this widget sports over a dozen configuration options that let you
customize its appearance. Example 7-16 and Figure 7-21 illustrate Message basics;
see a Tk or Tkinter reference for other options it supports.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 378

Example 7-16. PP2E\Gui\tour\message.py

from Tkinter import *
msg = Message(text="Oh by the way, which one's Pink?")
msg.config(bg='pink', font=('times', 16, 'italic'))
msg.pack()
mainloop()

Figure 7-21. A Message widget at work

7.6.2 Entry

The Entry widget is a simple, single-line text input field. It is typically used for input
fields in form-like dialogs, and anywhere else you need the user to type a value into
a field of a larger display. Entry also supports advanced concepts such as scrolling,
key bindings for editing, and text selections, but it's simple to use in practice.
Example 7-17 builds the input window shown in Figure 7-22.

Example 7-17. PP2E\Gui\tour\entry1.py

from Tkinter import *
from quitter import Quitter

def fetch():
 print 'Input => "%s"' % ent.get() # get text

root = Tk()
ent = Entry(root)
ent.insert(0, 'Type words here') # set text
ent.pack(side=TOP, fill=X) # grow horiz

ent.focus() # save a click
ent.bind('<Return>', (lambda event: fetch())) # on enter key
btn = Button(root, text='Fetch', command=fetch) # and on button
btn.pack(side=LEFT)
Quitter(root).pack(side=RIGHT)
root.mainloop()

Figure 7-22. entry1 caught in the act

On startup, the entry1 script fills the input field in this GUI with the text "Type
words here" by calling the widget's insert method. Because both the Fetch button

Programming Python, 2nd Edition, O’Reilly

IT-SC book 379

and the Enter key are set to trigger the script's fetch callback function, either user
event gets and displays the current text in the input field, using the widget's get
method:

C:\...\PP2E\Gui\Tour>python entry1.py
Input => "Type words here"
Input => "Have a cigar"

We met the <Return> event earlier when we studied bind; unlike button presses,
these lower-level callbacks get an event argument, so the script uses a lambda
wrapper to ignore it. This script also packs the entry field with fill=X to make it
expand horizontally with the window (try it out), and calls the widget focus method
to give the entry field input focus when the window first appears. Manually setting
the focus like this saves the user from having to click the input field before typing.

7.6.2.1 Programming Entry widgets

Generally speaking, the values typed into and displayed by Entry widgets are set
and fetched with either tied "variable" objects (described later in this chapter), or
with Entry widget method calls like this:

ent.insert(0, 'some text') # set value
value = ent.get() # fetch value (a string)

The first parameter to the insert method gives the position where the text is to be
inserted. Here, "0" means the front because offsets start at zero, and integer 0 and
string '0' mean the same thing (Tkinter method arguments are always converted to
strings if needed). If the Entry widget might already contain text, you also generally
need to delete its contents before setting it to a new value, or else new text will be
simply added to the text already present:

ent.delete(0, END) # first, delete from start to end
ent.insert(0, 'some text') # then set value

The name END here is a preassigned Tkinter constant denoting the end of the widget;
we'll revisit it in Chapter 8 when we meet the full-blown and multiple-line Text
widget (Entry's more powerful cousin). Since the widget is empty after the deletion,
this statement sequence is equivalent to the prior:

ent.delete('0', END) # delete from start to end
ent.insert(END, 'some text') # add at end of empty text

Either way, if you don't delete the text first, new text inserted is simply added. If you
want to see how, try changing the fetch function to look like this -- an "x" is added
at the front and end of the input field on each button or key press:

def fetch():
 print 'Input => "%s"' % ent.get() # get text
 ent.insert(END, 'x') # to clear:
ent.delete('0', END)
 ent.insert(0, 'x') # new text simply added

Programming Python, 2nd Edition, O’Reilly

IT-SC book 380

In later examples, we'll also see the Entry widget's state='disabled' option, which
makes it read-only, as well as its show='*' option, which makes it display each
character as a * (useful for password-type inputs). Try this out on your own by
changing and running this script, for a quick look. Entry supports other options we'll
skip here too; see later examples and other resources for additional details.

7.6.2.2 Laying out input forms

As mentioned, Entry widgets are often used to get field values in form-like displays.
We're going to create such displays often in this book, but to show you how this
works in simpler terms, Example 7-18 combines labels and entries to achieve the
multiple-input display captured in Figure 7-23.

Example 7-18. PP2E\Gui\Tour\entry2.py

use Entry widgets directly and layout by rows

from Tkinter import *
from quitter import Quitter
fields = 'Name', 'Job', 'Pay'

def fetch(entries):
 for entry in entries:
 print 'Input => "%s"' % entry.get() # get text

def makeform(root, fields):
 entries = []
 for field in fields:
 row = Frame(root) # make a new row
 lab = Label(row, width=5, text=field) # add label, entry
 ent = Entry(row)
 row.pack(side=TOP, fill=X) # pack row on top
 lab.pack(side=LEFT)
 ent.pack(side=RIGHT, expand=YES, fill=X) # grow horizontal
 entries.append(ent)
 return entries

if __name__ == '__main__':
 root = Tk()
 ents = makeform(root, fields)
 root.bind('<Return>', (lambda event, e=ents: fetch(e)))
 Button(root, text='Fetch',
 command=(lambda e=ents: fetch(e))).pack(side=LEFT)
 Quitter(root).pack(side=RIGHT)
 root.mainloop()

Figure 7-23. entry2 (and entry3) form displays

Programming Python, 2nd Edition, O’Reilly

IT-SC book 381

The input fields here are just simple Entry widgets. The script builds an explicit list
of these widgets to be used to fetch their values later. Every time you press this
window's Fetch button, it grabs the current values in all the input fields and prints
them to the standard output stream:

C:\...\PP2E\Gui\Tour>python entry2.py
Input => "Bob"
Input => "Technical Writer"
Input => "Jack"

You get the same field dump if you press the Enter key any time this window has the
focus on your screen -- this event has been bound to the whole root window this
time, not to a single input field.

Most of the art in form layout has to do with arranging widgets in a hierarchy. This
script builds each label/entry row as a new Frame attached to the window's current
TOP; labels are attached to the LEFT of their row, and entries to its RIGHT. Because
each row is a distinct Frame, its contents are insulated from other packing going on
in this window. The script also arranges for just the entry fields to grow vertically on
a resize, as in Figure 7-24.

Figure 7-24. entry2 (and entry3) expansion at work

7.6.2.3 Going modal again

Later on this tour, we'll see how to make similar form layouts with the grid
geometry manager too. But now that we have a handle on form layout, let's see how
to apply the modal dialog techniques we met earlier to a more complex input display
like this.

Example 7-19 uses the prior's makeform and fetch functions to generate a form and
prints its contents much as before. Here, though, the input fields are attached to a
new Toplevel pop-up window created on demand, and an OK button is added to the
pop-up window to trigger a window destroy event. As we learned earlier, the
wait_window call pauses until the destroy happens.

Example 7-19. PP2E\Gui\Tour\entry2-modal.py

must fetch before destroy with entries

from Tkinter import *
from entry2 import makeform, fetch, fields

def show(entries):
 fetch(entries) # must fetch before window
destroyed!

Programming Python, 2nd Edition, O’Reilly

IT-SC book 382

 popup.destroy() # fails with msgs if stmt order is
reversed

def ask():
 global popup
 popup = Toplevel() # show form in modal dialog window
 ents = makeform(popup, fields)
 Button(popup, text='OK', command=(lambda e=ents: show(e))).pack()
 popup.grab_set()
 popup.focus_set()
 popup.wait_window() # wait for destroy here

root = Tk()
Button(root, text='Dialog', command=ask).pack()
root.mainloop()

When run, pressing the button in this program's main window creates the blocking
form input dialog in Figure 7-25, as expected.

Figure 7-25. entry2-modal (and entry3-modal) displays

But there is a subtle danger lurking in this modal dialog code: because it fetches user
inputs from Entry widgets embedded in the popped-up display, it must fetch those
inputs before destroying the pop-up window in the OK press callback handler. It
turns out that a destroy call really does destroy all the child widgets of the window
destroyed; trying to fetch values from a destroyed Entry not only doesn't work, but
generates a host of error messages in the console window -- try reversing the
statement order in the show function to see for yourself.

To avoid this problem, we can either be careful to fetch before destroying, or we can
use Tkinter variables, the subject of the next section.

7.6.2.4 Tkinter "variables"

Entry widgets (among others) support the notion of an associated variable;
changing the associated variable changes the text displayed in the Entry, and
changing the text in the Entry changes the value of the variable. These aren't
normal Python variable names, though -- variables tied to widgets are instances of
variable classes in the Tkinter module library. These classes are named StringVar,
IntVar, DoubleVar, and BooleanVar; you pick one based on the context in which it
is to be used. For example, a StringVar class instance can be associated with an
Entry field, as demonstrated by Example 7-20.

Example 7-20. PP2E\Gui\Tour\entry3.py

use StringVar variables and layout by columns

Programming Python, 2nd Edition, O’Reilly

IT-SC book 383

from Tkinter import *
from quitter import Quitter
fields = 'Name', 'Job', 'Pay'

def fetch(variables):
 for variable in variables:
 print 'Input => "%s"' % variable.get() # get from var

def makeform(root, fields):
 form = Frame(root) # make outer frame
 left = Frame(form) # make two columns
 rite = Frame(form)
 form.pack(fill=X)
 left.pack(side=LEFT)
 rite.pack(side=RIGHT, expand=YES, fill=X) # grow horizontal

 variables = []
 for field in fields:
 lab = Label(left, width=5, text=field) # add to columns
 ent = Entry(rite)
 lab.pack(side=TOP)
 ent.pack(side=TOP, fill=X) # grow horizontal
 var = StringVar()
 ent.config(textvariable=var) # link field to var
 var.set('enter here')
 variables.append(var)
 return variables

if __name__ == '__main__':
 root = Tk()
 vars = makeform(root, fields)
 Button(root, text='Fetch',
 command=(lambda v=vars: fetch(v))).pack(side=LEFT)
 Quitter(root).pack(side=RIGHT)
 root.bind('<Return>', (lambda event, v=vars: fetch(v)))
 root.mainloop()

Except for the fact that this script initializes input fields with the string "enter here",
it makes a window identical in appearance and function to that created by script
entry2 (see Figure 7-23). For illustration purposes, the window is laid out differently
-- as a Frame containing two nested subframes used to build the left and right
columns of the form area -- but the end result is the same when displayed on
screen.

The main thing to notice here, though, is the use of StringVar variables. Rather
than use a list of Entry widgets to fetch input values, this version keeps a list of
StringVar objects that have been associated with the Entry widgets like this:

ent = Entry(rite)
var = StringVar()
ent.config(textvariable=var) # link field to var

Once you've tied variables like this, changing and fetching the variable's value:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 384

var.set('text here')
value = var.get()

will really change and fetch the corresponding display's input field value.[1] The
variable object get method returns as a string for StringVar, an integer for IntVar,
and a floating-point number for DoubleVar.

[1] In a now-defunct Tkinter release shipped with Python 1.3, you could also set and fetch
variable values by calling them like functions, with and without an argument (e.g.,
var(value) and var()). Today, you should call variable set and get methods instead. For
unknown reasons, the function call form stopped working years ago, but you may still see it in
older Python code (and first editions of at least one O'Reilly Python book).

Of course, we've already seen that it's easy to set and fetch text in Entry fields
directly, without adding extra code to use variables. So why the bother about
variable objects? For one thing, it clears up that nasty fetch-after-destroy peril we
met in the prior section. Because StringVars live on after the Entry widgets they
are tied to have been destroyed, it's okay to fetch input values from them long after
a modal dialog has been dismissed, as shown in Example 7-21.

Example 7-21. PP2E\Gui\Tour\entry3-modal.py

can fetch values after destroy with stringvars

from Tkinter import *
from entry3 import makeform, fetch, fields

def show(variables):
 popup.destroy() # order doesn't matter here
 fetch(variables) # variables live on after window
destroyed

def ask():
 global popup
 popup = Toplevel() # show form in modal dialog window
 vars = makeform(popup, fields)
 Button(popup, text='OK', command=(lambda v=vars: show(v))).pack()
 popup.grab_set()
 popup.focus_set()
 popup.wait_window() # wait for destroy here

root = Tk()
Button(root, text='Dialog', command=ask).pack()
root.mainloop()

This version is the same as the original (shown in Example 7-19 and Figure 7-25),
but show now destroys the pop-up before inputs are fetched through StringVars in
the list created by makeform. In other words, variables are a bit more robust in some
contexts because they are not part of a real display tree. For example, they are also
associated with checkboxes, radioboxes, and scales, to provide access to current
settings and link multiple widgets together. Almost coincidentally, that's the topic of
the next section.

7.7 Checkbutton, Radiobutton, and Scale

Programming Python, 2nd Edition, O’Reilly

IT-SC book 385

This section introduces three widget types -- the Checkbutton (a multiple-choice
input widget), the Radionbutton (a single-choice device), and the Scale (sometimes
known as a "slider"). All are variations on a theme, and somewhat related to simple
buttons, so we'll explore them as a group here. To make these widgets more fun to
play with, we'll reuse the dialogTable module shown in Example 7-8 to provide
callbacks for widget selections (callbacks pop up dialog boxes). Along the way, we'll
also use the Tkinter variables we just met to communicate with these widgets' state
settings.

7.7.1 Checkbuttons

The Checkbutton and Radiobutton widgets are designed to be associated with
Tkinter variables: pushing the button changes the value of the variable, and setting
the variable changes the state of the button it is linked to. In fact, Tkinter variables
are central to the operation of these widgets:

A collection of checkbuttons implements a multiple-choice interface, by assigning
each button a variable of its own.

A collection of radiobuttons imposes a mutually exclusive single-choice model, by
giving each button a unique value and the same Tkinter variable.

Both kinds of buttons provide both command and variable options. The command
option lets you register a callback to be run immediately on button-press events,
much like normal Button widgets. But by associating a Tkinter variable with the
variable option, you can also fetch or change widget state at any time, by fetching
or changing the value of the widget's associated variable.

Since it's a bit simpler, let's start with the Tkinter checkbutton. Example 7-22 creates
the set of five, captured in Figure 7-26. To make this more useful, it also adds a
button that dumps the current state of all checkbuttons, and attaches an instance of
the Quitter button we built earlier in the tour.

Example 7-22. PP2E\Gui\Tour\demoCheck.py

from Tkinter import * # get base widget set
from dialogTable import demos # get canned dialogs
from quitter import Quitter # attach a quitter object to "me"

class Demo(Frame):
 def __init__(self, parent=None, **args):
 Frame.__init__(self, parent, args)
 self.pack()
 self.tools()
 Label(self, text="Check demos").pack()
 self.vars = []
 for key in demos.keys():
 var = IntVar()
 Checkbutton(self,
 text=key,
 variable=var,
 command=demos[key]).pack(side=LEFT)
 self.vars.append(var)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 386

 def report(self):
 for var in self.vars:
 print var.get(), # current toggle settings: 1 or 0
 print
 def tools(self):
 frm = Frame(self)
 frm.pack(side=RIGHT)
 Button(frm, text='State', command=self.report).pack(fill=X)
 Quitter(frm).pack(fill=X)

if __name__ == '__main__': Demo().mainloop()

Figure 7-26. demoCheck in action

In terms of program code, checkbuttons resemble normal buttons; they are even
packed within a container widget. Operationally, though, they are a bit different. As
you can probably tell from this figure (and can better tell by running this live), a
checkbutton works as a toggle -- pressing one changes its state from off to on
(deselected to selected); or from on to off again. When a checkbox is selected, it has
a checked display, and its associated IntVar variable has a value of 1; when
deselected, its display is empty, and its IntVar has value 0.

To simulate an enclosing application, the State button in this display triggers the
script's report method to display the current values of all five toggles on the stdout
stream. Here is the output after a few pushes:

C:\...\PP2E\Gui\Tour>python demoCheck.py
0 0 0 0 0
1 0 0 0 0
1 0 1 0 0
1 0 1 1 0
1 0 0 1 0
1 0 0 1 1

Really, these are the values of the five Tkinter variables associated with the
checkbuttons with variable options, but they give the buttons' values when queried.
This script associates Intvar variables with each of checkbuttons in this display,
since they are or 1 binary indicators. StringVars will work here too, although their
get methods would return strings "0" or "1" (not integers), and their initial state is
an empty string (not the integer 0).

This widget's command option lets you register a callback to be run each time the
button is pressed. To illustrate, this script registers a standard dialog demo call as a
handler for each of the checkbuttons: pressing a button changes the toggle's state,
but also pops up one of the dialog windows we visited earlier on this tour.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 387

Interestingly, you can run the report method interactively too. When working this
way, widgets pop up as lines are typed and are fully active even without calling
mainloop:

C:\...\PP2E\Gui\Tour>python
>>> from demoCheck import Demo
>>> d = Demo()
>>> d.report()
0 0 0 0 0
>>> d.report()
1 0 0 0 0
>>> d.report()
1 0 0 1 1

7.7.1.1 Checkbuttons and variables

When I first studied this widget, my initial reaction was: So why do we need Tkinter
variables here at all when we can register button-press callbacks? Linked variables
may seem superfluous at first glance, but they simplify some GUI chores. Rather
than asking you to accept this blindly, though, let me explain why.

Keep in mind that a checkbuttons's command callback will be run on every press --
whether the press toggles the checkbutton to a selected or deselected state. Because
of that, if you want to run an action immediately when a checkbutton is pressed, you
will generally want to check the button's current value in the callback handler.
Because there is no checkbutton "get" method for fetching values, you usually need
to interrogate an associated variable to see if the button is on or off.

Moreover, some GUIs simply let users set checkbuttons without running command
callbacks at all, and fetch button settings at some later point in the program. In such
a scenario, variables serve to automatically keep track of button settings. The
demoCheck script's report method is representative of this latter approach.

Of course, you could manually keep track of each button's state in press callback
handlers too. Example 7-23 keeps its own list of state toggles, and updates it
manually on command press callbacks.

Example 7-23. PP2E\Gui\Tour\demo-check-manual.py

check buttons, the hard way (without variables)

from Tkinter import *
states = []
def onPress(i): # keep track of states
 states[i] = not states[i] # changes 0->1, 1->0

root = Tk()
for i in range(10):
 chk = Checkbutton(root, text=str(i), command=(lambda i=i:
onPress(i)))
 chk.pack(side=LEFT)
 states.append(0)
root.mainloop()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 388

print states # show all states on exit

The lambda here passes along the pressed button's index in the states list (or else
we would need a separate callback function for each button). When run, this script
makes the 10-checkbutton display in Figure 7-27.

Figure 7-27. Manual checkbutton state window

Manually maintained state toggles are updated on every button press, and are
printed when the GUI exits (technically, when the mainloop call returns):

C:\...\PP2E\Gui\Tour>python demo-check-manual.py
[0, 0, 1, 0, 1, 0, 0, 0, 1, 0]

This works, and isn't too horribly difficult to manage manually. But linked Tkinter
variables make this task noticeably easier, especially if you don't need to process
checkbutton states until some time in the future. This is illustrated in Example 7-24.

Example 7-24. PP2E\Gui\Tour\demo-check-auto.py

check buttons, the easy way

from Tkinter import *
root = Tk()
states = []
for i in range(10):
 var = IntVar()
 chk = Checkbutton(root, text=str(i), variable=var)
 chk.pack(side=LEFT)
 states.append(var)
root.mainloop() # let Tkinter keep track
print map((lambda var: var.get()), states) # show all states on
exit

This looks and works the same, but there is no command button-press callback
handler at all, because toggle state is tracked by Tkinter automatically:

C:\...\PP2E\Gui\Tour>python demo-check-auto.py
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0]

The point here is that you don't necessarily have to link variables with checkbuttons,
but your GUI life will be simpler if you do.

7.7.2 Radiobuttons

Radiobuttons are toggles too, but they are generally used in groups: just like the
mechanical station selector pushbuttons on radios of times gone by, pressing one
Radiobutton widget in a group automatically deselects the one pressed last. In other
words, at most one can be selected at once. In Tkinter, associating all radiobuttons

Programming Python, 2nd Edition, O’Reilly

IT-SC book 389

in a group with unique values and the same variable guarantees that at most one
can ever be selected at a given time.

Like checkbuttons and normal buttons, radiobuttons support a command option for
registering a callback to handle presses immediately. Like checkbuttons,
radiobuttons also have a variable attribute for associating single-selection buttons
in a group and fetching the current selection at arbitrary times.

In addition, radiobuttons have a value attribute that lets you tell Tkinter what value
the button's associated variable should have when the button is selected. Because
more than one radiobutton is associated with the same variable, you need to be
explicit about each button's value (it's not just a 1 or toggle scenario). Example 7-25
demonstrates radiobutton basics.

Example 7-25. PP2E\Gui\Tour\demoRadio.py

from Tkinter import * # get base widget set
from dialogTable import demos # button callback handlers
from quitter import Quitter # attach a quit object to "me"

class Demo(Frame):
 def __init__(self, parent=None):
 Frame.__init__(self, parent)
 self.pack()
 Label(self, text="Radio demos").pack(side=TOP)
 self.var = StringVar()
 for (key, value) in demos.items():
 Radiobutton(self, text=key,
 command=self.onPress,
 variable=self.var,
 value=key).pack(anchor=NW)
 Button(self, text='State', command=self.report).pack(fill=X)
 Quitter(self).pack(fill=X)
 def onPress(self):
 pick = self.var.get()
 print 'you pressed', pick
 print 'result:', demos[pick]()
 def report(self):
 print self.var.get()

if __name__ == '__main__': Demo().mainloop()

Figure 7-28 shows what this script generates when run. Pressing any of this
window's radiobuttons triggers its command handler, pops up one of the standard
dialog boxes we met earlier, and automatically deselects the button previously
pressed. Like checkbuttons, radiobuttons are packed; this script packs them to the
the top to arrange vertically, and then anchors each on the northwest corner of its
allocated space so that they align well.

Figure 7-28. demoRadio in action

Programming Python, 2nd Edition, O’Reilly

IT-SC book 390

Like the checkbutton demo script, this one also puts up a State button to run the
class's report method, and show the current radio state (the button selected).
Unlike the checkbutton demo, this script also prints the return values of dialog demo
calls run as its buttons are pressed. Here is what the stdout stream looks like after a
few presses and state dumps; states are shown in bold:

C:\...\PP2E\Gui\Tour>python demoRadio.py
you pressed Input
result: 3.14
Input
you pressed Open
result: C:/PP2ndEd/examples/PP2E/Gui/Tour/demoRadio.py
Open
you pressed Query
result: yes
Query

7.7.2.1 Radiobuttons and variables

So why variables here? For one thing, radiobuttons also have no "get" widget
method to fetch the selection in the future. More importantly, in radiobutton groups,
the value and variable settings turn out to be the whole basis of single-choice
behavior. In fact, to make radiobuttons work normally at all, it's crucial that they all
are associated with the same Tkinter variable, and all have distinct value settings. To
truly understand why, though, you need to know a bit more about how radiobuttons
and variables do their stuff.

We've already seen that changing a widget changes its associated Tkinter variable,
and vice versa. But it's also true that changing a variable in any way automatically
changes every widget it is associated with. In the world of radiobuttons, pressing a
button sets a shared variable, which in turn impacts other buttons associated with
that variable. Assuming that all buttons have distinct values, this works as you
expect: When a button press changes the shared variable to the pressed button's
value, all other buttons are deselected, simply because the variable has been
changed to a value not their own.

This ripple effect is a bit subtle, but it might help to know that within a group of
radiobuttons sharing the same variable, if you assign a set of buttons the same
value, the entire set will be selected if any one of them is pressed. Consider Example
7-26 and Figure 7-29, for example; because radiobuttons 0, 3, 6, and 9 all have

Programming Python, 2nd Edition, O’Reilly

IT-SC book 391

value (the remainder of division by 3), all are selected if any are selected (Figure 7-
29).

Example 7-26. PP2E\Gui\Tour\demo-radio-multi.py

see what happens when some buttons have same value

from Tkinter import *
root = Tk()
var = StringVar()
for i in range(10):
 rad = Radiobutton(root, text=str(i), variable=var, value=str(i %
3))
 rad.pack(side=LEFT)
root.mainloop()

Figure 7-29. Radiobuttons gone bad?

If you press 1, 4, or 7 now, all three of these are selected, and any existing
selections are cleared (they don't have value "1"). That's not normally what you
want, so be sure to give each button the same variable but a unique value if you
want radiobuttons to work as expected. In the demoRadio script, for instance, the
name of the demo provides a naturally unique value for each button.

7.7.2.2 Radiobuttons without variables

In Example 7-27, too, you could implement a single-selection model without
variables, by manually selecting and deselecting widgets in the group, in a callback
handler of your own. On each press event, for example, you could issue deselect
calls for every widget object in the group and select the one pressed.

Example 7-27. PP2E\Gui\Tour\demo-radio-manual.py

radio buttons, the hard way (without variables)
note that deselect for radio buttons simply sets the button's
associated value to a null string, so we either need to still
give buttons unique values, or use checkbuttons here instead;

from Tkinter import *
state = ''
buttons = []

def onPress(i):
 global state
 state = i
 for btn in buttons:
 btn.deselect()
 buttons[i].select()

root = Tk()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 392

for i in range(10):
 rad = Radiobutton(root, text=str(i),
 value=str(i), command=(lambda i=i:
onPress(i)))
 rad.pack(side=LEFT)
 buttons.append(rad)
root.mainloop()
print state # show state on exit

This works -- it creates a 10-radiobutton window that looks just like the one in Figure
7-29, but implements a single-choice radio style interface, with current state
available in a global Python variable printed on script exit. By associating Tkinter
variables and unique values, though, you can let Tkinter do all this work for you, as
shown in Example 7-28.

Example 7-28. PP2E\Gui\Tour\demo-radio-auto.py

radio buttons, the easy way

from Tkinter import *
root = Tk() # IntVars work too
var = IntVar() # state = var.get()
for i in range(10):
 rad = Radiobutton(root, text=str(i), value=i, variable=var)
 rad.pack(side=LEFT)
root.mainloop()
print var.get() # show state on exit

This works the same, but is a lot less to type and debug. Notice that this script
associates the buttons with an IntVar, the integer type sibling of StringVar; as long
as button values are unique, integers work fine for radiobuttons too.

7.7.2.3 Hold on to your variables

One minor word of caution: you should generally hold on to the Tkinter variable
object used to link radiobuttons for as long as the radiobuttons are displayed. Assign
it to a module global variable, store it in a long-lived data structure, or save it as an
attribute of a long-lived class object as done by demoRadio -- just as long as you
retain a reference to it somehow. You normally will fetch state anyhow, so it's
unlikely that you'll ever care about what I'm about to tell you.

But in the current Tkinter, variable classes have a __del__ destructor that
automatically unsets a generated Tk variable when the Python object is reclaimed
(i.e., garbage-collected). The upshot is that your radiobuttons may all be deselected
if the variable object is collected, at least until the next press resets the Tk variable
to a new value. Example 7-29 shows one way to trigger this.

Example 7-29. PP2E\Gui\Tour\demo-radio-clear.py

hold on to your radio variables (an obscure thing, indeed)

from Tkinter import *
root = Tk()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 393

def radio1(): # local vars are temporary
 #global tmp # making it global fixes the problem
 tmp = IntVar()
 for i in range(10):
 rad = Radiobutton(root, text=str(i), value=i, variable=tmp)
 rad.pack(side=LEFT)
 tmp.set(5)

radio1()
root.mainloop()

This should come up with button 5 selected initially, but doesn't. The variable
referenced by local tmp is reclaimed on function exit, the Tk variable is unset, and
the 5 setting is lost (all buttons come up unselected). These radiobuttons work fine,
though, one you start pressing them, because that resets the Tk variable.
Uncommenting the global statement here makes 5 start out set, as expected.

Of course, this is an atypical example -- as coded, there is no way to know which
button is pressed, because the variable isn't saved (and command isn't set). In fact,
this is so obscure that I'll just refer you to demo-radio-clear2.py on the CD for an
example that works hard to trigger this oddity in other ways. You probably won't
care, but you can't say that I didn't warn you if you ever do.

7.7.3 Scales (Sliders)

Scales (sometimes called "sliders") are used to select among a range of numeric
values. Moving the scale's position with mouse drags or clicks moves the widget's
value among a range of integers, and triggers Python callbacks if registered.

Like checkbuttons and radiobuttons, scales have both a command option for
registering an event-driven callback handler to be run right away when the scale is
moved, as well as a variable option for associating a Tkinter variable that allows
the scale's position to be fetched and set at arbitrary times. You can process scale
settings when they are made, or let the user pick a setting for later use.

In addition, scales have a third processing option -- get and set methods that
scripts may call to access scale values directly without associating variables. Because
scale command movement callbacks also get the current scale setting value as an
argument, it's often enough just to provide a callback for this widget, without
resorting to either linked variables or get/set method calls.

To illustrate the basics, Example 7-30 makes two scales -- one horizontal and one
vertical -- and links them with an associated variable to keep them in sync.

Example 7-30. PP2E\Gui\Tour\demoScale.py

from Tkinter import * # get base widget set
from dialogTable import demos # button callback handlers
from quitter import Quitter # attach a quit frame to me

class Demo(Frame):
 def __init__(self, parent=None):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 394

 Frame.__init__(self, parent)
 self.pack()
 Label(self, text="Scale demos").pack()
 self.var = IntVar()
 Scale(self, label='Pick demo number',
 command=self.onMove, # catch
moves
 variable=self.var, # reflects
position
 from_=0, to=len(demos)-1).pack()
 Scale(self, label='Pick demo number',
 command=self.onMove, # catch
moves
 variable=self.var, # reflects
position
 from_=0, to=len(demos)-1,
 length=200, tickinterval=1,
 showvalue=YES, orient='horizontal').pack()
 Quitter(self).pack(side=RIGHT)
 Button(self, text="Run demo",
command=self.onRun).pack(side=LEFT)
 Button(self, text="State",
command=self.report).pack(side=RIGHT)
 def onMove(self, value):
 print 'in onMove', value
 def onRun(self):
 pos = self.var.get()
 print 'You picked', pos
 pick = demos.keys()[pos] # map from position to key
 print demos[pick]()
 def report(self):
 print self.var.get()

if __name__ == '__main__':
 print demos.keys()
 Demo().mainloop()

Besides value access and callback registration, scales have options tailored to the
notion of a range of selectable values, most of which are demonstrated in this
example's code:

The label option provides text that appears along with the scale, length specifies
an initial size in pixels, and orient specifies an axis.

The from_ and to options set the scale range's minimum and maximum values (note
that "from" is a Python reserved word, but "from_" is not).

The tickinterval option sets the number of units between marks drawn at regular
intervals next to the scale (the default means no marks are drawn).

The resolution option provides the number of units that the scale's value jumps on
each drag or left mouseclick event (defaults to 1).

The showvalue option can be used to show or hide the scale's current value next to
its slider bar (the default showvalue=YES means it is drawn).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 395

Note that scales are also packed in their container, just like other Tkinter widgets.
Let's see how these ideas translate in practice; Figure 7-30 shows the window you
get if you run this script live on Windows (you get a similar one on Unix and Macs).

Figure 7-30. demoScale in action

For illustration purposes, this window's State button shows the scales' current
values, and "Run demo" runs a standard dialog call as before using the integer value
of the scales to index the demos table. The script also registers a command handler
that fires every time either of the scales is moved, and prints their new positions.
Here is a set of messages sent to stdout after a few moves, demo runs (italic), and
state requests (bold):

C:\...\PP2E\Gui\Tour>python demoScale.py
['Error', 'Input', 'Open', 'Query', 'Color']
in onMove 0
in onMove 0
in onMove 1
1
in onMove 2
You picked 2
C:/PP2ndEd/examples/PP2E/Gui/Tour/demoScale.py
in onMove 3
3
You picked 3
yes

7.7.3.1 Scales and variables

As you can probably tell, scales offer a variety of ways to process their selections:
immediately in move callbacks, or later by fetching current position with variables or
scale method calls. In fact, Tkinter variables aren't needed to program scales at all --
simply register movement callbacks, or call the scale get method to fetch scale
values on demand as in the simpler scale example in Example 7-31.

Example 7-31. PP2E\Gui\Tour\demo-scale-simple.py

from Tkinter import *
root = Tk()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 396

scl = Scale(root, from_=-100, to=100, tickinterval=50, resolution=10)
scl.pack(expand=YES, fill=Y)
def report(): print scl.get()
Button(root, text='state', command=report).pack(side=RIGHT)
root.mainloop()

Figure 7-31 shows two instances of this program running on Windows -- one
stretched and one not (the scales are packed to grow vertically on resizes). Its scale
displays a range from -100 to 100, uses the resolution option to adjust the current
position up or down by 10 on every move, and sets the tickinterval option to
show values next to the scale in increments of 50. When you press the State button
in this script's window, it calls the scale's get method to display the current setting,
without variables or callbacks of any kind:

C:\...\PP2E\Gui\Tour>python demo-scale-simple.py
0
60
-70

Figure 7-31. A simple scale without variables

Frankly, the only reason Tkinter variables are used in the demoScale script at all is to
synchronize scales. To make the demo interesting, this script associates the same
Tkinter variable object with both scales. As we learned in the last section, changing a
widget changes its variable, but changing a variable also changes all the widgets it is
associated with. In the world of sliders, moving the slide updates that variable, which
in turn might update other widgets associated with the same variable. Because this
script links one variable with two scales, it keeps them automatically in sync: moving
one scale moves the other too, because the shared variable is changed in the
process and so updates the other scale as a side effect.

Linking scales like this may or may not be typical of your applications (and borders
on deep magic), but it's a powerful tool once you get your mind around it. By linking
multiple widgets on a display with Tkinter variables, you can keep them
automatically in sync, without making manual adjustments in callback handlers. On
the other hand, the synchronization could be implemented without a shared variable
at all by calling one scale's set method from a move callback handler of the other.
I'll leave such a manual mutation as a suggested exercise, though. One person's
deep magic might be another's evil hack.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 397

7.8 Running GUI Code Three Ways

Now that we've built a handful of similar demo launcher programs, let's write a few
top-level scripts to combine them. Because the demos were coded as both reusable
classes and scripts, they can be deployed as attached frame components, run in their
own top-level windows, and launched as standalone programs. All three options
illustrate code reuse in action.

7.8.1 Attaching Frames

To illustrate hierarchical GUI composition on a grander scale than we've seen so far,
Example 7-32 arranges to show all four of the dialog launcher bar scripts of this
chapter in a single frame. It reuses Example 7-9, Example 7-22, Example 7-25, and
Example 7-30.

Example 7-32. PP2E\Gui\Tour\demoAll-frm.py

4 demo class components (subframes) on one window;
there are 5 Quitter buttons on this one window too;
guis can be reused as frames, windows, processes;

from Tkinter import *
from quitter import Quitter
demoModules = ['demoDlg', 'demoCheck', 'demoRadio', 'demoScale']
parts = []

def addComponents(root):
 for demo in demoModules:
 module = __import__(demo) # import by name
string
 part = module.Demo(root) # attach an
instance
 part.config(bd=2, relief=GROOVE)
 part.pack(side=LEFT, fill=BOTH)
 parts.append(part) # change list in-
place

def dumpState():
 for part in parts: # run demo report
if any
 print part.__module__ + ':',
 if hasattr(part, 'report'):
 part.report()
 else:
 print 'none'

root = Tk() # default toplevel
window
Label(root, text='Multiple Frame demo', bg='white').pack()
Button(root, text='States', command=dumpState).pack(fill=X)
Quitter(root).pack(expand=YES, fill=X)
addComponents(root)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 398

mainloop()

Because all four demo launcher bars are coded to attach themselves to parent
container widgets, this is easier than you might think: simply pass the same parent
widget (here, the root window) to all four demo constructor calls, and pack and
configure the demo objects as desired. Figure 7-32 shows this script's graphical
result -- a single window embedding instances of all four of the dialog demo launcher
demos we saw earlier.

Figure 7-32. demoAll_frm: nested subframes

Naturally, this example is artificial, but it illustrates the power of composition when
applied to building larger GUI displays. If you pretend that each of the four attached
demo objects was something more useful, like a text editor, calculator, or clock,
you'll better appreciate the point of this example.

Besides demo object frames, this composite window also contains no less than five
instances of the Quitter button we wrote earlier (any one of which can end the GUI),
and a States button to dump the current values of all the embedded demo objects at
once (it calls each object's report method, if it has one). Here is a sample of the
sort of output that shows up in the stdout stream after interacting with widgets on
this display; States output is in bold:

C:\...\PP2E\Gui\Tour>python demoAll_frm.py
in onMove 0
in onMove 0
demoDlg: none
demoCheck: 0 0 0 0 0
demoRadio:
demoScale: 0
you pressed Input
result: 1.234
demoDlg: none
demoCheck: 1 0 1 1 0
demoRadio: Input
demoScale: 0
you pressed Query
result: yes

Programming Python, 2nd Edition, O’Reilly

IT-SC book 399

in onMove 1
in onMove 2
You picked 2
C:/PP2ndEd/examples/PP2E/Gui/Tour/demoAll_frm.py
demoDlg: none
demoCheck: 1 0 1 1 0
demoRadio: Query
demoScale: 2

The only substantially tricky part of this script is its use of Python's built-in
__import__ function to import a module by a name string. Look at the following two
lines from the script's addComponents function:

module = __import__(demo) # import module by name string
part = module.Demo(root) # attach an instance of its Demo

This is equivalent to saying something like this:

import 'demoDlg'
part = 'demoDlg'.Demo(root)

except that this is not legal Python syntax -- the module name in import statements
must be a Python variable, not a string. To be generic, addComponents steps through
a list of name strings, and relies on __import__ to import and return the module
identified by each string. It's as though all of these statements were run:

import demoDlg, demoRadio, demoCheck, demoScale
part = demoDlg.Demo(root)
part = demoRadio.Demo(root)
part = demoCheck.Demo(root)
part = demoScale.Demo(root)

But because the script uses a list of name strings, it's easier to change the set of
demos embedded -- simply change the list, not lines of executable code. Moreover,
such data-driven code tends to be more compact, less redundant, and easier to
debug and maintain. Incidentally, modules can also be imported from name strings
by dynamically constructing and running import statements like this:

for demo in demoModules:
 exec 'from %s import Demo' % demo # make and run a from
 part = Demo(root) # or eval('Demo')(window)

The exec statement compiles and runs a Python statement string (here, a from to
load a module's Demo class); it works here as if the statement string were pasted into
the source code where the exec statement appears. Because it supports any sort of
Python statement, this technique is more general than the __import__ call, but, it
can also be slower, since it must parse code strings before running them.[2] But that
slowness may not matter in a GUI; users tend to be slower than parsers.

[2] As we'll see later, exec can also be dangerous if running code strings fetched from users or
network connections. That's not an issue for the hardcoded strings in this example.

As we saw in Chapter 6, attaching nested frames like this is really just one way to
reuse GUI code structured as classes. It's just as easy to customize such interfaces

Programming Python, 2nd Edition, O’Reilly

IT-SC book 400

by subclassing, rather than embedding. Here, though, we're more interested in
deploying an existing widget package, rather than changing it; the next two sections
show two other ways to present such packages to users.

7.8.2 Independent Windows

Once you have a set of component classes, any parent will work -- both frames, and
brand new top-level windows. Example 7-33 attaches instances of all four demo bar
objects to their own Toplevel windows, not the same Frame.

Example 7-33. PP2E\Gui\Tour\demoAll-win.py

4 demo classes in independent top-level windows;
not processes: when one is quit all others go away
because all windows run in the same process here

from Tkinter import *
demoModules = ['demoDlg', 'demoRadio', 'demoCheck', 'demoScale']

demoObjects = []
for demo in demoModules:
 module = __import__(demo) # import by name string
 window = Toplevel() # make a new window
 demo = module.Demo(window) # parent is the new window
 demoObjects.append(demo)

def allstates():
 for obj in demoObjects:
 if hasattr(obj, 'report'):
 print obj.__module__,
 obj.report()

Label(text='Multiple Toplevel window demo', bg='white').pack()
Button(text='States', command=allstates).pack(fill=X)
mainloop()

We met the Toplevel class earlier; every instance generates a new window on your
screen. The net result is captured in Figure 7-33 -- each demo runs in an
independent window of its own, instead of being packed together in a single display.

Figure 7-33. demoAll_win: new Toplevel windows

Programming Python, 2nd Edition, O’Reilly

IT-SC book 401

The main root window of this program appears in the lower left of this screen shot; it
provides a States button that runs the report method of each of the demo objects,
producing this sort of stdout text:

C:\...\PP2E\Gui\Tour>python demoAll_win.py
in onMove 0
in onMove 0
in onMove 1
you pressed Open
result: C:/PP2ndEd/examples/PP2E/Gui/Tour/demoAll_win.txt
demoRadio Open
demoCheck 1 1 0 0 0
demoScale 1

7.8.3 Running Programs

Finally, as we learned earlier in this chapter, Toplevel windows function
independently, but they are not really independent programs. Quitting any of the
windows created by Example 7-33 quits them all, because all run in the same
program process. That's okay in some applications, but not all.

To go truly independent, Example 7-34 spawns each of the four demo launchers as
independent programs, using the launchmodes module we wrote at the end of
Chapter 3. This only works because the demos were written as both importable
classes and runnable scripts -- launching them here makes all their names __main__
when run.

Example 7-34. PP2E\Gui\Tour\demoAll-prg.py

4 demo classes run as independent program processes;
if one window is quit now, the others will live on;
there is no simple way to run all report calls here,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 402

and some launch schemes drop child program stdout;

from Tkinter import *
demoModules = ['demoDlg', 'demoRadio', 'demoCheck', 'demoScale']
from PP2E.launchmodes import PortableLauncher

for demo in demoModules: # see Parallel System
Tools
 PortableLauncher(demo, demo+'.py')() # start as top-level
programs

Label(text='Multiple program demo', bg='white').pack()
mainloop()

As Figure 7-34 shows, the display generated by this script is similar to the prior one
-- all four demos come up in windows of their own. This time, though, these are
really independent programs: if any one of the five windows here is quit, the others
live on.

Figure 7-34. demoAll_prg: independent programs

7.8.3.1 Cross-program communication

Spawning GUIs as programs is the ultimate in code independence, but makes the
lines of communication between components more complex. For instance, because
the demos run as programs here, there is no easy way to run all their report
methods from the launching script's window pictured in the middle of Figure 7-34. In
fact, the States button is gone this time, and we only get PortableLauncher
messages in stdout as the demos start up:

C:\...\PP2E\Gui\Tour>python demoAll_prg.py
demoDlg

Programming Python, 2nd Edition, O’Reilly

IT-SC book 403

demoRadio
demoCheck
demoScale

On some platforms, messages printed by the demo programs (including their own
State buttons) may show up the original console window where this script is
launched; on Windows, the os.spawnv call used to start programs in launchmodes
completely disconnects the child program's stdout stream from its parent.
Regardless, there is no way to call all demos' report methods at once -- they are
spawned programs in distinct address spaces, not imported modules.

Of course, we could trigger report methods in the spawned programs with some of
the IPC mechanisms we met in Chapter 3. For instance:

The demos could be instrumented to catch a user signal, and run their report in
response.

They could also watch for request strings sent by the launching program to show up
in pipes or fifos -- the demoAll launching program would essentially act as a client,
and the demo GUIs as servers.

Independent programs can also converse this way over sockets -- a tool we'll meet
in Part III.

Given their event-driven nature, GUI-based programs may need to be augmented
with threads or timer-event callbacks to periodically check for such incoming
messages on pipes, fifos, or sockets (e.g., see the after method call described near
the end of the next chapter). But since this is all well beyond the scope of these
simple demo programs, I'll leave such cross-program extensions up to more parallel-
minded readers.

7.8.3.2 Coding for reusability

A postscript: I coded all the demo launcher bars deployed by the last three examples
to demonstrate all the different ways that their widgets can be used. They were not
developed with general-purpose reusability in mind; in fact, they're not really useful
outside the context of introducing widgets in this book.

That was by design; most Tkinter widgets are easy to use once you learn their
interfaces, and Tkinter already provides lots of configuration flexibility by itself. But if
I had in mind to code checkboxes and radiobutton classes to be reused as general
library components, they would have to be structured differently:

Extra widgets

They would not display anything but radio- and checkbuttons. As is, the demos each
embed State and Quit buttons for illustration, but there really should be just one Quit
per top-level window.

Geometry management

Programming Python, 2nd Edition, O’Reilly

IT-SC book 404

They would allow for different button arrangements, and not pack (or grid)
themselves at all. In a true general-purpose reuse scenario, it's often better to leave
a component's geometry management up to its caller.

Usage mode limitations

They would either have to export complex interfaces to support all possible Tkinter
configuration options and modes, or make some limiting decisions that support one
common use only. For instance, these buttons can either run callbacks at press time
or provide their state later in the application.

Example 7-35 shows one way to code check and radiobutton bars as library
components. It encapsulates the notion of associating Tkinter variables, and imposes
a common usage mode on callers to keep the interface simple -- state fetches,
instead of press callbacks.

Example 7-35. PP2E\Gui\Tour\buttonbars.py

check and radio button bar classes for apps that fetch state later;
pass a list of options, call state(), variable details automated

from Tkinter import *

class Checkbar(Frame):
 def __init__(self, parent=None, picks=[], side=LEFT, anchor=W):
 Frame.__init__(self, parent)
 self.vars = []
 for pick in picks:
 var = IntVar()
 chk = Checkbutton(self, text=pick, variable=var)
 chk.pack(side=side, anchor=anchor, expand=YES)
 self.vars.append(var)
 def state(self):
 return map((lambda var: var.get()), self.vars)

class Radiobar(Frame):
 def __init__(self, parent=None, picks=[], side=LEFT, anchor=W):
 Frame.__init__(self, parent)
 self.var = StringVar()
 for pick in picks:
 rad = Radiobutton(self, text=pick, value=pick,
variable=self.var)
 rad.pack(side=side, anchor=anchor, expand=YES)
 def state(self):
 return self.var.get()

if __name__ == '__main__':
 root = Tk()
 lng = Checkbar(root, ['Python', 'C#', 'Java', 'C++'])
 gui = Radiobar(root, ['win', 'x11', 'mac'], side=TOP, anchor=NW)
 tgl = Checkbar(root, ['All'])
 gui.pack(side=LEFT, fill=Y)
 lng.pack(side=TOP, fill=X)
 tgl.pack(side=LEFT)
 lng.config(relief=GROOVE, bd=2)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 405

 gui.config(relief=RIDGE, bd=2)
 from quitter import Quitter
 def allstates(): print gui.state(), lng.state(), tgl.state()
 Quitter(root).pack(side=RIGHT)
 Button(root, text='Peek', command=allstates).pack(side=RIGHT)
 root.mainloop()

To reuse these classes in your scripts, import and call with a list of the options you
want to appear in a bar of checkboxes or radiobuttons. This module's self-test code
at the bottom of the file gives further usage details. It generates Figure 7-35 when
this file is run as a program instead of imported -- a top-level window that embeds
two Checkbars, one Radiobar, a Quitter button to exit, and a Peek button to show
bar states.

Figure 7-35. buttonbars self-test window

Here's the stdout text you get after pressing Peek -- the results of these classes'
state methods:

x11 [1, 0, 1, 1] [0]
win [1, 0, 0, 1] [1]

The two classes in this module demonstrate how easy it is to wrap Tkinter interfaces
to make them easier to use -- they completely abstract away many of the tricky
parts of radiobutton and checkbox bars. For instance, you can forget about linked
variable details completely if you use such higher-level classes instead; simply make
objects with option lists and call their state methods later. If you follow this path to
its conclusion, you might just wind up with a higher-level widget library on the order
of the PMW package mentioned in Chapter 6.

On the other hand, these classes are still not universally applicable; if you need to
run actions when these buttons are pressed, for instance, you'll need to use other
high-level interfaces. Luckily, Python/Tkinter already provides plenty. Later in this
book, we'll again use the widget combination and reuse techniques introduced in this
section to construct larger GUIs. For now, this first widget tour chapter is about to
make one last stop -- the photo shop.

7.9 Images

In Tkinter, graphical images are displayed by creating independent PhotoImage or
BitmapImage objects, and then attaching those image objects to other widgets via
image attribute settings. Buttons, labels, canvases, text, and menus can all display
images by associating prebuilt image objects this way. To illustrate, Example 7-36
throws a picture up on a button.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 406

Example 7-36. PP2E\Gui\Tour\imgButton.py

gifdir = "../gifs/"
from Tkinter import *
win = Tk()
igm = PhotoImage(file=gifdir+"ora-pp.gif")
Button(win, image=igm).pack()
win.mainloop()

I could try to come up with a simpler example, but it would be tough -- all this script
does is make a Tkinter PhotoImage object for a GIF file stored in another directory,
and associate it with a Button widget's image option. The result is captured in Figure
7-36.

Figure 7-36. imgButton in action

PhotoImage and its cousin, BitmapImage, essentially load graphics files, and allow
those graphics to be attached to other kinds of widgets. To open a picture file, pass
its name to the file attribute of these image objects. Canvas widgets -- general
drawing surfaces discussed in more detail later on this tour -- can display pictures
too; Example 7-37 renders Figure 7-37.

Example 7-37. PP2E\Gui\Tour\imgCanvas.py

gifdir = "../gifs/"
from Tkinter import *
win = Tk()
img = PhotoImage(file=gifdir+"ora-lp.gif")
can = Canvas(win)
can.pack(fill=BOTH)
can.create_image(2, 2, image=img, anchor=NW) # x, y
coordinates
win.mainloop()

Figure 7-37. An image on canvas

Programming Python, 2nd Edition, O’Reilly

IT-SC book 407

Buttons are automatically sized to fit an associated photo, but canvases are not
(because you can add objects to a canvas, as we'll see in Chapter 8). To make a
canvas fit the picture, size it according to the width and height methods of image
objects as in Example 7-38. This version will make the canvas smaller or larger than
its default size as needed, lets you pass in a photo file's name on the command line,
and can be used as a simple image viewer utility. The visual effect of this script is
captured in Figure 7-38.

Example 7-38. PP2E\Gui\Tour\imgCanvas2.py

gifdir = "../gifs/"
from sys import argv
from Tkinter import *
filename = (len(argv) > 1 and argv[1]) or 'ora-lp.gif' # name on
cmdline?
win = Tk()
img = PhotoImage(file=gifdir+filename)
can = Canvas(win)
can.pack(fill=BOTH)
can.config(width=img.width(), height=img.height()) # size to img
size
can.create_image(2, 2, image=img, anchor=NW)
win.mainloop()

Figure 7-38. Sizing the canvas to match the photo

And that's all there is to it. In Chapter 8, well see images show up in a Menu, other
Canvas examples, and the image-friendly Text widget. In later chapters, we'll find

Programming Python, 2nd Edition, O’Reilly

IT-SC book 408

them in an image slideshow (PyView), in a paint program (PyDraw), on clocks
(PyClock), and so on. It's easy to add graphics to GUIs in Python/Tkinter.

Once you start using photos in earnest, though, you're likely to run into two tricky
bits which I want to warn you about here:

Supported file types

At present, the PhotoImage widget only supports GIF, PPM, and PGM graphic file
formats, and BitmapImage supports X Windows-style .xbm bitmap files. This may be
expanded in future releases, and you can convert photos in other formats to these
supported formats, of course; but I'll wait to address this issue in more detail in
Other Image File Formats: PIL later in this section.

Hold on to your photos

Unlike all other Tkinter widgets, an image is utterly lost if the corresponding Python
image object is garbage-collected. That means that you must retain an explicit
reference to image objects for as long as your program needs them (e.g., assign
them to a long-lived variable name or data structure component). Python does not
automatically keep a reference to the image, even if it is linked to other GUI
components for display; moreover, image destructor methods erase the image from
memory. We saw earlier that Tkinter variables can behave oddly when reclaimed too,
but the effect is much worse and more likely to happen with images. This may
change in future Python releases (though there are good reasons for not retaining
big image files in memory indefinitely); for now, though, images are a "use it or lose
it" widget.

7.9.1 Fun with Buttons and Pictures

I tried to come up with an image demo for this section that was both fun and useful.
I settled for the fun part. Example 7-39 displays a button that changes its image at
random each time it is pressed.

Example 7-39. PP2E\Gui\Tour\buttonpics-func.py

from Tkinter import * # get base widget set
from glob import glob # file name expansion list
import demoCheck # attach checkbutton demo to me
import random # pick a picture at random
gifdir = '../gifs/' # where to look for gif files

def draw():
 name, photo = random.choice(images)
 lbl.config(text=name)
 pix.config(image=photo)

root=Tk()
lbl = Label(root, text="none", bg='blue', fg='red')
pix = Button(root, text="Press me", command=draw, bg='white')
lbl.pack(fill=BOTH)
pix.pack(pady=10)
demoCheck.Demo(root, relief=SUNKEN, bd=2).pack(fill=BOTH)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 409

files = glob(gifdir + "*.gif") # gifs for
now
images = map(lambda x: (x, PhotoImage(file=x)), files) # load and
hold
print files
root.mainloop()

This code uses a handful of built-in tools from the Python library:

The Python glob module we met earlier in the book gives a list of all files ending in
.gif in a directory; in other words, all GIF files stored there.

The Python random module is used to select a random GIF from files in the directory:
random.choice picks and returns an item from a list at random.

To change the image displayed (and the GIF file's name in a label at the top of the
window), the script simply calls the widget config method with new option settings;
changing on the fly like this changes the widget's display.

Just for fun, this script also attaches an instance of the demoCheck checkbox demo
bar, which in turn attaches an instance of the Quitter button we wrote earlier. This
is an artificial example, of course, but again demonstrates the power of component
class attachment at work.

Notice how this script builds and holds onto all images in its images list. The map
here applies a PhotoImage constructor call to every .gif file in the photo directory,
producing a list of (file,image) tuples that is saved in a global variable.
Remember, this guarantees that image objects won't be garbage-collected as long as
the program is running. Figure 7-39 shows this script in action on Windows.

Figure 7-39. buttonpics in action

Although it may not be obvious in this grayscale book, the name of the GIF file being
displayed is shown in red text in the blue label at the top of this window. This
program's window grows and shrinks automatically when larger and smaller GIF files
are displayed; Figure 7-40 shows it randomly picking a taller photo globbed from the
image directory.

Figure 7-40. buttonpics showing a taller photo

Programming Python, 2nd Edition, O’Reilly

IT-SC book 410

And finally, Figure 7-41 captures this script's GUI displaying one of the wider GIFs,
selected completely at random from the photo file directory.[3]

[3] This particular image appeared as a banner ad on developer-related web sites like
slashdot.com when the book Learning Python was first published. It generated enough of a
backlash from Perl zealots that O'Reilly eventually pulled the ad altogether. Which is why, of
course, it appears in this book.

Figure 7-41. buttonpics gets political

While we're playing, let's recode this script as a class in case we ever want to attach
or customize it later (it could happen). It's mostly a matter of indenting and adding
self before global variable names, as shown in Example 7-40.

Example 7-40. PP2E\Gui\Tour\buttonpics.py

from Tkinter import * # get base widget set
from glob import glob # file name expansion list
import demoCheck # attach checkbox example to me
import random # pick a picture at random
gifdir = '../gifs/' # default dir to load gif files

class ButtonPicsDemo(Frame):
 def __init__(self, gifdir=gifdir, parent=None):
 Frame.__init__(self, parent)
 self.pack()
 self.lbl = Label(self, text="none", bg='blue', fg='red')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 411

 self.pix = Button(self, text="Press me", command=self.draw,
bg='white')
 self.lbl.pack(fill=BOTH)
 self.pix.pack(pady=10)
 demoCheck.Demo(self, relief=SUNKEN, bd=2).pack(fill=BOTH)
 files = glob(gifdir + "*.gif")
 self.images = map(lambda x: (x, PhotoImage(file=x)), files)
 print files

 def draw(self):
 name, photo = random.choice(self.images)
 self.lbl.config(text=name)
 self.pix.config(image=photo)

if __name__ == '__main__': ButtonPicsDemo().mainloop()

This version works the same as the original, but can now be attached to any other
GUI where you would like to include such an unreasonably silly button.

Other Image File Formats: PIL

As mentioned, Python Tkinter scripts show images by associating
independently created image objects with real widget objects. At this
writing, Tkinter GUIs can display photo image files in GIF, PPM, and PGM
formats by creating a PhotoImage object, as well as X11-style bitmap files
(usually suffixed with a .xbm extension) by creating a BitmapImage
object.

This set of supported file formats is limited by the underlying Tk library, not
Tkinter itself, and may expand in the future. But if you want to display files
in other formats today (e.g., JPEG and BMP), you can either convert your
files to one of the supported formats with an image-processing program, or
install the PIL Python extension package mentioned at the start of Chapter
6.

PIL currently supports nearly 30 graphic file formats (including JPEG and
BMP). To make use of its tools, you must first fetch and install the PIL
package (see http://www.pythonware.com). Then, simply use special
PhotoImage and BitmapImage objects imported from the PIL ImageTk
module to open files in other graphic formats. These are compatible
replacements for the standard Tkinter classes of the same name, and may
be used anywhere Tkinter expects a PhotoImage or BitmapImage
object (i.e., in label, button, canvas, text, and menu object configurations).
That is, replace standard Tkinter code like this:

from Tkinter import *
imgobj = PhotoImage(file=imgdir+"spam.gif")
Button(image=imgobj).pack()

With code of this form:

from Tkinter import *

Programming Python, 2nd Edition, O’Reilly

IT-SC book 412

import ImageTk
imgobj = ImageTk.PhotoImage(file=imgdir+"spam.jpg")
Button(image=imgobj).pack()

Or the more verbose equivalent:

from Tkinter import *
import Image, ImageTk
imagefile = Image.open(imgdir+"spam.jpeg")
imageobj = ImageTk.PhotoImage(imagefile)
Label(image=imageobj).pack()

PIL installation details vary per platform; on my Windows laptop, it was just
a matter of downloading, unzipping, and adding PIL directories to the front
of PYTHONPATH. There is much more to PIL than we have time to cover
here; for instance, it also provides image conversion, resizing, and
transformation tools, some of which can be run as command-line programs
that have nothing to do with GUIs directly. See http://www.pythonware.com
for more information, as well as online PIL and Tkinter documentation sets.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 413

Chapter 8. A Tkinter Tour, Part 2

8.1 "On Today's Menu: Spam, Spam, and
Spam"

8.2 Menus

8.3 Listboxes and Scrollbars

8.4 Text

8.5 Canvas

8.6 Grids

8.7 Time Tools, Threads, and Animation

8.8 The End of the Tour

8.9 The PyDemos and PyGadgets Launchers

8.1 "On Today's Menu: Spam, Spam, and Spam"

This chapter is the second in a two-part tour of the Tkinter library. It picks up where
Chapter 7 left off, and covers some of the more advanced widgets and tools in the
Tkinter arsenal. Among the topics presented in this chapter:

Menu, Menubutton, and OptionMenu widgets

The Scrollbar widget: for scrolling text, lists, and canvases

The Listbox widget: a list of multiple selections

The Text widget: a general text display and editing tool

The Canvas widget: a general graphical drawing tool

The grid table-based geometry manager

Time-based tools: after, update, wait, and threads

Basic Tkinter animation techniques

Clipboards, erasing widgets and windows, etc.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 414

By the time you've finished this chapter, you will have seen the bulk of the Tkinter
library, and have all the information you need to compose larger portable user
interfaces of your own. You'll also be ready to tackle the larger GUI examples
presented in Chapter 9. As a segue to the next chapter, this one also closes with a
look at the PyDemos and PyGadgets launcher toolbars -- GUIs used to start larger
GUI examples.

8.2 Menus

Menus are the pull-down lists you're accustomed to seeing at the top of a window (or
the entire display, if you're accustomed to seeing them on a Macintosh). Move the
mouse cursor to the menu bar at the top, click on a name (e.g., File), and a list of
selectable options pops up under the name you clicked (e.g., Open, Save). The
options within a menu might trigger actions, much like clicking on a button; they
may also open other "cascading" submenus that list more options, pop-up dialog
windows, and so on. In Tkinter, there are two kinds of menus you can add to your
scripts: top-level window menus and frame-based menus. The former option is
better suited to whole windows, but the latter also works as a nested component.

8.2.1 Top-Level Window Menus

In more recent Python releases (using Tk 8.0 and beyond), you can associate a
horizontal menu bar with a top-level window object (e.g., a Tk or Toplevel). On
Windows and Unix (X Windows), this menu bar is displayed along the top of the
window; on Macintosh, this menu replaces the one shown at the top of the screen
when the window is selected. In other words, window menus look like you would
expect on whatever underlying platform your script runs upon.

This scheme is based on building trees of Menu widget objects. Simply associate one
top-level Menu with the window, add other pull-down Menu objects as cascades of the
top-level Menu, and add entries to each of the pull-downs. Menus are cross-linked
with the next higher level, by using parent widget arguments and the Menu widget's
add_cascade method. It works like this:

Create a topmost Menu as the child of the window widget, and configure the window's
menu attribute to be the new Menu.

For each pull-down, make a new Menu as the child of the topmost Menu, and add the
child as a cascade of the topmost Menu using add_cascade.

Add menu selections to each pull-down Menu from Step 2, using the command options
of add_command to register selection callback handlers.

Add a cascading submenu by making a new Menu as the child of the Menu the
cascade extends, and using add_cascade to link parent to child.

The end result is a tree of Menu widgets with associated command callback handlers.
This is all probably simpler in code than in words, though. Example 8-1 makes a
main menu with two pull-downs, File and Edit; the Edit pull-down in turn has a
nested submenu of its own.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 415

Example 8-1. PP2E\Gui\Tour\menu_win.py

Tk8.0 style top-level window menus

from Tkinter import * # get widget classes
from tkMessageBox import * # get standard
dialogs

def notdone():
 showerror('Not implemented', 'Not yet available')

def makemenu(win):
 top = Menu(win) # win=top-level
window
 win.config(menu=top) # set its menu
option

 file = Menu(top)
 file.add_command(label='New...', command=notdone, underline=0)
 file.add_command(label='Open...', command=notdone, underline=0)
 file.add_command(label='Quit', command=win.quit, underline=0)
 top.add_cascade(label='File', menu=file, underline=0)

 edit = Menu(top, tearoff=0)
 edit.add_command(label='Cut', command=notdone, underline=0)
 edit.add_command(label='Paste', command=notdone, underline=0)
 edit.add_separator()
 top.add_cascade(label='Edit', menu=edit, underline=0)

 submenu = Menu(edit, tearoff=0)
 submenu.add_command(label='Spam', command=win.quit, underline=0)
 submenu.add_command(label='Eggs', command=notdone, underline=0)
 edit.add_cascade(label='Stuff', menu=submenu, underline=0)

if __name__ == '__main__':
 root = Tk() # or Toplevel()
 root.title('menu_win') # set window-mgr
info
 makemenu(root) # associate a
menu bar
 msg = Label(root, text='Window menu basics') # add something
below
 msg.pack(expand=YES, fill=BOTH)
 msg.config(relief=SUNKEN, width=40, height=7, bg='beige')
 root.mainloop()

There is a lot of code in this file devoted to setting callbacks and such, so it might
help to isolate the bits involved with the menu tree building process. For the File
menu, it's done like this:

top = Menu(win) # attach Menu to window
win.config(menu=top) # cross-link window to menu
file = Menu(top) # attach a Menu to top Menu
top.add_cascade(label='File', menu=file) # cross-link parent to child

Programming Python, 2nd Edition, O’Reilly

IT-SC book 416

Apart from building up the menu object tree, this script also demonstrates some of
the most common menu configuration options:

Separator lines

The script makes a separator in the Edit menu with add_separator; it's just a line
used to set off groups of related entries.

Tear-offs

The script also disables menu tear-offs in the Edit pull-down by passing a tearoff=0
widget option to Menu. Tear-offs are dashed lines that appear by default at the top of
Tkinter menus, and create a new window containing the menu's contents when
clicked. They can be a convenient shortcut device (you can click items in the tear-off
window right away, without having to navigate through menu trees), but are not
widely used on all platforms.

Keyboard shortcuts

The script uses the underline option to make a unique letter in a menu entry a
keyboard shortcut. It gives the offset of the shortcut letter in the entry's label string.
On Windows, for example, the Quit option in this script's File menu can be selected
with the mouse as usual, but also by pressing the Alt key, then "f", then "q", You
don't strictly have to use underline -- on Windows, the first letter of a pull-down
name is a shortcut automatically, and arrow and Enter keys can be used to move
through and select pull-down items. But explicit keys can enhance usability in large
menus; for instance, the key sequence Alt+E+S+S runs the quit action in this
script's nested submenu, without any mouse or arrow key movement.

Let's see what all this translates to in the realm of the pixel. Figure 8-1 shows the
window that first appears when this script is run live on Windows; it looks different,
but similar, on Unix and Macintosh.

Figure 8-1. menu_win: a top-level window menu bar

Figure 8-2 shows the scene when the File pull-down is selected. Notice that Menu
widgets are linked, not packed (or gridded) -- the geometry manager doesn't really
come into play here. If you run this script, you'll also notice that all of its menu
entries either quit the program immediately or pop up a "Not Implemented" standard
error dialog. This example is about menus, after all, but menu selection callback
handlers generally do more useful work in practice.

Figure 8-2. The File menu pull-down

Programming Python, 2nd Edition, O’Reilly

IT-SC book 417

And finally, Figure 8-3 shows what happens after clicking the File menu's tear-off line
and selecting the cascading submenu in the Edit pull-down. Cascades can be nested
as deep as you like, but your users probably won't be happy if this gets silly.

Figure 8-3. A File tear-off and Edit cascade

In Tkinter, every top-level window can have a menu bar, including pop-ups that you
create with the Toplevel widget. Example 8-2 makes three pop-up windows with the
same menu bar as the one we just met; when run, it constructs the scene captured
in Figure 8-4.

Example 8-2. PP2E\Gui\Tour\menu_win-multi.py

from menu_win import makemenu
from Tkinter import *

root = Tk()
for i in range(3): # 3 popup windows with menus
 win = Toplevel(root)
 makemenu(win)
 Label(win, bg='black', height=5, width=15).pack(expand=YES,
fill=BOTH)
Button(root, text="Bye", command=root.quit).pack()
root.mainloop()

Figure 8-4. Multiple Toplevels with menus

Programming Python, 2nd Edition, O’Reilly

IT-SC book 418

8.2.2 Frame- and Menubutton-Based Menus

Although less commonly used for top-level windows, it's also possible to create a
menu bar as a horizontal Frame. Before I show you how, though, let me explain why
you should care. Because this frame-based scheme doesn't depend on top-level
window protocols, it can also be used to add menus as nested components of larger
displays. In other words, it's not just for top-level windows. For example, Chapter 9's
PyEdit text editor can be used both as a program and an attachable component.
We'll use window menus to implement PyEdit selections when it is run as a
standalone program, but use frame-based menus when PyEdit is embedded in the
PyMail and PyView displays. Both schemes are worth knowing.

Frame-based menus require a few more lines of code, but aren't much more complex
than window menus. To make one, simply pack Menubutton widgets within a Frame
container, associate Menu widgets with the Menubuttons, and associate the Frame
with the top of a container window. Example 8-3 creates the same menu as Example
8-2, but using the frame-based approach.

Example 8-3. PP2E\Gui\Tour\menu_frm.py

Frame-based menus: for top-levels and components

from Tkinter import * # get widget classes
from tkMessageBox import * # get standard
dialogs

def notdone():
 showerror('Not implemented', 'Not yet available')

def makemenu(parent):
 menubar = Frame(parent) # relief=RAISED,
bd=2...
 menubar.pack(side=TOP, fill=X)

 fbutton = Menubutton(menubar, text='File', underline=0)
 fbutton.pack(side=LEFT)
 file = Menu(fbutton)
 file.add_command(label='New...', command=notdone, underline=0)
 file.add_command(label='Open...', command=notdone, underline=0)
 file.add_command(label='Quit', command=parent.quit, underline=0)
 fbutton.config(menu=file)

 ebutton = Menubutton(menubar, text='Edit', underline=0)
 ebutton.pack(side=LEFT)
 edit = Menu(ebutton, tearoff=0)
 edit.add_command(label='Cut', command=notdone, underline=0)
 edit.add_command(label='Paste', command=notdone, underline=0)
 edit.add_separator()
 ebutton.config(menu=edit)

 submenu = Menu(edit, tearoff=0)
 submenu.add_command(label='Spam', command=parent.quit, underline=0)
 submenu.add_command(label='Eggs', command=notdone, underline=0)
 edit.add_cascade(label='Stuff', menu=submenu, underline=0)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 419

 return menubar

if __name__ == '__main__':
 root = Tk() # or TopLevel or
Frame
 root.title('menu_frm') # set window-mgr
info
 makemenu(root) # associate a
menu bar
 msg = Label(root, text='Frame menu basics') # add something
below
 msg.pack(expand=YES, fill=BOTH)
 msg.config(relief=SUNKEN, width=40, height=7, bg='beige')
 root.mainloop()

Again, let's isolate the linkage logic here to avoid getting distracted by other details.
For the File menu case, here is what this boils down to:

menubar = Frame(parent) # make a Frame for the
menubar
fbutton = Menubutton(menubar, text='File') # attach a MenuButton to
Frame
file = Menu(fbutton) # attach a Menu to
MenuButton
fbutton.config(menu=file) # crosslink button to menu

There is an extra Menubutton widget in this scheme, but it's not much more complex
than making top-level window menus. Figures Figure 8-5 and Figure 8-6 show this
script in action on Windows.

Figure 8-5. menu_frm: Frame and Menubutton menu bar

Figure 8-6. With the Edit menu selected

The menu widgets in this script provide a default set of event bindings that
automatically pop up menus when selected with a mouse. This doesn't look or
behave exactly like the top-level window menu scheme shown earlier, but it is close,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 420

can be configured in any way that frames can (i.e., with colors and borders), and will
look similar on every platform (though this is probably not a feature).

The biggest advantage of frame-based menu bars, though, is that they can also be
attached as nested components in larger displays. Example 8-4 and its resulting
interface (Figure 8-7) show how.

Example 8-4. PP2E\Gui\Tour\menu_frm-multi.py

from menu_frm import makemenu # can't use menu_win here--one
window
from Tkinter import * # but can attach from menus to
windows

root = Tk()
for i in range(2): # 2 menus nested in one window
 mnu = makemenu(root)
 mnu.config(bd=2, relief=RAISED)
 Label(root, bg='black', height=5, width=15).pack(expand=YES,
fill=BOTH)
Button(root, text="Bye", command=root.quit).pack()
root.mainloop()

Figure 8-7. Multiple Frame menus on one window

Because they are not tied to the enclosing window, frame-based menus can also be
used as part of another attachable component's widget package. For example, the
menu embedding behavior in Example 8-5 even works if the menu's parent is
another Frame container, not the top-level window.

Example 8-5. PP2E\Gui\Tour\menu_frm-multi2.py

from menu_frm import makemenu # can't use menu_win here--
root=Frame
from Tkinter import *

root = Tk()
for i in range(3): # 3 menus nested in the
containers
 frm = Frame()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 421

 mnu = makemenu(frm)
 mnu.config(bd=2, relief=RAISED)
 frm.pack(expand=YES, fill=BOTH)
 Label(frm, bg='black', height=5, width=15).pack(expand=YES,
fill=BOTH)
Button(root, text="Bye", command=root.quit).pack()
root.mainloop()

8.2.2.1 Using Menubuttons and Optionmenus

In fact, menus based on Menubutton are even more general than Example 8-3
implies -- they can actually show up anywhere on a display that normal buttons can,
not just within a menubar Frame. Example 8-6 makes a Menubutton pull-down list
that simply shows up by itself, attached to the root window; Figure 8-8 shows the
GUI it produces.

Example 8-6. PP2E\Gui\Tour\mbutton.py

from Tkinter import *
root = Tk()
mbutton = Menubutton(root, text='Food') # the pull-down stands
alone
picks = Menu(mbutton)
mbutton.config(menu=picks)
picks.add_command(label='spam', command=root.quit)
picks.add_command(label='eggs', command=root.quit)
picks.add_command(label='bacon', command=root.quit)
mbutton.pack()
mbutton.config(bg='white', bd=4, relief=RAISED)
root.mainloop()

Figure 8-8. A Menubutton all by itself

The related Tkinter Optionmenu widget displays an item selected from a pull-down
menu. It's roughly like a Menubutton plus a display label, and displays a menu of
choices when clicked; but you must link Tkinter variables (described in Chapter 7) to
fetch the choice after the fact instead of registering callbacks, and menu entries are
passed as arguments in the widget constructor call after the variable.

Example 8-7 illustrates typical Optionmenu usage, and builds the interface captured
in Figure 8-9. Clicking on either of the first two buttons opens a pull-down menu of
options; clicking on the third "state" button fetches and prints the current values
displayed in the first two.

Example 8-7. PP2E\Gui\Tour\optionmenu.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 422

from Tkinter import *
root = Tk()
var1 = StringVar()
var2 = StringVar()
opt1 = OptionMenu(root, var1, 'spam', 'eggs', 'toast') # like
Menubutton
opt2 = OptionMenu(root, var2, 'ham', 'bacon', 'sausage') # but shows
choice
opt1.pack(fill=X)
opt2.pack(fill=X)
var1.set('spam')
var2.set('ham')
def state(): print var1.get(), var2.get() # linked
variables
Button(root, command=state, text='state').pack()
root.mainloop()

Figure 8-9. An Optionmenu at work

There are other menu-related topics that we'll skip here in the interest of space. For
instance, scripts can add entries to system menus, and generate pop-up menus
(posted in response to events, without an associated button). Refer to Tk and Tkinter
resources for more details on this front.

In addition to simple selections and cascades, menus can also contain disabled
entries, checkbutton and radiobutton selections, and bitmap and photo images. The
next section demonstrates how some of these special menu entries are programmed.

8.2.3 Windows with Both Menus and Toolbars

Besides showing a menu at the top, it is common for windows to display a row of
buttons at the bottom. This bottom button row is usually called a toolbar, and often
contains shortcuts to items also available in the menus at the top. It's easy to add a
toolbar to windows in Tkinter -- simply pack buttons (and other kinds of widgets)
into a frame, pack the frame on the bottom of the window, and set it to expand
horizontally only. This is really just hierarchical GUI layout at work again, but make
sure to pack toolbars (and frame-based menu bars) early, so that other widgets in
the middle of the display are clipped first when the window shrinks.

Example 8-8 shows one way to go about adding a toolbar to a window. It also
demonstrates how to add photo images in menu entries (set the image attribute to
PhotoImage object), and how to disable entries and give them a grayed-out
appearance (call the menu entryconfig method with the index of the item to
disable, starting from 1). Notice that PhotoImage objects are saved as a list;
remember, unlike other widgets, these go away if you don't hold onto them.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 423

Example 8-8. PP2E\Gui\Tour\menuDemo.py

#!/usr/local/bin/python
###

Tk8.0 style main window menus
menu/tool bars packed before middle, fill=X (pack first=clip last);
adds photos menu entries; see also: add_checkbutton, add_radiobutton
###

from Tkinter import * # get widget classes
from tkMessageBox import * # get standard
dialogs

class NewMenuDemo(Frame): # an extended frame
 def __init__(self, parent=None): # attach to top-
level?
 Frame.__init__(self, parent) # do superclass init
 self.pack(expand=YES, fill=BOTH)
 self.createWidgets() # attach
frames/widgets
 self.master.title("Toolbars and Menus") # set window-manager
info
 self.master.iconname("tkpython") # label when
iconified

 def createWidgets(self):
 self.makeMenuBar()
 self.makeToolBar()
 L = Label(self, text='Menu and Toolbar Demo')
 L.config(relief=SUNKEN, width=40, height=10, bg='white')
 L.pack(expand=YES, fill=BOTH)

 def makeToolBar(self):
 toolbar = Frame(self, cursor='hand2', relief=SUNKEN, bd=2)
 toolbar.pack(side=BOTTOM, fill=X)
 Button(toolbar, text='Quit', command=self.quit
).pack(side=RIGHT)
 Button(toolbar, text='Hello',
command=self.greeting).pack(side=LEFT)

 def makeMenuBar(self):
 self.menubar = Menu(self.master)
 self.master.config(menu=self.menubar) # master=top-level
window
 self.fileMenu()
 self.editMenu()
 self.imageMenu()

 def fileMenu(self):
 pulldown = Menu(self.menubar)
 pulldown.add_command(label='Open...', command=self.notdone)
 pulldown.add_command(label='Quit', command=self.quit)
 self.menubar.add_cascade(label='File', underline=0,
menu=pulldown)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 424

 def editMenu(self):
 pulldown = Menu(self.menubar)
 pulldown.add_command(label='Paste', command=self.notdone)
 pulldown.add_command(label='Spam', command=self.greeting)
 pulldown.add_separator()
 pulldown.add_command(label='Delete', command=self.greeting)
 pulldown.entryconfig(4, state=DISABLED)
 self.menubar.add_cascade(label='Edit', underline=0,
menu=pulldown)

 def imageMenu(self):
 photoFiles = ('guido.gif', 'pythonPowered.gif',
'ppython_sm_ad.gif')
 pulldown = Menu(self.menubar)
 self.photoObjs = []
 for file in photoFiles:
 img = PhotoImage(file='../gifs/' + file)
 pulldown.add_command(image=img, command=self.notdone)
 self.photoObjs.append(img) # keep a reference
 self.menubar.add_cascade(label='Image', underline=0,
menu=pulldown)

 def greeting(self):
 showinfo('greeting', 'Greetings')
 def notdone(self):
 showerror('Not implemented', 'Not yet available')
 def quit(self):
 if askyesno('Verify quit', 'Are you sure you want to quit?'):
 Frame.quit(self)

if __name__ == '__main__': NewMenuDemo().mainloop() # if I'm run as a
script

Figure 8-10. menuDemo: menus and toolbars

When run, this script generates the scene in Figure 8-10 at first. Figure 8-11 shows
this window after being stretched a bit, with its File and Edit menus torn off, and its
Image menu selected. That's Python creator Guido van Rossum in this script's third
menu (wearing his now-deprecated eyeglasses). Run this on your own computer to
get a better feel for its behavior.[1]

Programming Python, 2nd Edition, O’Reilly

IT-SC book 425

[1] Also note that toolbar items can be pictures too -- simply associate small images with
toolbar buttons, as shown at the end of Chapter 7.

Figure 8-11. Images and tear-offs on the job

8.2.3.1 Automating menu construction

Menus are a powerful Tkinter interface device. If you're like me, though, the
examples in this section probably seem like a lot of work. Menu construction can be
both code-intensive and error-prone if done by calling Tkinter methods directly. A
better approach might automatically build and link up menus from a higher-level
description of their contents. In fact, we will -- in Chapter 9, we'll meet a tool called
GuiMixin that automates the menu construction process, given a data structure that
contains all menus desired. As an added bonus, it supports both window and frame-
style menus, so it can be used by both standalone programs and nested
components. Although it's important to know the underlying calls used to make
menus, you don't necessarily have to remember them for long.

8.3 Listboxes and Scrollbars

Listbox widgets allow you to display a list of items for selection, and Scrollbarsare
designed for navigating through the contents of other widgets. Because it is common
to use these widgets together, let's study them both at once. Example 8-9 builds
both a Listbox and a Scrollbar, as a packaged set.

Example 8-9. PP2E\Gui\Tour\scrolledlist.py

from Tkinter import *

class ScrolledList(Frame):
 def __init__(self, options, parent=None):
 Frame.__init__(self, parent)
 self.pack(expand=YES, fill=BOTH) # make me
expandable
 self.makeWidgets(options)
 def handleList(self, event):
 index = self.listbox.curselection() # on list
double-click

Programming Python, 2nd Edition, O’Reilly

IT-SC book 426

 label = self.listbox.get(index) # fetch
selection text
 self.runCommand(label) # and call
action here
 def makeWidgets(self, options): # or
get(ACTIVE)
 sbar = Scrollbar(self)
 list = Listbox(self, relief=SUNKEN)
 sbar.config(command=list.yview) # xlink sbar
and list
 list.config(yscrollcommand=sbar.set) # move one
moves other
 sbar.pack(side=RIGHT, fill=Y) # pack
first=clip last
 list.pack(side=LEFT, expand=YES, fill=BOTH) # list
clipped first
 pos = 0
 for label in options: # add to
list-box
 list.insert(pos, label) # or
insert(END,label)
 pos = pos + 1
 #list.config(selectmode=SINGLE, setgrid=1) #
select,resize modes
 list.bind('<Double-1>', self.handleList) # set event
handler
 self.listbox = list
 def runCommand(self, selection): # redefine me
lower
 print 'You selected:', selection

if __name__ == '__main__':
 options = map((lambda x: 'Lumberjack-' + str(x)), range(20))
 ScrolledList(options).mainloop()

This module can be run standalone to experiment with these widgets, but is also
designed to be useful as a library object. By passing in different selection lists to the
options argument and redefining the runCommand method in a subclass, the
ScrolledList component class defined here can be reused any time you need to
display a scrollable list. With just a little forethought, it's easy to extend the Tkinter
library with Python classes.

When run standalone, this script generates the window shown in Figure 8-12. It's a
Frame, with a Listbox on its left containing 20 generated entries (the fifth has been
clicked), along with an associated Scrollbar on its right for moving through the list.
If you move the scroll, the list moves, and vice versa.

Figure 8-12. scrolledlist at the top

Programming Python, 2nd Edition, O’Reilly

IT-SC book 427

8.3.1 Programming Listboxes

Listboxes are straightforward to use, but they are populated and processed in
somewhat unique ways compared to the widgets we've seen so far. Many listbox
calls accept a passed-in index to refer to an entry in the list. Indexes start at integer
and grow higher, but Tkinter also accepts special name strings in place of integer
offsets -- "end" to refer to the end of the list, "active" to denote the line selected,
and more. This generally yields more than one way to code listbox calls.

For instance, this script adds items to the listbox in this window by calling its insert
method, with successive offsets (starting at zero):

list.insert(pos, label)
pos = pos + 1

But you can also fill a list by simply adding items at the end without keeping a
position counter at all, with either of these statements:

list.insert('end', label) # add at end: no need to count positions
list.insert(END, label) # END is preset to 'end' inside Tkinter

The listbox widget doesn't have anything like the command option we use to register
callback handlers for button presses, so you either need to fetch listbox selections
while processing other widgets' events (e.g., a button press elsewhere in the GUI),
or tap into other event protocols to process user selections. To fetch a selected
value, this script binds the <Double-1> left mouse button double-click event to a
callback handler method with bind (seen earlier on this tour).

In the double-click handler, this script grabs the selected item out of the listbox with
this pair of listbox method calls:

index = self.listbox.curselection() # get selection index
label = self.listbox.get(index) # fetch text by its index

Here, too, you can code this differently. Either of the following lines have the same
effect; they get the contents of the line at index "active" -- the one selected:

label = self.listbox.get('active') # fetch from active index
label = self.listbox.get(ACTIVE) # ACTIVE='active' in Tkinter

Programming Python, 2nd Edition, O’Reilly

IT-SC book 428

For illustration purposes, the class's default runCommand method prints the value
selected each time you double-click an entry in the list -- as fetched by this script, it
comes back as a string reflecting the text in the selected entry:

C:\...\PP2E\Gui\Tour>python scrolledlist.py
You selected: Lumberjack-2
You selected: Lumberjack-19
You selected: Lumberjack-4
You selected: Lumberjack-12

8.3.2 Programming Scrollbars

The deepest magic in this script, though, boils down to two lines of code:

sbar.config(command=list.yview) # call list.yview when I
move
list.config(yscrollcommand=sbar.set) # call sbar.set when I
move

The scrollbar and listbox are effectively cross-linked to each other through these
configuration options; their values simply refer to bound widget methods of the
other. By linking like this, Tkinter automatically keeps the two widgets in sync with
each other as they move. Here's how this works:

Moving a scrollbar invokes the callback handler registered with its command option.
Here, list.yview refers to a built-in listbox method that adjusts the listbox display
proportionally, based on arguments passed to the handler.

Moving a listbox vertically invokes the callback handler registered with its
yscrollcommand option. In this script, the sbar.set built-in method adjusts a
scrollbar proportionally.

In other words, moving one automatically moves the other. It turns out that every
scrollable object in Tkinter -- Listbox, Entry, Text, and Canvas -- has built-in yview
and xview methods to process incoming vertical and horizontal scroll callbacks, as
well as yscrollcommand and xscrollcommand options for specifying an associated
scrollbar's callback handler. Scrollbars all have a command option, to name a handler
to call on moves. Internally, Tkinter passes information to all these methods that
specifies their new position (e.g., "go 10% down from the top"), but your scripts
need never deal with that level of detail.

Because the scrollbar and listbox have been cross-linked in their option settings,
moving the scrollbar automatically moves the list, and moving the list automatically
moves the scrollbar. To move the scrollbar, either drag the solid part or click on its
arrows or empty areas. To move the list, click on the list and move the mouse
pointer above or below the listbox without releasing the mouse button. In both
cases, the list and scrollbar move in unison. Figure 8-13 is the scene after moving
down a few entries in the list, one way or another.

Figure 8-13. scrolledlist in the middle

Programming Python, 2nd Edition, O’Reilly

IT-SC book 429

8.3.3 Packing Scrollbars

Finally, remember that widgets packed last are always clipped first when a window is
shrunk. Because of that, it's important to pack scrollbars in a display as soon as
possible, so that they are the last to go when the window becomes too small for
everything. You can generally make due with less than complete listbox text, but the
scrollbar is crucial for navigating through the list. As Figure 8-14 shows, shrinking
this script's window cuts out part of the list, but retains the scrollbar.

Figure 8-14. scrolledlist gets small

At the same time, you don't generally want a scrollbar to expand with a window, so
be sure to pack it with just a fill=Y (or fill=X for a horizontal scroll), and not an
expand=YES. Expanding this example's window, for instance, makes the listbox grow
along with the window, but keeps the scrollbar attached to the right, and of the same
size.

We'll see both scrollbars and listboxes repeatedly in later examples in this and later
chapters (flip ahead to PyEdit, PyForm, PyTree, and ShellGui for more examples).
And although the example script in this section captures the fundamentals, I should
point out that there is more to both scrollbars and listboxes than meets the eye here.

For example, it's just as easy to add horizontal scrollbars to scrollable widgets; they
are programmed almost exactly like the vertical one implemented here, but callback
handler names start with "x", not "y", and an orient='horizontal' configuration
option is set for the scrollbar object (see the later PyEdit and PyTree programs for
examples). Listboxes can also be useful input devices even without attached
scrollbars; they also accept color, font, and relief configuration options, and support
multiple selections (the default is selectmode=SINGLE).

Scrollbars see more kinds of GUI action too -- they can be associated with other
kinds of widgets in the Tkinter library. For instance, it is common to attach one to
the Text widget; which brings us to the next point of interest on this tour.

8.4 Text

Programming Python, 2nd Edition, O’Reilly

IT-SC book 430

It's been said that Tkinter's strongest points may be its text and canvas widgets.
Both provide a remarkable amount of functionality. For instance, the Tkinter Text
widget was powerful enough to implement the Grail web browser, discussed in
Chapter 15; it supports complex font style settings, embedded images, and much
more. The Tkinter Canvas widget, a general-purpose drawing device, has also been
the basis of sophisticated image processing and visualization applications.

In Chapter 9, we'll put these two widgets to use to implement text editors (PyEdit),
paint programs (PyDraw), clock GUIs (PyClock), and photo slideshows (PyView). For
the purposes of this tour chapter, though, let's start out using these widgets in
simpler ways. Example 8-10 implements a simple scrolled-text display, which knows
how to fill its display with a text string or file.

Example 8-10. PP2E\Gui\Tour\scrolledtext.py

a simple text or file viewer component

print 'PP2E scrolledtext'
from Tkinter import *

class ScrolledText(Frame):
 def __init__(self, parent=None, text='', file=None):
 Frame.__init__(self, parent)
 self.pack(expand=YES, fill=BOTH) # make me
expandable
 self.makewidgets()
 self.settext(text, file)
 def makewidgets(self):
 sbar = Scrollbar(self)
 text = Text(self, relief=SUNKEN)
 sbar.config(command=text.yview) # xlink sbar
and text
 text.config(yscrollcommand=sbar.set) # move one
moves other
 sbar.pack(side=RIGHT, fill=Y) # pack
first=clip last
 text.pack(side=LEFT, expand=YES, fill=BOTH) # text clipped
first
 self.text = text
 def settext(self, text='', file=None):
 if file:
 text = open(file, 'r').read()
 self.text.delete('1.0', END) # delete
current text
 self.text.insert('1.0', text) # add at line
1, col 0
 self.text.mark_set(INSERT, '1.0') # set insert
cursor
 self.text.focus() # save user a
click
 def gettext(self): # returns a
string
 return self.text.get('1.0', END+'-1c') # first
through last

Programming Python, 2nd Edition, O’Reilly

IT-SC book 431

if __name__ == '__main__':
 root = Tk()
 try:
 st = ScrolledText(file=sys.argv[1]) # filename on
cmdline
 except IndexError:
 st = ScrolledText(text='Words\ngo here') # or not: 2
lines
 def show(event): print repr(st.gettext()) # show as raw
string
 root.bind('<Key-Escape>', show) # esc = dump
text
 root.mainloop()

Like the ScrolledList of Example 8-9, the ScrolledText object in this file is
designed to be a reusable component, but can also be run standalone to display text
file contents. Also like the last section, this script is careful to pack the scrollbar first
so that it is cut out of the display last as the window shrinks, and arranges for the
embedded Text object to expand in both directions as the window grows. When run
with a filename argument, this script makes the window shown in Figure 8-15; it
embeds a Text widget on the left, and a cross-linked Scrollbar on the right.

Figure 8-15. scrolledtext in action

Just for fun, I populated the text file displayed in the window with the following code
and command lines (and not just because I happen to live near an infamous hotel in
Colorado):

C:\...\PP2E\Gui\Tour>type temp.py
f = open('temp.txt', 'w')
for i in range(250):
 f.write('%03d) All work and no play makes Jack a dull boy.\n' % i)
f.close()

C:\...\PP2E\Gui\Tour>python temp.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 432

C:\...\PP2E\Gui\Tour>python scrolledtext.py temp.txt
PP2E scrolledtext

To view a file, pass its name on the command line -- its text is automatically
displayed in the new window. By default, it is shown in a non-fixed-width font, but
we'll pass a font option to the text widget in the next example to change that.

Notice the "PP2E scrolledtext" message printed when this script runs. Because there
is also a ScrolledText.py file in the standard Python distribution with a very different
interface, the one here identifies itself when run or imported so you can tell which
one you've got. If the standard one ever goes away, import the one listed here for a
simple text browser, and adjust configuration calls to include a ".text" qualifier level
(the library version subclasses Text, not Frame).

8.4.1 Programming the Text Widget

To understand how this script works at all, though, we have to detour into a few
Text widget details here. Earlier we met the Entry and Message widgets, which
address a subset of the Text widget's uses. The Text widget is much richer in both
features and interfaces -- it supports both input and display of multiple lines of text,
editing operations for both programs and interactive users, multiple fonts and colors,
and much more. Text objects are created, configured, and packed just like any other
widget, but they have properties all their own.

8.4.1.1 Text is a Python string

Although the Text widget is a powerful tool, its interface seems to boil down to two
core concepts. First of all, the content of a Text widget is represented as a string in
Python scripts, and multiple lines are separated with the normal \n line terminator.
The string 'Words\ngo here', for instance, represents two lines when stored in or
fetched from a Text widget; it would normally have a trailing \n too, but doesn't
have to.

To help illustrate this point, this script binds the Escape key press to fetch and print
the entire contents of the Text widget it embeds:

C:\...\PP2E\Gui\Tour>python scrolledtext.py
PP2E scrolledtext
'Words\012go here'
'Always look\012on the bright\012side of life\012'

When run with arguments, the script stores a file's contents in the text widget. When
run without arguments, the script stuffs a simple literal string into the widget,
displayed by the first Escape press output here (recall that \012 is the octal escape
form of the \n line terminator). The second output here happens when pressing
Escape in the shrunken window captured in Figure 8-16.

Figure 8-16. scrolledtext gets a positive outlook

Programming Python, 2nd Edition, O’Reilly

IT-SC book 433

8.4.1.2 String positions

The second key to understanding Text code has to do with the ways you specify a
position in the text string. Like the listbox, text widgets allow you to specify such a
position in a variety of ways. In Text, methods that expect a position to be passed in
will accept an index, a mark, or a tag reference. Moreover, some special operations
are invoked with predefined marks and tags -- the insert cursor is mark INSERT, and
the current selection is tag SEL.

8.4.1.2.1 Text indexes

Because it is a multiple-line widget, Text indexes identify both a line and a column.
For instance, consider the interfaces of the basic insert, delete, and fetch text
operations used by this script:

self.text.insert('1.0', text) # insert text at the start
self.text.delete('1.0', END) # delete all current text
return self.text.get('1.0', END+'-1c') # fetch first through last

In all of these, the first argument is an absolute index that refers to the start of the
text string: string "1.0" means row 1, column (rows are numbered from 1 and
columns from 0). An index "2.1" refers to the second character in the second row.

Like the listbox, text indexes can also be symbolic names: the END in the preceding
delete call refers to the position just past the last character in the text string (it's a
Tkinter variable preset to string "end"). Similarly, the symbolic index INSERT (really,
string "insert") refers to the position immediately after the insert cursor -- the place
where characters would appear if typed at the keyboard. Symbolic names like
INSERT can also be called marks, described in a moment.

For added precision, you can add simple arithmetic extensions to index strings. The
index expression END+'-1c' in the get call in the previous example, for instance, is
really the string "end-1c", and refers to one character back from END. Because END
points to just beyond the last character in the text string, this expression refers to
the last character itself. The -1c extension effectively strips the trailing \n that this
widget adds to its contents (and may add a blank line if saved in a file).

Similar index string extensions let you name characters ahead (+1c), lines ahead and
behind (+2l, -2l), and specify things like word and line starts around an index
(lineend, wordstart). Indexes show up in most Text widget calls.

8.4.1.2.2 Text marks

Besides row/column identifier strings, you can also pass positions as names of marks
-- symbolic names for a position between two characters. Unlike absolute

Programming Python, 2nd Edition, O’Reilly

IT-SC book 434

row/column positions, marks are virtual locations that move as new text is inserted
or deleted (by your script or your user). A mark always refers to its original location,
even if that location shifts to a different row and column over time.

To create a mark, call the text mark_set method with a string name and an index to
give its logical location. For instance, this script sets the insert cursor at the start of
the text initially, with a call like the first one here:

self.text.mark_set(INSERT, '1.0') # set insert cursor to
start
self.text.mark_set('linetwo', '2.0') # mark current line 2

The name INSERT is a predefined special mark that identifies the insert cursor
position; setting it changes the insert cursor's location. To make a mark of your own,
simply provide a unique name as in the second call here, and use it anywhere you
need to specify a text position. The mark_unset call deletes marks by name.

8.4.1.2.3 Text tags

In addition to absolute indexes and symbolic mark names, the Text widget supports
the notion of tags -- symbolic names associated with one or more substrings within
the Text widget's string. Tags can be used for many things, but they also serve to
represent a position anywhere you need one: tagged items are named by their
beginning and ending indexes, which can be later passed to position-based calls.

For example, Tkinter provides a built-in tag name SEL -- a Tkinter name preassigned
to string "sel" -- which automatically refers to currently selected text. To fetch the
text selected (highlighted) with a mouse, run either of these calls:

text = self.text.get(SEL_FIRST, SEL_LAST) # use tags for from/to
indexes
text = self.text.get('sel.first', 'sel.last') # strings and constants
work

The names SEL_FIRST and SEL_LAST are just preassigned variables in the Tkinter
module that refer to the strings used in the second line here. The text get method
expects two indexes; to fetch text names by a tag, add .first and .last to the
tag's name to get its start and end indexes.

To tag a substring, call the text widget's tag_add method with a tag name string and
start and stop positions (text can also be tagged as added in insert calls). To
remove a tag from all characters in a range of text, call tag_remove:

self.text.tag_add('alltext', '1.0', END) # tag all text in the widget
self.text.tag_add(SEL, index1, index2) # select from index1 up to
index2
self.text.tag_remove(SEL, '1.0', END) # remove selection from all
text

The first line here creates a new tag that names all text in the widget -- from start
through end positions. The second line adds a range of characters to the built-in SEL
selection tag -- they are automatically highlighted, because this tag is predefined to

Programming Python, 2nd Edition, O’Reilly

IT-SC book 435

configure its members that way. The third line removes all characters in the text
string from the SEL tag (all selections are unselected). Note that the tag_remove call
just untags text within the named range; to really delete a tag completely, call
tag_delete instead.

You can map indexes to tags dynamically too. For example, the text search method
returns the row.column index of the first occurrence of a string between start and
stop positions. To automatically select the text thus found, simply add its index to
the built-in SEL tag:

where = self.text.search(target, INSERT, END) # search from insert
cursor
pastit = where + ('+%dc' % len(target)) # index beyond string
found
self.text.tag_add(SEL, where, pastit) # tag and select found
string
self.text.focus() # select text widget
itself

If you only want one string to be selected, be sure to first run the tag_remove call
listed earlier -- this code adds a selection in addition to any selections that already
exist (it may generate multiple selections in the display). In general, you can add
any number of substrings to a tag to process them as a group.

To summarize: indexes, marks, and tag locations can be used anytime you need a
text position. For instance, the text see method scrolls the display to make a position
visible; it accepts all three kinds of position specifiers:

self.text.see('1.0') # scroll display to top
self.text.see(INSERT) # scroll display to insert cursor mark
self.text.see(SEL_FIRST) # scroll display to selection tag

Text tags can also be used in broader ways for formatting and event bindings, but I'll
defer those details until the end of this section.

8.4.2 Adding Text-Editing Operations

Example 8-11 puts some of these concepts to work. It adds support for four common
text-editing operations -- file save, text cut and paste, and string find searching -- by
subclassing ScolledText to provide additional buttons and methods. The Text
widget comes with a set of default keyboard bindings that perform some common
editing operations too, but they roughly mimic the Unix Emacs editor, and are
somewhat obscure; it's more common and user-friendly to provide GUI interfaces to
editing operations in a GUI text editor.

Example 8-11. PP2E\Gui\Tour\simpleedit.py

add common edit tools to scrolled text by inheritance;
composition (embedding) would work just as well here;
this is not robust! see PyEdit for a feature superset;

Programming Python, 2nd Edition, O’Reilly

IT-SC book 436

from Tkinter import *
from tkSimpleDialog import askstring
from tkFileDialog import asksaveasfilename
from quitter import Quitter
from scrolledtext import ScrolledText # here, not
Python's

class SimpleEditor(ScrolledText): # see PyEdit
for more
 def __init__(self, parent=None, file=None):
 frm = Frame(parent)
 frm.pack(fill=X)
 Button(frm, text='Save', command=self.onSave).pack(side=LEFT)
 Button(frm, text='Cut', command=self.onCut).pack(side=LEFT)
 Button(frm, text='Paste', command=self.onPaste).pack(side=LEFT)
 Button(frm, text='Find', command=self.onFind).pack(side=LEFT)
 Quitter(frm).pack(side=LEFT)
 ScrolledText.__init__(self, parent, file=file)
 self.text.config(font=('courier', 9, 'normal'))
 def onSave(self):
 filename = asksaveasfilename()
 if filename:
 alltext = self.gettext() # first
through last
 open(filename, 'w').write(alltext) # store text
in file
 def onCut(self):
 text = self.text.get(SEL_FIRST, SEL_LAST) # error if no
select
 self.text.delete(SEL_FIRST, SEL_LAST) # should wrap
in try
 self.clipboard_clear()
 self.clipboard_append(text)
 def onPaste(self): # add
clipboard text
 try:
 text = self.selection_get(selection='CLIPBOARD')
 self.text.insert(INSERT, text)
 except TclError:
 pass # not to be
pasted
 def onFind(self):
 target = askstring('SimpleEditor', 'Search String?')
 if target:
 where = self.text.search(target, INSERT, END) # from
insert cursor
 if where: # returns an
index
 print where
 pastit = where + ('+%dc' % len(target)) # index past
target
 #self.text.tag_remove(SEL, '1.0', END) # remove
selection
 self.text.tag_add(SEL, where, pastit) # select
found target
 self.text.mark_set(INSERT, pastit) # set insert
mark

Programming Python, 2nd Edition, O’Reilly

IT-SC book 437

 self.text.see(INSERT) # scroll
display
 self.text.focus() # select
text widget

if __name__ == '__main__':
 try:
 SimpleEditor(file=sys.argv[1]).mainloop() # filename on
command line
 except IndexError:
 SimpleEditor().mainloop() # or not

This, too, was written with one eye toward reuse -- the SimpleEditor class it defines
could be attached or subclassed by other GUI code. As I'll explain at the end of this
section, though, it's not yet as robust as a general-purpose library tool should be.
Still, it implements a functional text editor in a small amount of portable code. When
run standalone, it brings up the window in Figure 8-17 (shown running in Windows);
index positions are printed on stdout after each successful find operation:

C:\...\PP2E\Gui\Tour>python simpleedit.py simpleedit.py
PP2E scrolledtext
14.4
24.4

Figure 8-17. simpleedit in action

The save operation pops up the common save dialog available in Tkinter, and
tailored to look native on each platform. Figure 8-18 shows this dialog in action on
Windows. Find operations also pop up a standard dialog box to input a search string
(Figure 8-19); in a full-blown editor, you might want to save this string away to
repeat the find again (we will, in the next chapter's PyEdit).

Figure 8-18. Save pop-up dialog on Windows

Programming Python, 2nd Edition, O’Reilly

IT-SC book 438

Figure 8-19. Find pop-up dialog

8.4.2.1 Using the clipboard

Besides text widget operations, Example 8-11 applies the Tkinter clipboard interfaces
in its cut and paste functions. Together, these operations allow you to move text
within a file (cut in one place, paste in another). The clipboard they use is just a
place to store data temporarily -- deleted text is placed on the clipboard on a cut,
and text is inserted from the clipboard on a paste. If we restrict our focus to this
program alone, there really is no reason that the text string cut couldn't simply be
stored in a Python instance variable. But the clipboard is actually a much larger
concept.

The clipboard used by this script is an interface to a systemwide storage space,
shared by all programs on your computer. Because of that, it can be used to transfer
data between applications, even ones that know nothing of Tkinter. For instance,
text cut or copied in a Microsoft Word session can be pasted in a SimpleEditor
window, and text cut in SimpleEditor can be pasted in a Microsoft Notepad window
(try it). By using the clipboard for cut and paste, SimpleEditor automatically
integrates with the window system at large. Moreover, the clipboard is not just for
the text widget -- it can also be used to cut and paste graphical objects in the
Canvas widget (discussed next).

As used in this script, the basic Tkinter clipboard interface looks like this:

self.clipboard_clear() # clear the clipboard
self.clipboard_append(text) # store a text string
on it
text = self.selection_get(selection='CLIPBOARD') # fetch contents, if
any

Programming Python, 2nd Edition, O’Reilly

IT-SC book 439

All of these calls are available as methods inherited by all Tkinter widget objects
because they are global in nature. The CLIPBOARD selection used by this script is
available on all platforms (a PRIMARY selection is also available, but is only generally
useful on X Windows, so we'll ignore it here). Notice that the clipboard
selection_get call throws a TclError exception if it fails; this script simply ignores
it and abandons a paste request, but we'll do better later.

8.4.2.2 Composition versus inheritance

As coded, SimpleEditor uses inheritance to extend ScrolledText with extra
buttons and callback methods. As we've seen, it's also reasonable to attach (embed)
GUI objects coded as components, like ScrolledText. The attachment model is
usually called composition; some people find it simpler to understand, and less prone
to name clashes than extension by inheritance.

To give you an idea of the differences between these two approaches, the following
sketches the sort of code you would write to attach a ScrolledText to
SimpleEditor with changed lines in bold font (see file simpleedit-2.py on the CD for
a complete composition implementation). It's mostly a matter of passing in the right
parents, and adding an extra "st" attribute name to get to the Text widget's
methods:

class SimpleEditor(Frame):
 def __init__(self, parent=None, file=None):
 Frame.__init__(self, parent)
 self.pack()
 frm = Frame(self)
 frm.pack(fill=X)
 Button(frm, text='Save', command=self.onSave).pack(side=LEFT)
 ...more...
 Quitter(frm).pack(side=LEFT)
 self.st = ScrolledText(self, file=file) # attach,
not subclass
 self.st.text.config(font=('courier', 9, 'normal'))
 def onSave(self):
 filename = asksaveasfilename()
 if filename:
 alltext = self.st.gettext() # go through
attribute
 open(filename, 'w').write(alltext)
 def onCut(self):
 text = self.st.text.get(SEL_FIRST, SEL_LAST)
 self.st.text.delete(SEL_FIRST, SEL_LAST)
 ...more...

The window looks identical when such code is run. I'll let you be the judge of
whether composition or inheritance is better here. If you code your Python GUI
classes right, they will work under either regime.

8.4.2.3 It's called "Simple" for a reason

Finally, before you change your system registry to make SimpleEditor your default
text file viewer, I should mention that although it shows the basics, it's something of

Programming Python, 2nd Edition, O’Reilly

IT-SC book 440

a stripped-down version of the PyEdit example we'll meet in Chapter 9. In fact, you
should study that example now if you're looking for more complete Tkinter text
processing code in general. Because the text widget is so powerful, it's difficult to
demonstrate more of its features without the volume of code that is already listed in
the PyEdit program.

I should also point out that SimpleEditor is not only limited in function, it's just
plain careless -- many boundary cases go unchecked and trigger uncaught
exceptions that don't kill the GUI, but are not handled or reported. Even errors that
are caught are not reported to the user (e.g., a paste, with nothing to be pasted). Be
sure to see the PyEdit example for a more robust and complete implementation of
the operations introduced in SimpleEditor.

8.4.3 Advanced Text and Tag Operations

Besides position specifiers, text tags can also be used to apply formatting and
behavior to both all characters in a substring, and all substrings added to a tag. In
fact, this is where much of the power of the text widget lies:

Tags have formatting attributes for setting color, font, tabs, and line spacing and
justification; to apply these to many parts of the text at once, associate them with a
tag and apply formatting to the tag with the tag_config method, much like the
general widget config we've been using.

Tags can also have associated event bindings, which lets you implement things like
hyperlinks in a Text widget: clicking the text triggers its tag's event handler. Tag
bindings are set with a tag_bind method, much like the general widget bind method
we've already met.

With tags, it's possible to display multiple configurations within the same text
widget; for instance, you can apply one font to the text widget at large, and other
fonts to tagged text. In addition, the text widget allows you to embed other widgets
at an index (they are treated like a single character), as well as images.

Example 8-12 illustrates the basics of all these advanced tools at once, and draws
the interface captured in Figure 8-20. This script applies formatting and event
bindings to three tagged substrings, displays text in two different font and color
schemes, and embeds an image and a button. Double-clicking any of the tagged
substrings (or the embedded button) with a mouse triggers an event that prints a
"Got tag event" message to stdout.

Example 8-12. PP2E\Gui\Tour\texttags.py

demo advanced tag and text interfaces

from Tkinter import *
root = Tk()
def hello(event): print 'Got tag event'

make and config a Text
text = Text()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 441

text.config(font=('courier', 15, 'normal')) # set font
for all
text.config(width=20, height=12)
text.pack(expand=YES, fill=BOTH)
text.insert(END, 'This is\n\nthe meaning\n\nof life.\n\n') # insert 6
lines

embed windows and photos
btn = Button(text, text='Spam', command=lambda: hello(0)) # embed a
button
btn.pack()
text.window_create(END, window=btn) # embed a
photo
text.insert(END, '\n\n')
img = PhotoImage(file='../gifs/PythonPowered.gif')
text.image_create(END, image=img)

apply tags to substrings
text.tag_add('demo', '1.5', '1.7') # tag 'is'
text.tag_add('demo', '3.0', '3.3') # tag 'the'
text.tag_add('demo', '5.3', '5.7') # tag 'life'
text.tag_config('demo', background='purple') # change
colors in tag
text.tag_config('demo', foreground='white') # not called
bg/fg here
text.tag_config('demo', font=('times', 16, 'underline')) # change font
in tag
text.tag_bind('demo', '<Double-1>', hello) # bind events
in tag
root.mainloop()

Figure 8-20. Text tags in action

Such embedding and tag tools could ultimately be used to render a web page. In
fact, Python's standard htmllib HTML parser module can help automate web page
GUI construction. As you can probably tell, though, the text widget offers more GUI
programming options than we have space to list here. For more details on tag and
text options, consult other Tk and Tkinter references. Right now, art class is about to
begin.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 442

8.5 Canvas

When it comes to graphics, the Tkinter Canvas widget is the most free-form device in
the library. It's a place to draw shapes, move objects dynamically, and place other
kinds of widgets. The canvas is based on a structured graphic object model:
everything drawn on a canvas can be processed as an object. You can get down to
the pixel-by-pixel level in a canvas, but you can also deal in terms of larger objects
like shapes, photos, and embedded widgets.

8.5.1 Basic Canvas Operations

Canvases are ubiquitous in much nontrivial GUI work, and we'll see larger canvas
examples show up later in this book under the names PyDraw, PyView, PyClock, and
PyTree. For now, let's jump right into an example that illustrates the basics. Example
8-13 runs most of the major canvas drawing methods.

Example 8-13. PP2E\Gui\Tour\canvas1.py

demo all basic canvas interfaces
from Tkinter import *

canvas = Canvas(width=300, height=300, bg='white') # 0,0 is top left
corner
canvas.pack(expand=YES, fill=BOTH) # increases down,
right

canvas.create_line(100, 100, 200, 200) # fromX, fromY,
toX, toY
canvas.create_line(100, 200, 200, 300) # draw shapes
for i in range(1, 20, 2):
 canvas.create_line(0, i, 50, i)

canvas.create_oval(10, 10, 200, 200, width=2, fill='blue')
canvas.create_arc(200, 200, 300, 100)
canvas.create_rectangle(200, 200, 300, 300, width=5, fill='red')
canvas.create_line(0, 300, 150, 150, width=10, fill='green')

photo=PhotoImage(file='../gifs/guido.gif')
canvas.create_image(250, 0, image=photo, anchor=NW) # embed a photo

widget = Label(canvas, text='Spam', fg='white', bg='black')
widget.pack()
canvas.create_window(100, 100, window=widget) # embed a widget
canvas.create_text(100, 280, text='Ham') # draw some text
mainloop()

When run, this script draws the window captured in Figure 8-21. We saw how to
place a photo on canvas and size a canvas for a photo earlier on this tour (see
Section 7.9 near the end of Chapter 7). This script also draws shapes, text, and even
an embedded Label widget. Its window gets by on looks alone; in a moment we'll
learn how to add event callbacks that let users interact with drawn items.

Figure 8-21. canvas1 hardcoded object sketches

Programming Python, 2nd Edition, O’Reilly

IT-SC book 443

8.5.2 Programming the Canvas Widget

Canvases are easy to use, but rely on a coordinate system, define unique drawing
methods, and name objects by identifier or tag. This section introduces these core
canvas concepts.

8.5.2.1 Coordinates

All items drawn on a canvas are distinct objects, but they are not really widgets. If
you study the canvas1 script closely, you'll notice that canvases are created and
packed (or gridded or placed) within their parent container just like any other widget
in Tkinter. But the items drawn on a canvas are not -- shapes, images, and so on are
positioned and moved on the canvas by coordinates, identifiers, and tags. Of these,
coordinates are the most fundamental part of the canvas model.

Canvases define an (X,Y) coordinate system for their drawing area; X means the
horizontal scale, Y means vertical. By default, coordinates are measured in screen
pixels (dots), the upper-left corner of the canvas has coordinates (0,0), and X and Y
coordinates increase to the right and down, respectively. To draw and embed objects
within a canvas, you supply one or more (X,Y) coordinate pairs to give absolute
canvas locations. This is different than the constraints we've used to pack widgets
thus far, but allows very fine-grained control over graphical layouts, and supports
more freeform interface techniques such as animation.[2]

[2] Animation techniques are covered at the end of this tour. Because you can embed other
widgets in a canvas's drawing area, their coordinate system also makes them ideal for
implementing GUIs that let users design other GUIs by dragging embedded widgets around on
the canvas -- a useful canvas application we would explore in this book if I had a few hundred
pages to spare.

8.5.2.2 Object construction

The canvas allows you to draw and display common shapes like lines, ovals,
rectangles, arcs, and polygons. In addition, you can embed text, images, and other
kinds of Tkinter widgets such as labels and buttons. The canvas1 script

Programming Python, 2nd Edition, O’Reilly

IT-SC book 444

demonstrates all the basic graphic object constructor calls; to each, you pass one or
more sets of (X,Y) coordinates to give the new object's location, start and end
points, or diagonally opposite corners of a bounding box that encloses the shape:

id = canvas.create_line(fromX, fromY, toX, toY) # line start,
stop
id = canvas.create_oval(fromX, fromY, toX, toY) # two opposite
box corners
id = canvas.create_arc(fromX, fromY, toX, toY) # two opposite
oval corners
id = canvas.create_rectangle(fromX, fromY, toX, toY) # two opposite
corners

Other drawing calls specify just one (X,Y) pair, to give the location of the object's
upper-left corner:

id = canvas.create_image(250, 0, image=photo, anchor=NW) # embed a
photo
id = canvas.create_window(100, 100, window=widget) # embed a
widget
id = canvas.create_text(100, 280, text='Ham') # draw some
text

The canvas also provides a create_polygon method that accepts an arbitrary set of
coordinate arguments defining the end-points of connected lines; it's useful for
drawing more arbitrary kinds of shapes composed of straight lines.

In addition to coordinates, most of these drawing calls let you specify common
configuration options, such as outline width, fill color, outline color, and so on.
Individual object types have unique configuration options all their own too; for
instance, lines may specify the shape of an optional arrow, and text, widgets, and
images may all be anchored to a point of the compass (this looks like the packer's
anchor, but really gives a point on the object that is positioned at the (X,Y)
coordinates given in the create call; NW puts the upper-left corner at (X,Y)).

Perhaps the most important thing to notice here, though, is that Tkinter does most of
the "grunt" work for you -- when drawing graphics, you provide coordinates, and
shapes are automatically plotted and rendered in the pixel world. If you've ever done
any lower-level graphics work, you'll appreciate the difference.

8.5.2.3 Object identifiers and operations

Although not used by the canvas1 script, every object you put on a canvas has an
identifier, returned by the create_ method that draws or embeds the object (what
was coded as "id" in the last section's examples). This identifier can later be passed
to other methods that move the object to new coordinates, set its configuration
options, delete it from the canvas, raise or lower it among other overlapping objects,
and so on.

For instance, the canvas move method accepts both an object identifier and X and Y
offsets (not coordinates), and moves the named object by the offsets given:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 445

canvas.move(objectIdOrTag, offsetX, offsetY) # move object(s) by
offset

If this happens to move the object offscreen, it is simply clipped (not shown). Other
common canvas operations process objects too:

canvas.delete(objectIdOrTag) # delete object(s) from
canvas
canvas.tkraise(objectIdOrTag) # raise object(s) to
front
canvas.lower(objectIdOrTag) # lower object(s) below
others
canvas.itemconfig(objectIdOrTag, fill='red') # fill object(s) with
red color

Notice the tkraise name -- raise by itself is a reserved word in Python. Also note
that the itemconfig method is used to configure objects drawn on a canvas after
they have been created; use config to set configuration options for the canvas
itself. The best thing to notice here, though, is that because Tkinter is based on
structured objects, you can process a graphic object all at once; there is no need to
erase and redraw each pixel manually to implement a move or raise.

8.5.2.4 Canvas object tags

But it gets even better: In addition to object identifiers, you can also perform canvas
operations on entire sets of objects at once, by associating them all with a tag , a
name that you make up and apply to objects on the display. Tagging objects in a
Canvas is at least similar in spirit to tagging substrings in the Text widget we studied
in the prior section. In general terms, canvas operation methods accept either a
single object's identifier or a tag name.

For example, you can move an entire set of drawn objects by associating all with the
same tag, and passing the tag name to the canvas move method. In fact, this is why
move takes offsets, not coordinates -- when given a tag, each object associated with
the tag is moved by the same (X,Y) offsets; absolute coordinates would make all the
tagged objects appear on top of each other instead.

To associate an object with a tag, either specify the tag name in the object drawing
call's tag option, or call the addtag_withtag(tag, objectIdOrTag) canvas method
(or its relatives). For instance:

canvas.create_oval(x1, y1, x2, y2, fill='red', tag='bubbles')
canvas.create_oval(x3, y3, x4, y4, fill='red', tag='bubbles')
objectId = canvas.create_oval(x5, y5, x6, y6, fill='red')
canvas.addtag_withtag('bubbles', objectId)
canvas.move('bubbles', diffx, diffy)

This makes three ovals and moves them at the same time by associating them all
with the same tag name. Many objects can have the same tag, many tags can refer
to the same object, and each tag can be individually configured and processed.

As in Text, Canvas widgets have predefined tag names too: tag "all" refers to all
objects on the canvas, and "current" refers to whatever object is under the mouse

Programming Python, 2nd Edition, O’Reilly

IT-SC book 446

cursor. Besides asking for an object under the mouse, you can also search for
objects with the find_ canvas methods: canvas.find_closest(X,Y), for instance,
returns a tuple whose first item is the identifier of the closest object to the supplied
coordinates -- handy after you've received coordinates in a general mouseclick event
callback.

We'll revisit the notion of canvas tags by example later in this chapter (see the
animation scripts near the end if you can't wait). Canvases support additional
operations and options that we don't have space to cover here (e.g., the canvas
postscript method lets you save the canvas in a postscript file). See later examples
in this book such as PyDraw for more details, and consult other Tk or Tkinter
references for an exhaustive list of canvas object options.

8.5.3 Scrolling Canvases

As demonstrated by Example 8-14, scrollbars can be cross-linked with a canvas
using the same protocols we used to add them to listboxes and text earlier, but with
a few unique requirements.

Example 8-14. PP2E\Gui\Tour\scrolledcanvas.py

from Tkinter import *

class ScrolledCanvas(Frame):
 def __init__(self, parent=None, color='brown'):
 Frame.__init__(self, parent)
 self.pack(expand=YES, fill=BOTH) # make me
expandable
 canv = Canvas(self, bg=color, relief=SUNKEN)
 canv.config(width=300, height=200) # display
area size
 canv.config(scrollregion=(0,0,300, 1000)) # canvas size
corners
 canv.config(highlightthickness=0) # no pixels
to border

 sbar = Scrollbar(self)
 sbar.config(command=canv.yview) # xlink sbar
and canv
 canv.config(yscrollcommand=sbar.set) # move one
moves other
 sbar.pack(side=RIGHT, fill=Y) # pack
first=clip last
 canv.pack(side=LEFT, expand=YES, fill=BOTH) # canv
clipped first

 for i in range(10):
 canv.create_text(150, 50+(i*100), text='spam'+str(i),
fill='beige')
 canv.bind('<Double-1>', self.onDoubleClick) # set event
handler
 self.canvas = canv
 def onDoubleClick(self, event):
 print event.x, event.y

Programming Python, 2nd Edition, O’Reilly

IT-SC book 447

 print self.canvas.canvasx(event.x),
self.canvas.canvasy(event.y)

if __name__ == '__main__': ScrolledCanvas().mainloop()

This script makes the window in Figure 8-22. It is similar to prior scroll examples,
but scrolled canvases introduce two kinks:

You can specify the size of the displayed view window, but must specify the size of
the scrollable canvas at large.

In addition, you must map between event view area coordinates and overall canvas
coordinates if the canvas is larger than its view area. In a scrolling scenario, the
canvas will almost always be larger than the part displayed, so mapping is often
needed when canvases are scrolled.

Figure 8-22. scrolledcanvas live

Sizes are given as configuration options. To specify a view area size, use canvas
width and height options. To specify an overall canvas size, give the (X,Y)
coordinates of the upper-left and lower-right corners of the canvas in a four-item
tuple passed to the scrollregion option. If no view area size is given, a default size
is used. If no scrollregion is given, it defaults to the view area size; this makes the
scrollbar useless, since the view is assumed to hold the entire canvas.

Mapping coordinates is a bit more subtle. If the scrollable view area associated with
a canvas is smaller than the canvas at large, then the (X,Y) coordinates returned in
event objects are view area coordinates, not overall canvas coordinates. You'll
generally want to scale the event coordinates to canvas coordinates, by passing
them to the canvasx and canvasy canvas methods before using them to process
objects.

For example, if you run the scrolled canvas script and watch the messages printed on
mouse double-clicks, you'll notice that the event coordinates are always relative to
the displayed view window, not the overall canvas:

C:\...\PP2E\Gui\Tour>python scrolledcanvas.py
2 0 event x,y when scrolled to top of canvas
2.0 0.0 canvas x,y -same, as long as no border
pixels
150 106

Programming Python, 2nd Edition, O’Reilly

IT-SC book 448

150.0 106.0
299 197
299.0 197.0
3 2 event x,y when scrolled to bottom of canvas
3.0 802.0 canvas x,y -y differs radically
296 192
296.0 992.0
152 97 when scrolled to a mid point in the canvas
152.0 599.0
16 187
16.0 689.0

Here, the mapped canvas X is always the same as the canvas X because the display
area and canvas are both set at 300 pixels wide (it would be off by two pixels due to
automatic borders if not for the script's highlightthickness setting). But notice
that the mapped Y is wildly different from the event Y if you click after a vertical
scroll. Without scaling, the event's Y incorrectly points to a spot much higher in the
canvas.

Most of this book's canvas examples need no such scaling -- (0,0) always maps to
the upper-left corner of the canvas display in which a mouseclick occurs -- but just
because canvases are not scrolled. But see the PyTree program later in this book for
an example of a canvas with both horizontal and vertical scrolls, and dynamically
changed scroll region sizes.

As a rule of thumb, if your canvases scroll, be sure to scale event coordinates to true
canvas coordinates in callback handlers that care about positions. Some handlers
might not care if events are bound to individual drawn objects instead of the canvas
at large; but we need to talk more about events to see why.

8.5.4 Using Canvas Events

Like Text and Listbox, there is no notion of a single command callback for Canvas.
Instead, canvas programs generally use other widgets, or the lower-level bind call to
set up handlers for mouse-clicks, key-presses, and the like, as in Example 8-14.
Example 8-15 shows how to bind events for the canvas itself, in order to implement
a few of the more common canvas drawing operations.

Example 8-15. PP2E\Gui\Tour\canvasDraw.py

draw elastic shapes on a canvas on drag, move on right click;
see canvasDraw_tags*.py for extensions with tags and animation

from Tkinter import *
trace = 0

class CanvasEventsDemo:
 def __init__(self, parent=None):
 canvas = Canvas(width=300, height=300, bg='beige')
 canvas.pack()
 canvas.bind('<ButtonPress-1>', self.onStart) # click
 canvas.bind('<B1-Motion>', self.onGrow) # and drag

Programming Python, 2nd Edition, O’Reilly

IT-SC book 449

 canvas.bind('<Double-1>', self.onClear) # delete all
 canvas.bind('<ButtonPress-3>', self.onMove) # move latest
 self.canvas = canvas
 self.drawn = None
 self.kinds = [canvas.create_oval, canvas.create_rectangle]
 def onStart(self, event):
 self.shape = self.kinds[0]
 self.kinds = self.kinds[1:] + self.kinds[:1] # start
dragout
 self.start = event
 self.drawn = None
 def onGrow(self, event): # delete and
redraw
 canvas = event.widget
 if self.drawn: canvas.delete(self.drawn)
 objectId = self.shape(self.start.x, self.start.y, event.x,
event.y)
 if trace: print objectId
 self.drawn = objectId
 def onClear(self, event):
 event.widget.delete('all') # use tag all
 def onMove(self, event):
 if self.drawn: # move to
click spot
 if trace: print self.drawn
 canvas = event.widget
 diffX, diffY = (event.x - self.start.x), (event.y -
self.start.y)
 canvas.move(self.drawn, diffX, diffY)
 self.start = event

if __name__ == '__main__':
 CanvasEventsDemo()
 mainloop()

This script intercepts and processes three mouse-controlled actions:

Clearing the canvas

To erase everything on the canvas, the script binds the double left-click event to run
the canvas's delete method with tag "all" -- again, a built-in tag that associates
every object on the screen. Notice that the canvas widget clicked is available in the
event object passed in to the callback handler (it's also available as self.canvas).

Dragging out object shapes

Pressing the left mouse button and dragging (moving it while the button is still
pressed) creates a rectangle or oval shape as you drag. This is often called dragging
out an object -- the shape grows and shrinks in an elastic, rubber-band fashion as
you drag the mouse, and winds up with a final size and location given by the point
where you release the mouse button.

To make this work in Tkinter, all you need to do is delete the old shape and draw
another as each drag event fires; both delete and draw operations are fast enough to
achieve the elastic drag-out effect. Of course, to draw a shape to the current mouse

Programming Python, 2nd Edition, O’Reilly

IT-SC book 450

location you need a starting point; and to delete before a redraw you also must
remember the last drawn object's identifier. Two events come into play: the initial
button press event saves the start coordinates (really, the initial press event object,
which contains the start coordinates), and mouse movement events erase and
redraw from the start coordinates to the new mouse coordinates, and save the new
object ID for the next event's erase.

Object moves

When you click the right mouse button (button 3), the script moves the most
recently drawn object to the spot you clicked in a single step. The event argument
gives the (X,Y) coordinates of the spot clicked, and we subtract the saved starting
coordinates of the last drawn object to get the (X,Y) offsets to pass to the canvas
move method (again, move does not take positions). Remember to scale event
coordinates first if your canvas is scrolled.

The net result creates a window like that shown in Figure 8-23 after user interaction.
As you drag out objects, the script alternates between ovals and rectangles; set the
script's trace global to watch object identifiers scroll on stdout as new objects are
drawn during a drag. This screen shot was taken after a few object drag-outs and
moves, but you'd never tell from looking at it; run this example on your own
computer to get a better feel for the operations it supports.

Figure 8-23. canvasDraw after a few drags and moves

8.5.4.1 Binding events on specific items

Much like we did for the Text widget, it is also possible to bind events for one or
more specific objects drawn on a Canvas with its tag_bind method. This call accepts
either a tag name string or object ID in its first argument. For instance, you can
register a different callback handler for mouseclicks on every drawn item, or on any
in a group of drawn and tagged items, rather than for the entire canvas at large.
Example 8-16 binds a double-click handler in both the canvas itself and on two
specific text items within it, to illustrate the interfaces; it generates Figure 8-24
when run.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 451

Example 8-16. PP2E\Gui\Tour\canvas-bind.py

from Tkinter import *

def onCanvasClick(event):
 print 'Got canvas click', event.x, event.y, event.widget
def onObjectClick(event):
 print 'Got object click', event.x, event.y, event.widget,
 print event.widget.find_closest(event.x, event.y) # find text
object's id

root = Tk()
canv = Canvas(root, width=100, height=100)
obj1 = canv.create_text(50, 30, text='Click me one')
obj2 = canv.create_text(50, 70, text='Click me two')

canv.bind('<Double-1>', onCanvasClick) # bind to whole
canvas
canv.tag_bind(obj1, '<Double-1>', onObjectClick) # bind to drawn
item
canv.tag_bind(obj2, '<Double-1>', onObjectClick) # a tag works
here too
canv.pack()
root.mainloop()

Figure 8-24. Canvas-bind window

Object IDs are passed to tag_bind here, but a tag name string would work too.
When you click outside the text items in this script's window, the canvas event
handler fires; when either text item is clicked, both the canvas and text object
handlers fire. Here is the stdout result after clicking on the canvas twice and on
each text item once; the script uses the canvas find_closest method to fetch the
object ID of the particular text item clicked (the one closest to the click spot):

C:\...\PP2E\Gui\Tour>python canvas-bind.py
Got canvas click 3 6 .8217952 canvas clicks
Got canvas click 46 52 .8217952
Got object click 51 33 .8217952 (1,) first text click
Got canvas click 51 33 .8217952
Got object click 55 69 .8217952 (2,) second text click
Got canvas click 55 69 .8217952

We'll revisit the notion of events bound to canvases in the PyDraw example in
Chapter 9, where we'll use them to implement a feature-rich paint and motion
program. We'll also return to the canvasDraw script later in this chapter, to add tag-
based moves and simple animation with time-based tools, so keep this page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 452

bookmarked for reference. First, though, let's follow a promising side road to explore
another way to lay out widgets within windows.

8.6 Grids

So far, we've been arranging widgets in displays by calling their pack methods -- an
interface to the packer geometry manager in Tkinter. This section introduces grid,
the most commonly used alternative to the packer.

As we learned earlier, Tkinter geometry managers work by arranging child widgets
within a parent container widget (parents are typically Frames or top-level windows).
When we ask a widget to pack or grid itself, we're really asking its parent to place it
among its siblings. With pack, we provide constraints and let the geometry manager
lay out widgets appropriately. With grid, we arrange widgets in rows and columns in
their parent, as though the parent container widget was a table.

Gridding is an entirely distinct geometry management system in Tkinter. In fact, at
this writing pack and grid are mutually exclusive for widgets that have the same
parent -- within a given parent container, we can either pack widgets or grid them,
but not both. That makes sense, if you realize that geometry managers do their jobs
at parents, and a widget can only be arranged by one geometry manager.

At least within one container, though, that means that you must pick either grid or
pack and stick with it. So why grid, then? In general, grid is handy for laying out
form-like displays; arranging input fields in row/column fashion can be at least as
easy as laying out the display with nested frames. As we'll see, though, grid doesn't
offer substantial code or complexity savings compared to equivalent packer solutions
in practice, especially when things like resizability are added to the GUI picture. In
other words, the choice between the two layout schemes is largely one of style, not
technology.

8.6.1 Grid Basics

Let's start off with the basics; Example 8-17 lays out a table of Labels and Entry
fields -- widgets we've already met. Here, though, they are arrayed on a grid.

Example 8-17. PP2E\Gui\Tour\Grid\grid1.py

from Tkinter import *
colors = ['red', 'green', 'orange', 'white', 'yellow', 'blue']

r = 0
for c in colors:
 Label(text=c, relief=RIDGE, width=25).grid(row=r, column=0)
 Entry(bg=c, relief=SUNKEN, width=50).grid(row=r, column=1)
 r = r+1

mainloop()

When run, this script creates the window shown in Figure 8-25, pictured with data
typed into a few of the input fields. Once again, this book won't do justice to the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 453

colors displayed on the right, so you'll have to stretch your imagination a little (or
run this script on a computer of your own).

Figure 8-25. The grid geometry manager in pseudo-living color

This is a classic input form layout: labels on the left describe data to type into entry
fields on the right. Just for fun, this script displays color names on the left and the
entry field of the corresponding color on the right. It achieves its nice table-like
layout with the following two lines:

 Label(...).grid(row=r, column=0)
 Entry(...).grid(row=r, column=1)

From the perspective of the container window, the label is gridded to column in the
current row number (a counter that starts at 0), and the entry is placed in column 1.
The upshot is that the grid system lays out all the labels and entries in a two-
dimensional table automatically, with evenly sized columns large enough to hold the
largest item in each column.

8.6.2 grid Versus pack

Time for some compare-and-contrast: Example 8-18 implements the same sort of
colorized input form with both grid and pack, to make it easy to see the differences
between the two approaches.

Example 8-18. PP2E\Gui\Tour\Grid\grid2.py

add equivalent pack window

from Tkinter import *
colors = ['red', 'green', 'yellow', 'orange', 'blue', 'navy']

def gridbox(parent):
 r = 0
 for c in colors:
 l = Label(parent, text=c, relief=RIDGE, width=25)
 e = Entry(parent, bg=c, relief=SUNKEN, width=50)
 l.grid(row=r, column=0)
 e.grid(row=r, column=1)
 r = r+1

def packbox(parent):
 for c in colors:
 f = Frame(parent)
 l = Label(f, text=c, relief=RIDGE, width=25)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 454

 e = Entry(f, bg=c, relief=SUNKEN, width=50)
 f.pack(side=TOP)
 l.pack(side=LEFT)
 e.pack(side=RIGHT)

if __name__ == '__main__':
 root = Tk()
 gridbox(Toplevel())
 packbox(Toplevel())
 Button(root, text='Quit', command=root.quit).pack()
 mainloop()

The basic label and entry widgets are created the same way by these two functions,
but they are arranged in very different ways:

With pack, we use side options to attach labels and rows on the left and right, and
create a Frame for each row (itself attached to the parent's top).

With grid, we instead assign each widget a row and column position in the implied
tabular grid of the parent, using options of the same name.

The difference in the amount code required for each scheme is roughly a wash: the
pack scheme must create a Frame per row, but the grid scheme must keep track of
the current row number. Running the script makes the windows in Figure 8-26.

Figure 8-26. Equivalent grid and pack windows

8.6.3 Combining grid and pack

Notice that the prior script passes a brand new Toplevel to each form constructor
function, so that the grid and pack versions wind up in distinct top-level windows.
Because the two geometry managers are mutually exclusive within a given parent,
we have to be careful not to mix them carelessly. For instance, Example 8-19 is able
to put both the packed and gridded widgets on the same window, but only by
isolating each in its own Frame container widget.

Example 8-19. PP2E\Gui\Tour\Grid\grid2-same.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 455

can't grid and pack in same parent container (e.g., root window)
but can mix in same window if done in different parent frames;

from Tkinter import *
from grid2 import gridbox, packbox

root = Tk()

Label(root, text='Grid:').pack()
frm = Frame(root, bd=5, relief=RAISED); frm.pack(padx=5, pady=5)
gridbox(frm)

Label(root, text='Pack:').pack()
frm = Frame(root, bd=5, relief=RAISED); frm.pack(padx=5, pady=5)
packbox(frm)

Button(root, text='Quit', command=root.quit).pack()
mainloop()

We get a composite window when this runs with two forms that look identical (Figure
8-27), but the two nested frames are actually controlled by completely different
geometry managers.

Figure 8-27. grid and pack in the same window

On the other hand, the sort of code in Example 8-20 fails badly, because it attempts
to use pack and grid at the same parent -- only one geometry manager can be used
on any one parent.

Example 8-20. PP2E\Gui\Tour\Grid\grid2-fails.py

FAILS-- can't grid and pack in same parent (root window)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 456

from Tkinter import *
from grid2 import gridbox, packbox

root = Tk()
gridbox(root)
packbox(root)
Button(root, text='Quit', command=root.quit).pack()
mainloop()

This script passes the same parent (the top-level window) to each function in an
effort to make both forms appear in one window. It also utterly hangs the Python
process on my machine, without ever showing any windows at all (on Windows 98, I
had to resort to Ctrl-Alt-Delete to kill it). Geometry manager combinations can be
subtle until you get the hang of this; to make this example work, for instance, we
simply need to isolate the grid box in a parent container all its own to keep it away
from the packing going on in the root window:

root = Tk()
frm = Frame(root)
frm.pack() # this works
gridbox(frm) # gridbox must have its own parent in which to
grid
packbox(root)
Button(root, text='Quit', command=root.quit).pack()
mainloop()

Again, today you must either pack or grid within one parent, but not both. It's
possible that this restriction may be lifted in the future, but seems unlikely given the
disparity in the two window manager schemes; try your Python to be sure.

8.6.4 Making Gridded Widgets Expandable

And now, some practical bits. The grids we've seen so far are fixed in size; they do
not grow when the enclosing window is resized by a user. Example 8-21 implements
an unreasonably patriotic input form with both grid and pack again, but adds the
configuration steps needed to make all widgets in both windows expand along with
their window on a resize.

Example 8-21. PP2E\Gui\Tour\Grid\grid3.py

add label and resizing

from Tkinter import *
colors = ['red', 'white', 'blue']

def gridbox(root):
 Label(root, text='Grid').grid(columnspan=2)
 r = 1
 for c in colors:
 l = Label(root, text=c, relief=RIDGE, width=25)
 e = Entry(root, bg=c, relief=SUNKEN, width=50)
 l.grid(row=r, column=0, sticky=NSEW)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 457

 e.grid(row=r, column=1, sticky=NSEW)
 root.rowconfigure(r, weight=1)
 r = r+1
 root.columnconfigure(0, weight=1)
 root.columnconfigure(1, weight=1)

def packbox(root):
 Label(root, text='Pack').pack()
 for c in colors:
 f = Frame(root)
 l = Label(f, text=c, relief=RIDGE, width=25)
 e = Entry(f, bg=c, relief=SUNKEN, width=50)
 f.pack(side=TOP, expand=YES, fill=BOTH)
 l.pack(side=LEFT, expand=YES, fill=BOTH)
 e.pack(side=RIGHT, expand=YES, fill=BOTH)

root = Tk()
gridbox(Toplevel(root))
packbox(Toplevel(root))
Button(root, text='Quit', command=root.quit).pack()
mainloop()

When run, this script makes the scene in Figure 8-28. It builds distinct pack and grid
windows again, with entry fields on the right colored red, white, and blue (or for
readers not working along on a computer: gray, white, and an arguably darker
gray).

Figure 8-28. grid and pack windows before resizing

This time, though, resizing both windows with mouse drags makes all their
embedded labels and entry fields expand along with the parent window, as we see in
Figure 8-29.

Figure 8-29. grid and pack windows resized

Programming Python, 2nd Edition, O’Reilly

IT-SC book 458

8.6.4.1 Resizing in grids

Now that I've shown you what these windows do, I need to explain how they do it.
We learned earlier how to make widgets expand with pack: we use expand and fill
options to increase space allocations and stretch into them. To make expansion work
for widgets arranged by grid, we need to use different protocols: rows and columns
must be marked with a weight to make them expandable, and widgets must also be
made sticky so that they are stretched within their allocated grid cell:

Heavy rows and columns

With pack, we make each row expandable by making the corresponding Frame
expandable, with expand=YES and fill=BOTH. Gridders must be a bit more specific:
to get full expandability, call the grid container's rowconfig method for each row,
and its columnconfig for each column. To both methods, pass a weight option with a
value greater than zero to enable rows and columns to expand. Weight defaults to
zero (which means no expansion), and the grid container in this script is just the
top-level window. Using different weights for different rows and columns makes
them grow at proportionally different rates.

Sticky widgets

With pack, we use fill options to stretch widgets to fill their allocated space
horizontally or vertically, and anchor options to position widgets within their
allocated space. With grid , the sticky option serves the roles of both fill and
anchor in the packer. Gridded widgets can optionally be made sticky on one side of
their allocated cell space (like anchor) or more than one side to make them stretch
(like fill). Widgets can be made sticky in four directions -- N, S, E, and W, and
concatenations of these letters specify multiple-side stickiness. For instance, a sticky
setting of W left-justifies the widget in its allocated space (like a packer anchor=W),
and NS stretches the widget vertically within its allocated space (like a packer
fill=Y).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 459

Widget stickiness hasn't been useful in examples thus far because the layouts were
regularly sized (widgets were no smaller than their allocated grid cell space), and
resizes weren't supported at all. Here, this script specifies NSEW stickiness to make
widgets stretch in all directions with their allocated cells.

Different combinations of row and column weights and sticky settings generate
different resize effects. For instance, deleting the columnconfig lines in the grid3
script makes the display expand vertically but not horizontally. Try changing some of
these settings yourself to see the sorts of effects they produce.

8.6.4.2 Spanning columns and rows

There is one other big difference in how the grid3 script configures its windows.
Both the grid and pack windows display a label on the top that spans the entire
window. For the packer scheme, we simply make a label attached to the top of the
window at large (remember, side defaults to TOP):

Label(root, text='Pack').pack()

Because this label is attached to the window's top before any row frames are, it
appears across the entire window top as expected. But laying out such a label takes
a bit more work in the rigid world of grids; the first line of the grid implementation
function does it like this:

Label(root, text='Grid').grid(columnspan=2)

To make a widget span across multiple columns, we pass grid a columnspan option
with spanned-column count. Here, it just specifies that the label at the top of the
window should stretch over the entire window -- across both the label and entry
columns. To make a widget span across multiple rows, pass a rowspan option
instead. The regular layouts of grids can be either an asset or a liability, depending
on how regular your user interface will be; these two span settings let you specify
exceptions to the rule when needed.

So which geometry manager comes out on top here? When resizing is factored in, as
in this script, gridding actually becomes slightly more complex (in fact, gridding
requires three extra lines of code here). On the other hand, grid is nice for simple
forms, and your grids and packs may vary.

8.6.5 Laying Out Larger Tables with grid

So far, we've been building two-column arrays of labels and input fields. That's
typical of input forms, but the Tkinter grid manager is capable of configuring much
grander matrixes. For instance, Example 8-22 builds a five-row by four-column array
of labels, where each label simply displays its row and column number (row.col).
When run, the window in Figure 8-30 appears on screen.

Example 8-22. PP2E\Gui\Tour\Grid\grid4.py

simple 2d table

Programming Python, 2nd Edition, O’Reilly

IT-SC book 460

from Tkinter import *

for i in range(5):
 for j in range(4):
 l = Label(text='%d.%d' % (i, j), relief=RIDGE)
 l.grid(row=i, column=j, sticky=NSEW)

mainloop()

Figure 8-30. A 5 x 4 array of coordinates labels

If you think this is starting to look like it might be a way to program spreadsheets,
you may be on to something. Example 8-23 takes this idea a bit further, and adds a
button that prints the table's current input field values to the stdout stream
(usually, to the console window).

Example 8-23. PP2E\Gui\Tour\Grid\grid5.py

2d table of input fields

from Tkinter import *

rows = []
for i in range(5):
 cols = []
 for j in range(4):
 e = Entry(relief=RIDGE)
 e.grid(row=i, column=j, sticky=NSEW)
 e.insert(END, '%d.%d' % (i, j))
 cols.append(e)
 rows.append(cols)

def onPress():
 for row in rows:
 for col in row:
 print col.get(),
 print

Button(text='Fetch', command=onPress).grid()
mainloop()

When run, this script creates the window in Figure 8-31, and saves away all the
grid's entry field widgets in a two-dimensional list of lists. When its Fetch button is
pressed, the script steps through the saved list of lists of entry widgets, to fetch and
display all the current values in the grid. Here is the output of two Fetch presses --
one before I made input field changes, and one after:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 461

C:\...\PP2E\Gui\Tour\Grid>python grid5.py
0.0 0.1 0.2 0.3
1.0 1.1 1.2 1.3
2.0 2.1 2.2 2.3
3.0 3.1 3.2 3.3
4.0 4.1 4.2 4.3
0.0 0.1 0.2 42
1.0 1.1 1.2 43
2.0 2.1 2.2 44
3.0 3.1 3.2 45
4.0 4.1 4.2 46

Figure 8-31. A larger grid of input fields

Now that we know how to build and step through arrays of input fields, let's add a
few more useful buttons. Example 8-24 adds another row to display column sums,
and buttons to clear all fields to zero and calculate column sums.

Example 8-24. PP2E\Gui\Tour\Grid\grid5b.py

add column sums, clearing

from Tkinter import *
numrow, numcol = 5, 4

rows = []
for i in range(numrow):
 cols = []
 for j in range(numcol):
 e = Entry(relief=RIDGE)
 e.grid(row=i, column=j, sticky=NSEW)
 e.insert(END, '%d.%d' % (i, j))
 cols.append(e)
 rows.append(cols)

sums = []
for i in range(numcol):
 l = Label(text='?', relief=SUNKEN)
 l.grid(row=numrow, col=i, sticky=NSEW)
 sums.append(l)

def onPrint():
 for row in rows:
 for col in row:
 print col.get(),
 print

Programming Python, 2nd Edition, O’Reilly

IT-SC book 462

 print

def onSum():
 t = [0] * numcol
 for i in range(numcol):
 for j in range(numrow):
 t[i]= t[i] + eval(rows[j][i].get())
 for i in range(numcol):
 sums[i].config(text=str(t[i]))

def onClear():
 for row in rows:
 for col in row:
 col.delete('0', END)
 col.insert(END, '0.0')
 for sum in sums:
 sum.config(text='?')

import sys
Button(text='Sum', command=onSum).grid(row=numrow+1, column=0)
Button(text='Print', command=onPrint).grid(row=numrow+1, column=1)
Button(text='Clear', command=onClear).grid(row=numrow+1, column=2)
Button(text='Quit', command=sys.exit).grid(row=numrow+1, column=3)
mainloop()

Figure 8-32 shows this script at work summing up four columns of numbers; to get a
different size table, change the numrow and numcol variables at the top of the script.

Figure 8-32. Adding column sums

And finally, Example 8-25 is one last extension that is coded as a class for
reusability, and adds a button to load the table from a data file. Data files are
assumed to be coded as one line per row, with whitespace (spaces or tabs) between
each column within a row line. Loading a file of data automatically resizes the table
GUI to accommodate the number of columns in the table.

Example 8-25. PP2E\Gui\Tour\Grid\grid5c.py

recode as an embeddable class

from Tkinter import *
from PP2E.Gui.Tour.quitter import Quitter # reuse, pack, and
grid

class SumGrid(Frame):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 463

 def __init__(self, parent=None, numrow=5, numcol=5):
 Frame.__init__(self, parent)
 self.numrow = numrow # I am a frame
container
 self.numcol = numcol # caller packs or
grids me
 self.makeWidgets(numrow, numcol) # else only usable
one way

 def makeWidgets(self, numrow, numcol):
 self.rows = []
 for i in range(numrow):
 cols = []
 for j in range(numcol):
 e = Entry(self, relief=RIDGE)
 e.grid(row=i+1, column=j, sticky=NSEW)
 e.insert(END, '%d.%d' % (i, j))
 cols.append(e)
 self.rows.append(cols)

 self.sums = []
 for i in range(numcol):
 l = Label(self, text='?', relief=SUNKEN)
 l.grid(row=numrow+1, col=i, sticky=NSEW)
 self.sums.append(l)

 Button(self, text='Sum', command=self.onSum).grid(row=0,
column=0)
 Button(self, text='Print', command=self.onPrint).grid(row=0,
column=1)
 Button(self, text='Clear', command=self.onClear).grid(row=0,
column=2)
 Button(self, text='Load', command=self.onLoad).grid(row=0,
column=3)
 Quitter(self).grid(row=0, column=4) # fails:
Quitter(self).pack()

 def onPrint(self):
 for row in self.rows:
 for col in row:
 print col.get(),
 print
 print

 def onSum(self):
 t = [0] * self.numcol
 for i in range(self.numcol):
 for j in range(self.numrow):
 t[i]= t[i] + eval(self.rows[j][i].get())
 for i in range(self.numcol):
 self.sums[i].config(text=str(t[i]))

 def onClear(self):
 for row in self.rows:
 for col in row:
 col.delete('0', END)
 col.insert(END, '0.0')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 464

 for sum in self.sums:
 sum.config(text='?')

 def onLoad(self):
 import string
 from tkFileDialog import *
 file = askopenfilename()
 if file:
 for r in self.rows:
 for c in r: c.grid_forget()
 for s in self.sums:
 s.grid_forget()
 filelines = open(file, 'r').readlines()
 self.numrow = len(filelines)
 self.numcol = len(string.split(filelines[0]))
 self.makeWidgets(self.numrow, self.numcol)
 row = 0
 for line in filelines:
 fields = string.split(line)
 for col in range(self.numcol):
 self.rows[row][col].delete('0', END)
 self.rows[row][col].insert(END, fields[col])
 row = row+1

if __name__ == '__main__':
 import sys
 root = Tk()
 root.title('Summer Grid')
 if len(sys.argv) != 3:
 SumGrid(root).pack() # .grid() works here too
 else:
 rows, cols = eval(sys.argv[1]), eval(sys.argv[2])
 SumGrid(root, rows, cols).pack()
 mainloop()

Notice that this module's SumGrid class is careful not to either grid or pack itself. In
order to be attachable to containers where other widgets are being gridded or
packed, it leaves its own geometry management ambiguous, and requires callers to
pack or grid its instances. It's okay for containers to pick either scheme for their own
children, because they effectively seal off the pack-or-grid choice. But attachable
component classes that aim to be reused under both geometry managers cannot
manage themselves, because they cannot predict their parent's policy.

This is a fairly long example that doesn't say much else about gridding or widgets in
general, so I'll leave most of it as suggested reading and just show what it does.
Figure 8-33 shows the initial window created by this script after changing the last
column and requesting a sum.

Figure 8-33. Adding data file loads

Programming Python, 2nd Edition, O’Reilly

IT-SC book 465

By default, the class makes the 5-by-5 grid here, but we can pass in other
dimensions to both the class constructor and the script's command line. When you
press the Load button, you get the standard file selection dialog we met earlier on
this tour (Figure 8-34).

Figure 8-34. Opening a data file for SumGrid

Data file grid-data1.txt contains seven rows and six columns of data:

C:\...\PP2E\Gui\Tour\Grid>type grid5-data1.txt
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

Loading this into our GUI makes the dimensions of the grid change accordingly -- the
class simply reruns its widget construction logic after erasing all the old entry
widgets with the grid_forget method.[3] Figure 8-35 captures the scene after a file
load.

[3] grid_forget unmaps gridded widgets, and so effectively erases them from the display.
Also see the widget pack_forget and window withdraw methods used in the after event
"alarm" examples of the next section, for other ways to erase and redraw GUI components.

Figure 8-35. Data file loaded, displayed, and summed

Programming Python, 2nd Edition, O’Reilly

IT-SC book 466

Data file grid5-data2.txt has the same dimensions, but contains expressions in two
of its columns, not just simple numbers. Because this script converts input field
values with the Python eval built-in function, any Python syntax will work in this
table's fields, as long as it can be parsed and evaluated within the scope of the onSum
method:

C:\...\PP2E\Gui\Tour\Grid>type grid5-data2.txt
1 2 3 2*2 5 6
1 3-1 3 2<<1 5 6
1 5%3 3 pow(2,2) 5 6
1 2 3 2**2 5 6
1 2 3 [4,3][0] 5 6
1 {'a':2}['a'] 3 len('abcd') 5 6
1 abs(-2) 3 eval('2+2') 5 6

Summing these fields runs the Python code they contain, as seen in Figure 8-36.
This can be a powerful feature; imagine a full-blown spreadsheet grid, for instance --
field values could be Python code "snippets" that compute values on the fly, call
functions in modules, even download current stock quotes over the Internet with
tools we'll meet in the next part of this book.

It's also a potential dangerous tool -- a field might just contain an expression that
erases your hard drive! If you're not sure what expressions may do, either don't use
eval (convert with more limited built-in functions like int and float instead), or see
Chapter 15 for details on the Python rexec restricted-execution mode module.

Figure 8-36. Python expressions in the data and table

Of course, this still is nowhere near a true spreadsheet program; further mutations
towards that goal are left as exercises. I should also point out that there is more to
gridding than we have time to present fully here. For instance, by creating
subframes that have grids of their own, we can build up more sophisticated layouts
in much the same way as nested frames arranged with the packer. For now, let's
move on to one last widget survey topic.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 467

8.7 Time Tools, Threads, and Animation

The last stop on our widget tour is the most unique. Tkinter also comes with a
handful of tools that have to do with the event-driven programming model, not
graphics displayed on a computer screen.

Some GUI applications need to perform background activities periodically. For
example, to "blink" a widget's appearance, we'd like to register a callback handler to
be invoked at regular time intervals. Similarly, it's not a good idea to let a long-
running file operation block other activity in a GUI; if the event loop could be forced
to update periodically, the GUI could remain responsive. Tkinter comes with tools for
both scheduling such delayed actions and forcing screen updates:

widget.after(milliseconds, function, *args)

This tool schedules the function to be called after a number of milliseconds.
function can be any callable Python object: a function, bound method, etc. This
form of the call does not pause the program -- the callback function is run later from
the normal Tkinter event loop. The milliseconds value can be a floating point
number, to specify fractions of a second. This returns an ID which can be passed to
after_cancel to cancel the callback. Since this method is so commonly used, I'll say
more about it by example in a moment.

widget.after(milliseconds)

This tool pauses the program for a number of milliseconds. For example, an
argument of 5000 pauses for 5 seconds. This is essentially the same as Python's
library function time.sleep, and both calls can be used to add a delay in time-
sensitive displays (e.g., animation programs like PyDraw and the simpler examples
ahead).

widget.after_idle(function, *args)

This tool schedules the function to be called when there are no more pending events
to process. That is, function becomes an idle handler, which is invoked when the
GUI isn't busy doing anything else.

widget.after_cancel(id)

This tool cancels a pending after callback event before it occurs.

widget.update()

This tool forces Tkinter to process all pending events in the event queue, including
geometry resizing, and widget updates and redraws. You can call this periodically
from a long-running callback handler to refresh the screen and perform any updates
to it that your handler has already requested. If you don't, your updates may not
appear on screen until your callback handler exits. In fact, your display may hang
completely during long-running handlers if not manually updated (and handlers are
not run in threads, as described in the next section); the window won't even redraw
itself until the handler returns if covered and uncovered by another. For instance,
programs that animate by repeatedly moving an object and pausing must call for an

Programming Python, 2nd Edition, O’Reilly

IT-SC book 468

update before the end of the animation, or only the final object position will appear
on screen; worse, the GUI will be completely inactive until the animation callback
returns (see the simple animation examples later in this chapter, and PyDraw in the
next chapter).

widget.update_idletasks()

This tool processes any pending idle events. This may sometimes be safer than
after which has the potential to set up race (looping) conditions in some scenarios.
Tk widgets use idle events to display themselves.

_tkinter.createfilehandler(file, mask, function)

This tool schedules the function to be called when a file's status changes. The
function may be invoked when the file has data for reading, is available for writing,
or triggers an exception. File handlers are often used to process pipes or sockets,
since normal input/output requests can block the caller. This is not available on
Windows under Tk 8.0, and so won't be used in this book.

widget.wait_variable(var)
widget.wait_window(win)
widget.wait_visibility(win)

These tools pause the caller until a Tkinter variable changes its value, a window is
destroyed, or a window becomes visible. All of these enter a local event loop, such
that the application's mainloop continues to handle events. Note that var is a Tkinter
variable object (discussed earlier), not a simple Python variable. To use for modal
dialogs, first call widget.focus() (to set input focus) and widget.grab() (to make
a window be the only one active).

We won't go into further details on all of these tools here; see other Tk and Tkinter
documentation for more information.

8.7.1 Using Threads with GUIs

Keep in mind that for many programs, Python's thread support that we met in
Chapter 3, can serve some of the same roles as the Tkinter tools listed in the
previous section. For instance, to avoid blocking a GUI during a long-running file or
socket transfer, the transfer can simply be run in a spawned thread, while the rest of
the program continues to run normally. We'll meet such threaded GUI programs in
Part III (e.g., PyMailGui in Chapter 11). Similarly, GUIs that must watch for inputs
on pipes or sockets can do so in spawned threads (or after callbacks), without
blocking the GUI itself.

If you do use threads in Tkinter programs, however, only the main thread (the one
that built the GUI and started the mainloop) can make GUI calls. Even things like
the update method described in the previous section cannot be called from spawned
threads in a GUI program -- they'll likely trigger very strange program crashes. This
GUI thread story may be improved in future Python and Tkinter releases, but
imposes a few structural and platform-specific constraints today.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 469

For example, because spawned threads cannot perform GUI processing, they must
generally communicate with the main thread using global variables, as required by
the application. A thread that watches a socket, for instance, might simply set global
variables that trigger GUI changes in after event callbacks. Note that this is not a
Python or Tkinter limitation (it's much lower in the software hierarchy that runs your
GUI), and may go away in the future. In addition, some Tkinter canvas calls may
actually be thread-safe (see the animation script in Example 8-31). We'll revisit this
limitation later in this book, when we meet larger threaded GUI programs.

8.7.2 Using the after Method

The after method allows scripts to schedule a callback handler to be run at some
time in the future, and we'll use this often in later examples in this book. For
instance, in Chapter 9 we'll meet a clock program that uses after to wake up 10
times per second and check for a new time, and an image slideshow program that
uses after to schedule the next photo display (see PyClock and PyView). To
illustrate the basics of scheduled callbacks, Example 8-26 does something a bit
different.

Example 8-26. PP2E\Gui\Tour\alarm.py

#!/usr/local/bin/python
from Tkinter import *

class Alarm(Frame):
 def repeater(self): # on every N millisecs
 self.bell() # beep now
 self.stopper.flash() # flash button now
 self.after(self.msecs, self.repeater) # reschedule handler
 def __init__(self, msecs=1000): # default = 1 second
 Frame.__init__(self)
 self.msecs = msecs
 self.pack()
 stopper = Button(self, text='Stop the beeps!',
command=self.quit)
 stopper.pack()
 stopper.config(bg='navy', fg='white', bd=8)
 self.stopper = stopper
 self.repeater()

if __name__ == '__main__': Alarm(msecs=1000).mainloop()

This script builds the window in Figure 8-37 and periodically calls both the button
widget's flash method to make the button flash momentarily (it alternates colors
quickly), and the Tkinter bell method to call your system's sound interface. The
repeater method beeps and flashes once, and schedules a callback to be invoked
after a specific amount of time with the after method.

Figure 8-37. Stop the beeps!

Programming Python, 2nd Edition, O’Reilly

IT-SC book 470

But after doesn't pause the caller: callbacks are scheduled to occur in the
background, while the program performs other processing -- technically, as soon as
the Tk event loop is able to notice the time rollover. To make this work, repeater
calls after each time through, to reschedule the callback. Delayed events are one-
shot callbacks; to repeat the event, we need to reschedule.

The net effect is that when this script runs, it starts beeping and flashing once its
one-button window pops up. And it keeps beeping and flashing. And beeping. And
flashing. Other activities and GUI operations don't affect it. Even if the window is
iconified, the beeping continues because Tkinter timer events fire in the background.
You need to kill the window or press the button to stop the alarm. By changing the
msecs delay, you can make this beep as fast or slow as your system allows (some
platforms can't beep as fast as others). And this may or may not be the best demo
to launch in a crowded office, but at least you've been warned.

8.7.2.1 Hiding and redrawing widgets and windows

The button flash method flashes the widget, but it's easy to dynamically change
other appearance options of widgets like buttons, labels, and text, with the widget
config method. For instance, you can also achieve a flash-like effect by manually
reversing foreground and background colors with the widget config method, in
scheduled after callbacks. Just for fun, Example 8-27 specializes the alarm to go a
step further.

Example 8-27. PP2E\Gui\Tour\alarm-hide.py

from Tkinter import *
import alarm

class Alarm(alarm.Alarm): # change alarm
callback
 def repeater(self): # on every N millisecs
 self.bell() # beep now
 if self.shown:
 self.stopper.pack_forget() # hide or erase button
now
 else: # or reverse colors,
flash...
 self.stopper.pack()
 self.shown = not self.shown # toggle state for
next time
 self.after(self.msecs, self.repeater) # reschedule handler
 def __init__(self, msecs=1000): # default = 1 second
 self.shown = 0
 alarm.Alarm.__init__(self, msecs)

if __name__ == '__main__': Alarm(msecs=500).mainloop()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 471

When this script is run, the same window appears, but the button is erased or
redrawn on alternating timer events. The widget pack_forget method erases
(unmaps) a drawn widget, and pack makes it show up again; grid_forget and grid
similarly hide and show widgets in a grid. The pack_forget method is useful for
dynamically drawing and changing a running GUI. For instance, you can be selective
about which components are displayed, and build widgets ahead of time and show
them only as needed. Here, it just means that users must press the button while it's
displayed, or else the noise keeps going.

To hide and unhide the entire window instead of just one widget within it, use the
top-level window widget withdraw and deiconify methods. The withdraw method,
demonstrated in Example 8-28, completely erases the window and its icon (use
iconify if you want the window's icon to appear during a hide), and the state
method returns the window's current state ("normal", "iconic", or "withdrawn").
These are also useful to pop up prebuilt dialog windows dynamically, but are perhaps
less practical here.

Example 8-28. PP2E\Gui\Tour\alarm-withdraw.py

from Tkinter import *
import alarm

class Alarm(alarm.Alarm):
 def repeater(self): # on every N
millisecs
 self.bell() # beep now
 if self.master.state() == 'normal': # is window
displayed?
 self.master.withdraw() # hide entire window,
no icon
 else: # iconify shrinks to
an icon
 self.master.deiconify() # else redraw entire
window
 self.master.lift() # and raise above
others
 self.after(self.msecs, self.repeater) # reschedule handler

if __name__ == '__main__': Alarm().mainloop() # master = default Tk
root

This works the same, but the entire window appears or disappears on beeps -- you
have to press it when it's shown. There are lots of other effects you could add to the
alarm. Whether your buttons and windows should flash and disappear or not,
though, probably depends less on Tkinter technology than on your users' patience.

8.7.3 Simple Animation Techniques

Apart from the direct shape moves in the canvasDraw example, all of the GUIs
presented so far in this part of the book have been fairly static. This last section
shows you how to change that, by adding simple shape movement animations to the
canvas drawing example listed in Example 8-15. It also demonstrates the notion of
canvas tags -- the move operations performed here move all canvas objects

Programming Python, 2nd Edition, O’Reilly

IT-SC book 472

associated with a tag at once. All oval shapes move if you press "o", and all
rectangles move if you press "r"; as mentioned earlier, canvas operation methods
accept both object IDs and tag names.

But the main goal here is to illustrate simple animation techniques using the time-
based tools described earlier in this section. There are three basic ways to move
objects around a canvas:

By loops that use time.sleep to pause for fractions of a second between multiple
move operations, along with manual update calls. The script moves, sleeps, moves a
bit more, and so on. A time.sleep call pauses the caller, and so fails to return
control to the GUI event loop -- any new requests that arrive during a move are
deferred. Because of that, canvas.update must be called to redraw the screen after
each move, or else updates don't appear until the entire movement loop callback
finishes and returns. This is a classic long-running callback scenario; without manual
update calls, no new GUI events are handled until the callback returns in this scheme
(even window redraws).

By using the widget.after method to schedule multiple move operations to occur
every few milliseconds. Because this approach is based upon scheduled events
dispatched by Tkinter to your handlers, it allows multiple moves to occur in parallel,
and doesn't require canvas.update calls. You rely on the event loop to run moves,
so there's no reason for sleep pauses, and the GUI is not blocked while moves are in
progress.

By using threads to run multiple copies of the time.sleep pausing loops of the first
approach. Because threads run in parallel, a sleep in any thread blocks neither the
GUI nor other motion threads. GUIs should not be updated from spawned threads in
general (in fact, calling canvas.update from a spawned thread will likely crash the
GUI today), but some canvas calls such as movement seem to be thread safe in the
current implementation.

Of these three schemes, the first yields the smoothest animations but makes other
operations sluggish during movement, the second seems to yield slower motion than
the others but is safer than using threads in general, and the last two both allow
multiple objects to be in motion at the same time.

8.7.3.1 Using time.sleep loops

The next three sections demonstrate the code structure of all three approaches in
turn, with new subclasses of the canvasDraw example we met in Example 8-15.
Example 8-29 illustrates the first approach.

Example 8-29. PP2E\Gui\Tour\canvasDraw_tags.py

add tagged moves with time.sleep (not widget.after or threads);
time.sleep does not block the gui event loop while pausing, but
screen not redrawn until callback returns or widget.update call;
the currently running onMove callback gets exclusive attention
until it returns: others pause if press 'r' or 'o' during move;

Programming Python, 2nd Edition, O’Reilly

IT-SC book 473

from Tkinter import *
import canvasDraw, time

class CanvasEventsDemo(canvasDraw.CanvasEventsDemo):
 def __init__(self, parent=None):
 canvasDraw.CanvasEventsDemo.__init__(self, parent)
 self.canvas.create_text(75, 8, text='Press o and r to move
shapes')
 self.canvas.master.bind('<KeyPress-o>', self.onMoveOvals)
 self.canvas.master.bind('<KeyPress-r>', self.onMoveRectangles)
 self.kinds = self.create_oval_tagged,
self.create_rectangle_tagged
 def create_oval_tagged(self, x1, y1, x2, y2):
 objectId = self.canvas.create_oval(x1, y1, x2, y2)
 self.canvas.itemconfig(objectId, tag='ovals', fill='blue')
 return objectId
 def create_rectangle_tagged(self, x1, y1, x2, y2):
 objectId = self.canvas.create_rectangle(x1, y1, x2, y2)
 self.canvas.itemconfig(objectId, tag='rectangles', fill='red')
 return objectId
 def onMoveOvals(self, event):
 print 'moving ovals'
 self.moveInSquares(tag='ovals') # move all tagged
ovals
 def onMoveRectangles(self, event):
 print 'moving rectangles'
 self.moveInSquares(tag='rectangles')
 def moveInSquares(self, tag): # 5 reps of 4 times
per sec
 for i in range(5):
 for (diffx, diffy) in [(+20, 0), (0, +20), (-20, 0), (0, -
20)]:
 self.canvas.move(tag, diffx, diffy)
 self.canvas.update() # force screen
redraw/update
 time.sleep(0.25) # pause, but don't
block gui

if __name__ == '__main__':
 CanvasEventsDemo()
 mainloop()

All three of the scripts in this section create a window of blue ovals and red
rectangles as you drag new shapes out with the left mouse button. The drag-out
implementation itself is inherited from the superclass. A right mouse button click still
moves a single shape immediately, and a double-left click still clears the canvas too -
- other operations inherited from the original superclass. In fact, all this new script
really does is change the object creation calls to add tags and colors here, add a text
field, and add bindings and callbacks for motion. Figure 8-38 shows what this
subclass's window looks like after dragging out a few shapes to be animated.

Figure 8-38. Drag-out objects ready to be animated

Programming Python, 2nd Edition, O’Reilly

IT-SC book 474

The "o" and "r" keys are set up to start animation of all the ovals and rectangles
you've drawn, respectively. Pressing "o", for example, makes all the blue ovals start
moving synchronously. Objects are animated to mark out five squares around their
location, and move four times per second. New objects drawn while others are in
motion start to move too, because they are tagged. You need to run these live to get
a feel for the simple animations they implement, of course (you could try moving this
book back and forth and up and down, but it's not quite the same, and might look
silly in public places).

8.7.3.2 Using widget.after events

The main drawback of this first approach is that only one animation can be going at
once: if you press "r" or "o" while a move is in progress, the new request puts the
prior movement on hold until it finishes because each move callback handler
assumes the only thread of control while it runs. Screen updates are a bit sluggish
while moves are in progress too, because they only happen as often as manual
update calls are made (try a drag-out or a cover/uncover of the window during a
move to see for yourself). Example 8-30 specializes just the moveInSquares method
to remove such limitations.

Example 8-30. PP2E\Gui\Tour\canvasDraw_tags_after.py

###

similar, but with .after scheduled events, not time.sleep loops;
because these are scheduled events, this allows both ovals and
rectangles to be moving at the _same_ time and does not require
update calls to refresh the gui (only one time.sleep loop callback
can be running at once, and blocks others started until it returns);
the motion gets wild if you press 'o' or 'r' while move in progress,
though--multiple move updates start firing around the same time;
###

from Tkinter import *
import canvasDraw_tags

Programming Python, 2nd Edition, O’Reilly

IT-SC book 475

class CanvasEventsDemo(canvasDraw_tags.CanvasEventsDemo):
 def moveEm(self, tag, moremoves):
 (diffx, diffy), moremoves = moremoves[0], moremoves[1:]
 self.canvas.move(tag, diffx, diffy)
 if moremoves:
 self.canvas.after(250, self.moveEm, tag, moremoves)
 def moveInSquares(self, tag):
 allmoves = [(+20, 0), (0, +20), (-20, 0), (0, -20)] * 5
 self.moveEm(tag, allmoves)

if __name__ == '__main__':
 CanvasEventsDemo()
 mainloop()

This version lets you make both ovals and rectangles move at the same time -- drag
out a few ovals and rectangles, and then press "o" and then "r" right away to make
this go. In fact, try pressing both keys a few times; the more you press, the more
the objects move, because multiple scheduled events are firing and moving objects
from wherever they happen to be positioned. If you drag out a new shape during a
move, it starts moving immediately as before.

8.7.3.3 Using multiple time.sleep loop threads

Running animations in threads can sometimes achieve the same effect; it can be
dangerous to update the screen from a spawned thread in general, but works in this
example, at least on Windows. Example 8-31 runs each animation task as an
independent and parallel thread. That is, each time you press the "o" or "r" keys to
start an animation, a new thread is spawned to do the work. This works on Windows,
but failed on Linux at the time I was writing this book -- the screen is not updated as
threads change it, so you won't see any changes until later GUI events.

Example 8-31. PP2E\Gui\Tour\canvasDraw_tags_thread.py

###

similar, but run time.sleep loops in parallel with threads, not
.after events or single active time.sleep loop; because threads run
in parallel, this also allows ovals and rectangles to be moving at
the _same_ time and does not require update calls to refresh the gui:
in fact, calling .update() can make this _crash_ today, though some
canvas calls seem to be thread safe or else this wouldn't work at
all;
###

from Tkinter import *
import canvasDraw_tags
import thread, time

class CanvasEventsDemo(canvasDraw_tags.CanvasEventsDemo):
 def moveEm(self, tag):
 for i in range(5):
 for (diffx, diffy) in [(+20, 0), (0, +20), (-20, 0), (0, -
20)]:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 476

 self.canvas.move(tag, diffx, diffy)
 time.sleep(0.25) # pause this
thread only
 def moveInSquares(self, tag):
 thread.start_new_thread(self.moveEm, (tag,))

if __name__ == '__main__':
 CanvasEventsDemo()
 mainloop()

This version lets you move shapes at the same time just like Example 8-30, but this
time it's a reflection of threads running in parallel. In fact, this uses the same
scheme as the first time.sleep version. Here, though, there is more than one active
thread of control, so move handlers can overlap in time -- time.sleep only blocks
the calling thread, not the program at large. This seems to work (at least on
Windows), but it is usually safer to have your threads do number crunching only, and
let the main thread (the one that built the GUI) handle any screen updates. It's not
impossible that GUI threads may be better supported in later Tkinter releases, so see
more recent releases for more details.

8.7.3.4 Other animation options

We'll revisit animation in Chapter 9's PyDraw example; there, all three techniques
will be resurrected to move shapes, text, and photos to arbitrary spots on a canvas
marked with a mouseclick. And although the canvas widget's absolute coordinate
system make it the workhorse of most nontrivial animations, Tkinter animation in
general is limited mostly by your imagination. As we saw in the flashing and hiding
alarm examples earlier, it's easy to change the appearance of other kinds of widgets
dynamically too; you can even erase and redraw widgets and windows on the fly.

I should also note that the sorts of movement and animation techniques shown in
this chapter and the next are suitable for many game-like programs, but not all. For
more advanced 3D animation needs, be sure to also see the support in the PIL
extension package for common animation and movie file formats such as FLI and
MPEG. As currently implemented, Python is not widely used as the sole
implementation language of graphic-intensive game programs, but it can still be
used as both a prototyping and scripting language for such products.[4] And when
integrated with 3D graphics libraries, it can serve even broader roles. See
http://www.python.org for links to other available extensions in this domain.

[4] Origin Systems, a major game software development company, uses Python in this role to
script the animation in some of their games. At last report, their online game product Ultima
Online II was to be scripted with Python.

8.8 The End of the Tour

And that's a wrap for our tour around the Tkinter library. You have now seen all the
widgets and tools previewed at the end of Chapter 6 (flip back for a summary of
territory covered on this tour). For more details, watch for all of the tools introduced
here to appear again in larger GUI examples in Chapter 9, and the remainder of the
book at large. And consult Tk and Tkinter resources for options not listed explicitly
here; although other Tkinter options are analogous to those presented on this tour,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 477

the space I have for illustrating such options in this book is limited by both my
publisher and my fingers.

8.9 The PyDemos and PyGadgets Launchers

To close out this chapter, I want to show the implementations of the two GUIs used
to run major book examples. The following GUIs, PyDemos and PyGadgets, are
simply GUIs for launching other GUI programs. In fact, we've now come to the end
of the demo launcher story: both of the programs here interact with modules that we
met earlier in Chapter 8 and Chapter 3:

launchmodes.py starts independent Python programs portably.

Launcher.py finds programs, and ultimately runs both PyDemos and PyGadgets when
used by the self-configuring top-level launcher scripts.

LaunchBrowser.py spawns web browsers.

See Examples Example 3-24, Example 4-14, and Example 4-15 for the code for
these modules. The programs listed here add the GUI components to the program
launching system -- they simply provide easy-to-use pushbuttons that spawn most
of the larger examples in this text when pressed.

Both these scripts also assume that they will be run with the current working
directory set to their directory (they hardcode paths to other programs relative to
that). Either click on their names in a file explorer, or run them from a command-line
shell after a cd to the top-level PP2E examples root directory. These scripts could
allow invocations from other directories by prepending the PP2EHOME environment
variable's value to program script paths, but they were really only designed to be run
out of the PP2E root.

8.9.1 PyDemos Launcher Bar

The PyDemos script constructs a bar of buttons that run programs in demonstration
mode, not for day-to-day use. I use PyDemos to show off Python programs
whenever I can -- it's much easier to press its buttons than to run command lines or
fish through a file explorer GUI to find scripts. You should use PyDemos to start and
interact with examples presented in this book -- all of the buttons on this GUI
represent examples we will meet in later chapters.

To make this launcher bar even easier to run, drag it out to your desktop to generate
a clickable Windows shortcut (do something similar on other systems). Since this
script hardcodes command lines for running programs elsewhere in the examples
tree, it is also useful as an index to major book examples. Figure 8-39 shows what
PyDemos looks like when run on Windows; it looks slightly different but works the
same on Linux.

Figure 8-39. PyDemos with its pop-ups

Programming Python, 2nd Edition, O’Reilly

IT-SC book 478

The source code that constructs this scene is listed in Example 8-32. PyDemos
doesn't present much new in terms of GUI interface programming; its demoButton
function simply attaches a new button to the main window, spring-loaded to spawn a
Python program when pressed. To start programs, PyDemos calls an instance of the
launchmodes.PortableLauncher object we met at the end of Chapter 3 -- its role as
a Tkinter callback handler here is why a call operation is used to kick off the
launched program.

As pictured in Figure 8-39, PyDemos also constructs two pop-up windows when
buttons at the bottom of the main window are pressed -- an Info pop-up giving a
short description of the last demo spawned, and a Links pop-up containing
radiobuttons that open a local web browser on book-related sites when pressed:

The Info pop-up displays a simple message line, and changes its font every second
to draw attention to itself; since this can be a bit distracting, the pop-up starts out
iconified (click the Info button to see or hide it).

The Links pop-up's radiobuttons are much like hyperlinks in a web page, but this GUI
isn't a browser: when pressed, the portable LaunchBrowser script we met in a prior
chapter is used to find and start a web browser used to connect to the relevant site,
assuming you have an Internet connection.

PyDemos runs on Windows and Linux, but that's largely due to the inherent
portability of both Python and Tkinter. For more details, consult the source, which is
shown in Example 8-32.

Example 8-32. PP2E\PyDemos.pyw

###
#######
PyDemos.pyw
Programming Python, 2nd Edition (PP2E), 1999--2001

Programming Python, 2nd Edition, O’Reilly

IT-SC book 479

Launch major Python+Tk GUI examples from the book, in a
platform-neutral way. This file also serves as an index
to major program examples, though many book examples aren't
GUI-based, and so aren't listed here (e.g., see the Linux
gcc build scripts in the examples root directory for C
integration program pointers). Also see:

- PyGadgets.py, a simpler script for starting programs in
non-demo mode that you wish to use on a regular basis
- PyGadgets_bar.pyw, which creates a button bar for starting
all PyGadgets programs on demand, not all at once
- Launcher.py for starting programs without environment
settings--finds Python, sets PYTHONPATH, etc.
- Launch_*.py for starting PyDemos and PyGadgets with
Launcher.py--run these for a quick look
- LaunchBrowser.py for running example web pages with an
automatically-located web browser
- README-PP2E.txt, for general examples information

Internet-based demos live here:
http://starship.python.net/~lutz/PyInternetDemos.html
but this program tries to start a browser on the main web pages
automatically, either on the site above or on local page files.
Additional program comments were moved to file PyDemos.doc.txt
###
#######

import sys, time, os, launchmodes
from Tkinter import *

-live loads root pages off net, -file loads local files
InternetMode = '-file'

##################################
start building main gui windows
##################################

Root = Tk()
Root.title('PP2E Demos')

build message window
Stat = Toplevel()
Stat.protocol('WM_DELETE_WINDOW', lambda:0) # ignore wm delete
Stat.title('PP2E demo info')

Info = Label(Stat, text = 'Select demo',
 font=('courier', 20, 'italic'), padx=12, pady=12,
bg='lightblue')
Info.pack(expand=YES, fill=BOTH)

add launcher buttons with callback objects

demo launcher class
class Launcher(launchmodes.PortableLauncher): # use wrapped launcher
class

Programming Python, 2nd Edition, O’Reilly

IT-SC book 480

 def announce(self, text): # customize to set GUI
label
 Info.config(text=text)

def demoButton(name, what, where):
 b = Button(Root, bg='navy', fg='white', relief=RIDGE, border=4)
 b.config(text=name, command=Launcher(what, where))
 b.pack(side=TOP, expand=YES, fill=BOTH)

demoButton('PyEdit',
 'Text file editor', # edit
myself
 'Gui/TextEditor/textEditor.pyw PyDemos.pyw') # assume in
cwd
demoButton('PyView',
 'Image slideshow, plus note editor',
 'Gui/SlideShow/slideShowPlus.py Gui/gifs')
demoButton('PyDraw',
 'Draw and move graphics objects',
 'Gui/MovingPics/movingpics.py Gui/gifs')
demoButton('PyTree',
 'Tree data structure viewer',
 'Dstruct/TreeView/treeview.py')
demoButton('PyClock',
 'Analog/digital clocks',
 'Gui/Clock/clockStyles.py Gui/gifs')
demoButton('PyToe',
 'Tic-tac-toe game (AI)',
 'Ai/TicTacToe/tictactoe.py')
demoButton('PyForm', # view in-
memory dict
 'Persistent table viewer/editor', # or cwd shelve
of class
 #'Dbase/TableBrowser/formgui.py') # 0=do not
reinit shelve
 #'Dbase/TableBrowser/formtable.py shelve 0 pyformData-
1.5.2')
 'Dbase/TableBrowser/formtable.py shelve 1 pyformData')
demoButton('PyCalc',
 'Calculator, plus extensions',
 'Lang/Calculator/calculator_plusplus.py')
demoButton('PyMail',
 'Python+Tk pop/smtp email client',
 'Internet/Email/PyMailGui.py')
demoButton('PyFtp',
 'Python+Tk ftp clients',
 'Internet/Ftp/PyFtpGui.pyw')

if InternetMode == '-file':
 pagepath = os.getcwd() + '/Internet/Cgi-Web'
 demoButton('PyErrata',
 'Internet-based errata report system',
 'LaunchBrowser.py -file %s/PyErrata/pyerrata.html' %
pagepath)
 demoButton('PyMailCgi',
 'Browser-based pop/smtp email interface',

Programming Python, 2nd Edition, O’Reilly

IT-SC book 481

 'LaunchBrowser.py -file %s/PyMailCgi/pymailcgi.html' %
pagepath)
 demoButton('PyInternet',
 'Internet-based demo launcher page',
 'LaunchBrowser.py -file %s/PyInternetDemos.html' %
pagepath)
else:
 site = 'starship.python.net/~lutz'
 demoButton('PyErrata',
 'Internet-based errata report system',
 'LaunchBrowser.py -live PyErrata/pyerrata.html ' + site)
 demoButton('PyMailCgi',
 'Browser-based pop/smtp email interface',
 'LaunchBrowser.py -live PyMailCgi/pymailcgi.html ' +
site)
 demoButton('PyInternet',
 'Main Internet demos launcher page',
 'LaunchBrowser.py -live PyInternetDemos.html ' + site)

#To try: bind mouse entry events to change info text when over a button
#See also: site http://starship.python.net/~lutz/PyInternetDemos.html

toggle info message box font once a second

def refreshMe(info, ncall):
 slant = ['normal', 'italic', 'bold', 'bold italic'][ncall % 4]
 info.config(font=('courier', 20, slant))
 Root.after(1000, (lambda info=info, ncall=ncall: refreshMe(info,
ncall+1)))

unhide/hide status box on info clicks

Stat.iconify()
def onInfo():
 if Stat.state() == 'iconic':
 Stat.deiconify()
 else:
 Stat.iconify() # was 'normal'

popup a few web link buttons if connected

radiovar = StringVar() # use a global

def onLinks():
 popup = Toplevel()
 popup.title('PP2E web site links')
 links = [("Book", 'LaunchBrowser.py -live about-pp.html
rmi.net/~lutz'),
 ("Python", 'LaunchBrowser.py -live index.html
www.python.org'),

Programming Python, 2nd Edition, O’Reilly

IT-SC book 482

 ("O'Reilly", 'LaunchBrowser.py -live index.html
www.oreilly.com'),
 ("Author", 'LaunchBrowser.py -live index.html
rmi.net/~lutz')]

 for (name, command) in links:
 callback = Launcher((name + "'s web site"), command)
 link = Radiobutton(popup, text=name, command=callback)
 link.config(relief=GROOVE, variable=radiovar, value=name)
 link.pack(side=LEFT, expand=YES, fill=BOTH)
 Button(popup, text='Quit',
command=popup.destroy).pack(expand=YES,fill=BOTH)

 if InternetMode != '-live':
 from tkMessageBox import showwarning
 showwarning('PP2E Demos', 'Web links require an Internet
connection')

finish building main gui, start event loop

Button(Root, text='Info', command=onInfo).pack(side=TOP, fill=X)
Button(Root, text='Links', command=onLinks).pack(side=TOP, fill=X)
Button(Root, text='Quit', command=Root.quit).pack(side=BOTTOM, fill=X)
refreshMe(Info, 0) # start toggling
Root.mainloop()

8.9.2 PyGadgets Launcher Bar

The PyGadgets script runs some of the same programs as PyDemos, but for real,
practical use, not as flashy demonstrations. Both scripts use launchmodes to spawn
other programs and display bars of launcher buttons, but this one is a bit simpler
because its task is more focused. PyGadgets also supports two spawning modes: it
can either start a canned list of programs immediately and all at once, or display a
GUI for running each program on demand (Figure 8-40 shows the launch bar GUI
made in on-demand mode).

Because of such differences, PyGadgets takes a more data-driven approach to
building the GUI: it stores program names in a list and steps through it as needed,
rather than using a sequence of precoded demoButton calls. The set of buttons on
the launcher bar GUI in Figure 8-40, for example, depends entirely upon the
contents of the programs list.

Figure 8-40. PyGadgets launcher bar

The source code behind this GUI is listed in Example 8-33; it's not much, because it
relies on other modules (launchmodes, LaunchBrowser) to work most of its magic.
PyGadgets is always open on my machines (I have a clickable shortcut to this script
on my Windows desktop too). I use it to gain easy access to Python tools that I use

Programming Python, 2nd Edition, O’Reilly

IT-SC book 483

on a daily basis -- text editors, calculators, and so on -- all of which we'll meet in
upcoming chapters.

To customize PyGadgets for your own use, simply import and call its functions with
program command-line lists of your own, or change the mytools list of spawnable
programs near the end of this file. This is Python, after all.

Example 8-33. PP2E\PyGadgets.py

#!/bin/env python

Start various examples; run me at system boot time to make them
always available. This file is meant for starting programs you
actually wish to use; see PyDemos for starting Python/Tk demos
and more details on program start options. Windows usage note:
this is a '.py' file, so you get a dos box console window when it
is clicked; the dos box is used to show a startup message (and we
sleep 5 seconds to make sure it's visible while gadgets start up).
If you don't want the dos popup, run with the 'pythonw' program
(not 'python'), use a '.pyw' suffix, mark with a 'run minimized'
Windows property, or spawn the file from elsewhere; see PyDemos.

import sys, time, os, time
from Tkinter import *
from launchmodes import PortableLauncher # reuse program
start class

def runImmediate(mytools):
 # launch gadget programs immediately
 print 'Starting Python/Tk gadgets...' # msgs to temp
stdout screen
 for (name, commandLine) in mytools:
 PortableLauncher(name, commandLine)() # call now to start
now
 print 'One moment please...' # \b means a
backspace
 if sys.platform[:3] == 'win':
 # on Windows keep stdio console window up for 5 seconds
 for i in range(5): time.sleep(1); print ('\b' + '.'*10),

def runLauncher(mytools):
 # put up a simple launcher bar for later use
 root = Tk()
 root.title('PyGadgets PP2E')
 for (name, commandLine) in mytools:
 b = Button(root, text=name, fg='black', bg='beige', border=2,
 command=PortableLauncher(name, commandLine))
 b.pack(side=LEFT, expand=YES, fill=BOTH)
 root.mainloop()

mytools = [
 ('PyEdit', 'Gui/TextEditor/textEditor.pyw'),
 ('PyView', 'Gui/SlideShow/slideShowPlus.py Gui/gifs'),
 ('PyCalc', 'Lang/Calculator/calculator.py'),
 ('PyMail', 'Internet/Email/PyMailGui.py'),

Programming Python, 2nd Edition, O’Reilly

IT-SC book 484

 ('PyClock', 'Gui/Clock/clock.py -size 175 -bg white'
 ' -picture Gui/gifs/pythonPowered.gif'),
 ('PyToe', 'Ai/TicTacToe/tictactoe.py'
 ' -mode Minimax -fg white -bg navy'),
 ('PyNet', 'LaunchBrowser.py -file ' + os.getcwd() +
 '/Internet/Cgi-Web/PyInternetDemos.html')
]

if __name__ == '__main__':
 prestart, toolbar = 1, 0
 if prestart:
 runImmediate(mytools)
 if toolbar:
 runLauncher(mytools)

By default, PyGadgets starts programs immediately when it is run. To run PyGadgets
in launcher-bar mode instead, Example 8-34 simply imports and calls the appropriate
function with an imported program list. Because it is a .pyw file, you only see the
launcher bar GUI it constructs initially, not a DOS console streams window.

Example 8-34. PP2E\PyGadgets_bar.pyw

run PyGadgets tool bar only, instead of starting all the
gadgets immediately; filename avoids dos popup on windows

import PyGadgets
PyGadgets.runLauncher(PyGadgets.mytools)

This script is the file my desktop shortcut invokes; I prefer to run gadget GUIs on
demand. You can also run a script like this at your system's startup to make it
always available (and save a mouseclick). For instance:

On Windows, such a script can be automatically started by adding it to your StartUp
folder -- click on your system's Start button, select Settings, go to the Taskbar &
Start Menu dialog, and click your way through remaining steps.

On Linux and Unix, you can automatically start this script by spawning it with a
command line in your startup scripts (e.g., your home directory's .cshrc, .profile, or
.login) after X Windows has been started.

Whether run via a shortcut, file explorer click, typed command line, or other means,
the PyGadgets launcher bar at the top of Figure 8-41 appears.

Figure 8-41. PyGadgets launcher bar

Programming Python, 2nd Edition, O’Reilly

IT-SC book 485

Of course, the whole point of PyGadgets is to spawn other programs. Pressing on its
launcher bar's buttons starts programs like those shown in the rest of Figure 8-41,
but if you want to know more about those, you'll have to turn the page and move on
to the next chapter.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 486

Chapter 9. Larger GUI Examples

9.1 "Building a Better Mouse Trap"

9.2 Advanced GUI Coding Techniques

9.3 Complete Program Examples

9.4 PyEdit: A Text Editor Program/Object

9.5 PyView: An Image and Notes Slideshow

9.6 PyDraw: Painting and Moving Graphics

9.7 PyClock: An Analog/Digital Clock Widget

9.8 PyToe: A Tic-Tac-Toe Game Widget

9.9 Where to Go from Here

9.1 "Building a Better Mouse Trap"

This chapter continues our look at building graphical user interfaces with Python and
its standard Tkinter library by presenting a collection of realistic GUI programs. In
the previous three chapters, we met all the basics of Tkinter programming and
toured the core set of widgets -- Python classes that generate devices on a computer
screen and may reply to user-generated events like mouseclicks. Here, our focus is
on putting those widgets together to create more useful GUIs. We'll study:

Advanced GUI coding techniques

PyEdit -- a text editor program

PyView -- an image slideshow

PyDraw -- a painting program

PyClock -- a graphical clock

PyToe -- and even a simple game just for fun[1]

[1] All of the larger examples in this book have a "Py" at the start of their names. This
is by convention in the Python world. If you shop around at http://www.python.org,
you'll find other free software that follows this pattern too: PyApache (a Python
interface to the Apache web server), PySol (a Python/Tkinter solitaire game system),
and many more. I'm not sure who started this pattern, but it has turned out to be a

Programming Python, 2nd Edition, O’Reilly

IT-SC book 487

more or less subtle way to advertise programming language preferences to the rest
of the open source world. Pythonistas are nothing if not subtle.

As in Chapter 4, and Chapter 5, I've pulled the examples in this chapter from my
own library of Python programs that I really use. For instance, the text editor and
clock GUIs that we'll meet here are day-to-day workhorses on my machines.
Because they are written in Python and Tkinter, they work unchanged on both my
Windows and Linux machines, and they should work on Macs, too.

And since these are pure Python scripts, their future evolution is entirely up to their
users -- once you get a handle on Tkinter interfaces, changing or augmenting the
behavior of such programs by editing their Python code is a snap. Although some of
these examples are similar to commercially available programs (e.g., PyEdit is
reminiscent of the Windows Notepad accessory), the portability and almost infinite
configurability of Python scripts can be a decided advantage.

9.1.1 Examples in Other Chapters

Later in the book, we'll meet other Tkinter GUI programs that put a good face on
specific application domains. For instance, the following larger GUI examples show
up in later chapters, too:

PyMail -- an email client in Chapter 11

PyForm -- a persistent object table viewer in Chapter 16

PyTree -- a tree data structure viewer in Chapter 17

PyCalc -- a calculator widget in Chapter 18

Most of these programs see regular action on my desktop, too. Because GUI libraries
are general-purpose tools, there are few domains that cannot benefit from an easy-
to-use, easy-to-program, and widely portable user interface coded in Python and
Tkinter.

Beyond the examples in this book, you can also find higher-level GUI toolkits for
Python, such as the PMW system mentioned in Chapter 6. Such systems build upon
Tkinter to provide compound components such as notebook and tabbed widgets.
We'll also later meet programs that build user interfaces in web browsers, not
Tkinter. But apart from simple web-based interfaces, Tkinter GUIs can be an
indispensable feature of almost any Python program you write.

9.1.2 This Chapter's Strategy

As for all case-study chapters in this text, this one is largely a "learn by example"
exercise; most of the programs here are listed with minimal details. Along the way
I'll point out new Tkinter features that each example introduces, but I'll also assume
that you will study the listed source code and its comments for more details.
Python's readability becomes a substantial advantage for programmers (and
writers), especially once we reach the level of complexity demonstrated by programs
here.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 488

Finally, I want to remind you that all of the larger programs listed in the previous
sections can be run from the PyDemos and PyGadgets launcher-bar GUIs that we
met at the end of the previous chapter. Although I will try hard to capture some of
their behavior in screen shots here, GUIs are event-driven systems by nature, and
there is nothing quite like running one live to sample the flavor of its user
interactions. Because of that, the launcher bars are really a supplement to the
material in this chapter. They should run on most platforms and are designed to be
easy to start (see the top-level README-PP2E.txt file for hints). You should go there
and start clicking things immediately, if you haven't done so already.

9.2 Advanced GUI Coding Techniques

If you read Chapter 8, you know that the code used to construct non-trivial GUIs can
become large if we make each widget by hand. Not only do we have to manually link
up all the widgets, but there are dozens of options to be set and remember. If we
stick to this strategy, GUI programming often becomes an exercise in typing, or at
least in cut-and-paste text editor operations.

9.2.1 GuiMixin: Shared Behavior in "Mixin" Classes

Rather than doing each step by hand, a better idea is to wrap or automate as much
of the GUI construction process as possible. One approach is to code functions that
provide typical widget configurations; for instance, we could define a button function
to handle configuration details and support most of the buttons we draw.

Alternatively, we can implement common methods in a class and inherit them
everywhere they are needed. Such classes are commonly called mixin classes,
because their methods are "mixed in" with other classes. Mixins serve to package
generally useful tools as methods. The concept is almost like importing a module,
but mixin classes can access the subject instance, self, to utilize per-instance state
and inherited methods. The script in Example 9-1 shows how.

Example 9-1. PP2E\Gui\Tools\guimixin.py

a "mixin" class for other frames: common methods for
canned-dialogs, spawning programs, etc; must be mixed
with a class derived from Frame for its quit method

from Tkinter import *
from tkMessageBox import *
from tkFileDialog import *
from ScrolledText import ScrolledText
from PP2E.launchmodes import PortableLauncher, System

class GuiMixin:
 def infobox(self, title, text, *args): # use standard
dialogs
 return showinfo(title, text) # *args for
bkwd compat
 def errorbox(self, text):
 showerror('Error!', text)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 489

 def question(self, title, text, *args):
 return askyesno(title, text)

 def notdone(self):
 showerror('Not implemented', 'Option not available')
 def quit(self):
 ans = self.question('Verify quit', 'Are you sure you want to
quit?')
 if ans == 1:
 Frame.quit(self) # quit not
recursive!
 def help(self):
 self.infobox('RTFM', 'See figure 1...') # override this
better

 def selectOpenFile(self, file="", dir="."): # use standard
dialogs
 return askopenfilename(initialdir=dir, initialfile=file)
 def selectSaveFile(self, file="", dir="."):
 return asksaveasfilename(initialfile=file, initialdir=dir)

 def clone(self):
 new = Toplevel() # make a new version of me
 myclass = self.__class__ # instance's (lowest) class
object
 myclass(new) # attach/run instance to new
window

 def spawn(self, pycmdline, wait=0):
 if not wait:
 PortableLauncher(pycmdline, pycmdline)() # run Python
progam
 else:
 System(pycmdline, pycmdline)() # wait for
it to exit

 def browser(self, filename):
 new = Toplevel() # make new
window
 text = ScrolledText(new, height=30, width=90) # Text with
scrollbar
 text.config(font=('courier', 10, 'normal')) # use fixed-
width font
 text.pack()
 new.title("Text Viewer") # set window
mgr attrs
 new.iconname("browser")
 text.insert('0.0', open(filename, 'r').read()) # insert
file's text

if __name__ == '__main__':
 class TestMixin(GuiMixin, Frame): # stand-alone test
 def __init__(self, parent=None):
 Frame.__init__(self, parent)
 self.pack()
 Button(self, text='quit', command=self.quit).pack(fill=X)
 Button(self, text='help', command=self.help).pack(fill=X)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 490

 Button(self, text='clone', command=self.clone).pack(fill=X)
 TestMixin().mainloop()

Although Example 9-1 is geared towards GUIs, it's really about design concepts. The
GuiMixin class implements common operations with standard interfaces that are
immune to changes in implementation. In fact, the implementations of some of this
class's method did change -- between the first and second editions of this book, old-
style Dialog calls were replaced with the new Tk standard dialog calls. Because this
class's interface hides such details, its clients did not have to be changed to use the
new dialog techniques.

As is, GuiMixin provides methods for common dialogs, window cloning, program
spawning, text file browsing, and so on. We can add more methods to such a mixin
later if we find ourselves coding the same methods repeatedly; they will all become
available immediately everywhere this class is imported and mixed. Moreover,
GuiMixin's methods can be inherited and used as is, or they can be redefined in
subclasses.

There are a few things to notice here:

The quit method serves some of the same purpose as the reusable Quitter button
we used in earlier chapters. Because mixin classes can define a large library of
reusable methods, they can be a more powerful way to package reusable
components than individual classes. If the mixin is packaged well, we can get a lot
more from it than a single button's callback.

The clone method makes a new copy of the most specific class that mixes in a
GuiMixin, in a new top-level window (self.__class__ is the class object that the
instance was created from). This opens a new independent copy of the window.

The browser method opens the standard library's ScrolledText object in a new
window and fills it with the text of a file to be viewed. We wrote our own
ScrolledText in the last chapter; you might need to use it here instead, if the
standard library's class ever becomes deprecated (please, no wagering).

The spawn method launches a Python program command line as a new process, and
waits for it to end or not (depending on the wait argument). This method is simple,
though, because we wrapped launching details in the launchmodes module presented
at the end of Chapter 3. GuiMixin both fosters and practices good code reuse habits.

The GuiMixin class is meant to be a library of reusable tool methods and is
essentially useless by itself. In fact, it must generally be mixed with a Frame-based
class to be used: quit assumes it's mixed with a Frame, and clone assumes it's
mixed with a widget class. To satisfy such constraints this module's self-test code at
the bottom combines GuiMixin with a Frame widget. Figure 9-1 shows the scene
created by the self-test after pressing "clone" twice, and then "help" in one of the
three copies.

Figure 9-1. GuiMixin self-test code in action

Programming Python, 2nd Edition, O’Reilly

IT-SC book 491

We'll see this class show up again as a mixin in later examples, too -- that's the
whole point of code reuse, after all.

9.2.2 GuiMaker: Automating Menus and Toolbars

The last section's mixin class makes common tasks simpler, but it still doesn't
address the complexity of linking up widgets like menus and toolbars. Of course, if
we had access to a GUI layout tool that generated Python code, this would not be an
issue. We'd design our widgets interactively, press a button, and fill in the callback
handler blanks.

For now, a programming-based approach can work just as well. What we'd like is to
be able to inherit something that does all the grunt work of construction for us, given
a template for the menus and toolbars in a window. Here's one way it can be done --
using trees of simple objects. The class in Example 9-2 interprets data structure
representations of menus and toolbars, and builds all the widgets automatically.

Example 9-2. PP2E\Gui\Tools\guimaker.py

###
########
An extended Frame that makes window menus and tool-bars
automatically.
Use GuiMakerFrameMenu for embedded components (makes frame-based
menus).
Use GuiMakerWindowMenu for top-level windows (makes Tk8.0 window
menus).
See the self-test code (and PyEdit) for an example layout tree
format.
###
########

import sys
from Tkinter import * # widget classes
from types import * # type constants

class GuiMaker(Frame):
 menuBar = [] # class defaults
 toolBar = [] # change per instance in
subclasses

Programming Python, 2nd Edition, O’Reilly

IT-SC book 492

 helpButton = 1 # set these in start() if
need self

 def __init__(self, parent=None):
 Frame.__init__(self, parent)
 self.pack(expand=YES, fill=BOTH) # make frame
stretchable
 self.start() # for subclass: set
menu/toolBar
 self.makeMenuBar() # done here: build
menu-bar
 self.makeToolBar() # done here: build
tool-bar
 self.makeWidgets() # for subclass: add
middle part

 def makeMenuBar(self):
 """
 make menu bar at the top (Tk8.0 menus below)
 expand=no, fill=x so same width on resize
 """
 menubar = Frame(self, relief=RAISED, bd=2)
 menubar.pack(side=TOP, fill=X)

 for (name, key, items) in self.menuBar:
 mbutton = Menubutton(menubar, text=name, underline=key)
 mbutton.pack(side=LEFT)
 pulldown = Menu(mbutton)
 self.addMenuItems(pulldown, items)
 mbutton.config(menu=pulldown)

 if self.helpButton:
 Button(menubar, text = 'Help',
 cursor = 'gumby',
 relief = FLAT,
 command = self.help).pack(side=RIGHT)

 def addMenuItems(self, menu, items):
 for item in items: # scan nested items list
 if item == 'separator': # string: add separator
 menu.add_separator({})
 elif type(item) == ListType: # list: disabled item
list
 for num in item:
 menu.entryconfig(num, state=DISABLED)
 elif type(item[2]) != ListType:
 menu.add_command(label = item[0], #
command:
 underline = item[1], # add
command
 command = item[2]) #
cmd=callable
 else:
 pullover = Menu(menu)
 self.addMenuItems(pullover, item[2]) #
sublist:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 493

 menu.add_cascade(label = item[0], # make
submenu
 underline = item[1], # add
cascade
 menu = pullover)

 def makeToolBar(self):
 """
 make button bar at bottom, if any
 expand=no, fill=x so same width on resize
 """
 if self.toolBar:
 toolbar = Frame(self, cursor='hand2', relief=SUNKEN, bd=2)
 toolbar.pack(side=BOTTOM, fill=X)
 for (name, action, where) in self.toolBar:
 Button(toolbar, text=name, command=action).pack(where)

 def makeWidgets(self):
 """
 make 'middle' part last, so menu/toolbar
 is always on top/bottom and clipped last;
 override this default, pack middle any side;
 for grid: grid middle part in a packed frame
 """
 name = Label(self,
 width=40, height=10,
 relief=SUNKEN, bg='white',
 text = self.__class__.__name__,
 cursor = 'crosshair')
 name.pack(expand=YES, fill=BOTH, side=TOP)

 def help(self):
 """
 override me in subclass
 """
 from tkMessageBox import showinfo
 showinfo('Help', 'Sorry, no help for ' +
self.__class__.__name__)

 def start(self): pass # override me in subclass

###
########
For Tk 8.0 main window menubar, instead of a frame
###
########

GuiMakerFrameMenu = GuiMaker # use this for embedded
component menus

class GuiMakerWindowMenu(GuiMaker): # use this for top-level window
menus
 def makeMenuBar(self):
 menubar = Menu(self.master)
 self.master.config(menu=menubar)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 494

 for (name, key, items) in self.menuBar:
 pulldown = Menu(menubar)
 self.addMenuItems(pulldown, items)
 menubar.add_cascade(label=name, underline=key,
menu=pulldown)

 if self.helpButton:
 if sys.platform[:3] == 'win':
 menubar.add_command(label='Help', command=self.help)
 else:
 pulldown = Menu(menubar) # linux needs real pulldown
 pulldown.add_command(label='About', command=self.help)
 menubar.add_cascade(label='Help', menu=pulldown)

###
########
Self test when file run stand-alone: 'python guimaker.py'
###
########

if __name__ == '__main__':
 from guimixin import GuiMixin # mixin a help method

 menuBar = [
 ('File', 0,
 [('Open', 0, lambda:0), # lambda:0 is a no-op
 ('Quit', 0, sys.exit)]), # use sys, no self here
 ('Edit', 0,
 [('Cut', 0, lambda:0),
 ('Paste', 0, lambda:0)])]
 toolBar = [('Quit', sys.exit, {'side': LEFT})]

 class TestAppFrameMenu(GuiMixin, GuiMakerFrameMenu):
 def start(self):
 self.menuBar = menuBar
 self.toolBar = toolBar
 class TestAppWindowMenu(GuiMixin, GuiMakerWindowMenu):
 def start(self):
 self.menuBar = menuBar
 self.toolBar = toolBar
 class TestAppWindowMenuBasic(GuiMakerWindowMenu):
 def start(self):
 self.menuBar = menuBar
 self.toolBar = toolBar # guimaker help, not guimixin

 root = Tk()
 TestAppFrameMenu(Toplevel())
 TestAppWindowMenu(Toplevel())
 TestAppWindowMenuBasic(root)
 root.mainloop()

To make sense of this module, you have to be familiar with the menu fundamentals
introduced in the last chapter. If you are, though, it's straightforward -- the
GuiMaker class simply traverses the menu and toolbar structures and builds menu

Programming Python, 2nd Edition, O’Reilly

IT-SC book 495

and toolbar widgets along the way. This module's self-test code includes a simple
example of the data structures used to lay out menus and toolbars:

Menubar templates

Lists and nested sublists of (label, underline, handler) triples. If a handler is a
sublist instead of a function or method, it is assumed to be a cascading submenu.

Toolbar templates

List of (label, handler, pack-options) triples. pack-options is coded as a
dictionary of options passed on to the widget pack method (it accepts dictionaries,
but we could also transform the dictionary into keyword arguments by passing it as a
third argument to apply).

9.2.2.1 Subclass protocols

In addition to menu and toolbar layouts, clients of this class can also tap into and
customize the method and geometry protocols it implements:

Template attributes

Clients of this class are expected to set menuBar and toolBar attributes somewhere
in the inheritance chain by the time the start method has finished.

Initialization

The start method can be overridden to construct menu and toolbar templates
dynamically (since self is then available); start is also where general initializations
should be performed -- GuiMixin's __init__ constructor must be run, not
overridden.

Adding widgets

The makeWidgets method can be redefined to construct the middle part of the
window -- the application portion between the menubar and toolbar. By default,
makeWidgets adds a label in the middle with the name of the most specific class, but
this method is expected to be specialized.

Packing protocol

In a specialized makeWidgets method, clients may attach their middle portion's
widgets to any side of "self" (a Frame), since the menu and toolbars have already
claimed the container's top and bottom by the time makeWidgets is run. The middle
part does not need to be a nested frame if its parts are packed. The menu and
toolbars are also automatically packed first so that they are clipped last if the window
shrinks.

Gridding protocol

The middle part can contain a grid layout, as long as it is gridded in a nested Frame
that is itself packed within the self parent. (Remember, that each container level

Programming Python, 2nd Edition, O’Reilly

IT-SC book 496

may use grid or pack, not both, and self is a Frame with already-packed bars by
the time makeWidgets is called.) Because the GuiMaker Frame packs itself within its
parent, it is not directly embeddable in a container with widgets arranged in a grid
for similar reasons -- add an intermediate gridded Frame to use it in this context.

9.2.2.2 GuiMaker classes

In return for conforming to GuiMaker protocols and templates, client subclasses get
a Frame that knows how to automatically build up its own menus and toolbars from
template data structures. If you read the last chapter's menu examples, you
probably know that this is a big win in terms of reduced coding requirements.
GuiMaker is also clever enough to export interfaces for both menu styles that we met
in the last chapter:

GuiMakerWindowMenu implements Tk 8.0-style top-level window menus, useful for
menus associated with standalone programs and pop-ups.

GuiMakerFrameMenu implements alternative Frame/Menubutton-based menus, useful
for menus on objects embedded as components of a larger GUI.

Both classes build toolbars, export the same protocols, and expect to find the same
template structures; they differ only in the way they process menu templates. In
fact, one is simply a subclass of the other with a specialized menu maker method --
only top-level menu processing differs between the two styles (a Menu with Menu
cascades, instead of a Frame with Menubuttons).

9.2.2.3 GuiMaker self-test

Like GuiMixin, when we run Example 9-2 as a top-level program, we trigger the
self-test logic at the bottom; Figure 9-2 shows the windows we get. Three windows
come up, representing each of the self-test code's TestApp classes. All three have a
menu and toolbar with the options specified in the template data structures created
in the self-test code: File and Edit menu pull-downs, plus a Quit toolbar button, and
a standard Help menu button. In the screen shot, one window's File menu has been
torn off, and the Edit menu of another is being pulled down.

Figure 9-2. GuiMaker self-test at work

Programming Python, 2nd Edition, O’Reilly

IT-SC book 497

Because of the superclass relationships coded, two of the three windows get their
help callback handler from GuiMixin; TestAppWindowMenuBasic gets GuiMaker's
instead. Notice that the order in which these two classes are mixed can be
important: because both GuiMixin and Frame define a quit method, we need to list
the class we want to get it from first in the mixed class's header line due to the left-
to-right search rule of multiple inheritance. To select GuiMixin's methods, it should
usually be listed before a superclass derived from real widgets.

We'll put GuiMaker to more practical use in examples such as PyEdit later in this
chapter. The next module shows another way to use GuiMaker's templates to build
up a sophisticated interface.

9.2.3 BigGui: A Client Demo Program

Let's look at a program that makes better use of the two automation classes we just
wrote. In the module in Example 9-3, the Hello class inherits from both GuiMixin
and GuiMaker. GuiMaker provides the link to the Frame widget, plus the
menu/toolbar construction logic. GuiMixin provides extra common-behavior
methods. Really, Hello is another kind of extended Frame widget because it is
derived from GuiMaker. To get a menu and toolbar for free, it simply follows the
protocols defined by GuiMaker -- it sets the menuBar and toolBar attributes in its
start method, and overrides makeWidgets to put a label in the middle.

Example 9-3. PP2E\Gui\Tools\BigGui\big_gui.py

#!/usr/bin/python

gui implementation - combines maker, mixin, and this

import sys, os, string
from Tkinter import * # widget classes
from PP2E.Gui.Tools.guimixin import * # mix-in methods
from PP2E.Gui.Tools.guimaker import * # frame, plus menu/toolbar
builder

Programming Python, 2nd Edition, O’Reilly

IT-SC book 498

from find_demo_dir import findDemoDir # Python demos search

class Hello(GuiMixin, GuiMakerWindowMenu): # or GuiMakerFrameMenu
 def start(self):
 self.hellos = 0
 self.master.title("GuiMaker Demo")
 self.master.iconname("GuiMaker")

 self.menuBar = [# a tree: 3
pulldowns
 ('File', 0, # (pull-down)
 [('New...', 0, self.notdone), # [menu items
list]
 ('Open...', 0, self.fileOpen),
 ('Quit', 0, self.quit)] #
label,underline,action
),

 ('Edit', 0,
 [('Cut', -1, self.notdone), # no
underline|action
 ('Paste',-1, self.notdone), # lambda:0 works
too
 'separator', # add a
separator
 ('Stuff', -1,
 [('Clone', -1, self.clone), # cascaded
submenu
 ('More', -1, self.more)]
),
 ('Delete', -1, lambda:0),
 [5]] # disable
'delete'
),

 ('Play', 0,
 [('Hello', 0, self.greeting),
 ('Popup...', 0, self.dialog),
 ('Demos', 0,
 [('Hanoi', 0,
 lambda x=self:
 x.spawn(findDemoDir() + '\guido\hanoi.py',
wait=0)),
 ('Pong', 0,
 lambda x=self:
 x.spawn(findDemoDir() + '\matt\pong-demo-
1.py', wait=0)),
 ('Other...', -1, self.pickDemo)]
)]
)]

 self.toolBar = [
 ('Quit', self.quit, {'side': RIGHT}), # add 3
buttons
 ('Hello', self.greeting, {'side': LEFT}),
 ('Popup', self.dialog, {'side': LEFT, 'expand':YES})]

Programming Python, 2nd Edition, O’Reilly

IT-SC book 499

 def makeWidgets(self): # override
default
 middle = Label(self, text='Hello maker world!', width=40,
height=10,
 cursor='pencil', bg='white', relief=SUNKEN)
 middle.pack(expand=YES, fill=BOTH)

 def greeting(self):
 self.hellos = self.hellos + 1
 if self.hellos % 3:
 print "hi"
 else:
 self.infobox("Three", 'HELLO!') # on every third press

 def dialog(self):
 button = self.question('OOPS!',
 'You typed "rm*" ... continue?',
 'questhead', ('yes', 'no', 'help'))
 [lambda:0, self.quit, self.help][button]()

 def fileOpen(self):
 pick = self.selectOpenFile(file='big_gui.py')
 if pick:
 self.browser(pick) # browse my source file, or other

 def more(self):
 new = Toplevel()
 Label(new, text='A new non-modal window').pack()
 Button(new, text='Quit', command=self.quit).pack(side=LEFT)
 Button(new, text='More', command=self.more).pack(side=RIGHT)

 def pickDemo(self):
 pick = self.selectOpenFile(dir=findDemoDir()+'\guido')
 if pick:
 self.spawn(pick, wait=0) # spawn any python program

if __name__ == '__main__': Hello().mainloop() # make one, run one

This script lays out a fairly large menu and toolbar structure that we'll see in
moment. It also adds callback methods of its own that print stdout messages, pop
up text file browsers and new windows, and run other programs. Many of the
callbacks don't do much more than run the notDone method inherited from
GuiMixin, though; this code is intended mostly as a GuiMaker and GuiMixin demo.

The big_gui script is almost a complete program, but not quite: it relies on a utility
module to search for canned demo programs that come packaged with the Python
full source distribution. (These demos are not part of this book's example collection.)
The Python source distribution might be unpacked anywhere on the host machine.

Because of that, it's impossible to know where the demo directory is located (if it is
present at all). But rather than expecting beginners to change the source code of this
script to hardcode a path, the guessLocation tool in the Launcher module we met
at the end of Chapter 4 is used to hunt for the demo directory (see Example 9-4).
Flip back if you've forgotten how this works (though the beauty of code reuse is that
it's often okay to forget).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 500

Example 9-4. PP2E\Gui\Tools\BigGui\find_demo_dir.py

search for demos shipped in Python source distribution;
PATH and PP2EHOME won't help here, because these demos
are not part of the standard install or the book's tree

import os, string, PP2E.Launcher
demoDir = None
myTryDir = ''

#sourceDir = r'C:\Stuff\Etc\Python-ddj-cd\distributions'
#myTryDir = sourceDir + r'\Python-1.5.2\Demo\tkinter'

def findDemoDir():
 global demoDir
 if not demoDir: # only searches on first
call
 if os.path.exists(myTryDir): # use hard-coded dir, or
search
 demoDir = myTryDir # save in global for next
call
 else:
 print 'Searching for standard demos on your machine...'
 path = PP2E.Launcher.guessLocation('hanoi.py')
 if path:
 demoDir = string.join(string.split(path, os.sep)[:-2],
os.sep)
 print 'Using demo dir:', demoDir
 assert demoDir, 'Where is your demo directory?'
 return demoDir

When big_gui is run as a top-level program, it creates a window with four menu
pull-downs on top, and a three-button toolbar on the bottom, shown in Figure 9-3
along with some of the pop-up windows its callbacks create. The menus have
separators, disabled entries, and cascading submenus, all as defined by the menuBar
template.

Figure 9-3. big_gui with various pop-ups

Programming Python, 2nd Edition, O’Reilly

IT-SC book 501

Figure 9-4 shows this script's window again, after its Play pull-down has been used
to launch two independently running instances of the hanoi.py demo script that is
shipped in the Python source distribution and coded by Python creator Guido van
Rossum. This demo shows a simple animation of solutions to the "Towers of Hanoi"
puzzle -- a classic recursive problem popular on computer science quizzes (if you
never heard of it, I'll spare you the gory details here).

Figure 9-4. big_gui with spawned hanoi demos on the move

To find this demo, the script searches directory trees on your machine rooted at
common places; it was found on mine only by a last-resort traversal of my entire C:
hard drive:

C:\...\PP2E\Gui\Tools\BigGui>python big_gui.py
Searching for standard demos on your machine...
Searching for hanoi.py in C:\Program Files\Python
Searching for hanoi.py in C:\PP2ndEd\examples\PP2E\Gui\Tools\BigGui
Searching for hanoi.py in C:\Program Files
Searching for hanoi.py in C:\
Using demo dir:
C:\PP2ndEd\cdrom\Python1.5.2\SourceDistribution\Unpacked\Python-
1.5.2\Demo\tkinter
C:\PP2ndEd\cdrom\Python1.5.2\SourceDistribution\Unpacked\Python-
1.5.2\Demo\tkint

Programming Python, 2nd Edition, O’Reilly

IT-SC book 502

er\guido\hanoi.py

This search takes about 20 seconds on my 650 MHz Windows laptop, but is done
only the first time you select one of these demos -- after a successful search, the
find_demo_dir module caches away the directory name in a global variable for
immediate retrieval the next time you start a demo. If you want to run demos from
other directories (e.g., one of the book demos in the PP2E tree), select the Play
menu's Other option to pop up a standard file selection dialog instead and navigate
to the desired program's file.

Finally, I should note that GuiMaker can be redesigned to use trees of embedded
class instances that know how to apply themselves to the Tkinter widget tree being
constructed, instead of branching on the types of items in template data structures.
In the interest of space, though, we'll banish that extension to the land of suggested
exercises in this edition.

9.2.4 ShellGui: Adding GUIs to Command-Line Tools

To better show how things like the GuiMixin class can be of practical use, we need a
more realistic application. Here's one: in Chapter 4, we saw simple scripts for
packing and unpacking text files (see Section 4.5). The packapp.py script we met
there, you'll recall, concatenates multiple text files into a single file, and
unpackapp.py extracts the original files from the combined file.

We ran these scripts in that chapter with manually typed command lines that weren't
the most complex ever devised, but were complicated enough to be easily forgotten.
Rather than requiring users of such tools to type cryptic commands at a shell, why
not also provide an easy-to-use Tkinter GUI interface for running such programs?
While we're at it, why not generalize the whole notion of running command-line tools
from a GUI, to make it easy to support future tools, too?

9.2.4.1 A generic shell-tools display

Examples Example 9-5 through Example 9-8 are one concrete implementation of
these artificially rhetorical musings. Because I wanted this to be a general-purpose
tool that could run any command-line program, its design is factored into modules
that become more application-specific as we go lower in the software hierarchy. At
the top, things are about as generic as they can be, as shown in Example 9-5.

Example 9-5. PP2E\Gui\ShellGui\shellgui.py.py

#!/usr/local/bin/python

tools launcher; uses guimaker templates, guimixin std quit dialog;
I am just a class library: run mytools script to display the gui;

from Tkinter import * # get widgets
from PP2E.Gui.Tools.guimixin import GuiMixin # get quit, not
done
from PP2E.Gui.Tools.guimaker import * # menu/toolbar
builder

Programming Python, 2nd Edition, O’Reilly

IT-SC book 503

class ShellGui(GuiMixin, GuiMakerWindowMenu): # a frame + maker +
mixins
 def start(self): # use GuiMaker if
component
 self.setMenuBar()
 self.setToolBar()
 self.master.title("Shell Tools Listbox")
 self.master.iconname("Shell Tools")

 def handleList(self, event): # on listbox
double-click
 label = self.listbox.get(ACTIVE) # fetch selection
text
 self.runCommand(label) # and call action
here

 def makeWidgets(self): # add listbox in
middle
 sbar = Scrollbar(self) # cross link sbar,
list
 list = Listbox(self, bg='white') # or use
Tour.ScrolledList
 sbar.config(command=list.yview)
 list.config(yscrollcommand=sbar.set)
 sbar.pack(side=RIGHT, fill=Y) # pack
1st=clip last
 list.pack(side=LEFT, expand=YES, fill=BOTH) # list
clipped first
 for (label, action) in self.fetchCommands(): # add to
list-box
 list.insert(END, label) # and
menu/toolbars
 list.bind('<Double-1>', self.handleList) # set event
handler
 self.listbox = list

 def forToolBar(self, label): # put on
toolbar?
 return 1 # default =
all

 def setToolBar(self):
 self.toolBar = []
 for (label, action) in self.fetchCommands():
 if self.forToolBar(label):
 self.toolBar.append((label, action, {'side': LEFT}))
 self.toolBar.append(('Quit', self.quit, {'side': RIGHT}))

 def setMenuBar(self):
 toolEntries = []
 self.menuBar = [
 ('File', 0, [('Quit', -1, self.quit)]), # pull-down
name
 ('Tools', 0, toolEntries) # menu items
list

Programming Python, 2nd Edition, O’Reilly

IT-SC book 504

] #
label,underline,action
 for (label, action) in self.fetchCommands():
 toolEntries.append((label, -1, action)) # add app items
to menu

delegate to template type-specific subclasses
which delegate to app toolset-specific subclasses

class ListMenuGui(ShellGui):
 def fetchCommands(self): # subclass: set 'myMenu'
 return self.myMenu # list of (label, callback)
 def runCommand(self, cmd):
 for (label, action) in self.myMenu:
 if label == cmd: action()

class DictMenuGui(ShellGui):
 def fetchCommands(self): return self.myMenu.items()
 def runCommand(self, cmd): self.myMenu[cmd]()

The ShellGui class in this module knows how to use the GuiMaker and GuiMix
interfaces to construct a selection window that displays tool names in menus, a
scrolled list, and a toolbar. It also provides an overridable forToolBar method that
allows subclasses to specify which tools should and should not be added to the
window's toolbar (the toolbar can get crowded in a hurry). However, it is deliberately
ignorant about both the names of tools that should be displayed in those places, and
the actions to be run when tool names are selected.

Instead, ShellGui relies on the ListMenuGui and DictMenuGui subclasses in this file
to provide a list of tool names from a fetchCommands method and dispatch actions
by name in a runCommand method. These two subclasses really just serve to interface
to application-specific tool sets laid out as lists or dictionaries, though; they are still
naive about what tool names really go up on the GUI. That's by design, too --
because the tool sets displayed are defined by lower subclasses, we can use
ShellGui to display a variety of different tool sets.

9.2.4.2 Application-specific tool set classes

To get to the actual tool sets, we need to go one level down. The module in Example
9-6 defines subclasses of the two type-specific ShellGui classes, to provide sets of
available tools in both list and dictionary format (you would normally need only one,
but this module is meant for illustration). This is also the module that is actually run
to kick off the GUI -- the shellgui module is a class library only.

Example 9-6. PP2E\Gui\ShellGui\mytools.py

#!/usr/local/bin/python
from shellgui import * # type-specific shell interfaces
from packdlg import runPackDialog # dialogs for data entry
from unpkdlg import runUnpackDialog # they both run app classes

Programming Python, 2nd Edition, O’Reilly

IT-SC book 505

class TextPak1(ListMenuGui):
 def __init__(self):
 self.myMenu = [('Pack', runPackDialog),
 ('Unpack', runUnpackDialog), # simple
functions
 ('Mtool', self.notdone)] # method from
guimixin
 ListMenuGui.__init__(self)

 def forToolBar(self, label):
 return label in ['Pack', 'Unpack']

class TextPak2(DictMenuGui):
 def __init__(self):
 self.myMenu = {'Pack': runPackDialog, # or use input
here...
 'Unpack': runUnpackDialog, # instead of in
dialogs
 'Mtool': self.notdone}
 DictMenuGui.__init__(self)

if __name__ == '__main__': # self-test
code...
 from sys import argv # 'menugui.py
list|^'
 if len(argv) > 1 and argv[1] == 'list':
 print 'list test'
 TextPak1().mainloop()
 else:
 print 'dict test'
 TextPak2().mainloop()

The classes in this module are specific to a particular tools set; to display a different
set of tool names, simply code and run a new subclass. By separating out application
logic into distinct subclasses and modules like this, software can become widely
reusable.

Figure 9-5 shows the main ShellGui window created when the mytools script is run
with its dictionary-based menu layout class on Windows, along with menu tear-offs
so you can see what they contain. This window's menu and toolbar are built by
GuiMaker, and its Quit and Help buttons and menu selections trigger quit and help
methods inherited from GuiMixin through the ShellGui module's superclasses. Are
you starting to see why this book preaches code reuse so often?

Figure 9-5. mytools items in a ShellGui window

Programming Python, 2nd Edition, O’Reilly

IT-SC book 506

9.2.4.3 Adding GUI frontends to command lines

The callback actions named within the prior module's classes, though, should
normally do something GUI-oriented. Because the original file packing and unpacking
scripts live in the world of text-based streams, we need to code wrappers around
them that accept input parameters from more GUI-minded users.

The module in Example 9-7 uses the custom modal dialog techniques we studied in
Chapter 7, to pop up an input display to collect pack script parameters. Its
runPackDialog function is the actual callback handler invoked when tool names are
selected in the main ShellGui window.

Example 9-7. PP2E\Gui\ShellGui\packdlg.py.

added file select dialogs, empties test; could use grids

import string
from glob import glob # filename
expansion
from Tkinter import * # gui widget
stuff
from tkFileDialog import * # file selector
dialog
from PP2E.System.App.Clients.packapp import PackApp # use pack
class

def runPackDialog():
 s1, s2 = StringVar(), StringVar() # run class like a
function
 PackDialog(s1, s2) # pop-up dialog: sets
s1/s2
 output, patterns = s1.get(), s2.get() # whether 'ok' or wm-
destroy
 if output != "" and patterns != "":
 patterns = string.split(patterns)
 filenames = []
 for sublist in map(glob, patterns): # do expansion manually
 filenames = filenames + sublist # Unix does auto on
command-line
 print 'PackApp:', output, filenames

Programming Python, 2nd Edition, O’Reilly

IT-SC book 507

 app = PackApp(ofile=output) # run with redirected
output
 app.args = filenames # reset cmdline args
list
 app.main() # should show msgs in
gui too

class PackDialog(Toplevel):
 def __init__(self, target1, target2):
 Toplevel.__init__(self) # a new top-level
window
 self.title('Enter Pack Parameters') # 2 frames plus a
button

 f1 = Frame(self)
 l1 = Label(f1, text='Output file?', relief=RIDGE, width=15)
 e1 = Entry(f1, relief=SUNKEN)
 b1 = Button(f1, text='browse...')
 f1.pack(fill=X)
 l1.pack(side=LEFT)
 e1.pack(side=LEFT, expand=YES, fill=X)
 b1.pack(side=RIGHT)
 b1.config(command= (lambda x=target1: x.set(askopenfilename(
))))

 f2 = Frame(self)
 l2 = Label(f2, text='Files to pack?', relief=RIDGE, width=15)
 e2 = Entry(f2, relief=SUNKEN)
 b2 = Button(f2, text='browse...')
 f2.pack(fill=X)
 l2.pack(side=LEFT)
 e2.pack(side=LEFT, expand=YES, fill=X)
 b2.pack(side=RIGHT)
 b2.config(command=
 (lambda x=target2: x.set(x.get() +' '+
askopenfilename())))

 Button(self, text='OK', command=self.destroy).pack()
 e1.config(textvariable=target1)
 e2.config(textvariable=target2)

 self.grab_set() # make myself modal:
 self.focus_set() # mouse grab, keyboard focus, wait...
 self.wait_window() # till destroy; else returns to
caller now

if __name__ == '__main__':
 root = Tk()
 Button(root, text='pop', command=runPackDialog).pack(fill=X)
 Button(root, text='bye', command=root.quit).pack(fill=X)
 root.mainloop()

When run, this script makes the input form shown in Figure 9-6. Users may either
type input and output filenames into the entry fields, or press the "browse..."
buttons to pop up standard file selection dialogs. They can also enter filename
patterns -- the manual glob.glob call in this script expands filename patterns to

Programming Python, 2nd Edition, O’Reilly

IT-SC book 508

match names and filters out nonexistent input filenames. The Unix command line
does this pattern expansion automatically when running PackApp from a shell, but
Windows does not (see Chapter 2, for more details).

Figure 9-6. The packdlg input form

When the form is filled in and submitted with its OK button, parameters are finally
passed to an instance of the PackApp class we wrote in Chapter 4 to do file
concatenations. The GUI interface to the unpacking script is simpler, because there is
only one input field -- the name of the packed file to scan. The script in Example 9-8
generated the input form window shown in Figure 9-7.

Example 9-8. PP2E\Gui\ShellGui\unpkdlg.py

added file select dialog, handles cancel better

from Tkinter import * # widget
classes
from tkFileDialog import * # file open
dialog
from PP2E.System.App.Clients.unpackapp import UnpackApp # use unpack
class

def runUnpackDialog():
 input = UnpackDialog().input # get input from
GUI
 if input != '': # do non-gui file
stuff
 print 'UnpackApp:', input
 app = UnpackApp(ifile=input) # run with input from
file
 app.main() # execute app class

class UnpackDialog(Toplevel):
 def __init__(self): # a function would
work too
 Toplevel.__init__(self) # resizable root box
 self.input = '' # a label and an
entry
 self.title('Enter Unpack Parameters')
 Label(self, text='input file?', relief=RIDGE,
width=11).pack(side=LEFT)
 e = Entry(self, relief=SUNKEN)
 b = Button(self, text='browse...')
 e.bind('<Key-Return>', self.gotit)
 b.config(command=(lambda x=e: x.insert(0, askopenfilename(
))))
 b.pack(side=RIGHT)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 509

 e.pack(side=LEFT, expand=YES, fill=X)
 self.entry = e
 self.grab_set() # make myself modal
 self.focus_set()
 self.wait_window() # till I'm destroyed on
return->gotit
 def gotit(self, event): # on return key:
event.widget==Entry
 self.input = self.entry.get() # fetch text, save in self
 self.destroy() # kill window, but instance
lives on

if __name__ == "__main__":
 Button(None, text='pop', command=runUnpackDialog).pack()
 mainloop()

The "browse..." button in Figure 9-7 pops up a file selection dialog just like the
packdlg form. Rather than an OK button, this dialog binds the enter key-press event
to kill the window and end the modal wait state pause; on submission, the name of
the file is passed to an instance of the UnpackApp class shown in Chapter 4 to
perform the actual file scan process.

Figure 9-7. The unpkdlg input form

This all works as advertised -- by making command-line tools available in graphical
form like this, they become much more attractive to users accustomed to the GUI
way of life. Still, there are two aspects of this design that seem prime for
improvement.

First of all, both of the input dialogs use custom code to render a unique appearance,
but we could probably simplify them substantially by importing a common form-
builder module instead. We met generalized form builder code in Chapter 7 and
Chapter 8, and we'll meet more later; see the form.py module in Chapter 10, for
pointers on genericizing form construction, too.

Secondly, at the point where the user submits input data in either form dialog, we've
lost the GUI trail -- PackApp and UnpackApp messages still show up in the stdout
console window:

C:\...\PP2E\Gui\ShellGui\test>python ..\mytools.py
dict test
PackApp: packed.all ['spam.txt', 'eggs.txt', 'ham.txt']
packing: spam.txt
packing: eggs.txt
packing: ham.txt
UnpackApp: packed.all
creating: spam.txt
creating: eggs.txt
creating: ham.txt

Programming Python, 2nd Edition, O’Reilly

IT-SC book 510

We can do better here, by redirecting stdout to an object that throws text up in a
GUI window as it is received. You'll have to read the next section to see how.

9.2.5 GuiStreams: Redirecting Streams to GUI Widgets

The script in Example 9-9 arranges to map input and output sources to pop-up
windows in a GUI application, much as we did with strings in the stream redirection
topics in Chapter 2. Although this module is really just a first-cut prototype and
needs improvement itself (e.g., each input line request pops up a new input dialog),
it demonstrates the concepts in general.

Its GuiOutput and GuiInput objects define methods that allow them to masquerade
as files in any interface that expects a file. As we learned earlier in Chapter 2, this
includes standard stream processing tools like print, raw_input, and explicit read
and write calls. The redirectedGuiFunc function in this module uses this plug-and-
play compatibility to run a function with its standard input and output streams
mapped completely to pop-up windows instead of the console window (or wherever
streams would otherwise be mapped).

Example 9-9. PP2E\Gui\Tools\guiStreams.py

###
#######
first-cut implementation of file-like classes that can be used to
redirect
input and output streams to GUI displays; as is, input comes from a
common
dialog popup (a single output+input interface or a persistent Entry
field
for input would be better); this also does not properly span lines
for read
requests with a byte count > len(line); see guiStreamsTools.py for
more;
###
#######

from Tkinter import *
from ScrolledText import ScrolledText
from tkSimpleDialog import askstring

class GuiOutput:
 def __init__(self, parent=None):
 self.text = None
 if parent: self.popupnow(parent) # popup now or on
first write
 def popupnow(self, parent=None): # in parent now,
Toplevel later
 if self.text: return
 self.text = ScrolledText(parent or Toplevel())
 self.text.config(font=('courier', 9, 'normal'))
 self.text.pack()
 def write(self, text):
 self.popupnow()
 self.text.insert(END, str(text))

Programming Python, 2nd Edition, O’Reilly

IT-SC book 511

 self.text.see(END)
 self.text.update()
 def writelines(self, lines): # lines already have
'\n'
 for line in lines: self.write(line) # or map(self.write,
lines)

class GuiInput:
 def __init__(self):
 self.buff = ''
 def inputLine(self):
 line = askstring('GuiInput', 'Enter input line + <crlf>
(cancel=eof)')
 if line == None:
 return '' # popup dialog for
each line
 else: # cancel button means
eof
 return line + '\n' # else add end-line
marker
 def read(self, bytes=None):
 if not self.buff:
 self.buff = self.inputLine()
 if bytes: # read by byte count
 text = self.buff[:bytes] # doesn't span lines
 self.buff = self.buff[bytes:]
 else:
 text = '' # read all till eof
 line = self.buff
 while line:
 text = text + line
 line = self.inputLine() # until
cancel=eof=''
 return text
 def readline(self):
 text = self.buff or self.inputLine() # emulate file read
methods
 self.buff = ''
 return text
 def readlines(self):
 lines = [] # read all lines
 while 1:
 next = self.readline()
 if not next: break
 lines.append(next)
 return lines

def redirectedGuiFunc(func, *pargs, **kargs):
 import sys
 saveStreams = sys.stdin, sys.stdout # map func streams to
popups
 sys.stdin = GuiInput() # pops up dialog as
needed
 sys.stdout = GuiOutput() # new output window
per call
 sys.stderr = sys.stdout

Programming Python, 2nd Edition, O’Reilly

IT-SC book 512

 result = apply(func, pargs, kargs) # this is a blocking
func call
 sys.stdin, sys.stdout = saveStreams
 return result

def redirectedGuiShellCmd(command):
 import os
 input = os.popen(command, 'r')
 output = GuiOutput()
 def reader(input, output): # show a shell
command's
 while 1: # standard output in a
new
 line = input.readline() # popup text box
widget
 if not line: break
 output.write(line)
 reader(input, output)

if __name__ == '__main__':
 import string
 def makeUpper(): # use standard
streams
 while 1:
 try:
 line = raw_input('Line? ')
 except:
 break
 print string.upper(line)
 print 'end of file'

 def makeLower(input, output): # use explicit files
 while 1:
 line = input.readline()
 if not line: break
 output.write(string.lower(line))
 print 'end of file'

 root = Tk()
 Button(root, text='test streams',
 command=lambda: redirectedGuiFunc(makeUpper)).pack(fill=X)
 Button(root, text='test files ',
 command=lambda: makeLower(GuiInput(), GuiOutput())
).pack(fill=X)
 Button(root, text='test popen ',
 command=lambda: redirectedGuiShellCmd('dir *')).pack(fill=X)
 root.mainloop()

As coded here, GuiOutput either attaches a ScrolledText to a parent container, or
pops up a new top-level window to serve as the container on the first write call.
GuiInput pops up a new standard input dialog every time a read request requires a
new line of input. Neither one of these policies is ideal for all scenarios (input would
be better mapped to a more long-lived widget), but they prove the general point.
Figure 9-8 shows the scene generated by this script's self-test code, after capturing
the output of a shell dir listing command (on the left), and two interactive loop tests

Programming Python, 2nd Edition, O’Reilly

IT-SC book 513

(the one with "Line?" prompts and uppercase letters represents the makeUpper
streams test). An input dialog has just popped up for a new makeLower files test.

Figure 9-8. guiStreams routing streams to pop-up windows

9.2.5.1 Using redirection for the packing scripts

Now, to use such redirection tools to map command-line script output back to a GUI,
simply run calls and command lines with the two redirected functions in this module.
Example 9-10 shows one way to wrap the packing operation to force its printed
output to appear in a pop-up window when generated, instead of the console.

Example 9-10. PP2E\Gui\ShellGui\packdlg-redirect.py

wrap command-line script in GUI redirection tool to popup its output

from Tkinter import *
from packdlg import runPackDialog
from PP2E.Gui.Tools.guiStreams import redirectedGuiFunc

def runPackDialog_Wrapped():
 redirectedGuiFunc(runPackDialog) # wrap entire callback handler

if __name__ == '__main__':
 root = Tk()
 Button(root, text='pop',
command=runPackDialog_Wrapped).pack(fill=X)
 root.mainloop()

You can run this script directly to test its effect, without bringing up the ShellGui
window. Figure 9-9 shows the resulting stdout window after the pack input dialog is
dismissed. This window pops up as soon as script output is generated, and is a bit
more GUI user-friendly than hunting for messages in a console. You can similarly
code the unpack parameters dialog to route its output to a pop-up too.[2] In fact, you
can use this technique to route the output of any function call or command line to a
pop-up window; as usual, the notion of compatible object interfaces are at the heart
of much of Python's flexibility.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 514

[2] These two scripts are something of a unique case; because the App superclass they employ
saves away standard streams in its own attributes at object creation time, you must kick off
the GUI redirection wrapper calls as soon as possible so that App finds the redirected GUI
streams in sys when saving them locally. Most other scripts aren't quite as tricky when it
comes to internal stream redirections.

Figure 9-9. Routing script outputs to GUI pop-ups

9.2.6 Reloading GUI Callback Handlers Dynamically

One last GUI programming technique merits a quick look here. The Python reload
function lets you dynamically change and reload a program's modules without
stopping the program. For instance, you can bring up a text editor window to change
the source code of selected parts of a system while it is running and see those
changes show up immediately after reloading the changed module.

This is a powerful feature, especially for developing programs that take a long time
to restart. Programs that connect to databases or network servers, initialize large
objects, or travel through a long series of steps to retrigger a callback are prime
candidates for reload. It can shave substantial time from the development cycle.

The catch for GUIs, though, is that because callback handlers are registered as
object references instead of module and object names, reloads of callback handler
functions are ineffective after the callback has been registered. The Python reload
operation works by changing a module object's contents in place. Because Tkinter
stores a pointer to the registered handler object directly, though, it is oblivious to
any reloads of the module that the handler came from. That is, Tkinter will still
reference a module's old objects even after the module is reloaded and changed.

This is a subtle thing, but you really only need to remember that you must do
something special to reload callback handler functions dynamically. Not only do you
need to explicitly request reloading of the modules that you change, but you must
also generally provide an indirection layer that routes callbacks from registered
objects to modules, so that reloads have impact.

For example, the script in Example 9-11 goes the extra mile to indirectly dispatch
callbacks to functions in an explicitly reloaded module. The callback handlers
registered with Tkinter are method objects that do nothing but reload and dispatch
again. Because the true callback handler functions are fetched through a module
object, reloading that module makes the latest versions of the functions accessible.

Example 9-11. PP2E\Gui\Tools\Reload\rad.py

from Tkinter import *
import actions # get initial callback handlers

Programming Python, 2nd Edition, O’Reilly

IT-SC book 515

class Hello(Frame):
 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.pack()
 self.make_widgets()

 def make_widgets(self):
 Button(self, text='message1',
command=self.message1).pack(side=LEFT)
 Button(self, text='message2',
command=self.message2).pack(side=RIGHT)

 def message1(self):
 reload(actions) # need to reload actions module before
calling
 actions.message1() # now new version triggered by
pressing button

 def message2(self):
 reload(actions) # changes to actions.py picked up by
reload
 actions.message2(self) # call the most recent version; pass
self

 def method1(self):
 print 'exposed method...' # called from actions function

Hello().mainloop()

When run, this script makes a two-button window that triggers the message1 and
message2 methods. Example 9-12 contains the actual callback handlers' code. Its
functions receive a self argument that gives access back to the Hello class object,
as though these were real methods. You can change this file any number of times
while the rad script's GUI is active; each time you do so, you'll change the behavior
of the GUI when a button press occurs.

Example 9-12. PP2E\Gui\Tools\Reload\actions.py

callback handlers: reloaded each time triggered

def message1(): # change me
 print 'spamSpamSPAM' # could build a dialog...

def message2(self):
 print 'Ni! Ni!' # change me
 self.method1() # access the 'Hello' instance...

Try running rad and editing the messages printed by actions in another window;
you should see your new messages printed in the stdout console window each time
the GUI's buttons are pressed. This example is deliberately simple to illustrate the
concept, but the actions reloaded like this in practice might build pop-up dialogs,
new top-level windows, and so on. Reloading the code that creates such windows
would also let us dynamically change their appearances.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 516

There are other ways to change a GUI while it's running. For instance, we saw in
Chapter 8 that appearances can be altered at any time by calling the widget config
method, and widgets can be added and deleted from a display dynamically with
methods like pack_forget and pack (and their grid manager relatives).
Furthermore, passing a new command=action option setting to a widget's config
method might reset a callback handler to a new action object on the fly; with enough
support code, this may be a viable alternative to the indirection scheme used above
to make reloads more effective in GUIs.

9.3 Complete Program Examples

The rest of this chapter presents a handful of complete GUI programs, as examples
of how far Python and Tkinter can take you. Because I've already shown the
interfaces these scripts employ, this section is mostly screen shots, program listings,
and a few bullets describing some of the most important aspects of these programs.
In other words, this is a self-study section: read the source, run the examples on
your own computer, and refer to the previous chapters for further details on the code
listed here. Many of these scripts also are accompanied on the book CD by
alternative or experimental implementations not listed here; see the CD for extra
code examples.

9.4 PyEdit: A Text Editor Program/Object

In the last few decades, I've typed text into a lot of programs. Most were closed
systems (I had to live with whatever decisions their designers made), and many ran
on only one platform. The PyEdit program presented in this section does better on
both counts: it implements a full-featured, graphical text editor program in roughly
470 lines of portable Python code (including whitespace and comments). Despite its
size, PyEdit was sufficiently powerful and robust to serve as the primary tool used to
code most examples in this book.

PyEdit supports all the usual mouse and keyboard text-editing operations: cut and
paste, search and replace, open and save, and so on. But really, PyEdit is a bit more
than just another text editor -- it is designed to be used as both a program and a
library component, and can be run in a variety of roles:

Standalone mode

As a standalone text editor program, with or without the name of a file to be edited
passed in on the command line. In this mode, PyEdit is roughly like other text-
editing utility programs (e.g., Notepad on Windows), but also provides advanced
functions such as running Python program code being edited, changing fonts and
colors, and so on. More importantly, because it is coded in Python, PyEdit is easy to
customize, and runs portably on Windows, X Windows, and Macintosh.

Pop-up mode

Within a new pop-up window, allowing an arbitrary number of copies to appear as
pop-ups at once in a program. Because state information is stored in class instance
attributes, each PyEdit object created operates independently. In this mode and the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 517

next, PyEdit serves as a library object for use in other scripts, not a canned
application.

Embedded mode

As an attached component, to provide a text- editing widget for other GUIs. When
attached, PyEdit uses a frame-based menu, and can optionally disable some of its
menu options for an embedded role. For instance, PyView (later in this chapter) uses
PyEdit in embedded mode this way to serve as a note editor for photos, and PyMail
(in Chapter 11) attaches it to get an email text editor for free.

While such mixed-mode behavior may sound complicated to implement, most of
PyEdit's modes are a natural by-product of coding GUIs with the class-based
techniques we've seen in the last three chapters.

9.4.1 Running PyEdit

PyEdit sports lots of features, and the best way to learn how it works is to test drive
it for yourself -- it can be run by starting the file textEditor.pyw, or from the PyDemo
and PyGadget launcher bars described in the previous chapter (the launchers
themselves live in the top level of the book examples directory tree). To give you a
sampling of its interfaces, Figure 9-10 shows the main window's default appearance,
after opening PyEdit's source code file.

Figure 9-10. PyEdit main window, editing itself

The main part of this window is a Text widget object, and if you read the last
chapter's coverage of this widget, PyEdit text-editing operations will be familiar. It
uses text marks, tags, and indexes, and implements cut-and-paste operations with
the system clipboard so that PyEdit can paste data to and from other applications.
Both vertical and horizontal scrollbars are cross-linked to the Text widget, to support
movement through arbitrary files.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 518

If PyEdit's menu and toolbars look familiar, they should -- it builds the main window
with minimal code and appropriate clipping and expansion policies, by mixing in the
GuiMaker class we met earlier in this chapter. The toolbar at the bottom contains
shortcut buttons for operations I tend to use most often; if my preferences don't
match yours, simply change the toolbar list in the source code to show the buttons
you want (this is Python, after all). As usual for Tkinter menus, shortcut key
combinations can be used to invoke menu options quickly, too -- press Alt plus all
the underlined keys of entries along the path to the desired action.

PyEdit pops up a variety of modal and nonmodal dialogs, both standard and custom.
Figure 9-11 shows the custom and nonmodal change dialog, along with a standard
dialog used to display file statistics.

Figure 9-11. PyEdit with colors, font, and a few pop-ups

The main window here has been given new foreground and background colors (with
the standard color selection dialog), and a new text font has been selected from a
canned list in the script that users can change to suit their preferences (this is
Python, after all). The standard file open and save selection dialogs in PyEdit use
object-based interfaces to remember the last directory visited, so you don't have to
renavigate there every time.

One of the more unique features of PyEdit is that it can actually run Python program
code that you are editing. This isn't as hard as it may sound either -- because Python
provides built-ins for both compiling and running code strings and launching
programs, PyEdit simply has to make the right calls for this to work. For example, it's
easy to code a simple-minded Python interpreter in Python (though you need a bit
more to handle multiple-line statements), as shown in Example 9-13.

Example 9-13. PP2E\Gui\TextEditor\simpleshell.py

namespace= {}

Programming Python, 2nd Edition, O’Reilly

IT-SC book 519

while 1:
 try:
 line = raw_input('>>> ') # single line statements only
 except EOFError:
 break
 else:
 exec line in namespace # or eval() and print result

Depending on the user's preference, PyEdit either does something similar to this to
run code fetched from the text widget, or uses the launchmodes module we wrote at
the end of Chapter 3 to run the code's file as an independent program. There are a
variety of options in both schemes that you can customize as you like (this is Python,
after all). See the onRunCode method for details, or simply edit and run some Python
code on your own.

Figure 9-12 shows four independently started instances of PyEdit running with a
variety of color schemes, sizes, and fonts. This figure also captures two PyEdit torn-
off menus (lower right) and the PyEdit help pop-up (upper right). The edit windows'
backgrounds are shades of yellow, blue, purple, and orange; use the Tools menu's
Pick options to set colors as you like.

Figure 9-12. Multiple PyEdit sessions at work

Since these four PyEdit sessions are all editing Python source-coded text, you can
run their contents with the Run Code option in the Tools pull-down menu. Code run
from files is spawned independently; the standard streams of code run not from a
file (i.e., fetched from the text widget itself) are mapped to the PyEdit session's
console window. This isn't an IDE by any means; it's just something I added because

Programming Python, 2nd Edition, O’Reilly

IT-SC book 520

I found it to be useful. It's nice to run code you're editing without fishing through
directories.

One caveat before I turn you loose on the source code: PyEdit does not yet have an
Undo button in this release. I don't use such a mode myself, and it's easy to undo
cuts and pastes right after you've done them (simply paste back from the clipboard,
or cut the pasted and selected text). Adding a general undo option would make for a
fun exercise if you are so motivated. An interesting approach may be to subclass
either the TextEditor class here or the Tkinter Text class itself. Such a subclass
would record text operations on a limited-length list and run calls to back out of each
logged operation on demand and in reverse. It could also be used to make PyEdit
smarter about knowing when to ask about saving the file before it exits. By adding
undo as an external subclass, exiting PyEdit code would not have to be instrumented
to keep track of everything it does to the text. This is Python, after all.

9.4.2 PyEdit Source Code

The program in Example 9-14 consists of just two source files -- a .pyw that can be
run on Windows to avoid the DOS console streams window pop-up, and a main .py
that can be either run or imported. We need both because PyEdit is both script and
library, and .pyw files can only be run, not imported (see Chapter 2 if you've
forgotten what that implies).

Example 9-14. PP2E\Gui\TextEditor\textEditor.pyw

run PyEdit without DOS console popup for os.system on Windows;
at present, ".pyw" files cannot be imported as modules;
if you want a file to be both a program that launches without
a dos console box on windows, and be imported from elsewhere,
use ".py" for the main file and import .py code from a ".pyw";
execfile('textEditor.py') fails when run from another dir,
because the current working dir is the dir I'm run from;

import textEditor # grab .py (or .pyc) file
textEditor.main() # run top-level entry point

The module in Example 9-15 is PyEdit's implementation; the main classes used to
start and embed a PyEdit object appear at the end of this file. Study this listing while
you experiment with PyEdit, to learn about its features and techniques.

Example 9-15. PP2E\Gui\TextEditor\textEditor.py

###
#########
PyEdit 1.1: a Python/Tkinter text file editor and component.
Uses the Tk text widget, plus GuiMaker menus and toolbar buttons
to implement a full-featured text editor that can be run as a
stand-alone program, and attached as a component to other GUIs.
Also used by PyMail and PyView to edit mail and image file notes.
###
#########

Programming Python, 2nd Edition, O’Reilly

IT-SC book 521

Version = '1.1'
from Tkinter import * # base widgets, constants
from tkFileDialog import * # standard dialogs
from tkMessageBox import *
from tkSimpleDialog import *
from tkColorChooser import askcolor
from string import split, atoi
from PP2E.Gui.Tools.guimaker import * # Frame + menu/toolbar
builders

START = '1.0' # index of first char:
row=1,col=0
SEL_FIRST = SEL + '.first' # map sel tag to index
SEL_LAST = SEL + '.last' # same as 'sel.last'

import sys, os, string
FontScale = 0 # use bigger font on linux
if sys.platform[:3] != 'win': # and other non-windows
boxes
 FontScale = 3

class TextEditor: # mix with menu/toolbar
Frame class
 startfiledir = '.'
 ftypes = [('All files', '*'), # for file open
dialog
 ('Text files', '.txt'), # customize in
subclass
 ('Python files', '.py')] # or set in each
instance

 colors = [{'fg':'black', 'bg':'white'}, # color pick list
 {'fg':'yellow', 'bg':'black'}, # first item is
default
 {'fg':'white', 'bg':'blue'}, # tailor me as
desired
 {'fg':'black', 'bg':'beige'}, # or do PickBg/Fg
chooser
 {'fg':'yellow', 'bg':'purple'},
 {'fg':'black', 'bg':'brown'},
 {'fg':'lightgreen', 'bg':'darkgreen'},
 {'fg':'darkblue', 'bg':'orange'},
 {'fg':'orange', 'bg':'darkblue'}]

 fonts = [('courier', 9+FontScale, 'normal'), # platform-
neutral fonts
 ('courier', 12+FontScale, 'normal'), # (family, size,
style)
 ('courier', 10+FontScale, 'bold'), # or popup a
listbox
 ('courier', 10+FontScale, 'italic'), # make bigger on
linux
 ('times', 10+FontScale, 'normal'),
 ('helvetica', 10+FontScale, 'normal'),
 ('ariel', 10+FontScale, 'normal'),
 ('system', 10+FontScale, 'normal'),

Programming Python, 2nd Edition, O’Reilly

IT-SC book 522

 ('courier', 20+FontScale, 'normal')]

 def __init__(self, loadFirst=''):
 if not isinstance(self, GuiMaker):
 raise TypeError, 'TextEditor needs a GuiMaker mixin'
 self.setFileName(None)
 self.lastfind = None
 self.openDialog = None
 self.saveDialog = None
 self.text.focus() # else must click
in text
 if loadFirst:
 self.onOpen(loadFirst)

 def start(self): # run by
GuiMaker.__init__
 self.menuBar = [# configure
menu/toolbar
 ('File', 0,
 [('Open...', 0, self.onOpen),
 ('Save', 0, self.onSave),
 ('Save As...', 5, self.onSaveAs),
 ('New', 0, self.onNew),
 'separator',
 ('Quit...', 0, self.onQuit)]
),
 ('Edit', 0,
 [('Cut', 0, self.onCut),
 ('Copy', 1, self.onCopy),
 ('Paste', 0, self.onPaste),
 'separator',
 ('Delete', 0, self.onDelete),
 ('Select All', 0, self.onSelectAll)]
),
 ('Search', 0,
 [('Goto...', 0, self.onGoto),
 ('Find...', 0, self.onFind),
 ('Refind', 0, self.onRefind),
 ('Change...', 0, self.onChange)]
),
 ('Tools', 0,
 [('Font List', 0, self.onFontList),
 ('Pick Bg...', 4, self.onPickBg),
 ('Pick Fg...', 0, self.onPickFg),
 ('Color List', 0, self.onColorList),
 'separator',
 ('Info...', 0, self.onInfo),
 ('Clone', 1, self.onClone),
 ('Run Code', 0, self.onRunCode)]
)]
 self.toolBar = [
 ('Save', self.onSave, {'side': LEFT}),
 ('Cut', self.onCut, {'side': LEFT}),
 ('Copy', self.onCopy, {'side': LEFT}),
 ('Paste', self.onPaste, {'side': LEFT}),
 ('Find', self.onRefind, {'side': LEFT}),
 ('Help', self.help, {'side': RIGHT}),

Programming Python, 2nd Edition, O’Reilly

IT-SC book 523

 ('Quit', self.onQuit, {'side': RIGHT})]

 def makeWidgets(self): # run by
GuiMaker.__init__
 name = Label(self, bg='black', fg='white') # add below menu,
above tool
 name.pack(side=TOP, fill=X) # menu/toolbars are
packed

 vbar = Scrollbar(self)
 hbar = Scrollbar(self, orient='horizontal')
 text = Text(self, padx=5, wrap='none')

 vbar.pack(side=RIGHT, fill=Y)
 hbar.pack(side=BOTTOM, fill=X) # pack text last
 text.pack(side=TOP, fill=BOTH, expand=YES) # else sbars
clipped

 text.config(yscrollcommand=vbar.set) # call vbar.set on text
move
 text.config(xscrollcommand=hbar.set)
 vbar.config(command=text.yview) # call text.yview on
scroll move
 hbar.config(command=text.xview) # or
hbar['command']=text.xview

 text.config(font=self.fonts[0],
 bg=self.colors[0]['bg'], fg=self.colors[0]['fg'])
 self.text = text
 self.filelabel = name

 #####################
 # Edit menu commands
 #####################

 def onCopy(self): # get text selected by
mouse,etc
 if not self.text.tag_ranges(SEL): # save in cross-app
clipboard
 showerror('PyEdit', 'No text selected')
 else:
 text = self.text.get(SEL_FIRST, SEL_LAST)
 self.clipboard_clear()
 self.clipboard_append(text)

 def onDelete(self): # delete selected text,
no save
 if not self.text.tag_ranges(SEL):
 showerror('PyEdit', 'No text selected')
 else:
 self.text.delete(SEL_FIRST, SEL_LAST)

 def onCut(self):
 if not self.text.tag_ranges(SEL):
 showerror('PyEdit', 'No text selected')
 else:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 524

 self.onCopy() # save and delete
selected text
 self.onDelete()

 def onPaste(self):
 try:
 text = self.selection_get(selection='CLIPBOARD')
 except TclError:
 showerror('PyEdit', 'Nothing to paste')
 return
 self.text.insert(INSERT, text) # add at current insert
cursor
 self.text.tag_remove(SEL, '1.0', END)
 self.text.tag_add(SEL, INSERT+'-%dc' % len(text), INSERT)
 self.text.see(INSERT) # select it, so it can
be cut

 def onSelectAll(self):
 self.text.tag_add(SEL, '1.0', END+'-1c') # select entire text
 self.text.mark_set(INSERT, '1.0') # move insert point
to top
 self.text.see(INSERT) # scroll to top

 ######################
 # Tools menu commands
 ######################

 def onFontList(self):
 self.fonts.append(self.fonts[0]) # pick next font in
list
 del self.fonts[0] # resizes the text
area
 self.text.config(font=self.fonts[0])

 def onColorList(self):
 self.colors.append(self.colors[0]) # pick next color in
list
 del self.colors[0] # move current to
end
 self.text.config(fg=self.colors[0]['fg'],
bg=self.colors[0]['bg'])

 def onPickFg(self):
 self.pickColor('fg') # added on 10/02/00
 def onPickBg(self): # select arbitrary
color
 self.pickColor('bg') # in standard color
dialog
 def pickColor(self, part): # this is way too
easy
 (triple, hexstr) = askcolor()
 if hexstr:
 apply(self.text.config, (), {part: hexstr})

 def onInfo(self):
 text = self.getAllText() # added on 5/3/00
in 15 mins

Programming Python, 2nd Edition, O’Reilly

IT-SC book 525

 bytes = len(text) # words uses a
simple guess:
 lines = len(string.split(text, '\n')) # any separated by
whitespace
 words = len(string.split(text))
 index = self.text.index(INSERT)
 where = tuple(string.split(index, '.'))
 showinfo('PyEdit Information',
 'Current location:\n\n' +
 'line:\t%s\ncolumn:\t%s\n\n' % where +
 'File text statistics:\n\n' +
 'bytes:\t%d\nlines:\t%d\nwords:\t%d\n' % (bytes,
lines, words))

 def onClone(self):
 new = Toplevel() # a new edit window in same
process
 myclass = self.__class__ # instance's (lowest) class
object
 myclass(new) # attach/run instance of my
class

 def onRunCode(self, parallelmode=1):
 """
 run Python code being edited--not an ide, but handy;
 tries to run in file's dir, not cwd (may be pp2e root);
 inputs and adds command-line arguments for script files;
 code's stdin/out/err = editor's start window, if any;
 but parallelmode uses start to open a dos box for i/o;
 """
 from PP2E.launchmodes import System, Start, Fork
 filemode = 0
 thefile = str(self.getFileName())
 cmdargs = askstring('PyEdit', 'Commandline arguments?') or ''
 if os.path.exists(thefile):
 filemode = askyesno('PyEdit', 'Run from file?')
 if not filemode: # run text
string
 namespace = {'__name__': '__main__'} # run as
top-level
 sys.argv = [thefile] + string.split(cmdargs) # could use
threads
 exec self.getAllText() + '\n' in namespace #
exceptions ignored
 elif askyesno('PyEdit', 'Text saved in file?'):
 mycwd = os.getcwd() # cwd may
be root
 os.chdir(os.path.dirname(thefile) or mycwd) # cd for
filenames
 thecmd = thefile + ' ' + cmdargs
 if not parallelmode: # run as
file
 System(thecmd, thecmd)() # block
editor
 else:
 if sys.platform[:3] == 'win': # spawn in
parallel

Programming Python, 2nd Edition, O’Reilly

IT-SC book 526

 Start(thecmd, thecmd)() # or use
os.spawnv
 else:
 Fork(thecmd, thecmd)() # spawn
in parallel
 os.chdir(mycwd)

 #######################
 # Search menu commands
 #######################

 def onGoto(self):
 line = askinteger('PyEdit', 'Enter line number')
 self.text.update()
 self.text.focus()
 if line is not None:
 maxindex = self.text.index(END+'-1c')
 maxline = atoi(split(maxindex, '.')[0])
 if line > 0 and line <= maxline:
 self.text.mark_set(INSERT, '%d.0' % line) # goto
line
 self.text.tag_remove(SEL, '1.0', END) # delete
selects
 self.text.tag_add(SEL, INSERT, 'insert + 1l') # select
line
 self.text.see(INSERT) # scroll
to line
 else:
 showerror('PyEdit', 'Bad line number')

 def onFind(self, lastkey=None):
 key = lastkey or askstring('PyEdit', 'Enter search string')
 self.text.update()
 self.text.focus()
 self.lastfind = key
 if key:
 where = self.text.search(key, INSERT, END) # don't
wrap
 if not where:
 showerror('PyEdit', 'String not found')
 else:
 pastkey = where + '+%dc' % len(key) # index
past key
 self.text.tag_remove(SEL, '1.0', END) # remove
any sel
 self.text.tag_add(SEL, where, pastkey) # select
key
 self.text.mark_set(INSERT, pastkey) # for
next find
 self.text.see(where) # scroll
display

 def onRefind(self):
 self.onFind(self.lastfind)

 def onChange(self):
 new = Toplevel(self)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 527

 Label(new, text='Find text:').grid(row=0, column=0)
 Label(new, text='Change to:').grid(row=1, column=0)
 self.change1 = Entry(new)
 self.change2 = Entry(new)
 self.change1.grid(row=0, column=1, sticky=EW)
 self.change2.grid(row=1, column=1, sticky=EW)
 Button(new, text='Find',
 command=self.onDoFind).grid(row=0, column=2, sticky=EW)
 Button(new, text='Apply',
 command=self.onDoChange).grid(row=1, column=2,
sticky=EW)
 new.columnconfigure(1, weight=1) # expandable entrys

 def onDoFind(self):
 self.onFind(self.change1.get()) # Find in
change box

 def onDoChange(self):
 if self.text.tag_ranges(SEL): # must find
first
 self.text.delete(SEL_FIRST, SEL_LAST) # Apply in
change
 self.text.insert(INSERT, self.change2.get()) # deletes
if empty
 self.text.see(INSERT)
 self.onFind(self.change1.get()) # goto
next appear
 self.text.update() # force
refresh

 #####################
 # File menu commands
 #####################

 def my_askopenfilename(self): # objects remember last result
dir/file
 if not self.openDialog:
 self.openDialog = Open(initialdir=self.startfiledir,
 filetypes=self.ftypes)
 return self.openDialog.show()

 def my_asksaveasfilename(self): # objects remember last result
dir/file
 if not self.saveDialog:
 self.saveDialog = SaveAs(initialdir=self.startfiledir,
 filetypes=self.ftypes)
 return self.saveDialog.show()

 def onOpen(self, loadFirst=''):
 doit = self.isEmpty() or askyesno('PyEdit', 'Disgard text?')
 if doit:
 file = loadFirst or self.my_askopenfilename()
 if file:
 try:
 text = open(file, 'r').read()
 except:
 showerror('PyEdit', 'Could not open file ' + file)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 528

 else:
 self.setAllText(text)
 self.setFileName(file)

 def onSave(self):
 self.onSaveAs(self.currfile) # may be None

 def onSaveAs(self, forcefile=None):
 file = forcefile or self.my_asksaveasfilename()
 if file:
 text = self.getAllText()
 try:
 open(file, 'w').write(text)
 except:
 showerror('PyEdit', 'Could not write file ' + file)
 else:
 self.setFileName(file) # may be newly created

 def onNew(self):
 doit = self.isEmpty() or askyesno('PyEdit', 'Disgard text?')
 if doit:
 self.setFileName(None)
 self.clearAllText()

 def onQuit(self):
 if askyesno('PyEdit', 'Really quit PyEdit?'):
 self.quit() # Frame.quit via
GuiMaker

 ####################################
 # Others, useful outside this class
 ####################################

 def isEmpty(self):
 return not self.getAllText()

 def getAllText(self):
 return self.text.get('1.0', END+'-1c') # extract text as a
string

 def setAllText(self, text):
 self.text.delete('1.0', END) # store text string in
widget
 self.text.insert(END, text) # or '1.0'
 self.text.mark_set(INSERT, '1.0') # move insert point to
top
 self.text.see(INSERT) # scroll to top, insert
set

 def clearAllText(self):
 self.text.delete('1.0', END) # clear text in widget

 def getFileName(self):
 return self.currfile

 def setFileName(self, name):
 self.currfile = name # for save

Programming Python, 2nd Edition, O’Reilly

IT-SC book 529

 self.filelabel.config(text=str(name))

 def help(self):
 showinfo('About PyEdit',
 'PyEdit version %s\nOctober, 2000\n\n'
 'A text editor program\nand object component\n'
 'written in Python/Tk.\nProgramming Python 2E\n'
 "O'Reilly & Associates" % Version)

ready-to-use editor classes
mix in a Frame subclass that builds menu/toolbars

when editor owns the window

class TextEditorMain(TextEditor, GuiMakerWindowMenu): # add
menu/toolbar maker
 def __init__(self, parent=None, loadFirst=''): # when fills
whole window
 GuiMaker.__init__(self, parent) # use main
window menus
 TextEditor.__init__(self, loadFirst) # self has
GuiMaker frame
 self.master.title('PyEdit ' + Version) # title if
stand-alone
 self.master.iconname('PyEdit') # catch wm
delete button
 self.master.protocol('WM_DELETE_WINDOW', self.onQuit)

class TextEditorMainPopup(TextEditor, GuiMakerWindowMenu):
 def __init__(self, parent=None, loadFirst=''):
 self.popup = Toplevel(parent) # create own
window
 GuiMaker.__init__(self, self.popup) # use main
window menus
 TextEditor.__init__(self, loadFirst)
 assert self.master == self.popup
 self.popup.title('PyEdit ' + Version)
 self.popup.iconname('PyEdit')
 def quit(self):
 self.popup.destroy() # kill this
window only

when embedded in another window

class TextEditorComponent(TextEditor, GuiMakerFrameMenu):
 def __init__(self, parent=None, loadFirst=''): # use Frame-
based menus
 GuiMaker.__init__(self, parent) # all menus,
buttons on
 TextEditor.__init__(self, loadFirst) # GuiMaker must
init 1st

Programming Python, 2nd Edition, O’Reilly

IT-SC book 530

class TextEditorComponentMinimal(TextEditor, GuiMakerFrameMenu):
 def __init__(self, parent=None, loadFirst='', deleteFile=1):
 self.deleteFile = deleteFile
 GuiMaker.__init__(self, parent)
 TextEditor.__init__(self, loadFirst)
 def start(self):
 TextEditor.start(self) # GuiMaker start
call
 for i in range(len(self.toolBar)): # delete quit in
toolbar
 if self.toolBar[i][0] == 'Quit': # delete file
menu items
 del self.toolBar[i]; break # or just
disable file
 if self.deleteFile:
 for i in range(len(self.menuBar)):
 if self.menuBar[i][0] == 'File':
 del self.menuBar[i]; break
 else:
 for (name, key, items) in self.menuBar:
 if name == 'File':
 items.append([1,2,3,4,6])

stand-alone program run

def testPopup():
 # see PyView and PyMail for component tests
 root = Tk()
 TextEditorMainPopup(root)
 TextEditorMainPopup(root)
 Button(root, text='More', command=TextEditorMainPopup).pack(fill=X)
 Button(root, text='Quit', command=root.quit).pack(fill=X)
 root.mainloop()

def main(): # may be typed
or clicked
 try: # or associated
on Windows
 fname = sys.argv[1] # arg = optional
filename
 except IndexError:
 fname = None
 TextEditorMain(loadFirst=fname).pack(expand=YES, fill=BOTH)
 mainloop()

if __name__ == '__main__': # when run as a
script
 #testPopup()
 main() # run .pyw for
no dos box

9.5 PyView: An Image and Notes Slideshow

Programming Python, 2nd Edition, O’Reilly

IT-SC book 531

A picture may be worth a thousand words, but it takes considerably fewer to display
one with Python. The next program, PyView, implements a simple photo slideshow
program in portable Python/Tkinter code.

9.5.1 Running PyView

PyView pulls together many of the topics we studied in the last chapter: it uses
after events to sequence a slideshow, displays image objects in an automatically
sized canvas, and so on. Its main window displays a photo on a canvas; users can
either open and view a photo directly or start a slideshow mode that picks and
displays a random photo from a directory, at regular intervals specified with a scale
widget.

By default, PyView slideshows show images in the book's image file directory
(though the Open button allows you to load images in arbitrary directories). To view
other sets of photos, either pass a directory name in as a first command-line
argument or change the default directory name in the script itself. I can't show you a
slideshow in action here, but I can show you the main window in general. Figure 9-
13 shows the main PyView window's default display.

Figure 9-13. PyView without notes

Though it's not obvious as rendered in this book, the black-on-red label at the top
gives the pathname of the photo file displayed. For a good time, move the slider at
the bottom all the way over to "0" to specify no delay between photo changes, and
click Start to begin a very fast slideshow. If your computer is at least as fast as
mine, photos flip by much too fast to be useful for anything but subliminal
advertising. Slideshow photos are loaded on startup to retain references to them
(remember, you must hold on to image objects). But the speed with which large
GIFs can be thrown up in a window in Python is impressive, if not downright
exhilarating.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 532

The GUI's Start button changes to a Stop button during a slideshow (its text
attribute is reset with the widget config method). Figure 9-14 shows the scene after
pressing Stop at an opportune moment.

Figure 9-14. PyView after stopping a slideshow

In addition, each photo can have an associated "notes" text file which is
automatically opened along with the image. You can use this feature to record basic
information about the photo. Press the Note button to open an additional set of
widgets that let you view and change the note file associated with the currently
displayed photo. This additional set of widgets should look familiar -- the PyEdit text
editor of the previous section is attached to PyView to serve as a display and editing
widget for photo notes. Figure 9-15 shows PyView with the attached PyEdit note-
editing component opened.

Figure 9-15. PyView with notes

Programming Python, 2nd Edition, O’Reilly

IT-SC book 533

This makes for a very big window, usually best view maximized (taking up the entire
screen). The main thing to notice, though, is the lower right corner of this display
above the scale -- it's simply an attached PyEdit object, running the very same code
listed in the prior section. Because PyEdit is implemented as a GUI class, it can be
reused like this in any GUI that needs a text editing interface. When embedded like
this, PyEdit's menus are based on a frame (it doesn't own the window at large), text
content is stored and fetched directly, and some stand-alone options are omitted
(e.g, the File pull-down is gone).

The note file viewer only appears if you press the Note button, and it is erased if you
press it again; PyView uses widget pack and pack_forget methods introduced at the
end of the last chapter to show and hide the note viewer frame. The window
automatically expands to accommodate the note viewer when it is packed and
displayed. It is also possible to open the note file in a PyEdit pop-up window, but
PyView embeds the editor to retain a direct visual association. Watch for PyEdit to
show up embedded within another GUI like this when we meet PyMail in Chapter 11.

A caveat here: out of the box, PyView supports as many photo formats as Tkinter's
PhotoImage object does; that's why it looks for GIF files by default. You can improve
this by installing the PIL extension to view JPEGs (and many others). But because
PIL is an optional extension today, it's not incorporated into this PyView release. See
the end of Chapter 7 for more on PIL and image formats.

9.5.2 PyView Source Code

Because the PyView program was implemented in stages, you need to study the
union of two files and classes to understand how it truly works. One file implements
a class that provides core slideshow functionality; the other implements a class the
extends the original class, to add additional features on top of the core behavior.
Let's start with the extension class: Example 9-16 adds a set of features to an

Programming Python, 2nd Edition, O’Reilly

IT-SC book 534

imported slideshow base class -- note editing, a delay scale and file label, etc. This is
the file that is actually run to start PyView.

Example 9-16. PP2E\Gui\SlideShow\slideShowPlus.py

SlideShowPlus: add note files with an attached PyEdit object,
a scale for setting the slideshow delay interval, and a label
that gives the name of the image file currently being displayed;

import os, string
from Tkinter import *
from PP2E.Gui.TextEditor.textEditor import *
from slideShow import SlideShow
#from slideShow_threads import SlideShow

class SlideShowPlus(SlideShow):
 def __init__(self, parent, picdir, editclass, msecs=2000):
 self.msecs = msecs
 self.editclass = editclass
 SlideShow.__init__(self, parent=parent, picdir=picdir,
msecs=msecs)
 def makeWidgets(self):
 self.name = Label(self, text='None', bg='red', relief=RIDGE)
 self.name.pack(fill=X)
 SlideShow.makeWidgets(self)
 Button(self, text='Note', command=self.onNote).pack(fill=X)
 Button(self, text='Help', command=self.onHelp).pack(fill=X)
 s = Scale(label='Speed: msec delay', command=self.onScale,
 from_=0, to=3000, resolution=50, showvalue=YES,
 length=400, tickinterval=250, orient='horizontal')
 s.pack(side=BOTTOM, fill=X)
 s.set(self.msecs)
 if self.editclass == TextEditorMain: # make editor now
 self.editor = self.editclass(self.master) # need root for
menu
 else:
 self.editor = self.editclass(self) # embedded or
popup
 self.editor.pack_forget() # hide editor
initially
 self.editorUp = self.image = None
 def onStart(self):
 SlideShow.onStart(self)
 self.config(cursor='watch')
 def onStop(self):
 SlideShow.onStop(self)
 self.config(cursor='hand2')
 def onOpen(self):
 SlideShow.onOpen(self)
 if self.image:
 self.name.config(text=os.path.split(self.image[0])[1])
 self.config(cursor='crosshair')
 self.switchNote()
 def quit(self):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 535

 self.saveNote()
 SlideShow.quit(self)
 def drawNext(self):
 SlideShow.drawNext(self)
 if self.image:
 self.name.config(text=os.path.split(self.image[0])[1])
 self.loadNote()
 def onScale(self, value):
 self.msecs = string.atoi(value)
 def onNote(self):
 if self.editorUp: # if editor already open
 #self.saveNote() # save text, hide editor
 self.editor.pack_forget()
 self.editorUp = 0
 else:
 self.editor.pack(side=TOP) # else unhide/pack editor
 self.editorUp = 1 # and load image note text
 self.loadNote()
 def switchNote(self):
 if self.editorUp:
 self.saveNote() # save current image's
note
 self.loadNote() # load note for new image
 def saveNote(self):
 if self.editorUp:
 currfile = self.editor.getFileName() # or
self.editor.onSave()
 currtext = self.editor.getAllText() # but text may
be empty
 if currfile and currtext:
 try:
 open(currfile, 'w').write(currtext)
 except:
 pass # this may be normal if run off cd
 def loadNote(self):
 if self.image and self.editorUp:
 root, ext = os.path.splitext(self.image[0])
 notefile = root + '.note'
 self.editor.setFileName(notefile)
 try:
 self.editor.setAllText(open(notefile).read())
 except:
 self.editor.clearAllText()
 def onHelp(self):
 showinfo('About PyView',
 'PyView version 1.1\nJuly, 1999\n'
 'An image slide show\nProgramming Python 2E')

if __name__ == '__main__':
 import sys
 picdir = '../gifs'
 if len(sys.argv) >= 2:
 picdir = sys.argv[1]

 editstyle = TextEditorComponentMinimal
 if len(sys.argv) == 3:
 try:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 536

 editstyle = [TextEditorMain,
 TextEditorMainPopup,
 TextEditorComponent,

TextEditorComponentMinimal][string.atoi(sys.argv[2])]
 except: pass

 root = Tk()
 root.title('PyView 1.1 - plus text notes')
 Label(root, text="Slide show subclass").pack()
 SlideShowPlus(parent=root, picdir=picdir, editclass=editstyle)
 root.mainloop()

The core functionality extended by SlideShowPlus lives in Example 9-17. This was
the initial slideshow implementation; it opens images, displays photos, and cycles
through a slideshow. You can run it by itself, but you won't get advanced features
like notes and sliders added by the SlideShowPlus subclass.

Example 9-17. PP2E\Gui\SlideShow\slideShow.py

###

SlideShow: a simple photo image slideshow in Python/Tkinter;
the base feature set coded here can be extended in subclasses;
###

from Tkinter import *
from glob import glob
from tkMessageBox import askyesno
from tkFileDialog import askopenfilename
import random
Width, Height = 450, 450

imageTypes = [('Gif files', '.gif'), # for file open dialog
 ('Ppm files', '.ppm'), # plus jpg with a Tk patch,
 ('Pgm files', '.pgm'), # plus bitmaps with BitmapImage
 ('All files', '*')]

class SlideShow(Frame):
 def __init__(self, parent=None, picdir='.', msecs=3000, **args):
 Frame.__init__(self, parent, args)
 self.makeWidgets()
 self.pack(expand=YES, fill=BOTH)
 self.opens = picdir
 files = []
 for label, ext in imageTypes[:-1]:
 files = files + glob('%s/*%s' % (picdir, ext))
 self.images = map(lambda x: (x, PhotoImage(file=x)), files)
 self.msecs = msecs
 self.beep = 1
 self.drawn = None
 def makeWidgets(self):
 self.canvas = Canvas(self, bg='white', height=Height,
width=Width)
 self.canvas.pack(side=LEFT, fill=BOTH, expand=YES)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 537

 self.onoff = Button(self, text='Start', command=self.onStart)
 self.onoff.pack(fill=X)
 Button(self, text='Open', command=self.onOpen).pack(fill=X)
 Button(self, text='Beep', command=self.onBeep).pack(fill=X)
 Button(self, text='Quit', command=self.onQuit).pack(fill=X)
 def onStart(self):
 self.loop = 1
 self.onoff.config(text='Stop', command=self.onStop)
 self.canvas.config(height=Height, width=Width)
 self.onTimer()
 def onStop(self):
 self.loop = 0
 self.onoff.config(text='Start', command=self.onStart)
 def onOpen(self):
 self.onStop()
 name = askopenfilename(initialdir=self.opens,
filetypes=imageTypes)
 if name:
 if self.drawn: self.canvas.delete(self.drawn)
 img = PhotoImage(file=name)
 self.canvas.config(height=img.height(), width=img.width(
))
 self.drawn = self.canvas.create_image(2, 2, image=img,
anchor=NW)
 self.image = name, img
 def onQuit(self):
 self.onStop()
 self.update()
 if askyesno('PyView', 'Really quit now?'):
 self.quit()
 def onBeep(self):
 self.beep = self.beep ^ 1
 def onTimer(self):
 if self.loop:
 self.drawNext()
 self.after(self.msecs, self.onTimer)
 def drawNext(self):
 if self.drawn: self.canvas.delete(self.drawn)
 name, img = random.choice(self.images)
 self.drawn = self.canvas.create_image(2, 2, image=img,
anchor=NW)
 self.image = name, img
 if self.beep: self.bell()
 self.canvas.update()

if __name__ == '__main__':
 import sys
 if len(sys.argv) == 2:
 picdir = sys.argv[1]
 else:
 picdir = '../gifs'
 root = Tk()
 root.title('PyView 1.0')
 root.iconname('PyView')
 Label(root, text="Python Slide Show Viewer").pack()
 SlideShow(root, picdir=picdir, bd=3, relief=SUNKEN)
 root.mainloop()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 538

To give you a better idea of what this core base class implements, Figure 9-16 shows
what it looks like if run by itself (actually, two copies run by themselves) by a script
called slideShow_frames, which is on this book's CD.

Figure 9-16. Two attached SlideShow objects

The simple slideShow_frames scripts attach two instances of SlideShow to a single
window -- a feat possible only because state information is recorded in class instance
variables, not globals. The slideShow_toplevels script also on the CD attaches two
SlideShows to two top-level pop-up windows instead. In both cases, the slideshows
run independently, but are based on after events fired from the same single event
loop in a single process.

9.6 PyDraw: Painting and Moving Graphics

The previous chapter introduced simple Tkinter animation techniques (see the tour's
canvasDraw variants). The PyDraw program listed here builds upon those ideas to
implement a more feature-rich painting program in Python. It adds new trails and
scribble drawing modes, object and background color fills, embedded photos, and
more. In addition, it implements object movement and animation techniques --
drawn objects may be moved around the canvas by clicking and dragging, and any
drawn object can be gradually moved across the screen to a target location clicked
with the mouse.

9.6.1 Running PyDraw

PyDraw is essentially a Tkinter canvas with lots of keyboard and mouse event
bindings to allow users to perform common drawing operations. This isn't a
professional-grade paint program by any definition, but it's fun to play with. In fact,
you really should -- it is impossible to capture things like object motion in the
medium afforded by this book. Start PyDraw from the launcher bars (or run the file
movingpics.pyfrom Example 9-18 directly). Press the ? key to view a help message
giving available commands (or read the help string in the code listings).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 539

Figure 9-17 shows PyDraw after a few objects have been drawn on the canvas. To
move any object shown here, either click it with the middle mouse button and drag
to move it with the mouse cursor, or middle-click the object and then right-click in
the spot you want it to move towards. In the latter case, PyDraw performs an
animated (gradual) movement of the object to the target spot. Try this on the
picture of Python creator Guido van Rossum near the top to start the famous
"Moving Guido Demo" (yes, he has a sense of humor, too).

Figure 9-17. PyDraw with draw objects ready to be moved

Press "p" to insert photos, and use left-button drags to draw shapes. Windows users
-- middle-click is usually both mouse buttons at once, but you may need to configure
this in your control panel. In addition to mouse events, there are 17 key-press
commands for tailoring sketches that I won't cover here. It takes a while to get the
hang of what all the keyboard and mouse commands do; but once you've mastered
the bindings, you too can begin generating senseless electronic artwork like that in
Figure 9-18.

Figure 9-18. PyDraw after substantial play

Programming Python, 2nd Edition, O’Reilly

IT-SC book 540

9.6.2 PyDraw Source Code

Like PyEdit, PyDraw lives in a single file. Two extensions that customize motion
implementations are listed following the main module shown in Example 9-18.

Example 9-18. PP2E\Gui\MovingPics\movingpics.py

###
#######
PyDraw: simple canvas paint program and object mover/animator
uses time.sleep loops to implement object move loops, such that only
one move can be in progress at once; this is smooth and fast, but see
the widget.after and thread-based subclasses here for other
techniques;
###
#######

helpstr = """--PyDraw version 1.0--
Mouse commands:
 Left = Set target spot
 Left+Move = Draw new object
 Double Left = Clear all objects
 Right = Move current object
 Middle = Select closest object
 Middle+Move = Drag current object

Keyboard commands:
 w=Pick border width c=Pick color
 u=Pick move unit s=Pick move delay
 o=Draw ovals r=Draw rectangles
 l=Draw lines a=Draw arcs
 d=Delete object 1=Raise object
 2=Lower object f=Fill object
 b=Fill background p=Add photo
 z=Save postscript x=Pick pen modes
 ?=Help other=clear text
"""

Programming Python, 2nd Edition, O’Reilly

IT-SC book 541

import time, sys
from Tkinter import *
from tkFileDialog import *
from tkMessageBox import *
PicDir = '../gifs'

if sys.platform[:3] == 'win':
 HelpFont = ('courier', 9, 'normal')
else:
 HelpFont = ('courier', 12, 'normal')

pickDelays = [0.01, 0.025, 0.05, 0.10, 0.25, 0.0, 0.001, 0.005]
pickUnits = [1, 2, 4, 6, 8, 10, 12]
pickWidths = [1, 2, 5, 10, 20]
pickFills =
[None,'white','blue','red','black','yellow','green','purple']
pickPens = ['elastic', 'scribble', 'trails']

class MovingPics:
 def __init__(self, parent=None):
 canvas = Canvas(parent, width=500, height=500, bg= 'white')
 canvas.pack(expand=YES, fill=BOTH)
 canvas.bind('<ButtonPress-1>', self.onStart)
 canvas.bind('<B1-Motion>', self.onGrow)
 canvas.bind('<Double-1>', self.onClear)
 canvas.bind('<ButtonPress-3>', self.onMove)
 canvas.bind('<Button-2>', self.onSelect)
 canvas.bind('<B2-Motion>', self.onDrag)
 parent.bind('<KeyPress>', self.onOptions)
 self.createMethod = Canvas.create_oval
 self.canvas = canvas
 self.moving = []
 self.images = []
 self.object = None
 self.where = None
 self.scribbleMode = 0
 parent.title('PyDraw - Moving Pictures 1.0')
 parent.protocol('WM_DELETE_WINDOW', self.onQuit)
 self.realquit = parent.quit
 self.textInfo = self.canvas.create_text(
 5, 5, anchor=NW,
 font=HelpFont,
 text='Press ? for help')
 def onStart(self, event):
 self.where = event
 self.object = None
 def onGrow(self, event):
 canvas = event.widget
 if self.object and pickPens[0] == 'elastic':
 canvas.delete(self.object)
 self.object = self.createMethod(canvas,
 self.where.x, self.where.y, # start
 event.x, event.y, # stop
 fill=pickFills[0], width=pickWidths[0])
 if pickPens[0] == 'scribble':
 self.where = event # from here next time
 def onClear(self, event):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 542

 if self.moving: return # ok if moving but confusing
 event.widget.delete('all') # use all tag
 self.images = []
 self.textInfo = self.canvas.create_text(
 5, 5, anchor=NW,
 font=HelpFont,
 text='Press ? for help')
 def plotMoves(self, event):
 diffX = event.x - self.where.x # plan animated
moves
 diffY = event.y - self.where.y # horizontal then
vertical
 reptX = abs(diffX) / pickUnits[0] # incr per move,
number moves
 reptY = abs(diffY) / pickUnits[0] # from last to
event click
 incrX = pickUnits[0] * ((diffX > 0) or -1)
 incrY = pickUnits[0] * ((diffY > 0) or -1)
 return incrX, reptX, incrY, reptY
 def onMove(self, event):
 traceEvent('onMove', event, 0) # move current
object to click
 object = self.object # ignore some ops
during mv
 if object and object not in self.moving:
 msecs = int(pickDelays[0] * 1000)
 parms = 'Delay=%d msec, Units=%d' % (msecs, pickUnits[0])
 self.setTextInfo(parms)
 self.moving.append(object)
 canvas = event.widget
 incrX, reptX, incrY, reptY = self.plotMoves(event)
 for i in range(reptX):
 canvas.move(object, incrX, 0)
 canvas.update()
 time.sleep(pickDelays[0])
 for i in range(reptY):
 canvas.move(object, 0, incrY)
 canvas.update() # update runs
other ops
 time.sleep(pickDelays[0]) # sleep until next
move
 self.moving.remove(object)
 if self.object == object: self.where = event
 def onSelect(self, event):
 self.where = event
 self.object = self.canvas.find_closest(event.x, event.y)[0] #
tuple
 def onDrag(self, event):
 diffX = event.x - self.where.x # ok if object in
moving
 diffY = event.y - self.where.y # throws it off
course
 self.canvas.move(self.object, diffX, diffY)
 self.where = event
 def onOptions(self, event):
 keymap = {

Programming Python, 2nd Edition, O’Reilly

IT-SC book 543

 'w': lambda self: self.changeOption(pickWidths, 'Pen
Width'),
 'c': lambda self: self.changeOption(pickFills, 'Color'),
 'u': lambda self: self.changeOption(pickUnits, 'Move
Unit'),
 's': lambda self: self.changeOption(pickDelays, 'Move
Delay'),
 'x': lambda self: self.changeOption(pickPens, 'Pen
Mode'),
 'o': lambda self: self.changeDraw(Canvas.create_oval,
'Oval'),
 'r': lambda self: self.changeDraw(Canvas.create_rectangle,
'Rect'),
 'l': lambda self: self.changeDraw(Canvas.create_line,
'Line'),
 'a': lambda self: self.changeDraw(Canvas.create_arc,
'Arc'),
 'd': MovingPics.deleteObject,
 '1': MovingPics.raiseObject,
 '2': MovingPics.lowerObject, # if only 1 call
pattern
 'f': MovingPics.fillObject, # use unbound method
objects
 'b': MovingPics.fillBackground, # else lambda passed
self
 'p': MovingPics.addPhotoItem,
 'z': MovingPics.savePostscript,
 '?': MovingPics.help}
 try:
 keymap[event.char](self)
 except KeyError:
 self.setTextInfo('Press ? for help')
 def changeDraw(self, method, name):
 self.createMethod = method # unbound Canvas method
 self.setTextInfo('Draw Object=' + name)
 def changeOption(self, list, name):
 list.append(list[0])
 del list[0]
 self.setTextInfo('%s=%s' % (name, list[0]))
 def deleteObject(self):
 if self.object != self.textInfo: # ok if object in
moving
 self.canvas.delete(self.object) # erases but move goes
on
 self.object = None
 def raiseObject(self):
 if self.object: # ok if moving
 self.canvas.tkraise(self.object) # raises while moving
 def lowerObject(self):
 if self.object:
 self.canvas.lower(self.object)
 def fillObject(self):
 if self.object:
 type = self.canvas.type(self.object)
 if type == 'image':
 pass
 elif type == 'text':

Programming Python, 2nd Edition, O’Reilly

IT-SC book 544

 self.canvas.itemconfig(self.object, fill=pickFills[0])
 else:
 self.canvas.itemconfig(self.object,
 fill=pickFills[0], width=pickWidths[0])
 def fillBackground(self):
 self.canvas.config(bg=pickFills[0])
 def addPhotoItem(self):
 if not self.where: return
 filetypes=[('Gif files', '.gif'), ('All files', '*')]
 file = askopenfilename(initialdir=PicDir, filetypes=filetypes)
 if file:
 image = PhotoImage(file=file) # load
image
 self.images.append(image) # keep
reference
 self.object = self.canvas.create_image(# add to
canvas
 self.where.x, self.where.y, # at last
spot
 image=image, anchor=NW)
 def savePostscript(self):
 file = asksaveasfilename()
 if file:
 self.canvas.postscript(file=file) # save canvas to file
 def help(self):
 self.setTextInfo(helpstr)
 #showinfo('PyDraw', helpstr)
 def setTextInfo(self, text):
 self.canvas.dchars(self.textInfo, 0, END)
 self.canvas.insert(self.textInfo, 0, text)
 self.canvas.tkraise(self.textInfo)
 def onQuit(self):
 if self.moving:
 self.setTextInfo("Can't quit while move in progress")
 else:
 self.realquit() # std wm delete: err msg if move in
progress

def traceEvent(label, event, fullTrace=1):
 print label
 if fullTrace:
 for key in dir(event): print key, '=>', getattr(event, key)

if __name__ == '__main__':
 from sys import argv # when this file is
executed
 if len(argv) == 2: PicDir = argv[1] # '..' fails if run
elsewhere
 root = Tk() # make, run a
MovingPics object
 MovingPics(root)
 root.mainloop()

Just as in the last chapter's canvasDraw examples, we can add support for moving
more than one object at the same time with either after scheduled-callback events,
or threads. Example 9-19 shows a MovingPics subclass that codes the necessary

Programming Python, 2nd Edition, O’Reilly

IT-SC book 545

customizations to do parallel moves with after events. Run this file directly to see
the difference; I could try to capture the notion of multiple objects in motion with a
screen shot, but would almost certainly fail.

Example 9-19. PP2E\Gui\MovingPics\movingpics_after.py

###
#######
PyDraw-after: simple canvas paint program and object mover/animator
use widget.after scheduled events to implement object move loops,
such
that more than one can be in motion at once without having to use
threads;
this does moves in parallel, but seems to be slower than time.sleep
version;
see also canvasDraw in Tour: builds and passes the incX/incY list at
once:
here, would be allmoves = ([(incrX, 0)] * reptX) + ([(0, incrY)] *
reptY)
###
#######

from movingpics import *

class MovingPicsAfter(MovingPics):
 def doMoves(self, delay, objectId, incrX, reptX, incrY, reptY):
 if reptX:
 self.canvas.move(objectId, incrX, 0)
 reptX = reptX - 1
 else:
 self.canvas.move(objectId, 0, incrY)
 reptY = reptY - 1
 if not (reptX or reptY):
 self.moving.remove(objectId)
 else:
 self.canvas.after(delay,
 self.doMoves, delay, objectId, incrX, reptX, incrY,
reptY)
 def onMove(self, event):
 traceEvent('onMove', event, 0)
 object = self.object # move cur obj to
click spot
 if object:
 msecs = int(pickDelays[0] * 1000)
 parms = 'Delay=%d msec, Units=%d' % (msecs, pickUnits[0])
 self.setTextInfo(parms)
 self.moving.append(object)
 incrX, reptX, incrY, reptY = self.plotMoves(event)
 self.doMoves(msecs, object, incrX, reptX, incrY, reptY)
 self.where = event

if __name__ == '__main__':
 from sys import argv # when this file is
executed
 if len(argv) == 2:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 546

 import movingpics # not this module's
global
 movingpics.PicDir = argv[1] # and from* doesn't
link names
 root = Tk()
 MovingPicsAfter(root)
 root.mainloop()

Now, while one or more moves are in progress, you can start another by middle-
clicking on another object and right-clicking on the spot you want it to move to. It
starts its journey immediately, even if other objects are in motion. Each object's
scheduled after events are added to the same event loop queue and dispatched by
Tkinter as soon as possible after a timer expiration. If you run this subclass module
directly, you'll probably notice that movement isn't quite as fast or as smooth as in
the original, but multiple moves can overlap in time.

Example 9-20 shows how to achieve such parallelism with threads. This process
works, but as we learned in the last chapter, updating GUIs in spawned threads is
generally a dangerous affair. On my machine, the movement that this script
implements with threads is a bit more jerky than the original version -- a reflection
of the overhead incurred for switching the interpreter (and CPU) between multiple
threads.

Example 9-20. PP2E\Gui\MovingPics\movingpics_threads.py

use threads to move objects; seems to work on Windows provided
that canvas.update() not called by threads(else exits with fatal
errors, some objs start moving immediately after drawn, etc.);
at least some canvas method calls must be thread safe in Tkinter;
this is less smooth than time.sleep, and is dangerous in general:
threads are best coded to update global vars, not change GUI;

import thread, time, sys, random
from Tkinter import Tk, mainloop
from movingpics import MovingPics, pickUnits, pickDelays

class MovingPicsThreaded(MovingPics):
 def __init__(self, parent=None):
 MovingPics.__init__(self, parent)
 self.mutex = thread.allocate_lock()
 import sys
 #sys.setcheckinterval(0) # switch after each vm op- doesn't
help
 def onMove(self, event):
 object = self.object
 if object and object not in self.moving:
 msecs = int(pickDelays[0] * 1000)
 parms = 'Delay=%d msec, Units=%d' % (msecs, pickUnits[0])
 self.setTextInfo(parms)
 #self.mutex.acquire()
 self.moving.append(object)
 #self.mutex.release()
 thread.start_new_thread(self.doMove, (object, event))

Programming Python, 2nd Edition, O’Reilly

IT-SC book 547

 def doMove(self, object, event):
 canvas = event.widget
 incrX, reptX, incrY, reptY = self.plotMoves(event)
 for i in range(reptX):
 canvas.move(object, incrX, 0)
 # canvas.update()
 time.sleep(pickDelays[0]) # this can change
 for i in range(reptY):
 canvas.move(object, 0, incrY)
 # canvas.update() # update runs other ops
 time.sleep(pickDelays[0]) # sleep until next move
 #self.mutex.acquire()
 self.moving.remove(object)
 if self.object == object: self.where = event
 #self.mutex.release()

if __name__ == '__main__':
 root = Tk()
 MovingPicsThreaded(root)
 mainloop()

9.7 PyClock: An Analog/Digital Clock Widget

One of the first things I always look for when exploring a new computer interface is a
clock. Because I spend so much time glued to computers, it's essentially impossible
for me to keep track of the time unless it is right there on the screen in front of me
(and even then, it's iffy). The next program, PyClock, implements such a clock
widget in Python. It's not substantially different than clock programs you may be
used to seeing on the X Windows system. Because it is coded in Python, though, this
one is both easily customized, and fully portable among Windows, the X Windows
system, and Macs, like all the code in this chapter. In addition to advanced GUI
techniques, this example demonstrates Python math and time module tools.

9.7.1 A Quick Geometry Lesson

Before I show you PyClock, though, a little background and a confession. Quick --
how do you plot points on a circle? This, along with time formats and events, turns
out to be a core concept in clock widget programs. To draw an analog clock face on a
canvas widget, you essentially need to be able to sketch a circle -- the clock face
itself is composed of points on a circle, and the second, minute, and hour hands of
the clock are really just lines from a circle's center out to a point on the circle. Digital
clocks are simpler to draw, but not much to look at.

Now the confession: when I started writing PyClock, I couldn't answer the last
paragraph's opening question. I had utterly forgotten the math needed to sketch out
points on a circle (as had most of the professional software developers I queried
about this magic formula). It happens. After going unused for a few decades, such
knowledge tends to be garbage-collected. I finally was able to dust off a few neurons
long enough to code the plotting math needed, but it wasn't my finest intellectual
hour.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 548

If you are in the same boat, I don't have space to teach geometry in depth here, but
I can show you one way to code the point-plotting formulas in Python in simple
terms. Before tackling the more complex task of implementing a clock, I wrote the
plotterGui script shown in Example 9-21 to focus on just the circle-plotting logic.

Its point function is where the circle logic lives -- it plots the (X,Y) coordinates of a
point on the circle, given the relative point number, the total number of points to be
placed on the circle, and the circle's radius (the distance from the circle's center to
the points drawn upon it). It first calculates the point's angle from the top by dividing
360 by the number of points to be plotted, and then multiplying by the point
number; in case you've forgotten, too, it's 360 degrees around the whole circle (e.g.,
if you plot 4 points on a circle, each is 90 degrees from the last, or 360/4). Python's
standard math module gives all the required constants and functions from that point
forward -- pi, sine, and cosine. The math is really not too obscure if you study this
long enough (in conjunction with your old geometry text if necessary). See the
book's CD for alternative ways to code the number crunching.[3]

[3] And if you do enough number crunching to have followed this paragraph, you will probably
also be interested in exploring the NumPy numeric programming extension for Python. It adds
things like vector objects and advanced mathematical operations, and effectively turns Python
into a scientific programming tool. It's been used effectively by many organizations, including
Lawrence Livermore National Labs. NumPy must be fetched and installed separately; see
Python's web site for links. Python also has a built-in complex number type for engineering
work; see the library manual for details.

Even if you don't care about the math, though, check out this script's circle
function. Given the (X,Y) coordinates of a point on the circle returned by point, it
draws a line from the circle's center out to the point and a small rectangle around
the point itself -- not unlike the hands and points of an analog clock. Canvas tags are
used to associate drawn objects for deletion before each plot.

Example 9-21. PP2E\Gui\Clock\plotterGui.py

plot circles (like I did in high school)

import math, sys
from Tkinter import *

def point(tick, range, radius):
 angle = tick * (360.0 / range)
 radiansPerDegree = math.pi / 180
 pointX = int(round(radius * math.sin(angle * radiansPerDegree)))
 pointY = int(round(radius * math.cos(angle * radiansPerDegree)))
 return (pointX, pointY)

def circle(points, radius, centerX, centerY, slow=0):
 canvas.delete('lines')
 canvas.delete('points')
 for i in range(points):
 x, y = point(i+1, points, radius-4)
 scaledX, scaledY = (x + centerX), (centerY - y)
 canvas.create_line(centerX, centerY, scaledX, scaledY,
tag='lines')
 canvas.create_rectangle(scaledX-2, scaledY-2,
 scaledX+2, scaledY+2,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 549

 fill='red', tag='points')
 if slow: canvas.update()

def plotter():
 circle(scaleVar.get(), (Width / 2), originX, originY, checkVar.get(
))

def makewidgets():
 global canvas, scaleVar, checkVar
 canvas = Canvas(width=Width, height=Width)
 canvas.pack(side=TOP)
 scaleVar = IntVar()
 checkVar = IntVar()
 scale = Scale(label='Points on circle', variable=scaleVar, from_=1,
to=360)
 scale.pack(side=LEFT)
 Checkbutton(text='Slow mode', variable=checkVar).pack(side=LEFT)
 Button(text='Plot', command=plotter).pack(side=LEFT, padx=50)

if __name__ == '__main__':
 Width = 500 # default width,
height
 if len(sys.argv) == 2: Width = int(sys.argv[1]) # width cmdline
arg?
 originX = originY = Width / 2 # same as circle
radius
 makewidgets() # on default Tk
root
 mainloop()

The circle defaults to 500 pixels wide unless you pass a width on the command line.
Given a number of points on a circle, this script marks out the circle in clockwise
order every time you press Plot, by drawing lines out from the center to small
rectangles at points on the circle's shape. Move the slider to plot a different number
of points, and click the checkbutton to make the drawing happen slow enough to
notice the clockwise order in which lines and points are drawn (this forces the script
to update the display after each line is drawn). Figure 9-19 shows the result for
plotting 120 points with the circle width set to 400 on the command line; if you ask
for 60 and 12 points on the circle, the relationship to clock faces and hands starts
becoming more clear.

Figure 9-19. plotterGui in action

Programming Python, 2nd Edition, O’Reilly

IT-SC book 550

For more help, the book CD also includes text-based versions of this plotting script
that print circle point coordinates to the stdout stream for review, rather than
rendering them in a GUI. See the plotterText scripts in the clock's directory. Here
is the sort of output they produce when plotting 4 and 12 points on a circle that is
400 points wide and high; the output format is simply:

pointnumber : angle = (Xcoordinate, Ycoordinate)

and assumes that the circle is centered at coordinate (0,0):

1 : 90.0 = (200, 0)
2 : 180.0 = (0, -200)
3 : 270.0 = (-200, 0)
4 : 360.0 = (0, 200)

1 : 30.0 = (100, 173)
2 : 60.0 = (173, 100)
3 : 90.0 = (200, 0)
4 : 120.0 = (173, -100)
5 : 150.0 = (100, -173)
6 : 180.0 = (0, -200)
7 : 210.0 = (-100, -173)
8 : 240.0 = (-173, -100)
9 : 270.0 = (-200, 0)
10 : 300.0 = (-173, 100)
11 : 330.0 = (-100, 173)
12 : 360.0 = (0, 200)

To understand how these points are mapped to a canvas, you first need to know that
the width and height of a circle are always the same -- the radius x 2. Because
Tkinter canvas (X,Y) coordinates start at (0,0) in the upper left corner, the plotter
GUI must offset the circle's center point to coordinates (width/2, width/2) -- the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 551

origin point from which lines are drawn. For instance, in a 400-by-400 circle, the
canvas center is (200,200). A line to the 90-degree angle point on the right side of
the circle runs from (200,200) to (400,200) -- the result of adding the (200,0) point
coordinates plotted for the radius and angle. A line to the bottom at 180 degrees
runs from (200,200) to (200,400) after factoring in the (0,-200) point plotted.

This point-plotting algorithm used by plotterGui, along with a few scaling
constants, is at the heart of the PyClock analog display. If this still seems a bit much,
I suggest you focus on the PyClock script's digital display implementation first; the
analog geometry plots are really just extensions of underlying timing mechanisms
used for both display modes. In fact, the clock itself is structured as a generic Frame
object that embeds digital and analog display objects, and dispatches time change
and resize events to both the same way. The analog display is an attached Canvas
that knows how to draw circles, but the digital object is simply an attached Frame
with labels to show time components.

9.7.2 Running PyClock

Apart from the circle geometry bit, the rest of PyClock is straightforward. It simply
draws a clock face to represent the current time and uses widget after methods to
wake itself up 10 times per second to check if the system time has rolled over to the
next second. On second rollovers, the analog second, minute, and hour hands are
redrawn to reflect the new time (or the text of the digital display's labels is
changed). In terms of GUI construction, the analog display is etched out on a
canvas, is redrawn whenever the window is resized, and changes to a digital format
upon request.

PyClock also puts Python's standard time module into service to fetch and convert
system time information as needed for a clock. In brief, the onTimer method gets
system time with time.time, a built-in tool that returns a floating-point number
giving seconds since the "epoch" -- the point from which your computer counts time.
The time.localtime call is then used to convert epoch time into a tuple that
contains hour, minute, and second values; see the script and Python library manual
for additional time-related call details.

Checking the system time 10 times per second may seem intense, but it guarantees
that the second hand ticks when it should without jerks or skips (after events aren't
precisely timed), and is not a significant CPU drain on systems I use.[4] On Linux and
Windows, PyClock uses negligible processor resources, and what it does use is spent
largely on screen updates in analog display mode, not after events. To minimize
screen updates, PyClock redraws only clock hands on second rollovers; points on the
clock's circle are redrawn at startup and on window resizes only. Figure 9-20 shows
the default initial PyClock display format you get when file clock.py is run directly.

[4] Speaking of performance, I've run multiple clocks on all test machines -- from a 650 MHz
Pentium III to an "old" 200 MHz Pentium I -- without seeing any degraded performance in any
running clocks. The PyDemos script, for instance, launches six clocks running in the same
process, and all update smoothly. They probably do on older machines, too, but mine have
collected too much dust to yield useful metrics.

Figure 9-20. PyClock default analog display

Programming Python, 2nd Edition, O’Reilly

IT-SC book 552

The clock hand lines are given arrows at their endpoints with the canvas line object's
arrow and arrowshape options. The arrow option can be "first", "last", "none", or
"both"; the arrowshape option takes a tuple giving the length of the arrow touching
the line, its overall length, and its width.

Like PyView, PyClock also uses the widget pack_forget and pack methods to
dynamically erase and redraw portions of the display on demand (i.e., in response to
bound events). Clicking on the clock with a left mouse button changes its display to
digital by erasing the analog widgets and drawing the digital interface; you get the
simpler display captured in Figure 9-21.

Figure 9-21. PyClock goes digital

This digital display form is useful if you want to conserve real estate on your
computer screen and minimize PyClock CPU utilization (it incurs very little screen
update overhead). Left-clicking on the clock again changes back to the analog
display. The analog and digital displays are both constructed when the script starts,
but only one is ever packed at any given time.

A right mouseclick on the clock in either display mode shows or hides an attached
label that gives the current date in simple text form. Figure 9-22 shows a PyClock
running with a digital display, a clicked-on date label, and a centered photo image
object.

Figure 9-22. PyClock extended display with an image

Programming Python, 2nd Edition, O’Reilly

IT-SC book 553

The image in the middle of Figure 9-22 is added by passing in a configuration object
with appropriate settings to the PyClock object constructor. In fact, almost
everything about this display can be customized with attributes in PyClock
configuration objects -- hand colors, clock tick colors, center photos, and initial size.

Because PyClock's analog display is based upon a manually sketched figure on a
canvas, it has to process window resize events itself: whenever the window shrinks
or expands, the clock face has to be redrawn and scaled for the new window size. To
catch screen resizes, the script registers for the <Configure> event with bind;
surprisingly, this isn't a top-level window manager event like the close button. As
you expand a PyClock, the clock face gets bigger with the window -- try expanding,
shrinking, and maximizing the clock window on your computer. Because the clock
face is plotted in a square coordinate system, PyClock always expands in equal
horizontal and vertical proportions, though; if you simply make the window only
wider or taller, the clock is unchanged.

Finally, like PyEdit, PyClock can be run either standalone or attached to and
embedded in other GUIs that need to display the current time. To make it easy to
start preconfigured clocks, a utility module called clockStyles provides a set of
clock configuration objects you can import, subclass to extend, and pass to the clock
constructor; Figure 9-23 shows a few of the preconfigured clock styles and sizes in
action, ticking away in sync.

Figure 9-23. A few canned clock styles (Guido's photo reprinted with
permission from Dr. Dobb's Journal)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 554

Each of these clocks uses after events to check for system-time rollover 10 times
per second. When run as top-level windows in the same process, all receive a timer
event from the same event loop. When started as independent programs, each has
an event loop of its own. Either way, their second hands sweep in unison each
second.

9.7.3 PyClock Source Code

PyClock source code all lives in one file, except for the precoded configuration style
objects. If you study the code at the bottom of the file shown in Example 9-22, you'll
notice that you can either make a clock object with a configuration object passed in,
or specify configuration options by command line arguments (in which case, the
script simply builds a configuration object for you). More generally, you can run this
file directly to start a clock, import and make its objects with configuration objects to
get a more custom display, or import and attach its objects to other GUIs. For
instance, PyGadgets runs this file with command line options to tailor the display.

Example 9-22. PP2E\Gui\Clock\clock.py

###
########
PyClock: a clock GUI, with both analog and digital display modes, a
popup date label, clock face images, resizing, etc. May be run both
stand-alone, or embbeded (attached) in other GUIs that need a clock.
###
########

from Tkinter import *
import math, time, string

Programming Python, 2nd Edition, O’Reilly

IT-SC book 555

###
########
Option configuration classes
###
########

class ClockConfig:
 # defaults--override in instance or subclass
 size = 200 # width=height
 bg, fg = 'beige', 'brown' # face, tick
colors
 hh, mh, sh, cog = 'black', 'navy', 'blue', 'red' # clock hands,
center
 picture = None # face photo file

class PhotoClockConfig(ClockConfig):
 # sample configuration
 size = 320
 picture = '../gifs/ora-pp.gif'
 bg, hh, mh = 'white', 'blue', 'orange'

###
########
Digital display object
###
########

class DigitalDisplay(Frame):
 def __init__(self, parent, cfg):
 Frame.__init__(self, parent)
 self.hour = Label(self)
 self.mins = Label(self)
 self.secs = Label(self)
 self.ampm = Label(self)
 for label in self.hour, self.mins, self.secs, self.ampm:
 label.config(bd=4, relief=SUNKEN, bg=cfg.bg, fg=cfg.fg)
 label.pack(side=LEFT)

 def onUpdate(self, hour, mins, secs, ampm, cfg):
 mins = string.zfill(str(mins), 2)
 self.hour.config(text=str(hour), width=4)
 self.mins.config(text=str(mins), width=4)
 self.secs.config(text=str(secs), width=4)
 self.ampm.config(text=str(ampm), width=4)

 def onResize(self, newWidth, newHeight, cfg):
 pass # nothing to redraw here

###
########
Analog display object

Programming Python, 2nd Edition, O’Reilly

IT-SC book 556

###
########

class AnalogDisplay(Canvas):
 def __init__(self, parent, cfg):
 Canvas.__init__(self, parent,
 width=cfg.size, height=cfg.size, bg=cfg.bg)
 self.drawClockface(cfg)
 self.hourHand = self.minsHand = self.secsHand = self.cog = None

 def drawClockface(self, cfg): # on start
and resize
 if cfg.picture: # draw ovals,
picture
 try:
 self.image = PhotoImage(file=cfg.picture) #
bkground
 except:
 self.image = BitmapImage(file=cfg.picture) #
save ref
 imgx = (cfg.size - self.image.width()) / 2 #
center it
 imgy = (cfg.size - self.image.height()) / 2
 self.create_image(imgx+1, imgy+1, anchor=NW,
image=self.image)
 originX = originY = radius = cfg.size/2
 for i in range(60):
 x, y = self.point(i, 60, radius-6, originX, originY)
 self.create_rectangle(x-1, y-1, x+1, y+1, fill=cfg.fg) #
mins
 for i in range(12):
 x, y = self.point(i, 12, radius-6, originX, originY)
 self.create_rectangle(x-3, y-3, x+3, y+3, fill=cfg.fg) #
hours
 self.ampm = self.create_text(3, 3, anchor=NW, fill=cfg.fg)

 def point(self, tick, units, radius, originX, originY):
 angle = tick * (360.0 / units)
 radiansPerDegree = math.pi / 180
 pointX = int(round(radius * math.sin(angle *
radiansPerDegree)))
 pointY = int(round(radius * math.cos(angle *
radiansPerDegree)))
 return (pointX + originX+1), (originY+1 - pointY)

 def onUpdate(self, hour, mins, secs, ampm, cfg): # on timer
callback
 if self.cog: # redraw
hands, cog
 self.delete(self.cog)
 self.delete(self.hourHand)
 self.delete(self.minsHand)
 self.delete(self.secsHand)
 originX = originY = radius = cfg.size/2
 hour = hour + (mins / 60.0)
 hx, hy = self.point(hour, 12, (radius * .80), originX, originY)
 mx, my = self.point(mins, 60, (radius * .90), originX, originY)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 557

 sx, sy = self.point(secs, 60, (radius * .95), originX, originY)
 self.hourHand = self.create_line(originX, originY, hx, hy,
 width=(cfg.size * .04),
 arrow='last', arrowshape=(25,25,15),
fill=cfg.hh)
 self.minsHand = self.create_line(originX, originY, mx, my,
 width=(cfg.size * .03),
 arrow='last', arrowshape=(20,20,10),
fill=cfg.mh)
 self.secsHand = self.create_line(originX, originY, sx, sy,
 width=1,
 arrow='last', arrowshape=(5,10,5),
fill=cfg.sh)
 cogsz = cfg.size * .01
 self.cog = self.create_oval(originX-cogsz, originY+cogsz,
 originX+cogsz, originY-cogsz,
fill=cfg.cog)
 self.dchars(self.ampm, 0, END)
 self.insert(self.ampm, END, ampm)

 def onResize(self, newWidth, newHeight, cfg):
 newSize = min(newWidth, newHeight)
 #print 'analog onResize', cfg.size+4, newSize
 if newSize != cfg.size+4:
 cfg.size = newSize-4
 self.delete('all')
 self.drawClockface(cfg) # onUpdate called next

###
########
Clock composite object
###
########

ChecksPerSec = 10 # second change timer

class Clock(Frame):
 def __init__(self, config=ClockConfig, parent=None):
 Frame.__init__(self, parent)
 self.cfg = config
 self.makeWidgets(parent) # children are
packed but
 self.labelOn = 0 # clients pack or
grid me
 self.display = self.digitalDisplay
 self.lastSec = -1
 self.onSwitchMode(None)
 self.onTimer()

 def makeWidgets(self, parent):
 self.digitalDisplay = DigitalDisplay(self, self.cfg)
 self.analogDisplay = AnalogDisplay(self, self.cfg)
 self.dateLabel = Label(self, bd=3, bg='red', fg='blue')
 parent.bind('<ButtonPress-1>', self.onSwitchMode)
 parent.bind('<ButtonPress-3>', self.onToggleLabel)
 parent.bind('<Configure>', self.onResize)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 558

 def onSwitchMode(self, event):
 self.display.pack_forget()
 if self.display == self.analogDisplay:
 self.display = self.digitalDisplay
 else:
 self.display = self.analogDisplay
 self.display.pack(side=TOP, expand=YES, fill=BOTH)

 def onToggleLabel(self, event):
 self.labelOn = self.labelOn + 1
 if self.labelOn % 2:
 self.dateLabel.pack(side=BOTTOM, fill=X)
 else:
 self.dateLabel.pack_forget()
 self.update()

 def onResize(self, event):
 if event.widget == self.display:
 self.display.onResize(event.width, event.height, self.cfg)

 def onTimer(self):
 secsSinceEpoch = time.time()
 timeTuple = time.localtime(secsSinceEpoch)
 hour, min, sec = timeTuple[3:6]
 if sec != self.lastSec:
 self.lastSec = sec
 ampm = ((hour >= 12) and 'PM') or 'AM' #
0...23
 hour = (hour % 12) or 12 #
12..11
 self.display.onUpdate(hour, min, sec, ampm, self.cfg)
 self.dateLabel.config(text=time.ctime(secsSinceEpoch))
 self.after(1000 / ChecksPerSec, self.onTimer) # run N times
per second

###
########
Stand-alone clocks
###
########

class ClockWindow(Clock):
 def __init__(self, config=ClockConfig, parent=None, name=''):
 Clock.__init__(self, config, parent)
 self.pack(expand=YES, fill=BOTH)
 title = 'PyClock 1.0'
 if name: title = title + ' - ' + name
 self.master.title(title) # master=parent or
default
 self.master.protocol('WM_DELETE_WINDOW', self.quit)

###
########
Program run

Programming Python, 2nd Edition, O’Reilly

IT-SC book 559

###
########

if __name__ == '__main__':
 def getOptions(config, argv):
 for attr in dir(ClockConfig): # fill default
config obj,
 try: # from "-attr val"
cmd args
 ix = argv.index('-' + attr)
 except:
 continue
 else:
 if ix in range(1, len(argv)-1):
 if type(getattr(ClockConfig, attr)) == type(0):
 setattr(config, attr, int(argv[ix+1]))
 else:
 setattr(config, attr, argv[ix+1])
 import sys
 config = ClockConfig()
 #config = PhotoClockConfig()
 if len(sys.argv) >= 2:
 getOptions(config, sys.argv) # clock.py -size n -bg
'blue'...
 myclock = ClockWindow(config, Tk()) # parent is Tk root if
standalone
 myclock.mainloop()

And finally, Example 9-23 shows the module that is actually run from the PyDemos
launcher script -- it predefines a handful of clock styles, and runs six of them at once
attached to new top-level windows for demo effect (though one clock per screen is
usually enough in practice, even for me).[5]

[5] Note that images named in this script may be missing on your CD due to copyright
concerns. Insert lawyer joke here.

Example 9-23. PP2E\Gui\Clock\clockStyles.py

from clock import *
from Tkinter import mainloop

gifdir = '../gifs/'
if __name__ == '__main__':
 from sys import argv
 if len(argv) > 1:
 gifdir = argv[1] + '/'

class PPClockBig(PhotoClockConfig):
 picture, bg, fg = gifdir + 'ora-pp.gif', 'navy', 'green'

class PPClockSmall(ClockConfig):
 size = 175
 picture = gifdir + 'ora-pp.gif'
 bg, fg, hh, mh = 'white', 'red', 'blue', 'orange'

class GilliganClock(ClockConfig):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 560

 size = 550
 picture = gifdir + 'gilligan.gif'
 bg, fg, hh, mh = 'black', 'white', 'green', 'yellow'

class GuidoClock(GilliganClock):
 size = 400
 picture = gifdir + 'guido_ddj.gif'
 bg = 'navy'

class GuidoClockSmall(GuidoClock):
 size, fg = 278, 'black'

class OusterhoutClock(ClockConfig):
 size, picture = 200, gifdir + 'ousterhout-new.gif'
 bg, fg, hh = 'black', 'gold', 'brown'

class GreyClock(ClockConfig):
 bg, fg, hh, mh, sh = 'grey', 'black', 'black', 'black', 'white'

class PinkClock(ClockConfig):
 bg, fg, hh, mh, sh = 'pink', 'yellow', 'purple', 'orange', 'yellow'

class PythonPoweredClock(ClockConfig):
 bg, size, picture = 'white', 175, gifdir + 'pythonPowered.gif'

if __name__ == '__main__':
 for configClass in [
 ClockConfig,
 PPClockBig,
 #PPClockSmall,
 GuidoClockSmall,
 #GilliganClock,
 OusterhoutClock,
 #GreyClock,
 PinkClock,
 PythonPoweredClock
]:
 ClockWindow(configClass, Toplevel(), configClass.__name__)
 Button(text='Quit Clocks', command='exit').pack()
 mainloop()

9.8 PyToe: A Tic-Tac-Toe Game Widget

Finally, a bit of fun to close out this chapter. Our last example, PyToe, implements an
artificially intelligent tic-tac-toe (sometimes called "naughts and crosses") game-
playing program in Python. Most readers are probably familiar with this simple game,
so I won't dwell on its details. In short, players take turns marking board positions,
in an attempt to occupy an entire row, column, or diagonal. The first player to fill
such a pattern wins.

In PyToe, board positions are marked with mouseclicks, and one of the players is a
Python program. The gameboard itself is displayed with a simple Tkinter GUI; by

Programming Python, 2nd Edition, O’Reilly

IT-SC book 561

default, PyToe builds a 3-by-3 game board (the standard tic-tac-toe setup), but can
be configured to build and play an arbitrary N-by-N game.

When it comes time for the computer to select a move, artificial intelligence (AI)
algorithms are used to score potential moves and search a tree of candidate moves
and countermoves. This is a fairly simple problem as gaming programs go, and the
heuristics used to pick moves are not perfect. Still, PyToe is usually smart enough to
spot wins a few moves in advance of the user.

9.8.1 Running PyToe

PyToe's GUI is implemented as a frame of packed labels, with mouse-click bindings
on the labels to catch user moves. The label's text is configured with the player's
mark after each move, computer or user. The GuiMaker class we coded earlier in this
chapter is also reused here to add a simple menu bar at the top (but no toolbar is
drawn at the button, because PyToe leaves its descriptor empty). By default, the
user's mark is "X", and PyToe's is "O". Figure 9-24 shows PyToe on the verge of
beating me one of two ways.

Figure 9-24. PyToe thinks its way to a win

Figure 9-25 shows PyToe's help pop-up dialog, which lists its command-line
configuration options. You can specify colors and font sizes for board labels, the
player who moves first, the mark of the user ("X" or "O"), the board size (to override
the 3-by-3 default), and the move selection strategy for the computer (e.g.,
"Minimax" performs a move tree search to spot wins and losses, and "Expert1" and
"Expert2" use static scoring heuristics functions).

Figure 9-25. PyToe help pop-up with options info

Programming Python, 2nd Edition, O’Reilly

IT-SC book 562

The AI gaming techniques used in PyToe are CPU-intensive, and some computer
move selection schemes take longer than others, but their speed varies mostly with
the speed of your computer. Move selection delays are fractions of a second long on
my 650 MHz machine for a 3-by-3 game board, for all "-mode" move-selection
strategy options.

Figure 9-26 shows an alternative PyToe configuration just after it beat me. Despite
the scenes captured for this book, under some move selection options, I do still win
once in awhile. In larger boards and more complex games, PyToe's move selection
algorithms become even more useful.

Figure 9-26. an alternative layout

9.8.2 PyToe Source Code (on CD)

PyToe is a big system that assumes some AI background knowledge and doesn't
really demonstrate anything new in terms of GUIs. Partly because of that, but mostly
because I've already exceeded my page limit for this chapter, I'm going to refer you
to the book's CD (view CD-ROM content online at
http://examples.oreilly.com/python2) for its source code rather than listing it all
here. Please see these two files in the examples distribution for PyToe
implementation details:

PP2E\Ai\TicTacToe\tictactoe.py, a top-level wrapper script

PP2E\Ai\TicTacToe\tictactoe_lists.py, the meat of the implementation

Programming Python, 2nd Edition, O’Reilly

IT-SC book 563

If you do look, though, probably the best hint I can give you is that the data
structure used to represent board state is the crux of the matter. That is, if you
understand the way that boards are modeled, the rest of the code comes naturally.

For instance, the lists-based variant uses a list-of-lists to representation the board's
state, along with a simple dictionary of entry widgets for the GUI indexed by board
coordinates. Clearing the board after a game is simply a matter of clearing the
underlying data structures, as shown in this code excerpt from the examples named
above:

def clearBoard(self):
 for row, col in self.label.keys():
 self.board[row][col] = Empty
 self.label[(row, col)].config(text=' ')

Similarly, picking a move, at least in random mode, is simply a matter of picking a
nonempty slot in the board array and storing the machine's mark there and in the
GUI (degree is the board's size):

def machineMove(self):
 row, col = self.pickMove()
 self.board[row][col] = self.machineMark
 self.label[(row, col)].config(text=self.machineMark)

def pickMove(self):
 empties = []
 for row in self.degree:
 for col in self.degree:
 if self.board[row][col] == Empty:
 empties.append((row, col))
 return random.choice(empties)

Finally, checking for an end-of-game state boils down to inspecting rows, columns,
and diagonals in the two-dimensional list-of-lists board in this scheme:

def checkDraw(self, board=None):
 board = board or self.board
 for row in board:
 if Empty in row:
 return 0
 return 1 # none empty: draw or win

def checkWin(self, mark, board=None):
 board = board or self.board
 for row in board:
 if row.count(mark) == self.degree: # check across
 return 1
 for col in range(self.degree):
 for row in board: # check down
 if row[col] != mark:
 break
 else:
 return 1
 for row in range(self.degree): # check diag1
 col = row # row == col

Programming Python, 2nd Edition, O’Reilly

IT-SC book 564

 if board[row][col] != mark: break
 else:
 return 1
 for row in range(self.degree): # check diag2
 col = (self.degree-1) - row # row+col = degree-1
 if board[row][col] != mark: break
 else:
 return 1

def checkFinish(self):
 if self.checkWin(self.userMark):
 outcome = "You've won!"
 elif self.checkWin(self.machineMark):
 outcome = 'I win again :-)'
 elif self.checkDraw():
 outcome = 'Looks like a draw'

Other move-selection code mostly just performs other kinds of analysis on the board
data structure or generates new board states to search a tree of moves and
countermoves.

You'll also find relatives of these files in the same directory that implement
alternative search and move-scoring schemes, different board representations, and
so on. For additional background on game scoring and searches in general, consult
an AI text. It's fun stuff, but too advanced to cover well in this book.

9.9 Where to Go from Here

This concludes the GUI section of this book, but is not an end to its GUI coverage. If
you want to learn more about GUIs, be sure to see the Tkinter examples that appear
later in this book and are described at the start of this chapter. PyMail, PyCalc,
PyForm, and PyTree all provide additional GUI case studies. In the next section of
this book, we'll also learn how to build user interfaces that run in web browsers -- a
very different concept, but another option for simple interface design.

Keep in mind, too, that even if you don't see a GUI example in this book that looks
very close to one you need to program, you've already met all the building blocks.
Constructing larger GUIs for your application is really just a matter of laying out
hierarchical composites of the widgets presented in this part of the text.

For instance, a complex display might be composed as a collection of radiobuttons,
listboxes, scales, text fields, menus, and so on -- all arranged in frames or grids to
achieve the desired appearance. Pop-up top-level windows, as well as independently
run GUI programs linked with IPC mechanisms like pipes, signals, and sockets, can
further supplement a complex graphical interface.

Moreover, you can implement larger GUI components as Python classes and attach
or extend them anywhere you need a similar interface device (see PyEdit for a prime
example). With a little creativity, Tkinter's widget set and Python support a virtually
unlimited number of layouts.

Beyond this book, see the documentation and books departments at Python's web
site, http://www.python.org. I would plug Tkinter-related texts here, but I suspect

Programming Python, 2nd Edition, O’Reilly

IT-SC book 565

that the offerings in this department will expand during the shelf-life of this book.
Finally, if you catch the Tkinter bug, I want to again recommend downloading and
experimenting with packages introduced in Chapter 6 -- especially PMW and PIL.
Both add additional tools to the Tkinter arsenal that can make your GUIs more
sophisticated with minimal coding.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 566

Part III: Internet Scripting

This part of the book explores Python's role as a language for programming Internet-
based applications, and its library tools that support this role. Along the way, system
and GUI tools presented earlier in the book are put to use as well. Because this is a
popular Python domain, chapters here cover all fronts:

Chapter 10. This chapter introduces Internet concepts, presents Python low-level
network communication tools such as sockets and select calls, and illustrates
common client/server programming techniques in Python.

Chapter 11. This chapter shows you how your scripts can use Python to access
common client-side network protocols such as FTP, email, HTTP, and more.

Chapter 12. This chapter covers the basics of Python server-side CGI scripts -- a kind
of program used to implement interactive web sites.

Chapter 13. This chapter demonstrates Python web site implementation techniques
such as security, by presenting a web-based email system.

Chapter 14. This chapter presents additional web site techniques including persistent
data on the server, by presenting a bug report system.

Chapter 15. This chapter gives an overview of Python Internet systems and tools,
such as JPython, Active Scripting, Zope, and HTMLgen.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 567

Chapter 10. Network Scripting

10.1 "Tune in, Log on, and Drop out"

10.2 Plumbing the Internet

10.3 Socket Programming

10.4 Handling Multiple Clients

10.5 A Simple Python File Server

10.1 "Tune in, Log on, and Drop out"

In the last few years, the Internet has virtually exploded onto the mainstream stage.
It has rapidly grown from a simple communication device used primarily by
academics and researchers into a medium that is now nearly as pervasive as the
television and telephone. Social observers have likened the Internet's cultural impact
to that of the printing press, and technical observers have suggested that all new
software development of interest occurs only on the Internet. Naturally, time will be
the final arbiter for such claims, but there is little doubt that the Internet is a major
force in society, and one of the main application contexts for modern software
systems.

The Internet also happens to be one of the primary application domains for the
Python programming language. Given Python and a computer with a socket-based
Internet connection, we can write Python scripts to read and send email around the
world, fetch web pages from remote sites, transfer files by FTP, program interactive
web sites, parse HTML and XML files, and much more, simply by using the Internet
modules that ship with Python as standard tools.

In fact, companies all over the world do: Yahoo, Infoseek, Hewlett-Packard, and
many others rely on Python's standard tools to power their commercial web sites.
Many also build and manage their sites with the Zope web application server, which
is itself written and customizable in Python. Others use Python to script Java web
applications with JPython (a.k.a. "Jython") -- a system that compiles Python
programs to Java bytecode, and exports Java libraries for use in Python scripts.

As the Internet has grown, so too has Python's role as an Internet tool. Python has
proven to be well-suited to Internet scripting for some of the very same reasons that
make it ideal in other domains. Its modular design and rapid turnaround mix well
with the intense demands of Internet development. In this part of the book, we'll
find that Python does more than simply support Internet scripts; it also fosters
qualities such as productivity and maintainability that are essential to Internet
projects of all shapes and sizes.

10.1.1 Internet Scripting Topics

Programming Python, 2nd Edition, O’Reilly

IT-SC book 568

Internet programming entails many topics, so to make the presentation easier to
digest, I've split this subject over the next six chapters of this book. This chapter
introduces Internet fundamentals and explores sockets, the underlying
communications mechanism of the Internet. From there, later chapters move on to
discuss the client, the server, web site construction, and more advanced topics.

Each chapter assumes you've read the previous one, but you can generally skip
around, especially if you have any experience in the Internet domain. Since these
chapters represent a big portion (about a third) of this book at large, the following
sections go into a few more details about what we'll be studying.

10.1.1.1 What we will cover

In conceptual terms, the Internet can roughly be thought of as being composed of
multiple functional layers:

Low-level networking layers

Mechanisms such as the TCP/IP transport mechanism, which deal with transferring
bytes between machines, but don't care what they mean

Sockets

The programmer's interface to the network, which runs on top of physical networking
layers like TCP/IP

Higher-level protocols

Structured communication schemes such as FTP and email, which run on top of
sockets and define message formats and standard addresses

Server-side web scripting (CGI)

Higher-level client/server communication protocols between web browsers and web
servers, which also run on top of sockets

Higher-level frameworks and tools

Third-party systems such as Zope and JPython, which address much larger problem
domains

In this chapter and Chapter 11, our main focus is on programming the second and
third layers: sockets and higher-level protocols. We'll start this chapter at the
bottom, learning about the socket model of network programming. Sockets aren't
strictly tied to Internet scripting, but they are presented here because this is their
primary role. As we'll see, most of what happens on the Internet happens through
sockets, whether you notice or not.

After introducing sockets, the next chapter makes its way up to Python's client-side
interfaces to higher-level protocols -- things like email and FTP transfers, which run
on top of sockets. It turns out that a lot can be done with Python on the client alone,
and Chapter 11 will sample the flavor of Python client-side scripting. The next three
chapters then go on to present server-side scripting (programs that run on a server

Programming Python, 2nd Edition, O’Reilly

IT-SC book 569

computer and are usually invoked by a web browser). Finally, the last chapter in this
part, Chapter 15, briefly introduces even higher-level tools such as JPython and
Zope.

Along the way, we will also put to work some of the operating-system and GUI
interfaces we've studied earlier (e.g., processes, threads, signals, and Tkinter), and
investigate some of the design choices and challenges that the Internet presents.

That last statement merits a few more words. Internet scripting, like GUIs, is one of
the sexier application domains for Python. As in GUI work, there is an intangible but
instant gratification in seeing a Python Internet program ship information all over the
world. On the other hand, by its very nature, network programming imposes speed
overheads and user interface limitations. Though it may not be a fashionable stance
these days, some applications are still better off not being deployed on the Net. In
this part of the book, we will take an honest look at the Net's trade-offs as they
arise.

The Internet is also considered by many to be something of an ultimate proof of
concept for open source tools. Indeed, much of the Net runs on top of a large
number of tools, such as Python, Perl, the Apache web server, the sendmail
program, and Linux. Moreover, new tools and technologies for programming the Web
sometimes seem to appear faster than developers can absorb.

The good news is that Python's integration focus makes it a natural in such a
heterogeneous world. Today, Python programs can be installed as client-side and
server-side tools, embedded within HTML code, used as applets and servlets in Java
applications, mixed into distributed object systems like CORBA and DCOM, integrated
with XML-coded objects, and more. In more general terms, the rationale for using
Python in the Internet domain is exactly the same as in any other: Python's
emphasis on productivity, portability, and integration make it ideal for writing
Internet programs that are open, maintainable, and delivered according to the ever-
shrinking schedules in this field.

10.1.1.2 What we won't cover

Now that I've told you what we will cover in this book, I should also mention what
we won't cover. Like Tkinter, the Internet is a large domain, and this part of the
book is mostly an introduction to core concepts and representative tasks, not an
exhaustive reference. There are simply too many Python Internet modules to include
each in this text, but the examples here should help you understand the library
manual entries for modules we don't have time to cover.

I also want to point out that higher-level tools like JPython and Zope are large
systems in their own right, and they are best dealt with in more dedicated
documents. Because books on both topics are likely to appear soon, we'll merely
scratch their surfaces here. Moreover, this book says almost nothing about lower-
level networking layers such as TCP/IP. If you're curious about what happens on the
Internet at the bit-and-wire level, consult a good networking text for more details.

10.1.1.3 Running examples in this part of the book

Programming Python, 2nd Edition, O’Reilly

IT-SC book 570

Internet scripts generally imply execution contexts that earlier examples in this book
have not. That is, it usually takes a bit more to run programs that talk over
networks. Here are a few pragmatic notes about this part's examples up front:

You don't need to download extra packages to run examples in this part of the book.
Except in Chapter 15, all of the examples we'll see are based on the standard set of
Internet-related modules that come with Python (they are installed in Python's
library directory).

You don't need a state-of-the-art network link or an account on a web server to run
most of the examples in this and the following chapters; a PC and dial-up Internet
account will usually suffice. We'll study configuration details along the way, but
client-side programs are fairly simple to run.

You don't need an account on a web server machine to run the server-side scripts in
later chapters (they can be run by any web browser connected to the Net), but you
will need such an account to change these scripts.

When a Python script opens an Internet connection (with the socket or protocol
modules), Python will happily use whatever Internet link exists on your machine, be
that a dedicated T1 line, a DSL line, or a simple modem. For instance, opening a
socket on a Windows PC automatically initiates processing to create a dial-up
connection to your Internet Service Provider if needed (on my laptop, a Windows
modem connection dialog automatically pops up). In other words, if you have a way
to connect to the Net, you likely can run programs in this chapter.

Moreover, as long as your machine supports sockets, you probably can run many of
the examples here even if you have no Internet connection at all. As we'll see, a
machine name "localhost" or "" usually means the local computer itself. This allows
you to test both the client and server sides of a dialog on the same computer without
connecting to the Net. For example, you can run both socket-based clients and
servers locally on a Windows PC without ever going out to the Net.

Some later examples assume that a particular kind of server is running on a server
machine (e.g., FTP, POP, SMTP), but client-side scripts work on any Internet-aware
machine with Python installed. Server-side examples in Chapter 12, Chapter 13, and
Chapter 14 require more: you'll need a web server account to code CGI scripts, and
you must download advanced third-party systems like JPython and Zope separately
(or find them by viewing http://examples.oreilly.com/python2).

In the Beginning There Was Grail

Besides creating the Python language, Guido van Rossum also wrote a World
Wide Web browser in Python, named (appropriately enough) Grail. Grail was
partly developed as a demonstration of Python's capabilities. It allows users
to browse the Web much like Netscape or Internet Explorer, but can also be
programmed with Grail applets -- Python/Tkinter programs downloaded
from a server when accessed and run on the client by the browser. Grail
applets work much like Java applets in more widespread browsers (more on
applets in Chapter 15).

Grail is no longer under development and is mostly used for research

Programming Python, 2nd Edition, O’Reilly

IT-SC book 571

purposes today. But Python still reaps the benefits of the Grail project, in
the form of a rich set of Internet tools. To write a full-featured web browser,
you need to support a wide variety of Internet protocols, and Guido
packaged support for all of these as standard library modules that are now
shipped with the Python language.

Because of this legacy, Python now includes standard support for Usenet
news (NNTP), email processing (POP, SMTP, IMAP), file transfers (FTP), web
pages and interactions (HTTP, URLs, HTML, CGI), and other commonly used
protocols (Telnet, Gopher, etc.). Python scripts can connect to all of these
Internet components by simply importing the associated library module.

Since Grail, additional tools have been added to Python's library for parsing
XML files, OpenSSL secure sockets, and more. But much of Python's
Internet support can be traced back to the Grail browser -- another example
of Python's support for code reuse at work. At this writing, you can still find
the Grail at http://www.python.org.

10.2 Plumbing the Internet

Unless you've been living in a cave for the last decade, you are probably already
familiar with what the Internet is about, at least from a user's perspective.
Functionally, we use it as a communication and information medium, by exchanging
email, browsing web pages, transferring files, and so on. Technically, the Internet
consists of many layers of abstraction and device -- from the actual wires used to
send bits across the world to the web browser that grabs and renders those bits into
text, graphics, and audio on your computer.

In this book, we are primarily concerned with the programmer's interface to the
Internet. This too consists of multiple layers: sockets, which are programmable
interfaces to the low-level connections between machines, and standard protocols,
which add structure to discussions carried out over sockets. Let's briefly look at each
of these layers in the abstract before jumping into programming details.

10.2.1 The Socket Layer

In simple terms, sockets are a programmable interface to network connections
between computers. They also form the basis, and low-level "plumbing," of the
Internet itself: all of the familiar higher-level Net protocols like FTP, web pages, and
email, ultimately occur over sockets. Sockets are also sometimes called
communications endpoints because they are the portals through which programs
send and receive bytes during a conversation.

To programmers, sockets take the form of a handful of calls available in a library.
These socket calls know how to send bytes between machines, using lower-level
operations such as the TCP network transmission control protocol. At the bottom,
TCP knows how to transfer bytes, but doesn't care what those bytes mean. For the
purposes of this text, we will generally ignore how bytes sent to sockets are
physically transferred. To understand sockets fully, though, we need to know a bit
about how computers are named.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 572

10.2.1.1 Machine identifiers

Suppose for just a moment that you wish to have a telephone conversation with
someone halfway across the world. In the real world, you would probably either need
that person's telephone number, or a directory that can be used to look up the
number from his or her name (e.g., a telephone book). The same is true on the
Internet: before a script can have a conversation with another computer somewhere
in cyberspace, it must first know that other computer's number or name.

Luckily, the Internet defines standard ways to name both a remote machine, and a
service provided by that machine. Within a script, the computer program to be
contacted through a socket is identified by supplying a pair of values -- the machine
name, and a specific port number on that machine:

Machine names

A machine name may take the form of either a string of numbers separated by dots
called an IP address (e.g., 166.93.218.100), or a more legible form known as a
domain name (e.g., starship.python.net). Domain names are automatically mapped
into their dotted numeric address equivalent when used, by something called a
domain name server -- a program on the Net that serves the same purpose as your
local telephone directory assistance service.

Port numbers

A port number is simply an agreed-upon numeric identifier for a given conversation.
Because computers on the Net can support a variety of services, port numbers are
used to name a particular conversation on a given machine. For two machines to talk
over the Net, both must associate sockets with the same machine name and port
number when initiating network connections.

The combination of a machine name and a port number uniquely identifies every
dialog on the Net. For instance, an Internet Service Provider's computer may provide
many kinds of services for customers -- web pages, Telnet, FTP transfers, email, and
so on. Each service on the machine is assigned a unique port number to which
requests may be sent. To get web pages from a web server, programs need to
specify both the web server's IP or domain name, and the port number on which the
server listens for web page requests.

If this all sounds a bit strange, it may help to think of it in old-fashioned terms. In
order to have a telephone conversation with someone within a company, for
example, you usually need to dial both the company's phone number, as well as the
extension of the person you want to reach. Moreover, if you don't know the
company's number, you can probably find it by looking up the company's name in a
phone book. It's almost the same on the Net -- machine names identify a collection
of services (like a company), port numbers identify an individual service within a
particular machine (like an extension), and domain names are mapped to IP
numbers by domain name servers (like a phone book).

When programs use sockets to communicate in specialized ways with another
machine (or with other processes on the same machine), they need to avoid using a
port number reserved by a standard protocol -- numbers in the range of 0-1023 --
but we first need to discuss protocols to understand why.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 573

10.2.2 The Protocol Layer

Although sockets form the backbone of the Internet, much of the activity that
happens on the Net is programmed with protocols,[1] which are higher-level message
models that run on top of sockets. In short, Internet protocols define a structured
way to talk over sockets. They generally standardize both message formats and
socket port numbers:

[1] Some books also use the term protocol to refer to lower-level transport schemes such as
TCP. In this book, we use protocol to refer to higher-level structures built on top of sockets;
see a networking text if you are curious about what happens at lower levels.

Message formats provide structure for the bytes exchanged over sockets during
conversations.

Port numbers are reserved numeric identifiers for the underlying sockets over which
messages are exchanged.

Raw sockets are still commonly used in many systems, but it is perhaps more
common (and generally easier) to communicate with one of the standard higher-
level Internet protocols.

10.2.2.1 Port number rules

Technically speaking, socket port numbers can be any 16-bit integer value between
and 65,535. However, to make it easier for programs to locate the standard
protocols, port numbers in the range of 0-1023 are reserved and preassigned to the
standard higher-level protocols. Table 10-1 lists the ports reserved for many of the
standard protocols; each gets one or more preassigned numbers from the reserved
range.

Table 10-1. Port Numbers Reserved for Common Protocols

Protocol Common Function Port Number Python Module

HTTP Web pages 80 httplib

NNTP Usenet news 119 nntplib

FTP data default File transfers 20 ftplib

FTP control File transfers 21 ftplib

SMTP Sending email 25 smtplib

Programming Python, 2nd Edition, O’Reilly

IT-SC book 574

POP3 Fetching email 110 poplib

IMAP4 Fetching email 143 imaplib

Finger Informational 79 n/a

Telnet Command lines 23 telnetlib

Gopher Document transfers 70 gopherlib

10.2.2.2 Clients and servers

To socket programmers, the standard protocols mean that port numbers 0-1023 are
off-limits to scripts, unless they really mean to use one of the higher-level protocols.
This is both by standard and by common sense. A Telnet program, for instance, can
start a dialog with any Telnet-capable machine by connecting to its port 23; without
preassigned port numbers, each server might install Telnet on a different port.
Similarly, web sites listen for page requests from browsers on port 80 by standard; if
they did not, you might have to know and type the HTTP port number of every site
you visit while surfing the Net.

By defining standard port numbers for services, the Net naturally gives rise to a
client/server architecture. On one side of a conversation, machines that support
standard protocols run a set of perpetually running programs that listen for
connection requests on the reserved ports. On the other end of a dialog, other
machines contact those programs to use the services they export.

We usually call the perpetually running listener program a server and the connecting
program a client. Let's use the familiar web browsing model as an example. As
shown in Table 10-1, the HTTP protocol used by the Web allows clients and servers
to talk over sockets on port 80:

Server

A machine that hosts web sites usually runs a web server program that constantly
listens for incoming connection requests, on a socket bound to port 80. Often, the
server itself does nothing but watch for requests on its port perpetually; handling
requests is delegated to spawned processes or threads.

Clients

Programs that wish to talk to this server specify the server machine's name and port
80 to initiate a connection. For web servers, typical clients are web browsers like
Internet Explorer or Netscape, but any script can open a client-side connection on
port 80 to fetch web pages from the server.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 575

In general, many clients may connect to a server over sockets, whether it
implements a standard protocol or something more specific to a given application.
And in some applications, the notion of client and server is blurred -- programs can
also pass bytes between each other more as peers than as master and subordinate.
For the purpose of this book, though, we usually call programs that listen on sockets
servers, and those that connect, clients. We also sometimes call the machines that
these programs run on server and client (e.g., a computer on which a web server
program runs may be called a web server machine, too), but this has more to do
with the physical than the functional.

10.2.2.3 Protocol structures

Functionally, protocols may accomplish a familiar task like reading email or posting a
Usenet newsgroup message, but they ultimately consist of message bytes sent over
sockets. The structure of those message bytes varies from protocol to protocol, is
hidden by the Python library, and is mostly beyond the scope of this book, but a few
general words may help demystify the protocol layer.

Some protocols may define the contents of messages sent over sockets; others may
specify the sequence of control messages exchanged during conversations. By
defining regular patterns of communication, protocols make communication more
robust. They can also minimize deadlock conditions -- machines waiting for
messages that never arrive.

For example, the FTP protocol prevents deadlock by conversing over two sockets:
one for control messages only, and one to transfer file data. An FTP server listens for
control messages (e.g., "send me a file") on one port, and transfers file data over
another. FTP clients open socket connections to the server machine's control port,
send requests, and send or receive file data over a socket connected to a data port
on the server machine. FTP also defines standard message structures passed
between client and server. The control message used to request a file, for instance,
must follow a standard format.

10.2.3 Python's Internet Library Modules

If all of this sounds horribly complex, cheer up: Python's standard protocol modules
handle all the details. For example, the Python library's ftplib module manages all
the socket and message-level handshaking implied by the FTP protocol. Scripts that
import ftplib have access to a much higher-level interface for FTPing files and can
be largely ignorant of both the underlying FTP protocol, and the sockets over which it
runs.[2]

[2] Since Python is an open source system, you can read the source code of the ftplib module
if you are curious about how the underlying protocol actually works. See file ftplib.py in the
standard source library directory in your machine. Its code is complex (since it must format
messages and manage two sockets), but with the other standard Internet protocol modules, it
is a good example of low-level socket programming.

In fact, each supported protocol is represented by a standard Python module file with
a name of the form xxxlib.py, where xxx is replaced by the protocol's name, in
lowercase. The last column in Table 10-1 gives the module name for protocol
standard modules. For instance, FTP is supported by module file ftplib.py. Moreover,
within the protocol modules, the top-level interface object is usually the name of the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 576

protocol. So, for instance, to start an FTP session in a Python script, you run import
ftplib and pass appropriate parameters in a call to ftplib.FTP(); for Telnet,
create a telnetlib.Telnet().

In addition to the protocol implementation modules in Table 10-1, Python's standard
library also contains modules for parsing and handling data once it has been
transferred over sockets or protocols. Table 10-2 lists some of the more commonly
used modules in this category.

Table 10-2. Common Internet-Related Standard Modules

Python Modules Utility

socket Low-level network communications support (TCP/IP,
UDP, etc.).

cgi Server-side CGI script support: parse input stream,
escape HTML text, etc.

urllib Fetch web pages from their addresses (URLs),
escape URL text

httplib, ftplib, nntplib HTTP (web), FTP (file transfer), and NNTP (news)
protocol modules

poplib, imaplib, smtplib POP, IMAP (mail fetch), and SMTP (mail send)
protocol modules

telnetlib, gopherlib Telnet and Gopher protocol modules

htmllib, sgmllib, xmllib Parse web page contents (HTML, SGML, and XML
documents)

xdrlib Encode binary data portably (also see the struct
and socket modules)

rfc822 Parse email-style header lines

mhlib, mailbox Process complex mail messages and mailboxes

Programming Python, 2nd Edition, O’Reilly

IT-SC book 577

mimetools, mimify Handle MIME-style message bodies

multifile Read messages with multiple parts

uu, binhex, base64, binascii,
quopri

Encode and decode binary (or other) data
transmitted as text

urlparse Parse URL string into components

SocketServer Framework for general net servers

BaseHTTPServer Basic HTTP server implementation

SimpleHTTPServer,
CGIHTTPServer Specific HTTP web server request handler modules

rexec, bastion Restricted code execution modes

We will meet many of this table's modules in the next few chapters of this book, but
not all. The modules demonstrated are representative, but as always, be sure to see
Python's standard Library Reference Manual for more complete and up-to-date lists
and details.

More on Protocol Standards

If you want the full story on protocols and ports, at this writing you can find
a comprehensive list of all ports reserved for protocols, or registered as
used by various common systems, by searching the web pages maintained
by the Internet Engineering Task Force (IETF) and the Internet Assigned
Numbers Authority (IANA). The IETF is the organization responsible for
maintaining web protocols and standards. The IANA is the central
coordinator for the assignment of unique parameter values for Internet
protocols. Another standards body, the W3 (for WWW), also maintains
relevant documents. See these web pages for more details:

http://www.ietf.org
http://www.iana.org/numbers.html
http://www.iana.org/assignments/port-numbers
http://www.w3.org

Programming Python, 2nd Edition, O’Reilly

IT-SC book 578

It's not impossible that more recent repositories for standard protocol
specifications will arise during this book's shelf-life, but the IETF web site
will likely be the main authority for some time to come. If you do look,
though, be warned that the details are, well, detailed. Because Python's
protocol modules hide most of the socket and messaging complexity
documented in the protocol standards, you usually don't need to memorize
these documents to get web work done in Python.

10.3 Socket Programming

Now that we've seen how sockets figure into the Internet picture, let's move on to
explore the tools that Python provides for programming sockets with Python scripts.
This section shows you how to use the Python socket interface to perform low-level
network communications; in later chapters, we will instead use one of the higher-
level protocol modules that hide underlying sockets.

The basic socket interface in Python is the standard library's socket module. Like the
os POSIX module, Python's socket module is just a thin wrapper (interface layer)
over the underlying C library's socket calls. Like Python files, it's also object-based:
methods of a socket object implemented by this module call out to the corresponding
C library's operations after data conversions. The socket module also includes tools
for converting bytes to a standard network ordering, wrapping socket objects in
simple file objects, and more. It supports socket programming on any machine that
supports BSD-style sockets -- MS Windows, Linux, Unix, etc. -- and so provides a
portable socket interface.

10.3.1 Socket Basics

To create a connection between machines, Python programs import the socket
module, create a socket object, and call the object's methods to establish
connections and send and receive data. Socket object methods map directly to
socket calls in the C library. For example, the script in Example 10-1 implements a
program that simply listens for a connection on a socket, and echoes back over a
socket whatever it receives through that socket, adding 'Echo=>' string prefixes.

Example 10-1. PP2E\Internet\Sockets\echo-server.py

Server side: open a socket on a port, listen for
a message from a client, and send an echo reply;
this is a simple one-shot listen/reply per client,
but it goes into an infinite loop to listen for
more clients as long as this server script runs;

from socket import * # get socket constructor and
constants
myHost = '' # server machine, '' means
local host

Programming Python, 2nd Edition, O’Reilly

IT-SC book 579

myPort = 50007 # listen on a non-reserved port
number

sockobj = socket(AF_INET, SOCK_STREAM) # make a TCP socket object
sockobj.bind((myHost, myPort)) # bind it to server port
number
sockobj.listen(5) # listen, allow 5 pending
connects

while 1: # listen until process
killed
 connection, address = sockobj.accept() # wait for next client
connect
 print 'Server connected by', address # connection is a new
socket
 while 1:
 data = connection.recv(1024) # read next line on client
socket
 if not data: break # send a reply line to the
client
 connection.send('Echo=>' + data) # until eof when socket
closed
 connection.close()

As mentioned earlier, we usually call programs like this that listen for incoming
connections servers because they provide a service that can be accessed at a given
machine and port on the Internet. Programs that connect to such a server to access
its service are generally called clients. Example 10-2 shows a simple client
implemented in Python.

Example 10-2. PP2E\Internet\Sockets\echo-client.py

Client side: use sockets to send data to the server, and
print server's reply to each message line; 'localhost'
means that the server is running on the same machine as
the client, which lets us test client and server on one
machine; to test over the Internet, run a server on a remote
machine, and set serverHost or argv[1] to machine's domain
name or IP addr; Python sockets are a portable BSD socket
interface, with object methods for standard socket calls;

import sys
from socket import * # portable socket interface plus
constants
serverHost = 'localhost' # server name, or:
'starship.python.net'
serverPort = 50007 # non-reserved port used by the
server

message = ['Hello network world'] # default text to send to
server
if len(sys.argv) > 1:
 serverHost = sys.argv[1] # or server from cmd line
arg 1

Programming Python, 2nd Edition, O’Reilly

IT-SC book 580

 if len(sys.argv) > 2: # or text from cmd line
args 2..n
 message = sys.argv[2:] # one message for each arg
listed

sockobj = socket(AF_INET, SOCK_STREAM) # make a TCP/IP socket
object
sockobj.connect((serverHost, serverPort)) # connect to server machine
and port

for line in message:
 sockobj.send(line) # send line to server over
socket
 data = sockobj.recv(1024) # receive line from server:
up to 1k
 print 'Client received:', `data`

sockobj.close() # close socket to send eof
to server

10.3.1.1 Server socket calls

Before we see these programs in action, let's take a minute to explain how this client
and server do their stuff. Both are fairly simple examples of socket scripts, but they
illustrate common call patterns of most socket-based programs. In fact, this is
boilerplate code: most socket programs generally make the same socket calls that
our two scripts do, so let's step through the important points of these scripts line by
line.

Programs such as Example 10-1 that provide services for other programs with
sockets generally start out by following this sequence of calls:

sockobj = socket(AF_INET, SOCK_STREAM)

Uses the Python socket module to create a TCP socket object. The names AF_INET
and SOCK_STREAM are preassigned variables defined by and imported form the socket
module; using them in combination means "create a TCP/IP socket," the standard
communication device for the Internet. More specifically, AF_INET means the IP
address protocol, and SOCK_STREAM means the TCP transfer protocol.

If you use other names in this call, you can instead create things like UDP
connectionless sockets (use SOCK_DGRAM second) and Unix domain sockets on the
local machine (use AF_UNIX first), but we won't do so in this book. See the Python
library manual for details on these and other socket module options.

sockobj.bind((myHost, myPort))

Associates the socket object to an address -- for IP addresses, we pass a server
machine name and port number on that machine. This is where the server identifies
the machine and port associated with the socket. In server programs, the hostname
is typically an empty string (""), which means the machine that the script runs on
and the port is a number outside the range 0-1023 (which is reserved for standard
protocols, described earlier). Note that each unique socket dialog you support must

Programming Python, 2nd Edition, O’Reilly

IT-SC book 581

have its own port number; if you try to open a socket on a port already in use,
Python will raise an exception. Also notice the nested parenthesis in this call -- for
the AF_INET address protocol socket here, we pass the host/port socket address to
bind as a two-item tuple object (pass a string for AF_UNIX). Technically, bind takes
a tuple of values appropriate for the type of socket created (but see the next Note
box about the older and deprecated convention of passing values to this function as
distinct arguments).

sockobj.listen(5)

Starts listening for incoming client connections and allows for a backlog of up to five
pending requests. The value passed sets the number of incoming client requests
queued by the operating system before new requests are denied (which only
happens if a server isn't fast enough to process requests before the queues fill up). A
value of 5 is usually enough for most socket-based programs; the value must be at
least 1.

At this point, the server is ready to accept connection requests from client programs
running on remote machines (or the same machine), and falls into an infinite loop
waiting for them to arrive:

connection, address = sockobj.accept()

Waits for the next client connection request to occur; when it does, the accept call
returns a brand new socket object over which data can be transferred from and to
the connected client. Connections are accepted on sockobj, but communication with
a client happens on connection, the new socket. This call actually returns a two-
item tuple -- address is the connecting client's Internet address. We can call accept
more than one time, to service multiple client connections; that's why each call
returns a new, distinct socket for talking to a particular client.

Once we have a client connection, we fall into another loop to receive data from the
client in blocks of 1024 bytes at a time, and echo each block back to the client:

data = connection.recv(1024)

Reads at most 1024 more bytes of the next message sent from a client (i.e., coming
across the network), and returns it to the script as a string. We get back an empty
string when the client has finished -- end-of-file is triggered when the client closes its
end of the socket.

connection.send('Echo=>' + data)

Sends the latest data block back to the client program, prepending the string
'Echo=>' to it first. The client program can then recv what we send here -- the next
reply line.

connection.close()

Shuts down the connection with this particular client.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 582

After talking with a given client, the server goes back to its infinite loop, and waits
for the next client connection request.

10.3.1.2 Client socket calls

On the other hand, client programs like the one shown in Example 10-2 follow
simpler call sequences. The main thing to keep in mind is that the client and server
must specify the same port number when opening their sockets, and the client must
identify the machine on which the server is running (in our scripts, server and client
agree to use port number 50007 for their conversation, outside the standard protocol
range):

sockobj = socket(AF_INET, SOCK_STREAM)

Creates a Python socket object in the client program, just like the server.

sockobj.connect((serverHost, serverPort))

Opens a connection to the machine and port on which the server program is listening
for client connections. This is where the client specifies the name of the service to be
contacted. In the client, we can either specify the name of the remote machine as a
domain name (e.g., starship.python.net) or numeric IP address. We can also give
the server name as localhost to specify that the server program is running on the
same machine as the client; that comes in handy for debugging servers without
having to connect to the Net. And again, the client's port number must match the
server's exactly. Note the nested parentheses again -- just as in server bind calls,
we really pass the server's host/port address to connect in a tuple object.

Once the client establishes a connection to the server, it falls into a loop sending a
message one line at a time and printing whatever the server sends back after each
line is sent:

sockobj.send(line)

Transfers the next message line to the server over the socket.

data = sockobj.recv(1024)

Reads the next reply line sent by the server program. Technically, this reads up to
1024 bytes of the next reply message and returns it as a string.

sockobj.close()

Closes the connection with the server, sending it the end-of-file signal.

And that's it. The server exchanges one or more lines of text with each client that
connects. The operating system takes care of locating remote machines, routing
bytes sent between programs across the Internet, and (with TCP) making sure that
our messages arrive intact. That involves a lot of processing, too -- our strings may
ultimately travel around the world, crossing phone wires, satellite links, and more
along the way. But we can be happily ignorant of what goes on beneath the socket
call layer when programming in Python.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 583

In older Python code, you may see the AF_INET server address
passed to the server-side bind and client-side connect socket
methods as two distinct arguments, instead of a two-item tuple:

soc.bind(host,port) vs
soc.bind((host,port))
soc.connect(host,port) vs
soc.connect((host,port))

This two-argument form is now deprecated, and only worked at
all due to a shortcoming in earlier Python releases
(unfortunately, the Python library manual's socket example used
the two-argument form too!). The tuple server address form is
preferred, and, in a rare Python break with full backward-
compatibility, will likely be the only one that will work in future
Python releases.

10.3.1.3 Running socket programs locally

Okay, let's put this client and server to work. There are two ways to run these scripts
-- either on the same machine or on two different machines. To run the client and
the server on the same machine, bring up two command-line consoles on your
computer, start the server program in one, and run the client repeatedly in the
other. The server keeps running and responds to requests made each time you run
the client script in the other window.

For instance, here is the text that shows up in the MS-DOS console window where
I've started the server script:

C:\...\PP2E\Internet\Sockets>python echo-server.py
Server connected by ('127.0.0.1', 1025)
Server connected by ('127.0.0.1', 1026)
Server connected by ('127.0.0.1', 1027)

The output here gives the address (machine IP name and port number) of each
connecting client. Like most servers, this one runs perpetually, listening for client
connection requests. This one receives three, but I have to show you the client
window's text for you to understand what this means:

C:\...\PP2E\Internet\Sockets>python echo-client.py
Client received: 'Echo=>Hello network world'

C:\...\PP2E\Internet\Sockets>python echo-client.py localhost spam Spam
SPAM
Client received: 'Echo=>spam'
Client received: 'Echo=>Spam'
Client received: 'Echo=>SPAM'

C:\...\PP2E\Internet\Sockets>python echo-client.py localhost Shrubbery
Client received: 'Echo=>Shrubbery'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 584

Here, I ran the client script three times, while the server script kept running in the
other window. Each client connected to the server, sent it a message of one or more
lines of text, and read back the server's reply -- an echo of each line of text sent
from the client. And each time a client is run, a new connection message shows up in
the server's window (that's why we got three).

It's important to notice that clients and server are running on the same machine
here (a Windows PC). The server and client agree on port number, but use machine
names "" and "localhost" respectively, to refer to the computer that they are running
on. In fact, there is no Internet connection to speak of. Sockets also work well as
cross-program communications tools on a single machine.

10.3.1.4 Running socket programs remotely

To make these scripts talk over the Internet instead of on a single machine, we have
to do some extra work to run the server on a different computer. First, upload the
server's source file to a remote machine where you have an account and a Python.
Here's how I do it with FTP; your server name and upload interface details may vary,
and there are other ways to copy files to a computer (e.g., email, web-page post
forms, etc.):[3]

[3] The FTP command is standard on Windows machines and most others. On Windows, simply
type it in a DOS console box to connect to an FTP server (or start your favorite FTP program);
on Linux, type the FTP command in an xterm window. You'll need to supply your account
name and password to connect to a non-anonymous FTP site. For anonymous FTP, use
"anonymous" for the username and your email address for the password (anonymous FTP
sites are generally limited).

C:\...\PP2E\Internet\Sockets>ftp starship.python.net
Connected to starship.python.net.
User (starship.python.net:(none)): lutz
331 Password required for lutz.
Password:
230 User lutz logged in.
ftp> put echo-server.py
200 PORT command successful.
150 Opening ASCII mode data connection for echo-server.py.
226 Transfer complete.
ftp: 1322 bytes sent in 0.06Seconds 22.03Kbytes/sec.
ftp> quit

Once you have the server program loaded on the other computer, you need to run it
there. Connect to that computer and start the server program. I usually telnet into
my server machine and start the server program as a perpetually running process
from the command line.[4] The & syntax in Unix/Linux shells can be used to run the
server script in the background; we could also make the server directly executable
with a #! line and a chmod command (see Chapter 2, for details). Here is the text
that shows up in a Window on my PC that is running a Telnet session connected to
the Linux server where I have an account (less a few deleted informational lines):

[4] Telnet is a standard command on Windows and Linux machines, too. On Windows, type it at
a DOS console prompt or in the Start/Run dialog box (it can also be started via a clickable
icon). Telnet usually runs in a window of its own.

C:\...\PP2E\Internet\Sockets>telnet starship.python.net

Programming Python, 2nd Edition, O’Reilly

IT-SC book 585

Red Hat Linux release 6.2 (Zoot)
Kernel 2.2.14-5.0smp on a 2-processor i686
login: lutz
Password:
[lutz@starship lutz]$ python echo-server.py &
[1] 4098

Now that the server is listening for connections on the Net, run the client on your
local computer multiple times again. This time, the client runs on a different machine
than the server, so we pass in the server's domain or IP name as a client command-
line argument. The server still uses a machine name of "" because it always listens
on whatever machine it runs upon. Here is what shows up in the server's Telnet
window:

[lutz@starship lutz]$ Server connected by ('166.93.68.61', 1037)
Server connected by ('166.93.68.61', 1040)
Server connected by ('166.93.68.61', 1043)
Server connected by ('166.93.68.61', 1050)

And here is what appears in the MS-DOS console box where I run the client. A
"connected by" message appears in the server Telnet window each time the client
script is run in the client window:

C:\...\PP2E\Internet\Sockets>python echo-client.py starship.python.net
Client received: 'Echo=>Hello network world'

C:\...\PP2E\Internet\Sockets>python echo-client.py starship.python.net
ni Ni NI
Client received: 'Echo=>ni'
Client received: 'Echo=>Ni'
Client received: 'Echo=>NI'

C:\...\PP2E\Internet\Sockets>python echo-client.py starship.python.net
Shrubbery
Client received: 'Echo=>Shrubbery'

C:\...\PP2E\Internet\Sockets>ping starship.python.net
Pinging starship.python.net [208.185.174.112] with 32 bytes of data:
Reply from 208.185.174.112: bytes=32 time=311ms TTL=246
ctrl-C
C:\...\PP2E\Internet\Sockets>python echo-client.py 208.185.174.112 Does
she?
Client received: 'Echo=>Does'
Client received: 'Echo=>she?'

The "ping" command can be used to get an IP address for a machine's domain
name; either machine name form can be used to connect in the client. This output is
perhaps a bit understated -- a lot is happening under the hood. The client, running
on my Windows laptop, connects with and talks to the server program running on a
Linux machine perhaps thousands of miles away. It all happens about as fast as
when client and server both run on the laptop, and it uses the same library calls;
only the server name passed to clients differs.

10.3.1.5 Socket pragmatics

Programming Python, 2nd Edition, O’Reilly

IT-SC book 586

Before we move on, there are three practical usage details you should know. First of
all, you can run the client and server like this on any two Internet-aware machines
where Python is installed. Of course, to run clients and server on different
computers, you need both a live Internet connection and access to another machine
on which to run the server. You don't need a big, expensive Internet link, though -- a
simple modem and dialup Internet account will do for clients. When sockets are
opened, Python is happy to use whatever connectivity you have, be it a dedicated T1
line, or a dialup modem account.

On my laptop PC, for instance, Windows automatically dials out to my ISP when
clients are started or when Telnet server sessions are opened. In this book's
examples, server-side programs that run remotely are executed on a machine called
starship.python.net. If you don't have an account of your own on such a server,
simply run client and server examples on the same machine, as shown earlier; all
you need then is a computer that allows sockets, and most do.

Secondly, the socket module generally raises exceptions if you ask for something
invalid. For instance, trying to connect to a nonexistent server (or unreachable
servers, if you have no Internet link) fails:

C:\...\PP2E\Internet\Sockets>python echo-client.py www.nonesuch.com
hello
Traceback (innermost last):
 File "echo-client.py", line 24, in ?
 sockobj.connect((serverHost, serverPort)) # connect to server
machine...
 File "<string>", line 1, in connect
socket.error: (10061, 'winsock error')

Finally, also be sure to kill the server process before restarting it again, or else the
port number will be still in use, and you'll get another exception:

[lutz@starship uploads]$ ps -x
 PID TTY STAT TIME COMMAND
 5570 pts/0 S 0:00 -bash
 5570 pts/0 S 0:00 -bash
 5633 pts/0 S 0:00 python echo-server.py
 5634 pts/0 R 0:00 ps -x
[lutz@starship uploads]$ python echo-server.py
Traceback (most recent call last):
 File "echo-server.py", line 14, in ?
 sockobj.bind((myHost, myPort)) # bind it to server
port number
socket.error: (98, 'Address already in use')

Under Python 1.5.2, a series of Ctrl-C's will kill the server on Linux (be sure to type
fg to bring it to the foreground first if started with an &):

[lutz@starship uploads]$ python echo-server.py
ctrl-c
Traceback (most recent call last):
 File "echo-server.py", line 18, in ?
 connection, address = sockobj.accept() # wait for next client
connect
KeyboardInterrupt

Programming Python, 2nd Edition, O’Reilly

IT-SC book 587

A Ctrl-C kill key combination won't kill the server on my Windows machine, however.
To kill the perpetually running server process running locally on Windows, you may
need to type a Ctrl-Alt-Delete key combination, and then end the Python task by
selecting it in the process listbox that appears. You can usually also kill a server on
Linux with a kill -9 pid shell command if it is running in another window or in the
background, but Ctrl-C is less typing.

10.3.1.6 Spawning clients in parallel

To see how the server handles the load, let's fire up eight copies of the client script
in parallel using the script in Example 10-3 (see the end of Chapter 3, for details on
the launchmodes module used here to spawn clients).

Example 10-3. PP2E\Internet\Sockets\testecho.py

import sys, string
from PP2E.launchmodes import QuietPortableLauncher

numclients = 8
def start(cmdline): QuietPortableLauncher(cmdline, cmdline)()

start('echo-server.py') # spawn server locally if not
yet started

args = string.join(sys.argv[1:], ' ') # pass server name if running
remotely
for i in range(numclients):
 start('echo-client.py %s' % args) # spawn 8? clients to test the
server

To run this script, pass no arguments to talk to a server listening on port 50007 on
the local machine; pass a real machine name to talk to a server running remotely.
On Windows, the clients' output is discarded when spawned from this script:

C:\...\PP2E\Internet\Sockets>python testecho.py

C:\...\PP2E\Internet\Sockets>python testecho.py starship.python.net

If the spawned clients connect to a server run locally, connection messages show up
in the server's window on the local machine:

C:\...\PP2E\Internet\Sockets>python echo-server.py
Server connected by ('127.0.0.1', 1283)
Server connected by ('127.0.0.1', 1284)
Server connected by ('127.0.0.1', 1285)
Server connected by ('127.0.0.1', 1286)
Server connected by ('127.0.0.1', 1287)
Server connected by ('127.0.0.1', 1288)
Server connected by ('127.0.0.1', 1289)
Server connected by ('127.0.0.1', 1290)

If the server is running remotely, the client connection messages instead appear in
the window displaying the Telnet connection to the remote computer:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 588

[lutz@starship lutz]$ python echo-server.py
Server connected by ('166.93.68.61', 1301)
Server connected by ('166.93.68.61', 1302)
Server connected by ('166.93.68.61', 1308)
Server connected by ('166.93.68.61', 1309)
Server connected by ('166.93.68.61', 1313)
Server connected by ('166.93.68.61', 1314)
Server connected by ('166.93.68.61', 1307)
Server connected by ('166.93.68.61', 1312)

Keep in mind, however, that this works for our simple scripts only because the
server doesn't take a long time to respond to each client's requests -- it can get back
to the top of the server script's outer while loop in time to process the next
incoming client. If it could not, we would probably need to change the server to
handle each client in parallel, or some might be denied a connection. Technically,
client connections would fail after five clients are already waiting for the server's
attention, as specified in the server's listen call. We'll see how servers can handle
multiple clients robustly in the next section.

10.3.1.7 Talking to reserved ports

It's also important to know that this client and server engage in a proprietary sort of
discussion, and so use a port number 50007 outside the range reserved for standard
protocols (0-1023). There's nothing preventing a client from opening a socket on one
of these special ports, however. For instance, the following client-side code connects
to programs listening on the standard email, FTP, and HTTP web server ports on
three different server machines:

C:\...\PP2E\Internet\Sockets>python
>>> from socket import *
>>> sock = socket(AF_INET, SOCK_STREAM)
>>> sock.connect(('mail.rmi.net', 110)) # talk to RMI POP mail
server
>>> print sock.recv(40)
+OK Cubic Circle's v1.31 1998/05/13 POP3
>>> sock.close()

>>> sock = socket(AF_INET, SOCK_STREAM)
>>> sock.connect(('www.python.org', 21)) # talk to Python FTP
server
>>> print sock.recv(40)
220 python.org FTP server (Version wu-2.
>>> sock.close()

>>> sock = socket(AF_INET, SOCK_STREAM)
>>> sock.connect(('starship.python.net', 80)) # starship HTTP web
server
>>> sock.send('GET /\r\n') # fetch root web page
7
>>> sock.recv(60)
'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">\012<HTM'
>>> sock.recv(60)
'L>\012 <HEAD>\012 <TITLE>Starship Slowly Recovering</TITLE>\012 </HE'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 589

If we know how to interpret the output returned by these ports' servers, we could
use raw sockets like this to fetch email, transfer files, and grab web pages and
invoke server-side scripts. Fortunately, though, we don't have to worry about all the
underlying details -- Python's poplib, ftplib, httplib, and urllib modules provide
higher-level interfaces for talking to servers on these ports. Other Python protocol
modules do the same for other standard ports (e.g., NNTP, Telnet, and so on). We'll
meet some of these client-side protocol modules in the next chapter.[5]

[5] You might be interested to know that the last part of this example, talking to port 80, is
exactly what your web browser does as you surf the Net: followed links direct it to download
web pages over this port. In fact, this lowly port is the primary basis of the Web. In Chapter
12, we will meet an entire application environment based upon sending data over port 80 --
CGI server-side scripting.

By the way, it's okay to open client-side connections on reserved ports like this, but
you can't install your own server-side scripts for these ports unless you have special
permission:

[lutz@starship uploads]$ python
>>> from socket import *
>>> sock = socket(AF_INET, SOCK_STREAM)
>>> sock.bind(('', 80))
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
socket.error: (13, 'Permission denied')

Even if run by a user with the required permission, you'll get the different exception
we saw earlier if the port is already being used by a real web server. On computers
being used as general servers, these ports really are reserved.

10.4 Handling Multiple Clients

The echo client and server programs shown previously serve to illustrate socket
fundamentals. But the server model suffers from a fairly major flaw: if multiple
clients try to connect to the server, and it takes a long time to process a given
clients' request, the server will fail. More accurately, if the cost of handling a given
request prevents the server from returning to the code that checks for new clients in
a timely manner, it won't be able to keep up with all the requests, and some clients
will eventually be denied connections.

In real-world client/server programs, it's far more typical to code a server so as to
avoid blocking new requests while handling a current client's request. Perhaps the
easiest way to do so is to service each client's request in parallel -- in a new process,
in a new thread, or by manually switching (multiplexing) between clients in an event
loop. This isn't a socket issue per se, and we've already learned how to start
processes and threads in Chapter 3. But since these schemes are so typical of socket
server programming, let's explore all three ways to handle client requests in parallel
here.

10.4.1 Forking Servers

The script in Example 10-4 works like the original echo server, but instead forks a
new process to handle each new client connection. Because the handleClient

Programming Python, 2nd Edition, O’Reilly

IT-SC book 590

function runs in a new process, the dispatcher function can immediately resume its
main loop, to detect and service a new incoming request.

Example 10-4. PP2E\Internet\Sockets\fork-server.py

Server side: open a socket on a port, listen for
a message from a client, and send an echo reply;
forks a process to handle each client connection;
child processes share parent's socket descriptors;
fork is less portable than threads--not yet on Windows;

import os, time, sys
from socket import * # get socket constructor and
constants
myHost = '' # server machine, '' means
local host
myPort = 50007 # listen on a non-reserved
port number

sockobj = socket(AF_INET, SOCK_STREAM) # make a TCP socket
object
sockobj.bind((myHost, myPort)) # bind it to server
port number
sockobj.listen(5) # allow 5 pending
connects

def now(): # current time on
server
 return time.ctime(time.time())

activeChildren = []
def reapChildren(): # reap any dead child
processes
 while activeChildren: # else may fill up
system table
 pid,stat = os.waitpid(0, os.WNOHANG) # don't hang if no
child exited
 if not pid: break
 activeChildren.remove(pid)

def handleClient(connection): # child process:
reply, exit
 time.sleep(5) # simulate a blocking
activity
 while 1: # read, write a client
socket
 data = connection.recv(1024) # till eof when socket
closed
 if not data: break
 connection.send('Echo=>%s at %s' % (data, now()))
 connection.close()
 os._exit(0)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 591

def dispatcher(): # listen until process
killed
 while 1: # wait for next
connection,
 connection, address = sockobj.accept() # pass to process for
service
 print 'Server connected by', address,
 print 'at', now()
 reapChildren() # clean up exited
children now
 childPid = os.fork() # copy this process
 if childPid == 0: # if in child process:
handle
 handleClient(connection)
 else: # else: go accept next
connect
 activeChildren.append(childPid) # add to active child
pid list

dispatcher()

10.4.1.1 Running the forking server

Parts of this script are a bit tricky, and most of its library calls work only on Unix-like
platforms (not Windows). But before we get into too many details, let's start up our
server and handle a few client requests. First off, notice that to simulate a long-
running operation (e.g., database updates, other network traffic), this server adds a
five-second time.sleep delay in its client handler function, handleClient. After the
delay, the original echo reply action is performed. That means that when we run a
server and clients this time, clients won't receive the echo reply until five seconds
after they've sent their requests to the server.

To help keep track of requests and replies, the server prints its system time each
time a client connect request is received, and adds its system time to the reply.
Clients print the reply time sent back from the server, not their own -- clocks on the
server and client may differ radically, so to compare apples to apples, all times are
server times. Because of the simulated delays, we also usually must start each client
in its own console window on Windows (on some platforms, clients will hang in a
blocked state while waiting for their reply).

But the grander story here is that this script runs one main parent process on the
server machine, which does nothing but watch for connections (in dispatcher), plus
one child process per active client connection, running in parallel with both the main
parent process and the other client processes (in handleClient). In principle, the
server can handle any number of clients without bogging down. To test, let's start
the server remotely in a Telnet window, and start three clients locally in three
distinct console windows:

[server telnet window]
[lutz@starship uploads]$ uname -a
Linux starship ...
[lutz@starship uploads]$ python fork-server.py
Server connected by ('38.28.162.194', 1063) at Sun Jun 18 19:37:49 2000
Server connected by ('38.28.162.194', 1064) at Sun Jun 18 19:37:49 2000

Programming Python, 2nd Edition, O’Reilly

IT-SC book 592

Server connected by ('38.28.162.194', 1067) at Sun Jun 18 19:37:50 2000

 [client window 1]
C:\...\PP2E\Internet\Sockets>python echo-client.py starship.python.net
Client received: 'Echo=>Hello network world at Sun Jun 18 19:37:54
2000'

 [client window 2]
C:\...\PP2E\Internet\Sockets>python echo-client.py starship.python.net
Bruce
Client received: 'Echo=>Bruce at Sun Jun 18 19:37:54 2000'

 [client window 3]
C:\...\PP2E\Internet\Sockets>python echo-client.py starship.python.net
The
Meaning of Life
Client received: 'Echo=>The at Sun Jun 18 19:37:55 2000'
Client received: 'Echo=>Meaning at Sun Jun 18 19:37:56 2000'
Client received: 'Echo=>of at Sun Jun 18 19:37:56 2000'
Client received: 'Echo=>Life at Sun Jun 18 19:37:56 2000'

Again, all times here are on the server machine. This may be a little confusing
because there are four windows involved. In English, the test proceeds as follows:

The server starts running remotely.

All three clients are started and connect to the server at roughly the same time.

On the server, the client requests trigger three forked child processes, which all
immediately go to sleep for five seconds (to simulate being busy doing something
useful).

Each client waits until the server replies, which eventually happens five seconds after
their initial requests.

In other words, all three clients are serviced at the same time, by forked processes,
while the main parent process continues listening for new client requests. If clients
were not handled in parallel like this, no client could connect until the currently
connected client's five-second delay expired.

In a more realistic application, that delay could be fatal if many clients were trying to
connect at once -- the server would be stuck in the action we're simulating with
time.sleep, and not get back to the main loop to accept new client requests. With
process forks per request, all clients can be serviced in parallel.

Notice that we're using the same client script here (echo-client.py), just a different
server; clients simply send and receive data to a machine and port, and don't care
how their requests are handled on the server. Also note that the server is running
remotely on a Linux machine. (As we learned in Chapter 3, the fork call is not
supported on Windows in Python at the time this book was written.) We can also run
this test on a Linux server entirely, with two Telnet windows. It works about the
same as when clients are started locally, in a DOS console window, but here "local"
means a remote machine you're telneting to locally:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 593

 [one telnet window]
[lutz@starship uploads]$ python fork-server.py &
[1] 3379
Server connected by ('127.0.0.1', 2928) at Sun Jun 18 22:44:50 2000
Server connected by ('127.0.0.1', 2929) at Sun Jun 18 22:45:08 2000
Server connected by ('208.185.174.112', 2930) at Sun Jun 18 22:45:50
2000

 [another telnet window, same machine]
[lutz@starship uploads]$ python echo-client.py
Client received: 'Echo=>Hello network world at Sun Jun 18 22:44:55
2000'

[lutz@starship uploads]$ python echo-client.py localhost niNiNI
Client received: 'Echo=>niNiNI at Sun Jun 18 22:45:13 2000'

[lutz@starship uploads]$ python echo-client.py starship.python.net Say
no More!
Client received: 'Echo=>Say at Sun Jun 18 22:45:55 2000'
Client received: 'Echo=>no at Sun Jun 18 22:45:55 2000'
Client received: 'Echo=>More! at Sun Jun 18 22:45:55 2000'

Now let's move on to the tricky bits. This server script is fairly straightforward as
forking code goes, but a few comments about some of the library tools it employs
are in order.

10.4.1.2 Forking processes

We met os.fork in Chapter 3, but recall that forked processes are essentially a copy
of the process that forks them, and so they inherit file and socket descriptors from
their parent process. Because of that, the new child process that runs the
handleClient function has access to the connection socket created in the parent
process. Programs know they are in a forked child process if the fork call returns 0;
otherwise, the original parent process gets back the new child's ID.

10.4.1.3 Exiting from children

In earlier fork examples, child processes usually call one of the exec variants to start
a new program in the child process. Here, instead, the child process simply calls a
function in the same program and exits with os._exit. It's imperative to call
os._exit here -- if we did not, each child would live on after handleClient returns,
and compete for accepting new client requests.

In fact, without the exit call, we'd wind up with as many perpetual server processes
as requests served -- remove the exit call and do a ps shell command after running a
few clients, and you'll see what I mean. With the call, only the single parent process
listens for new requests. os._exit is like sys.exit, but it exits the calling process
immediately without cleanup actions. It's normally only used in child processes, and
sys.exit is used everywhere else.

10.4.1.4 Killing the zombies

Programming Python, 2nd Edition, O’Reilly

IT-SC book 594

Note, however, that it's not quite enough to make sure that child processes exit and
die. On systems like Linux, parents must also be sure to issue a wait system call to
remove the entries for dead child processes from the system's process table. If we
don't, the child processes will no longer run, but they will consume an entry in the
system process table. For long-running servers, these bogus entries may become
problematic.

It's common to call such dead-but-listed child processes "zombies": they continue to
use system resources even though they've already passed over to the great
operating system beyond. To clean up after child processes are gone, this server
keeps a list, activeChildren, of the process IDs of all child processes it spawns.
Whenever a new incoming client request is received, the server runs its
reapChildren to issue a wait for any dead children by issuing the standard Python
os.waitpid(0,os.WNOHANG) call.

The os.waitpid call attempts to wait for a child process to exit and returns its
process ID and exit status. With a for its first argument, it waits for any child
process. With the WNOHANG parameter for its second, it does nothing if no child
process has exited (i.e., it does not block or pause the caller). The net effect is that
this call simply asks the operating system for the process ID of any child that has
exited. If any have, the process ID returned is removed both from the system
process table and from this script's activeChildren list.

To see why all this complexity is needed, comment out the reapChildren call in this
script, run it on a server, and then run a few clients. On my Linux server, a ps -f
full process listing command shows that all the dead child processes stay in the
system process table (show as <defunct>):

[lutz@starship uploads]$ ps -f
UID PID PPID C STIME TTY TIME CMD
lutz 3270 3264 0 22:33 pts/1 00:00:00 -bash
lutz 3311 3270 0 22:37 pts/1 00:00:00 python fork-server.py
lutz 3312 3311 0 22:37 pts/1 00:00:00 [python <defunct>]
lutz 3313 3311 0 22:37 pts/1 00:00:00 [python <defunct>]
lutz 3314 3311 0 22:37 pts/1 00:00:00 [python <defunct>]
lutz 3316 3311 0 22:37 pts/1 00:00:00 [python <defunct>]
lutz 3317 3311 0 22:37 pts/1 00:00:00 [python <defunct>]
lutz 3318 3311 0 22:37 pts/1 00:00:00 [python <defunct>]
lutz 3322 3270 0 22:38 pts/1 00:00:00 ps -f

When the reapChildren command is reactivated, dead child zombie entries are
cleaned up each time the server gets a new client connection request, by calling the
Python os.waitpid function. A few zombies may accumulate if the server is heavily
loaded, but will remain only until the next client connection is received:

[lutz@starship uploads]$ ps -f
UID PID PPID C STIME TTY TIME CMD
lutz 3270 3264 0 22:33 pts/1 00:00:00 -bash
lutz 3340 3270 0 22:41 pts/1 00:00:00 python fork-server.py
lutz 3341 3340 0 22:41 pts/1 00:00:00 [python <defunct>]
lutz 3342 3340 0 22:41 pts/1 00:00:00 [python <defunct>]
lutz 3343 3340 0 22:41 pts/1 00:00:00 [python <defunct>]
lutz 3344 3270 6 22:41 pts/1 00:00:00 ps -f

Programming Python, 2nd Edition, O’Reilly

IT-SC book 595

[lutz@starship uploads]$
Server connected by ('38.28.131.174', 1170) at Sun Jun 18 22:41:43 2000

[lutz@starship uploads]$ ps -f
UID PID PPID C STIME TTY TIME CMD
lutz 3270 3264 0 22:33 pts/1 00:00:00 -bash
lutz 3340 3270 0 22:41 pts/1 00:00:00 python fork-server.py
lutz 3345 3340 0 22:41 pts/1 00:00:00 [python <defunct>]
lutz 3346 3270 0 22:41 pts/1 00:00:00 ps -f

If you type fast enough, you can actually see a child process morph from a real
running program into a zombie. Here, for example, a child spawned to handle a new
request (process ID 11785) changes to <defunct> on exit. Its process entry will be
removed completely when the next request is received:

[lutz@starship uploads]$
Server connected by ('38.28.57.160', 1106) at Mon Jun 19 22:34:39 2000
[lutz@starship uploads]$ ps -f
UID PID PPID C STIME TTY TIME CMD
lutz 11089 11088 0 21:13 pts/2 00:00:00 -bash
lutz 11780 11089 0 22:34 pts/2 00:00:00 python fork-server.py
lutz 11785 11780 0 22:34 pts/2 00:00:00 python fork-server.py
lutz 11786 11089 0 22:34 pts/2 00:00:00 ps -f

[lutz@starship uploads]$ ps -f
UID PID PPID C STIME TTY TIME CMD
lutz 11089 11088 0 21:13 pts/2 00:00:00 -bash
lutz 11780 11089 0 22:34 pts/2 00:00:00 python fork-server.py
lutz 11785 11780 0 22:34 pts/2 00:00:00 [python <defunct>]
lutz 11787 11089 0 22:34 pts/2 00:00:00 ps -f

10.4.1.5 Preventing zombies with signal handlers

On some systems, it's also possible to clean up zombie child processes by resetting
the signal handler for the SIGCHLD signal raised by the operating system when a
child process exits. If a Python script assigns the SIG_IGN (ignore) action as the
SIGCHLD signal handler, zombies will be removed automatically and immediately as
child processes exit; the parent need not issue wait calls to clean up after them.
Because of that, this scheme is a simpler alternative to manually reaping zombies
(on platforms where it is supported).

If you've already read Chapter 3, you know that Python's standard signal module
lets scripts install handlers for signals -- software-generated events. If you haven't
read that chapter, here is a brief bit of background to show how this pans out for
zombies. The program in Example 10-5 installs a Python-coded signal handler
function to respond to whatever signal number you type on the command line.

Example 10-5. PP2E\Internet\Sockets\signal-demo.py

Demo Python's signal module; pass signal number as a
command-line arg, use a "kill -N pid" shell command
to send this process a signal; e.g., on my linux
machine, SIGUSR1=10, SIGUSR2=12, SIGCHLD=17, and

Programming Python, 2nd Edition, O’Reilly

IT-SC book 596

SIGCHLD handler stays in effect even if not restored:
all other handlers restored by Python after caught,
but SIGCHLD is left to the platform's implementation;
signal works on Windows but defines only a few signal
types; signals are not very portable in general;

import sys, signal, time

def now():
 return time.ctime(time.time())

def onSignal(signum, stackframe): # python signal
handler
 print 'Got signal', signum, 'at', now() # most handlers stay
in effect
 if signum == signal.SIGCHLD: # but sigchld handler
is not
 print 'sigchld caught'
 #signal.signal(signal.SIGCHLD, onSignal)

signum = int(sys.argv[1])
signal.signal(signum, onSignal) # install signal
handler
while 1: signal.pause() # sleep waiting for
signals

To run this script, simply put it in the background and send it signals by typing the
kill -signal-number process-id shell command line. Process IDs are listed in the
PID column of ps command results. Here is this script in action catching signal
numbers 10 (reserved for general use) and 9 (the unavoidable terminate signal):

[lutz@starship uploads]$ python signal-demo.py 10 &
[1] 11297
[lutz@starship uploads]$ ps -f
UID PID PPID C STIME TTY TIME CMD
lutz 11089 11088 0 21:13 pts/2 00:00:00 -bash
lutz 11297 11089 0 21:49 pts/2 00:00:00 python signal-demo.py
10
lutz 11298 11089 0 21:49 pts/2 00:00:00 ps -f

[lutz@starship uploads]$ kill -10 11297
Got signal 10 at Mon Jun 19 21:49:27 2000

[lutz@starship uploads]$ kill -10 11297
Got signal 10 at Mon Jun 19 21:49:29 2000

[lutz@starship uploads]$ kill -10 11297
Got signal 10 at Mon Jun 19 21:49:32 2000

[lutz@starship uploads]$ kill -9 11297
[1]+ Killed python signal-demo.py 10

And here the script catches signal 17, which happens to be SIGCHLD on my Linux
server. Signal numbers vary from machine to machine, so you should normally use

Programming Python, 2nd Edition, O’Reilly

IT-SC book 597

their names, not their numbers. SIGCHLD behavior may vary per platform as well
(see the signal module's library manual entry for more details):

[lutz@starship uploads]$ python signal-demo.py 17 &
[1] 11320
[lutz@starship uploads]$ ps -f
UID PID PPID C STIME TTY TIME CMD
lutz 11089 11088 0 21:13 pts/2 00:00:00 -bash
lutz 11320 11089 0 21:52 pts/2 00:00:00 python signal-demo.py
17
lutz 11321 11089 0 21:52 pts/2 00:00:00 ps -f

[lutz@starship uploads]$ kill -17 11320
Got signal 17 at Mon Jun 19 21:52:24 2000
[lutz@starship uploads] sigchld caught

[lutz@starship uploads]$ kill -17 11320
Got signal 17 at Mon Jun 19 21:52:27 2000
[lutz@starship uploads]$ sigchld caught

Now, to apply all this to kill zombies, simply set the SIGCHLD signal handler to the
SIG_IGN ignore handler action; on systems where this assignment is supported, child
processes will be cleaned up when they exit. The forking server variant shown in
Example 10-6 uses this trick to manage its children.

Example 10-6. PP2E\Internet\Sockets\fork-server-signal.py

Same as fork-server.py, but use the Python signal
module to avoid keeping child zombie processes after
they terminate, not an explicit loop before each new
connection; SIG_IGN means ignore, and may not work with
SIG_CHLD child exit signal on all platforms; on Linux,
socket.accept cannot be interrupted with a signal;

import os, time, sys, signal, signal
from socket import * # get socket constructor and
constants
myHost = '' # server machine, '' means
local host
myPort = 50007 # listen on a non-reserved
port number

sockobj = socket(AF_INET, SOCK_STREAM) # make a TCP socket
object
sockobj.bind((myHost, myPort)) # bind it to server
port number
sockobj.listen(5) # up to 5 pending
connects
signal.signal(signal.SIGCHLD, signal.SIG_IGN) # avoid child zombie
processes

def now(): # time on server
machine

Programming Python, 2nd Edition, O’Reilly

IT-SC book 598

 return time.ctime(time.time())

def handleClient(connection): # child process
replies, exits
 time.sleep(5) # simulate a blocking
activity
 while 1: # read, write a client
socket
 data = connection.recv(1024)
 if not data: break
 connection.send('Echo=>%s at %s' % (data, now()))
 connection.close()
 os._exit(0)

def dispatcher(): # listen until process
killed
 while 1: # wait for next
connection,
 connection, address = sockobj.accept() # pass to process for
service
 print 'Server connected by', address,
 print 'at', now()
 childPid = os.fork() # copy this process
 if childPid == 0: # if in child process:
handle
 handleClient(connection) # else: go accept next
connect

dispatcher()

Where applicable, this technique is:

Much simpler -- we don't need to manually track or reap child processes.

More accurate -- it leaves no zombies temporarily between client requests.

In fact, there is really only one line dedicated to handling zombies here: the
signal.signal call near the top, to set the handler. Unfortunately, this version is
also even less portable than using os.fork in the first place, because signals may
work slightly different from platform to platform. For instance, some platforms may
not allow SIG_IGN to be used as the SIGCHLD action at all. On Linux systems,
though, this simpler forking server variant works like a charm:

[lutz@starship uploads]$
Server connected by ('38.28.57.160', 1166) at Mon Jun 19 22:38:29 2000

[lutz@starship uploads]$ ps -f
UID PID PPID C STIME TTY TIME CMD
lutz 11089 11088 0 21:13 pts/2 00:00:00 -bash
lutz 11827 11089 0 22:37 pts/2 00:00:00 python fork-server-
signal.py
lutz 11835 11827 0 22:38 pts/2 00:00:00 python fork-server-
signal.py
lutz 11836 11089 0 22:38 pts/2 00:00:00 ps -f

[lutz@starship uploads]$ ps -f

Programming Python, 2nd Edition, O’Reilly

IT-SC book 599

UID PID PPID C STIME TTY TIME CMD
lutz 11089 11088 0 21:13 pts/2 00:00:00 -bash
lutz 11827 11089 0 22:37 pts/2 00:00:00 python fork-server-
signal.py
lutz 11837 11089 0 22:38 pts/2 00:00:00 ps -f

Notice that in this version, the child process's entry goes away as soon as it exits,
even before a new client request is received; no "defunct" zombie ever appears.
More dramatically, if we now start up the script we wrote earlier that spawns eight
clients in parallel (testecho.py) to talk to this server, all appear on the server while
running, but are removed immediately as they exit:

[lutz@starship uploads]$ ps -f
UID PID PPID C STIME TTY TIME CMD
lutz 11089 11088 0 21:13 pts/2 00:00:00 -bash
lutz 11827 11089 0 22:37 pts/2 00:00:00 python fork-server-
signal.py
lutz 11839 11827 0 22:39 pts/2 00:00:00 python fork-server-
signal.py
lutz 11840 11827 0 22:39 pts/2 00:00:00 python fork-server-
signal.py
lutz 11841 11827 0 22:39 pts/2 00:00:00 python fork-server-
signal.py
lutz 11842 11827 0 22:39 pts/2 00:00:00 python fork-server-
signal.py
lutz 11843 11827 0 22:39 pts/2 00:00:00 python fork-server-
signal.py
lutz 11844 11827 0 22:39 pts/2 00:00:00 python fork-server-
signal.py
lutz 11845 11827 0 22:39 pts/2 00:00:00 python fork-server-
signal.py
lutz 11846 11827 0 22:39 pts/2 00:00:00 python fork-server-
signal.py
lutz 11848 11089 0 22:39 pts/2 00:00:00 ps -f

[lutz@starship uploads]$ ps -f
UID PID PPID C STIME TTY TIME CMD
lutz 11089 11088 0 21:13 pts/2 00:00:00 -bash
lutz 11827 11089 0 22:37 pts/2 00:00:00 python fork-server-
signal.py
lutz 11849 11089 0 22:39 pts/2 00:00:00 ps -f

10.4.2 Threading Servers

But don't do that . The forking model just described works well on some platforms in
general, but suffers from some potentially big limitations:

Performance

On some machines, starting a new process can be fairly expensive in terms of time
and space resources.

Portability

Programming Python, 2nd Edition, O’Reilly

IT-SC book 600

Forking processes is a Unix device; as we just noted, the fork call currently doesn't
work on non-Unix platforms such as Windows.

Complexity

If you think that forking servers can be complicated, you're right. As we just saw,
forking also brings with it all the shenanigans of managing zombies -- cleaning up
after child processes that live shorter lives than their parents.

If you read Chapter 3, you know that the solution to all of these dilemmas is usually
to use threads instead of processes. Threads run in parallel and share global (i.e.,
module and interpreter) memory, but they are usually less expensive to start, and
work both on Unix-like machines and Microsoft Windows today. Furthermore, threads
are simpler to program -- child threads die silently on exit, without leaving behind
zombies to haunt the server.

Example 10-7 is another mutation of the echo server that handles client request in
parallel by running them in threads, rather than processes.

Example 10-7. PP2E\Internet\Sockets\thread-server.py

Server side: open a socket on a port, listen for
a message from a client, and send an echo reply;
echos lines until eof when client closes socket;
spawns a thread to handle each client connection;
threads share global memory space with main thread;
this is more portable than fork--not yet on Windows;

import thread, time
from socket import * # get socket constructor and
constants
myHost = '' # server machine, '' means
local host
myPort = 50007 # listen on a non-reserved
port number

sockobj = socket(AF_INET, SOCK_STREAM) # make a TCP socket
object
sockobj.bind((myHost, myPort)) # bind it to server
port number
sockobj.listen(5) # allow up to 5
pending connects

def now():
 return time.ctime(time.time()) # current time on the
server

def handleClient(connection): # in spawned thread:
reply
 time.sleep(5) # simulate a blocking
activity
 while 1: # read, write a client
socket

Programming Python, 2nd Edition, O’Reilly

IT-SC book 601

 data = connection.recv(1024)
 if not data: break
 connection.send('Echo=>%s at %s' % (data, now()))
 connection.close()

def dispatcher(): # listen until process
killd
 while 1: # wait for next
connection,
 connection, address = sockobj.accept() # pass to thread for
service
 print 'Server connected by', address,
 print 'at', now()
 thread.start_new(handleClient, (connection,))

dispatcher()

This dispatcher delegates each incoming client connection request to a newly
spawned thread running the handleClient function. Because of that, this server can
process multiple clients at once, and the main dispatcher loop can get quickly back
to the top to check for newly arrived requests. The net effect is that new clients
won't be denied service due to a busy server.

Functionally, this version is similar to the fork solution (clients are handled in
parallel), but it will work on any machine that supports threads, including Windows
and Linux. Let's test it on both. First, start the server on a Linux machine and run
clients on both Linux and Windows:

 [window 1: thread-based server process, server keeps accepting
 client connections while threads are servicing prior requests]
[lutz@starship uploads]$ /usr/bin/python thread-server.py
Server connected by ('127.0.0.1', 2934) at Sun Jun 18 22:52:52 2000
Server connected by ('38.28.131.174', 1179) at Sun Jun 18 22:53:31 2000
Server connected by ('38.28.131.174', 1182) at Sun Jun 18 22:53:35 2000
Server connected by ('38.28.131.174', 1185) at Sun Jun 18 22:53:37 2000

 [window 2: client, but on same server machine]
[lutz@starship uploads]$ python echo-client.py
Client received: 'Echo=>Hello network world at Sun Jun 18 22:52:57
2000'

 [window 3: remote client, PC]
C:\...\PP2E\Internet\Sockets>python echo-client.py starship.python.net
Client received: 'Echo=>Hello network world at Sun Jun 18 22:53:36
2000'

 [window 4: client PC]
C:\...\PP2E\Internet\Sockets>python echo-client.py starship.python.net
Bruce
Client received: 'Echo=>Bruce at Sun Jun 18 22:53:40 2000'

 [window 5: client PC]
C:\...\PP2E\Internet\Sockets>python echo-client.py starship.python.net
The
Meaning of Life
Client received: 'Echo=>The at Sun Jun 18 22:53:42 2000'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 602

Client received: 'Echo=>Meaning at Sun Jun 18 22:53:42 2000'
Client received: 'Echo=>of at Sun Jun 18 22:53:42 2000'
Client received: 'Echo=>Life at Sun Jun 18 22:53:42 2000'

Because this server uses threads instead of forked processes, we can run it portably
on both Linux and a Windows PC. Here it is at work again, running on the same local
Windows PC as its clients; again, the main point to notice is that new clients are
accepted while prior clients are being processed in parallel with other clients and the
main thread (in the five-second sleep delay):

 [window 1: server, on local PC]
C:\...\PP2E\Internet\Sockets>python thread-server.py
Server connected by ('127.0.0.1', 1186) at Sun Jun 18 23:46:31 2000
Server connected by ('127.0.0.1', 1187) at Sun Jun 18 23:46:33 2000
Server connected by ('127.0.0.1', 1188) at Sun Jun 18 23:46:34 2000

 [window 2: client, on local
PC]
C:\...\PP2E\Internet\Sockets>python echo-client.py
Client received: 'Echo=>Hello network world at Sun Jun 18 23:46:36
2000'

 [window 3: client]
C:\...\PP2E\Internet\Sockets>python echo-client.py localhost Brian
Client received: 'Echo=>Brian at Sun Jun 18 23:46:38 2000'

 [window 4: client]
C:\...\PP2E\Internet\Sockets>python echo-client.py localhost Bright
side of Life
Client received: 'Echo=>Bright at Sun Jun 18 23:46:39 2000'
Client received: 'Echo=>side at Sun Jun 18 23:46:39 2000'
Client received: 'Echo=>of at Sun Jun 18 23:46:39 2000'
Client received: 'Echo=>Life at Sun Jun 18 23:46:39 2000'

Recall that a thread silently exits when the function it is running returns; unlike the
process fork version, we don't call anything like os._exit in the client handler
function (and we shouldn't -- it may kill all threads in the process!). Because of this,
the thread version is not only more portable, but is also simpler.

10.4.3 Doing It with Classes: Server Frameworks

Now that I've shown you how to write forking and threading servers to process
clients without blocking incoming requests, I should also tell you that there are
standard tools in the Python library to make this process easier. In particular, the
SocketServer module defines classes that implement all flavors of forking and
threading servers that you are likely to be interested in. Simply create the desired
kind of imported server object, passing in a handler object with a callback method of
your own, as shown in Example 10-8.

Example 10-8. PP2E\Internet\Sockets\class-server.py

Server side: open a socket on a port, listen for
a message from a client, and send an echo reply;

Programming Python, 2nd Edition, O’Reilly

IT-SC book 603

this version uses the standard library module
SocketServer to do its work; SocketServer allows
us to make a simple TCPServer, a ThreadingTCPServer,
a ForkingTCPServer, and more, and routes each client
connect request to a new instance of a passed-in
request handler object's handle method; also supports
UDP and Unix domain sockets; see the library manual.

import SocketServer, time # get socket server, handler
objects
myHost = '' # server machine, '' means
local host
myPort = 50007 # listen on a non-reserved port
number
def now():
 return time.ctime(time.time())

class MyClientHandler(SocketServer.BaseRequestHandler):
 def handle(self): # on each client
connect
 print self.client_address, now() # show this client's
address
 time.sleep(5) # simulate a blocking
activity
 while 1: # self.request is
client socket
 data = self.request.recv(1024) # read, write a client
socket
 if not data: break
 self.request.send('Echo=>%s at %s' % (data, now()))
 self.request.close()

make a threaded server, listen/handle clients forever
myaddr = (myHost, myPort)
server = SocketServer.ThreadingTCPServer(myaddr, MyClientHandler)
server.serve_forever()

This server works the same as the threading server we wrote by hand in the
previous section, but instead focuses on service implementation (the customized
handle method), not on threading details. It's run the same way, too -- here it is
processing three clients started by hand, plus eight spawned by the testecho script
shown in Example 10-3:

 [window1: server, serverHost='localhost' in echo-client.py]
C:\...\PP2E\Internet\Sockets>python class-server.py
('127.0.0.1', 1189) Sun Jun 18 23:49:18 2000
('127.0.0.1', 1190) Sun Jun 18 23:49:20 2000
('127.0.0.1', 1191) Sun Jun 18 23:49:22 2000
('127.0.0.1', 1192) Sun Jun 18 23:49:50 2000
('127.0.0.1', 1193) Sun Jun 18 23:49:50 2000
('127.0.0.1', 1194) Sun Jun 18 23:49:50 2000
('127.0.0.1', 1195) Sun Jun 18 23:49:50 2000
('127.0.0.1', 1196) Sun Jun 18 23:49:50 2000
('127.0.0.1', 1197) Sun Jun 18 23:49:50 2000
('127.0.0.1', 1198) Sun Jun 18 23:49:50 2000

Programming Python, 2nd Edition, O’Reilly

IT-SC book 604

('127.0.0.1', 1199) Sun Jun 18 23:49:50 2000

 [window2: client]
C:\...\PP2E\Internet\Sockets>python echo-client.py
Client received: 'Echo=>Hello network world at Sun Jun 18 23:49:23
2000'

 [window3: client]
C:\...\PP2E\Internet\Sockets>python echo-client.py localhost Robin
Client received: 'Echo=>Robin at Sun Jun 18 23:49:25 2000'

 [window4: client]
C:\...\PP2E\Internet\Sockets>python echo-client.py localhost Brave Sir
Robin
Client received: 'Echo=>Brave at Sun Jun 18 23:49:27 2000'
Client received: 'Echo=>Sir at Sun Jun 18 23:49:27 2000'
Client received: 'Echo=>Robin at Sun Jun 18 23:49:27 2000'

C:\...\PP2E\Internet\Sockets>python testecho.py

 [window4: contact remote server instead -- times skewed]
C:\...\PP2E\Internet\Sockets>python echo-client.py starship.python.net
Brave
Sir Robin
Client received: 'Echo=>Brave at Sun Jun 18 23:03:28 2000'
Client received: 'Echo=>Sir at Sun Jun 18 23:03:28 2000'
Client received: 'Echo=>Robin at Sun Jun 18 23:03:29 2000'

To build a forking server instead, just use class name ForkingTCPServer when
creating the server object. The SocketServer module is more powerful than shown
by this example; it also supports synchronous (nonparallel) servers, UDP and Unix
sockets, and so on. See Python's library manual for more details. Also see the end of
Chapter 15 for more on Python server implementation tools.[6]

[6] Incidentally, Python also comes with library tools that allow you to implement a full-blown
HTTP (web) server that knows how to run server-side CGI scripts, in a few lines of Python
code. We'll explore those tools in Chapter 15.

10.4.4 Multiplexing Servers with select

So far we've seen how to handle multiple clients at once with both forked processes
and spawned threads, and we've looked at a library class that encapsulates both
schemes. Under both approaches, all client handlers seem to run in parallel with
each other and with the main dispatch loop that continues watching for new
incoming requests. Because all these tasks run in parallel (i.e., at the same time),
the server doesn't get blocked when accepting new requests or when processing a
long-running client handler.

Technically, though, threads and processes don't really run in parallel, unless you're
lucky enough to have a machine with arbitrarily many CPUs. Instead, your operating
system performs a juggling act -- it divides the computer's processing power among
all active tasks. It runs part of one, then part of another, and so on. All the tasks
appear to run in parallel, but only because the operating system switches focus
between tasks so fast that you don't usually notice. This process of switching

Programming Python, 2nd Edition, O’Reilly

IT-SC book 605

between tasks is sometimes called time-slicing when done by an operating system; it
is more generally known as multiplexing.

When we spawn threads and processes, we rely on the operating system to juggle
the active tasks, but there's no reason that a Python script can't do so as well. For
instance, a script might divide tasks into multiple steps -- do a step of one task, then
one of another, and so on, until all are completed. The script need only know how to
divide its attention among the multiple active tasks to multiplex on its own.

Servers can apply this technique to yield yet another way to handle multiple clients
at once, a way that requires neither threads nor forks. By multiplexing client
connections and the main dispatcher with the select system call, a single event loop
can process clients and accept new ones in parallel (or at least close enough to avoid
stalling). Such servers are sometimes call asynchronous, because they service clients
in spurts, as each becomes ready to communicate. In asynchronous servers, a single
main loop run in a single process and thread decides which clients should get a bit of
attention each time through. Client requests and the main dispatcher are each given
a small slice of the server's attention if they are ready to converse.

Most of the magic behind this server structure is the operating system select call,
available in Python's standard select module. Roughly, select is asked to monitor a
list of input sources, output sources, and exceptional condition sources, and tells us
which sources are ready for processing. It can be made to simply poll all the sources
to see which are ready, wait for a maximum time period for sources to become
ready, or wait indefinitely until one or more sources are ready for processing.

However used, select lets us direct attention to sockets ready to communicate, so
as to avoid blocking on calls to ones that are not. That is, when the sources passed
to select are sockets, we can be sure that socket calls like accept, recv, and send
will not block (pause) the server when applied to objects returned by select.
Because of that, a single-loop server that uses select need not get stuck
communicating with one client or waiting for new ones, while other clients are
starved for the server's attention.

10.4.4.1 A select-based echo server

Let's see how all this translates into code. The script in Example 10-9 implements
another echo server, one that can handle multiple clients without ever starting new
processes or threads.

Example 10-9. PP2E\Internet\Sockets\select-server.py

Server: handle multiple clients in parallel with select.
use the select module to multiplex among a set of sockets:
main sockets which accept new client connections, and
input sockets connected to accepted clients; select can
take an optional 4th arg--0 to poll, n.m to wait n.m secs,
ommitted to wait till any socket is ready for processing.

import sys, time

Programming Python, 2nd Edition, O’Reilly

IT-SC book 606

from select import select
from socket import socket, AF_INET, SOCK_STREAM
def now(): return time.ctime(time.time())

myHost = '' # server machine, '' means
local host
myPort = 50007 # listen on a non-reserved port
number
if len(sys.argv) == 3: # allow host/port as cmdline
args too
 myHost, myPort = sys.argv[1:]
numPortSocks = 2 # number of ports for client
connects

make main sockets for accepting new client requests
mainsocks, readsocks, writesocks = [], [], []
for i in range(numPortSocks):
 portsock = socket(AF_INET, SOCK_STREAM) # make a TCP/IP spocket
object
 portsock.bind((myHost, myPort)) # bind it to server port
number
 portsock.listen(5) # listen, allow 5 pending
connects
 mainsocks.append(portsock) # add to main list to
identify
 readsocks.append(portsock) # add to select inputs
list
 myPort = myPort + 1 # bind on consecutive
ports

event loop: listen and multiplex until server process killed
print 'select-server loop starting'
while 1:
 #print readsocks
 readables, writeables, exceptions = select(readsocks, writesocks,
[])
 for sockobj in readables:
 if sockobj in mainsocks: # for ready input
sockets
 # port socket: accept new client
 newsock, address = sockobj.accept() # accept should
not block
 print 'Connect:', address, id(newsock) # newsock is a new
socket
 readsocks.append(newsock) # add to select
list, wait
 else:
 # client socket: read next line
 data = sockobj.recv(1024) # recv should not
block
 print '\tgot', data, 'on', id(sockobj)
 if not data: # if closed by the
clients
 sockobj.close() # close here and
remv from
 readsocks.remove(sockobj) # del list else
reselected

Programming Python, 2nd Edition, O’Reilly

IT-SC book 607

 else:
 # this may block: should really select for writes too
 sockobj.send('Echo=>%s at %s' % (data, now()))

The bulk of this script is the big while event loop at the end that calls select to find
out which sockets are ready for processing (these include main port sockets on which
clients can connect, and open client connections). It then loops over all such ready
sockets, accepting connections on main port sockets, and reading and echoing input
on any client sockets ready for input. Both the accept and recv calls in this code are
guaranteed to not block the server process after select returns; because of that,
this server can get quickly back to the top of the loop to process newly arrived client
requests and already-connected clients' inputs. The net effect is that all new requests
and clients are serviced in pseudo-parallel fashion.

To make this process work, the server appends the connected socket for each client
to the readables list passed to select, and simply waits for the socket to show up
in the selected inputs list. For illustration purposes, this server also listens for new
clients on more than one port -- on ports 50007 and 50008 in our examples.
Because these main port sockets are also interrogated with select, connection
requests on either port can be accepted without blocking either already-connected
clients or new connection requests appearing on the other port. The select call
returns whatever sockets in list readables are ready for processing -- both main
port sockets and sockets connected to clients currently being processed.

10.4.4.2 Running the select server

Let's run this script locally to see how it does its stuff (the client and server can also
be run on different machines, as in prior socket examples). First of all, we'll assume
we've already started this server script in one window, and run a few clients to talk
to it. The following code is the interaction in two such client windows running on
Windows (MS-DOS consoles). The first client simply runs the echo-client script
twice to contact the server, and the second also kicks off the testecho script to
spawn eight echo-client programs running in parallel. As before, the server simply
echoes back whatever text that clients send. Notice that the second client window
really runs a script called echo-client-50008 so as to connect to the second port
socket in the server; it's the same as echo-client, with a different port number
(alas, the original script wasn't designed to input a port):

 [client window 1]
C:\...\PP2E\Internet\Sockets>python echo-client.py
Client received: 'Echo=>Hello network world at Sun Aug 13 22:52:01
2000'

C:\...\PP2E\Internet\Sockets>python echo-client.py
Client received: 'Echo=>Hello network world at Sun Aug 13 22:52:03
2000'

 [client window 2]
C:\...\PP2E\Internet\Sockets>python echo-client-50008.py localhost Sir
Lancelot
Client received: 'Echo=>Sir at Sun Aug 13 22:52:57 2000'
Client received: 'Echo=>Lancelot at Sun Aug 13 22:52:57 2000'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 608

C:\...\PP2E\Internet\Sockets>python testecho.py

Now, in the next code section is the sort of interaction and output that shows up in
the window where the server has been started. The first three connections come
from echo-client runs; the rest is the result of the eight programs spawned by
testecho in the second client window. Notice that for testecho, new client
connections and client inputs are all multiplexed together. If you study the output
closely, you'll see that they overlap in time, because all activity is dispatched by the
single event loop in the server.[7] Also note that the sever gets an empty string when
the client has closed its socket. We take care to close and delete these sockets at the
server right away, or else they would be needlessly reselected again and again, each
time through the main loop:

[7] And the trace output on the server will probably look a bit different every time it runs.
Clients and new connections are interleaved almost at random due to timing differences on the
host machines.

 [server window]
C:\...\PP2E\Internet\Sockets>python select-server.py
select-server loop starting
Connect: ('127.0.0.1', 1175) 7965520
 got Hello network world on 7965520
 got on 7965520
Connect: ('127.0.0.1', 1176) 7964288
 got Hello network world on 7964288
 got on 7964288
Connect: ('127.0.0.1', 1177) 7963920
 got Sir on 7963920
 got Lancelot on 7963920
 got on 7963920

 [testecho results]
Connect: ('127.0.0.1', 1178) 7965216
 got Hello network world on 7965216
 got on 7965216
Connect: ('127.0.0.1', 1179) 7963968
Connect: ('127.0.0.1', 1180) 7965424
 got Hello network world on 7963968
Connect: ('127.0.0.1', 1181) 7962976
 got Hello network world on 7965424
 got on 7963968
 got Hello network world on 7962976
 got on 7965424
 got on 7962976
Connect: ('127.0.0.1', 1182) 7963648
 got Hello network world on 7963648
 got on 7963648
Connect: ('127.0.0.1', 1183) 7966640
 got Hello network world on 7966640
 got on 7966640
Connect: ('127.0.0.1', 1184) 7966496
 got Hello network world on 7966496
 got on 7966496
Connect: ('127.0.0.1', 1185) 7965888
 got Hello network world on 7965888
 got on 7965888

Programming Python, 2nd Edition, O’Reilly

IT-SC book 609

A subtle but crucial point: a time.sleep call to simulate a long-running task doesn't
make sense in the server here -- because all clients are handled by the same single
loop, sleeping would pause everything (and defeat the whole point of a multiplexing
server). Here are a few additional notes before we move on:

Select call details

Formally, select is called with three lists of selectable objects (input sources, output
sources, and exceptional condition sources), plus an optional timeout. The timeout
argument may be a real wait expiration value in seconds (use floating-point numbers
to express fractions of a second), a zero value to mean simply poll and return
immediately, or be omitted to mean wait until at least one object is ready (as done
in our server script earlier). The call returns a triple of ready objects -- subsets of the
first three arguments -- any or all of which may be empty if the timeout expired
before sources became ready.

Select portability

The select call works only for sockets on Windows, but also works for things like
files and pipes on Unix and Macintosh. For servers running over the Internet, of
course, sockets are the primary devices we are interested in.

Nonblocking sockets

select lets us be sure that socket calls like accept and recv won't block (pause) the
caller, but it's also possible to make Python sockets nonblocking in general. Call the
setblocking method of socket objects to set the socket to blocking or nonblocking
mode. For example, given a call like sock.setblocking(flag), the socket sock is
set to nonblocking mode if the flag is zero, and set to blocking mode otherwise. All
sockets start out in blocking mode initially, so socket calls may always make the
caller wait.

But when in nonblocking mode, a socket.error exception is raised if a recv socket
call doesn't find any data, or if a send call can't immediately transfer data. A script
can catch this exception to determine if the socket is ready for processing. In
blocking mode, these calls always block until they can proceed. Of course, there may
be much more to processing client requests than data transfers (requests may also
require long-running computations), so nonblocking sockets don't guarantee that
servers won't stall in general. They are simply another way to code multiplexing
servers. Like select, they are better suited when client requests can be serviced
quickly.

The asyncore module framework

If you're interested in using select, you will probably also be interested in checking
out the asyncore.py module in the standard Python library. It implements a class-
based callback model, where input and output callbacks are dispatched to class
methods by a precoded select event loop. As such, it allows servers to be
constructed without threads or forks. We'll learn more about this tool at the end of
Chapter 15.

10.4.5 Choosing a Server Scheme

Programming Python, 2nd Edition, O’Reilly

IT-SC book 610

So when should you use select to build a server instead of threads or forks? Needs
vary per application, of course, but servers based on the select call are generally
considered to perform very well when client transactions are relatively short. If they
are not short, threads or forks may be a better way to split processing among
multiple clients. Threads and forks are especially useful if clients require long-
running processing above and beyond socket calls.

It's important to remember that schemes based on select (and nonblocking
sockets) are not completely immune to blocking. In the example earlier, for instance,
the send call that echoes text back to a client might block, too, and hence stall the
entire server. We could work around that blocking potential by using select to make
sure that the output operation is ready before we attempt it (e.g., use the
writesocks list and add another loop to send replies to ready output sockets), albeit
at a noticeable cost in program clarity.

In general, though, if we cannot split up the processing of a client's request in such a
way that it can be multiplexed with other requests and not block the server's loop,
select may not be the best way to construct the server. Moreover, select also
seems more complex than spawning either processes or threads, because we need to
manually transfer control among all tasks (for instance, compare the threaded and
select versions of this server, even without write selects). As usual, though, the
degree of that complexity may vary per application.

10.5 A Simple Python File Server

Time for something more realistic. Let's conclude this chapter by putting some of
these socket ideas to work in something a bit more useful than echoing text back
and forth. Example 10-10 implements both the server-side and client-side logic
needed to ship a requested file from server to client machines over a raw socket.

In effect, this script implements a simple file download system. One instance of the
script is run on the machine where downloadable files live (the server), and another
on the machines you wish to copy files to (the clients). Command-line arguments tell
the script which flavor to run and optionally name the server machine and port
number over which conversations are to occur. A server instance can respond to any
number of client file requests at the port on which it listens, because it serves each
in a thread.

Example 10-10. PP2E\Internet\Sockets\getfile.py

implement client and server side logic to transfer an
arbitrary file from server to client over a socket;
uses a simple control-info protocol rather than
separate sockets for control and data (as in ftp),
dispatches each client request to a handler thread,
and loops to transfer the entire file by blocks; see
ftplib examples for a higher-level transport scheme;

import sys, os, thread, time
from socket import *

Programming Python, 2nd Edition, O’Reilly

IT-SC book 611

def now(): return time.ctime(time.time())

blksz = 1024
defaultHost = 'localhost'
defaultPort = 50001

helptext = """
Usage...
server=> getfile.py -mode server [-port nnn] [-host
hhh|localhost]
client=> getfile.py [-mode client] -file fff [-port nnn] [-host
hhh|localhost]
"""

def parsecommandline():
 dict = {} # put in dictionary for easy
lookup
 args = sys.argv[1:] # skip program name at front of
args
 while len(args) >= 2: # example: dict['-mode'] =
'server'
 dict[args[0]] = args[1]
 args = args[2:]
 return dict

def client(host, port, filename):
 sock = socket(AF_INET, SOCK_STREAM)
 sock.connect((host, port))
 sock.send(filename + '\n') # send remote name with
dir
 dropdir = os.path.split(filename)[1] # file name at end of
dir path
 file = open(dropdir, 'wb') # create local file in
cwd
 while 1:
 data = sock.recv(blksz) # get up to 1K at a time
 if not data: break # till closed on server
side
 file.write(data) # store data in local
file
 sock.close()
 file.close()
 print 'Client got', filename, 'at', now()

def serverthread(clientsock):
 sockfile = clientsock.makefile('r') # wrap socket in dup
file obj
 filename = sockfile.readline()[:-1] # get filename up to
end-line
 try:
 file = open(filename, 'rb')
 while 1:
 bytes = file.read(blksz) # read/send 1K at a time
 if not bytes: break # until file totally
sent
 sent = clientsock.send(bytes)
 assert sent == len(bytes)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 612

 except:
 print 'Error downloading file on server:', filename
 clientsock.close()

def server(host, port):
 serversock = socket(AF_INET, SOCK_STREAM) # listen on tcp/ip
socket
 serversock.bind((host, port)) # serve clients in
threads
 serversock.listen(5)
 while 1:
 clientsock, clientaddr = serversock.accept()
 print 'Server connected by', clientaddr, 'at', now()
 thread.start_new_thread(serverthread, (clientsock,))

def main(args):
 host = args.get('-host', defaultHost) # use args or
defaults
 port = int(args.get('-port', defaultPort)) # is a string in argv
 if args.get('-mode') == 'server': # None if no -mode:
client
 if host == 'localhost': host = '' # else fails remotely
 server(host, port)
 elif args.get('-file'): # client mode needs -
file
 client(host, port, args['-file'])
 else:
 print helptext

if __name__ == '__main__':
 args = parsecommandline()
 main(args)

This script doesn't do much different than the examples we saw earlier. Depending
on the command-line arguments passed, it invokes one of two functions:

The server function farms out each incoming client request to a thread that
transfers the requested file's bytes.

The client function sends the server a file's name and stores all the bytes it gets
back in a local file of the same name.

The most novel feature here is the protocol between client and server: the client
starts the conversation by shipping a filename string up to the server, terminated
with an end-of-line character, and including the file's directory path in the server. At
the server, a spawned thread extracts the requested file's name by reading the client
socket, and opens and transfers the requested file back to the client, one chunk of
bytes at a time.

10.5.1 Running the File Server and Clients

Since the server uses threads to process clients, we can test both client and server
on the same Windows machine. First, let's start a server instance, and execute two
client instances on the same machine while the server runs:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 613

[server window, localhost]
C:\...\PP2E\Internet\Sockets>python getfile.py -mode server
Server connected by ('127.0.0.1', 1089) at Thu Mar 16 11:54:21 2000
Server connected by ('127.0.0.1', 1090) at Thu Mar 16 11:54:37 2000

 [client window, localhost]
C:\...\Internet\Sockets>ls
class-server.py echo.out.txt testdir thread-server.py
echo-client.py fork-server.py testecho.py
echo-server.py getfile.py testechowait.py

C:\...\Internet\Sockets>python getfile.py -file testdir\python15.lib -
port 50001
Client got testdir\python15.lib at Thu Mar 16 11:54:21 2000

C:\...\Internet\Sockets>python getfile.py -file testdir\textfile
Client got testdir\textfile at Thu Mar 16 11:54:37 2000

Clients run in the directory where you want the downloaded file to appear -- the
client instance code strips the server directory path when making the local file's
name. Here the "download" simply copied the requested files up to the local parent
directory (the DOS fc command compares file contents):

C:\...\Internet\Sockets>ls
class-server.py echo.out.txt python15.lib testechowait.py
echo-client.py fork-server.py testdir textfile
echo-server.py getfile.py testecho.py thread-server.py

C:\...\Internet\Sockets>fc /B python1.lib testdir\python15.lib
Comparing files python15.lib and testdir\python15.lib
FC: no differences encountered

C:\...\Internet\Sockets>fc /B textfile testdir\textfile
Comparing files textfile and testdir\textfile
FC: no differences encountered

As usual, we can run server and clients on different machines as well. Here the script
is being used to run a remote server on a Linux machine and a few clients on a local
Windows PC (I added line breaks to some of the command lines to make them fit).
Notice that client and server machine times are different now -- they are fetched
from different machine's clocks and so may be arbitrarily skewed:

 [server telnet window: first message is the python15.lib request
 in client window1]
[lutz@starship lutz]$ python getfile.py -mode server
Server connected by ('166.93.216.248', 1185) at Thu Mar 16 16:02:07
2000
Server connected by ('166.93.216.248', 1187) at Thu Mar 16 16:03:24
2000
Server connected by ('166.93.216.248', 1189) at Thu Mar 16 16:03:52
2000
Server connected by ('166.93.216.248', 1191) at Thu Mar 16 16:04:09
2000
Server connected by ('166.93.216.248', 1193) at Thu Mar 16 16:04:38
2000

Programming Python, 2nd Edition, O’Reilly

IT-SC book 614

 [client window 1: started first, runs in thread while other client
 requests are made in client window 2, and processed by other threads]
C:\...\Internet\Sockets>python getfile.py -mode client
 -host starship.python.net
 -port 50001 -file python15.lib
Client got python15.lib at Thu Mar 16 14:07:37 2000

C:\...\Internet\Sockets>fc /B python15.lib testdir\python15.lib
Comparing files python15.lib and testdir\python15.lib
FC: no differences encountered

 [client window 2: requests made while client window 1 request
downloading]
C:\...\Internet\Sockets>python getfile.py
 -host starship.python.net -file textfile
Client got textfile at Thu Mar 16 14:02:29 2000

C:\...\Internet\Sockets>python getfile.py
 -host starship.python.net -file textfile
Client got textfile at Thu Mar 16 14:04:11 2000

C:\...\Internet\Sockets>python getfile.py
 -host starship.python.net -file textfile
Client got textfile at Thu Mar 16 14:04:21 2000

C:\...\Internet\Sockets>python getfile.py
 -host starship.python.net -file
index.html
Client got index.html at Thu Mar 16 14:06:22 2000

C:\...\Internet\Sockets>fc textfile testdir\textfile
Comparing files textfile and testdir\textfile
FC: no differences encountered

One subtle security point here: the server instance code is happy to send any server-
side file whose pathname is sent from a client, as long as the server is run with a
username that has read access to the requested file. If you care about keeping some
of your server-side files private, you should add logic to suppress downloads of
restricted files. I'll leave this as a suggested exercise here, but will implement such
filename checks in the getfile download tool in Example 12-1.[8]

[8] We'll see three more getfile programs before we leave Internet scripting. The next
chapter's getfile.py fetches a file with the higher-level FTP interface rather than using raw
socket calls, and its http-getfile scripts fetch files over the HTTP protocol. Example 12-1
presents a getfile.cgi script that transfers file contents over the HTTP port in response to a
request made in a web browser client (files are sent as the output of a CGI script). All four of
the download schemes presented in this text ultimately use sockets, but only the version here
makes that use explicit.

Making Sockets Look Like Files

For illustration purposes, getfile uses the socket object makefile
method to wrap the socket in a file-like object. Once so wrapped, the socket

Programming Python, 2nd Edition, O’Reilly

IT-SC book 615

can be read and written using normal file methods; getfile uses the file
readline call to read the filename line sent by the client.

This isn't strictly required in this example -- we could have read this line
with the socket recv call, too. In general, though, the makefile method
comes in handy any time you need to pass a socket to an interface that
expects a file.

For example, the pickle module's load and dump methods expect an
object with a file-like interface (e.g., read and write methods), but don't
require a physical file. Passing a TCP/IP socket wrapped with the makefile
call to the pickler allows us to ship serialized Python objects over the
Internet. See Chapter 16, for more details on object serialization interfaces.

More generally, any component that expects a file-like method protocol will
gladly accept a socket wrapped with a socket object makefile call. Such
interfaces will also accept strings wrapped with the built-in StringIO
module, and any other sort of object that supports the same kinds of
method calls as built-in file objects. As always in Python, we code to
protocols -- object interfaces -- not to specific datatypes.

10.5.2 Adding a User-Interface Frontend

You might have noticed that we have been living in the realm of the command line
for all of this chapter -- our socket clients and servers have been started from simple
DOS or Linux shells. There is nothing stopping us from adding a nice point-and-click
user interface to some of these scripts, though; GUI and network scripting are not
mutually exclusive techniques. In fact, they can be arguably sexy when used
together well.

For instance, it would be easy to implement a simple Tkinter GUI frontend to the
client-side portion of the getfile script we just met. Such a tool, run on the client
machine, may simply pop up a window with Entry widgets for typing the desired
filename, server, and so on. Once download parameters have been input, the user
interface could either import and call the getfile.client function with appropriate
option arguments, or build and run the implied getfile.py command line using tools
such as os.system, os.fork, thread, etc.

10.5.2.1 Using Frames and command lines

To help make this all more concrete, let's very quickly explore a few simple scripts
that add a Tkinter frontend to the getfile client-side program. The first, in Example
10-11, creates a dialog for inputting server, port, and filename information, and
simply constructs the corresponding getfile command line and runs it with
os.system.

Example 10-11. PP2E\Internet\Sockets\getfilegui-1.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 616

launch getfile script client from simple Tkinter GUI;
could also or os.fork+exec, os.spawnv (see Launcher);
windows: replace 'python' with 'start' if not on path;

import sys, os
from Tkinter import *
from tkMessageBox import showinfo

def onReturnKey():
 cmdline = ('python getfile.py -mode client -file %s -port %s -host
%s' %
 (content['File'].get(),
 content['Port'].get(),
 content['Server'].get()))
 os.system(cmdline)
 showinfo('getfilegui-1', 'Download complete')

box = Frame(Tk())
box.pack(expand=YES, fill=X)
lcol, rcol = Frame(box), Frame(box)
lcol.pack(side=LEFT)
rcol.pack(side=RIGHT, expand=Y, fill=X)

labels = ['Server', 'Port', 'File']
content = {}
for label in labels:
 Label(lcol, text=label).pack(side=TOP)
 entry = Entry(rcol)
 entry.pack(side=TOP, expand=YES, fill=X)
 content[label] = entry

box.master.title('getfilegui-1')
box.master.bind('<Return>', (lambda event: onReturnKey()))
mainloop()

When run, this script creates the input form shown in Figure 10-1. Pressing the Enter
key (<Return>) runs a client-side instance of the getfile program; when the
generated getfile command line is finished, we get the verification pop-up
displayed in Figure 10-2.

Figure 10-1. getfilegui-1 in action

Figure 10-2. getfilegui-1 verification pop-up

Programming Python, 2nd Edition, O’Reilly

IT-SC book 617

10.5.2.2 Using grids and function calls

The first user-interface script (Example 10-11) uses the pack geometry manager and
Frames to layout the input form, and runs the getfile client as a stand- alone
program. It's just as easy to use the grid manager for layout, and import and call
the client-side logic function instead of running a program. The script in Example 10-
12 shows how.

Example 10-12. PP2E\Internet\Sockets\getfilegui-2.py

same, but with grids and import+call, not packs and cmdline;
direct function calls are usually faster than running files;

import getfile
from Tkinter import *
from tkMessageBox import showinfo

def onSubmit():
 getfile.client(content['Server'].get(),
 int(content['Port'].get()),
 content['File'].get())
 showinfo('getfilegui-2', 'Download complete')

box = Tk()
labels = ['Server', 'Port', 'File']
rownum = 0
content = {}
for label in labels:
 Label(box, text=label).grid(col=0, row=rownum)
 entry = Entry(box)
 entry.grid(col=1, row=rownum, sticky=E+W)
 content[label] = entry
 rownum = rownum + 1

box.columnconfigure(0, weight=0) # make expandable
box.columnconfigure(1, weight=1)
Button(text='Submit', command=onSubmit).grid(row=rownum, col=0,
columnspan=2)

box.title('getfilegui-2')
box.bind('<Return>', (lambda event: onSubmit()))
mainloop()

This version makes a similar window (Figure 10-3), but adds a button at the bottom
that does the same thing as an Enter key press -- it runs the getfile client

Programming Python, 2nd Edition, O’Reilly

IT-SC book 618

procedure. Generally speaking, importing and calling functions (as done here) is
faster than running command lines, especially if done more than once. The getfile
script is set up to work either way -- as program or function library.

Figure 10-3. getfilegui-2 in action

10.5.2.3 Using a reusable form-layout class

If you're like me, though, writing all the GUI form layout code in those two scripts
can seem a bit tedious, whether you use packing or grids. In fact, it became so
tedious to me that I decided to write a general-purpose form-layout class, shown in
Example 10-13, that handles most of the GUI layout grunt work.

Example 10-13. PP2E\Internet\Sockets\form.py

a reusable form class, used by getfilegui (and others)

from Tkinter import *
entrysize = 40

class Form: # add non-modal
form box
 def __init__(self, labels, parent=None): # pass field
labels list
 box = Frame(parent)
 box.pack(expand=YES, fill=X)
 rows = Frame(box, bd=2, relief=GROOVE) # box has rows,
button
 lcol = Frame(rows) # rows has lcol,
rcol
 rcol = Frame(rows) # button or
return key,
 rows.pack(side=TOP, expand=Y, fill=X) # runs onSubmit
method
 lcol.pack(side=LEFT)
 rcol.pack(side=RIGHT, expand=Y, fill=X)
 self.content = {}
 for label in labels:
 Label(lcol, text=label).pack(side=TOP)
 entry = Entry(rcol, width=entrysize)
 entry.pack(side=TOP, expand=YES, fill=X)
 self.content[label] = entry
 Button(box, text='Cancel',
command=self.onCancel).pack(side=RIGHT)
 Button(box, text='Submit',
command=self.onSubmit).pack(side=RIGHT)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 619

 box.master.bind('<Return>', (lambda event, self=self:
self.onSubmit()))

 def onSubmit(self): # override
this
 for key in self.content.keys(): # user
inputs in
 print key, '\t=>\t', self.content[key].get() #
self.content[k]

 def onCancel(self): # override
if need
 Tk().quit() # default
is exit

class DynamicForm(Form):
 def __init__(self, labels=None):
 import string
 labels = string.split(raw_input('Enter field names: '))
 Form.__init__(self, labels)
 def onSubmit(self):
 print 'Field values...'
 Form.onSubmit(self)
 self.onCancel()

if __name__ == '__main__':
 import sys
 if len(sys.argv) == 1:
 Form(['Name', 'Age', 'Job']) # precoded fields, stay after
submit
 else:
 DynamicForm() # input fields, go away after
submit
 mainloop()

Running this module standalone triggers its self-test code at the bottom. Without
arguments (and when double-clicked in a Windows file explorer), the self-test
generates a form with canned input fields captured in Figure 10-4, and displays the
fields' values on Enter key presses or Submit button clicks:

C:\...\PP2E\Internet\Sockets>python form.py
Job => Educator, Entertainer
Age => 38
Name => Bob

Figure 10-4. Form test, canned fields

Programming Python, 2nd Edition, O’Reilly

IT-SC book 620

With a command-line argument, the form class module's self-test code prompts for
an arbitrary set of field names for the form; fields can be constructed as dynamically
as we like. Figure 10-5 shows the input form constructed in response to the following
console interaction. Field names could be accepted on the command line, too, but
raw_input works just as well for simple tests like this. In this mode, the GUI goes
away after the first submit, because DynamicForm.onSubmit says so:

C:\...\PP2E\Internet\Sockets>python form.py -
Enter field names: Name Email Web Locale
Field values...
Email => lutz@rmi.net
Locale => Colorado
Web => http://rmi.net/~lutz
Name => mel

Figure 10-5. Form test, dynamic fields

And last but not least, Example 10-14 shows the getfile user interface again, this
time constructed with the reusable form layout class. We need to fill in only the form
labels list, and provide an onSubmit callback method of our own. All of the work
needed to construct the form comes "for free," from the imported and widely
reusable Form superclass.

Example 10-14. PP2E\Internet\Sockets\getfilegui.py

launch getfile client with a reusable gui form class;
os.chdir to target local dir if input (getfile stores in cwd);
to do: use threads, show download status and getfile prints;

from form import Form
from Tkinter import Tk, mainloop
from tkMessageBox import showinfo
import getfile, os

class GetfileForm(Form):
 def __init__(self, oneshot=0):
 root = Tk()
 root.title('getfilegui')
 labels = ['Server Name', 'Port Number', 'File Name', 'Local
Dir?']
 Form.__init__(self, labels, root)
 self.oneshot = oneshot
 def onSubmit(self):
 Form.onSubmit(self)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 621

 localdir = self.content['Local Dir?'].get()
 portnumber = self.content['Port Number'].get()
 servername = self.content['Server Name'].get()
 filename = self.content['File Name'].get()
 if localdir:
 os.chdir(localdir)
 portnumber = int(portnumber)
 getfile.client(servername, portnumber, filename)
 showinfo('getfilegui', 'Download complete')
 if self.oneshot: Tk().quit() # else stay in last localdir

if __name__ == '__main__':
 GetfileForm()
 mainloop()

The form layout class imported here can be used by any program that needs to input
form-like data; when used in this script, we get a user-interface like that shown in
Figure 10-6 under Windows (and similar on other platforms).

Figure 10-6. getfilegui in action

Pressing this form's Submit button or the Enter key makes the getfilegui script call
the imported getfile.client client-side function as before. This time, though, we
also first change to the local directory typed into the form, so that the fetched file is
stored there (getfile stores in the current working directory, whatever that may be
when it is called). As usual, we can use this interface to connect to servers running
locally on the same machine, or remotely. Here is some of the interaction we get for
both modes:

 [talking to a local server]
C:\...\PP2E\Internet\Sockets>python getfilegui.py
Port Number => 50001
Local Dir? => temp
Server Name => localhost
File Name => testdir\python15.lib
Client got testdir\python15.lib at Tue Aug 15 22:32:34 2000

 [talking to a remote server]
[lutz@starship lutz]$ /usr/bin/python getfile.py -mode server -port
51234
Server connected by ('38.28.130.229', 1111) at Tue Aug 15 21:48:13 2000

C:\...\PP2E\Internet\Sockets>python getfilegui.py
Port Number => 51234
Local Dir? => temp
Server Name => starship.python.net
File Name => public_html/index.html

Programming Python, 2nd Edition, O’Reilly

IT-SC book 622

Client got public_html/index.html at Tue Aug 15 22:42:06 2000

One caveat worth pointing out here: the GUI is essentially dead while the download
is in progress (even screen redraws aren't handled -- try covering and uncovering
the window and you'll see what I mean). We could make this better by running the
download in a thread, but since we'll see how in the next chapter, you should
consider this problem a preview.

In closing, a few final notes. First of all, I should point out that the scripts in this
chapter use Tkinter tricks we've seen before and won't go into here in the interest of
space; be sure to see the GUI chapters in this book for implementation hints.

Keep in mind, too, that these interfaces all just add a GUI on top of the existing
script to reuse its code; any command-line tool can be easily GUI-ified in this way to
make them more appealing and user-friendly. In the next chapter, for example, we'll
meet a more useful client-side Tkinter user interface for reading and sending email
over sockets (PyMailGui), which largely just adds a GUI to mail-processing tools.
Generally speaking, GUIs can often be added as almost an afterthought to a
program. Although the degree of user-interface and core logic separation can vary
per program, keeping the two distinct makes it easier to focus on each.

And finally, now that I've shown you how to build user interfaces on top of this
chapter's getfile, I should also say that they aren't really as useful as they might
seem. In particular, getfile clients can talk only to machines that are running a
getfile server. In the next chapter, we'll discover another way to download files --
FTP -- which also runs on sockets, but provides a higher-level interface, and is
available as a standard service on many machines on the Net. We don't generally
need to start up a custom server to transfer files over FTP, the way we do with
getfile. In fact, the user-interface scripts in this chapter could be easily changed to
fetch the desired file with Python's FTP tools, instead of the getfile module. But
rather than spilling all the beans here, I'll just say "read on."

Using Serial Ports on Windows

Sockets, the main subject of this chapter, are the programmer's interface to
network connections in Python scripts. As we've seen, they let us write
scripts that converse with computers arbitrarily located on a network, and
they form the backbone of the Internet and the Web.

If you're looking for a more low-level way to communicate with devices in
general, though, you may also be interested in the topic of Python's serial
port interfaces. This isn't quite related to Internet scripting and applies only
on Windows machines, but it's similar enough in spirit and is discussed often
enough on the Net to merit a quick look here.

Serial ports are known as "COM" ports on Windows (not to be confused with
the COM object model), and are identified as "COM1", "COM2", and so on.
By using interfaces to these ports, scripts may engage in low-level
communication with things like mice, modems, and a wide variety of serial
devices. Serial port interfaces are also used to communicate with devices
connected over infrared ports (e.g., hand-held computers and remote

Programming Python, 2nd Edition, O’Reilly

IT-SC book 623

modems). There are often other higher-level ways to access such devices
(e.g., the PyRite package for ceasing Palm Pilot databases, or RAS for using
modems), but serial port interfaces let scripts tap into raw data streams and
implement device protocols of their own.

There are at least three ways to send and receive data over serial ports in
Python scripts -- a public domain C extension package known as Serial, the
proprietary MSComm COM server object interface published by Microsoft,
and the low-level CreateFile file API call exported by the Python Windows
extensions package, available via links at http://www.python.org.

Unfortunately, there's no time to cover any of these in detail in this text. For
more information, the O'Reilly book Python Programming on Win32 includes
an entire section dedicated to serial port communication topics. Also be sure
to use the search tools at Python's web site for up-to-date details on this
front.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 624

Chapter 11. Client-Side Scripting

11.1 "Socket to Me!"

11.2 Transferring Files over the Net

11.3 Processing Internet Email

11.4 The PyMailGui Email Client

11.5 Other Client-Side Tools

11.1 "Socket to Me!"

The previous chapter introduced Internet fundamentals and explored sockets -- the
underlying communications mechanism over which bytes flow on the Net. In this
chapter, we climb the encapsulation hierarchy one level, and shift our focus to
Python tools that support the client-side interfaces of common Internet protocols.

We talked about the Internet's higher-level protocols in the abstract at the start of
the last chapter, and you should probably review that material if you skipped over it
the first time around. In short, protocols define the structure of the conversations
that take place to accomplish most of the Internet tasks we're all familiar with --
reading email, transferring files by FTP, fetching web pages, and so on.

At the most basic level, all these protocol dialogs happen over sockets using fixed
and standard message structures and ports, so in some sense this chapter builds
upon the last. But as we'll see, Python's protocol modules hide most of the
underlying details -- scripts generally need deal only with simple objects and
methods, and Python automates the socket and messaging logic required by the
protocol.

In this chapter, we'll concentrate on the FTP and email protocol modules in Python,
and peek at a few others along the way (NNTP news, HTTP web pages, and so on).
All of the tools employed in examples here are in the standard Python library and
come with the Python system. All of the examples here are also designed to run on
the client side of a network connection -- these scripts connect to an already-running
server to request interaction and can be run from a simple PC. In the next chapter,
we'll move on to explore scripts designed to be run on the server side instead. For
now, let's focus on the client.

11.2 Transferring Files over the Net

As we saw in the previous chapter, sockets see plenty of action on the Net. For
instance, the getfile example at the end of that chapter allowed us to transfer
entire files between machines. In practice, though, higher-level protocols are behind

Programming Python, 2nd Edition, O’Reilly

IT-SC book 625

much of what happens on the Net. Protocols run on top of sockets, but hide much of
the complexity of the network scripting examples we've just seen.

FTP -- the File Transfer Protocol -- is one of the more commonly used Internet
protocols. It defines a higher-level conversation model that is based on exchanging
command strings and file contents over sockets. By using FTP, we can accomplish
the same task as the prior chapter's getfile script, but the interface is simpler, and
standard -- FTP lets us ask for files from any server machine that supports FTP,
without requiring that it run our custom getfile script. FTP also supports more
advanced operations such as uploading files to the server, getting remote directory
listings, and more.

Really, FTP runs on top of two sockets: one for passing control commands between
client and server (port 21), and another for transferring bytes. By using a two-socket
model, FTP avoids the possibility of deadlocks (i.e., transfers on the data socket do
not block dialogs on the control socket). Ultimately, though, Python's ftplib support
module allows us to upload and download files at a remote server machine by FTP,
without dealing in raw socket calls or FTP protocol details.

11.2.1 FTP: Fetching Python with Python

Because the Python FTP interface is so easy to use, let's jump right into a realistic
example. The script in Example 11-1 automatically fetches and builds Python with
Python. No, this isn't a recursive chicken-and-egg thought exercise -- you must
already have installed Python to run this program. More specifically, this Python
script does the following:

Downloads the Python source distribution by FTP

Unpacks and compiles the distribution into a Python executable

The download portion will run on any machine with Python and sockets; the
unpacking and compiling code assumes a Unix-like build environment as coded here,
but could be tweaked to work with other platforms.

Example 11-1. PP2E\Internet\Ftp\getpython.py

#!/usr/local/bin/python

A Python script to download and build Python's source code.
Uses ftplib, the ftp protocol handler which uses sockets.
Ftp runs on 2 sockets (one for data, one for control--on
ports 20 and 21) and imposes message text formats, but the
Python ftplib module hides most of this protocol's details.

import os
from ftplib import FTP # socket-based ftp tools
Version = '1.5' # version to download
tarname = 'python%s.tar.gz' % Version # remote/local file name

print 'Connecting...'
localfile = open(tarname, 'wb') # where to store download

Programming Python, 2nd Edition, O’Reilly

IT-SC book 626

connection = FTP('ftp.python.org') # connect to ftp site
connection.login() # default is anonymous login
connection.cwd('pub/python/src') # xfer 1k at a time to
localfile

print 'Downloading...'
connection.retrbinary('RETR ' + tarname, localfile.write, 1024)
connection.quit()
localfile.close()

print 'Unpacking...'
os.system('gzip -d ' + tarname) # decompress
os.system('tar -xvf ' + tarname[:-3]) # strip .gz

print 'Building...'
os.chdir('Python-' + Version) # build Python itself
os.system('./configure') # assumes unix-style make
os.system('make')
os.system('make test')
print 'Done: see Python-%s/python.' % Version

Most of the FTP protocol details are encapsulated by the Python ftplib module
imported here. This script uses some of the simplest interfaces in ftplib (we'll see
others in a moment), but they are representative of the module in general:

connection = FTP('ftp.python.org') # connect to ftp site

To open a connection to a remote (or local) FTP server, create an instance of the
ftplib.FTP object, passing in the name (domain or IP-style) of the machine you
wish to connect to. Assuming this call doesn't throw an exception, the resulting FTP
object exports methods that correspond to the usual FTP operations. In fact, Python
scripts act much like typical FTP client programs -- just replace commands you would
normally type or select with method calls:

connection.login() # default is anonymous login
connection.cwd('pub/python/src') # xfer 1k at a time to
localfile

Once connected, we log in, and go to the remote directory we want to fetch a file
from. The login method allows us to pass in additional optional arguments to specify
a username and password; by default it performs anonymous FTP:

connection.retrbinary('RETR ' + tarname, localfile.write, 1024)
connection.quit()

Once we're in the target directory, we simply call the retrbinary method to
download the target server file in binary mode. The retrbinary call will take awhile
to complete, since it must download a big file. It gets three arguments:

An FTP command string -- here, a string RETR filename, which is the standard
format for FTP retrievals.

A function or method to which Python passes each chunk of the downloaded file's
bytes -- here, the write method of a newly created and opened local file.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 627

A size for those chunks of bytes -- here, 1024 bytes are downloaded at a time, but
the default is reasonable if this argument is omitted.

Because this script creates a local file named localfile, of the same name as the
remote file being fetched, and passes its write method to the FTP retrieval method,
the remote file's contents will automatically appear in a local, client-side file after the
download is finished. By the way, notice that this file is opened in "wb" binary output
mode; if this script is run on Windows, we want to avoid automatically expanding
and \n bytes into \r\n byte sequences (that happens automatically on Windows
when writing files opened in "w" text mode).

Finally, we call the FTP quit method to break the connection with the server and
manually close the local file to force it to be complete before it is further processed
by the shell commands spawned by os.system (it's not impossible that parts of the
file are still held in buffers before the close call):

connection.quit()
localfile.close()

And that's all there is to it; all the FTP, socket, and networking details are hidden
behind the ftplib interface module. Here is this script in action on a Linux machine,
with a couple thousand output lines cut in the interest of brevity:

[lutz@starship test]$ python getpython.py
Connecting...
Downloading...
Unpacking...
Python-1.5/
Python-1.5/Doc/
Python-1.5/Doc/ref/
Python-1.5/Doc/ref/.cvsignore
Python-1.5/Doc/ref/fixps.py
...
 ...lots of tar lines deleted...
...
Python-1.5/Tools/webchecker/webchecker.py
Python-1.5/Tools/webchecker/websucker.py
Building...
creating cache ./config.cache
checking MACHDEP... linux2
checking CCC...
checking for --without-gcc... no
checking for gcc... gcc
...
 ...lots of build lines deleted...
...
Done: see Python-1.5/python.

[lutz@starship test]$ cd Python-1.5/
[lutz@starship Python-1.5]$./python
Python 1.5 (#1, Jul 12 2000, 12:35:52) [GCC egcs-2.91.66 19990314/Li
on linux2
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> print 'The Larch!'
The Larch!

Programming Python, 2nd Edition, O’Reilly

IT-SC book 628

Such a script could be automatically executed at regular intervals (e.g., by a Unix
cron job) to update a local Python install with a fresh build. But the thing to notice
here is that this otherwise typical Python script fetches information from an
arbitrarily remote FTP site and machine. Given an Internet link, any information
published by an FTP server on the Net can be fetched by and incorporated into
Python scripts using interfaces such as these.

11.2.1.1 Using urllib to FTP files

In fact, FTP is just one way to transfer information across the Net, and there are
more general tools in the Python library to accomplish the prior script's download.
Perhaps the most straightforward is the Python urllib module: given an Internet
address string -- a URL, or Universal Resource Locator -- this module opens a
connection to the specified server and returns a file-like object ready to be read with
normal file object method calls (e.g., read, readlines).

We can use such a higher-level interface to download anything with an address on
the Web -- files published by FTP sites (using URLs that start with "ftp://"), web
pages and outputs of scripts that live on remote servers (using "http://" URLs), local
files (using "file://" URLs), Gopher server data, and more. For instance, the script in
Example 11-2 does the same as the one in Example 11-1, but it uses the general
urllib module to fetch the source distribution file, instead of the protocol-specific
ftplib.

Example 11-2. PP2E\Internet\Ftp\getpython-urllib.py

#!/usr/local/bin/python

A Python script to download and build Python's source code
use higher-level urllib instead of ftplib to fetch file
urllib supports ftp, http, and gopher protocols, and local files
urllib also allows downloads of html pages, images, text, etc.;
see also Python html/xml parsers for web pages fetched by urllib;

import os
import urllib # socket-based web tools
Version = '1.5' # version to download
tarname = 'python%s.tar.gz' % Version # remote/local file name

remoteaddr = 'ftp://ftp.python.org/pub/python/src/' + tarname
print 'Downloading', remoteaddr

this works too:
urllib.urlretrieve(remoteaddr, tarname)

remotefile = urllib.urlopen(remoteaddr) # returns input file-like
object
localfile = open(tarname, 'wb') # where to store data
locally
localfile.write(remotefile.read())
localfile.close()
remotefile.close()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 629

the rest is the same
execfile('buildPython.py')

Don't sweat the details of the URL string used here; we'll talk much more about URLs
in the next chapter. We'll also use urllib again in this and later chapters to fetch
web pages, format generated URL strings, and get the output of remote scripts on
the Web.[1] Technically speaking, urllib supports a variety of Internet protocols
(HTTP, FTP, Gopher, and local files), is only used for reading remote objects (not
writing or uploading them), and retrievals must generally be run in threads if
blocking is a concern. But the basic interface shown in this script is straightforward.
The call:

[1] For more urllib download examples, see the section on HTTP in this chapter. In bigger
terms, tools like urllib.urlopen allow scripts to both download remote files and invoke
programs that are located on a remote server machine. In Chapter 12, we'll also see that
urllib includes tools for formatting (escaping) URL strings for safe transmission.

remotefile = urllib.urlopen(remoteaddr) # returns input file-like
object

contacts the server named in the remoteaddr URL string and returns a file-like
object connected to its download stream (an FTP-based socket). Calling this file's
read method pulls down the file's contents, which are written to a local client-side
file. An even simpler interface:

urllib.urlretrieve(remoteaddr, tarname)

also does the work of opening a local file and writing the downloaded bytes into it --
things we do manually in the script as coded. This comes in handy if we mean to
download a file, but is less useful if we want to process its data immediately.

Either way, the end result is the same: the desired server file shows up on the client
machine. The remainder of the script -- unpacking and building -- is identical to the
original version, so it's been moved to a reusable Python file run with the execfile
built-in (recall that execfile runs a file as though its code were pasted into the
place where the execfile appears). The script is shown in Example 11-3.

Example 11-3. PP2E\Internet\Ftp\buildPython.py

#!/usr/local/bin/python

A Python script to build Python from its source code.
Run me in directory where Python source distribution lives.

import os
Version = '1.5' # version to build
tarname = 'python%s.tar.gz' % Version # remote/local file name

print 'Unpacking...'
os.system('gzip -d ' + tarname) # decompress file
os.system('tar -xvf ' + tarname[:-3]) # untar without '.gz'

print 'Building...'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 630

os.chdir('Python-' + Version) # build Python itself
os.system('./configure') # assumes unix-style make
os.system('make')
os.system('make test')
print 'Done: see Python-%s/python.' % Version

The output this time is almost identical to the output of Example 11-1, so I'll show
only a few portions (the gzip message appears if you don't delete a tar file left by a
run in the past):

[lutz@starship test]$ python getpython-urllib.py
Downloading ftp://ftp.python.org/pub/python/src/python1.5.tar.gz
Unpacking...
gzip: python1.5.tar already exists; do you wish to overwrite (y or n)?
y
 ...tar lines...
Building...
 ...build lines...
Done: see Python-1.5/python.

[lutz@starship test]$ python buildPython.py
Unpacking...
 ...tar and build lines...

In fact, although the original script is all top-level code that runs immediately and
accomplishes only one task, there really are two potentially reusable activities within
it: fetching a file and building Python from source. By splitting each part off into a
module of its own, we can reuse its program logic in other contexts, which naturally
leads us to the topic in the next section.

11.2.2 FTP get and put Utilities

Almost invariably, when I present the ftplib interfaces in Python classes, students
ask why programmers need to supply the RETR string in the retrieval method. It's a
good question -- the RETR string is the name of the download command in the FTP
protocol, but ftplib is supposed to encapsulate that protocol. As we'll see in a
moment, we have to supply an arguably odd STOR string for uploads as well. It's
boilerplate code that you accept on faith once you see it, but that begs the question.
You could always email Guido a proposed ftplib patch, but that's not really a good
answer for beginning Python students.[2]

[2] This is one point in the class where I also usually threaten to write Guido's home phone
number on the whiteboard. But that's generally an empty promise made just for comic effect.
If you do want to discuss Python language issues, Guido's email address, as well as contact
points for other Python core developers, are readily available on the Net. As someone who's
gotten anonymous Python-related calls at home, I never do give out phone numbers (and
dialing 1-800-Hi-Guido is only funny the first time).

A better answer is that there is no law against extending the standard library
modules with higher-level interfaces of our own -- with just a few lines of reusable
code, we can make the FTP interface look any way we want in Python. For instance,
we could, once and for all, write utility modules that wrap the ftplib interfaces to
hide the RETR string. If we place these utility modules in a directory on
PYTHONPATH, they become just as accessible as ftplib itself, automatically

Programming Python, 2nd Edition, O’Reilly

IT-SC book 631

reusable in any Python script we write in the future. Besides removing the RETR
string requirement, a wrapper module could also make assumptions that simplify FTP
operations into single function calls.

For instance, given a module that encapsulates and simplifies ftplib, our Python
fetch-and-build script could be further reduced to the script shown in Example 11-4 -
- essentially just a function call and file execution.

Example 11-4. PP2E\Internet\Ftp\getpython-modular.py

#!/usr/local/bin/python

A Python script to download and build Python's source code.
Uses getfile.py, a utility module which encapsulates ftp step.

import getfile
Version = '1.5' # version to download
tarname = 'python%s.tar.gz' % Version # remote/local file name

fetch with utility
getfile.getfile(tarname, 'ftp.python.org', 'pub/python/src')

rest is the same
execfile('buildPython.py')

Besides having a line count that is much more impressive to marketeers, the meat of
this script has been split off into files for reuse elsewhere. If you ever need to
download a file again, simply import an existing function rather than copying code
with cut-and-paste editing. Changes in download operations would need to be made
in only one file, not everywhere we've copied boilerplate code; getfile.getfile
could even be changed to use urllib instead of ftplib without effecting any of its
clients. It's good engineering.

11.2.2.1 Download utility

So just how would we go about writing such an FTP interface wrapper (he asks,
knowingly)? Given the ftplib library module, wrapping downloads of a particular file
in a particular directory is straightforward. Connected FTP objects support two
download methods:

The retrbinary method downloads the requested file in binary mode, sending its
bytes in chunks to a supplied function, without line-feed mapping. Typically, the
supplied function is a write method of an open local file object, such that the bytes
are placed in the local file on the client.

The retrlines method downloads the requested file in ASCII text mode, sending
each line of text to a supplied function with all end-of-line characters stripped.
Typically, the supplied function adds a \n newline (mapped appropriately for the
client machine), and writes the line to a local file.

We will meet the retrlines method in a later example; the getfile utility module
in Example 11-5 transfers in binary mode always with retrbinary. That is, files are

Programming Python, 2nd Edition, O’Reilly

IT-SC book 632

downloaded exactly as they were on the server, byte for byte, with the server's line-
feed conventions in text files. You may need to convert line-feeds after downloads if
they look odd in your text editor -- see the converter tools in Chapter 5, for pointers.

Example 11-5. PP2E\Internet\Ftp\getfile.py

#!/usr/local/bin/python

Fetch an arbitrary file by ftp. Anonymous
ftp unless you pass a user=(name, pswd) tuple.
Gets the Monty Python theme song by default.

from ftplib import FTP # socket-based ftp tools
from os.path import exists # file existence test

file = 'sousa.au' # default file coordinates
site = 'ftp.python.org' # monty python theme song
dir = 'pub/python/misc'

def getfile(file=file, site=site, dir=dir, user=(), verbose=1,
force=0):
 """
 fetch a file by ftp from a site/directory
 anonymous or real login, binary transfer
 """
 if exists(file) and not force:
 if verbose: print file, 'already fetched'
 else:
 if verbose: print 'Downloading', file
 local = open(file, 'wb') # local file of same
name
 try:
 remote = FTP(site) # connect to ftp site
 apply(remote.login, user) # anonymous=() or
(name, pswd)
 remote.cwd(dir)
 remote.retrbinary('RETR ' + file, local.write, 1024)
 remote.quit()
 finally:
 local.close() # close file no matter
what
 if verbose: print 'Download done.' # caller handles
exceptions

if __name__ == '__main__': getfile() # anonymous python.org
login

This module is mostly just a repackaging of the FTP code we used to fetch the
Python source distribution earlier, to make it simpler and reusable. Because it is a
callable function, the exported getfile.getfile here tries to be as robust and
generally useful as possible, but even a function this small implies some design
decisions. Here are a few usage notes:

FTP mode

Programming Python, 2nd Edition, O’Reilly

IT-SC book 633

The getfile function in this script runs in anonymous FTP mode by default, but a
two-item tuple containing a username and password string may be passed to the
user argument to log in to the remote server in non-anonymous mode. To use
anonymous FTP, either don't pass the user argument or pass it an empty tuple, ().
The FTP object login method allows two optional arguments to denote a username
and password, and the apply call in Example 11-5 sends it whatever argument tuple
you pass to user.

Processing modes

If passed, the last two arguments (verbose, force) allow us to turn off status
messages printed to the stdout stream (perhaps undesirable in a GUI context) and
force downloads to happen even if the file already exists locally (the download
overwrites the existing local file).

Exception protocol

The caller is expected to handle exceptions; this function wraps downloads in a
try/finally statement to guarantee that the local output file is closed, but lets
exceptions propagate. If used in a GUI or run from a thread, for instance, exceptions
may require special handling unknown in this file.

Self-test

If run standalone, this file downloads a sousa.au audio file from
http://www.python.org as a self-test, but the function will normally be passed FTP
filenames, site names, and directory names as well.

File mode

This script is careful to open the local output file in "wb" binary mode to suppress
end-line mapping, in case it is run on Windows. As we learned in Chapter 2, it's not
impossible that true binary data files may have bytes whose value is equal to a \n
line-feed character; opening in "w" text mode instead would make these bytes be
automatically expanded to a \r\n two-byte sequence when written locally on
Windows. This is only an issue for portability to Windows (mode "w" works
elsewhere). Again, see Chapter 5 for line-feed converter tools.

Directory model

This function currently uses the same filename to identify both the remote file and
the local file where the download should be stored. As such, it should be run in the
directory where you want the file to show up; use os.chdir to move to directories if
needed. (We could instead assume filename is the local file's name, and strip the
local directory with os.path.split to get the remote name, or accept two distinct
filename arguments -- local and remote.)

Notice also that, despite its name, this module is very different than the getfile.py
script we studied at the end of the sockets material in the previous chapter. The
socket-based getfile implemented client and server-side logic to download a server
file to a client machine over raw sockets.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 634

This new getfile here is a client-side tool only. Instead of raw sockets, it uses the
simpler FTP protocol to request a file from a server; all socket-level details are
hidden in the ftplib module's implementation of the FTP client protocol.
Furthermore, the server here is a perpetually running program on the server
machine, which listens for and responds to FTP requests on a socket, on the
dedicated FTP port (number 21). The net functional effect is that this script requires
an FTP server to be running on the machine where the desired file lives, but such a
server is much more likely to be available.

11.2.2.2 Upload utility

While we're at it, let's write a script to upload a single file by FTP to a remote
machine. The upload interfaces in the FTP module are symmetric with the download
interfaces. Given a connected FTP object:

Its storbinary method can be used to upload bytes from an open local file object.

Its storlines method can be used to upload text in ASCII mode from an open local
file object.

Unlike the download interfaces, both of these methods are passed a file object as a
whole, not a file object method (or other function). We will meet the storlines
method in a later example. The utility module in Example 11-6 uses storbinary
such that the file whose name is passed in is always uploaded verbatim -- in binary
mode, without line-feed translations for the target machine's conventions. If this
script uploads a text file, it will arrive exactly as stored on the machine it came from,
client line-feed markers and all.

Example 11-6. PP2E\Internet\Ftp\putfile.py

#!/usr/local/bin/python

Store an arbitrary file by ftp. Anonymous
ftp unless you pass a user=(name, pswd) tuple.

import ftplib # socket-based ftp tools

file = 'sousa.au' # default file coordinates
site = 'starship.python.net' # monty python theme song
dir = 'upload'

def putfile(file=file, site=site, dir=dir, user=(), verbose=1):
 """
 store a file by ftp to a site/directory
 anonymous or real login, binary transfer
 """
 if verbose: print 'Uploading', file
 local = open(file, 'rb') # local file of same name
 remote = ftplib.FTP(site) # connect to ftp site
 apply(remote.login, user) # anonymous or real login
 remote.cwd(dir)
 remote.storbinary('STOR ' + file, local, 1024)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 635

 remote.quit()
 local.close()
 if verbose: print 'Upload done.'

if __name__ == '__main__':
 import sys, getpass
 pswd = getpass.getpass(site + ' pswd?') # filename on
cmdline
 putfile(file=sys.argv[1], user=('lutz', pswd)) # non-anonymous
login

Notice that for portability, the local file is opened in "rb" binary mode this time to
suppress automatic line-feed character conversions in case this is run on Windows; if
this is binary information, we don't want any bytes that happen to have the value of
the \r carriage-return character to mysteriously go away during the transfer.

Also observe that the standard Python getpass.getpass is used to ask for an FTP
password in standalone mode. Like the raw_input built-in function, this call prompts
for and reads a line of text from the console user; unlike raw_input, getpass does
not echo typed characters on the screen at all (in fact, on Windows it uses the low-
level direct keyboard interface we met in the stream redirection section of Chapter
2). This comes in handy for protecting things like passwords from potentially prying
eyes.

Like the download utility, this script uploads a local copy of an audio file by default as
a self-test, but you will normally pass in real remote filename, site name, and
directory name strings. Also like the download utility, you may pass a (username,
password) tuple to the user argument to trigger non-anonymous FTP mode
(anonymous FTP is the default).

11.2.2.3 Playing the Monty Python theme song

Wake up -- it's time for a bit of fun. Let's make use of these scripts to transfer and
play the Monty Python theme song audio file maintained at Python's web site. First
off, let's write a module that downloads and plays the sample file, as shown in
Example 11-7.

Example 11-7. PP2E\Internet\Ftp\sousa.py

#!/usr/local/bin/python

Usage: % sousa.py
Fetch and play the Monty Python theme song.
This may not work on your system as is: it
requires a machine with ftp access, and uses
audio filters on Unix and your .au player on
Windows. Configure playfile.py as needed.

import os, sys
from PP2E.Internet.Ftp.getfile import getfile
from PP2E.Internet.Ftp.playfile import playfile
sample = 'sousa.au'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 636

getfile(sample) # fetch audio file by ftp
playfile(sample) # send it to audio player

This script will run on any machine with Python, an Internet link, and a recognizable
audio player; it works on my Windows laptop with a dialup Internet connection (if I
could insert an audio file hyperlink here to show what it sounds like, I would):

C:\...\PP2E\Internet\Ftp>python sousa.py
Downloading sousa.au
Download done.

C:\...\PP2E\Internet\Ftp>python sousa.py
sousa.au already fetched

The getfile and putfile modules can be used to move the sample file around, too.
Both can either be imported by clients that wish to use their functions, or run as top-
level programs to trigger self-tests. Let's run these scripts from a command line and
the interactive prompt to see how they work. When run standalone, parameters are
passed in the command line, and the default file settings are used:

C:\...\PP2E\Internet\Ftp>python putfile.py sousa.au
starship.python.net pswd?
Uploading sousa.au
Upload done.

When imported, parameters are passed explicitly to functions:

C:\...\PP2E\Internet\Ftp>python
>>> from getfile import getfile
>>> getfile(file='sousa.au', site='starship.python.net', dir='upload',
... user=('lutz', '****'))
Downloading sousa.au
Download done.
>>> from playfile import playfile
>>> playfile('sousa.au')

I've left one piece out of the puzzle: all that's left is to write a module that attempts
to play an audio file portably (see Example 11-8). Alas, this is the least
straightforward task because audio players vary per platform. On Windows, the
following module uses the DOS start command to launch whatever you have
registered to play audio files (exactly as if you had double-clicked on the file's icon in
a file explorer); on the Windows 98 side of my Sony notebook machine, this DOS
command line:

C:\...\PP2E\Internet\Ftp>python playfile.py sousa.au

pops up a media bar playing the sample. On Unix, it attempts to pass the audio file
to a command-line player program, if one has been added to the unixfilter table --
tweak this for your system (cat 'ing audio files to /dev/audio works on some Unix
systems, too). On other platforms, you'll need to do a bit more; there has been
some work towards portable audio interfaces in Python, but it's notoriously platform-
specific. Web browsers generally know how to play audio files, so passing the
filename in a URL to a browser located via the LaunchBrowser.py script we met in

Programming Python, 2nd Edition, O’Reilly

IT-SC book 637

Chapter 4, is perhaps a portable solution here as well (see that chapter for interface
details).

Example 11-8. PP2E\Internet\Ftp\playfile.py

#!/usr/local/bin/python

Try to play an arbitrary audio file.
This may not work on your system as is; it
uses audio filters on Unix, and filename
associations on Windows via the start command
line (i.e., whatever you have on your machine
to run *.au files--an audio player, or perhaps
a web browser); configure me as needed. We
could instead launch a web browser here, with
LaunchBrowser.py. See also: Lib/audiodev.py.

import os, sys
sample = 'sousa.au' # default audio file

unixhelpmsg = """
Sorry: can't find an audio filter for your system!
Add an entry for your system to the "unixfilter"
dictionary in playfile.py, or play the file manually.
"""

unixfilter = {'sunos5': '/usr/bin/audioplay',
 'linux2': '<unknown>',
 'sunos4': '/usr/demo/SOUND/play'}

def playfile(sample=sample):
 """
 play an audio file: use name associations
 on windows, filter command-lines elsewhere
 """
 if sys.platform[:3] == 'win':
 os.system('start ' + sample) # runs your audio player
 else:
 if not (unixfilter.has_key(sys.platform) and
 os.path.exists(unixfilter[sys.platform])):
 print unixhelpmsg
 else:
 theme = open(sample, 'r')
 audio = os.popen(unixfilter[sys.platform], 'w') # spawn
shell tool
 audio.write(theme.read()) # send to
its stdin

if __name__ == '__main__': playfile()

11.2.2.4 Adding user interfaces

If you read the last chapter, you'll recall that it concluded with a quick look at scripts
that added a user interface to a socket-based getfile script -- one that transferred

Programming Python, 2nd Edition, O’Reilly

IT-SC book 638

files over a proprietary socket dialog, instead of FTP. At the end of that presentation,
I mentioned that FTP is a much more generally useful way to move files around,
because FTP servers are so widely available on the Net. For illustration purposes,
Example 11-9 shows a simple mutation of the last chapter's user interface,
implemented as a new subclass of the last chapter's general form builder.

Example 11-9. P2E\Internet\Ftp\getfilegui.py

launch ftp getfile function with a reusable form gui class;
uses os.chdir to goto target local dir (getfile currently
assumes that filename has no local directory path prefix);
runs getfile.getfile in thread to allow more than one to be
running at once and avoid blocking gui during downloads;
this differs from socket-based getfilegui, but reuses Form;
supports both user and anonymous ftp as currently coded;
caveats: the password field is not displayed as stars here,
errors are printed to the console instead of shown in the
gui (threads can't touch the gui on Windows), this isn't
100% thread safe (there is a slight delay between os.chdir
here and opening the local output file in getfile) and we
could display both a save-as popup for picking the local dir,
and a remote directory listings for picking the file to get;

from Tkinter import Tk, mainloop
from tkMessageBox import showinfo
import getfile, os, sys, thread # ftp getfile here, not
socket
from PP2E.Internet.Sockets.form import Form # reuse form tool in
socket dir

class FtpForm(Form):
 def __init__(self):
 root = Tk()
 root.title(self.title)
 labels = ['Server Name', 'Remote Dir', 'File Name',
 'Local Dir', 'User Name?', 'Password?']
 Form.__init__(self, labels, root)
 self.mutex = thread.allocate_lock()
 self.threads = 0
 def transfer(self, filename, servername, remotedir, userinfo):
 try:
 self.do_transfer(filename, servername, remotedir, userinfo)
 print '%s of "%s" successful' % (self.mode, filename)
 except:
 print '%s of "%s" has failed:' % (self.mode, filename),
 print sys.exc_info()[0], sys.exc_info()[1]
 self.mutex.acquire()
 self.threads = self.threads - 1
 self.mutex.release()
 def onSubmit(self):
 Form.onSubmit(self)
 localdir = self.content['Local Dir'].get()
 remotedir = self.content['Remote Dir'].get()
 servername = self.content['Server Name'].get()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 639

 filename = self.content['File Name'].get()
 username = self.content['User Name?'].get()
 password = self.content['Password?'].get()
 userinfo = ()
 if username and password:
 userinfo = (username, password)
 if localdir:
 os.chdir(localdir)
 self.mutex.acquire()
 self.threads = self.threads + 1
 self.mutex.release()
 ftpargs = (filename, servername, remotedir, userinfo)
 thread.start_new_thread(self.transfer, ftpargs)
 showinfo(self.title, '%s of "%s" started' % (self.mode,
filename))
 def onCancel(self):
 if self.threads == 0:
 Tk().quit()
 else:
 showinfo(self.title,
 'Cannot exit: %d threads running' % self.threads)

class FtpGetfileForm(FtpForm):
 title = 'FtpGetfileGui'
 mode = 'Download'
 def do_transfer(self, filename, servername, remotedir, userinfo):
 getfile.getfile(filename, servername, remotedir, userinfo, 0,
1)

if __name__ == '__main__':
 FtpGetfileForm()
 mainloop()

If you flip back to the end of the previous chapter, you'll find that this version is
similar in structure to its counterpart there; in fact, it has the same name (and is
distinct only because it lives in a different directory). The class here, though, knows
how to use the FTP-based getfile module from earlier in this chapter, instead of the
socket-based getfile module we met a chapter ago. When run, this version also
implements more input fields, as we see in Figure 11-1.

Figure 11-1. FTP getfile input form

Notice that a full file path is entered for the local directory here. Otherwise, the script
assumes the current working directory, which changes after each download and can
vary depending on where the GUI is launched (e.g., the current directory differs

Programming Python, 2nd Edition, O’Reilly

IT-SC book 640

when this script is run by the PyDemos program at the top of the examples tree).
When we click this GUI's Submit button (or press the Enter key), this script simply
passes the form's input field values as arguments to the getfile.getfile FTP utility
function shown earlier in this section. It also posts a pop-up to tell us the download
has begun (Figure 11-2).

Figure 11-2. FTP getfile info pop-up

As currently coded, further download status messages from this point on show up in
the console window; here are the messages for a successful download, as well as
one that failed when I mistyped my password (no, it's not really "xxxxxx"):

User Name? => lutz
Server Name => starship.python.net
Local Dir => c:\temp
Password? => xxxxxx
File Name => index.html
Remote Dir => public_html/home
Download of "index.html" successful

User Name? => lutz
Server Name => starship.python.net
Local Dir => c:\temp
Password? => xxxxxx
File Name => index.html
Remote Dir => public_html/home
Download of "index.html" has failed: ftplib.error_perm 530 Login
incorrect.

Given a username and password, the downloader logs into the specified account. To
do anonymous FTP instead, leave the username and password fields blank. Let's
start an anonymous FTP connection to fetch the Python source distribution; Figure
11-3 shows the filled-out form.

Figure 11-3. FTP getfile input form, anonymous FTP

Programming Python, 2nd Edition, O’Reilly

IT-SC book 641

Pressing Submit on this form starts a download running in the background as before;
we get the pop-up shown in Figure 11-4 to verify the startup.

Figure 11-4. FTP getfile info pop-up

Now, to illustrate the threading capabilities of this GUI, let's start another download
while this one is in progress. The GUI stays active while downloads are under way,
so we simply change the input fields and press Submit again, as done in Figure 11-5.

Figure 11-5. FTP getfile input form, second thread

This second download starts in parallel with the one attached to ftp.python.org,
because each download is run in a thread, and more than one Internet connection
can be active at once. In fact, the GUI itself stays active during downloads only
because downloads are run in threads; if they were not, even screen redraws
wouldn't happen until a download finished.

We discussed threads in Chapter 3, but this script illustrates some practical thread
concerns:

This program takes care to not do anything GUI-related in a download thread. At
least in the current release on Windows, only the thread that makes GUIs can
process them (a Windows-only rule that has nothing to do with Python or Tkinter).

To avoid killing spawned download threads on some platforms, the GUI must also be
careful to not exit while any downloads are in progress. It keeps track of the number
of in-progress threads, and just displays the pop-up in Figure 11-6 if we try to kill
the GUI while both of these downloads are in progress by pressing the Cancel
button.

Figure 11-6. FTP getfile busy pop-up

Programming Python, 2nd Edition, O’Reilly

IT-SC book 642

We'll see ways to work around the no-GUI rule for threads when we explore the
PyMailGui example near the end of this chapter. To be portable, though, we can't
really close the GUI until the active-thread count falls to zero. Here is the sort of
output that appears in the console window for these two downloads:

C:\...\PP2E\Internet\Ftp>python getfilegui.py
User Name? =>
Server Name => ftp.python.org
Local Dir => c:\temp
Password? =>
File Name => python1.5.tar.gz
Remote Dir => pub/python/src

User Name? => lutz
Server Name => starship.python.net
Local Dir => c:\temp
Password? => xxxxxx
File Name => about-pp.html
Remote Dir => public_html/home
Download of "about-pp.html" successful
Download of "python1.5.tar.gz" successful

This all isn't much more useful than a command-line-based tool, of course, but it can
be easily modified by changing its Python code, and it provides enough of a GUI to
qualify as a simple, first-cut FTP user interface. Moreover, because this GUI runs
downloads in Python threads, more than one can be run at the same time from this
GUI without having to start or restart a different FTP client tool.

While we're in a GUI mood, let's add a simple interface to the putfile utility, too.
The script in Example 11-10 creates a dialog that starts uploads in threads. It's
almost the same as the getfile GUI we just wrote, so there's nothing new to say.
In fact, because get and put operations are so similar from an interface perspective,
most of the get form's logic was deliberately factored out into a single generic class
(FtpForm) such that changes need only be made in a single place. That is, the put
GUI here is mostly just a reuse of the get GUI, with distinct output labels and
transfer method. It's in a file by itself to make it easy to launch as a standalone
program.

Example 11-10. PP2E\Internet\Ftp\putfilegui.py

launch ftp putfile function with a reusable form gui class;
see getfilegui for notes: most of the same caveats apply;
the get and put forms have been factored into a single
class such that changes need only be made in one place;

Programming Python, 2nd Edition, O’Reilly

IT-SC book 643

from Tkinter import mainloop
import putfile, getfilegui

class FtpPutfileForm(getfilegui.FtpForm):
 title = 'FtpPutfileGui'
 mode = 'Upload'
 def do_transfer(self, filename, servername, remotedir, userinfo):
 putfile.putfile(filename, servername, remotedir, userinfo, 0)

if __name__ == '__main__':
 FtpPutfileForm()
 mainloop()

Running this script looks much like running the download GUI, because it's almost
entirely the same code at work. Let's upload a couple of files from the client machine
to the starship server; Figure 11-7 shows the state of the GUI while starting one.

Figure 11-7. FTP putfile input form

And here is the console window output we get when uploading two files in parallel;
here again, uploads run in threads, so if we start a new upload before one in
progress is finished, they overlap in time:

User Name? => lutz
Server Name => starship.python.net
Local Dir => c:\stuff\website\public_html
Password? => xxxxxx
File Name => about-pp2e.html
Remote Dir => public_html

User Name? => lutz
Server Name => starship.python.net
Local Dir => c:\stuff\website\public_html
Password? => xxxxxx
File Name => about-ppr2e.html
Remote Dir => public_html
Upload of "about-pp2e.html" successful
Upload of "about-ppr2e.html" successful

Finally, we can bundle up both GUIs in a single launcher script that knows how to
start the get and put interfaces, regardless of which directory we are in when the
script is started, and independent of the platform on which it runs. Example 11-11
shows this process.

Example 11-11. PP2E\Internet\Ftp\PyFtpGui.pyw

Programming Python, 2nd Edition, O’Reilly

IT-SC book 644

spawn ftp get and put guis no matter what dir I'm run from;
os.getcwd is not necessarily the place this script lives;
could also hard-code a path from $PP2EHOME, or guessLocation;
could also do this but need the DOS popup for status messages:
from PP2E.launchmodes import PortableLauncher
PortableLauncher('getfilegui', '%s/getfilegui.py' % mydir)()

import os, sys
from PP2E.Launcher import findFirst
mydir = os.path.split(findFirst(os.curdir, 'PyFtpGui.pyw'))[0]

if sys.platform[:3] == 'win':
 os.system('start %s/getfilegui.py' % mydir)
 os.system('start %s/putfilegui.py' % mydir)
else:
 os.system('python %s/getfilegui.py &' % mydir)
 os.system('python %s/putfilegui.py &' % mydir)

When this script is started, both the get and put GUIs appear as distinct,
independently running programs; alternatively, we might attach both forms to a
single interface. We could get much fancier than these two interfaces, of course. For
instance, we could pop up local file selection dialogs, and we could display widgets
that give status of downloads and uploads in progress. We could even list files
available at the remote site in a selectable list box by requesting remote directory
listings over the FTP connection. To learn how to add features like that, though, we
need to move on to the next section.

11.2.3 Downloading Web Sites (Mirrors)

Once upon a time, Telnet was all I needed. My web site lived at an Internet Service
Provider (ISP) that provided general and free Telnet access for all its customers. It
was a simple time. All of my site's files lived only in one place -- at my account
directory on my ISP's server machine. To make changes to web pages, I simply
started a Telnet session connected to my ISP's machine and edited my web pages
there online. Moreover, because Telnet sessions can be run from almost any machine
with an Internet link, I was able to tweak my web pages everywhere -- from my PC,
from machines I had access to on the training road, from archaic machines I played
with when I was bored at my day job, and so on. Life was good.

But times have changed. Due to a security breach, my ISP made a blanket decision
to revoke Telnet access from all of their customers (except, of course, those who
elected to pay a substantial premium to retain it). Seemingly, we weren't even
supposed to have known about Telnet in the first place. As a replacement, the ISP
mandated that all Telnet-inclined users should begin maintaining web page files
locally on their own machines, and upload them by FTP after every change.

That's nowhere near as nice as editing files kept in a single place from almost any
computer on the planet, of course, and this triggered plenty of complaints and
cancellations among the technically savvy. Unfortunately, the technically savvy is a
financially insignificant subset; more to the point, my web page's address had by this
time been published in multiple books sold around the world, so changing ISPs would
have been no less painful than changing update procedures.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 645

After the shouting, it dawned on me that Python could help here: by writing Python
scripts to automate the upload and download tasks associated with maintaining my
web site on my PC, I could at least get back some of the mobility and ease of use
that I'd lost. Because Python FTP scripts will work on any machine with sockets, I
could run them both on my PC and on nearly any other computer where Python was
installed. Furthermore, the same scripts used to transfer page files to and from my
PC could be used to copy ("mirror") my site to another web server as a backup copy,
should my ISP experience an outage (trust me -- it happens).

The following two scripts were born of all of the above frustrations. The first,
mirrorflat.py, automatically downloads (i.e., copies) by FTP all the files in a directory
at a remote site, to a directory on the local machine. I keep the main copy of my
web site files on my PC these days, but really use this script in two ways:

To download my web site to client machines where I want to make edits, I fetch the
contents of my public_html web directory of my account on my ISP's machine.

To mirror my site to my account on the starship.python.net server, I run this script
periodically from a Telnet session on the starship machine (as I wrote this, starship
still clung to the radical notion that users are intelligent enough to run Telnet).

More generally, this script (shown in Example 11-12) will download a directory full of
files to any machine with Python and sockets, from any machine running an FTP
server.

Example 11-12. PP2E\Internet\Ftp\mirrorflat.py

#!/bin/env python

use ftp to copy (download) all files from a remote site
and directory to a directory on the local machine; e.g.,
run me periodically to mirror a flat ftp site;

import os, sys, ftplib
from getpass import getpass

remotesite = 'home.rmi.net'
remotedir = 'public_html'
remoteuser = 'lutz'
remotepass = getpass('Please enter password for %s: ' % remotesite)
localdir = (len(sys.argv) > 1 and sys.argv[1]) or '.'
if sys.platform[:3] == 'win': raw_input() # clear stream
cleanall = raw_input('Clean local directory first? ')[:1] in ['y',
'Y']

print 'connecting...'
connection = ftplib.FTP(remotesite) # connect to ftp
site
connection.login(remoteuser, remotepass) # login as
user/password
connection.cwd(remotedir) # cd to directory
to copy

Programming Python, 2nd Edition, O’Reilly

IT-SC book 646

if cleanall:
 for localname in os.listdir(localdir): # try to delete all
locals
 try: # first to remove
old files
 print 'deleting local', localname
 os.remove(os.path.join(localdir, localname))
 except:
 print 'cannot delete local', localname

count = 0 # download all
remote files
remotefiles = connection.nlst() # nlst() gives
files list
 # dir() gives full
details
for remotename in remotefiles:
 localname = os.path.join(localdir, remotename)
 print 'copying', remotename, 'to', localname
 if remotename[-4:] == 'html' or remotename[-3:] == 'txt':
 # use ascii mode xfer
 localfile = open(localname, 'w')
 callback = lambda line, file=localfile: file.write(line +
'\n')
 connection.retrlines('RETR ' + remotename, callback)
 else:
 # use binary mode xfer
 localfile = open(localname, 'wb')
 connection.retrbinary('RETR ' + remotename, localfile.write)
 localfile.close()
 count = count+1

connection.quit()
print 'Done:', count, 'files downloaded.'

There is not a whole lot new to speak of in this script, compared to other FTP
examples we've seen thus far. We open a connection with the remote FTP server, log
in with a username and password for the desired account (this script never uses
anonymous FTP), and go to the desired remote directory. New here, though, are
loops to iterate over all the files in local and remote directories, text-based
retrievals, and file deletions:

Deleting all local files

This script has a cleanall option, enabled by interactive prompt. If selected, the
script first deletes all the files in the local directory before downloading, to make sure
there are no extra files there that aren't also on the server (there may be junk here
from a prior download). To delete local files, the script calls os.listdir to get a list
of filenames in the directory, and os.remove to delete each; see Chapter 2 earlier in
this book (or the Python library manual) for more details if you've forgotten what
these calls do.

Notice the use of os.path.join to concatenate a directory path and filename
according to the host platform's conventions; os.listdir returns filenames without
their directory paths, and this script is not necessarily run in the local directory

Programming Python, 2nd Edition, O’Reilly

IT-SC book 647

where downloads will be placed. The local directory defaults to the current directory
("."), but can be set differently with a command-line argument to the script.

Fetching all remote files

To grab all the files in a remote directory, we first need a list of their names. The FTP
object's nlst method is the remote equivalent of os.listdir: nlist returns a list of
the string names of all files in the current remote directory. Once we have this list,
we simply step through it in a loop, running FTP retrieval commands for each
filename in turn (more on this in a minute).

The nlst method is, more or less, like requesting a directory listing with an ls
command in typical interactive FTP programs, but Python automatically splits up the
listing's text into a list of filenames. We can pass it a remote directory to be listed;
by default it lists the current server directory. A related FTP method, dir, returns the
list of line strings produced by an FTP LIST command; its result is like typing a dir
command in an FTP session, and its lines contain complete file information, unlike
nlst. If you need to know more about all the remote files, parse the result of a dir
method call.

Text-based retrievals

To keep line-feeds in sync with the machines that my web files live on, this script
distinguishes between binary and text files. It uses a simple heuristic to do so:
filenames ending in .html or .txt are assumed to be ASCII text data (HTML web
pages and simple text files), and all others are assumed to be binary files (e.g., GIF
and JPEG images, audio files, tar archives). This simple rule won't work for every
web site, but it does the trick at mine.

Binary files are pulled down with the retrbinary method we met earlier and a local
open mode of "wb" to suppress line-feed byte mapping (this script may be run on
Windows or Unix-like platforms). We don't use a chunk size third argument here,
though -- it defaults to a reasonable 8K if omitted.

For ASCII text files, the script instead uses the retrlines method, passing in a
function to be called for each line in the text file downloaded. The text line handler
function mostly just writes the line to a local file. But notice that the handler function
created by the lambda here also adds an \n newline character to the end of the line
it is passed. Python's retrlines method strips all line-feed characters from lines to
side-step platform differences. By adding an \n, the script is sure to add the proper
line-feed marker character sequence for the local platform on which this script runs
(\n or \r\n). For this automapping of the \n in the script to work, of course, we
must also open text output files in "w" text mode, not "wb" -- the mapping from \n
to \r\n on Windows happens when data is written to the file.

All of this is simpler in action than in words. Here is the command I use to download
my entire web site from my ISP server account to my Windows 98 laptop PC, in a
single step:

C:\Stuff\Website\public_html>python %X%\internet\ftp\mirrorflat.py
Please enter password for home.rmi.net:
Clean local directory first?

Programming Python, 2nd Edition, O’Reilly

IT-SC book 648

connecting...
copying UPDATES to .\UPDATES
copying PythonPowered.gif to .\PythonPowered.gif
copying Pywin.gif to .\Pywin.gif
copying PythonPoweredAnim.gif to .\PythonPoweredAnim.gif
copying PythonPoweredSmall.gif to .\PythonPoweredSmall.gif
copying about-hopl.html to .\about-hopl.html
copying about-lp.html to .\about-lp.html
...
 ...lines deleted...
...
copying training.html to .\training.html
copying trainingCD.GIF to .\trainingCD.GIF
copying uk-1.jpg to .\uk-1.jpg
copying uk-2.jpg to .\uk-2.jpg
copying uk-3.jpg to .\uk-3.jpg
copying whatsnew.html to .\whatsnew.html
copying whatsold.html to .\whatsold.html
copying xlate-lp.html to .\xlate-lp.html
copying uploadflat.py to .\uploadflat.py
copying ora-lp-france.gif to .\ora-lp-france.gif
Done: 130 files downloaded.

This can take awhile to complete (it's bound by network speed constraints), but it is
much more accurate and easy than downloading files by hand. The script simply
iterates over all the remote files returned by the nlst method, and downloads each
with the FTP protocol (i.e., over sockets) in turn. It uses text transfer mode for
names that imply obviously text data, and binary mode for others.

With the script running this way, I make sure the initial assignments in it reflect the
machines involved, and then run the script from the local directory where I want the
site copy to be stored. Because the download directory is usually not where the
script lives, I need to give Python the full path to the script file (%X% evaluates a shell
variable containing the top-level path to book examples on my machine). When run
on the starship server in a Telnet session window, the execution and script directory
paths are different, but the script works the same way.

If you elect to delete local files in the download directory, you may also see a batch
of "deleting local..." messages scroll by on the screen before any "copying..." lines
appear:

...
deleting local uploadflat.py
deleting local whatsnew.html
deleting local whatsold.html
deleting local xlate-lp.html
deleting local old-book.html
deleting local about-pp2e.html
deleting local about-ppr2e.html
deleting local old-book2.html
deleting local mirrorflat.py
...
copying about-pp-japan.html to ./about-pp-japan.html
copying about-pp.html to ./about-pp.html
copying about-ppr-germany.html to ./about-ppr-germany.html

Programming Python, 2nd Edition, O’Reilly

IT-SC book 649

copying about-ppr-japan.html to ./about-ppr-japan.html
copying about-ppr-toc.html to ./about-ppr-toc.html
...

By the way, if you botch the input of the remote site password, a Python exception is
raised; I sometimes need to run again (and type slower):

C:\Stuff\Website\public_html>python %X%\internet\ftp\mirrorflat.py
Please enter password for home.rmi.net:
Clean local directory first?
connecting...
Traceback (innermost last):
 File "C:\PP2ndEd\examples\PP2E\internet\ftp\mirrorflat.py", line 20,
in ?
 connection.login(remoteuser, remotepass) # login as
user/pass..
 File "C:\Program Files\Python\Lib\ftplib.py", line 316, in login
 if resp[0] == '3': resp = self.sendcmd('PASS ' + passwd)
 File "C:\Program Files\Python\Lib\ftplib.py", line 228, in sendcmd
 return self.getresp()
 File "C:\Program Files\Python\Lib\ftplib.py", line 201, in getresp
 raise error_perm, resp
ftplib.error_perm: 530 Login incorrect.

It's worth noting that this script is at least partially configured by assignments near
the top of the file. In addition, the password and deletion options are given by
interactive inputs, and one command-line argument is allowed -- the local directory
name to store the downloaded files (it defaults to ".", the directory where the script
is run). Command-line arguments could be employed to universally configure all the
other download parameters and options, too; but because of Python's simplicity and
lack of compile/link steps, changing settings in the text of Python scripts is usually
just as easy as typing words on a command line.

Windows input note : If you study the previous code closely,
you'll notice that an extra raw_input call is made on Windows
only, after the getpass password input call and before the
cleanall option setting is input. This is a workaround for what
seems like a bug in Python 1.5.2 for Windows.

Oddly, the Windows port sometimes doesn't synchronize
command-line input and output streams as expected. Here, this
seems to be due to a getpass bug or constraint -- because
getpass uses the low-level msvcrt keyboard interface
module we met in Chapter 2, it appears to not mix well with the
stdin stream buffering used by raw_input, and botches the
input stream in the process. The extra raw_input clears the
input stream (sys.stdin.flush doesn't help).

In fact, without the superfluous raw_input for Windows, this
script prompts for cleanall option input, but never stops to
let you type a reply! This effectively disables cleanall
lt th T f di ti t i t d t t li d t

Programming Python, 2nd Edition, O’Reilly

IT-SC book 650

altogether. To force distinct input and output lines and correct
raw_input behavior, some scripts in this book run extra
print statements or raw_input calls to sync up streams
before further user interaction. There may be other fixes, and
this may be improved in future releases; try this script without
the extra raw_input to see if this has been repaired in your
Python.

11.2.4 Uploading Web Sites

Uploading a full directory is symmetric to downloading: it's mostly a matter of
swapping the local and remote machines and operations in the program we just met.
The script in Example 11-13 uses FTP to copy all files in a directory on the local
machine on which it runs, up to a directory on a remote machine.

I really use this script, too, most often to upload all of the files maintained on my
laptop PC to my ISP account in one fell swoop. I also sometimes use it to copy my
site from my PC to its starship mirror machine, or from the mirror machine back to
my ISP. Because this script runs on any computer with Python and sockets, it happily
transfers a directory from any machine on the Net to any machine running an FTP
server. Simply change the initial setting in this module as appropriate for the
transfer you have in mind.

Example 11-13. PP2E\Internet\Ftp\uploadflat.py

#!/bin/env python
###

use ftp to upload all files from a local dir to a remote
site/directory;
e.g., run me to copy a web/ftp site's files from your PC to your ISP;
assumes a flat directory upload: uploadall.py does nested
directories.
to go to my ISP, I change setting to 'home.rmi.net', and
'public_html'.
###

import os, sys, ftplib, getpass

remotesite = 'starship.python.net' # upload to
starship site
remotedir = 'public_html/home' # from win laptop
or other
remoteuser = 'lutz'
remotepass = getpass.getpass('Please enter password for %s: ' %
remotesite)
localdir = (len(sys.argv) > 1 and sys.argv[1]) or '.'
if sys.platform[:3] == 'win': raw_input() # clear stream
cleanall = raw_input('Clean remote directory first? ')[:1] in ['y',
'Y']

Programming Python, 2nd Edition, O’Reilly

IT-SC book 651

print 'connecting...'
connection = ftplib.FTP(remotesite) # connect to ftp
site
connection.login(remoteuser, remotepass) # login as
user/password
connection.cwd(remotedir) # cd to directory
to copy

if cleanall:
 for remotename in connection.nlst(): # try to delete all
remotes
 try: # first to remove
old files
 print 'deleting remote', remotename
 connection.delete(remotename)
 except:
 print 'cannot delete remote', remotename

count = 0
localfiles = os.listdir(localdir) # upload all local
files
 # listdir() strips
dir path
for localname in localfiles:
 localpath = os.path.join(localdir, localname)
 print 'uploading', localpath, 'to', localname
 if localname[-4:] == 'html' or localname[-3:] == 'txt':
 # use ascii mode xfer
 localfile = open(localpath, 'r')
 connection.storlines('STOR ' + localname, localfile)
 else:
 # use binary mode xfer
 localfile = open(localpath, 'rb')
 connection.storbinary('STOR ' + localname, localfile, 1024)
 localfile.close()
 count = count+1

connection.quit()
print 'Done:', count, 'files uploaded.'

Like the mirror download script, the program here illustrates a handful of new FTP
interfaces and a set of FTP scripting techniques:

Deleting all remote files

Just like the mirror script, the upload begins by asking if we want to delete all the
files in the remote target directory before copying any files there. This cleanall
option is useful if we've deleted files in the local copy of the directory in the client --
the deleted files would remain on the server-side copy unless we delete all files there
first. To implement the remote cleanup, this script simply gets a listing of all the files
in the remote directory with the FTP nlst method, and deletes each in turn with the
FTP delete method. Assuming we have delete permission, the directory will be
emptied (file permissions depend on the account we logged into when connecting to

Programming Python, 2nd Edition, O’Reilly

IT-SC book 652

the server). We've already moved to the target remote directory when deletions
occur, so no directory paths must be prepended to filenames here.

Storing all local files

To apply the upload operation to each file in the local directory, we get a list of local
filenames with the standard os.listdir call, and take care to prepend the local
source directory path to each filename with the os.path.join call. Recall that
os.listdir returns filenames without directory paths, and the source directory may
not be the same as the script's execution directory if passed on the command line.

Text-based uploads

This script may be run on both Windows and Unix-like clients, so we need to handle
text files specially. Like the mirror download, this script picks text or binary transfer
modes by inspecting each filename's extension -- HTML and text files are moved in
FTP text mode. We've already met the storbinary FTP object method used to
upload files in binary mode -- an exact, byte-for-byte copy appears at the remote
site.

Text mode transfers work almost identically: the storlines method accepts an FTP
command string and a local file (or file-like) object opened in text mode, and simply
copies each line in the local file to a same-named file on the remote machine. As
usual, if we run this script on Windows, opening the input file in "r" text mode means
that DOS-style \r\n end-of-line sequences are mapped to the \n character as lines
are read. When the script is run on Unix and Linux, lines end in a single \n already,
so no such mapping occurs. The net effect is that data is read portably, with \n
characters to represent end-of-line. For binary files, we open in "rb" mode to
suppress such automatic mapping everywhere (we don't want bytes that happen to
have the same value as \r to magically disappear when read on Windows).[3]

[3] Technically, Python's storlines method automatically sends all lines to the server
with \r\n line-feed sequences, no matter what it receives from the local file's
readline method (\n or \r\n). Because of that, the most important distinctions for
uploads are to use the "rb" for binary mode and the storlines method for text.
Consult module ftplib.py in the Python source library directory for more details.

As for the mirror download script, this program simply iterates over all files to be
transferred (files in the local directory listing this time), and transfers each in turn --
in either text or binary mode, depending on the files' names. Here is the command I
use to upload my entire web site from my laptop Windows 98 PC to the remote Unix
server at my ISP, in a single step:

C:\Stuff\Website\public_html>python %X%\Internet\Ftp\uploadflat.py
Please enter password for starship.python.net:
Clean remote directory first?
connecting...
uploading .\LJsuppcover.jpg to LJsuppcover.jpg
uploading .\PythonPowered.gif to PythonPowered.gif
uploading .\PythonPoweredAnim.gif to PythonPoweredAnim.gif
uploading .\PythonPoweredSmall.gif to PythonPoweredSmall.gif
uploading .\Pywin.gif to Pywin.gif
uploading .\UPDATES to UPDATES
uploading .\about-hopl.html to about-hopl.html

Programming Python, 2nd Edition, O’Reilly

IT-SC book 653

uploading .\about-lp.html to about-lp.html
uploading .\about-pp-japan.html to about-pp-japan.html
...
 ...lines deleted...
...
uploading .\trainingCD.GIF to trainingCD.GIF
uploading .\uk-1.jpg to uk-1.jpg
uploading .\uk-2.jpg to uk-2.jpg
uploading .\uk-3.jpg to uk-3.jpg
uploading .\uploadflat.py to uploadflat.py
uploading .\whatsnew.html to whatsnew.html
uploading .\whatsold.html to whatsold.html
uploading .\xlate-lp.html to xlate-lp.html
Done: 131 files uploaded.

Like the mirror example, I usually run this command from the local directory where
my web files are kept, and I pass Python the full path to the script. When I run this
on the starship Linux server, it works the same, but the paths to the script and my
web files directory differ. If you elect to clean the remote directory before uploading,
you'll get a bunch of "deleting remote..." messages before the "uploading..." lines
here, too:

...
deleting remote uk-3.jpg
deleting remote whatsnew.html
deleting remote whatsold.html
deleting remote xlate-lp.html
deleting remote uploadflat.py
deleting remote ora-lp-france.gif
deleting remote LJsuppcover.jpg
deleting remote sonyz505js.gif
deleting remote pic14.html
...

11.2.5 Uploads with Subdirectories

Perhaps the biggest limitation of the web site download and upload scripts we just
met are that they assume the site directory is flat (hence their names) -- i.e., both
transfer simple files only, and neither handles nested subdirectories within the web
directory to be transferred.

For my purposes, that's a reasonable constraint. I avoid nested subdirectories to
keep things simple, and I store my home web site as a simple directory of files. For
other sites (including one I keep at the starship machine), site transfer scripts are
easier to use if they also automatically transfer subdirectories along the way.

It turns out that supporting directories is fairly simple -- we need to add only a bit of
recursion and remote directory creation calls. The upload script in Example 11-14
extends the one we just saw, to handle uploading all subdirectories nested within the
transferred directory. Furthermore, it recursively transfers subdirectories within
subdirectories -- the entire directory tree contained within the top-level transfer
directory is uploaded to the target directory at the remote server.

Example 11-14. PP2E\Internet\Ftp\uploadall.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 654

#!/bin/env python
###

use ftp to upload all files from a local dir to a remote
site/directory;
this version supports uploading nested subdirectories too, but not
the
cleanall option (that requires parsing ftp listings to detect remote
dirs, etc.); to upload subdirectories, uses os.path.isdir(path) to
see
if a local file is really a directory, FTP().mkd(path) to make the
dir
on the remote machine (wrapped in a try in case it already exists
there),
and recursion to upload all files/dirs inside the nested
subdirectory.
see also: uploadall-2.py, which doesn't assume the topremotedir
exists.
###

import os, sys, ftplib
from getpass import getpass

remotesite = 'home.rmi.net' # upload from pc or starship to
rmi.net
topremotedir = 'public_html'
remoteuser = 'lutz'
remotepass = getpass('Please enter password for %s: ' % remotesite)
toplocaldir = (len(sys.argv) > 1 and sys.argv[1]) or '.'

print 'connecting...'
connection = ftplib.FTP(remotesite) # connect to ftp site
connection.login(remoteuser, remotepass) # login as
user/password
connection.cwd(topremotedir) # cd to directory to
copy to
 # assumes
topremotedir exists
def uploadDir(localdir):
 global fcount, dcount
 localfiles = os.listdir(localdir)
 for localname in localfiles:
 localpath = os.path.join(localdir, localname)
 print 'uploading', localpath, 'to', localname
 if os.path.isdir(localpath):
 # recur into subdirs
 try:
 connection.mkd(localname)
 print localname, 'directory created'
 except:
 print localname, 'directory not created'
 connection.cwd(localname)
 uploadDir(localpath)
 connection.cwd('..')
 dcount = dcount+1
 else:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 655

 if localname[-4:] == 'html' or localname[-3:] == 'txt':
 # use ascii mode xfer
 localfile = open(localpath, 'r')
 connection.storlines('STOR ' + localname, localfile)
 else:
 # use binary mode xfer
 localfile = open(localpath, 'rb')
 connection.storbinary('STOR ' + localname, localfile,
1024)
 localfile.close()
 fcount = fcount+1

fcount = dcount = 0
uploadDir(toplocaldir)
connection.quit()
print 'Done:', fcount, 'files and', dcount, 'directories uploaded.'

Like the flat upload script, this one can be run on any machine with Python and
sockets and upload to any machine running an FTP server; I run it both on my laptop
PC and on starship by Telnet to upload sites to my ISP.

In the interest of space, I'll leave studying this variant in more depth as a suggested
exercise. Two quick pointers, though:

The crux of the matter here is the os.path.isdir test near the top; if this test
detects a directory in the current local directory, we create a same-named directory
on the remote machine with connection.mkd and descend into it with
connection.cwd, and recur into the subdirectory on the local machine. Like all FTP
object methods, mkd and cwd methods issue FTP commands to the remote server.
When we exit a local subdirectory, we run a remote cwd('..') to climb to the
remote parent directory and continue. The rest of the script is roughly the same as
the original.

Note that this script handles only directory tree uploads; recursive uploads are
generally more useful than recursive downloads, if you maintain your web sites on
your local PC and upload to a server periodically, as I do. If you also want to
download (mirror) a web site that has subdirectories, see the mirror scripts in the
Python source distribution's Tools directory (currently, at file location
Tools/scripts/ftpmirror.py). It's not much extra work, but requires parsing the output
of a remote listing command to detect remote directories, and that is just
complicated enough for me to omit here. For the same reason, the recursive upload
script shown here doesn't support the remote directory cleanup option of the original
-- such a feature would require parsing remote listings as well.

For more context, also see the uploadall-2.py version of this script in the examples
distribution; it's similar, but coded so as not to assume that the top-level remote
directory already exists.

11.3 Processing Internet Email

Some of the other most common higher-level Internet protocols have to do with
reading and sending email messages: POP and IMAP for fetching email from
servers,[4] SMTP for sending new messages, and other formalisms such as rfc822 for

Programming Python, 2nd Edition, O’Reilly

IT-SC book 656

specifying email message contents and format. You don't normally need to know
about such acronyms when using common email tools; but internally, programs like
Microsoft Outlook talk to POP and SMTP servers to do your bidding.

[4] IMAP, or Internet Message Access Protocol, was designed as an alternative to POP, but is
not as widely used today, and so is not presented in this text. See the Python library manual
for IMAP support details.

Like FTP, email ultimately consists of formatted commands and byte streams shipped
over sockets and ports (port 110 for POP; 25 for SMTP). But also like FTP, Python
has standard modules to simplify all aspects of email processing. In this section, we
explore the POP and SMTP interfaces for fetching and sending email at servers, and
the rfc822 interfaces for parsing information out of email header lines; other email
interfaces in Python are analogous and are documented in the Python library
reference manual.

11.3.1 POP: Reading Email

I used to be an old-fashioned guy. I admit it: up until recently, I preferred to check
my email by telneting to my ISP and using a simple command-line email interface.
Of course, that's not ideal for mail with attachments, pictures, and the like, but its
portability is staggering -- because Telnet runs on almost any machine with a
network link, I was able to check my mail quickly and easily from anywhere on the
planet. Given that I make my living traveling around the world teaching Python
classes, this wild accessibility was a big win.

If you've already read the web site mirror scripts sections earlier in this chapter,
you've already heard my tale of ISP woe, so I won't repeat it here. Suffice it to say
that times have changed on this front too: when my ISP took away Telnet access,
they also took away my email access.[5] Luckily, Python came to the rescue here, too
-- by writing email access scripts in Python, I can still read and send email from any
machine in the world that has Python and an Internet connection. Python can be as
portable a solution as Telnet.

[5] In the process of losing Telnet, my email account and web site were taken down for weeks
on end, and I lost forever a backlog of thousands of messages saved over the course of a
year. Such outages can be especially bad if your income is largely driven by email and web
contacts, but that's a story for another night, boys and girls.

Moreover, I can still use these scripts as an alternative to tools suggested by the ISP,
such as Microsoft Outlook. Besides not being a big fan of delegating control to
commercial products of large companies, tools like Outlook generally download mail
to your PC and delete it from the mail server as soon as you access it. This keeps
your email box small (and your ISP happy), but isn't exactly friendly to traveling
Python salespeople -- once accessed, you cannot re-access a prior email from any
machine except the one where it was initially downloaded to. If you need to see an
old email and don't have your PC handy, you're out of luck.

The next two scripts represent one solution to these portability and single-machine
constraints (we'll see others in this and later chapters). The first, popmail.py, is a
simple mail reader tool, which downloads and prints the contents of each email in an
email account. This script is admittedly primitive, but it lets you read your email on
any machine with Python and sockets; moreover, it leaves your email intact on the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 657

server. The second, smtpmail.py, is a one-shot script for writing and sending a new
email message.

11.3.1.1 Mail configuration module

Before we get to either of the two scripts, though, let's first take a look a common
module they both import and use. The module in Example 11-15 is used to configure
email parameters appropriately for a particular user. It's simply a collection of
assignments used by all the mail programs that appear in this book; isolating these
configuration settings in this single module makes it easy to configure the book's
email programs for a particular user.

If you want to use any of this book's email programs to do mail processing of your
own, be sure to change its assignments to reflect your servers, account usernames,
and so on (as shown, they refer to my email accounts). Not all of this module's
settings are used by the next two scripts; we'll come back to this module at later
examples to explain some of the settings here.

Example 11-15. PP2E\Internet\Email\mailconfig.py

email scripts get their server names and other email config
options from this module: change me to reflect your machine
names, sig, etc.; could get some from the command line too;

#---
SMTP email server machine name (send)
#---

smtpservername = 'smtp.rmi.net' # or starship.python.net,
'localhost'

#---
POP3 email server machine, user (retrieve)
#---

popservername = 'pop.rmi.net' # or starship.python.net,
'localhost'
popusername = 'lutz' # password fetched of asked
wehen run

#---
local file where pymail saves pop mail
PyMailGui insead asks with a popup dialog
#---

savemailfile = r'c:\stuff\etc\savemail.txt' # use dialog in
PyMailGui

#---
PyMailGui: optional name of local one-line text file with your
pop password; if empty or file cannot be read, pswd requested
when run; pswd is not encrypted so leave this empty on shared
machines; PyMailCgi and pymail always ask for pswd when run.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 658

#---

poppasswdfile = r'c:\stuff\etc\pymailgui.txt' # set to '' to be
asked

#---
personal information used by PyMailGui to fill in forms;
sig -- can be a triple-quoted block, ignored if empty string;
addr -- used for initial value of "From" field if not empty,
else tries to guess From for replies, with varying success;
#---

myaddress = 'lutz@rmi.net'
mysignature = '--Mark Lutz (http://rmi.net/~lutz) [PyMailGui 1.0]'

11.3.1.2 POP mail reader module

On to reading email in Python: the script in Example 11-16 employs Python's
standard poplib module, an implementation of the client-side interface to POP -- the
Post Office Protocol. POP is just a well-defined way to fetch email from servers over
sockets. This script connects to a POP server to implement a simple yet portable
email download and display tool.

Example 11-16. PP2E\Internet\Email\popmail.py

#!/usr/local/bin/python

use the Python POP3 mail interface module to view
your pop email account messages; this is just a
simple listing--see pymail.py for a client with
more user interaction features, and smtpmail.py
for a script which sends mail; pop is used to
retrieve mail, and runs on a socket using port
number 110 on the server machine, but Python's
poplib hides all protocol details; to send mail,
use the smtplib module (or os.popen('mail...').
see also: unix mailfile reader in App framework.

import poplib, getpass, sys, mailconfig

mailserver = mailconfig.popservername # ex: 'pop.rmi.net'
mailuser = mailconfig.popusername # ex: 'lutz'
mailpasswd = getpass.getpass('Password for %s?' % mailserver)

print 'Connecting...'
server = poplib.POP3(mailserver)
server.user(mailuser) # connect, login to mail
server
server.pass_(mailpasswd) # pass is a reserved word

try:
 print server.getwelcome() # print returned greeting
message
 msgCount, msgBytes = server.stat()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 659

 print 'There are', msgCount, 'mail messages in', msgBytes, 'bytes'
 print server.list()
 print '-'*80
 if sys.platform[:3] == 'win': raw_input() # windows getpass is
odd
 raw_input('[Press Enter key]')

 for i in range(msgCount):
 hdr, message, octets = server.retr(i+1) # octets is byte
count
 for line in message: print line # retrieve, print
all mail
 print '-'*80 # mail box locked
till quit
 if i < msgCount - 1:
 raw_input('[Press Enter key]')
finally: # make sure we
unlock mbox
 server.quit() # else locked till
timeout
print 'Bye.'

Though primitive, this script illustrates the basics of reading email in Python. To
establish a connection to an email server, we start by making an instance of the
poplib.POP3 object, passing in the email server machine's name:

server = poplib.POP3(mailserver)

If this call doesn't raise an exception, we're connected (by socket) to the POP server
listening for requests on POP port number 110 at the machine where our email
account lives. The next thing we need to do before fetching messages is tell the
server our username and password; notice that the password method is called pass_
-- without the trailing underscore, pass would name a reserved word and trigger a
syntax error:

server.user(mailuser) # connect, login to mail
server
server.pass_(mailpasswd) # pass is a reserved word

To keep things simple and relatively secure, this script always asks for the account
password interactively; the getpass module we met in the FTP section of this
chapter is used to input but not display a password string typed by the user.

Once we've told the server our username and password, we're free to fetch mailbox
information with the stat method (number messages, total bytes among all
messages), and fetch a particular message with the retr method (pass the message
number; they start at 1):

msgCount, msgBytes = server.stat()
hdr, message, octets = server.retr(i+1) # octets is byte count

When we're done, we close the email server connection by calling the POP object's
quit method:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 660

server.quit() # else locked till timeout

Notice that this call appears inside the finally clause of a try statement that wraps
the bulk of the script. To minimize complications associated with changes, POP
servers lock your email box between the time you first connect and the time you
close your connection (or until an arbitrarily long system-defined time-out expires).
Because the POP quit method also unlocks the mailbox, it's crucial that we do this
before exiting, whether an exception is raised during email processing or not. By
wrapping the action in a try/finally statement, we guarantee that the script calls
quit on exit to unlock the mailbox to make it accessible to other processes (e.g.,
delivery of incoming email).

Here is the popmail script in action, displaying two messages in my account's
mailbox on machine pop.rmi.net -- the domain name of the mail server machine at
rmi.net, configured in module mailconfig:

C:\...\PP2E\Internet\Email>python popmail.py
Password for pop.rmi.net?
Connecting...
+OK Cubic Circle's v1.31 1998/05/13 POP3 ready
<4860000073ed6c39@chevalier>
There are 2 mail messages in 1386 bytes
('+OK 2 messages (1386 octets)', ['1 744', '2 642'], 14)

[Press Enter key]
Received: by chevalier (mbox lutz)
 (with Cubic Circle's cucipop (v1.31 1998/05/13) Wed Jul 12 16:13:33
2000)
X-From_: lumber.jack@TheLarch.com Wed Jul 12 16:10:28 2000
Return-Path: <lumber.jack@TheLarch.com>
Received: from VAIO (dial-218.101.denco.rmi.net [166.93.218.101])
 by chevalier.rmi.net (8.9.3/8.9.3) with ESMTP id QAA21434
 for <lutz@rmi.net>; Wed, 12 Jul 2000 16:10:27 -0600 (MDT)
From: lumber.jack@TheLarch.com
Message-Id: <200007122210.QAA21434@chevalier.rmi.net>
To: lutz@rmi.net
Date: Wed Jul 12 16:03:59 2000
Subject: I'm a Lumberjack, and I'm okay
X-Mailer: PyMailGui Version 1.0 (Python)

I cut down trees, I skip and jump,
I like to press wild flowers...

[Press Enter key]
Received: by chevalier (mbox lutz)
 (with Cubic Circle's cucipop (v1.31 1998/05/13) Wed Jul 12 16:13:54
2000)
X-From_: lutz@rmi.net Wed Jul 12 16:12:42 2000
Return-Path: <lutz@chevalier.rmi.net>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 661

Received: from VAIO (dial-218.101.denco.rmi.net [166.93.218.101])
 by chevalier.rmi.net (8.9.3/8.9.3) with ESMTP id QAA24093
 for <lutz@rmi.net>; Wed, 12 Jul 2000 16:12:37 -0600 (MDT)
Message-Id: <200007122212.QAA24093@chevalier.rmi.net>
From: lutz@rmi.net
To: lutz@rmi.net
Date: Wed Jul 12 16:06:12 2000
Subject: testing
X-Mailer: PyMailGui Version 1.0 (Python)

Testing Python mail tools.

Bye.

This interface is about as simple as it could be -- after connecting to the server, it
prints the complete raw text of one message at a time, pausing between each until
you type the enter key. The raw_input built-in is called to wait for the key press
between message displays.[6] The pause keeps messages from scrolling off the screen
too fast; to make them visually distinct, emails are also separated by lines of dashes.
We could make the display more fancy (e.g., we'll pick out parts of messages in later
examples with the rfc822 module), but here we simply display the whole message
that was sent.

[6] An extra raw_input is inserted on Windows only, in order to clear the stream damage of
the getpass call; see the note about this issue in the FTP section of this chapter.

If you look closely at these mails' text, you may notice that they were actually sent
by another program called PyMailGui (a program we'll meet near the end of this
chapter). The "X-Mailer" header line, if present, typically identifies the sending
program. In fact, there are a variety of extra header lines that can be sent in a
message's text. The "Received:" headers, for example, trace the machines that a
message passed though on its way to the target mailbox. Because popmail prints
the entire raw text of a message, you see all headers here, but you may see only a
few by default in end-user-oriented mail GUIs such as Outlook.

Before we move on, I should also point out that this script never deletes mail from
the server. Mail is simply retrieved and printed and will be shown again the next time
you run the script (barring deletion in another tool). To really remove mail
permanently, we need to call other methods (e.g., server.dele(msgnum)) but such
a capability is best deferred until we develop more interactive mail tools.

11.3.2 SMTP: Sending Email

There is a proverb in hackerdom that states that every useful computer program
eventually grows complex enough to send email. Whether such somewhat ancient
wisdom rings true or not in practice, the ability to automatically initiate email from
within a program is a powerful tool.

For instance, test systems can automatically email failure reports, user interface
programs can ship purchase orders to suppliers by email, and so on. Moreover, a

Programming Python, 2nd Edition, O’Reilly

IT-SC book 662

portable Python mail script could be used to send messages from any computer in
the world with Python and an Internet connection. Freedom from dependence on
mail programs like Outlook is an attractive feature if you happen to make your living
traveling around teaching Python on all sorts of computers.

Luckily, sending email from within a Python script is just as easy as reading it. In
fact, there are at least four ways to do so:

Calling os.popen to launch a command-line mail program

On some systems, you can send email from a script with a call of the form:

os.popen('mail -s "xxx" a@b.c', 'w').write(text)

As we've seen earlier in the book, the popen tool runs the command-line string
passed to its first argument, and returns a file-like object connected to it. If we use
an open mode of "w", we are connected to the command's standard input stream --
here, we write the text of the new mail message to the standard Unix mail
command-line program. The net effect is as if we had run mail interactively, but it
happens inside a running Python script.

Running the sendmail program

The open source sendmail program offers another way to initiate mail from a
program. Assuming it is installed and configured on your system, you can launch it
using Python tools like the os.popen call of the previous paragraph.

Using the standard smtplib Python module

Python's standard library comes with support for the client-side interface to SMTP --
the Simple Mail Transfer Protocol -- a higher-level Internet standard for sending mail
over sockets. Like the poplib module we met in the previous section, smtplib hides
all the socket and protocol details, and can be used to send mail on any machine
with Python and a socket-based Internet link.

Fetching and using third party packages and tools

Other tools in the open source library provide higher-level mail handling packages for
Python (accessible from http://www.python.org). Most build upon one of the prior
three techniques.

Of these four options, smtplib is by far the most portable and powerful. Using popen
to spawn a mail program usually works on Unix-like platforms only, not on Windows
(it assumes a command-line mail program). And although the sendmail program is
powerful, it is also somewhat Unix-biased, complex, and may not be installed even
on all Unix-like machines.

By contrast, the smtplib module works on any machine that has Python and an
Internet link, including Unix, Linux, and Windows. Moreover, SMTP affords us much
control over the formatting and routing of email. Since it is arguably the best option
for sending mail from a Python script, let's explore a simple mailing program that
illustrates its interfaces. The Python script shown in Example 11-17 is intended to be

Programming Python, 2nd Edition, O’Reilly

IT-SC book 663

used from an interactive command line; it reads a new mail message from the user
and sends the new mail by SMTP using Python's smtplib module.

Example 11-17. PP2E\Internet\Email\smtpmail.py

#!/usr/local/bin/python

use the Python SMTP mail interface module to send
email messages; this is just a simple one-shot
send script--see pymail, PyMailGui, and PyMailCgi
for clients with more user interaction features,
and popmail.py for a script which retrieves mail;

import smtplib, string, sys, time, mailconfig
mailserver = mailconfig.smtpservername # ex:
starship.python.net

From = string.strip(raw_input('From? ')) # ex: lutz@rmi.net
To = string.strip(raw_input('To? ')) # ex: python-
list@python.org
To = string.split(To, ';') # allow a list of
recipients
Subj = string.strip(raw_input('Subj? '))

prepend standard headers
date = time.ctime(time.time())
text = ('From: %s\nTo: %s\nDate: %s\nSubject: %s\n'
 % (From, string.join(To, ';'), date, Subj))

print 'Type message text, end with line=(ctrl + D or Z)'
while 1:
 line = sys.stdin.readline()
 if not line:
 break # exit on ctrl-d/z
 # if line[:4] == 'From':
 # line = '>' + line # servers escape for us
 text = text + line

if sys.platform[:3] == 'win': print
print 'Connecting...'
server = smtplib.SMTP(mailserver) # connect, no login step
failed = server.sendmail(From, To, text)
server.quit()
if failed: # smtplib may raise
exceptions
 print 'Failed recipients:', failed # too, but let them pass
here
else:
 print 'No errors.'
print 'Bye.'

Most of this script is user interface -- it inputs the sender's address ("From"), one or
more recipient addresses ("To", separated by ";" if more than one), and a subject
line. The sending date is picked up from Python's standard time module, standard

Programming Python, 2nd Edition, O’Reilly

IT-SC book 664

header lines are formatted, and the while loop reads message lines until the user
types the end-of-file character (Ctrl-Z on Windows, Ctrl-D on Linux).

The rest of the script is where all the SMTP magic occurs: to send a mail by SMTP,
simply run these two sorts of calls:

server = smtplib.SMTP(mailserver)

Make an instance of the SMTP object, passing in the name of the SMTP server that
will dispatch the message first. If this doesn't throw an exception, you're connected
to the SMTP server via a socket when the call returns.

failed = server.sendmail(From, To, text)

Call the SMTP object's sendmail method, passing in the sender address, one or more
recipient addresses, and the text of the message itself with as many standard mail
header lines as you care to provide.

When you're done, call the object's quit method to disconnect from the server.
Notice that, on failure, the sendmail method may either raise an exception or return
a list of the recipient addresses that failed; the script handles the latter case but lets
exceptions kill the script with a Python error message.

11.3.2.1 Sending messages

Okay -- let's ship a few messages across the world. The smtpmail script is a one-
shot tool: each run allows you to send a single new mail message. Like most of the
client-side tools in this chapter, it can be run from any computer with Python and an
Internet link. Here it is running on Windows 98:

C:\...\PP2E\Internet\Email>python smtpmail.py
From? Eric.the.Half.a.Bee@semibee.com
To? lutz@rmi.net
Subj? A B C D E F G
Type message text, end with line=(ctrl + D or Z)
Fiddle de dum, Fiddle de dee,
Eric the half a bee.

Connecting...
No errors.
Bye.

This mail is sent to my address (lutz@rmi.net), so it ultimately shows up in my
mailbox at my ISP, but only after being routed through an arbitrary number of
machines on the Net, and across arbitrarily distant network links. It's complex at the
bottom, but usually, the Internet "just works."

Notice the "From" address, though -- it's completely fictitious (as far as I know, at
least). It turns out that we can usually provide any "From" address we like because
SMTP doesn't check its validity (only its general format is checked). Furthermore,
unlike POP, there is no notion of a username or password in SMTP, so the sender is
more difficult to determine. We need only pass email to any machine with a server
listening on the SMTP port, and don't need an account on that machine. Here,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 665

Eric.the.Half.a.Bee@semibee.com works fine as the sender;
Marketing.Geek.From.Hell@spam.com would work just as well.

I'm going to tell you something now for instructional purposes only: it turns out that
this behavior is the basis of all those annoying junk emails that show up in your
mailbox without a real sender's address.[7] Salesmen infected with e-millionaire
mania will email advertising to all addresses on a list without providing a real "From"
address, to cover their tracks.

[7] Such junk mail is usually referred to as spam, a reference to a Monty Python skit where
people trying to order breakfast at a restaurant were repeatedly drowned out by a group of
Vikings singing an increasingly loud chorus of "spam, spam, spam,..." (no, really). While spam
can be used in many ways, this usage differs both from its appearance in this book's
examples, and its much-lauded role as a food product.

Normally, of course, you should use the same "To" address in the message and the
SMTP call, and provide your real email address as the "From" value (that's the only
way people will be able to reply to your message). Moreover, apart from teasing your
significant other, sending phony addresses is just plain bad Internet citizenship. Let's
run the script again to ship off another mail with more politically correct coordinates:

C:\...\PP2E\Internet\Email>python smtpmail.py
From? lutz@rmi.net
To? lutz@rmi.net
Subj? testing smtpmail
Type message text, end with line=(ctrl + D or Z)
Lovely Spam! Wonderful Spam!
Connecting...
No errors.
Bye.

At this point, we could run whatever email tool we normally use to access our
mailbox to verify the results of these two send operations; the two new emails
should show up in our mailbox regardless of which mail client is used to view them.
Since we've already written a Python script for reading mail, though, let's put it to
use as a verification tool -- running the popmail script from the last section reveals
our two new messages at the end of the mail list:

C:\...\PP2E\Internet\Email>python popmail.py
Password for pop.rmi.net?
Connecting...
+OK Cubic Circle's v1.31 1998/05/13 POP3 ready
<c4050000b6ee6c39@chevalier>
There are 6 mail messages in 10941 bytes
('+OK 6 messages (10941 octets)', ['1 744', '2 642', '3 4456', '4 697',
'5 3791'
, '6 611'], 44)

...
 ...lines omitted...
...
[Press Enter key]
Received: by chevalier (mbox lutz)
 (with Cubic Circle's cucipop (v1.31 1998/05/13) Wed Jul 12 16:19:20
2000)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 666

X-From_: Eric.the.Half.a.Bee@semibee.com Wed Jul 12 16:16:31 2000
Return-Path: <Eric.the.Half.a.Bee@semibee.com>
Received: from VAIO (dial-218.101.denco.rmi.net [166.93.218.101])
 by chevalier.rmi.net (8.9.3/8.9.3) with ESMTP id QAA28647
 for <lutz@rmi.net>; Wed, 12 Jul 2000 16:16:30 -0600 (MDT)
From: Eric.the.Half.a.Bee@semibee.com
Message-Id: <200007122216.QAA28647@chevalier.rmi.net>
To: lutz@rmi.net
Date: Wed Jul 12 16:09:21 2000
Subject: A B C D E F G

Fiddle de dum, Fiddle de dee,
Eric the half a bee.

[Press Enter key]
Received: by chevalier (mbox lutz)
 (with Cubic Circle's cucipop (v1.31 1998/05/13) Wed Jul 12 16:19:51
2000)
X-From_: lutz@rmi.net Wed Jul 12 16:17:58 2000
Return-Path: <lutz@chevalier.rmi.net>
Received: from VAIO (dial-218.101.denco.rmi.net [166.93.218.101])
 by chevalier.rmi.net (8.9.3/8.9.3) with ESMTP id QAA00415
 for <lutz@rmi.net>; Wed, 12 Jul 2000 16:17:57 -0600 (MDT)
Message-Id: <200007122217.QAA00415@chevalier.rmi.net>
From: lutz@rmi.net
To: lutz@rmi.net
Date: Wed Jul 12 16:10:55 2000
Subject: testing smtpmail

Lovely Spam! Wonderful Spam!

Bye.

11.3.2.2 More ways to abuse the Net

The first mail here was the one we sent with a fictitious address; the second was the
more legitimate message. Like "From" addresses, header lines are a bit arbitrary
under SMTP, too. smtpmail automatically adds "From:" and "To:" header lines in the
message's text with the same addresses as passed to the SMTP interface, but only as
a polite convention. Sometimes, though, you can't tell who a mail was sent to either
-- to obscure the target audience, spammers also may play games with "Bcc" blind
copies or the contents of headers in the message's text.

For example, if we change smtpmail to not automatically generate a "To:" header
line with the same address(es) sent to the SMTP interface call, we can manually type
a "To:" header that differs from the address we're really sending to:

C:\...\PP2E\Internet\Email>python smtpmail-noTo.py
From? Eric.the.Half.a.Bee@semibee.com

Programming Python, 2nd Edition, O’Reilly

IT-SC book 667

To? lutz@starship.python.net
Subj? a b c d e f g
Type message text, end with line=(ctrl + D or Z)
To: nobody.in.particular@marketing.com
Fiddle de dum, Fiddle de dee,
Eric the half a bee.
Connecting...
No errors.
Bye.

In some ways, the "From" and "To" addresses in send method calls and message
header lines are similar to addresses on envelopes and letters in envelopes. The
former is used for routing, but the latter is what the reader sees. Here, I gave the
"To" address as my mailbox on the starship.python.net server, but gave a fictitious
name in the manually typed "To:" header line; the first address is where it really
goes. A command-line mail tool running on starship by Telnet reveals two bogus
mails sent -- one with a bad "From:", and the one with an additionally bad "To:" that
we just sent:

[lutz@starship lutz]$ mail
Mail version 8.1 6/6/93. Type ? for help.
"/home/crew/lutz/Mailbox": 22 messages 12 new 22 unread
 ...more...
>N 21 Eric.the.Half.a.Bee@ Thu Jul 13 20:22 20/789 "A B C D E F G"
 N 22 Eric.the.Half.a.Bee@ Thu Jul 13 20:26 19/766 "a b c d e f g"

& 21
Message 21:
From Eric.the.Half.a.Bee@semibee.com Thu Jul 13 20:21:18 2000
Delivered-To: lutz@starship.python.net
From: Eric.the.Half.a.Bee@semibee.com
To: lutz@starship.python.net
Date: Thu Jul 13 14:15:55 2000
Subject: A B C D E F G

Fiddle de dum, Fiddle de dee,
Eric the half a bee.

& 22
Message 22:
From Eric.the.Half.a.Bee@semibee.com Thu Jul 13 20:26:34 2000
Delivered-To: lutz@starship.python.net
From: Eric.the.Half.a.Bee@semibee.com
Date: Thu Jul 13 14:20:22 2000
Subject: a b c d e f g
To: nobody.in.particular@marketing.com

Fiddle de dum, Fiddle de dee,
Eric the half a bee.

If your mail tool picks out the "To:" line, such mails look odd when viewed. For
instance, here's another sent to my rmi.net mailbox:

C:\...\PP2E\Internet\Email>python smtpmail-noTo.py
From? Arthur@knights.com
To? lutz@rmi.net

Programming Python, 2nd Edition, O’Reilly

IT-SC book 668

Subj? Killer bunnies
Type message text, end with line=(ctrl + D or Z)
To: you@home.com
Run away! Run away! ...
Connecting...
No errors.
Bye.

When it shows up in my mailbox on rmi.net, it's difficult to tell much about its origin
or destination in either Outlook or a Python-coded mail tool we'll meet near the end
of this chapter (see Figure 11-8 and Figure 11-9). And its raw text will only show the
machines it has been routed through.

Figure 11-8. Bogus mail in Outlook

Figure 11-9. Bogus mail in a Python mail tool (PyMailGui)

Once again, though -- don't do this unless you have good reason. I'm showing it for
header-line illustration purposes (e.g., in a later section, we'll add an "X-mailer:"
header line to identify the sending program). Furthermore, to stop a criminal, you
sometimes need to think like one -- you can't do much about spam mail unless you
understand how it is generated. To write an automatic spam filter that deletes
incoming junk mail, for instance, you need to know the telltale signs to look for in a
message's text. And "To" address juggling may be useful in the context of legitimate
mailing lists.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 669

But really, sending email with bogus "From:" and "To:" lines is equivalent to making
anonymous phone calls. Most mailers won't even let you change the "From" line, and
don't distinguish between the "To" address and header line, but SMTP is wide open in
this regard. Be good out there; okay?

11.3.2.3 Back to the big Internet picture

So where are we at in the Internet abstraction model now? Because mail is
transferred over sockets (remember sockets?), they are at the root of all of this
email fetching and sending. All email read and written ultimately consists of
formatted bytes shipped over sockets between computers on the Net. As we've seen,
though, the POP and SMTP interfaces in Python hide all the details. Moreover, the
scripts we've begun writing even hide the Python interfaces and provide higher-level
interactive tools.

Both popmail and smtpmail provide portable email tools, but aren't quite what we'd
expect in terms of usability these days. In the next section, we'll use what we've
seen thus far to implement a more interactive mail tool. At the end of this email
section, we'll also code a Tk email GUI, and then we'll go on to build a web-based
interface in a later chapter. All of these tools, though, vary primarily in terms of user
interface only; each ultimately employs the mail modules we've met here to transfer
mail message text over the Internet with sockets.

11.3.3 A Command-Line Email Client

Now, let's put together what we've learned about fetching and sending email in a
simple but functional command-line email tool. The script in Example 11-18
implements an interactive email session -- users may type commands to read, send,
and delete email messages.

Example 11-18. PP2E\Internet\Emal\pymail.py

#!/usr/local/bin/python

A simple command-line email interface client in
Python; uses Python POP3 mail interface module to
view pop email account messages; uses rfc822 and
StringIO modules to extract mail message headers;

import poplib, rfc822, string, StringIO

def connect(servername, user, passwd):
 print 'Connecting...'
 server = poplib.POP3(servername)
 server.user(user) # connect, login to mail
server
 server.pass_(passwd) # pass is a reserved word
 print server.getwelcome() # print returned greeting
message
 return server

def loadmessages(servername, user, passwd, loadfrom=1):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 670

 server = connect(servername, user, passwd)
 try:
 print server.list()
 (msgCount, msgBytes) = server.stat()
 print 'There are', msgCount, 'mail messages in', msgBytes,
'bytes'
 print 'Retrieving:',
 msgList = []
 for i in range(loadfrom, msgCount+1): # empty if low
>= high
 print i, # fetch mail
now
 (hdr, message, octets) = server.retr(i) # save text on
list
 msgList.append(string.join(message, '\n')) # leave mail
on server
 print
 finally:
 server.quit() # unlock the
mail box
 assert len(msgList) == (msgCount - loadfrom) + 1 # msg nums
start at 1
 return msgList

def deletemessages(servername, user, passwd, toDelete, verify=1):
 print 'To be deleted:', toDelete
 if verify and raw_input('Delete?')[:1] not in ['y', 'Y']:
 print 'Delete cancelled.'
 else:
 server = connect(servername, user, passwd)
 try:
 print 'Deleting messages from server.'
 for msgnum in toDelete: # reconnect to
delete mail
 server.dele(msgnum) # mbox locked until
quit()
 finally:
 server.quit()

def showindex(msgList):
 count = 0
 for msg in msgList: # strip,show some mail
headers
 strfile = StringIO.StringIO(msg) # make string look like a
file
 msghdrs = rfc822.Message(strfile) # parse mail headers into
a dict
 count = count + 1
 print '%d:\t%d bytes' % (count, len(msg))
 for hdr in ('From', 'Date', 'Subject'):
 try:
 print '\t%s=>%s' % (hdr, msghdrs[hdr])
 except KeyError:
 print '\t%s=>(unknown)' % hdr
 #print '\n\t%s=>%s' % (hdr, msghdrs.get(hdr, '(unknown)')
 if count % 5 == 0:
 raw_input('[Press Enter key]') # pause after each 5

Programming Python, 2nd Edition, O’Reilly

IT-SC book 671

def showmessage(i, msgList):
 if 1 <= i <= len(msgList):
 print '-'*80
 print msgList[i-1] # this prints entire mail--
hdrs+text
 print '-'*80 # to get text only, call
file.read()
 else: # after rfc822.Message reads
hdr lines
 print 'Bad message number'

def savemessage(i, mailfile, msgList):
 if 1 <= i <= len(msgList):
 open(mailfile, 'a').write('\n' + msgList[i-1] + '-'*80 + '\n')
 else:
 print 'Bad message number'

def msgnum(command):
 try:
 return string.atoi(string.split(command)[1])
 except:
 return -1 # assume this is bad

helptext = """
Available commands:
i - index display
l n? - list all messages (or just message n)
d n? - mark all messages for deletion (or just message n)
s n? - save all messages to a file (or just message n)
m - compose and send a new mail message
q - quit pymail
? - display this help text
"""

def interact(msgList, mailfile):
 showindex(msgList)
 toDelete = []
 while 1:
 try:
 command = raw_input('[Pymail] Action? (i, l, d, s, m, q, ?)
')
 except EOFError:
 command = 'q'

 # quit
 if not command or command == 'q':
 break

 # index
 elif command[0] == 'i':
 showindex(msgList)

 # list
 elif command[0] == 'l':
 if len(command) == 1:
 for i in range(1, len(msgList)+1):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 672

 showmessage(i, msgList)
 else:
 showmessage(msgnum(command), msgList)

 # save
 elif command[0] == 's':
 if len(command) == 1:
 for i in range(1, len(msgList)+1):
 savemessage(i, mailfile, msgList)
 else:
 savemessage(msgnum(command), mailfile, msgList)

 # delete
 elif command[0] == 'd':
 if len(command) == 1:
 toDelete = range(1, len(msgList)+1) # delete all
later
 else:
 delnum = msgnum(command)
 if (1 <= delnum <= len(msgList)) and (delnum not in
toDelete):
 toDelete.append(delnum)
 else:
 print 'Bad message number'

 # mail
 elif command[0] == 'm': # send a new mail via
smtp
 try: # reuse existing script
 execfile('smtpmail.py', {}) # run file in own
namespace
 except:
 print 'Error - mail not sent' # don't die if script
dies

 elif command[0] == '?':
 print helptext
 else:
 print 'What? -- type "?" for commands help'
 return toDelete

if __name__ == '__main__':
 import sys, getpass, mailconfig
 mailserver = mailconfig.popservername # ex:
'starship.python.net'
 mailuser = mailconfig.popusername # ex: 'lutz'
 mailfile = mailconfig.savemailfile # ex:
r'c:\stuff\savemail'
 mailpswd = getpass.getpass('Password for %s?' % mailserver)

 if sys.platform[:3] == 'win': raw_input() # clear stream
 print '[Pymail email client]'
 msgList = loadmessages(mailserver, mailuser, mailpswd) #
load all
 toDelete = interact(msgList, mailfile)
 if toDelete: deletemessages(mailserver, mailuser, mailpswd,
toDelete)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 673

 print 'Bye.'

There isn't much new here -- just a combination of user-interface logic and tools
we've already met, plus a handful of new tricks:

Loads

This client loads all email from the server into an in-memory Python list only once,
on startup; you must exit and restart to reload newly arrived email.

Saves

On demand, pymail saves the raw text of a selected message into a local file, whose
name you place in the mailconfig module.

Deletions

We finally support on-request deletion of mail from the server here: in pymail, mails
are selected for deletion by number, but are still only physically removed from your
server on exit, and then only if you verify the operation. By deleting only on exit, we
avoid changing mail message numbers during a session -- under POP, deleting a mail
not at the end of the list decrements the number assigned to all mails following the
one deleted. Since mail is cached in memory by pymail, future operations on the
numbered messages in memory may be applied to the wrong mail if deletions were
done immediately.[8]

[8] More on POP message numbers when we study PyMailGui later in this chapter.
Interestingly, the list of message numbers to be deleted need not be sorted; they
remain valid for the duration of the connection.

Parsing messages

Pymail still displays the entire raw text of a message on listing commands, but the
mail index listing only displays selected headers parsed out of each message.
Python's rfc822 module is used to extract headers from a message: the call
rfc822.Message(strfile) returns an object with dictionary interfaces for fetching
the value of a message header by name string (e.g., index the object on string
"From" to get the value of the "From" header line).

Although unused here, anything not consumed from strfile after a Message call is
the body of the message, and can be had by calling strfile.read.Message reads
the message headers portion only. Notice that strfile is really an instance of the
standard StringIO.StringIO object. This object wraps the message's raw text (a
simple string) in a file-like interface; rfc822.Message expects a file interface, but
doesn't care if the object is a true file or not. Once again, interfaces are what we
code to in Python, not specific types. Module StringIO is useful anytime you need to
make a string look like a file.

By now, I expect that you know enough Python to read this script for a deeper look,
so rather than saying more about its design here, let's jump into an interactive
pymail session to see how it works.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 674

Does Anybody Really Know What
Time It Is?

Minor caveat: the simple date format used in the smtpmail program (and
others in this book) doesn't quite follow the SMTP date formatting standard.
Most servers don't care, and will let any sort of date text appear in date
header lines. In fact, I've never seen a mail fail due to date formats.

If you want to be more in line with the standard, though, you could format
the date header with code like this (adopted from standard module
urllib, and parseable with standard tools such as the rfc822 module
and the time.strptime call):

import time
gmt = time.gmtime(time.time())
fmt = '%a, %d %b %Y %H:%M:%S GMT'
str = time.strftime(fmt, gmt)
hdr = 'Date: ' + str
print hdr

The hdr variable looks like this when this code is run:

Date: Fri, 02 Jun 2000 16:40:41 GMT

instead of the date format currently used by the smtpmail program:

>>> import time
>>> time.ctime(time.time())
'Fri Jun 02 10:23:51 2000'

The time.strftime call allows arbitrary date and time formatting
(time.ctime is just one standard format), but we will leave rooting out
the workings of all these calls as a suggested exercise for the reader;
consult the time module's library manual entry. We'll also leave placing
such code in a reusable file to the more modular among you. Time and date
formatting rules are necessary, but aren't pretty.

11.3.3.1 Running the pymail command-line client

Let's start up pymail to read and delete email at our mail server and send new
messages. Pymail runs on any machine with Python and sockets, fetches mail from
any email server with a POP interface on which you have an account, and sends mail
via the SMTP server you've named in the mailconfig module.

Here it is in action running on my Windows 98 laptop machine; its operation is
identical on other machines. First, we start the script, supply a POP password

Programming Python, 2nd Edition, O’Reilly

IT-SC book 675

(remember, SMTP servers require no password), and wait for the pymail email list
index to appear:

C:\...\PP2E\Internet\Email>python pymail.py
Password for pop.rmi.net?

[Pymail email client]
Connecting...
+OK Cubic Circle's v1.31 1998/05/13 POP3 ready
<870f000002f56c39@chevalier>
('+OK 5 messages (7150 octets)', ['1 744', '2 642', '3 4456', '4 697',
'5 611'],
 36)
There are 5 mail messages in 7150 bytes
Retrieving: 1 2 3 4 5
There are 5 mail messages in 7150 bytes
Retrieving: 1 2 3 4 5
1: 676 bytes
 From=>lumber.jack@TheLarch.com
 Date=>Wed Jul 12 16:03:59 2000
 Subject=>I'm a Lumberjack, and I'm okay
2: 587 bytes
 From=>lutz@rmi.net
 Date=>Wed Jul 12 16:06:12 2000
 Subject=>testing
3: 4307 bytes
 From=>"Mark Hammond" <MarkH@ActiveState.com>
 Date=>Wed, 12 Jul 2000 18:11:58 -0400
 Subject=>[Python-Dev] Python .NET (was Preventing 1.5
extensions...
4: 623 bytes
 From=>Eric.the.Half.a.Bee@semibee.com
 Date=>Wed Jul 12 16:09:21 2000
 Subject=>A B C D E F G
5: 557 bytes
 From=>lutz@rmi.net
 Date=>Wed Jul 12 16:10:55 2000
 Subject=>testing smtpmail
[Press Enter key]
[Pymail] Action? (i, l, d, s, m, q, ?) l 5

Received: by chevalier (mbox lutz)
 (with Cubic Circle's cucipop (v1.31 1998/05/13) Wed Jul 12 16:45:38
2000)
X-From_: lutz@rmi.net Wed Jul 12 16:17:58 2000
Return-Path: <lutz@chevalier.rmi.net>
Received: from VAIO (dial-218.101.denco.rmi.net [166.93.218.101])
 by chevalier.rmi.net (8.9.3/8.9.3) with ESMTP id QAA00415
 for <lutz@rmi.net>; Wed, 12 Jul 2000 16:17:57 -0600 (MDT)
Message-Id: <200007122217.QAA00415@chevalier.rmi.net>
From: lutz@rmi.net
To: lutz@rmi.net
Date: Wed Jul 12 16:10:55 2000
Subject: testing smtpmail

Programming Python, 2nd Edition, O’Reilly

IT-SC book 676

Lovely Spam! Wonderful Spam!

[Pymail] Action? (i, l, d, s, m, q, ?) l 4

Received: by chevalier (mbox lutz)
 (with Cubic Circle's cucipop (v1.31 1998/05/13) Wed Jul 12 16:45:38
2000)
X-From_: Eric.the.Half.a.Bee@semibee.com Wed Jul 12 16:16:31 2000
Return-Path: <Eric.the.Half.a.Bee@semibee.com>
Received: from VAIO (dial-218.101.denco.rmi.net [166.93.218.101])
 by chevalier.rmi.net (8.9.3/8.9.3) with ESMTP id QAA28647
 for <lutz@rmi.net>; Wed, 12 Jul 2000 16:16:30 -0600 (MDT)
From: Eric.the.Half.a.Bee@semibee.com
Message-Id: <200007122216.QAA28647@chevalier.rmi.net>
To: lutz@rmi.net
Date: Wed Jul 12 16:09:21 2000
Subject: A B C D E F G

Fiddle de dum, Fiddle de dee,
Eric the half a bee.

Once pymail downloads your email to a Python list on the local client machine, you
type command letters to process it. The "l" command lists (prints) the contents of a
given mail number; here, we used it to list the two emails we wrote with the
smtpmail script in the last section.

Pymail also lets us get command help, delete messages (deletions actually occur at
the server on exit from the program), and save messages away in a local text file
whose name is listed in the mailconfig module we saw earlier:

[Pymail] Action? (i, l, d, s, m, q, ?) ?

Available commands:
i - index display
l n? - list all messages (or just message n)
d n? - mark all messages for deletion (or just message n)
s n? - save all messages to a file (or just message n)
m - compose and send a new mail message
q - quit pymail
? - display this help text

[Pymail] Action? (i, l, d, s, m, q, ?) d 1
[Pymail] Action? (i, l, d, s, m, q, ?) s 4

Now, let's pick the "m" mail compose option -- pymail simply executes the smptmail
script we wrote in the prior section and resumes its command loop (why reinvent the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 677

wheel?). Because that script sends by SMTP, you can use arbitrary "From" addresses
here; but again, you generally shouldn't do that (unless, of course, you're trying to
come up with interesting examples for a book).

The smtpmail script is run with the built-in execfile function; if you look at
pymail's code closely, you'll notice that it passes an empty dictionary to serve as the
script's namespace to prevent its names from clashing with names in pymail code.
execfile is a handy way to reuse existing code written as a top-level script, and
thus is not really importable. Technically speaking, code in the file smtplib.py would
run when imported, but only on the first import (later imports would simply return
the loaded module object). Other scripts that check the __name__ attribute for
__main__ won't generally run when imported at all:

[Pymail] Action? (i, l, d, s, m, q, ?) m
From? Cardinal@nice.red.suits.com
To? lutz@rmi.net
Subj? Among our weapons are these:
Type message text, end with line=(ctrl + D or Z)
Nobody Expects the Spanish Inquisition!
Connecting...
No errors.
Bye.
[Pymail] Action? (i, l, d, s, m, q, ?) q
To be deleted: [1]
Delete?y
Connecting...
+OK Cubic Circle's v1.31 1998/05/13 POP3 ready
<8e2e0000aff66c39@chevalier>
Deleting messages from server.
Bye.

As mentioned, deletions really happen only on exit; when we quit pymail with the
"q" command, it tells us which messages are queued for deletion, and verifies the
request. If verified, pymail finally contacts the mail server again and issues POP calls
to delete the selected mail messages.

Because pymail downloads mail from your server into a local Python list only once at
startup, though, we need to start pymail again to re-fetch mail from the server if we
want to see the result of the mail we sent and the deletion we made. Here, our new
mail shows up as number 5, and the original mail assigned number 1 is gone:

C:\...\PP2E\Internet\Email>python pymail.py
Password for pop.rmi.net?

[Pymail email client]
Connecting...
+OK Cubic Circle's v1.31 1998/05/13 POP3 ready
<40310000d5f66c39@chevalier>
...
There are 5 mail messages in 7090 bytes
Retrieving: 1 2 3 4 5
1: 587 bytes
 From=>lutz@rmi.net
 Date=>Wed Jul 12 16:06:12 2000

Programming Python, 2nd Edition, O’Reilly

IT-SC book 678

 Subject=>testing
2: 4307 bytes
 From=>"Mark Hammond" <MarkH@ActiveState.com>
 Date=>Wed, 12 Jul 2000 18:11:58 -0400
 Subject=>[Python-Dev] Python .NET (was Preventing 1.5
extensions...
3: 623 bytes
 From=>Eric.the.Half.a.Bee@semibee.com
 Date=>Wed Jul 12 16:09:21 2000
 Subject=>A B C D E F G
4: 557 bytes
 From=>lutz@rmi.net
 Date=>Wed Jul 12 16:10:55 2000
 Subject=>testing smtpmail
5: 615 bytes
 From=>Cardinal@nice.red.suits.com
 Date=>Wed Jul 12 16:44:58 2000
 Subject=>Among our weapons are these:
[Press Enter key]
[Pymail] Action? (i, l, d, s, m, q, ?) l 5

Received: by chevalier (mbox lutz)
 (with Cubic Circle's cucipop (v1.31 1998/05/13) Wed Jul 12 16:53:24
2000)
X-From_: Cardinal@nice.red.suits.com Wed Jul 12 16:51:53 2000
Return-Path: <Cardinal@nice.red.suits.com>
Received: from VAIO (dial-218.101.denco.rmi.net [166.93.218.101])
 by chevalier.rmi.net (8.9.3/8.9.3) with ESMTP id QAA11127
 for <lutz@rmi.net>; Wed, 12 Jul 2000 16:51:52 -0600 (MDT)
From: Cardinal@nice.red.suits.com
Message-Id: <200007122251.QAA11127@chevalier.rmi.net>
To: lutz@rmi.net
Date: Wed Jul 12 16:44:58 2000
Subject: Among our weapons are these:

Nobody Expects the Spanish Inquisition!

[Pymail] Action? (i, l, d, s, m, q, ?) q
Bye.

Finally, here is the mail save file, containing the one message we asked to be saved
in the prior session; it's simply the raw text of saved emails, with separator lines.
This is both human- and machine-readable -- in principle, another script could load
saved mail from this file into a Python list, by calling the string.split function on
the file's text with the separator line as a delimiter:

C:\...\PP2E\Internet\Email>type c:\stuff\etc\savemail.txt

Received: by chevalier (mbox lutz)
 (with Cubic Circle's cucipop (v1.31 1998/05/13) Wed Jul 12 16:45:38
2000)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 679

X-From_: Eric.the.Half.a.Bee@semibee.com Wed Jul 12 16:16:31 2000
Return-Path: <Eric.the.Half.a.Bee@semibee.com>
Received: from VAIO (dial-218.101.denco.rmi.net [166.93.218.101])
 by chevalier.rmi.net (8.9.3/8.9.3) with ESMTP id QAA28647
 for <lutz@rmi.net>; Wed, 12 Jul 2000 16:16:30 -0600 (MDT)
From: Eric.the.Half.a.Bee@semibee.com
Message-Id: <200007122216.QAA28647@chevalier.rmi.net>
To: lutz@rmi.net
Date: Wed Jul 12 16:09:21 2000
Subject: A B C D E F G

Fiddle de dum, Fiddle de dee,
Eric the half a bee.

11.3.4 Decoding Mail Message Attachments

In the last section, we learned how to parse out email message headers and bodies
with the rfc822 and StringIO modules. This isn't quite enough for some messages,
though. In this section, I will introduce tools that go further, to handle complex
information in the bodies of email messages.

One of the drawbacks of stubbornly clinging to a Telnet command-line email
interface is that people sometimes send email with all sorts of attached information -
- pictures, MS Word files, uuencoded tar files, base64-encoded documents, HTML
pages, and even executable scripts that can trash your computer if opened.[9] Not all
attachments are crucial, of course, but email isn't always just ASCII text these days.

[9] I should explain this one: I'm referring to email viruses that appeared in 2000. The short
story behind most of them is that Microsoft Outlook sported a "feature" that allowed email
attachments to embed and contain executable scripts, and allowed these scripts to gain access
to critical computer components when open and run. Furthermore, Outlook had another
feature that automatically ran such attached scripts when an email was inspected, whether the
attachment was manually opened or not. I'll leave the full weight of such a security hole for
you to ponder, but I want to add that if you use Python's attachment tools in any of the mail
programs in this book, please do not execute attached programs under any circumstance,
unless you also run them with Python's restricted execution mode presented in Chapter 15.

Before I overcame my Telnet habits, I needed a way to extract and process all those
attachments from a command line (I tried the alternative of simply ignoring all
attachments completely, but that works only for a while). Luckily, Python's library
tools make handling attachments and common encodings easy and portable. For
simplicity, all of the following scripts work on the raw text of a saved email message
(or parts of such), but they could just as easily be incorporated into the email
programs in this book to extract email components automatically.

11.3.4.1 Decoding base64 data

Let's start with something simple. Mail messages and attachments are frequently
sent in an encoding format such as uu or base64; binary data files in particular must
be encoded in a textual format for transit using one of these encoding schemes. On
the receiving end, such encoded data must first be decoded before it can be viewed,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 680

opened, or otherwise used. The Python program in Example 11-19 knows how to
perform base64 decoding on data stored in a file.

Example 11-19. PP2E\Internet\Email\decode64.py

#!/usr/bin/env python

Decode mail attachments sent in base64 form.
This version assumes that the base64 encoded
data has been extracted into a separate file.
It doesn't understand mime headers or parts.
uudecoding is similar (uu.decode(iname)),
as is binhex decoding (binhex.hexbin(iname)).
You can also do this with module mimetools:
mimetools.decode(input, output, 'base64').

import sys, base64

iname = 'part.txt'
oname = 'part.doc'

if len(sys.argv) > 1:
 iname, oname = sys.argv[1:] # % python prog [iname oname]?

input = open(iname, 'r')
output = open(oname, 'wb') # need wb on windows for docs
base64.decode(input, output) # this does most of the work
print 'done'

There's not much to look at here, because all the low-level translation work happens
in the Python base64 module; we simply call its decode method with open input and
output files. Other transmission encoding schemes are supported by different Python
modules -- uu for uuencoding, binhex for binhex format, and so on. All of these
export interfaces that are analogous to base64, and are as easy to use; uu and
binhex use the output filename in the data (see the library manual for details).

At a slightly higher level of generality, the mimetools module exports a decode
method, which supports all encoding schemes. The desired decoding is given by a
passed-in argument, but the net result is the same, as shown in Example 11-20.

Example 11-20. PP2E\Internet\Email\decode64_b.py

#!/usr/bin/env python

Decode mail attachments sent in base64 form.
This version tests the mimetools module.

import sys, mimetools

iname = 'part.txt'
oname = 'part.doc'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 681

if len(sys.argv) > 1:
 iname, oname = sys.argv[1:] # % python prog [iname oname]?

input = open(iname, 'r')
output = open(oname, 'wb')
mimetools.decode(input, output, 'base64') # or 'uuencode', etc.
print 'done'

To use either of these scripts, you must first extract the base64-encoded data into a
text file. Save a mail message in a text file using your favorite email tool, then edit
the file to save only the base64-encoded portion with your favorite text editor.
Finally, pass the data file to the script, along with a name for the output file where
the decoded data will be saved. Here are the base64 decoders at work on a saved
data file; the generated output file turns out to be the same as the one saved for an
attachment in MS Outlook earlier:

C:\Stuff\Mark\etc\jobs\test>python ..\decode64.py t4.64 t4.doc
done

C:\Stuff\Mark\etc\jobs\test>fc /B cand.agr10.22.doc t4.doc
Comparing files cand.agr10.22.doc and t4.doc
FC: no differences encountered

C:\Stuff\Mark\etc\jobs\test>python ..\decode64_b.py t4.64 t4.doc
done

C:\Stuff\Mark\etc\jobs\test>fc /B cand.agr10.22.doc t4.doc
Comparing files cand.agr10.22.doc and t4.doc
FC: no differences encountered

11.3.4.2 Extracting and decoding all parts of a message

The decoding procedure in the previous section is very manual and error-prone;
moreover, it handles only one type of encoding (base64), and decodes only a single
component of an email message. With a little extra logic, we can improve on this
dramatically with the Python mhlib module's multipart message-decoding tools. For
instance, the script in Example 11-21 knows how to extract, decode, and save every
component in an email message in one step.

Example 11-21. PP2E\Internet\Email\decodeAll.py

#!/usr/bin/env python

Decode all mail attachments sent in encoded form:
base64, uu, etc. To use, copy entire mail message
to mailfile and run:
% python ..\decodeAll.py mailfile
which makes one or more mailfile.part* outputs.

import sys, mhlib
from types import *
iname = 'mailmessage.txt'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 682

if len(sys.argv) == 3:
 iname, oname = sys.argv[1:] # % python prog [iname
[oname]?]?
elif len(sys.argv) == 2:
 iname = sys.argv[1]
 oname = iname + '.part'

def writeparts(part, oname):
 global partnum
 content = part.getbody() # decoded content or
list
 if type(content) == ListType: # multiparts: recur for
each
 for subpart in content:
 writeparts(subpart, oname)
 else: # else single decoded
part
 assert type(content) == StringType # use filename if in
headers
 print; print part.getparamnames() # else make one with
counter
 fmode = 'wb'
 fname = part.getparam('name')
 if not fname:
 fmode = 'w'
 fname = oname + str(partnum)
 if part.gettype() == 'text/plain':
 fname = fname + '.txt'
 elif part.gettype() == 'text/html':
 fname = fname + '.html'
 output = open(fname, fmode) # mode must be 'wb' on
windows
 print 'writing:', output.name # for word doc files,
not 'w'
 output.write(content)
 partnum = partnum + 1

partnum = 0
input = open(iname, 'r') # open mail file
message = mhlib.Message('.', 0, input) # folder, number args
ignored
writeparts(message, oname)
print 'done: wrote %s parts' % partnum

Because mhlib recognizes message components, this script processes an entire mail
message; there is no need to edit the message to extract components manually.
Moreover, the components of an mhlib.Message object represent the already-
decoded parts of the mail message -- any necessary uu, base64, and other decoding
steps have already been automatically applied to the mail components by the time
we fetch them from the object. mhlib is smart enough to determine and perform
decoding automatically; it supports all common encoding schemes at once, not just a
particular format such as base64.

To use this script, save the raw text of an email message in a local file (using
whatever mail tool you like), and pass the file's name on the script's command line.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 683

Here the script is extracting and decoding the components of two saved mail
message files, t4.eml and t5.eml:

C:\Stuff\Mark\etc\jobs\test>python ..\decodeall.py t4.eml

['charset']
writing: t4.eml.part0.txt

['charset']
writing: t4.eml.part1.html

['name']
writing: cand.agr10.22.doc
done: wrote 3 parts

C:\Stuff\Mark\etc\jobs\test>python ..\decodeall.py t5.eml

['charset']
writing: t5.eml.part0.txt

['name']
writing: US West Letter.doc
done: wrote 2 parts

The end result of decoding a message is a set of one or more local files containing
the decoded contents of each part of the message. Because the resulting local files
are the crux of this script's purpose, it must assign meaningful names to files it
creates. The following naming rules are applied by the script:

If a component has an associated "name" parameter in the message, the script
stores the component's bytes in a local file of that name. This generally reuses the
file's original name on the machine where the mail originated.

Otherwise, the script generates a unique filename for the component by adding a
"partN" suffix to the original mail file's name, and trying to guess a file extension
based on the component's file type given in the message.

For instance, the message saved away as t4.eml consists of the message body, an
alternative HTML encoding of the message body, and an attached Word doc file.
When decoding t4.eml:

The first two message components have no "name" parameter, so the script
generates names based on the filename and component types -- t4.eml.part0.txt
and t4.eml.part1.html -- plain text and HTML code, respectively. On most machines,
clicking on the HTML output file should open it in a web browser for formatted
viewing.

The last attachment was given an explicit name when attached -- cand.agr10.22.doc
-- so it is used as the output file's name directly. Notice that this was an attached MS
Word doc file when sent; assuming all went well in transit, double-clicking on the
third output file generated by this script should open it in Word.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 684

There are additional tools in the Python library for decoding data fetched over the
Net, but we'll defer to the library manual for further details. Again, using this
decoding script still involves some manual intervention -- users must save the mail
file and type a command to split off its parts into distinct files -- but it's sufficient for
handling multipart mail, and it works portably on any machine with Python.
Moreover, the decoding interfaces it demonstrates can be adopted in a more
automatic fashion by interactive mail clients.

For instance, the decoded text of a message component could be automatically
passed to handler programs (e.g., browsers, text editors, Word) when selected,
rather than written to local files. It could also be saved in and automatically opened
from local temporary files (on Windows, running a simple DOS start command with
os.system would open the temporary file). In fact, popular email tools like Outlook
use such schemes to support opening attachments. Python-coded email user
interfaces could do so, too -- which is a hint about where this chapter is headed
next.

11.4 The PyMailGui Email Client

As a finale for this chapter's email tools coverage, this section presents PyMailGui --
a Python/Tkinter program that implements a client-side email processing user
interface. It is presented both as an instance of Python Internet scripting and as an
example that ties together other tools we've already seen, such as threads and
Tkinter GUIs.

Like the pymail program we wrote earlier, PyMailGui runs entirely on your local
computer. Your email is fetched from and sent to remote mail servers over sockets,
but the program and its user interface run locally. Because of that, PyMailGui is
called an email client : it employs Python's client-side tools to talk to mail servers
from the local machine. In fact, in some ways, PyMailGui builds on top of pymail to
add a GUI. Unlike pymail, though, PyMailGui is a fairly full-featured user interface:
email operations are performed with point-and-click operations.

11.4.1 Why PyMailGui?

Like many examples presented in this text, PyMailGui is also a practical, useful
program. In fact, I run it on all kinds of machines to check my email while traveling
around the world teaching Python classes (it's another workaround for Telnet-
challenged ISPs). Although PyMailGui won't put Microsoft Outlook out of business
anytime soon, I like it for two reasons:

It's portable

PyMailGui runs on any machine with sockets and a Python with Tkinter installed.
Because email is transferred with the Python libraries, any Internet connection will
do. Moreover, because the user interface is coded with the Tkinter extension,
PyMailGui should work, unchanged, on Windows, the X Windows system (Unix,
Linux), and the Macintosh.

Microsoft Outlook is a more feature-rich package, but it has to be run on Windows,
and more specifically, on a single Windows machine. Because it generally deletes

Programming Python, 2nd Edition, O’Reilly

IT-SC book 685

email from a server as it is downloaded and stores it on the client, you cannot run
Outlook on multiple machines without spreading your email across all those
machines. By contrast, PyMailGui saves and deletes email only on request, and so it
is a bit more friendly to people who check their email in an ad-hoc fashion on
arbitrary computers.

It's scriptable

PyMailGui can become anything you want it to be, because it is fully programmable.
In fact, this is the real killer feature of PyMailGui and of open source software like
Python in general -- because you have full access to PyMailGui's source code, you
are in complete control of where it evolves from here. You have nowhere near as
much control over commercial, closed products like Outlook; you generally get
whatever a large company decided you need, along with whatever bugs that
company might have introduced.

As a Python script, PyMailGui is a much more flexible tool. For instance, I can change
its layout, disable features, and add completely new functionality quickly, by
changing its Python source code. Don't like the mail list display? Change a few lines
of code to customize it. Want to save and delete your mail automatically as it is
loaded? Add some more code and buttons. Tired of seeing junk mail? Add a few lines
of text-processing code to the load function to filter spam. These are just a few
examples. The point is that because PyMailGui is written in a high-level, easy-to-
maintain scripting language, such customizations are relatively simple, and might
even be a lot of fun.[10]

[10] Example: I added code to pull the POP password from a local file instead of a
pop-up in about 10 minutes, and less than 10 lines of code. Of course, I'm familiar
with the code, but the wait time for new features in Outlook would be noticeably
longer.

It's also worth mentioning that PyMailGui achieves this portability and scriptability,
and implements a full-featured email interface along the way, in roughly 500 lines of
program code. It doesn't have as many bells and whistles as commercial products,
but the fact that it gets as close as it does in so few lines of code is a testament to
the power of both the Python language and its libraries.

11.4.2 Running PyMailGui

Of course, to script PyMailGui on your own, you'll need to be able to run it. PyMailGui
only requires a computer with some sort of Internet connectivity (a PC with a dialup
account and modem will do) and an installed Python with the Tkinter extension
enabled. The Windows port of Python has this capability, so Windows PC users
should be able to run this program immediately by clicking its icon (the Windows
port self-installer is on this book's CD (see http://examples.oreilly.com/python2) and
also at http://www.python.org). You'll also want to change the file mailconfig.py in
the email examples directory to reflect your account's parameters; more on this as
we interact with the system.

11.4.3 Presentation Strategy

Programming Python, 2nd Edition, O’Reilly

IT-SC book 686

PyMailGui is easily one of the longest programs in this book (its main script is some
500 lines long, counting blank lines and comments), but it doesn't introduce many
library interfaces that we haven't already seen in this book. For instance:

The PyMailGui interface is built with Python's Tkinter, using the familiar listboxes,
buttons, and text widgets we met earlier.

Python's rfc822 email header parser module is applied to pull out headers and text
of messages.

Python's POP and SMTP library modules are used to fetch, send, and delete mail over
sockets.

Python threads, if installed in your Python interpreter, are put to work to avoid
blocking during long-running mail operations (loads, sends, deletions).

We're also going to reuse the TextEditor object we wrote in Chapter 9, to view and
compose messages, the simple pymail module's tools we wrote earlier in this
chapter to load and delete mail from the server, and the mailconfig module of this
chapter to fetch email parameters. PyMailGui is largely an exercise in combining
existing tools.

On the other hand, because this program is so long, we won't exhaustively document
all of its code. Instead, we'll begin by describing how PyMailGui works from an end-
user's perspective. After that, we'll list the system's new source code modules
without any additional comments, for further study.

Like most longer case studies in this book, this section assumes that you already
know enough Python to make sense of the code on your own. If you've been reading
this book linearly, you should also know enough about Tkinter, threads, and mail
interfaces to understand the library tools applied here. If you get stuck, you may
wish to brush-up on the presentation of these topics earlier in the book.

Open Source Software and Camaros

An analogy might help underscore the importance of PyMailGui's
scriptability. There are still a few of us who remember a time when it was
completely normal for car owners to work on and repair their own
automobiles. I still fondly remember huddling with friends under the hood of
a 1970 Camaro in my youth, tweaking and customizing its engine. With a
little work, we could make it as fast, flashy, and loud as we liked. Moreover,
a breakdown in one of those older cars wasn't necessarily the end of the
world. There was at least some chance that I could get the car going again
on my own.

That's not quite true today. With the introduction of electronic controls and
diabolically cramped engine compartments, car owners are usually better off
taking their cars back to the dealer or other repair professional for all but
the simplest kinds of changes. By and large, cars are no longer user-
maintainable products. And if I have a breakdown in my shiny new Jeep, I'm
probably going to be completely stuck until an authorized repairperson can

Programming Python, 2nd Edition, O’Reilly

IT-SC book 687

get around to towing and fixing my ride.

I like to think of the closed and open software models in the same terms.
When I use Microsoft Outlook, I'm stuck both with the feature set that a
large company dictates, as well as any bugs that it may harbor. But with a
programmable tool like PyMailGui, I can still get under the hood. I can add
features, customize the system, and work my way out of any lurking bugs.
And I can do so long before the next Outlook patch or release.

At the end of the day, open source software is about freedom. Users, not an
arbitrarily far-removed company, have the final say. Not everyone wants to
work on his or her own car, of course. On the other hand, software tends to
fail much more often than cars, and Python scripting is considerably less
greasy than auto mechanics.

11.4.4 Interacting with PyMailGui

To make this case study easier to understand, let's begin by seeing what PyMailGui
actually does -- its user interaction and email processing functionality -- before
jumping into the Python code that implements that behavior. As you read this part,
feel free to jump ahead to the code listings that appear after the screen shots, but
be sure to read this section, too; this is where I will explain all the subtleties of
PyMailGui's design. After this section, you are invited to study the system's Python
source code listings on your own for a better and more complete explanation than
can be crafted in English.

11.4.4.1 Getting started

PyMailGui is a Python/Tkinter program, run by executing its top-level script file,
PyMailGui.py. Like other Python programs, PyMailGui can be started from the system
command line, by clicking on its filename icon in a file explorer interface, or by
pressing its button in the PyDemos or PyGadgets launcher bars. However it is
started, the first window PyMailGui presents is shown in Figure 11-10.

Figure 11-10. PyMailGui main window start

This is the PyMailGui main window -- every operation starts here. It consists of:

A help button (the light blue bar at the top)

A clickable email list area for fetched emails (the middle white section)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 688

A button bar at the bottom for processing messages selected in the list area

In normal operation, users load their email, select an email from the list area by
clicking on it, and press a button at the bottom to process it. No mail messages are
shown initially; we need to first load them, as we'll see in a moment. Before we do,
though, let's press the blue help bar at the top to see what sort of help is available;
Figure 11-11 shows the help window pop-up that appears.

Figure 11-11. PyMailGui help pop-up

The main part of this window is simply a block of text in a scrolled-text widget, along
with two buttons at the bottom. The entire help text is coded as a single triple-
quoted string in the Python program. We could get more fancy and spawn a web
browser to view HTML-formatted help, but simple text does the job here.[11] The
Cancel button makes this nonmodal (i.e., nonblocking) window go away; more
interestingly, the Source button pops up a viewer window with the source code of
PyMailGui's main script, as shown in Figure 11-12.

[11] Actually, the help display started life even less fancy: it originally displayed help text in a
standard information box pop-up, generated by the Tkinter showinfo call used earlier in the
book. This worked fine on Windows (at least with a small amount of help text), but failed on
Linux because of a default line-length limit in information pop-up boxes -- lines were broken
so badly as to be illegible. The moral: if you're going to use showinfo and care about Linux,
be sure to make your lines short and your text strings small.

Figure 11-12. PyMailGui source code viewer window

Programming Python, 2nd Edition, O’Reilly

IT-SC book 689

Not every program shows you its source code, but PyMailGui follows Python's open
source motif. Politics aside, the main point of interest here is that this source viewer
window is the same as PyMailGui's email viewer window. All the information here
comes from PyMailGui internally; but this same window is used to display and edit
mail shipped across the Net, so let's look at its format here:

The top portion consists of a Cancel button to remove this nonmodal window, along
with a section for displaying email header lines -- "From:", "To:", and so on.

The bulk of this window is just another reuse of the TextEditor class object we
wrote earlier in the book for the PyEdit program -- PyMailGui simply attaches an
instance of TextEditor to every view and compose window, to get a full-featured
text editor component for free. In fact, everything but the Cancel button and header
lines on this window are implemented by TextEditor, not PyMailGui.

For instance, if we pick the Tools menu of the text portion of this window, and select
its Info entry, we get the standard PyEdit TextEditor object's file text statistics box
-- the exact same pop-up we'd get in the standalone PyEdit text editor, and the
PyView image view programs we wrote in Chapter 9 (see Figure 11-13).

In fact, this is the third reuse of TextEditor in this book: PyEdit, PyView, and now
PyMaiGui all present the same text editing interface to users, simply because they all
use the same TextEditor object. For purposes of showing source code, we could
also simply spawn the PyEdit program with the source file's name as a command-line
argument (see PyEdit earlier in the text for more details). PyMailGui attaches an
instance instead.

Figure 11-13. PyMailGui attached TextEditor info box

Programming Python, 2nd Edition, O’Reilly

IT-SC book 690

To display email, PyMailGui inserts its text into an attached TextEditor object; to
compose mail, PyMailGui presents a TextEditor and later fetches all its text out to
ship over the Net. Besides the obvious simplification here, this code reuse also
makes it easy to pick up improvements and fixes -- any changes in the TextEditor
object are automatically inherited by PyMailGui, PyView, and PyEdit.

11.4.4.2 Loading mail

Now, let's go back to the PyMailGui main window, and click the Load button to
retrieve incoming email over the POP protocol. Like pymail, PyMailGui's load function
gets account parameters from the mailconfig module listed in Example 11-15, so
be sure to change this file to reflect your email account parameters (i.e., server
names and usernames) if you wish to use PyMailGui to read your own email.

The account password parameter merits a few extra words. In PyMailGui, it may
come from one of two places:

Local file

If you put the name of a local file containing the password in the mailconfig
module, PyMailGui loads the password from that file as needed.

Pop-up dialog

If you don't put a password filename in mailconfig (or PyMailGui can't load it from
the file for whatever reason), PyMailGui will instead ask you for your password any
time it is needed.

Figure 11-1 shows the password input prompt you get if you haven't stored your
password in a local file. Note that the password you type is not shown -- a show='*'
option for the Entry field used in this pop-up tells Tkinter to echo typed characters
as stars (this option is similar in spirit to both the getpass console input module we
met earlier in this chapter, and an HTML type=password option we'll meet in a later
chapter). Once entered, the password lives only in memory on your machine;
PyMailGui itself doesn't store it anywhere in a permanent way.

Also notice that the local file password option requires you to store your password
unencrypted in a file on the local client computer. This is convenient (you don't need
to retype a password every time you check email), but not generally a good idea on

Programming Python, 2nd Edition, O’Reilly

IT-SC book 691

a machine you share with others; leave this setting blank in mailconfig if you prefer
to always enter your password in a pop-up.

Figure 11-14. PyMailGui password input dialog

Once PyMailGui fetches your mail parameters and somehow obtains your password,
it will next attempt to pull down all your incoming email from your POP server.
PyMailGui reuses the load-mail tools in the pymail module listed in Example 11-18,
which in turn uses Python's standard poplib module to retrieve your email.

11.4.4.3 Threading long-running email transfers

Ultimately, though, the load function must download your email over a socket. If you
get as much email as I do, this can take awhile. Rather than blocking the GUI while
the load is in progress, PyMailGui spawns a thread to do the mail download operation
in parallel with the rest of the program. The main program continues responding to
window events (e.g., redrawing the display after another window has been moved
over it) while your email is being downloaded. To let you know that a download is in
progress in the background, PyMailGui pops up the wait dialog box shown in Figure
11-15.

Figure 11-15. PyMailGui load mail wait box (thread running)

This dialog grabs focus and thus effectively disables the rest of the GUI's buttons
while a download is in progress. It stays up for the duration of the download, and
goes away automatically when the download is complete. Similar wait pop-ups
appear during other long-running socket operations (email send and delete
operations), but the GUI itself stays alive because the operations run in a thread.

On systems without threads, PyMailGui instead goes into a blocked state during such
long-running operations (it stubs out the thread spawn operation to perform a simple
function call). Because the GUI is essentially dead without threads, covering and
uncovering the GUI during a mail load on such platforms will erase or otherwise
distort its contents.[12] Threads are enabled by default on most platforms that Python
runs on (including Windows), so you probably won't see such oddness on your
machine.

[12] If you want to see how this works, change PyMailGui's code such that the fakeThread
class near the top of file PyMailGui.py is always defined (by default, it is created only if the
import of the thread module fails), and try covering and uncovering the main window during a

Programming Python, 2nd Edition, O’Reilly

IT-SC book 692

load, send, or delete operation. The window won't be redrawn because a single-threaded
PyMailGui is busy talking over a socket.

One note here: as mentioned when we met the FTP GUIs earlier in this chapter, on
MS Windows, only the thread that creates windows can process them. Because of
that, PyMailGui takes care to not do anything related to the user interface within
threads that load, send, or delete email. Instead, the main program continues
responding to user interface events and updates, and watches for a global "I'm
finished" flag to be set by the email transfer threads. Recall that threads share global
(i.e., module) memory; since there is at most only two threads active in PyMailGui at
once -- the main program and an email transfer thread -- a single global flag is all
the cross-thread communication mechanism we need.

11.4.4.4 Load server interface

Because the load operation is really a socket operation, PyMailGui will automatically
connect to your email server using whatever connectivity exists on the machine on
which it is run. For instance, if you connect to the Net over a modem, and you're not
already connected, Windows automatically pops up the standard connection dialog;
Figure 11-16 shows the one I get on my laptop. If PyMailGui runs on a machine with
a dedicated Internet link, it uses that instead.

Figure 11-16. PyMailGui connection dialog (Windows)

After PyMailGui finishes loading your email, it populates the main window's list box
with all of the messages on your email server, and scrolls to the most recently
received. Figure 11-17 shows what the main windows looks like on my machine.

Figure 11-17. PyMailGui main window after load

Programming Python, 2nd Edition, O’Reilly

IT-SC book 693

Technically, the Load button fetches all your mail the first time it is pressed, but
fetches only newly arrived email on later presses. PyMailGui keeps track of the last
email loaded, and requests only higher email numbers on later loads. Already-loaded
mail is kept in memory, in a Python list, to avoid the cost of downloading it again.
Like the simple pymail command-line interface shown earlier, PyMailGui does not
delete email from your server when it is loaded; if you really want to not see an
email on a later load, you must explicitly delete it (more on this later).

Like most GUIs in this book, the main window can be resized; Figure 11-18 shows
what it looks like when stretched to reveal more email details. Entries in the main list
show just enough to give the user an idea of what the message contains -- each
entry gives the concatenation of portions of the message's "Subject:", "From:", and
"Date:" header lines, separated by | characters, and prefixed with the message's
POP number (e.g., there are 91 emails in this list). The columns don't always line up
neatly (some headers are shorter than others), but it's enough to hint at the
message's contents.

Figure 11-18. PyMailGui main window resized

As we've seen, much magic happens when downloading email -- the client (the
machine on which PyMailGui runs) must connect to the server (your email account
machine) over a socket, and transfer bytes over arbitrary Internet links. If things go
wrong, PyMailGui pops up standard error dialog boxes to let you know what

Programming Python, 2nd Edition, O’Reilly

IT-SC book 694

happened. For example, if PyMailGui cannot establish a connection at all, you'll get a
window like that shown in Figure 11-19.

Figure 11-19. PyMailGui connection error box

The details displayed here are just the Python exception type and exception data. If
you typed an incorrect username or password for your account (in the mailconfig
module or in the password pop-up), you'll see the message in Figure 11-20.

Figure 11-20. PyMailGui invalid password error box

This box shows the exception raised by the Python poplib module. If PyMailGui
cannot contact your server (e.g., it's down, or you listed its name wrong in
mailconfig), you'll get the pop-up shown in Figure 11-21.

Figure 11-21. PyMailGui invalid or down server error box

11.4.4.5 Sending email

Once we've loaded email, we can process our messages with buttons on the main
window. We can, however, send new emails at any time, even before a load.
Pressing the Write button on the main window generates a mail composition window;
one has been captured in Figure 11-22.

Figure 11-22. PyMailGui write mail compose window

Programming Python, 2nd Edition, O’Reilly

IT-SC book 695

This window is just like the help source code viewer we saw a moment ago -- it has
fields for entering header line details, and an attached TextEditor object for writing
the body of the new email. For write operations, PyMailGui automatically fills the
"From" line and inserts a signature text line (" -- Mark..."), from your mailconfig
module settings. You can change these to any text you like, but the defaults are
filled in automatically from your mailconfig.

There is also a new "Send" button here: when pressed, the text you typed into the
the body of this window is mailed to the addresses you typed into the "To" and "Cc"
lines, using Python's smtplib module. PyMailGui adds the header fields you type as
mail header lines in the sent message. To send to more than one address, separate
them with a ";" in the "To" and "Cc" lines (we'll see an example of this in a moment).
In this mail, I fill in the "To" header with my own email address, to send the
message to myself for illustration purposes.

As we've seen, smtplib ultimately sends bytes to a server over a socket. Since this
can be a long-running operation, PyMailGui delegates this operation to a spawned
thread, too. While the send thread runs, the wait window in Figure 11-23 appears,
and the entire GUI stays alive; redraw and move events are handled in the main
program thread, while the send thread talks to the SMTP server.

Figure 11-23. PyMailGui send mail wait box (thread running)

You'll get an error pop-up if Python cannot send a message to any of the target
recipients, for any reason. If you don't get an error pop-up, everything worked
correctly, and your mail will show up in the recipients' mailboxes on their email
servers. Since I sent the message above to myself, it shows up in mine the next time
I press the main window's Load button, as we see in Figure 11-24.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 696

Figure 11-24. PyMailGui main window after sends, load

If you look back to the last main window shot, you'll notice that there are only two
new emails now -- numbers 92 (from Python-Help) and 93 (the one I just wrote);
PyMailGui is smart enough to download only the two new massages, and tack them
onto the end of the loaded email list.

11.4.4.6 Viewing email

Now, let's view the mail message that was sent and received. PyMailGui lets us view
email in formatted or raw modes. First, highlight (single-click) the mail you want to
see in the main window, and press the View button. A formatted mail viewer window
like that shown in Figure 11-25 appears.

Figure 11-25. PyMailGui view incoming mail window

This is the exact same window we saw displaying source code earlier, only now all
the information is filled in by extracting bits of the selected email message. Python's
rfc822 module is used to parse out header lines from the raw text of the email
message; their text is placed into the fields in the top right of the window. After
headers are parsed, the message's body text is left behind (in a StringIO file-like
string wrapper), and is read and stuffed into a new TextEditor object for display
(the white part in the middle of the window).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 697

Besides the nicely formatted view window, PyMailGui also lets us see the raw text of
a mail message. Double-click on a message's entry in the main window's list to bring
up a simple unformatted display of the mail's text. The raw version of the mail I sent
to myself is shown in Figure 11-26.

Figure 11-26. PyMailGui raw mail text view window

This raw text display can be useful to see special mail headers not shown in the
formatted view. For instance, the optional "X-Mailer:" header in the raw text display
identifies the program that transmitted a message; PyMailGui adds it automatically,
along with standard headers like "From:" and "To:". Other headers are added as the
mail is transmitted: the "Received:" headers name machines that the message was
routed through on its way to our email server.

And really, the raw text form is all there is to an email message -- it's what is
transferred from machine to machine when mail is sent. The nicely formatted display
simply parses out pieces of the mail's raw text with standard Python tools and places
them in associated fields of the display of Figure 11-25.

11.4.4.7 Email replies and forwards

Besides allowing reading and writing email, PyMailGui also lets users forward and
reply to incoming email sent from others. To reply to an email, select its entry in the
main window's list and click the Reply button. If I reply to the mail I just sent to
myself (arguably narcissistic, but demonstrative), the mail composition window
shown in Figure 11-27 appears.

Figure 11-27. PyMailGui reply compose window

Programming Python, 2nd Edition, O’Reilly

IT-SC book 698

This window is identical in format to the one we saw for the "Write" operation,
except that PyMailGui fills in some parts automatically:

The "From" line is set to your email address in your mailconfig module.

The "To" line is initialized to the original message's "From" address (we're replying to
the original sender, after all). See the sidebar "More on Reply Addresses" for
additional details on the target address.

The "Subject" line is set to the original message's subject line prepended with a
"Re:", the standard follow-up subject line form.

The body of the reply is initialized with the signature line in mailconfig, along with
the original mail message's text. The original message text is quoted with >
characters and prepended with a few header lines extracted from the original
message to give some context.

Luckily, all of this is much easier than it may sound. Python's standard rfc822
module is used to extract all the original message's header lines, and a single
string.replace call does the work of adding the > quotes to the original message
body. I simply type what I wish to say in reply (the initial paragraph in the mail's
text area), and press the Send button to route the reply message to the mailbox on
my mail server again. Physically sending the reply works the same as sending a
brand new message -- the mail is routed to your SMTP server in a spawned send
mail thread, and the send mail wait pop-up appears.

Forwarding a message is similar to replying: select the message in the main window,
press the "Fwd" button, and fill in the fields and text area of the popped-up
composition window. Figure 11-28 shows the window created to forward the mail we
originally wrote and received.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 699

Figure 11-28. PyMailGui forward compose window

Much like replies, "From" is filled from mailconfig, the original text is automatically
quoted in the message body again, and the subject line is preset to the original
message's subject prepended with the string "Fwd:". I have to fill in the "To" line
manually, though, because this is not a direct reply (it doesn't necessarily go back to
the original sender). Notice that I'm forwarding this message to two different
addresses; multiple recipient addresses are separated with a ";" character in "To"
and "Cc" header fields. The Send button in this window fires the forward message off
to all addresses listed in "To" and "Cc".

Figure 11-29. PyMailGui mail list after sends and load

Okay, I've now written a new message, and replied to and forwarded it. The reply
and forward were sent to my email address, too; if we press the main window's Load
button again, the reply and forward messages should show up in the main window's
list. In Figure 11-29, they appear as messages 94 and 95.

Keep in mind that PyMailGui runs on the local computer, but the messages you see
in the main window's list actually live in a mailbox on your email server machine.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 700

Every time we press Load, PyMailGui downloads but does not delete newly arrived
email from the server to your computer. The three messages we just wrote (93-95)
will also appear in any other email program you use on your account (e.g., in
Outlook). PyMailGui does not delete messages as they are downloaded, but simply
stores them in your computer's memory for processing. If we now select message 95
and press View, we see the forward message we sent, as in Figure 11-30. Really,
this message went from my machine to a remote email server, and was downloaded
from there into a Python list from which it is displayed.

Figure 11-30. PyMailGui view forwarded mail

Figure 11-31 shows what the forward message's raw text looks like; again, double-
click on a main window's entry to display this form. The formatted display in Figure
11-30 simply extracts bits and pieces out of the text shown in the raw display form.

Figure 11-31. PyMailGui view forwarded mail, raw

Programming Python, 2nd Edition, O’Reilly

IT-SC book 701

11.4.4.8 Saving and deleting email

So far, we've covered everything except two of the main window's processing
buttons and the All checkbox. PyMailGui lets us save mail messages in local text
files, and delete messages from the server permanently, such that we won't see
them the next time we access our account. Moreover, we can save and delete a
single mail at a time, or all mails displayed in the main windows list:

To save one email, select it in the main window's list and press the Save button.

To save all the emails in the list in one step, click the All checkbox at the bottom
right corner of the main window and then press Save.

More on Reply Addresses

A subtle thing: technically, the "To" address in replies is made from
whatever we get back from a standard library call of the form
hdrs.getaddr('From') -- an rfc822 module interface that parses
and formats the original message sender's address automatically -- plus
quotes added in a few rare cases.

Refer to function onReplyMail in the code listings. This library call returns
a pair (full name, email address) parsed from the mail's "From:" header
line. For instance, if a mail's first "From:" header contains the string:

'joe@spam.net (Joe Blow)'

then a call hdrs.getaddr('From') will yield the pair ('Joe Blow',
'joe@spam.net'), with an empty name string if none exists in the
original sender address string. If the header contains:

'Joe Blow <joe@spam.net>'

instead, the call yields the exact same result tuple.

Unfortunately, though, the Python 1.5.2 rfc822 module had a bug that
makes this call not always correct: the getaddr function yields bogus
results if a full name part of the address contains a comma (e.g., "Blow,
Joe"). This bug may be fixed in Python 2.0, but to work around it for
earlier releases, PyMailGui puts the name part in explicit quotes if it contains
a comma, before stuffing it into the target full-name <email-address>
address used in the "To:" line of replies. For example, here are four typical
"From" addresses and the reply "To" address PyMailGui generates for each
(after the =>):

joe@spam.net => <joe@spam.net>
Joe Blow <joe@spam.net> => Joe Blow <joe@spam.net>
joe@spam.net (Joe Blow) => Joe Blow <joe@spam.net>
"Blow, Joe" <joe@spam.net> => "Blow, Joe"
<joe@spam.net>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 702

Without the added quotes around the name in the last of these, the comma
would confuse my SMTP server into seeing two recipients -- Blow@rmi.net
and Joe <joe@spam.net > (the first incorrectly gets my ISP's domain name
added because it is assumed to be a local user). The added quotes won't
hurt if the bug is removed in later releases.

A less complex alternative solution (and one we'll use in a program called
PyMailCgi later in this book) is to simply use the original "From" address
exactly as the reply's "To". A library call of the form hdrs.get('From')
would return the sender's address verbatim, quotes and all, without trying
to parse out its components at all.

As coded, the PyMailGui reply address scheme works on every message I've
ever replied to, but may need to be tweaked for some unique address
formats or future Python releases. I've tested and used this program a lot,
but much can happen on the Net, despite mail address standards. Officially
speaking, any remaining bugs you find in it are really suggested exercises in
disguise (at least I didn't say they were "features").

Delete operations are kicked off the same way, but press the Del button instead. In
typical operation, I eventually delete email I'm not interested in, and save and delete
emails that are important. Save operations write the raw text of one or more emails
to a local text file you pick in the pop-up dialog shown in Figure 11-32.

Figure 11-32. PyMailGui save mail dialog

Technically, saves always append raw message text to the chosen file; the file is
opened in 'a' mode, which creates the file if needed, and writes at its end. The save
operation is also smart enough to remember the last directory you selected; the file
dialog begins navigation there the next time you press Save.

Delete operations can also be applied to one or all messages. Unlike other
operations, though, delete requests are simply queued up for later action. Messages
are actually deleted from your mail server only as PyMailGui is exiting. For instance,
if we've selected some messages for deletion and press the main window's Quit
button, a standard verification dialog appears (Figure 11-33).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 703

Figure 11-33. PyMailGui quit verification

If we then verify the quit request, a second dialog appears (Figure 11-34), asking us
to verify deletion of the queued up messages. If we press No here, no deletes
happen, and PyMailGui silently exits. If we select Yes, PyMailGui spawns one last
thread to send deletion requests to the email server for all the emails selected for
deletion during the session. Another wait-state pop-up appears while the delete
thread is running; when that thread is finished, PyMailGui exits as well.

Figure 11-34. PyMailGui delete verification on quit

By default and design, no mail is ever removed: you will see the same messages the
next time PyMailGui runs. It deletes mail from your server only when you ask it to,
deletes messages only on exit, and then only if verified in the last pop-up shown
(this is your last chance to prevent permanent mail removal).

11.4.4.9 POP message numbers

This may seem a roundabout way to delete mail, but it accommodates a property of
the POP interface. POP assigns each message a sequential number, starting from 1,
and these numbers are passed to the server to fetch and delete messages. It's okay
if new mail arrives while we're displaying the result of a prior download -- the new
mail is assigned higher numbers, beyond what is displayed on the client. But if we
delete a message in the middle of a mailbox, the numbers of all messages after the
one deleted change (they are decremented by one). That means that some message
numbers may be no longer valid if deletions are made while viewing previously
loaded email (deleting by some number N may really delete message N+1!).

PyMailGui could adjust all the displayed numbers to work around this. To keep things
simple, though, it postpones deletions instead. Notice that if you run multiple
instances of PyMailGui at once, you shouldn't delete in one and then another because
message numbers may become confused. You also may not be happy with the
results of running something like Outlook at the same time as a PyMailGui session,
but the net effect of such a combination depends on how another mail client handles
deletions. In principle, PyMailGui could be extended to prevent other instances from
running at the same time, but we leave that as an exercise.

11.4.4.10 Windows and status messages

Programming Python, 2nd Edition, O’Reilly

IT-SC book 704

Before we close this section, I want to point out that PyMailGui is really meant to be
a multiple-window interface -- something not made obvious by the earlier screen
shots. For example, Figure 11-35 shows PyMailGui with a main list box, help, and
three mail view windows. All these windows are nonmodal; that is, they are all active
and independent, and do not block other windows from being selected. This interface
all looks slightly different on Linux, but has the same functionality.

Figure 11-35. PyMailGui multiple windows and text editors

In general, you can have any number of mail view or compose windows up at once,
and cut and paste between them. This matters, because PyMailGui must take care to
make sure that each window has a distinct text editor object. If the text editor object
was a global, or used globals internally, you'd likely see the same text in each
window (and the send operations might wind up sending text from another window).
To avoid this, PyMailGui creates and attaches a new TextEditor instance to each
view and compose window it creates, and associates the new editor with the Send
button's callback handler to make sure we get the right text.

Finally, PyMailGui prints a variety of status messages as it runs, but you see them
only if you launch the program from the system command line (e.g., a DOS box on
Windows or an xterm on Linux), or by double-clicking on its filename icon (its main
script is a .py, not a .pyw). On Windows, you won't see these message when it is
started from another program, such as the PyDemos or PyGadgets launcher bar
GUIs. These status messages print server information, show mail loading status, and
trace the load, store, and delete threads that are spawned along the way. If you
want PyMailGui to be more verbose, launch it from a command line and watch:

C:\...\PP2E\Internet\Email>python PyMailGui.py
load start
Connecting...

Programming Python, 2nd Edition, O’Reilly

IT-SC book 705

+OK Cubic Circle's v1.31 1998/05/13 POP3 ready
<594100005a655e39@chevalier>
('+OK 5 messages (8470 octets)', ['1 709', '2 1136', '3 998', '4 2679',
'5 2948'], 38)
There are 5 mail messages in 8470 bytes
Retrieving: 1 2 3 4 5
load exit
thread exit caught
send start
Connecting to mail... ['<lutz@rmi.net>']
send exit
thread exit caught

You can also double-click on the PyMailGui.py filename in your file explorer GUI and
monitor the popped-up DOS console box on Windows; Figure 11-36 captures this
window in action.

Figure 11-36. PyMailGui console status message window

PyMailGui status messages display the mail currently being downloaded (i.e., the
"Retrieving:" lines are appended with a new mail number as each message is
downloaded), and so give a more informative download status indicator than the
wait pop-up window.

11.4.5 Implementing PyMailGui

Last but not least, we get to the code. There are really only two new modules here:
one where the help text is stored and another that implements the system.

In fact, PyMailGui gets a lot of mileage out of reusing modules we wrote earlier and
won't repeat here: pymail for mail load and delete operations, mailconfig for mail
parameters, the GUI section's TextEditor for displaying and editing mail message
text, and so on. In addition, standard Python modules used here such as poplib,
smtplib, and rfc822 hide most of the details of pushing bytes around the Net and

Programming Python, 2nd Edition, O’Reilly

IT-SC book 706

extracting message components. Tkinter implements GUI components in a portable
fashion.

11.4.5.1 Help text module

The net effect of all this reuse is that PyMailGui implements a fairly feature-rich email
program in roughly 500 lines of code, plus one support module. Example 11-22
shows the support module -- used only to define the help text string, to avoid
cluttering the main script file.

Example 11-22. PP2E\Internet\Email\PyMailGuiHelp.py

PyMailGui help text string, in this seperate module only to avoid
distracting from executable code. As coded, we throw up this text
in a simple scrollable text box; in the future, we might instead
use an HTML file opened under a web browser (e.g., run a "netscape
help.html" or DOS "start help.html" command using os.system call

must be narrow for Linux info box popups;
now uses scrolledtext with buttons instead;

helptext = """
PyMail, version 1.0
February, 2000
Programming Python, 2nd Edition
O'Reilly & Associates

Click main window buttons to process email:
- Load:\t fetch all (or newly arrived) POP mail from server
- View:\t display selected message nicely formatted
- Save:\t write selected (or all) emails to a chosen file
- Del:\t mark selected (or all) email to be deleted on exit
- Write:\t compose a new email message, send it by SMTP
- Reply:\t compose a reply to selected email, send it by SMTP
- Fwd:\t compose a forward of selected email, send by SMTP
- Quit:\t exit PyMail, delete any marked emails from server

Click an email in the main window's listbox to select it.
Click the "All" checkbox to apply Save or Del buttons to
all retrieved emails in the list. Double-click on an email
in the main window's listbox to view the mail's raw text,
including mail headers not shown by the View button.

Mail is removed from POP servers on exit only, and only mails
marked for deletion with the Del button are removed, if and
only if you verify the deletion in a confirmation popup.

Change the mailconfig.py module file on your own machine to
reflect your email server names, user name, email address,
and optional mail signature line added to all composed mails.
Miscellaneous hints:

- Passwords are requested if needed, and not stored by PyMail.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 707

- You may put your password in a file named in mailconfig.py.
- Use ';' between multiple addresses in "To" and "Cc" headers.
- Reply and Fwd automatically quote the original mail text.
- Save pops up a dialog for selecting a file to hold saved mails.
- Load only fetches newly-arrived email after the first load.

This client-side program currently requires Python and Tkinter.
It uses Python threads, if installed, to avoid blocking the GUI.
Sending and loading email requires an Internet connection.
"""

if __name__ == '__main__':
 print helptext # to stdout if run alone
 raw_input('Press Enter key') # pause in DOS console popups

11.4.5.2 Main module

And finally, here is the main PyMailGui script -- the file run to start the system (see
Example 11-23). I've already told what it does and why, so studying this listing's
code and its comments for a deeper look is left as a suggested exercise. Python is so
close to pseudocode already, that additional narrative here would probably be
redundant.

Although I use this example on a daily basis as is, it is also prime for extension. For
instance:

Deleted messages could be marked as such graphically.

Email attachments could be displayed, parsed out, decoded, and opened
automatically when clicked using the Python multipart email extraction tools we met
earlier in this chapter.

Download status could be made more informative during mail load operations by
updating a progress bar after each fetch (e.g., by periodically reconfiguring the size
of a rectangle drawn on a popped-up canvas).

Hyperlink URLs within messages could be highlighted visually and made to spawn a
web browser automatically when clicked, by using the launcher tools we met in the
GUI and system tools parts of this book.

Because Internet newsgroup posts are similar in structure to emails (header lines
plus body text: see the nntplib example in the next section), this script could in
principle be extended to display both email messages and news articles. Classifying
such a possible mutation as clever generalization or diabolical hack is left as an
exercise in itself.

This script still uses the nonstandard but usually harmless sending date format
discussed in an earlier sidebar in this chapter; it would be trivial to import a
conforming date format function from the pymail module.

PyMailGui displays a wait dialog box during mail transfers that effectively disables
the rest of the GUI. This is by design, to minimize timing complexity. In principle,
though, the system could allow mail operation threads to overlap in time (e.g., allow

Programming Python, 2nd Edition, O’Reilly

IT-SC book 708

the user to send new messages while a download is in progress). Since each transfer
runs on a socket of its own, PyMailGui need not block other operations during
transfers. This might be implemented with periodic Tkinter after events that check
the status of transfers in progress. See the PyFtpGui scripts earlier in this chapter for
an example of overlapping transfer threads.

And so on; because this software is open source, it is also necessarily open-ended.
Suggested exercises in this category are delegated to your imagination.

Example 11-23. PP2E\Internet\Email\PyMailGui.py

PyMailGui 1.0 - A Python/Tkinter email client.
Adds a Tkinter-based GUI interface to the pymail
script's functionality. Works for POP/SMTP based
email accounts using sockets on the machine on
which this script is run. Uses threads if
installed to run loads, sends, and deletes with
no blocking; threads are standard on Windows.
GUI updates done in main thread only (Windows).
Reuses and attaches TextEditor class object.
Run from command-line to see status messages.
See use notes in help text in PyMailGuiHelp.py.
To do: support attachments, shade deletions.

get services
import pymail, mailconfig
import rfc822, StringIO, string, sys
from Tkinter import *
from tkFileDialog import asksaveasfilename, SaveAs
from tkMessageBox import showinfo, showerror, askyesno
from PP2E.Gui.TextEditor.textEditor import TextEditorComponentMinimal

run if no threads
try: # raise ImportError to
 import thread # run with gui blocking
except ImportError: # no wait popups appear
 class fakeThread:
 def start_new_thread(self, func, args):
 apply(func, args)
 thread = fakeThread()

init global/module vars
msgList = [] # list of retrieved emails
text
toDelete = [] # msgnums to be deleted on
exit
listBox = None # main window's scrolled msg
list
rootWin = None # the main window of this
program
allModeVar = None # for All mode checkbox value
threadExitVar = 0 # used to signal child thread
exit
debugme = 0 # enable extra status messages

Programming Python, 2nd Edition, O’Reilly

IT-SC book 709

mailserver = mailconfig.popservername # where to read pop email from
mailuser = mailconfig.popusername # smtp server in mailconfig
too
mailpswd = None # pop passwd via file or popup
here
#mailfile = mailconfig.savemailfile # from a file select dialog
here

def fillIndex(msgList):
 # fill all of main listbox
 listBox.delete(0, END)
 count = 1
 for msg in msgList:
 hdrs = rfc822.Message(StringIO.StringIO(msg))
 msginfo = '%02d' % count
 for key in ('Subject', 'From', 'Date'):
 if hdrs.has_key(key): msginfo = msginfo + ' | ' +
hdrs[key][:30]
 listBox.insert(END, msginfo)
 count = count+1
 listBox.see(END) # show most recent mail=last line

def selectedMsg():
 # get msg selected in main listbox
 # print listBox.curselection()
 if listBox.curselection() == ():
 return 0 # empty tuple:no
selection
 else: # else zero-based
index
 return eval(listBox.curselection()[0]) + 1 # in a 1-item
tuple of str

def waitForThreadExit(win):
 import time
 global threadExitVar # in main thread, watch shared global
var
 delay = 0.0 # 0.0=no sleep needed on Win98 (but
hogs cpu)
 while not threadExitVar:
 win.update() # dispatch any new GUI events during
wait
 time.sleep(delay) # if needed, sleep so other thread
can run
 threadExitVar = 0 # at most one child thread active at
once

def busyInfoBoxWait(message):
 # popup wait message box, wait for a thread exit
 # main gui event thread stays alive during wait
 # as coded returns only after thread has finished
 # popup.wait_variable(threadExitVar) may work too

Programming Python, 2nd Edition, O’Reilly

IT-SC book 710

 popup = Toplevel()
 popup.title('PyMail Wait')
 popup.protocol('WM_DELETE_WINDOW', lambda:0) # ignore deletes
 label = Label(popup, text=message+'...')
 label.config(height=10, width=40, cursor='watch') # busy cursor
 label.pack()
 popup.focus_set() # grab
application
 popup.grab_set() # wait for
thread exit
 waitForThreadExit(popup) # gui alive
during wait
 print 'thread exit caught'
 popup.destroy()

def loadMailThread():
 # load mail while main thread handles gui events
 global msgList, errInfo, threadExitVar
 print 'load start'
 errInfo = ''
 try:
 nextnum = len(msgList) + 1
 newmail = pymail.loadmessages(mailserver, mailuser, mailpswd,
nextnum)
 msgList = msgList + newmail
 except:
 exc_type, exc_value = sys.exc_info()[:2] #
thread exc
 errInfo = '\n' + str(exc_type) + '\n' + str(exc_value)
 print 'load exit'
 threadExitVar = 1 # signal main thread

def onLoadMail():
 # load all (or new) pop email
 getpassword()
 thread.start_new_thread(loadMailThread, ())
 busyInfoBoxWait('Retrieving mail')
 if errInfo:
 global mailpswd # zap pswd so can reinput
 mailpswd = None
 showerror('PyMail', 'Error loading mail\n' + errInfo)
 fillIndex(msgList)

def onViewRawMail():
 # view selected message - raw mail text with header lines
 msgnum = selectedMsg()
 if not (1 <= msgnum <= len(msgList)):
 showerror('PyMail', 'No message selected')
 else:
 text = msgList[msgnum-1] # put in ScrolledText
 from ScrolledText import ScrolledText
 window = Toplevel()
 window.title('PyMail raw message viewer #' + str(msgnum))

Programming Python, 2nd Edition, O’Reilly

IT-SC book 711

 browser = ScrolledText(window)
 browser.insert('0.0', text)
 browser.pack(expand=YES, fill=BOTH)

def onViewFormatMail():
 # view selected message - popup formatted display
 msgnum = selectedMsg()
 if not (1 <= msgnum <= len(msgList)):
 showerror('PyMail', 'No message selected')
 else:
 mailtext = msgList[msgnum-1] # put in a TextEditor
form
 textfile = StringIO.StringIO(mailtext)
 headers = rfc822.Message(textfile) # strips header lines
 bodytext = textfile.read() # rest is message body
 editmail('View #%d' % msgnum,
 headers.get('From', '?'),
 headers.get('To', '?'),
 headers.get('Subject', '?'),
 bodytext,
 headers.get('Cc', '?'))

use objects that retain prior directory for the next
select, instead of simple asksaveasfilename() dialog

saveOneDialog = saveAllDialog = None

def myasksaveasfilename_one():
 global saveOneDialog
 if not saveOneDialog:
 saveOneDialog = SaveAs(title='PyMail Save File')
 return saveOneDialog.show()

def myasksaveasfilename_all():
 global saveAllDialog
 if not saveAllDialog:
 saveAllDialog = SaveAs(title='PyMail Save All File')
 return saveAllDialog.show()

def onSaveMail():
 # save selected message in file
 if allModeVar.get():
 mailfile = myasksaveasfilename_all()
 if mailfile:
 try:
 # maybe this should be a thread
 for i in range(1, len(msgList)+1):
 pymail.savemessage(i, mailfile, msgList)
 except:
 showerror('PyMail', 'Error during save')
 else:
 msgnum = selectedMsg()
 if not (1 <= msgnum <= len(msgList)):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 712

 showerror('PyMail', 'No message selected')
 else:
 mailfile = myasksaveasfilename_one()
 if mailfile:
 try:
 pymail.savemessage(msgnum, mailfile, msgList)
 except:
 showerror('PyMail', 'Error during save')

def onDeleteMail():
 # mark selected message for deletion on exit
 global toDelete
 if allModeVar.get():
 toDelete = range(1, len(msgList)+1)
 else:
 msgnum = selectedMsg()
 if not (1 <= msgnum <= len(msgList)):
 showerror('PyMail', 'No message selected')
 elif msgnum not in toDelete:
 toDelete.append(msgnum) # fails if in list twice

def sendMailThread(From, To, Cc, Subj, text):
 # send mail while main thread handles gui events
 global errInfo, threadExitVar
 import smtplib, time
 from mailconfig import smtpservername
 print 'send start'

 date = time.ctime(time.time())
 Cchdr = (Cc and 'Cc: %s\n' % Cc) or ''
 hdrs = ('From: %s\nTo: %s\n%sDate: %s\nSubject: %s\n'
 % (From, To, Cchdr, date, Subj))
 hdrs = hdrs + 'X-Mailer: PyMailGui Version 1.0 (Python)\n'

 Ccs = (Cc and string.split(Cc, ';')) or [] # some servers
reject ['']
 Tos = string.split(To, ';') + Ccs # cc: hdr line, and
To list
 Tos = map(string.strip, Tos) # some addrs can
have ','s
 print 'Connecting to mail...', Tos # strip spaces
around addrs

 errInfo = ''
 failed = {} # smtplib may raise
except
 try: # or return failed
Tos dict
 server = smtplib.SMTP(smtpservername)
 failed = server.sendmail(From, Tos, hdrs + text)
 server.quit()
 except:
 exc_type, exc_value = sys.exc_info()[:2] # thread exc
 excinfo = '\n' + str(exc_type) + '\n' + str(exc_value)
 errInfo = 'Error sending mail\n' + excinfo

Programming Python, 2nd Edition, O’Reilly

IT-SC book 713

 else:
 if failed: errInfo = 'Failed recipients:\n' + str(failed)

 print 'send exit'
 threadExitVar = 1 # signal main thread

def sendMail(From, To, Cc, Subj, text):
 # send completed email
 thread.start_new_thread(sendMailThread, (From, To, Cc, Subj, text))
 busyInfoBoxWait('Sending mail')
 if errInfo:
 showerror('PyMail', errInfo)

def onWriteReplyFwdSend(window, editor, hdrs):
 # mail edit window send button press
 From, To, Cc, Subj = hdrs
 sendtext = editor.getAllText()
 sendMail(From.get(), To.get(), Cc.get(), Subj.get(), sendtext)
 if not errInfo:
 window.destroy() # else keep to retry or save

def editmail(mode, From, To='', Subj='', origtext='', Cc=''):
 # create a new mail edit/view window
 win = Toplevel()
 win.title('PyMail - '+ mode)
 win.iconname('PyMail')
 viewOnly = (mode[:4] == 'View')

 # header entry fields
 frm = Frame(win); frm.pack(side=TOP, fill=X)
 lfrm = Frame(frm); lfrm.pack(side=LEFT, expand=NO, fill=BOTH)
 mfrm = Frame(frm); mfrm.pack(side=LEFT, expand=NO, fill=NONE)
 rfrm = Frame(frm); rfrm.pack(side=RIGHT, expand=YES, fill=BOTH)
 hdrs = []
 for (label, start) in [('From:', From),
 ('To:', To), # order matters on
send
 ('Cc:', Cc),
 ('Subj:', Subj)]:
 lab = Label(mfrm, text=label, justify=LEFT)
 ent = Entry(rfrm)
 lab.pack(side=TOP, expand=YES, fill=X)
 ent.pack(side=TOP, expand=YES, fill=X)
 ent.insert('0', start)
 hdrs.append(ent)

 # send, cancel buttons (need new editor)
 editor = TextEditorComponentMinimal(win)
 sendit = (lambda w=win, e=editor, h=hdrs: onWriteReplyFwdSend(w, e,
h))

 for (label, callback) in [('Cancel', win.destroy), ('Send',
sendit)]:
 if not (viewOnly and label == 'Send'):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 714

 b = Button(lfrm, text=label, command=callback)
 b.config(bg='beige', relief=RIDGE, bd=2)
 b.pack(side=TOP, expand=YES, fill=BOTH)

 # body text editor: pack last=clip first
 editor.pack(side=BOTTOM) # may be multiple
editors
 if (not viewOnly) and mailconfig.mysignature: # add auto
signature text?
 origtext = ('\n%s\n' % mailconfig.mysignature) + origtext
 editor.setAllText(origtext)

def onWriteMail():
 # compose new email
 editmail('Write', From=mailconfig.myaddress)

def quoteorigtext(msgnum):
 origtext = msgList[msgnum-1]
 textfile = StringIO.StringIO(origtext)
 headers = rfc822.Message(textfile) # strips header lines
 bodytext = textfile.read() # rest is message
body
 quoted = '\n-----Original Message-----\n'
 for hdr in ('From', 'To', 'Subject', 'Date'):
 quoted = quoted + ('%s: %s\n' % (hdr, headers.get(hdr, '?')))
 quoted = quoted + '\n' + bodytext
 quoted = '\n' + string.replace(quoted, '\n', '\n> ')
 return quoted

def onReplyMail():
 # reply to selected email
 msgnum = selectedMsg()
 if not (1 <= msgnum <= len(msgList)):
 showerror('PyMail', 'No message selected')
 else:
 text = quoteorigtext(msgnum)
 hdrs = rfc822.Message(StringIO.StringIO(msgList[msgnum-1]))
 toname, toaddr = hdrs.getaddr('From')
 if toname and ',' in toname: toname = '"%s"' % toname
 To = '%s <%s>' % (toname, toaddr)
 From = mailconfig.myaddress or ('%s <%s>' % hdrs.getaddr('To'))
 Subj = 'Re: ' + hdrs.get('Subject', '(no subject)')
 editmail('Reply', From, To, Subj, text)

def onFwdMail():
 # forward selected email
 msgnum = selectedMsg()
 if not (1 <= msgnum <= len(msgList)):
 showerror('PyMail', 'No message selected')
 else:
 text = quoteorigtext(msgnum)
 hdrs = rfc822.Message(StringIO.StringIO(msgList[msgnum-1]))
 From = mailconfig.myaddress or ('%s <%s>' % hdrs.getaddr('To'))

Programming Python, 2nd Edition, O’Reilly

IT-SC book 715

 Subj = 'Fwd: ' + hdrs.get('Subject', '(no subject)')
 editmail('Forward', From, '', Subj, text)

def deleteMailThread(toDelete):
 # delete mail while main thread handles gui events
 global errInfo, threadExitVar
 print 'delete start'
 try:
 pymail.deletemessages(mailserver, mailuser, mailpswd, toDelete,
0)
 except:
 exc_type, exc_value = sys.exc_info()[:2]
 errInfo = '\n' + str(exc_type) + '\n' + str(exc_value)
 else:
 errInfo = ''
 print 'delete exit'
 threadExitVar = 1 # signal main thread

def onQuitMail():
 # exit mail tool, delete now
 if askyesno('PyMail', 'Verify Quit?'):
 if toDelete and askyesno('PyMail', 'Really Delete Mail?'):
 getpassword()
 thread.start_new_thread(deleteMailThread, (toDelete,))
 busyInfoBoxWait('Deleting mail')
 if errInfo:
 showerror('PyMail', 'Error while deleting:\n' +
errInfo)
 else:
 showinfo('PyMail', 'Mail deleted from server')
 rootWin.quit()

def askpassword(prompt, app='PyMail'): # getpass.getpass uses stdin,
not GUI
 win = Toplevel() # tkSimpleDialog.askstring
echos input
 win.title(app + ' Prompt')
 Label(win, text=prompt).pack(side=LEFT)
 entvar = StringVar()
 ent = Entry(win, textvariable=entvar, show='*')
 ent.pack(side=RIGHT, expand=YES, fill=X)
 ent.bind('<Return>', lambda event, savewin=win: savewin.destroy())
 ent.focus_set(); win.grab_set(); win.wait_window()
 win.update()
 return entvar.get() # ent widget is now gone

def getpassword():
 # unless known, set global pop password
 # from client-side file or popup dialog
 global mailpswd
 if mailpswd:
 return
 else:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 716

 try:
 localfile = open(mailconfig.poppasswdfile)
 mailpswd = localfile.readline()[:-1]
 if debugme: print 'local file password', repr(mailpswd)
 except:
 prompt = 'Password for %s on %s?' % (mailuser,
mailserver)
 mailpswd = askpassword(prompt)
 if debugme: print 'user input password', repr(mailpswd)

def decorate(rootWin):
 # window manager stuff for main window
 rootWin.title('PyMail 1.0')
 rootWin.iconname('PyMail')
 rootWin.protocol('WM_DELETE_WINDOW', onQuitMail)

def makemainwindow(parent=None):
 # make the main window
 global rootWin, listBox, allModeVar
 if parent:
 rootWin = Frame(parent) # attach to a parent
 rootWin.pack(expand=YES, fill=BOTH)
 else:
 rootWin = Tk() # assume I'm standalone
 decorate(rootWin)

 # add main buttons at bottom
 frame1 = Frame(rootWin)
 frame1.pack(side=BOTTOM, fill=X)
 allModeVar = IntVar()
 Checkbutton(frame1, text="All",
variable=allModeVar).pack(side=RIGHT)
 actions = [('Load', onLoadMail), ('View', onViewFormatMail),
 ('Save', onSaveMail), ('Del', onDeleteMail),
 ('Write', onWriteMail), ('Reply', onReplyMail),
 ('Fwd', onFwdMail), ('Quit', onQuitMail)]
 for (title, callback) in actions:
 Button(frame1, text=title, command=callback).pack(side=LEFT,
fill=X)

 # add main listbox and scrollbar
 frame2 = Frame(rootWin)
 vscroll = Scrollbar(frame2)
 fontsz = (sys.platform[:3] == 'win' and 8) or 10
 listBox = Listbox(frame2, bg='white', font=('courier', fontsz))

 # crosslink listbox and scrollbar
 vscroll.config(command=listBox.yview, relief=SUNKEN)
 listBox.config(yscrollcommand=vscroll.set, relief=SUNKEN,
selectmode=SINGLE)
 listBox.bind('<Double-1>', lambda event: onViewRawMail())
 frame2.pack(side=TOP, expand=YES, fill=BOTH)
 vscroll.pack(side=RIGHT, fill=BOTH)
 listBox.pack(side=LEFT, expand=YES, fill=BOTH)
 return rootWin

Programming Python, 2nd Edition, O’Reilly

IT-SC book 717

load text block string
from PyMailGuiHelp import helptext

def showhelp(helptext=helptext, appname='PyMail'): # show helptext in
 from ScrolledText import ScrolledText # a non-modal
dialog
 new = Toplevel() # make new popup
window
 bar = Frame(new) # pack first=clip
last
 bar.pack(side=BOTTOM, fill=X)
 code = Button(bar, bg='beige', text="Source", command=showsource)
 quit = Button(bar, bg='beige', text="Cancel", command=new.destroy)
 code.pack(pady=1, side=LEFT)
 quit.pack(pady=1, side=LEFT)
 text = ScrolledText(new) # add Text +
scrollbar
 text.config(font='system', width=70) # too big for
showinfo
 text.config(bg='steelblue', fg='white') # erase on btn or
return
 text.insert('0.0', helptext)
 text.pack(expand=YES, fill=BOTH)
 new.title(appname + " Help")
 new.bind("<Return>", (lambda event, new=new: new.destroy()))

def showsource():
 # tricky, but open
 try: # like web
getfile.cgi
 source = open('PyMailGui.py').read() # in cwd or below
it?
 except:
 try: # or use
find.find(f)[0],
 import os # $PP2EHOME,
guessLocation
 from PP2E.Launcher import findFirst # or spawn pyedit
with arg
 here = os.curdir
 source = open(findFirst(here, 'PyMailGui.py')).read()
 except:
 source = 'Sorry - cannot find my source file'
 subject = 'Main script [see also: PyMailGuiHelp, pymail,
mailconfig]'
 editmail('View Source Code', 'PyMailGui', 'User', subject, source)

def container():
 # use attachment to add help button
 # this is a bit easier with classes
 root = Tk()
 title = Button(root, text='PyMail - a Python/Tkinter email client')
 title.config(bg='steelblue', fg='white', relief=RIDGE)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 718

 title.config(command=showhelp)
 title.pack(fill=X)
 decorate(root)
 return root

if __name__ == '__main__':
 # run stand-alone or attach
 rootWin = makemainwindow(container()) # or makemainwindow()
 rootWin.mainloop()

11.5 Other Client-Side Tools

So far in this chapter, we have focused on Python's FTP and email processing tools
and have met a handful of client-side scripting modules along the way: ftplib,
poplib, smtplib, mhlib, mimetools, urllib, rfc822, and so on. This set is
representative of Python's library tools for transferring and processing information
over the Internet, but it's not at all complete. A more or less comprehensive list of
Python's Internet-related modules appears at the start of the previous chapter.
Among other things, Python also includes client-side support libraries for Internet
news, Telnet, HTTP, and other standard protocols.

11.5.1 NNTP: Accessing Newsgroups

Python's nntplib module supports the client-side interface to NNTP -- the Network
News Transfer Protocol -- which is used for reading and posting articles to Usenet
newsgroups in the Internet. Like other protocols, NNTP runs on top of sockets and
merely defines a standard message protocol; like other modules, nntplib hides
most of the protocol details and presents an object-based interface to Python scripts.

We won't get into protocol details here, but in brief, NNTP servers store a range of
articles on the server machine, usually in a flat-file database. If you have the domain
or IP name of a server machine that runs an NNTP server program listening on the
NNTP port, you can write scripts that fetch or post articles from any machine that
has Python and an Internet connection. For instance, the script in Example 11-24 by
default fetches and displays the last 10 articles from Python's Internet news group,
comp.lang.python, from the news.rmi.net NNTP server at my ISP.

Example 11-24. PP2E\Internet\Other\readnews.py

fetch and print usenet newsgroup postings
from comp.lang.python via the nntplib module
which really runs on top of sockets; nntplib
also supports posting new messages, etc.;
note: posts not deleted after they are read;

listonly = 0
showhdrs = ['From', 'Subject', 'Date', 'Newsgroups', 'Lines']

Programming Python, 2nd Edition, O’Reilly

IT-SC book 719

try:
 import sys
 servername, groupname, showcount = sys.argv[1:]
 showcount = int(showcount)
except:
 servername = 'news.rmi.net'
 groupname = 'comp.lang.python' # cmd line args or
defaults
 showcount = 10 # show last showcount
posts

connect to nntp server
print 'Connecting to', servername, 'for', groupname
from nntplib import NNTP
connection = NNTP(servername)
(reply, count, first, last, name) = connection.group(groupname)
print '%s has %s articles: %s-%s' % (name, count, first, last)

get request headers only
fetchfrom = str(int(last) - (showcount-1))
(reply, subjects) = connection.xhdr('subject', (fetchfrom + '-' +
last))

show headers, get message hdr+body
for (id, subj) in subjects: # [-showcount:] if fetch
all hdrs
 print 'Article %s [%s]' % (id, subj)
 if not listonly and raw_input('=> Display?') in ['y', 'Y']:
 reply, num, tid, list = connection.head(id)
 for line in list:
 for prefix in showhdrs:
 if line[:len(prefix)] == prefix:
 print line[:80]; break
 if raw_input('=> Show body?') in ['y', 'Y']:
 reply, num, tid, list = connection.body(id)
 for line in list:
 print line[:80]
 print
print connection.quit()

As for FTP and email tools, the script creates an NNTP object and calls its methods to
fetch newsgroup information and articles' header and body text. The xhdr method,
for example, loads selected headers from a range of messages. When run, this
program connects to the server and displays each article's subject line, pausing to
ask whether it should fetch and show the article's header information lines (headers
listed in variable showhdrs only) and body text:

C:\...\PP2E\Internet\Other>python readnews.py
Connecting to news.rmi.net for comp.lang.python
comp.lang.python has 3376 articles: 30054-33447
Article 33438 [Embedding? file_input and eval_input]
=> Display?

Article 33439 [Embedding? file_input and eval_input]
=> Display?y
From: James Spears <jimsp@ichips.intel.com>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 720

Newsgroups: comp.lang.python
Subject: Embedding? file_input and eval_input
Date: Fri, 11 Aug 2000 10:55:39 -0700
Lines: 34
=> Show body?

Article 33440 [Embedding? file_input and eval_input]
=> Display?

Article 33441 [Embedding? file_input and eval_input]
=> Display?

Article 33442 [Embedding? file_input and eval_input]
=> Display?

Article 33443 [Re: PYHTONPATH]
=> Display?y
Subject: Re: PYHTONPATH
Lines: 13
From: sp00fd <sp00fdNOspSPAM@yahoo.com.invalid>
Newsgroups: comp.lang.python
Date: Fri, 11 Aug 2000 11:06:23 -0700
=> Show body?y
Is this not what you were looking for?

Add to cgi script:
import sys
sys.path.insert(0, "/path/to/dir")
import yourmodule

Got questions? Get answers over the phone at Keen.com.
Up to 100 minutes free!
http://www.keen.com

Article 33444 [Loading new code...]
=> Display?

Article 33445 [Re: PYHTONPATH]
=> Display?

Article 33446 [Re: Compile snags on AIX & IRIX]
=> Display?

Article 33447 [RE: string.replace() can't replace newline
characters???]
=> Display?

205 GoodBye

We can also pass this script an explicit server name, newsgroup, and display count
on the command line to apply it in different ways. Here is this Python script checking
the last few messages in Perl and Linux newsgroups:

C:\...\PP2E\Internet\Other>python readnews.py news.rmi.net
comp.lang.perl.misc 5

Programming Python, 2nd Edition, O’Reilly

IT-SC book 721

Connecting to news.rmi.net for comp.lang.perl.misc
comp.lang.perl.misc has 5839 articles: 75543-81512
Article 81508 [Re: Simple Argument Passing Question]
=> Display?

Article 81509 [Re: How to Access a hash value?]
=> Display?

Article 81510 [Re: London =?iso-8859-1?Q?=A330-35K?= Perl Programmers
Required]
=> Display?

Article 81511 [Re: ODBC question]
=> Display?

Article 81512 [Re: ODBC question]
=> Display?

205 GoodBye

C:\...\PP2E\Internet\Other>python readnews.py news.rmi.net
comp.os.linux 4
Connecting to news.rmi.net for comp.os.linux
comp.os.linux has 526 articles: 9015-9606
Article 9603 [Re: Simple question about CD-Writing for Linux]
=> Display?

Article 9604 [Re: How to start the ftp?]
=> Display?

Article 9605 [Re: large file support]
=> Display?

Article 9606 [Re: large file support]
=> Display?y
From: andy@physast.uga.edu (Andreas Schweitzer)
Newsgroups: comp.os.linux.questions,comp.os.linux.admin,comp.os.linux
Subject: Re: large file support
Date: 11 Aug 2000 18:32:12 GMT
Lines: 19
=> Show body?n

205 GoodBye

With a little more work, we could turn this script into a full-blown news interface. For
instance, new articles could be posted from within a Python script with code of this
form (assuming the local file already contains proper NNTP header lines):

to post, say this (but only if you really want to post!)
connection = NNTP(servername)
localfile = open('filename') # file has proper headers
connection.post(localfile) # send text to newsgroup
connection.quit()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 722

We might also add a Tkinter-based GUI frontend to this script to make it more
usable, but we'll leave such an extension on the suggested exercise heap (see also
the PyMailGui interface's suggested extensions in the previous section).

11.5.2 HTTP: Accessing Web Sites

Python's standard library (that is, modules that are installed with the interpreter)
also includes client-side support for HTTP -- the Hypertext Transfer Protocol -- a
message structure and port standard used to transfer information on the World Wide
Web. In short, this is the protocol that your web browser (e.g., Internet Explorer,
Netscape) uses to fetch web pages and run applications on remote servers as you
surf the Net. At the bottom, it's just bytes sent over port 80.

To really understand HTTP-style transfers, you need to know some of the server-side
scripting topics covered in the next three chapters (e.g., script invocations and
Internet address schemes), so this section may be less useful to readers with no
such background. Luckily, though, the basic HTTP interfaces in Python are simple
enough for a cursory understanding even at this point in the book, so let's take a
brief look here.

Python's standard httplib module automates much of the protocol defined by HTTP
and allows scripts to fetch web pages much like web browsers. For instance, the
script in Example 11-25 can be used to grab any file from any server machine
running an HTTP web server program. As usual, the file (and descriptive header
lines) is ultimately transferred over a standard socket port, but most of the
complexity is hidden by the httplib module.

Example 11-25. PP2E\Internet\Other\http-getfile.py

fetch a file from an http (web) server over sockets via httplib;
the filename param may have a full directory path, and may name a cgi
script with query parameters on the end to invoke a remote program;
fetched file data or remote program output could be saved to a local
file to mimic ftp, or parsed with string.find or the htmllib module;

import sys, httplib
showlines = 6
try:
 servername, filename = sys.argv[1:] # cmdline args?
except:
 servername, filename = 'starship.python.net', '/index.html'

print servername, filename
server = httplib.HTTP(servername) # connect to http
site/server
server.putrequest('GET', filename) # send request and
headers
server.putheader('Accept', 'text/html') # POST requests work
here too
server.endheaders() # as do cgi script
file names

Programming Python, 2nd Edition, O’Reilly

IT-SC book 723

errcode, errmsh, replyheader = server.getreply() # read reply info
headers
if errcode != 200: # 200 means success
 print 'Error sending request', errcode
else:
 file = server.getfile() # file obj for data
received
 data = file.readlines()
 file.close() # show lines with
eoln at end
 for line in data[:showlines]: print line, # to save, write data
to file

Desired server names and filenames can be passed on the command line to override
hardcoded defaults in the script. You need to also know something of the HTTP
protocol to make the most sense of this code, but it's fairly straightforward to
decipher. When run on the client, this script makes a HTTP object to connect to the
server, sends it a GET request along with acceptable reply types, and then reads the
server's reply. Much like raw email message text, the HTTP server's reply usually
begins with a set of descriptive header lines, followed by the contents of the
requested file. The HTTP object's getfile method gives us a file object from which
we can read the downloaded data.

Let's fetch a few files with this script. Like all Python client-side scripts, this one
works on any machine with Python and an Internet connection (here it runs on a
Windows client). Assuming that all goes well, the first few lines of the downloaded
file are printed; in a more realistic application, the text we fetch would probably be
saved to a local file, parsed with Python's htmllib module, and so on. Without
arguments, the script simply fetches the HTML index page at
http://starship.python.org:

C:\...\PP2E\Internet\Other>python http-getfile.py
starship.python.net /index.html
<HTML>
<HEAD>
 <META NAME="GENERATOR" CONTENT="HTMLgen">
 <TITLE>Starship Python</TITLE>
 <SCRIPT language="JavaScript">
<!-- // mask from the infidel

But we can also list a server and file to be fetched on the command line, if we want
to be more specific. In the following code, we use the script to fetch files from two
different web sites by listing their names on the command lines (I've added line
breaks to make these lines fit in this book). Notice that the filename argument can
include an arbitrary remote directory path to the desired file, as in the last fetch
here:

C:\...\PP2E\Internet\Other>python http-getfile.py
www.python.org /index.html
www.python.org /index.html
<HTML>
<!-- THIS PAGE IS AUTOMATICALLY GENERATED. DO NOT EDIT. -->
<!-- Wed Aug 23 17:29:24 2000 -->
<!-- USING HT2HTML 1.1 -->
<!-- SEE http://www.python.org/~bwarsaw/software/pyware.html -->

Programming Python, 2nd Edition, O’Reilly

IT-SC book 724

<!-- User-specified headers:

C:\...\PP2E\Internet\Other>python http-getfile.py www.python.org /index
www.python.org /index
Error sending request 404

C:\...\PP2E\Internet\Other>python http-getfile.py starship.python.net
 /~lutz/index.html
starship.python.net /~lutz/index.html
<HTML>
<HEAD><TITLE>Mark Lutz's Starship page</TITLE></HEAD>
<BODY>

<H1>Greetings</H1>

Also notice the second attempt in this code: if the request fails, the script receives
and displays an HTTP error code from the server (we forgot the .html on the
filename). With the raw HTTP interfaces, we need to be precise about what we want.

Technically, the string we call filename in the script can refer to either a simple
static web page file, or a server-side program that generates HTML as its output.
Those server-side programs are usually called CGI scripts -- the topic of the next
three chapters. For now, keep in mind that when filename refers to a script, this
program can be used to invoke another program that resides on a remote server
machine. In that case, we can also specify parameters (called a query string) to be
passed to the remote program after a ?. Here, for instance, we pass a
language=Python parameter to a CGI script we will meet in the next chapter:

C:\...\PP2E\Internet\Other>python http-getfile.py starship.python.net

/~lutz/Basics/languages.cgi?language=Python
starship.python.net /~lutz/Basics/languages.cgi?language=Python
<TITLE>Languages</TITLE>
<H1>Syntax</H1><HR>
<H3>Python</H3><P><PRE>
 print 'Hello World'
</PRE></P>

<HR>

This book has much more to say about HTML, CGI scripts, and the meaning of an
HTTP GET request (one way to format information sent to a HTTP server) later, so
we'll skip additional details here. Suffice it to say, though, that we could use the
HTTP interfaces to write our own web browsers and build scripts that use web sites
as though they were subroutines. By sending parameters to remote programs and
parsing their results, web sites can take on the role of simple in-process functions
(albeit, much more slowly and indirectly).

11.5.2.1 urllib revisited

The httplib module we just met provides low-level control for HTTP clients. When
dealing with items available on the Web, though, it's often easier to code downloads
with Python's standard urllib module introduced in the FTP section of this chapter.
Since this module is another way to talk HTTP, let's expand on its interfaces here.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 725

Recall that given a URL, urllib either downloads the requested object over the Net
to a local file, or gives us a file-like object from which we can read the requested
object's contents. Because of that, the script in Example 11-26 does the same work
as the httplib script we just wrote, but requires noticeably less typing.

Example 11-26. PP2E\Internet\Other\http-getfile-urllib1.py

fetch a file from an http (web) server over sockets via urllib;
urllib supports http, ftp, files, etc. via url address strings;
for hhtp, the url can name a file or trigger a remote cgi script;
see also the urllib example in the ftp section, and the cgi
script invocation in a later chapter; files can be fetched over
the net with Python in many ways that vary in complexity and
server requirements: sockets, ftp, http, urllib, cgi outputs;
caveat: should run urllib.quote on filename--see later chapters;

import sys, urllib
showlines = 6
try:
 servername, filename = sys.argv[1:] # cmdline args?
except:
 servername, filename = 'starship.python.net', '/index.html'

remoteaddr = 'http://%s%s' % (servername, filename) # can name a cgi
script too
print remoteaddr
remotefile = urllib.urlopen(remoteaddr) # returns input
file object
remotedata = remotefile.readlines() # read data
directly here
remotefile.close()
for line in remotedata[:showlines]: print line,

Almost all HTTP transfer details are hidden behind the urllib interface here. This
version works about the same as the httplib version we wrote first, but builds and
submits an Internet URL address to get its work done (the constructed URL is printed
as the script's first output line). As we saw in the FTP section of this chapter, the
urllib urlopen function returns a file-like object from which we can read the
remote data. But because the constructed URLs begin with "http://" here, the
urllib module automatically employs the lower-level HTTP interfaces to download
the requested file, not FTP:

C:\...\PP2E\Internet\Other>python http-getfile-urllib1.py
http://starship.python.net/index.html
<HTML>
<HEAD>
 <META NAME="GENERATOR" CONTENT="HTMLgen">
 <TITLE>Starship Python</TITLE>
 <SCRIPT language="JavaScript">
<!-- // mask from the infidel

C:\...\PP2E\Internet\Other>python http-getfile-urllib1.py
www.python.org /index

Programming Python, 2nd Edition, O’Reilly

IT-SC book 726

http://www.python.org/index
<HTML>
<!-- THIS PAGE IS AUTOMATICALLY GENERATED. DO NOT EDIT. -->
<!-- Fri Mar 3 10:28:30 2000 -->
<!-- USING HT2HTML 1.1 -->
<!-- SEE http://www.python.org/~bwarsaw/software/pyware.html -->
<!-- User-specified headers:

C:\...\PP2E\Internet\Other>python http-getfile-urllib1.py
starship.python.net
 /~lutz/index.html
http://starship.python.net/~lutz/index.html
<HTML>
<HEAD><TITLE>Mark Lutz's Starship page</TITLE></HEAD>
<BODY>

<H1>Greetings</H1>

C:\...\PP2E\Internet\Other>python http-getfile-urllib1.py
starship.python.net

/~lutz/Basics/languages.cgi?language=Java
http://starship.python.net/~lutz/Basics/languages.cgi?language=Java
<TITLE>Languages</TITLE>
<H1>Syntax</H1><HR>
<H3>Java</H3><P><PRE>
 System.out.println("Hello World");
</PRE></P>

<HR>

As before, the filename argument can name a simple file or a program invocation
with optional parameters at the end. If you read this output carefully, you'll notice
that this script still works if you leave the .html off the end of a filename (in the
second command line); unlike the raw HTTP version, the URL-based interface is
smart enough to do the right thing.

11.5.2.2 Other urllib interfaces

One last mutation: the following urllib downloader script uses the slightly higher-
level urlretrieve interface in that module to automatically save the downloaded file
or script output to a local file on the client machine. This interface is handy if we
really mean to store the fetched data (e.g., to mimic the FTP protocol). If we plan on
processing the downloaded data immediately, though, this form may be less
convenient than the version we just met: we need to open and read the saved file.
Moreover, we need to provide extra protocol for specifying or extracting a local
filename, as in Example 11-27.

Example 11-27. PP2E\Internet\Other\http-getfile-urllib2.py

fetch a file from an http (web) server over sockets via urlllib;
this version uses an interface that saves the fetched data to a
local file; the local file name is either passed in as a cmdline
arg or stripped from the url with urlparse: the filename argument

Programming Python, 2nd Edition, O’Reilly

IT-SC book 727

may have a directory path at the front and query parmams at end,
so os.path.split is not enough (only splits off directory path);
caveat: should run urllib.quote on filename--see later chapters;

import sys, os, urllib, urlparse
showlines = 6
try:
 servername, filename = sys.argv[1:3] # first 2 cmdline
args?
except:
 servername, filename = 'starship.python.net', '/index.html'

remoteaddr = 'http://%s%s' % (servername, filename) # any address on
the net
if len(sys.argv) == 4: # get result file
name
 localname = sys.argv[3]
else:
 (scheme, server, path, parms, query, frag) =
urlparse.urlparse(remoteaddr)
 localname = os.path.split(path)[1]

print remoteaddr, localname
urllib.urlretrieve(remoteaddr, localname) # can be file
or script
remotedata = open(localname).readlines() # saved to
local file
for line in remotedata[:showlines]: print line,

Let's run this last variant from a command line. Its basic operation is the same as
the last two versions: like the prior one, it builds a URL, and like both of the last two,
we can list an explicit target server and file path on the command line:

C:\...\PP2E\Internet\Other>python http-getfile-urllib2.py
http://starship.python.net/index.html index.html
<HTML>
<HEAD>
 <META NAME="GENERATOR" CONTENT="HTMLgen">
 <TITLE>Starship Python</TITLE>
 <SCRIPT language="JavaScript">
<!-- // mask from the infidel

C:\...\PP2E\Internet\Other>python http-getfile-urllib2.py
 www.python.org /index.html
http://www.python.org/index.html index.html
<HTML>
<!-- THIS PAGE IS AUTOMATICALLY GENERATED. DO NOT EDIT. -->
<!-- Wed Aug 23 17:29:24 2000 -->
<!-- USING HT2HTML 1.1 -->
<!-- SEE http://www.python.org/~bwarsaw/software/pyware.html -->
<!-- User-specified headers:

Because this version uses an urllib interface that automatically saves the
downloaded data in a local file, it's more directly like FTP downloads in spirit. But this
script must also somehow come up with a local filename for storing the data. You

Programming Python, 2nd Edition, O’Reilly

IT-SC book 728

can either let the script strip and use the base filename from the constructed URL, or
explicitly pass a local filename as a last command-line argument. In the prior run, for
instance, the downloaded web page is stored in local file index.html -- the base
filename stripped from the URL (the script prints the URL and local filename as its
first output line). In the next run, the local filename is passed explicitly as python-
org-index.html:

C:\...\PP2E\Internet\Other>python http-getfile-urllib2.py
www.python.org
 /index.html python-org-
index.html
http://www.python.org/index.html python-org-index.html
<HTML>
<!-- THIS PAGE IS AUTOMATICALLY GENERATED. DO NOT EDIT. -->
<!-- Wed Aug 23 17:29:24 2000 -->
<!-- USING HT2HTML 1.1 -->
<!-- SEE http://www.python.org/~bwarsaw/software/pyware.html -->
<!-- User-specified headers:

C:\...\PP2E\Internet\Other>python http-getfile-urllib2.py
starship.python.net
 /~lutz/home/index.html
http://starship.python.net/~lutz/home/index.html index.html
<HTML>

<HEAD>
<TITLE>Mark Lutz's Home Page</TITLE>
</HEAD>

C:\...\PP2E\Internet\Other>python http-getfile-urllib2.py
starship.python.net
 /~lutz/home/about-pp.html
http://starship.python.net/~lutz/home/about-pp.html about-pp.html
<HTML>

<HEAD>
<TITLE>About "Programming Python"</TITLE>
</HEAD>

Below is a listing showing this third version being used to trigger a remote program.
As before, if you don't give the local filename explicitly, the script strips the base
filename out of the filename argument. That's not always easy or appropriate for
program invocations -- the filename can contain both a remote directory path at the
front, and query parameters at the end for a remote program invocation.

Given a script invocation URL and no explicit output filename, the script extracts the
base filename in the middle by using first the standard urlparse module to pull out
the file path, and then os.path.split to strip off the directory path. However, the
resulting filename is a remote script's name, and may or may not be an appropriate
place to store the data locally. In the first run below, for example, the script's output
goes in a local file called languages.cgi, the script name in the middle of the URL; in
the second, we name the output CxxSyntax.html explicitly instead to suppress
filename extraction:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 729

C:\...\PP2E\Internet\Other>python http-getfile-urllib2.py
starship.python.net
 /~lutz/Basics/languages.cgi?language=Perl
http://starship.python.net/~lutz/Basics/languages.cgi?language=Perl
 languages.cgi
<TITLE>Languages</TITLE>
<H1>Syntax</H1><HR>
<H3>Perl</H3><P><PRE>
 print "Hello World\n";
</PRE></P>

<HR>

C:\...\PP2E\Internet\Other>python http-getfile-urllib2.py
starship.python.net
 /~lutz/Basics/languages.cgi?language=C++
CxxSyntax.html
http://starship.python.net/~lutz/Basics/languages.cgi?language=C++
 CxxSyntax.html
<TITLE>Languages</TITLE>
<H1>Syntax</H1><HR>
<H3>C </H3><P><PRE>
Sorry--I don't know that language
</PRE></P>

<HR>

The remote script returns a not-found message when passed "C++" in the last
command here. It turns out that "+" is a special character in URL strings (meaning a
space), and to be robust, both of the urllib scripts we've just written should really
run the filename string though something called urllib.quote , a tool that escapes
special characters for transmission. We will talk about this in depth in the next
chapter, so consider this all a preview for now. But to make this invocation work, we
need to use special sequences in the constructed URL; here's how to do it by hand:

C:\...\PP2E\Internet\Other>python http-getfile-urllib2.py
starship.python.net
 /~lutz/Basics/languages.cgi?language=C%2b%2b
CxxSyntax.html
http://starship.python.net/~lutz/Basics/languages.cgi?language=C%2b%2b
 CxxSyntax.html
<TITLE>Languages</TITLE>
<H1>Syntax</H1><HR>
<H3>C++</H3><P><PRE>
 cout << "Hello World" << endl;
</PRE></P>

<HR>

The odd "%2b" strings in this command line are not entirely magical: the escaping
required for URLs can be seen by running standard Python tools manually (this is
what these scripts should do automatically to handle all possible cases well):

C:\...\PP2E\Internet\Other>python
Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import urllib
>>> urllib.quote('C++')
'C%2b%2b'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 730

Again, don't work too hard at understanding these last few commands; we will revisit
URLs and URL escapes in the next chapter, while exploring server-side scripting in
Python. I will also explain there why the C++ result came back with other oddities
like << -- HTML escapes for <<.

11.5.3 Other Client-Side Scripting Options

In this chapter, we've focused on client-side interfaces to standard protocols that run
over sockets, but client-side programming can take other forms, too. For instance, in
Chapter 15 we'll also see that Python code can be embedded inside the HTML code
that defines a web page, with the Windows Active Scripting extension. When Internet
Explorer downloads such a web page file from a web server, the embedded Python
scripts are actually executed on the client machine, with an object API that gives
access to the browser's context. Code in HTML is downloaded over a socket initially,
but its execution is not bound up with a socket-based protocol.

In Chapter 15, we'll also meet client-side options such as the JPython (a.k.a.
"Jython") system, a compiler that supports Python-coded Java applets -- general-
purpose programs downloaded from a server and run locally on the client when
accessed or referenced by a URL. We'll also peek at Python tools for processing XML
-- structured text that may become a common language of client/server dialogs in
the future.

In deference to time and space, though, we won't go into further details on these
and other client-side tools here. If you are interested in using Python to script
clients, you should take a few minutes to become familiar with the list of Internet
tools documented in the Python library reference manual. All work on similar
principles, but have slightly distinct interfaces.

In the next chapter, we'll hop the fence to the other side of the Internet world and
explore scripts that run on server machines. Such programs give rise to the grander
notion of applications that live entirely on the Web and are launched by web
browsers. As we take this leap in structure, keep in mind that the tools we met in
this and the previous chapter are often sufficient to implement all the distributed
processing that many applications require, and they can work in harmony with
scripts that run on a server. To completely understand the web world view, though,
we need to explore the server realm, too.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 731

Chapter 12. Server-Side Scripting

12.1 "Oh What a Tangled Web We Weave"

12.2 What's a Server-Side CGI Script?

12.3 Climbing the CGI Learning Curve

12.4 The Hello World Selector

12.5 Coding for Maintainability

12.6 More on HTML and URL Escapes

12.7 Sending Files to Clients and Servers

12.1 "Oh What a Tangled Web We Weave"

This chapter is the third part of our look at Python Internet programming. In the last
two chapters, we explored sockets and basic client-side programming interfaces such
as FTP and email. In this chapter, our main focus will be on writing server-side
scripts in Python -- a type of program usually referred to as CGI scripts. Server-side
scripting and its derivatives are at the heart of much of what happens on the Web
these days.

As we'll see, Python makes an ideal language for writing scripts to implement and
customize web sites, due to both its ease of use and its library support. In the
following two chapters, we will use the basics we learn in this chapter to implement
full-blown web sites. After that, we will wrap up with a chapter that looks at other
Internet-related topics and technologies. Here, our goal is to understand the
fundamentals of server-side scripting, before exploring systems that build upon that
basic model.

A House upon the Sand

As you read the next three chapters of this book, please keep in mind that
they are intended only as an introduction to server-side scripting with
Python. The webmaster domain is large and complex, changes continuously,
and often prescribes many ways to accomplish a given goal -- some of
which can vary from browser to browser and server to server. For instance,
the password encryption scheme of the next chapter may be unnecessary
under certain scenarios, and special HTML tags may sometimes obviate
some work we'll do here.

Given such a large and shifting knowledge base, this part of the book does
not even pretend to be a complete look at the server-side scripting domain.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 732

To become truly proficient in this area, you should study other texts for
additional webmaster-y details and tricks (e.g., O'Reilly's HTML & XHTML:
The Definitive Guide). Here, you will meet Python's CGI toolset and learn
enough to start writing substantial web sites of your own in Python. But you
should not take this text as the final word on the subject.

12.2 What's a Server-Side CGI Script?

Simply put, CGI scripts implement much of the interaction you typically experience
on the Web. They are a standard and widely used mechanism for programming web
site interaction. There are other ways to add interactive behavior to web sites with
Python, including client-side solutions (e.g., JPython applets and Active Scripting), as
well as server-side technologies, which build upon the basic CGI model (e.g., Active
Server Pages and Zope), and we will discuss these briefly at the end of Chapter 15,
too. But by and large, CGI server-side scripts are used to program much of the
activity on the Web.

12.2.1 The Script Behind the Curtain

Formally speaking, CGI scripts are programs that run on a server machine and
adhere to the Common Gateway Interface -- a model for browser/server
communications, from which CGI scripts take their name. Perhaps a more useful way
to understand CGI, though, is in terms of the interaction it implies.

Most people take this interaction for granted when browsing the Web and pressing
buttons in web pages, but there is a lot going on behind the scenes of every
transaction on the Web. From the perspective of a user, it's a fairly familiar and
simple process:

Submission. When you visit a web site to purchase a product or submit information
online, you generally fill in a form in your web browser, press a button to submit
your information, and begin waiting for a reply.

Response. Assuming all is well with both your Internet connection and the computer
you are contacting, you eventually get a reply in the form of a new web page. It may
be a simple acknowledgement (e.g, "Thanks for your order") or a new form that
must be filled out and submitted again.

And, believe it or not, that simple model is what makes most of the Web hum. But
internally, it's a bit more complex. In fact, there is a subtle client/server socket-
based architecture at work -- your web browser running on your computer is the
client, and the computer you contact over the Web is the server. Let's examine the
interaction scenario again, with all the gory details that users usually never see.

Submission

When you fill out a form page in a web browser and press a submission button,
behind the scenes your web browser sends your information across the Internet to
the server machine specified as its receiver. The server machine is usually a remote
computer that lives somewhere else in both cyberspace and reality. It is named in

Programming Python, 2nd Edition, O’Reilly

IT-SC book 733

the URL you access (the Internet address string that appears at the top of your
browser). The target server and file can be named in a URL you type explicitly, but
more typically they are specified in the HTML that defines the submission page itself
-- either in a hyperlink, or in the "action" tag of a form's HTML. However the server
is specified, the browser running on your computer ultimately sends your information
to the server as bytes over a socket, using techniques we saw in the last two
chapters. On the server machine, a program called an HTTP server runs perpetually,
listening on a socket for incoming data from browsers, usually on port number 80.

Processing

When your information shows up at the server machine, the HTTP server program
notices it first and decides how to handle the request. If the requested URL names a
simple web page (e.g., a URL ending in .html), the HTTP server opens the named
HTML file on the server machine and sends its text back to the browser over a
socket. On the client, the browser reads the HTML and uses it to construct the next
page you see. But if the URL requested by the browser names an executable
program instead (e.g., a URL ending in .cgi), the HTTP server starts the named
program on the server machine to process the request and redirects the incoming
browser data to the spawned program's stdin input stream and environment
variables. That program is usually a CGI script -- a program run on the remote
server machine somewhere in cyberspace, not on your computer. The CGI script is
responsible for handling the request from this point on; it may store your information
in a database, charge your credit card, and so on.

Response

Ultimately, the CGI script prints HTML to generate a new response page in your
browser. When a CGI script is started, the HTTP server takes care to connect the
script's stdout standard output stream to a socket that the browser is listening to.
Because of this, HTML code printed by the CGI script is sent over the Internet, back
to your browser, to produce a new page. The HTML printed back by the CGI script
works just as if it had been stored and read in from an HTML file; it can define a
simple response page or a brand new form coded to collect additional information.

In other words, CGI scripts are something like callback handlers for requests
generated by web browsers that require a program to be run dynamically; they are
automatically run on the server machine in response to actions in a browser.
Although CGI scripts ultimately receive and send standard structured messages over
sockets, CGI is more like a higher-level procedural convention for sending and
receiving information between a browser and a server.

12.2.2 Writing CGI Scripts in Python

If all of the above sounds complicated, relax -- Python, as well as the resident HTTP
server, automates most of the tricky bits. CGI scripts are written as fairly
autonomous programs, and they assume that startup tasks have already been
accomplished. The HTTP web server program, not the CGI script, implements the
server-side of the HTTP protocol itself. Moreover, Python's library modules
automatically dissect information sent up from the browser and give it to the CGI
script in an easily digested form. The upshot is that CGI scripts may focus on
application details like processing input data and producing a result page.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 734

As mentioned earlier, in the context of CGI scripts, the stdin and stdout streams
are automatically tied to sockets connected to the browser. In addition, the HTTP
server passes some browser information to the CGI script in the form of shell
environment variables. To CGI programmers, that means:

Input data sent from the browser to the server shows up as a stream of bytes in the
stdin input stream, along with shell environment variables.

Output is sent back from the server to the client by simply printing properly
formatted HTML to the stdout output stream.

The most complex parts of this scheme include parsing all the input information sent
up from the browser and formatting information in the reply sent back. Happily,
Python's standard library largely automates both tasks:

Input

With the Python cgi module, inputs typed into a web browser form or appended to a
URL string show up as values in a dictionary-like object in Python CGI scripts. Python
parses the data itself and gives us an object with one key:value pair per input sent
by the browser that is fully independent of transmission style (form or URL).

Output

The cgi module also has tools for automatically escaping strings so that they are
legal to use in HTML (e.g., replacing embedded <, >, and & characters with HTML
escape codes). Module urllib provides other tools for formatting text inserted into
generated URL strings (e.g., adding %XX and + escapes).

We'll study both of these interfaces in detail later in this chapter. For now, keep in
mind that although any language can be used to write CGI scripts, Python's standard
modules and language attributes make it a snap.

Less happily, CGI scripts are also intimately tied to the syntax of HTML, since they
must generate it to create a reply page. In fact, it can be said that Python CGI
scripts embed HTML, which is an entirely distinct language in its own right. As we'll
also see, the fact that CGI scripts create a user interface by printing HTML syntax
means that we have to take special care with the text we insert into a web page's
code (e.g., escaping HTML operators). Worse, CGI scripts require at least a cursory
knowledge of HTML forms, since that is where the inputs and target script's address
are typically specified. This book won't teach HTML in-depth; if you find yourself
puzzled by some of the arcane syntax of the HTML generated by scripts here, you
should glance at an HTML introduction, such as O'Reilly's HTML and XHTML: The
Definitive Guide.

12.2.3 Running Server-Side Examples

Like GUIs, web-based systems are highly interactive, and the best way to get a feel
for some of these examples is to test-drive them live. Before we get into some code,
it's worth noting that all you need to run the examples in the next few chapters is a
web browser. That is, all the Web examples we will see here can be run from any

Programming Python, 2nd Edition, O’Reilly

IT-SC book 735

web browser on any machine, whether you've installed Python on that machine or
not. Simply type this URL at the top:[1]

[1] Given that this edition may not be updated for many years, it's not impossible that the
server name in this address starship.python.net might change over time. If this address fails,
check the book updates at http://rmi.net/~lutz/about-pp.html to see if a new examples site
address has been posted. The rest of the main page's URL will likely be unchanged. Note,
though, that some examples hardcode the starship host server name in URLs; these will be
fixed on the new server if moved, but not on your book CD. Run script fixsitename.py later in
this chapter to change site names automatically.

http://starship.python.net/~lutz/PyInternetDemos.html

That address loads a launcher page with links to all the example files installed on a
server machine whose domain name is starship.python.net (a machine dedicated to
Python developers). The launcher page itself appears as shown in Figure 12-1,
running under Internet Explorer. It looks similar in other browsers. Each major
example has a link on this page, which runs when clicked.

Figure 12-1. The PyInternetDemos launcher page

The launcher page, and all the HTML files in this chapter, can also be loaded locally,
from the book's example distribution directory on your machine. They can even be
opened directly off the book's CD (view CD-ROM content online at
http://examples.oreilly.com/python2)and may be opened by buttons on the top-level
book demo launchers. However, the CGI scripts ultimately invoked by some of the
example links must be run on a server, and thus require a live Internet connection.
If you browse root pages locally on your machine, your browser will either display
the scripts' source code or tell you when you need to connect to the Web to run a

Programming Python, 2nd Edition, O’Reilly

IT-SC book 736

CGI script. On Windows, a connection dialog will likely pop up automatically, if
needed.

12.2.3.1 Changing server-side examples

Of course, running scripts in your browser isn't quite the same as writing scripts on
your own. If you do decide to change these CGI programs or write new ones from
scratch, you must be able to access web server machines:

To change server-side scripts, you need an account on a web server machine with an
installed version of Python. A basic account on such a server is often enough. Then
edit scripts on your machine and upload to the server by FTP.

To type explicit command lines on a server machine or edit scripts on the server
directly, you will need to also have shell access on the web server. Such access lets
you telnet to that machine to get a command-line prompt.

Unlike the last chapter's examples, Python server-side scripts require both Python
and a server. That is, you'll need access to a web server machine that supports CGI
scripts in general and that either already has an installed Python interpreter or lets
you install one of your own. Some Internet Service Providers (ISPs) are more
supportive than others on this front, but there are many options here, both
commercial and free (more on this later).

Once you've located a server to host your scripts, you may modify and upload the
CGI source code file from this book's CD to your own server and site by FTP. If you
do, you may also want to run two Python command-line scripts on your server after
uploading: fixcgi.py and fixsitename.py, both presented later in this chapter. The
former sets CGI script permissions, and the latter replaces any starship server name
references in example links and forms with your own server's name. We'll study
additional installation details later in this chapter, and explore a few custom server
options at the end of Chapter 15.

12.2.3.2 Viewing server-side examples and output

The source code of examples in this part of the book is listed in the text and included
on the book's CD (see http://examples.oreilly.com/python2). In all cases, if you wish
to view the source code of an HTML file, or the HTML generated by a Python CGI
script, you can also simply select your browser's View Source menu option while the
corresponding web page is displayed.

Keep in mind, though, that your browser's View Source option lets you see the
output of a server-side script after it has run, but not the source code of the script
itself. There is no automatic way to view the Python source code of the CGI scripts
themselves, short of finding them in this book or its CD.

To address this issue, later in this chapter we'll also write a CGI-based program
called getfile, which allows the source code of any file on this book's web site
(HTML, CGI script, etc.) to be downloaded and viewed. Simply type the desired file's
name into a web page form referenced by the getfile.html link on the Internet demos
launcher page, or add it to the end of an explicitly typed URL as a parameter like
this:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 737

http://.../getfile.cgi?filename=somefile.cgi

In response, the server will ship back the text of the named file to your browser. This
process requires explicit interface steps, though, and much more knowledge than
we've gained thus far, so see ahead for details.

12.3 Climbing the CGI Learning Curve

Okay, it's time to get into concrete programming details. This section introduces CGI
coding one step at a time -- from simple, noninteractive scripts to larger programs
that utilize all the common web page user input devices (what we called "widgets" in
the Tkinter GUI chapters of Part II). We'll move slowly at first, to learn all the basics;
the next two chapters will use the ideas presented here to build up larger and more
realistic web site examples. For now, let's work though a simple CGI tutorial, with
just enough HTML thrown in to write basic server-side scripts.

12.3.1 A First Web Page

As mentioned, CGI scripts are intimately bound up with HTML, so let's start with a
simple HTML page. The file test0.html, shown in Example 12-1, defines a bona fide,
fully functional web page -- a text file containing HTML code, which specifies the
structure and contents of a simple web page.

Example 12-1. PP2E\Internet\Cgi-Web\Basics\test0.html

<HTML><BODY>
<TITLE>HTML 101</TITLE>
<H1>A First HTML page</H1>
<P>Hello, HTML World!</P>
</BODY></HTML>

If you point your favorite web browser to the Internet address of this file (or to its
local path on your own machine), you should see a page like that shown in Figure
12-2. This figure shows the Internet Explorer browser at work; other browsers
render the page similarly.

Figure 12-2. A simple web page from an HTML file

Programming Python, 2nd Edition, O’Reilly

IT-SC book 738

To truly understand how this little file does its work, you need to know something
about permission rules, HTML syntax, and Internet addresses. Let's take a quick first
look at each of these topics before we move on to larger examples.

12.3.1.1 HTML file permission constraints

First of all, if you want to install this code on a different machine, it's usually
necessary to grant web page files and their directories world-readable permission.
That's because they are loaded by arbitrary people over the Web (actually, by
someone named "nobody", who we'll introduce in a moment). An appropriate chmod
command can be used to change permissions on Unix-like machines. For instance, a
chmod 755 filename shell command usually suffices; it makes filename readable
and executable by everyone, and writable by you only.[2] These directory and file
permission details are typical, but they can vary from server to server. Be sure to
find out about the local server's conventions if you upload this file to your site.

[2] These are not necessarily magic numbers. On Unix machines, mode 755 is a bit mask. The
first 7 simply means that you (the file's owner) can read, write, and execute the file (7 in
binary is 111 -- each bit enables an access mode). The two 5s (binary 101) say that everyone
else (your group and others) can read and execute (but not write) the file. See your system's
manpage on the chmod command for more details.

12.3.1.2 HTML basics

I promised that I wouldn't teach much HTML in this book, but you need to know
enough to make sense of examples. In short, HTML is a descriptive markup
language, based on tags -- items enclosed in <> pairs. Some tags stand alone (e.g.,
<HR> specifies a horizontal rule). Others appear in begin/end pairs where the end tag
includes an extra slash.

For instance, to specify the text of a level-1 header line, we write HTML code of the
form <H1>text</H1>; the text between the tags shows up on the web page. Some
tags also allow us to specify options. For example, a tag pair like text specifies a hyperlink : pressing the link's text in the page
directs the browser to access the Internet address (URL) listed in the href option.

It's important to keep in mind that HTML is used only to describe pages: your web
browser reads it and translates its description to a web page with headers,
paragraphs, links, and the like. Notably absent is both layout information -- the
browser is responsible for arranging components on the page -- and syntax for
programming logic -- there are no "if" statements, loops, and so on. There is also no
Python code in this file anywhere to be found; raw HTML is strictly for defining
pages, not for coding programs or specifying all user-interface details.

HTML's lack of user interface control and programmability is both a strength and a
weakness. It's well-suited to describing pages and simple user interfaces at a high
level. The browser, not you, handles physically laying out the page on your screen.
On the other hand, HTML does not directly support full-blown GUIs and requires us
to introduce CGI scripts (and other technologies) to web sites, in order to add
dynamic programmability to otherwise static HTML.

12.3.1.3 Internet addresses (URLs)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 739

Once you write an HTML file, you need to put it some place where the outside world
can find it. Like all HTML files, test0.html must be stored in a directory on the server
machine, from which the resident web server program allows browsers to fetch
pages. On the server where this example lives, the page's file must be stored in or
below the public_html directory of my personal home directory -- that is, somewhere
in the directory tree rooted at /home/lutz/public_html. For this section, examples live
in a Basics subdirectory, so the complete Unix pathname of this file on the server is:

/home/lutz/public_html/Basics/test0.html

This path is different than its PP2E\Internet\Cgi-Web\Basics location on the book's
CD http://examples.oreilly.com/python2), as given in the example file listing's title.
When you reference this file on the client, though, you must specify its Internet
address, sometimes called a URL, instead. To load the remote page, type the
following text in your browser's address field (or click the example root page's
test0.html hyperlink, which refers to same address):

http://starship.python.net/~lutz/Basics/test0.html

This string is a URL composed of multiple parts:

Protocol name: http

The protocol part of this URL tells the browser to communicate with the HTTP server
program on the server machine, using the HTTP message protocol. URLs used in
browsers can also name different protocols -- for example, ftp:// to reference a file
managed by the FTP protocol and server, telnet to start a Telnet client session, and
so on.

Server machine name: starship.python.net

A URL also names the target server machine following the protocol type. Here, we
list the domain name of the server machine were the examples are installed; the
machine name listed is used to open a socket to talk to the server. For HTTP, the
socket is usually connected to port number 80.

File path: ~lutz/Basics/test0.html

Finally, the URL gives the path to the desired file on the remote machine. The HTTP
web server automatically translates the URL's file path to the file's true Unix
pathname: on my server, ~lutz is automatically translated to the public_html
directory in my home directory. URLs typically map to such files, but can reference
other sorts of items as well.

Parameters (used in later examples)

URLs may also be followed by additional input parameters for CGI programs. When
used, they are introduced by a ? and separated by & characters; for instance, a
string of the form ?name=bob&job=hacker at the end of a URL passes parameters
named name and job to the CGI script named earlier in the URL. These values are
sometimes called URL query string parameters and are treated the same as form
inputs. More on both forms and parameters in a moment.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 740

For completeness, you should also know that URLs can contain additional information
(e.g., the server name part can specify a port number following a :), but we'll ignore
these extra formatting rules here. If you're interested in more details, you might
start by reading the urlparse module's entry in Python's library manual, as well as
its source code in the Python standard library. You might also notice that a URL you
type to access a page looks a bit different after the page is fetched (spaces become +
characters, %s are added, etc.). This is simply because browsers must also generally
follow URL escaping (i.e., translation) conventions, which we'll explore later in this
chapter.

12.3.1.4 Using minimal URLs

Because browsers remember the prior page's Internet address, URLs embedded in
HTML files can often omit the protocol and server names, as well as the file's
directory path. If missing, the browser simply uses these components' values from
the last page's address. This minimal syntax works both for URLs embedded in
hyperlinks and form actions (we'll meet forms later in this chapter). For example,
within a page that was fetched from directory dirpath on server www.server.com,
minimal hyperlinks and form actions such as:

<FORM ACTION="next.cgi" ...>

are treated exactly as if we had specified a complete URL with explicit server and
path components, like the following:

<FORM ACTION="http://www.server.com/dirpath/next.cgi" ...>

The first minimal URL refers to file more.html on the same server and in the same
directory that the page containing this hyperlink was fetched from; it is expanded to
a complete URL within the browser. URLs can also employ Unix-style relative path
syntax in the file path component. For instance, a hyperlink tag like names a GIF file on the server machine and parent directory
of the file that contains this link's URL.

Why all the fuss about shorter URLs? Besides extending the life of your keyboard and
eyesight, the main advantage of such minimal URLs is that they don't need to be
changed if you ever move your pages to a new directory or server -- the server and
path are inferred when the page is used, not hardcoded into its HTML. The flipside of
this can be fairly painful: examples that do include explicit site and pathnames in
URLs embedded within HTML code cannot be copied to other servers without source
code changes. Scripts can help here, but editing source code can be error-prone.[3]

[3] To make this process easier, the fixsitename.py script presented in the next section largely
automates the necessary changes by performing global search-and-replace operations and
directory walks. A few book examples do use complete URLs, so be sure to run this script after
copying examples to a new site.

The downside of minimal URLs is that they don't trigger automatic Internet
connection when followed. This becomes apparent only when you load pages from
local files on your computer. For example, we can generally open HTML pages
without connecting to the Internet at all, by pointing a web browser to a page's file

Programming Python, 2nd Edition, O’Reilly

IT-SC book 741

that lives on the local machine (e.g., by clicking on its file icon). When browsing a
page locally like this, following a fully specified URL makes the browser automatically
connect to the Internet to fetch the referenced page or script. Minimal URLs, though,
are opened on the local machine again; usually, the browser simply displays the
referenced page or script's source code.

The net effect is that minimal URLs are more portable, but tend to work better when
running all pages live on the Internet. To make it easier to work with the examples in
this book, they will often omit the server and path components in URLs they contain.
In this book, to derive a page or script's true URL from a minimal URL, imagine that
the string:

http://starship.python.net/~lutz/subdir

appears before the filename given by the URL. Your browser will, even if you don't.

12.3.2 A First CGI Script

The HTML file we just saw is just that -- an HTML file, not a CGI script. When
referenced by a browser, the remote web server simply sends back the file's text to
produce a new page in the browser. To illustrate the nature of CGI scripts, let's
recode the example as a Python CGI program, as shown in Example 12-2.

Example 12-2. PP2E\Internet\Cgi-Web\Basics\test0.cgi

#!/usr/bin/python

runs on the server, prints html to create a new page;
executable permissions, stored in ~lutz/public_html,
url=http://starship.python.net/~lutz/Basics/test0.cgi

print "Content-type: text/html\n"
print "<TITLE>CGI 101</TITLE>"
print "<H1>A First CGI script</H1>"
print "<P>Hello, CGI World!</P>"

This file, test0.cgi, makes the same sort of page if you point your browser at it
(simply replace .html with .cgi in the URL). But it's a very different kind of animal --
it's an executable program that is run on the server in response to your access
request. It's also a completely legal Python program, in which the page's HTML is
printed dynamically, rather than being precoded in a static file. In fact, there is little
that is CGI-specific about this Python program at all; if run from the system
command line, it simply prints HTML rather than generating a browser page:

C:\...\PP2E\Internet\Cgi-Web\Basics>python test0.cgi
Content-type: text/html

<TITLE>CGI 101</TITLE>
<H1>A First CGI script</H1>
<P>Hello, CGI World!</P>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 742

When run by the HTTP server program on a web server machine, however, the
standard output stream is tied to a socket read by the browser on the client
machine. In this context, all the output is sent across the Internet to your browser.
As such, it must be formatted per the browser's expectations. In particular, when the
script's output reaches your browser, the first printed line is interpreted as a header,
describing the text that follows. There can be more than one header line in the
printed response, but there must always be a blank line between the headers and
the start of the HTML code (or other data).

In this script, the first header line tells the browser that the rest of the transmission
is HTML text (text/html), and the newline character (\n) at the end of the first print
statement generates one more line-feed than the print statement itself. The rest of
this program's output is standard HTML and is used by the browser to generate a
web page on a client, exactly as if the HTML lived in a static HTML file on the
server.[4]

[4] Notice that the script does not generate the enclosing <HEAD> and <BODY> tags in the static
HTML file of the prior section. Strictly speaking, it should -- HTML without such tags is invalid.
But all commonly used browsers simply ignore the omission.

CGI scripts are accessed just like HTML files: you either type the full URL of this
script into your browser's address field, or click on the test0.cgi link line in the
examples root page (which follows a minimal hyperlink that resolves to the script's
full URL). Figure 12-3 shows the result page generated if you point your browser at
this script to make it go.

Figure 12-3. A simple web page from a CGI script

12.3.2.1 Installing CGI scripts

Like HTML files, CGI scripts are simple text files that you can either create on your
local machine and upload to the server by FTP, or write with a text editor running
directly on the server machine (perhaps using a telnet client). However, because CGI
scripts are run as programs, they have some unique installation requirements that
differ from simple HTML files. In particular, they usually must be stored and named
specially, and they must be configured as programs that are executable by arbitrary
users. Depending on your needs, CGI scripts may also need help finding imported
modules and may need to be converted to the server platform's text file format after
being uploaded. Let's look at each install constraint in more depth:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 743

Directory and filename conventions

First of all, CGI scripts need to be placed in a directory that your web server
recognizes as a program directory, and they need to be given a name that your
server recognizes as a CGI script. On the server where these examples reside, CGI
scripts can be stored in each user's public_html directory just like HTML files, but
must have a filename ending in a .cgi suffix, not .py. Some servers allow .py
filename suffixes too, and may recognize other program directories (cgi-bin is
common), but this varies widely, too, and can sometimes be configured per server or
user.

Execution conventions

Because they must be executed by the web server on behalf of arbitrary users on the
Web, CGI script files also need to be given executable file permissions to mark them
as programs, and they must be made executable by others. Again, a shell command
chmod 0755 filename does the trick on most servers. CGI scripts also generally need
the special #! line at the top, to identify the Python interpreter that runs the file's
code. The text after the #! in the first line simply gives the directory path to the
Python executable on your server machine. See Chapter 2, for more details on this
special first line, and be sure to check your server's conventions for more details on
non-Unix platforms.

One subtlety worth noting. As we saw earlier in the book, the special first line in
executable text files can normally contain either a hardcoded path to the Python
interpreter (e.g., #!/usr/bin/python) or an invocation of the env program (e.g.,
#!/usr/bin/env python), which deduces where Python lives from environment
variable settings (i.e., your $PATH). The env trick is less useful in CGI scripts,
though, because their environment settings are those of user "nobody" (not your
own), as explained in the next paragraph.

Module search path configuration (optional)

HTTP servers generally run CGI scripts with username "nobody" for security reasons
(this limits the user's access to the server machine). That's why files you publish on
the Web must have special permission settings that make them accessible to other
users. It also means that CGI scripts can't rely on the Python module search path to
be configured in any particular way. As we've seen, the module path is normally
initialized from the user's PYTHONPATH setting plus defaults. But because CGI scripts
are run by user "nobody", PYTHONPATH may be arbitrary when a CGI script runs.

Before you puzzle over this too hard, you should know that this is often not a
concern in practice. Because Python usually searches the current directory for
imported modules by default, this is not an issue if all of your scripts and any
modules and packages they use are stored in your web directory (which is the
installation structure on the book's site). But if the module lives elsewhere, you may
need to tweak the sys.path list in your scripts to adjust the search path manually
before imports (e.g., with sys.path.append(dirname) calls, index assignments, and
so on).

End-of-line conventions (optional)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 744

Finally, on some Unix (and Linux) servers, you might also have to make sure that
your script text files follow the Unix end-of-line convention (\n), not DOS (\r\n).
This isn't an issue if you edit and debug right on the server (or on another Unix
machine) or FTP files one by one in text mode. But if you edit and upload your
scripts from a PC to a Unix server in a tar file (or in FTP binary mode), you may need
to convert end-of-lines after the upload. For instance, the server that was used to
develop this text returns a default error page for scripts whose end-of-lines are in
DOS format (see later in this chapter for a converter script).

This installation process may sound a bit complex at first glance, but it's not bad
once you've worked through it on your own: it's only a concern at install time and
can usually be automated to some extent with Python scripts run on the server. To
summarize, most Python CGI scripts are text files of Python code, which:

Are named according to your web server's conventions (e.g., file.cgi)

Are stored in a directory recognized by your web server (e.g., cgi-bin/)

Are given executable file permissions (e.g., chmod 755 file.cgi)

Usually have the special #!pythonpath line at the top (but not env)

Configure sys.path only if needed to see modules in other directories

Use Unix end-of-line conventions, only if your server rejects DOS format

Print headers and HTML to generate a response page in the browser, if any

Use the cgi module to parse incoming form data, if any (more about forms later in
this chapter)

Even if you must use a server machine configured by someone else, most of the
machine's conventions should be easy to root out. For instance, on some servers you
can rename this example to test0.py and it will continue to be run when accessed.
On others, you might instead see the file's source code in a popped-up text editor
when you access it. Try a .cgi suffix if the text is displayed rather than executed. CGI
directory conventions can vary, too, but try the directory where you normally store
HTML files first. As usual, you should consult the conventions for any machine that
you plan to copy these example files to.

12.3.2.2 Automating installation steps

But wait -- why do things the hard way? Before you start installing scripts by hand,
remember that Python programs can usually do much of your work for you. It's easy
to write Python scripts that automate some of the CGI installation steps using the
operating systems tools that we met earlier in the book.

For instance, while developing the examples in this chapter, I did all editing on my
PC (it's generally more dependable than a telnet client). To install, I put all the
examples in a tar file, which is uploaded to the Linux server by FTP in a single step.
Unfortunately, my server expects CGI scripts to have Unix (not DOS) end-of-line
markers; unpacking the tar file did not convert end-of-lines or retain executable

Programming Python, 2nd Edition, O’Reilly

IT-SC book 745

permission settings. But rather than tracking down all the web CGI scripts and fixing
them by hand, I simply run the Python script in Example 12-3 from within a Unix find
command after each upload.

Example 12-3. PP2E\Internet\Cgi-Web\fixcgi.py

###

run fom a unix find command to automate some cgi script install
steps;
example: find . -name "*.cgi" -print -exec python fixcgi.py \{} \;
which converts all cgi scripts to unix line-feed format (needed on
starship) and gives all cgi files executable mode, else won't be run;
do also: chmod 777 PyErrata/DbaseFiles/*, vi
Extern/Email/mailconfig*;
related: fixsitename.py, PyTools/fixeoln*.py, System/Filetools
###

after: ungzip, untar, cp -r Cgi-Web/* ~/public_html

import sys, string, os
fname = sys.argv[1]
old = open(fname, 'rb').read()
new = string.replace(old, '\r\n', '\n')
open(fname, 'wb').write(new)
if fname[-3:] == 'cgi': os.chmod(fname, 0755) # note octal int:
rwx,sgo

This script is kicked off at the top of the Cgi-Web directory, using a Unix csh shell
command to apply it to every CGI file in a directory tree, like this:

% find . -name "*.cgi" -print -exec python fixcgi.py \{} \;
./Basics/languages-src.cgi
./Basics/getfile.cgi
./Basics/languages.cgi
./Basics/languages2.cgi
./Basics/languages2reply.cgi
./Basics/putfile.cgi
 ...more...

Recall from Chapter 2 that there are various ways to walk directory trees and find
matching files in pure Python code, including the find module, os.path.walk, and
one we'll use in the next section's script. For instance, a pure Python and more
portable alternative could be kicked off like this:

C:\...\PP2E\Internet\Cgi-Web>python
>>> import os
>>> from PP2E.PyTools.find import find
>>> for filename in find('*.cgi', '.'):
... print filename
... stat = os.system('python fixcgi.py ' + filename)
...
.\Basics\getfile.cgi
.\Basics\languages-src.cgi

Programming Python, 2nd Edition, O’Reilly

IT-SC book 746

.\Basics\languages.cgi

.\Basics\languages2.cgi
 ...more...

The Unix find command simply does the same, but outside the scope of Python: the
command line after -exec is run for each matching file found. For more details about
the find command, see its manpage. Within the Python script, string.replace
translates to Unix end-of-line markers, and os.chmod works just like a shell chmod
command. There are other ways to translate end-of-lines, too; see Chapter 5.

12.3.2.3 Automating site move edits

Speaking of installation tasks, a common pitfall of web programming is that
hardcoded site names embedded in HTML code stop working the minute you relocate
the site to a new server. Minimal URLs (just the filename) are more portable, but for
various reasons are not always used. Somewhere along the way, I also grew tired of
updating URLs in hyperlinks and form actions, and wrote a Python script to do it all
for me (see Example 12-4).

Example 12-4. PP2E\Internet\Cgi-Web\fixsitename.py

#!/usr/bin/env python

run this script in Cgi-Web dir after copying book web
examples to a new server--automatically changes all starship
server references in hyperlinks and form action tags to the
new server/site; warns about references that weren't changed
(may need manual editing); note that starship references are
not usually needed or used--since browsers have memory, server
and path can usually be omitted from a URL in the prior page
if it lives at the same place (e.g., "file.cgi" is assumed to
be in the same server/path as a page that contains this name,
with a real url like "http://lastserver/lastpath/file.cgi"),
but a handful of URLs are fully specified in book examples;
reuses the Visitor class developed in the system chapters,
to visit and convert all files at and below current dir;

import os, string
from PP2E.PyTools.visitor import FileVisitor # os.path.walk
wrapper

listonly = 0
oldsite = 'starship.python.net/~lutz' # server/rootdir
in book
newsite = 'XXXXXX/YYYYYY' # change to your
site
warnof = ['starship.python', 'lutz'] # warn if left
after fix
fixext = ['.py', '.html', '.cgi'] # file types to
check

class FixStarship(FileVisitor):
 def __init__(self, listonly=0): # replace
oldsite refs

Programming Python, 2nd Edition, O’Reilly

IT-SC book 747

 FileVisitor.__init__(self, listonly=listonly) # in all web
text files
 self.changed, self.warning = [], [] # need diff
lists here
 def visitfile(self, fname): # or use
find.find list
 FileVisitor.visitfile(self, fname)
 if self.listonly:
 return
 if os.path.splitext(fname)[1] in fixext:
 text = open(fname, 'r').read()
 if string.find(text, oldsite) != -1:
 text = string.replace(text, oldsite, newsite)
 open(fname, 'w').write(text)
 self.changed.append(fname)
 for word in warnof:
 if string.find(text, word) != -1:
 self.warning.append(fname); break

if __name__ == '__main__':
 # don't run auto if clicked
 go = raw_input('This script changes site in all web files;
continue?')
 if go != 'y':
 raw_input('Canceled - hit enter key')
 else:
 walker = FixStarship(listonly)
 walker.run()
 print 'Visited %d files and %d dirs' % (walker.fcount,
walker.dcount)

 def showhistory(label, flist):
 print '\n%s in %d files:' % (label, len(flist))
 for fname in flist:
 print '=>', fname
 showhistory('Made changes', walker.changed)
 showhistory('Saw warnings', walker.warning)

 def edithistory(flist):
 for fname in flist: # your editor here
 os.system('vi ' + fname)
 if raw_input('Edit changes?') == 'y':
edithistory(walker.changed)
 if raw_input('Edit warnings?') == 'y':
edithistory(walker.warning)

This is a more complex script that reuses the visitor.py module we wrote in Chapter
5 to wrap the os.path.walk call. If you read that chapter, this script will make
sense. If not, we won't go into many more details here again. Suffice it to say that
this program visits all source code files at and below the directory where it is run,
globally changing all starship.python.net/~lutz appearances to whatever you've
assigned to variable newsite within the script. On request, it will also launch your
editor to view files changed, as well as files that contain potentially suspicious
strings. As coded, it launches the Unix vi text editor at the end, but you can change
this to start whatever editor you like (this is Python, after all):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 748

C:\...\PP2E\Internet\Cgi-Web>python fixsitename.py
This script changes site in all web files; continue?y
. ...
1 => .\PyInternetDemos.html
2 => .\README.txt
3 => .\fixcgi.py
4 => .\fixsitename.py
5 => .\index.html
6 => .\python_snake_ora.gif
.\Basics ...
7 => .\Basics\mlutz.jpg
8 => .\Basics\languages.html
9 => .\Basics\languages-src.cgi
 ...more...
146 => .\PyMailCgi\temp\secret.doc.txt
Visited 146 files and 16 dirs

Made changes in 8 files:
=> .\fixsitename.py
=> .\Basics\languages.cgi
=> .\Basics\test3.html
=> .\Basics\test0.py
=> .\Basics\test0.cgi
=> .\Basics\test5c.html
=> .\PyMailCgi\commonhtml.py
=> .\PyMailCgi\sendurl.py

Saw warnings in 14 files:
=> .\PyInternetDemos.html
=> .\fixsitename.py
=> .\index.html
=> .\Basics\languages.cgi
 ...more...
=> .\PyMailCgi\pymailcgi.html
=> .\PyMailCgi\commonhtml.py
=> .\PyMailCgi\sendurl.py
Edit changes?n
Edit warnings?y

The net effect is that this script automates part of the site relocation task: running it
will update all pages' URLs for the new site name automatically, which is
considerably less aggravating than manually hunting down and editing each such
reference by hand.

There aren't many hardcoded starship site references in web examples in this book
(the script found and fixed eight above), but be sure to run this script in the Cgi-Web
directory from a command line, after copying the book examples to your own site. To
use this script for other site moves, simply set both oldsite and newsite as
appropriate. The truly ambitious scriptmaster might even run such a script from
within another that first copies a site's contents by FTP (see ftplib in the previous
chapter).[5]

[5] As I mentioned at the start of this chapter, there are often multiple ways to accomplish any
given webmaster-y task. For instance, the HTML <BASE> tag may provide an alternative way to
map absolute URLs, and FTPing your web site files to your server individually and in text mode
might obviate line-end issues. There are undoubtedly other ways to handle such tasks, too. On

Programming Python, 2nd Edition, O’Reilly

IT-SC book 749

the other hand, such alternatives wouldn't be all that useful in a book that illustrates Python
coding techniques.

12.3.2.4 Finding Python on the server

One last install pointer: even though Python doesn't have to be installed on any
clients in the context of a server-side web application, it does have to exist on the
server machine where your CGI scripts are expected to run. If you are using a web
server that you did not configure yourself, you must be sure that Python lives on
that machine. Moreover, you need to find where it is on that machine so that you
can specify its path in the #! line at the top of your script.

By now, Python is a pervasive tool, so this generally isn't as big a concern as it once
was. As time goes by, it will become even more common to find Python as a
standard component of server machines. But if you're not sure if or where Python
lives on yours, here are some tips:

Especially on Unix systems, you should first assume that Python lives in a standard
place (e.g., /usr/local/bin/python), and see if it works. Chances are that Python
already lives on such machines. If you have Telnet access on your server, a Unix find
command starting at /usr may help.

If your server runs Linux, you're probably set to go. Python ships as a standard part
of Linux distributions these days, and many web sites and Internet Service Providers
(ISPs) run the Linux operating system; at such sites, Python probably already lives
at /usr/bin/python.

In other environments where you cannot control the server machine yourself, it may
be harder to obtain access to an already-installed Python. If so, you can relocate
your site to a server that does have Python installed, talk your ISP into installing
Python on the machine you're trying to use, or install Python on the server machine
yourself.

If your ISP is unsympathetic to your need for Python and you are willing to relocate
your site to one that is, you can find lists of Python-friendly ISPs by searching
http://www.python.org. And if you choose to install Python on your server machine
yourself, be sure to check out the freeze tool shipped with the Python source
distribution (in the Tools directory). With freeze, you can create a single executable
program file that contains the entire Python interpreter, as well as all the standard
library modules. Such a frozen interpreter can be uploaded to your web account by
FTP in a single step, and it won't require a full-blown Python installation on the
server.

12.3.3 Adding Pictures and Generating Tables

Now let's get back to writing server-side code. As anyone who's ever surfed the Web
knows, web pages usually consist of more than simple text. Example 12-5 is a
Python CGI script that prints an HTML tag in its output to produce a graphic
image in the client browser. There's not much Python-specific about this example,
but note that just as for simple HTML files, the image file (ppsmall.gif) lives on and
is downloaded from the server machine when the browser interprets the output of
this script.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 750

Example 12-5. PP2E\Internet\Cgi-Web\Basics\test1.cgi

#!/usr/bin/python

text = """Content-type: text/html

<TITLE>CGI 101</TITLE>
<H1>A Second CGI script</H1>
<HR>
<P>Hello, CGI World!</P>

<HR>
"""

print text

Notice the use of the triple-quoted string block here; the entire HTML string is sent
to the browser in one fell swoop, with the print statement at the end. If client and
server are both functional, a page that looks like Figure 12-4 will be generated when
this script is referenced and run.

Figure 12-4. A page with an image generated by test1.cgi

So far, our CGI scripts have been putting out canned HTML that could have just as
easily been stored in an HTML file. But because CGI scripts are executable programs,
they can also be used to generate HTML on the fly, dynamically -- even, possibly, in
response to a particular set of user inputs sent to the script. That's the whole
purpose of CGI scripts, after all. Let's start using this to better advantage now, and
write a Python script that builds up response HTML programmatically (see Example
12-6).

Example 12-6. PP2E\Internet\Cgi-Web\Basics\test2.cgi

#!/usr/bin/python

Programming Python, 2nd Edition, O’Reilly

IT-SC book 751

print """Content-type: text/html

<TITLE>CGI 101</TITLE>
<H1>A Third CGI script</H1>
<HR>
<P>Hello, CGI World!</P>

<table border=1>
"""

for i in range(5):
 print "<tr>"
 for j in range(4):
 print "<td>%d.%d</td>" % (i, j)
 print "</tr>"

print """
</table>
<HR>
"""

Despite all the tags, this really is Python code -- the test2.cgi script uses triple-
quoted strings to embed blocks of HTML again. But this time, the script also uses
nested Python for loops to dynamically generate part of the HTML that is sent to the
browser. Specifically, it emits HTML to lay out a two-dimensional table in the middle
of a page, as shown in Figure 12-5.

Figure 12-5. A page with a table generated by test2.cgi

Each row in the table displays a "row.column" pair, as generated by the executing
Python script. If you're curious how the generated HTML looks, select your browser's
View Source option after you've accessed this page. It's a single HTML page
composed of the HTML generated by the first print in the script, then the for loops,
and finally the last print. In other words, the concatenation of this script's output is
an HTML document with headers.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 752

12.3.3.1 Table tags

This script generates HTML table tags. Again, we're not out to learn HTML here, but
we'll take a quick look just so you can make sense of the example. Tables are
declared by the text between <table> and </table> tags in HTML. Typically, a
table's text in turn declares the contents of each table row between <tr> and </tr>
tags and each column within a row between <td> and </td> tags. The loops in our
script build up HTML to declare five rows of four columns each, by printing the
appropriate tags, with the current row and column number as column values. For
instance, here is part of the script's output, defining the first two rows:

<table border=1>
<tr>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
</tr>
. . .
</table>

Other table tags and options let us specify a row title (<th>), layout borders, and so
on. We'll see more table syntax put to use to lay out forms in a later section.

12.3.4 Adding User Interaction

CGI scripts are great at generating HTML on the fly like this, but they are also
commonly used to implement interaction with a user typing at a web browser. As
described earlier in this chapter, web interactions usually involve a two-step process
and two distinct web pages: you fill out a form page and press submit, and a reply
page eventually comes back. In between, a CGI script processes the form input.

12.3.4.1 Submission

That description sounds simple enough, but the process of collecting user inputs
requires an understanding of a special HTML tag, <form>. Let's look at the
implementation of a simple web interaction to see forms at work. First off, we need
to define a form page for the user to fill out, as shown in Example 12-7.

Example 12-7. PP2E\Internet\Cgi-Web\Basics\test3.html

<html><body>
<title>CGI 101</title>
<H1>A first user interaction: forms</H1>
<hr>
<form method=POST
action="http://starship.python.net/~lutz/Basics/test3.cgi">

Programming Python, 2nd Edition, O’Reilly

IT-SC book 753

 <P>Enter your name:
 <P><input type=text name=user>
 <P><input type=submit>
</form>
</BODY></HTML>

test3.html is a simple HTML file, not a CGI script (though its contents could be
printed from a script as well). When this file is accessed, all the text between its
<form> and </form> tags generate the input fields and Submit button shown in
Figure 12-6.

Figure 12-6. A simple form page generated by test3.html

12.3.4.2 More on form tags

We won't go into all the details behind coding HTML forms, but a few highlights are
worth underscoring. Within a form's HTML code:

The form's action option gives the URL of a CGI script that will be invoked to
process submitted form data. This is the link from a form to its handler program -- in
this case, a program called test3.cgi in my web home directory, on a server machine
called starship.python.net. The action option is the moral equivalent to command
options in Tkinter buttons -- it's where a callback handler (here, a remote handler) is
registered to the browser.

Input controls are specified with nested <input> tags. In this example, input tags
have two key options. The type option accepts values such as text for text fields
and submit for a Submit button (which sends data to the server and is labeled
"Submit Query" by default). The name option is the hook used to identify the entered
value by key, once all the form data reaches the server. For instance, the server-side
CGI script we'll see in a moment uses the string user as a key to get the data typed
into this form's text field. As we'll see in later examples, other input tag options can
specify initial values (value=X), display-only mode (readonly), and so on. Other
input type option values may transmit hidden data (type=hidden), reinitialize fields
(type=reset), or make multiple-choice buttons (type=checkbox).

Forms also include a method option to specify the encoding style to be used to send
data over a socket to the target server machine. Here, we use the post style, which

Programming Python, 2nd Edition, O’Reilly

IT-SC book 754

contacts the server and then ships it a stream of user input data in a separate
transmission. An alternative get style ships input information to the server in a
single transmission step, by adding user inputs to the end of the URL used to invoke
the script, usually after a ? character (more on this soon). With get, inputs typically
show up on the server in environment variables or as arguments in the command
line used to start the script. With post, they must be read from standard input and
decoded. Luckily, Python's cgi module transparently handles either encoding style,
so our CGI scripts don't need to know or care which is used.

Notice that the action URL in this example's form spells out the full address for
illustration. Because the browser remembers where the enclosing HTML page came
from, it works the same with just the script's filename, as shown in Example 12-8.

Example 12-8. PP2E\Internet\Cgi-Web\Basics\test3-minimal.html

<html><body>
<title>CGI 101</title>
<H1>A first user interaction: forms</H1>
<hr>
<form method=POST action="test3.cgi">
 <P>Enter your name:
 <P><input type=text name=user>
 <P><input type=submit>
</form>
</BODY></HTML>

It may help to remember that URLs embedded in form action tags and hyperlinks are
directions to the browser first, not the script. The test3.cgi script itself doesn't care
which URL form is used to trigger it -- minimal or complete. In fact, all parts of a URL
through the script filename (and up to URL query parameters) is used in the
conversation between browser and HTTP server, before a CGI script is ever spawned.
As long as the browser knows which server to contact, the URL will work, but URLs
outside of a page (e.g., typed into a browser's address field or sent to Python's
urllib module) usually must be completely specified, because there is no notion of
a prior page.

12.3.4.3 Response

So far, we've created only a static page with an input field. But the Submit button on
this page is loaded to work magic. When pressed, it triggers the remote program
whose URL is listed in the form's action option, and passes this program the input
data typed by the user, according to the form's method encoding style option. On the
server, a Python script is started to handle the form's input data while the user waits
for a reply on the client, as shown in Example 12-9.

Example 12-9. PP2E\Internet\Cgi-Web\Basics\test3.cgi

#!/usr/bin/python

runs on the server, reads form input, prints html;
url=http://server-name/root-dir/Basics/test3.cgi

Programming Python, 2nd Edition, O’Reilly

IT-SC book 755

import cgi
form = cgi.FieldStorage() # parse form data
print "Content-type: text/html" # plus blank line

html = """
<TITLE>test3.cgi</TITLE>
<H1>Greetings</H1>
<HR>
<P>%s</P>
<HR>"""

if not form.has_key('user'):
 print html % "Who are you?"
else:
 print html % ("Hello, %s." % form['user'].value)

As before, this Python CGI script prints HTML to generate a response page in the
client's browser. But this script does a bit more: it also uses the standard cgi
module to parse the input data entered by the user on the prior web page (see
Figure 12-6). Luckily, this is all automatic in Python: a call to the cgi module's
FieldStorage class automatically does all the work of extracting form data from the
input stream and environment variables, regardless of how that data was passed --
in a post style stream or in get style parameters appended to the URL. Inputs sent
in both styles look the same to Python scripts.

Scripts should call cgi.FieldStoreage only once and before accessing any field
values. When called, we get back an object that looks like a dictionary -- user input
fields from the form (or URL) show up as values of keys in this object. For example,
in the script, form['user'] is an object whose value attribute is a string containing
the text typed into the form's text field. If you flip back to the form page's HTML,
you'll notice that the input field's name option was user -- the name in the form's
HTML has become a key we use to fetch the input's value from a dictionary. The
object returned by FieldStorage supports other dictionary operations, too -- for
instance, the has_key method may be used to check if a field is present in the input
data.

Before exiting, this script prints HTML to produce a result page that echoes back
what the user typed into the form. Two string-formatting expressions (%) are used to
insert the input text into a reply string, and the reply string into the triple-quoted
HTML string block. The body of the script's output looks like this:

<TITLE>test3.cgi</TITLE>
<H1>Greetings</H1>
<HR>
<P>Hello, King Arthur.</P>
<HR>

In a browser, the output is rendered into a page like the one in Figure 12-7.

Figure 12-7. test3.cgi result for parameters in a form

Programming Python, 2nd Edition, O’Reilly

IT-SC book 756

12.3.4.4 Passing parameters in URLs

Notice that the URL address of the script that generated this page shows up at the
top of the browser. We didn't type this URL itself -- it came from the action tag of
the prior page's form HTML. However, there is nothing stopping us from typing the
script's URL explicitly in our browser's address field to invoke the script, just as we
did for our earlier CGI script and HTML file examples.

But there's a catch here: where does the input field's value come from if there is no
form page? That is, if we type the CGI script's URL ourselves, how does the input
field get filled in? Earlier, when we talked about URL formats, I mentioned that the
get encoding scheme tacks input parameters onto the end of URLs. When we type
script addresses explicitly, we can also append input values on the end of URLs,
where they serve the same purpose as <input> fields in forms. Moreover, the Python
cgi module makes URL and form inputs look identical to scripts.

For instance, we can skip filling out the input form page completely, and directly
invoke our test3.cgi script by visiting a URL of the form:

http://starship.python.net/~lutz/Basics/test3.cgi?user=Brian

In this URL, a value for the input named user is specified explicitly, as if the user
had filled out the input page. When called this way, the only constraint is that the
parameter name user must match the name expected by the script (and hardcoded
in the form's HTML). We use just one parameter here, but in general, URL
parameters are typically introduced with a ? and followed by one or more
name=value assignments, separated by & characters if there is more than one. Figure
12-8 shows the response page we get after typing a URL with explicit inputs.

Figure 12-8. test3.cgi result for parameters in a URL

Programming Python, 2nd Edition, O’Reilly

IT-SC book 757

In general, any CGI script can be invoked either by filling out and submitting a form
page or by passing inputs at the end of a URL. When CGI scripts are invoked with
explicit input parameters this way, it's difficult to not see their similarity to functions,
albeit ones that live remotely on the Net. Passing data to scripts in URLs is similar to
keyword arguments in Python functions, both operationally and syntactically. In fact,
in Chapter 15we will meet a system called Zope that makes the relationship between
URLs and Python function calls even more literal (URLs become more direct function
calls).

Incidentally, if you clear out the name input field in the form input page (i.e., make it
empty) and press submit, the user name field becomes empty. More accurately, the
browser may not send this field along with the form data at all, even though it is
listed in the form layout HTML. The CGI script detects such a missing field with the
dictionary has_key method and produces the page captured in Figure 12-9 in
response.

Figure 12-9. An empty name field produces an error page

In general, CGI scripts must check to see if any inputs are missing, partly because
they might not be typed by a user in the form, but also because there may be no
form at all -- input fields might not be tacked on to the end of an explicitly typed
URL. For instance, if we type the script's URL without any parameters at all (i.e.,
omit the text ? and beyond), we get this same error response page. Since we can
invoke any CGI through a form or URL, scripts must anticipate both scenarios.

12.3.5 Using Tables to Lay Out Forms

Now let's move on to something a bit more realistic. In most CGI applications, input
pages are composed of multiple fields. When there is more than one, input labels
and fields are typically laid out in a table, to give the form a well-structured
appearance. The HTML file in Example 12-10 defines a form with two input fields.

Example 12-10. PP2E\Internet\Cgi-Web\Basics\test4.html

<html><body>
<title>CGI 101</title>
<H1>A second user interaction: tables</H1>
<hr>
<form method=POST action="test4.cgi">
 <table>
 <TR>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 758

 <TH align=right>Enter your name:
 <TD><input type=text name=user>
 <TR>
 <TH align=right>Enter your age:
 <TD><input type=text name=age>
 <TR>
 <TD colspan=2 align=center>
 <input type=submit value="Send">
 </table>
</form>
</body></html>

The <TH> tag defines a column like <TD>, but also tags it as a header column, which
generally means it is rendered in a bold font. By placing the input fields and labels in
a table like this, we get an input page like that shown in Figure 12-10. Labels and
inputs are automatically lined up vertically in columns much as they were by the
Tkinter GUI geometry managers we met earlier in this book.

Figure 12-10. A form laid out with table tags

When this form's Submit button (labeled "Send" by the page's HTML) is pressed, it
causes the script in Example 12-11 to be executed on the server machine, with the
inputs typed by the user.

Example 12-11. PP2E\Internet\Cgi-Web\Basics\test4.cgi

#!/usr/bin/python

runs on the server, reads form input, prints html;
url http://server-name/root-dir/Basics/test4.cgi

import cgi, sys
sys.stderr = sys.stdout # errors to browser
form = cgi.FieldStorage() # parse form data
print "Content-type: text/html\n" # plus blank line

class dummy:
def __init__(self, s): self.value = s
form = {'user': dummy('bob'), 'age':dummy('10')}

html = """

Programming Python, 2nd Edition, O’Reilly

IT-SC book 759

<TITLE>test4.cgi</TITLE>
<H1>Greetings</H1>
<HR>
<H4>%s</H4>
<H4>%s</H4>
<H4>%s</H4>
<HR>"""

if not form.has_key('user'):
 line1 = "Who are you?"
else:
 line1 = "Hello, %s." % form['user'].value

line2 = "You're talking to a %s server." % sys.platform

line3 = ""
if form.has_key('age'):
 try:
 line3 = "Your age squared is %d!" % (int(form['age'].value) **
2)
 except:
 line3 = "Sorry, I can't compute %s ** 2." % form['age'].value

print html % (line1, line2, line3)

The table layout comes from the HTML file, not this Python CGI script. In fact, this
script doesn't do much new -- it uses string formatting to plug input values into the
response page's HTML triple-quoted template string as before, this time with one line
per input field. There are, however, a few new tricks here worth noting, especially
regarding CGI script debugging and security. We'll talk about them in the next two
sections.

12.3.5.1 Converting strings in CGI scripts

Just for fun, the script echoes back the name of the server platform by fetching
sys.platform along with the square of the age input field. Notice that the age
input's value must be converted to an integer with the built-in int function; in the
CGI world, all inputs arrive as strings. We could also convert to an integer with the
built-in string.atoi or eval function. Conversion (and other) errors are trapped
gracefully in a try statement to yield an error line, rather than letting our script die.

 You should never use eval to convert strings that were sent
over the Internet like the age field in this example, unless you
can be absolutely sure that the string is not even potentially
malicious code. For instance, if this example were available on
the general Internet, it's not impossible that someone could type
a value into the age field (or append an age parameter to the
URL) with a value like: os.system('rm *'). When passed to
eval, such a string might delete all the files in your server
script directory!

W t lk b t t i i i thi i k ith P th ' t i t d

Programming Python, 2nd Edition, O’Reilly

IT-SC book 760

We talk about ways to minimize this risk with Python's restricted
execution mode (module rexec) in Chapter 15. But by default,
strings read off the Net can be very bad things to say in CGI
scripting. You should never pass them to dynamic coding tools
like eval and exec, or to tools that run arbitrary shell
commands such as os.popen and os.system, unless you
can be sure that they are safe, or unless you enable Python's
restricted execution mode in your scripts.

12.3.5.2 Debugging CGI scripts

Errors happen, even in the brave new world of the Internet. Generally speaking,
debugging CGI scripts can be much more difficult than debugging programs that run
on your local machine. Not only do errors occur on a remote machine, but scripts
generally won't run without the context implied by the CGI model. The script in
Example 12-11 demonstrates the following two common debugging tricks.

Error message trapping

This script assigns sys.stderr to sys.stdout so that Python error messages wind
up being displayed in the response page in the browser. Normally, Python error
messages are written to stderr. To route them to the browser, we must make
stderr reference the same file object as stdout (which is connected to the browser
in CGI scripts). If we don't do this assignment, Python errors, including program
errors in our script, never show up in the browser.

Test case mock-up

The dummy class definition, commented out in this final version, was used to debug
the script before it was installed on the Net. Besides not seeing stderr messages by
default, CGI scripts also assume an enclosing context that does not exist if they are
tested outside the CGI environment. For instance, if run from the system command
line, this script has no form input data. Uncomment this code to test from the
system command line. The dummy class masquerades as a parsed form field object,
and form is assigned a dictionary containing two form field objects. The net effect is
that form will be plug-and-play compatible with the result of a cgi.FieldStorage
call. As usual in Python, object interfaces (not datatypes) are all we must adhere to.

Here are a few general tips for debugging your server-side CGI scripts:

Run the script from the command line.

It probably won't generate HTML as is, but running it standalone will detect any
syntax errors in your code. Recall that a Python command line can run source code
files regardless of their extension: e.g., python somescript.cgi works fine.

Assign sys.stderr to sys.stdout as early as possible in your script.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 761

This will make the text of Python error messages and stack dumps appear in your
client browser when accessing the script. In fact, short of wading through server
logs, this may be the only way to see the text of error messages after your script
aborts.

Mock up inputs to simulate the enclosing CGI context.

For instance, define classes that mimic the CGI inputs interface (as done with the
dummy class in this script), so that you can view the script's output for various test
cases by running it from the system command line.[6] Setting environment variables
to mimic form or URL inputs sometimes helps, too (we'll see how later in this
chapter).

[6] This technique isn't unique to CGI scripts, by the way. In Chapter 15, we'll meet
systems that embed Python code inside HTML. There is no good way to test such
code outside the context of the enclosing system, without extracting the embedded
Python code (perhaps by using the htmllib HTML parser that comes with Python)
and running it with a passed-in mock-up of the API that it will eventually use.

Call utilities to display CGI context in the browser.

The CGI module includes utility functions that send a formatted dump of CGI
environment variables and input values to the browser (e.g., cgi.test,
cgi.print_form). Sometimes, this is enough to resolve connection problems. We'll
use some of these in the mailer case study in the next chapter.

Show exceptions you catch.

If you catch an exception that Python raises, the Python error message won't be
printed to stderr (that is simply the default behavior). In such cases, it's up to your
script to display the exception's name and value in the response page; exception
details are available in the built-in sys module. We'll use this in a later example, too.

Run it live.

Of course, once your script is at least half working, your best bet is likely to start
running it live on the server, with real inputs coming from a browser.

When this script is run by submitting the input form page, its output produces the
new reply page shown in Figure 12-11.

Figure 12-11. Reply page generated by test4.cgi

Programming Python, 2nd Edition, O’Reilly

IT-SC book 762

As usual, we can pass parameters to this CGI script at the end of a URL, too. Figure
12-12 shows the page we get when passing a user and age explicitly in the URL.
Notice that we have two parameters after the ? this time; we separate them with &.
Also note that we've specified a blank space in the user value with +. This is a
common URL encoding convention. On the server side, the + is automatically
replaced with a space again. It's also part of the standard escape rule for URL
strings, which we'll revisit later.

Figure 12-12. Reply page generated by test4.cgi for parameters in URL

12.3.6 Adding Common Input Devices

So far, we've been typing inputs into text fields. HTML forms support a handful of
input controls (what we'd call widgets in the traditional GUI world) for collecting user
inputs. Let's look at a CGI program that shows all the common input controls at
once. As usual, we define both an HTML file to lay out the form page and a Python
CGI script to process its inputs and generate a response. The HTML file is presented
in Example 12-12.

Example 12-12. PP2E\Internet\Cgi-Web\Basics\test5a.html

<HTML><BODY>
<TITLE>CGI 101</TITLE>
<H1>Common input devices</H1>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 763

<HR>
<FORM method=POST action="test5.cgi">
 <H3>Please complete the following form and click Send</H3>
 <P><TABLE>
 <TR>
 <TH align=right>Name:
 <TD><input type=text name=name>
 <TR>
 <TH align=right>Shoe size:
 <TD><table>
 <td><input type=radio name=shoesize value=small>Small
 <td><input type=radio name=shoesize value=medium>Medium
 <td><input type=radio name=shoesize value=large>Large
 </table>
 <TR>
 <TH align=right>Occupation:
 <TD><select name=job>
 <option>Developer
 <option>Manager
 <option>Student
 <option>Evangelist
 <option>Other
 </select>
 <TR>
 <TH align=right>Political affiliations:
 <TD><table>
 <td><input type=checkbox name=language value=Python>Pythonista
 <td><input type=checkbox name=language value=Perl>Perlmonger
 <td><input type=checkbox name=language value=Tcl>Tcler
 </table>
 <TR>
 <TH align=right>Comments:
 <TD><textarea name=comment cols=30 rows=2>Enter text
here</textarea>
 <TR>
 <TD colspan=2 align=center>
 <input type=submit value="Send">
 </TABLE>
</FORM>
<HR>
</BODY></HTML>

When rendered by a browser, the page in Figure 12-13 appears.

Figure 12-13. Form page generated by test5a.html

Programming Python, 2nd Edition, O’Reilly

IT-SC book 764

This page contains a simple text field as before, but it also has radiobuttons, a pull-
down selection list, a set of multiple-choice checkbuttons, and a multiple-line text
input area. All have a name option in the HTML file, which identifies their selected
value in the data sent from client to server. When we fill out this form and click the
Send submit button, the script in Example 12-13 runs on the server to process all
the input data typed or selected in the form.

Example 12-13. PP2E\Internet\Cgi-Web\Basics\test5.cgi

#!/usr/bin/python

runs on the server, reads form input, prints html;
url=http://server-name/root-dir/Basics/test5.cgi

import cgi, sys, string
form = cgi.FieldStorage() # parse form data
print "Content-type: text/html" # plus blank line

html = """
<TITLE>test5.cgi</TITLE>
<H1>Greetings</H1>
<HR>
<H4>Your name is %(name)s</H4>
<H4>You wear rather %(shoesize)s shoes</H4>
<H4>Your current job: %(job)s</H4>
<H4>You program in %(language)s</H4>
<H4>You also said:</H4>
<P>%(comment)s</P>
<HR>"""

data = {}
for field in ['name', 'shoesize', 'job', 'language', 'comment']:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 765

 if not form.has_key(field):
 data[field] = '(unknown)'
 else:
 if type(form[field]) != type([]):
 data[field] = form[field].value
 else:
 values = map(lambda x: x.value, form[field])
 data[field] = string.join(values, ' and ')
print html % data

This Python script doesn't do much; it mostly just copies form field information into a
dictionary called data, so that it can be easily plugged into the triple-quoted
response string. A few of its tricks merit explanation:

Field validation

As usual, we need to check all expected fields to see if they really are present in the
input data, using the dictionary has_key method. Any or all of the input fields may
be missing if they weren't entered on the form or appended to an explicit URL.

String formatting

We're using dictionary key references in the format string this time -- recall that
%(name)s means pull out the value for key name in the data dictionary and perform a
to-string conversion on its value.

Multiple-choice fields

We're also testing the type of all the expected fields' values to see if they arrive as a
list instead of the usual string. Values of multiple-choice input controls, like the
language choice field in this input page, are returned from cgi.FieldStorage as a
list of objects with value attributes, rather than a simple single object with a value.
This script copies simple field values to the dictionary verbatim, but uses map to
collect the value fields of multiple-choice selections, and string.join to construct a
single string with an and inserted between each selection value (e.g., Python and
Tcl).[7]

[7] Two forward references are worth noting here. Besides simple strings and lists,
later we'll see a third type of form input object, returned for fields that specify file
uploads. The script in this example should really also escape the echoed text inserted
into the HTML reply to be robust, lest it contain HTML operators. We will discuss
escapes in detail later.

When the form page is filled out and submitted, the script creates the response
shown in Figure 12-14 -- essentially just a formatted echo of what was sent.

Figure 12-14. Response page created by test5.cgi (1)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 766

12.3.6.1 Changing input layouts

Suppose that you've written a system like this, and your users, clients, and
significant other start complaining that the input form is difficult to read. Don't
worry. Because the CGI model naturally separates the user interface (the HTML page
definition) from the processing logic (the CGI script), it's completely painless to
change the form's layout. Simply modify the HTML file; there's no need to change
the CGI code at all. For instance, Example 12-14 contains a new definition of the
input that uses tables a bit differently to provide a nicer layout with borders.

Example 12-14. PP2E\Internet\Cgi-Web\Basics\test5b.html

<HTML><BODY>
<TITLE>CGI 101</TITLE>
<H1>Common input devices: alternative layout</H1>
<P>Use the same test5.cgi server side script, but change the
layout of the form itself. Notice the separation of user interface
and processing logic here; the CGI script is independent of the
HTML used to interact with the user/client.</P><HR>

<FORM method=POST action="test5.cgi">
 <H3>Please complete the following form and click Submit</H3>
 <P><TABLE border cellpadding=3>
 <TR>
 <TH align=right>Name:
 <TD><input type=text name=name>
 <TR>
 <TH align=right>Shoe size:
 <TD><input type=radio name=shoesize value=small>Small
 <input type=radio name=shoesize value=medium>Medium
 <input type=radio name=shoesize value=large>Large
 <TR>
 <TH align=right>Occupation:
 <TD><select name=job>
 <option>Developer

Programming Python, 2nd Edition, O’Reilly

IT-SC book 767

 <option>Manager
 <option>Student
 <option>Evangelist
 <option>Other
 </select>
 <TR>
 <TH align=right>Political affiliations:
 <TD><P><input type=checkbox name=language value=Python>Pythonista
 <P><input type=checkbox name=language value=Perl>Perlmonger
 <P><input type=checkbox name=language value=Tcl>Tcler
 <TR>
 <TH align=right>Comments:
 <TD><textarea name=comment cols=30 rows=2>Enter spam
here</textarea>
 <TR>
 <TD colspan=2 align=center>
 <input type=submit value="Submit">
 <input type=reset value="Reset">
 </TABLE>
</FORM>
</BODY></HTML>

When we visit this alternative page with a browser, we get the interface shown in
Figure 12-15.

Figure 12-15. Form page created by test5b.html

Programming Python, 2nd Edition, O’Reilly

IT-SC book 768

Now, before you go blind trying to detect the differences in this and the prior HTML
file, I should note that the HTML differences that produce this page are much less
important than the fact that the action fields in these two pages' forms reference
identical URLs. Pressing this version's Submit button triggers the exact same and
totally unchanged Python CGI script again, test5.cgi (Example 12-13).

That is, scripts are completely independent of the layout of the user-interface used
to send them information. Changes in the response page require changing the script,
of course; but we can change the input page's HTML as much as we like, without
impacting the server-side Python code. Figure 12-16 shows the response page
produced by the script this time around.

Figure 12-16. Response page created by test5.cgi (2)

12.3.7 Passing Parameters in Hardcoded URLs

Earlier, we passed parameters to CGI scripts by listing them at the end of a URL
typed into the browser's address field (after a ?). But there's nothing sacred about
the browser's address field. In particular, there's nothing stopping us from using the
same URL syntax in hyperlinks that we hardcode in web page definitions. For
example, the web page from Example 12-15 defines three hyperlinks (the text
between <A> and tags), which all trigger our original test5.cgi script again, but
with three different precoded sets of parameters.

Example 12-15. PP2E\Internet\Cgi-Web\Basics\test5c.html

<HTML><BODY>
<TITLE>CGI 101</TITLE>
<H1>Common input devices: URL parameters</H1>

<P>This demo invokes the test5.cgi server-side script again,
but hardcodes input data to the end of the script's URL,
within a simple hyperlink (instead of packaging up a form's
inputs). Click your browser's "show page source" button

Programming Python, 2nd Edition, O’Reilly

IT-SC book 769

to view the links associated with each list item below.

<P>This is really more about CGI than Python, but notice that
Python's cgi module handles both this form of input (which is
also produced by GET form actions), as well as POST-ed forms;
they look the same to the Python CGI script. In other words,
cgi module users are independent of the method used to submit
data.

<P>Also notice that URLs with appended input values like this
can be generated as part of the page output by another CGI script,
to direct a next user click to the right place and context; together
with type 'hidden' input fields, they provide one way to
save state between clicks.
</P><HR>

Send Bob, small
Send Tom, Python
<A href=
"http://starship.python.net/~lutz/Basics/test5.cgi?job=Evangelist&comme
nt=spam">
Send Evangelist, spam

<HR></BODY></HTML>

This static HTML file defines three hyperlinks -- the first two are minimal and the
third is fully specified, but all work similarly (again, the target script doesn't care).
When we visit this file's URL, we see the page shown in Figure 12-17. It's mostly just
a page for launching canned calls to the CGI script.

Figure 12-17. Hyperlinks page created by test5c.html

Programming Python, 2nd Edition, O’Reilly

IT-SC book 770

Clicking on this page's second link creates the response page in Figure 12-18. This
link invokes the CGI script, with the name parameter set to "Tom" and the language
parameter set to "Python," simply because those parameters and values are
hardcoded in the URL listed in the HTML for the second hyperlink. It's exactly as if
we had manually typed the line shown at the top of the browser in Figure 12-18.

Figure 12-18. Response page created by test5.cgi (3)

Notice that lots of fields are missing here; the test5.cgi script is smart enough to
detect and handle missing fields and generate an unknown message in the reply
page. It's also worth pointing out that we're reusing the Python CGI script again
here. The script itself is completely independent of both the user-interface format of
the submission page, as well as the technique used to invoke it (from a submitted
form or a hardcoded URL). By separating user interface from processing logic, CGI
scripts become reusable software components, at least within the context of the CGI
environment.

12.3.7.1 Saving CGI script state information

But the real reason for showing this technique is that we're going to use it
extensively in the larger case studies in the next two chapters to implement lists of
dynamically generated selections that "know" what to do when clicked. Precoded
parameters in URLs are a way to retain state information between pages -- they can
be used to direct the action of the next script to be run. As such, hyperlinks with
such parameters are sometimes known as "smart links."

Normally, CGI scripts run autonomously, with no knowledge of any other scripts that
may have run before. That hasn't mattered in our examples so far, but larger
systems are usually composed of multiple user interaction steps and many scripts,
and we need a way to keep track of information gathered along the way. Generating
hardcoded URLs with parameters is one way for a CGI script to pass data to the next
script in the application. When clicked, such URL parameters send pre-programmed
selection information back to another server-side handler script.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 771

For example, a site that lets you read your email may present you with a list of
viewable email messages, implemented in HTML as a list of hyperlinks generated by
another script. Each hyperlink might include the name of the message viewer script,
along with parameters identifying the selected message number, email server name,
and so on -- as much data as is needed to fetch the message associated with a
particular link. A retail site may instead serve up a generated list of product links,
each of which triggers a hardcoded hyperlink containing the product number, its
price, and so on.

In general, there are a variety of ways to pass or retain state information between
CGI script executions:

Hardcoded URL parameters in dynamically generated hyperlinks and embedded in
web pages (as discussed here)

Hidden form input fields that are attached to form data and embedded in web pages,
but not displayed on web pages

HTTP "cookies" that are stored on the client machine and transferred between client
and server in HTTP message headers

General server-side data stores that include databases, persistent object shelves, flat
files, and so on

We'll meet most of these mediums in later examples in this chapter and in the two
chapters that follow.

12.4 The Hello World Selector

It's now time for something a bit more useful (well, more entertaining, at least). This
section presents a program that displays the basic syntax required by various
programming languages to print the string "Hello World", the classic language
benchmark. To keep this simple, it assumes the string shows up in the standard
output stream, not a GUI or web page. It also gives just the output command itself,
not the complete programs. The Python version happens to be a complete program,
but we won't hold that against its competitors here.

Structurally, the first cut of this example consists of a main page HTML file, along
with a Python-coded CGI script that is invoked by a form in the main HTML page.
Because no state or database data is stored between user clicks, this is still a fairly
simple example. In fact, the main HTML page implemented by Example 12-16 is
really just one big pull-down selection list within a form.

Example 12-16. PP2E\Internet\Cgi-Web\Basics\languages.html

<html><body>
<title>Languages</title>
<h1>Hello World selector</h1>

<P>This demo shows how to display a "hello world" message in various
programming languages' syntax. To keep this simple, only the output
command

Programming Python, 2nd Edition, O’Reilly

IT-SC book 772

is shown (it takes more code to make a complete program in some of
these
languages), and only text-based solutions are given (no GUI or HTML
construction logic is included). This page is a simple HTML file; the
one
you see after pressing the button below is generated by a Python CGI
script
which runs on the server. Pointers:

To see this page's HTML, use the 'View Source' command in your
browser.
To view the Python CGI script on the server,
 click here or
 here.
To see an alternative version that generates this page dynamically,
 click here.
For more syntax comparisons, visit
 this
site.
</P>

<hr>
<form method=POST action="languages.cgi">
 <P>Select a programming language:
 <P><select name=language>
 <option>All
 <option>Python
 <option>Perl
 <option>Tcl
 <option>Scheme
 <option>SmallTalk
 <option>Java
 <option>C
 <option>C++
 <option>Basic
 <option>Fortran
 <option>Pascal
 <option>Other
 </select>
 <P><input type=Submit>
</form>

</body></html>

For the moment, let's ignore some of the hyperlinks near the middle of this file; they
introduce bigger concepts like file transfers and maintainability that we will explore in
the next two sections. When visited with a browser, this HTML file is downloaded to
the client and rendered into the new browser page shown in Figure 12-19.

Figure 12-19. The "Hello World" main page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 773

That widget above the Submit button is a pull-down selection list that lets you
choose one of the <option> tag values in the HTML file. As usual, selecting one of
these language names and pressing the Submit button at the bottom (or pressing
your Enter key) sends the selected language name to an instance of the server-side
CGI script program named in the form's action option. Example 12-17 contains the
Python script that runs on the server upon submission.

Example 12-17. PP2E\Internet\Cgi-Web\Basics\languages.cgi

#!/usr/bin/python

show hello world syntax for input language name;
note that it uses r'...' raw strings so that '\n'
in the table are left intact, and cgi.escape() on
the string so that things like '<<' don't confuse
browsers--they are translated to valid html code;
any language name can arrive at this script: e.g.,
can type "http://starship.python.net/~lutz/Basics
/languages.cgi?language=Cobol" in any web browser.
caveats: the languages list appears in both the cgi
and html files--could import from a single file if
selection list generated by another cgi script too;

debugme = 0 # 1=test from cmd line
inputkey = 'language' # input parameter name

hellos = {
 'Python': r" print 'Hello World' ",
 'Perl': r' print "Hello World\n"; ',
 'Tcl': r' puts "Hello World" ',
 'Scheme': r' (display "Hello World") (newline) ',
 'SmallTalk': r" 'Hello World' print. ",

Programming Python, 2nd Edition, O’Reilly

IT-SC book 774

 'Java': r' System.out.println("Hello World"); ',
 'C': r' printf("Hello World\n"); ',
 'C++': r' cout << "Hello World" << endl; ',
 'Basic': r' 10 PRINT "Hello World" ',
 'Fortran': r" print *, 'Hello World' ",
 'Pascal': r" WriteLn('Hello World'); "
}

class dummy: # mocked-up input obj
 def __init__(self, str): self.value = str

import cgi, sys
if debugme:
 form = {inputkey: dummy(sys.argv[1])} # name on cmd line
else:
 form = cgi.FieldStorage() # parse real inputs

print "Content-type: text/html\n" # adds blank line
print "<TITLE>Languages</TITLE>"
print "<H1>Syntax</H1><HR>"

def showHello(form): # html for one
language
 choice = form[inputkey].value
 print "<H3>%s</H3><P><PRE>" % choice
 try:
 print cgi.escape(hellos[choice])
 except KeyError:
 print "Sorry--I don't know that language"
 print "</PRE></P>
"

if not form.has_key(inputkey) or form[inputkey].value == 'All':
 for lang in hellos.keys():
 mock = {inputkey: dummy(lang)}
 showHello(mock)
else:
 showHello(form)
print '<HR>'

And as usual, this script prints HTML code to the standard output stream to produce
a response page in the client's browser. There's not much new to speak of in this
script, but it employs a few techniques that merit special focus:

Raw strings

Notice the use of raw strings (string constants preceded by an "r" character) in the
language syntax dictionary. Recall that raw strings retain \ backslash characters in
the string literally, rather than interpreting them as string escape-code introductions.
Without them, the \n newline character sequences in some of the language's code
snippets would be interpreted by Python as line-feeds, rather than being printed in
the HTML reply as \n.

Escaping text embedded in HTML and URLs

Programming Python, 2nd Edition, O’Reilly

IT-SC book 775

This script takes care to format the text of each language's code snippet with the
cgi.escape utility function. This standard Python utility automatically translates
characters that are special in HTML into HTML escape code sequences, such that they
are not treated as HTML operators by browsers. Formally, cgi.escape translates
characters to escape code sequences, according to the standard HTML convention: <,
>, and & become <, >, and &. If you pass a second true argument, the
double-quote character (") is also translated to ".

For example, the << left-shift operator in the C++ entry is translated to << --
a pair of HTML escape codes. Because printing each code snippet effectively embeds
it in the HTML response stream, we must escape any special HTML characters it
contains. HTML parsers (including Python's standard htmllib module) translate
escape codes back to the original characters when a page is rendered.

More generally, because CGI is based upon the notion of passing formatted
stringsacross the Net, escaping special characters is a ubiquitous operation. CGI
scripts almost always need to escape text generated as part of the reply to be safe.
For instance, if we send back arbitrary text input from a user or read from a data
source on the server, we usually can't be sure if it will contain HTML characters or
not, so we must escape it just in case.

In later examples, we'll also find that characters inserted into URL address strings
generated by our scripts may need to be escaped as well. A literal & in a URL is
special, for example, and must be escaped if it appears embedded in text we insert
into a URL. However, URL syntax reserves different special characters than HTML
code, and so different escaping conventions and tools must be used. As we'll see
later in this chapter, cgi.escape implements escape translations in HTML code, but
urllib.quote (and its relatives) escapes characters in URL strings.

Mocking up form inputs

Here again, form inputs are "mocked up" (simulated), both for debugging and for
responding to a request for all languages in the table. If the script's global debugme
variable is set to a true value, for instance, the script creates a dictionary that is
plug-and-play compatible with the result of a cgi.FieldStorage call -- its
"languages" key references an instance of the dummy mock-up class. This class in
turn creates an object that has the same interface as the contents of a
cgi.FieldStorage result -- it makes an object with a value attribute set to a
passed-in string.

The net effect is that we can test this script by running it from the system command
line: the generated dictionary fools the script into thinking it was invoked by a
browser over the Net. Similarly, if the requested language name is "All," the script
iterates over all entries in the languages table, making a mocked-up form dictionary
for each (as though the user had requested each language in turn). This lets us
reuse the existing showHello logic to display each language's code in a single page.
As always in Python, object interfaces and protocols are what we usually code for,
not specific datatypes. The showHello function will happily process any object that
responds to the syntax form['language'].value.[8]

[8] If you are reading closely, you might notice that this is the second time we've
used mock-ups in this chapter (see the earlier test4.cgi example). If you find this

Programming Python, 2nd Edition, O’Reilly

IT-SC book 776

technique generally useful, it would probably make sense to put the dummy class,
along with a function for populating a form dictionary on demand, into a module so it
can be reused. In fact, we will do that in the next section. Even for two-line classes
like this, typing the same code the third time around will do much to convince you of
the power of code reuse.

Now let's get back to interacting with this program. If we select a particular
language, our CGI script generates an HTML reply of the following sort (along with
the required content-type header and blank line):

<TITLE>Languages</TITLE>
<H1>Syntax</H1><HR>
<H3>Scheme</H3><P><PRE>
 (display "Hello World") (newline)
</PRE></P>

<HR>

Program code is marked with a <PRE> tag to specify preformatted text (the browser
won't reformat it like a normal text paragraph). This reply code shows what we get
when we pick "Scheme." Figure 12-20 shows the page served up by the script after
selecting "Python" in the pull-down selection list.

Figure 12-20. Response page created by languages.cgi

Our script also accepts a language name of "All," and interprets it as a request to
display the syntax for every language it knows about. For example, here is the HTML
that is generated if we set global variable debugme to 1 and run from the command
line with a single argument, "All." This output is the same as what's printed to the
client's browser in response to an "All" request:[9]

[9] Interestingly, we also get the "All" reply if debugme is set to when we run the script from
the command line. The cgi.FieldStorage call returns an empty dictionary if called outside
the CGI environment rather than throwing an exception, so the test for a missing key kicks in.
It's likely safer to not rely on this behavior, however.

C:\...\PP2E\Internet\Cgi-Web\Basics>python languages.cgi All
Content-type: text/html

<TITLE>Languages</TITLE>
<H1>Syntax</H1><HR>
<H3>Perl</H3><P><PRE>
 print "Hello World\n";

Programming Python, 2nd Edition, O’Reilly

IT-SC book 777

</PRE></P>

<H3>SmallTalk</H3><P><PRE>
 'Hello World' print.
</PRE></P>

<H3>Basic</H3><P><PRE>
 10 PRINT "Hello World"
</PRE></P>

<H3>Scheme</H3><P><PRE>
 (display "Hello World") (newline)
</PRE></P>

<H3>Python</H3><P><PRE>
 print 'Hello World'
</PRE></P>

<H3>C++</H3><P><PRE>
 cout << "Hello World" << endl;
</PRE></P>

<H3>Pascal</H3><P><PRE>
 WriteLn('Hello World');
</PRE></P>

<H3>Java</H3><P><PRE>
 System.out.println("Hello World");
</PRE></P>

<H3>C</H3><P><PRE>
 printf("Hello World\n");
</PRE></P>

<H3>Tcl</H3><P><PRE>
 puts "Hello World"
</PRE></P>

<H3>Fortran</H3><P><PRE>
 print *, 'Hello World'
</PRE></P>

<HR>

Each language is represented here with the same code pattern -- the showHello
function is called for each table entry, along with a mocked-up form object. Notice
the way that C++ code is escaped for embedding inside the HTML stream; this is the
cgi.escape call's handiwork. When viewed with a browser, the "All" response page
is rendered as shown in Figure 12-21.

Figure 12-21. Response page for "all languages" choice

Programming Python, 2nd Edition, O’Reilly

IT-SC book 778

12.4.1 Checking for Missing and Invalid Inputs

So far, we've been triggering the CGI script by selecting a language name from the
pull-down list in the main HTML page. In this context, we can be fairly sure that the
script will receive valid inputs. Notice, though, that there is nothing to prevent a user
from passing the requested language name at the end of the CGI script's URL as an
explicit parameter, instead of using the HTML page form. For instance, a URL of the
form:

http://starship.python.net/~lutz/Basics/languages.cgi?language=Python

yields the same "Python" response page shown in Figure 12-20.[10] However, because
it's always possible for a user to bypass the HTML file and use an explicit URL, it's
also possible that a user could invoke our script with an unknown language name
that is not in the HTML file's pull-down list (and so not in our script's table). In fact,
the script might be triggered with no language input at all, if someone explicitly
types its URL with no parameter at the end.

[10] See the urllib module examples in the prior and following chapters for a way to send this
URL from a Python script. urllib lets programs fetch web pages and invoke remote CGI
scripts by building and submitting URL strings like this one, with any required parameters
filled in at the end of the string. You could use this module, for instance, to automatically send
information to order Python books at an online bookstore from within a Python script, without
ever starting a web browser.

To be robust, the script checks for both cases explicitly, as all CGI scripts generally
should. For instance, here is the HTML generated in response to a request for the
fictitious language "GuiDO":

<TITLE>Languages</TITLE>
<H1>Syntax</H1><HR>
<H3>GuiDO</H3><P><PRE>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 779

Sorry--I don't know that language
</PRE></P>

<HR>

If the script doesn't receive any language name input, it simply defaults to the "All"
case. If we didn't detect these cases, chances are that our script would silently die
on a Python exception and leave the user with a mostly useless half-complete page
or with a default error page (we didn't assign stderr to stdout here, so no Python
error message would be displayed). In pictures, Figure 12-22 shows the page
generated if the script is invoked with an explicit URL like this:

http://starship.python.net/~lutz/Basics/languages.cgi?language=COBOL

To test this error case, the pull-down list includes an "Unknown" name, which
produces a similar error page reply. Adding code to the script's table for the COBOL
"Hello World" program is left as an exercise for the reader.

Figure 12-22. Response page for unknown language

12.5 Coding for Maintainability

Let's step back from coding details for just a moment to gain some design
perspective. As we've seen, Python code, by and large, automatically lends itself to
systems that are easy to read and maintain; it has a simple syntax that cuts much of
the clutter of other tools. On the other hand, coding styles and program design can
often impact maintainability as much as syntax. For example, the "Hello World"
selector pages earlier in this chapter work as advertised, and were very easy and
fast to throw together. But as currently coded, the languages selector suffers from
substantial maintainability flaws.

Imagine, for instance, that you actually take me up on that challenge posed at the
end of the last section, and you attempt to add another entry for COBOL. If you add
COBOL to the CGI script's table, you're only half done: the list of supported
languages lives redundantly in two places -- in the HTML for the main page as well
as the script's syntax dictionary. Changing one does not change the other. More
generally, there are a handful of ways that this program might fail the scrutiny of a
rigorous code review:

Selection list

Programming Python, 2nd Edition, O’Reilly

IT-SC book 780

As just mentioned, the list of languages supported by this program lives in two
places: the HTML file and the CGI script's table.

Field name

The field name of the input parameter, "language," is hardcoded into both files, as
well. You might remember to change it in the other if you change it in one, but you
might not.

Form mock ups

We've redundantly coded classes to mock-up form field inputs twice in this chapter
already; the "dummy" class here is clearly a mechanism worth reusing.

HTML Code

HTML embedded in and generated by the script is sprinkled throughout the program
in print statements, making it difficult to implement broad web page layout
changes.

This is a short example, of course, but issues of redundancy and reuse become more
acute as your scripts grow larger. As a rule of thumb, if you find yourself changing
multiple source files to modify a single behavior, or if you notice that you've taken to
writing programs by cut-and-paste copying of existing code, then it's probably time
to think about more rational program structures. To illustrate coding styles and
practices that are more friendly to maintainers, let's rewrite this example to fix all of
these weaknesses in a single mutation.

12.5.1 Step 1: Sharing Objects Between Pages

We can remove the first two maintenance problems listed above with a simple
transformation; the trick is to generate the main page dynamically, from an
executablescript, rather than from a precoded HTML file. Within a script, we can
import the input field name and selection list values from a common Python module
file, shared by the main and reply page generation scripts. Changing the selection
list or field name in the common module changes both clients automatically. First,
we move shared objects to a common module file, as shown in Example 12-18.

Example 12-18. PP2E\Internet\Cgi-Web\Basics\languages2common.py

common objects shared by main and reply page scripts;
need change only this file to add a new language.

inputkey = 'language' # input parameter name

hellos = {
 'Python': r" print 'Hello World' ",
 'Perl': r' print "Hello World\n"; ',
 'Tcl': r' puts "Hello World" ',
 'Scheme': r' (display "Hello World") (newline) ',
 'SmallTalk': r" 'Hello World' print. ",

Programming Python, 2nd Edition, O’Reilly

IT-SC book 781

 'Java': r' System.out.println("Hello World"); ',
 'C': r' printf("Hello World\n"); ',
 'C++': r' cout << "Hello World" << endl; ',
 'Basic': r' 10 PRINT "Hello World" ',
 'Fortran': r" print *, 'Hello World' ",
 'Pascal': r" WriteLn('Hello World'); "
}

Module languages2common contains all the data that needs to agree between pages:
the field name, as well as the syntax dictionary. The hellos syntax dictionary isn't
quite HTML code, but its keys list can be used to generate HTML for the selection list
on the main page dynamically. Next, in Example 12-19, we recode the main page as
an executable script, and populate the response HTML with values imported from the
common module file in the previous example.

Example 12-19. PP2E\Internet\Cgi-Web\Basics\languages2.cgi

#!/usr/bin/python

generate html for main page dynamically from an executable
Python script, not a pre-coded HTML file; this lets us
import the expected input field name and the selection table
values from a common Python module file; changes in either
now only have to be made in one place, the Python module file;

REPLY = """Content-type: text/html

<html><body>
<title>Languages2</title>
<h1>Hello World selector</h1>
<P>Similar to file languages.html, but
this page is dynamically generated by a Python CGI script, using
selection list and input field names imported from a common Python
module on the server. Only the common module must be maintained as
new languages are added, because it is shared with the reply script.

To see the code that generates this page and the reply, click
here,
here,
here, and
here.</P>
<hr>
<form method=POST action="languages2reply.cgi">
 <P>Select a programming language:
 <P><select name=%s>
 <option>All
 %s
 <option>Other
 </select>
 <P><input type=Submit>
</form>
</body></html>
"""

import string

Programming Python, 2nd Edition, O’Reilly

IT-SC book 782

from languages2common import hellos, inputkey

options = []
for lang in hellos.keys():
 options.append('<option>' + lang) # wrap table keys in html
code
options = string.join(options, '\n\t')
print REPLY % (inputkey, options) # field name and values from
module

Here again, ignore the getfile hyperlinks in this file for now; we'll learn what they
mean in the next section. You should notice, though, that the HTML page definition
becomes a printed Python string here (named REPLY), with %s format targets where
we plug in values imported from the common module.[11] It's otherwise similar to the
original HTML file's code; when we visit this script's URL, we get a similar page,
shown in Figure 12-23. But this time, the page is generated by running a script on
the server that populates the pull-down selection list from the keys list of the
common syntax table.

[11] The HTML code template could be loaded from an external text file, too, but external text
files are no more easily changed than Python scripts. In fact, Python scripts are text files, and
this is a major feature of the language: it's usually easy to change the Python scripts of an
installed system onsite, without re-compile or re-link steps.

Figure 12-23. Alternative main page made by languages2.cgi

12.5.2 Step 2: A Reusable Form Mock-up Utility

Moving the languages table and input field name to a module file solves the first two
maintenance problems we noted. But if we want to avoid writing a dummy field
mock-up class in every CGI script we write, we need to do something more. Again,
it's merely a matter of exploiting the Python module's affinity for code reuse: let's
move the dummy class to a utility module, as in Example 12-20.

Example 12-20. PP2E\Internet\Cgi-Web\Basics\formMockup.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 783

Tools for simulating the result of a cgi.FieldStorage()
call; useful for testing CGI scripts outside the web

import types

class FieldMockup: # mocked-up input
object
 def __init__(self, str):
 self.value = str

def formMockup(**kwargs): # pass field=value
args
 mockup = {} # multi-choice:
[value,...]
 for (key, value) in kwargs.items():
 if type(value) is not types.ListType: # simple fields
have .value
 mockup[key] = FieldMockup(str(value))
 else: # multi-choice
have list
 mockup[key] = [] # to do: file
upload fields
 for pick in value:
 mockup[key].append(FieldMockup(pick))
 return mockup

def selftest():
 # use this form if fields can be hard-coded
 form = formMockup(name='Bob', job='hacker', food=['Spam', 'eggs',
'ham'])
 print form['name'].value
 print form['job'].value
 for item in form['food']:
 print item.value,
 # use real dict if keys are in variables or computed
 print
 form = {'name':FieldMockup('Brian'), 'age':FieldMockup(38)}
 for key in form.keys():
 print form[key].value

if __name__ == '__main__': selftest()

By placing our mock-up class in this module, formMockup.py, it automatically
becomes a reusable tool, and may be imported by any script we care to write.[12] For
readability, the dummy field simulation class has been renamed FieldMockup here.
For convenience, we've also added a formMockup utility function that builds up an
entire form dictionary from passed-in keyword arguments. Assuming you can
hardcode the names of the form to be faked, the mock-up can be created in a single
call. This module includes a self-test function invoked when the file is run from the
command line, which demonstrates how its exports are used. Here is its test output,
generated by making and querying two form mock-up objects:

[12] This assumes, of course, that this module can be found on the Python module search path
when those scripts are run. See the search path discussion earlier in this chapter. Since

Programming Python, 2nd Edition, O’Reilly

IT-SC book 784

Python searches the current directory for imported modules by default, this always works
without sys.path changes if all of our files are in our main web directory.

C:\...\PP2E\Internet\Cgi-Web\Basics>python formMockup.py
Bob
hacker
Spam eggs ham
38
Brian

Since the mock-up now lives in a module, we can reuse it any time we want to test a
CGI script offline. To illustrate, the script in Example 12-21 is a rewrite of the
test5.cgi example we saw earlier, using the form mock-up utility to simulate field
inputs. If we had planned ahead, we could have tested this script like this without
even needing to connect to the Net.

Example 12-21. PP2E\Internet\Cgi-Web\Basics\test5_mockup.cgi

#!/usr/bin/python

run test5 logic with formMockup instead of cgi.FieldStorage()
to test: python test5_mockup.cgi > temp.html, and open temp.html

from formMockup import formMockup
form = formMockup(name='Bob',
 shoesize='Small',
 language=['Python', 'C++', 'HTML'],
 comment='ni, Ni, NI')

rest same as original, less form assignment

Running this script from a simple command line shows us what the HTML response
stream will look like:

C:\...\PP2E\Internet\Cgi-Web\Basics>python test5_mockup.cgi
Content-type: text/html

<TITLE>test5.cgi</TITLE>
<H1>Greetings</H1>
<HR>
<H4>Your name is Bob</H4>
<H4>You wear rather Small shoes</H4>
<H4>Your current job: (unknown)</H4>
<H4>You program in Python and C++ and HTML</H4>
<H4>You also said:</H4>
<P>ni, Ni, NI</P>
<HR>

Running it live yields the page in Figure 12-24. Field inputs here are hardcoded,
similar in spirit to the test5 extension that embedded input parameters at the end of
hyperlink URLs. Here, they come from form mock-up objects created in the reply
script that cannot be changed without editing the script. Because Python code runs
immediately, though, modifying a Python script during the debug cycle goes as
quickly as you can type.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 785

Figure 12-24. A response page with simulated inputs

12.5.3 Step 3: Putting It All Together -- A New Reply Script

There's one last step on our path to software maintenance nirvana: we still must
recode the reply page script itself, to import data that was factored out to the
common module and import the reusable form mock-up module's tools. While we're
at it, we move code into functions (in case we ever put things in this file that we'd
like to import in another script), and all HTML code to triple-quoted string blocks (see
Example 12-22). Changing HTML is generally easier when it has been isolated in
single strings like this, rather than being sprinkled throughout a program.

Example 12-22. PP2E\Internet\Cgi-Web\Basics\languages2reply.cgi

#!/usr/bin/python

for easier maintenance, use html template strings, get
the language table and input key from common mdule file,
and get reusable form field mockup utilities module.

import cgi, sys
from formMockup import FieldMockup # input field
simulator
from languages2common import hellos, inputkey # get common
table, name
debugme = 0

hdrhtml = """Content-type: text/html\n
<TITLE>Languages</TITLE>
<H1>Syntax</H1><HR>"""

langhtml = """
<H3>%s</H3><P><PRE>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 786

%s
</PRE></P>
"""

def showHello(form): # html for one
language
 choice = form[inputkey].value # escape lang name
too
 try:
 print langhtml % (cgi.escape(choice),
 cgi.escape(hellos[choice]))
 except KeyError:
 print langhtml % (cgi.escape(choice),
 "Sorry--I don't know that language")

def main():
 if debugme:
 form = {inputkey: FieldMockup(sys.argv[1])} # name on cmd line
 else:
 form = cgi.FieldStorage() # parse real
inputs

 print hdrhtml
 if not form.has_key(inputkey) or form[inputkey].value == 'All':
 for lang in hellos.keys():
 mock = {inputkey: FieldMockup(lang)}
 showHello(mock)
 else:
 showHello(form)
 print '<HR>'

if __name__ == '__main__': main()

When global debugme is set to 1, the script can be tested offline from a simple
command line as before:

C:\...\PP2E\Internet\Cgi-Web\Basics>python languages2reply.cgi Python
Content-type: text/html

<TITLE>Languages</TITLE>
<H1>Syntax</H1><HR>

<H3>Python</H3><P><PRE>
 print 'Hello World'
</PRE></P>

<HR>

When run online, we get the same reply pages we saw for the original version of this
example (we won't repeat them here again). This transformation changed the
program's architecture, not its user interface.

Most of the code changes in this version of the reply script are straightforward. If
you test-drive these pages, the only differences you'll find are the URLs at the top of
your browser (they're different files, after all), extra blank lines in the generated
HTML (ignored by the browser), and a potentially different ordering of language
names in the main page's pull-down selection list.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 787

This selection list ordering difference arises because this version relies on the order
of the Python dictionary's keys list, not on a hardcoded list in an HTML file.
Dictionaries, you'll recall, arbitrarily order entries for fast fetches; if you want the
selection list to be more predictable, simply sort the keys list before iterating over it
using the list sort method.

Faking Inputs with Shell Variables

If you know what you're doing, you can sometimes also test CGI scripts
from the command line by setting the same environment variables that
HTTP servers set, and then launching your script. For example, we can
pretend to be a web server by storing input parameters in the
QUERY_STRING environment variable, using the same syntax we employ at
the end of a URL string after the ?:

$ setenv QUERY_STRING "name=Mel&job=trainer,+writer"
$ python test5.cgi
Content-type: text/html

<TITLE>test5.cgi<?TITLE>
<H1>Greetings</H1>
<HR>
<H4>Your name is Mel</H4>
<H4>You wear rather (unknown) shoes</H4>
<H4>Your current job: trainer, writer</H4>
<H4>You program in (unknown)</H4>
<H4>You also said:</H4>
<P>(unknown)</P>
<HR>

Here, we mimic the effects of a GET style form submission or explicit URL.
HTTP servers place the query string (parameters) in the shell variable
QUERY_STRING. Python's cgi module finds them there as though they
were sent by a browser. POST-style inputs can be simulated with shell
variables, too, but it's more complex -- so much so that you're likely best off
not learning how. In fact, it may be more robust in general to mock-up
inputs with Python objects (e.g., as in formMockup.py). But some CGI
scripts may have additional environment or testing constraints that merit
unique treatment.

12.6 More on HTML and URL Escapes

Perhaps the most subtle change in the last section's rewrite is that, for robustness,
this version also calls cgi.escape for the language name, not just for the language's
code snippet. It's unlikely but not impossible that someone could pass the script a
language name with an embedded HTML character. For example, a URL like:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 788

http://starship.python.net/~lutz/Basics/languages2reply.cgi?language=a<
b

embeds a < in the language name parameter (the name is a<b). When submitted,
this version uses cgi.escape to properly translate the < for use in the reply HTML,
according to the standard HTML escape conventions discussed earlier:

<TITLE>Languages</TITLE>
<H1>Syntax</H1><HR>

<H3>a<b</H3><P><PRE>
Sorry--I don't know that language
</PRE></P>

<HR>

The original version doesn't escape the language name, such that the embedded <b
is interpreted as an HTML tag (which may make the rest of the page render in bold
font!). As you can probably tell by now, text escapes are pervasive in CGI scripting -
- even text that you may think is safe must generally be escaped before being
inserted into the HTML code in the reply stream.

12.6.1 URL Escape Code Conventions

Notice, though, that while it's wrong to embed an unescaped < in the HTML code
reply, it's perfectly okay to include it literally in the earlier URL string used to trigger
the reply. In fact, HTML and URLs define completely different characters as special.
For instance, although & must be escaped as & inside HTML code, we have to use
other escaping schemes to code a literal & within a URL string (where it normally
separates parameters). To pass a language name like a&b to our script, we have to
type the following URL:

http://starship.python.net/~lutz/Basics/languages2reply.cgi?language=a%
26b

Here, %26 represents & -- the & is replaced with a % followed by the hexadecimal
value (0x26) of its ASCII code value (38). By URL standard, most nonalphanumeric
characters are supposed to be translated to such escape sequences, and spaces are
replaced by + signs. Technically, this convention is known as the application/x-www-
form-urlencoded query string format, and it's part of the magic behind those bizarre
URLs you often see at the top of your browser as you surf the Web.

12.6.2 Python HTML and URL Escape Tools

If you're like me, you probably don't have the hexadecimal value of the ASCII code
for & committed to memory. Luckily, Python provides tools that automatically
implement URL escapes, just as cgi.escape does for HTML escapes. The main thing
to keep in mind is that HTML code and URL strings are written with entirely different
syntax, and so they employ distinct escaping conventions. Web users don't generally
care, unless they need to type complex URLs explicitly (browsers handle most escape
code details internally). But if you write scripts that must generate HTML or URLs,
you need to be careful to escape characters that are reserved in either syntax.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 789

Because HTML and URLs have different syntaxes, Python provides two distinct sets of
tools for escaping their text. In the standard Python library:

cgi.escape escapes text to be embedded in HTML.

urllib.quote and quote_plus escape text to be embedded in URLs.

The urllib module also has tools for undoing URL escapes (unquote,
unquote_plus), but HTML escapes are undone during HTML parsing at large
(htmllib). To illustrate the two escape conventions and tools, let's apply each
toolset to a few simple examples.

12.6.3 Escaping HTML Code

As we saw earlier, cgi.escape translates code for inclusion within HTML. We
normally call this utility from a CGI script, but it's just as easy to explore its behavior
interactively:

>>> import cgi
>>> cgi.escape('a < b > c & d "spam"', 1)
'a < b > c & d "spam"'

>>> s = cgi.escape("1<2 hello")
>>> s
'1<2 hello'

Python's cgi module automatically converts characters that are special in HTML
syntax according to the HTML convention. It translates <, >, &, and with an extra
true argument, ", into escape sequences of the form &X;, where the X is a mnemonic
that denotes the original character. For instance, < stands for the "less than"
operator (<) and & denotes a literal ampersand (&).

There is no un-escaping tool in the CGI module, because HTML escape code
sequences are recognized within the context of an HTML parser, like the one used by
your web browser when a page is downloaded. Python comes with a full HTML
parser, too, in the form of standard module htmllib, which imports and specializes
tools in module sgmllib (HTML is a kind of SGML syntax). We won't go into details
on the HTML parsing tools here (see the library manual for details), but to illustrate
how escape codes are eventually undone, here is the SGML module at work reading
back the last output above:

>>> from sgmllib import TestSGMLParser
>>> p = TestSGMLParser(1)
>>> s
'1<2 hello'
>>> for c in s:
... p.feed(c)
...
>>> p.close()
data: '1<2 hello'

12.6.4 Escaping URLs

Programming Python, 2nd Edition, O’Reilly

IT-SC book 790

By contrast, URLs reserve other characters as special and must adhere to different
escape conventions. Because of that, we use different Python library tools to escape
URLs for transmission. Python's urllib module provides two tools that do the
translation work for us: quote, which implements the standard %XX hexadecimal URL
escape code sequences for most nonalphanumeric characters, and quote_plus,
which additionally translates spaces to + plus signs. The urllib module also
provides functions for unescaping quoted characters in a URL string: unquote undoes
%XX escapes, and unquote_plus also changes plus signs back to spaces. Here is the
module at work, at the interactive prompt:

>>> import urllib
>>> urllib.quote("a & b #! c")
'a%20%26%20b%20%23%21%20c'

>>> urllib.quote_plus("C:\stuff\spam.txt")
'C%3a%5cstuff%5cspam.txt'

>>> x = urllib.quote_plus("a & b #! c")
>>> x
'a+%26+b+%23%21+c'

>>> urllib.unquote_plus(x)
'a & b #! c'

URL escape sequences embed the hexadecimal values of non-safe characters
following a % sign (usually, their ASCII codes). In urllib, non-safe characters are
usually taken to include everything except letters, digits, a handful of safe special
characters (any of _,.-), and / by default). You can also specify a string of safe
characters as an extra argument to the quote calls to customize the translations; the
argument defaults to /, but passing an empty string forces / to be escaped:

>>> urllib.quote_plus("uploads/index.txt")
'uploads/index.txt'

>>> urllib.quote_plus("uploads/index.txt", '')
'uploads%2findex.txt'

Note that Python's cgi module also translates URL escape sequences back to their
original characters and changes + signs to spaces during the process of extracting
input information. Internally, cgi.FieldStorage automatically calls urllib.unquote
if needed to parse and unescape parameters passed at the end of URLs (most of the
translation happens in cgi.parse_qs). The upshot is that CGI scripts get back the
original, unescaped URL strings, and don't need to unquote values on their own. As
we've seen, CGI scripts don't even need to know that inputs came from a URL at all.

12.6.5 Escaping URLs Embedded in HTML Code

But what do we do for URLs inside HTML? That is, how do we escape when we
generate and embed text inside a URL, which is itself embedded inside generated
HTML code? Some of our earlier examples used hardcoded URLs with appended input
parameters inside <A HREF> hyperlink tags; file languages2.cgi, for instance, prints
HTML that includes a URL:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 791

Because the URL here is embedded in HTML, it must minimally be escaped according
to HTML conventions (e.g., any < characters must become <), and any spaces
should be translated to + signs. A cgi.escape(url) call, followed by a
string.replace(url, " ", "+") would take us this far, and would probably suffice
for most cases.

That approach is not quite enough in general, though, because HTML escaping
conventions are not the same as URL conventions. To robustly escape URLs
embedded in HTML code, you should instead call urllib.quote_plus on the URL
string before adding it to the HTML text. The escaped result also satisfies HTML
escape conventions, because urllib translates more characters than cgi.escape,
and the % in URL escapes is not special to HTML.

But there is one more wrinkle here: you also have to be careful with & characters in
URL strings that are embedded in HTML code (e.g., within <A> hyperlink tags). Even
if parts of the URL string are URL-escaped, when more than one parameter is
separated by a &, the & separator might also have to be escaped as & according
to HTML conventions. To see why, consider the following HTML hyperlink tag:

<A HREF="file.cgi?name=a&job=b&=c§=d<=e">hello

When rendered in most browsers I've tested, this URL link winds up looking
incorrectly like this (the "S" character is really a non-ASCII section marker):

file.cgi?name=a&job=b&=c&S=d<=e

The first two parameters are retained as expected (name=a, job=b), because name is
not preceded with an &, and &job is not recognized as a valid HTML character escape
code. However, the &, §, and < parts are interpreted as special characters,
because they do name valid HTML escape codes. To make this work as expected, the
& separators should be escaped:

hello

Browsers render this fully escaped link as expected:

file.cgi?name=a&job=b&=c§=d<=e

The moral of this story is that unless you can be sure that the names of all but the
leftmost URL query parameters embedded in HTML are not the same as the name of
any HTML character escape code like amp, you should generally run the entire URL
through cgi.escape after escaping its parameter names and values with
urllib.quote_plus:

>>> import cgi
>>> cgi.escape('file.cgi?name=a&job=b&=c§=d<=e')
'file.cgi?name=a&job=b&amp=c&sect=d&lt=e'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 792

Having said that, I should add that some examples in this book do not escape & URL
separators embedded within HTML simply because their URL parameter names are
known to not conflict with HTML escapes. This is not, however, the most general
solution; when in doubt, escape much and often.

"Always Look on the Bright Side of
Life"

Lest these formatting rules sound too clumsy (and send you screaming into
the night!), note that the HTML and URL escaping conventions are imposed
by the Internet itself, not by Python. (As we've seen, Python has a different
mechanism for escaping special characters in string constants with
backslashes.) These rules stem from the fact that the Web is based upon
the notion of shipping formatted strings around the planet, and they were
surely influenced by the tendency of different interest groups to develop
very different notations.

You can take heart, though, in the fact that you often don't need to think in
such cryptic terms; when you do, Python automates the translation process
with library tools. Just keep in mind that any script that generates HTML or
URLs dynamically probably needs to call Python's escaping tools to be
robust. We'll see both the HTML and URL escape tool sets employed
frequently in later examples in this chapter and the next two. In Chapter 15,
we'll also meet systems such as Zope that aim to get rid of some of the low-
level complexities that CGI scripters face. And as usual in programming,
there is no substitute for brains; amazing technologies like the Internet
come at a cost in complexity.

12.7 Sending Files to Clients and Servers

It's time to explain a bit of HTML code we've been keeping in the shadows. Did you
notice those hyperlinks on the language selector example's main page for showing
the CGI script's source code? Normally, we can't see such script source code,
because accessing a CGI script makes it execute (we can see only its HTML output,
generated to make the new page). The script in Example 12-23, referenced by a
hyperlink in the main language.html page, works around that by opening the source
file and sending its text as part of the HTML response. The text is marked with <PRE>
as pre-formatted text, and escaped for transmission inside HTML with cgi.escape.

Example 12-23. PP2E\Internet\Cgi-Web\Basics\languages-src.cgi

#!/usr/bin/python

Display languages.cgi script code without running it.

import cgi
filename = 'languages.cgi'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 793

print "Content-type: text/html\n" # wrap up in html
print "<TITLE>Languages</TITLE>"
print "<H1>Source code: '%s'</H1>" % filename
print '<HR><PRE>'
print cgi.escape(open(filename).read())
print '</PRE><HR>'

When we visit this script on the Web via the hyperlink or a manually typed URL, the
script delivers a response to the client that includes the text of the CGI script source
file. It appears as in Figure 12-25.

Figure 12-25. Source code viewer page

Note that here, too, it's crucial to format the text of the file with cgi.escape,
because it is embedded in the HTML code of the reply. If we don't, any characters in
the text that mean something in HTML code are interpreted as HTML tags. For
example, the C++ < operator character within this file's text may yield bizarre
results if not properly escaped. The cgi.escape utility converts it to the standard
sequence < for safe embedding.

12.7.1 Displaying Arbitrary Server Files on the Client

Almost immediately after writing the languages source code viewer script in the
previous example, it occurred to me that it wouldn't be much more work, and would
be much more useful, to write a generic version -- one that could use a passed-in
filename to display any file on the site. It's a straightforward mutation on the server
side; we merely need to allow a filename to be passed in as an input. The getfile.cgi

Programming Python, 2nd Edition, O’Reilly

IT-SC book 794

Python script in Example 12-24 implements this generalization. It assumes the
filename is either typed into a web page form or appended to the end of the URL as
a parameter. Remember that Python's cgi module handles both cases transparently,
so there is no code in this script that notices any difference.

Example 12-24. PP2E\Internet\Cgi-Web\Basics\getfile.cgi

#!/usr/bin/python

Display any cgi (or other) server-side file without running it.
The filename can be passed in a URL param or form field; e.g.,
http://server/~lutz/Basics/getfile.cgi?filename=somefile.cgi.
Users can cut-and-paste or "View source" to save file locally.
On IE, running the text/plain version (formatted=0) sometimes
pops up Notepad, but end-of-lines are not always in DOS format;
Netscape shows the text correctly in the browser page instead.
Sending the file in text/html mode works on both browsers--text
is displayed in the browser response page correctly. We also
check the filename here to try to avoid showing private files;
this may or may not prevent access to such files in general.

import cgi, os, sys
formatted = 1 # 1=wrap text in html
privates = ['../PyMailCgi/secret.py'] # don't show these

html = """
<html><title>Getfile response</title>
<h1>Source code for: '%s'</h1>
<hr>
<pre>%s</pre>
<hr></html>"""

def restricted(filename):
 for path in privates:
 if os.path.samefile(path, filename): # unify all paths by
os.stat
 return 1 # else returns
None=false

try:
 form = cgi.FieldStorage()
 filename = form['filename'].value # url param or form
field
except:
 filename = 'getfile.cgi' # else default filename

try:
 assert not restricted(filename) # load unless private
 filetext = open(filename).read()
except AssertionError:
 filetext = '(File access denied)'
except:
 filetext = '(Error opening file: %s)' % sys.exc_value

if not formatted:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 795

 print "Content-type: text/plain\n" # send plain text
 print filetext # works on NS, not IE
else:
 print "Content-type: text/html\n" # wrap up in html
 print html % (filename, cgi.escape(filetext))

This Python server-side script simply extracts the filename from the parsed CGI
inputs object, and reads and prints the text of the file to send it to the client
browser. Depending on the formatted global variable setting, it either sends the file
in plain text mode (using text/plain in the response header) or wrapped up in an
HTML page definition (text/html).

Either mode (and others) works in general under most browsers, but Internet
Explorer doesn't handle the plain text mode as gracefully as Netscape -- during
testing, it popped up the Notepad text editor to view the downloaded text, but end-
of-line characters in Unix format made the file appear as one long line. (Netscape
instead displays the text correctly in the body of the response web page itself.) HTML
display mode works more portably with current browsers. More on this script's
restricted file logic in a moment.

Let's launch this script by typing its URL at the top of a browser, along with a desired
filename appended after the script's name. Figure 12-26 shows the page we get by
visiting this URL:

http://starship.python.net/~lutz/Basics/getfile.cgi?filename=languages-
src.cgi

Figure 12-26. Generic source code viewer page

The body of this page shows the text of the server-side file whose name we passed
at the end of the URL; once it arrives, we can view its text, cut-and-paste to save it
in a file on the client, and so on. In fact, now that we have this generalized source
code viewer, we could replace the hyperlink to script languages-src.cgi in
language.html, with a URL of this form:

http://starship.python.net/~lutz/Basics/getfile.cgi?filename=languages.
cgi

Programming Python, 2nd Edition, O’Reilly

IT-SC book 796

For illustration purposes, the main HTML page in Example 12-16 has links both to the
original source code display script, as well as to the previous URL (less the server
and directory paths, since the HTML file and getfile script live in the same place).
Really, URLs like these are direct calls (albeit, across the Web) to our Python script,
with filename parameters passed explicitly. As we've seen, parameters passed in
URLs are treated the same as field inputs in forms; for convenience, let's also write a
simple web page that allows the desired file to be typed directly into a form, as
shown in Example 12-25.

Example 12-25. PP2E\Internet\Cgi-Web\Basics\getfile.html

<html><title>Getfile: download page</title>
<body>
<form method=get action="getfile.cgi">
 <h1>Type name of server file to be viewed</h1>
 <p><input type=text size=50 name=filename>
 <p><input type=submit value=Download>
</form>
<hr>View script code
</body></html>

Figure 12-27 shows the page we receive when we visit this file's URL. We need to
type only the filename in this page, not the full CGI script address.

Figure 12-27. source code viewer selection page

When we press this page's Download button to submit the form, the filename is
transmitted to the server, and we get back the same page as before, when the
filename was appended to the URL (see Figure 12-26). In fact, the filename will be
appended to the URL here, too; the get method in the form's HTML instructs the
browser to append the filename to the URL, exactly as if we had done so manually. It
shows up at the end of the URL in the response page's address field, even though we
really typed it into a form.[13]

[13] You may notice one difference in the response pages produced by the form and an
explicitly typed URL: for the form, the value of the "filename" parameter at the end of the URL
in the response may contain URL escape codes for some characters in the file path you typed.
Browsers automatically translate some non-ASCII characters into URL escapes (just like
urllib.quote). URL escapes are discussed earlier in this chapter; we'll see an example of this
automatic browser escaping at work in a moment.

12.7.1.1 Handling private files and errors

Programming Python, 2nd Edition, O’Reilly

IT-SC book 797

As long as CGI scripts have permission to open the desired server-side file, this
script can be used to view and locally save any file on the server. For instance,
Figure 12-28 shows the page we're served after asking for file path
../PyMailCgi/index.html -- an HTML text file in another application's subdirectory,
nested within the parent directory of this script.[14] Users can specify both relative
and absolute paths to reach a file -- any path syntax the server understands will do.

[14] PyMailCgi is described in the next chapter. If you're looking for source files for PyErrata
(also in the next chapter), use a path like .. /PyErrata/xxx. In general, the top level of the
book's web site corresponds to the top level of the Internet/Cgi-Web directory in the examples
on the book's CD-ROM (see http://examples.oreilly.com/python2); getfile runs in
subdirectory Basics.

Figure 12-28. Viewing files with relative paths

More generally, this script will display any file path for which the user "nobody" (the
username under which CGI scripts usually run) has read access. Just about every
server-side file used in web applications will, or else they wouldn't be accessible from
browsers in the first place. That makes for a flexible tool, but it's also potentially
dangerous. What if we don't want users to be able to view some files on the server?
For example, in the next chapter, we will implement an encryption module for email
account passwords. Allowing users to view that module's source code would make
encrypted passwords shipped over the Net much more vulnerable to cracking.

To minimize this potential, the getfile script keeps a list, privates, of restricted
filenames, and uses the os.path.samefile built-in to check if a requested filename
path points to one of the names on privates. The samefile call checks to see if the
os.stat built-in returns the same identifying information for both file paths; because
of that, pathnames that look different syntactically but reference the same file are
treated as identical. For example, on my server, the following paths to the encryptor
module are different strings, but yield a true result from os.path.samefile:

../PyMailCgi/secret.py
/home/crew/lutz/public_html/PyMailCgi/secret.py

Accessing either path form generates an error page like that in Figure 12-29.

Figure 12-29. Accessing private files

Programming Python, 2nd Edition, O’Reilly

IT-SC book 798

Notice that bona fide file errors are handled differently. Permission problems and
accesses to nonexistent files, for example, are trapped by a different exception
handler clause, and display the exception's message to give additional context.
Figure 12-30 shows one such error page.

Figure 12-30. File errors display

As a general rule of thumb, file-processing exceptions should always be reported in
detail, especially during script debugging. If we catch such exceptions in our scripts,
it's up to us to display the details (assigning sys.stderr to sys.stdout won't help if
Python doesn't print an error message). The current exception's type, data, and
traceback objects are always available in the sys module for manual display.

The private files list check does prevent the encryption module
from being viewed directly with this script, but it still may or
may not be vulnerable to attack by malicious users. This book
isn't about security, so I won't go into further details here,
except to say that on the Internet, a little paranoia goes a long
way. Especially for systems installed on the general Internet
(instead of closed intranets), you should assume that the worst-
case scenario will eventually happen.

12.7.2 Uploading Client Files to the Server

Programming Python, 2nd Edition, O’Reilly

IT-SC book 799

The getfile script lets us view server files on the client, but in some sense, it is a
general-purpose file download tool. Although not as direct as fetching a file by FTP or
over raw sockets, it serves similar purposes. Users of the script can either cut-and-
paste the displayed code right off the web page or use their browser's View Source
option to view and cut.

But what about going the other way -- uploading a file from the client machine to the
server? As we saw in the last chapter, that is easy enough to accomplish with a
client-side script that uses Python's FTP support module. Yet such a solution doesn't
really apply in the context of a web browser; we can't usually ask all of our
program's clients to start up a Python FTP script in another window to accomplish an
upload. Moreover, there is no simple way for the server-side script to request the
upload explicitly, unless there happens to be an FTP server running on the client
machine (not at all the usual case).

So is there no way to write a web-based program that lets its users upload files to a
common server? In fact, there is, though it has more to do with HTML than with
Python itself. HTML <input> tags also support a type=file option, which produces
an input field, along with a button that pops up a file-selection dialog. The name of
the client-side file to be uploaded can either be typed into the control, or selected
with the pop-up dialog. The HTML page file in Example 12-26 defines a page that
allows any client-side file to be selected and uploaded to the server-side script
named in the form's action option.

Example 12-26. PP2E\Internet\Cgi-Web\Basics\putfile.html

<html><title>Putfile: upload page</title>
<body>
<form enctype="multipart/form-data"
 method=post
 action="putfile.cgi">
 <h1>Select client file to be uploaded</h1>
 <p><input type=file size=50 name=clientfile>
 <p><input type=submit value=Upload>
</form>
<hr>View script code
</body></html>

One constraint worth noting: forms that use file type inputs must also specify a
multipart/form-data encoding type and the post submission method, as shown in
this file; get style URLs don't work for uploading files. When we visit this page, the
page shown in Figure 12-31 is delivered. Pressing its Browse button opens a file-
selection dialog, while Upload sends the file.

Figure 12-31. File upload selection page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 800

On the client side, when we press this page's Upload button, the browser opens and
reads the selected file, and packages its contents with the rest of the form's input
fields (if any). When this information reaches the server, the Python script named in
the form action tag is run as always, as seen in Example 12-27.

Example 12-27. PP2E\Internet\Cgi-Web\Basics\putfile.cgi

#!/usr/bin/python

extract file uploaded by http from web browser;
users visit putfile.html to get the upload form
page, which then triggers this script on server;
note: this is very powerful, and very dangerous:
you will usually want to check the filename, etc.
this will only work if file or dir is writeable;
a unix 'chmod 777 uploads' command may suffice;
file path names arrive in client's path format;

import cgi, string, os, sys
import posixpath, dospath, macpath # for client paths
debugmode = 0 # 1=print form info
loadtextauto = 0 # 1=read file at once
uploaddir = './uploads' # dir to store files

sys.stderr = sys.stdout # show error msgs
form = cgi.FieldStorage() # parse form data
print "Content-type: text/html\n" # with blank line
if debugmode: cgi.print_form(form) # print form fields

html templates

html = """
<html><title>Putfile response page</title>
<body>
<h1>Putfile response page</h1>
%s
</html>"""

goodhtml = html % """
<p>Your file, '%s', has been saved on the server as '%s'.
<p>An echo of the file's contents received and saved appears below.
</p><hr>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 801

<p><pre>%s</pre>
</p><hr>
"""

process form data

def splitpath(origpath): # get file at end
 for pathmodule in [posixpath, dospath, macpath]: # try all clients
 basename = pathmodule.split(origpath)[1] # may be any
server
 if basename != origpath:
 return basename # lets spaces
pass
 return origpath # failed or no
dirs

def saveonserver(fileinfo): # use file input
form data
 basename = splitpath(fileinfo.filename) # name without
dir path
 srvrname = os.path.join(uploaddir, basename) # store in a dir
if set
 if loadtextauto:
 filetext = fileinfo.value # reads text into
string
 open(srvrname, 'w').write(filetext) # save in server
file
 else:
 srvrfile = open(srvrname, 'w') # else read line
by line
 numlines, filetext = 0, '' # e.g., for huge
files
 while 1:
 line = fileinfo.file.readline()
 if not line: break
 srvrfile.write(line)
 filetext = filetext + line
 numlines = numlines + 1
 filetext = ('[Lines=%d]\n' % numlines) + filetext
 os.chmod(srvrname, 0666) # make writeable: owned by 'nobody'
 return filetext, srvrname

def main():
 if not form.has_key('clientfile'):
 print html % "Error: no file was received"
 elif not form['clientfile'].filename:
 print html % "Error: filename is missing"
 else:
 fileinfo = form['clientfile']
 try:
 filetext, srvrname = saveonserver(fileinfo)
 except:
 errmsg = '<h2>Error</h2><p>%s<p>%s' % (sys.exc_type,
sys.exc_value)
 print html % errmsg
 else:
 print goodhtml % (cgi.escape(fileinfo.filename),

Programming Python, 2nd Edition, O’Reilly

IT-SC book 802

 cgi.escape(srvrname),
 cgi.escape(filetext))
main()

Within this script, the Python-specific interfaces for handling uploaded files are
employed. They aren't much different, really; the file comes into the script as an
entry in the parsed form object returned by cgi.FieldStorage as usual; its key is
clientfile, the input control's name in the HTML page's code.

This time, though, the entry has additional attributes for the file's name on the
client. Moreover, accessing the value attribute of an uploaded file input object will
automatically read the file's contents all at once into a string on the server. For very
large files, we can instead read line by line (or in chunks of bytes). For illustration
purposes, the script implements either scheme: based on the setting of the
loadtextauto global variable, it either asks for the file contents as a string, or reads
it line by line.[16] In general, the CGI module gives us back objects with the following
attributes for file upload controls:

[16] Note that reading line means that this CGI script is biased towards uploading text files, not
binary data files. The fact that it also uses a "w" open mode makes it ill suited for binary
uploads if run on a Windows server -- \r characters might be added to the data when written.
See Chapter 2 for details if you've forgotten why.

filename

The name of the file as specified on the client

file

A file object from which the uploaded file's contents can be read

value

The contents of the uploaded file (read from file on demand)

There are additional attributes not used by our script. Files represent a third input
field object; as we've also seen, the value attribute is a string for simple input fields,
and we may receive a list of objects for multiple-selection controls.

For uploads to be saved on the server, CGI scripts (run by user "nobody") must have
write access to the enclosing directory if the file doesn't yet exist, or to the file itself
if it does. To help isolate uploads, the script stores all uploads in whatever server
directory is named in the uploaddir global. On my site's Linux server, I had to give
this directory a mode of 777 (universal read/write/execute permissions) with chmod
to make uploads work in general. Your mileage may vary, but be sure to check
permissions if this script fails.

The script also calls os.chmod to set the permission on the server file such that it can
be read and written by everyone. If created anew by an upload, the file's owner will
be "nobody," which means anyone out in cyberspace can view and upload the file.
On my server, though, the file will also be only writable by user "nobody" by default,
which might be inconvenient when it comes time to change that file outside the Web
(the degree of pain can vary per operation).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 803

Isolating client-side file uploads by placing them in a single
directory on the server helps minimize security risks: existing
files can't be overwritten arbitrarily. But it may require you to
copy files on the server after they are uploaded, and it still
doesn't prevent all security risks -- mischievous clients can still
upload huge files, which we would need to trap with additional
logic not present in this script as is. Such traps may only be
needed in scripts open to the Internet at large.

If both client and server do their parts, the CGI script presents us with the response
page shown in Figure 12-32, after it has stored the contents of the client file in a
new or existing file on the server. For verification, the response gives the client and
server file paths, as well as an echo of the uploaded file with a line count (in line-by-
line reader mode).

Figure 12-32. Putfile response page

Incidentally, we can also verify the upload with the getfile program we wrote in the
prior section. Simply access the selection page to type the pathname of the file on
the server, as shown in Figure 12-33.

Figure 12-33. Verifying putfile with getfile -- selection

Programming Python, 2nd Edition, O’Reilly

IT-SC book 804

Assuming uploading the file was successful, Figure 12-34 shows the resulting viewer
page we will obtain. Since user "nobody" (CGI scripts) was able to write the file,
"nobody" should be able to view it as well.

Figure 12-34. Verifying putfile with getfile -- response

Notice the URL in this page's address field -- the browser translated the / character
we typed into the selection page to a %2F hexadecimal escape code before adding it
to the end of the URL as a parameter. We met URL escape codes like this earlier in
this chapter. In this case, the browser did the translation for us, but the end result is
as if we had manually called one of the urllib quoting functions on the file path
string.

Technically, the %2F escape code here represents the standard URL translation for
non-ASCII characters, under the default encoding scheme browsers employ. Spaces
are usually translated to + characters as well. We can often get away without
manually translating most non-ASCII characters when sending paths explicitly (in
typed URLs). But as we saw earlier, we sometimes need to be careful to escape
characters (e.g., &) that have special meaning within URL strings with urllib tools.

12.7.2.1 Handling client path formats

In the end, the putfile.cgi script stores the uploaded file on the server, within a
hardcoded uploaddir directory, under the filename at the end of the file's path on
the client (i.e., less its client-side directory path). Notice, though, that the splitpath

Programming Python, 2nd Edition, O’Reilly

IT-SC book 805

function in this script needs to do extra work to extract the base name of the file on
the right. Browsers send up the filename in the directory path format used on the
client machine; this path format may not be the same as that used on the server
where the CGI script runs.

The standard way to split up paths, os.path.split, knows how to extract the base
name, but only recognizes path separator characters used on the platform it is
running on. That is, if we run this CGI script on a Unix machine, os.path.split
chops up paths around a / separator. If a user uploads from a DOS or Windows
machine, however, the separator in the passed filename is \, not /. Browsers
running on a Macintosh may send a path that is more different still.

To handle client paths generically, this script imports platform-specific, path-
processing modules from the Python library for each client it wishes to support, and
tries to split the path with each until a filename on the right is found. For instance,
posixpath handles paths sent from Unix-style platforms, and dospath recognizes
DOS and Windows client paths. We usually don't import these modules directly since
os.path.split is automatically loaded with the correct one for the underlying
platform; but in this case, we need to be specific since the path comes from another
machine. Note that we could have instead coded the path splitter logic like this to
avoid some split calls:

def splitpath(origpath): # get name
at end
 basename = os.path.split(origpath)[1] # try
server paths
 if basename == origpath: # didn't
change it?
 if '\\' in origpath:
 basename = string.split(origpath, '\\')[-1] # try dos
clients
 elif '/' in origpath:
 basename = string.split(origpath, '/')[-1] # try unix
clients
 return basename

But this alternative version may fail for some path formats (e.g., DOS paths with a
drive but no backslashes). As is, both options waste time if the filename is already a
base name (i.e., has no directory paths on the left), but we need to allow for the
more complex cases generically.

This upload script works as planned, but a few caveats are worth pointing out before
we close the book on this example:

First, putfile doesn't do anything about cross-platform incompatibilities in filenames
themselves. For instance, spaces in a filename shipped from a DOS client are not
translated to nonspace characters; they will wind up as spaces in the server-side
file's name, which may be legal but which are difficult to process in some scenarios.

Second, the script is also biased towards uploading text files; it opens the output file
in text mode (which will convert end-of-line marker codes in the file to the end-of-
line convention on the web server machine), and reads input line-by-line (which may
fail for binary data).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 806

If you run into any of these limitations, you will have crossed over into the domain of
suggested exercises.

12.7.3 More Than One Way to Push Bits Over the Net

Finally, let's discuss some context. We've seen three getfile scripts at this point in
the book. The one in this chapter is different than the other two we wrote in earlier
chapters, but it accomplishes a similar goal:

This chapter's getfile is a server-side CGI script that displays files over the HTTP
protocol (on port 80).

In Chapter 10, we built a client and server-side getfile to transfer with raw sockets
(on port 50001) and Chapter 11 implemented a client-side getfile to ship over FTP
(on port 21)

The CGI- and HTTP-based putfile script here is also different from the FTP-based
putfile in the last chapter, but it can be considered an alternative to both socket
and FTP uploads. To help underscore the distinctions, Figure 12-35 and Figure 12-36
show the new putfile uploading the original socket-based getfile.[17]

[17] Shown here being loaded from a now defunct Part2 directory -- replace Part2 with PP2E to
find its true location, and don't be surprised if a few difference show up in transferred files
contents if you run such examples yourself. Like I said, engineers love to change things.

Figure 12-35. A new putfile with the socket-based getfile uploaded

Really, the getfile CGI script in this chapter simply displays files only, but can be
considered a download tool when augmented with cut-and-paste operations in a web
browser. Figures Figure 12-37 and Figure 12-38 show the CGI getfile displaying
the uploaded socket-based getfile.

Figure 12-36. A new putfile with the socket-based getfile

Programming Python, 2nd Edition, O’Reilly

IT-SC book 807

Figure 12-37. A new getfile with the socket-based getfile

Figure 12-38. A new getfile with the socket-based getfile downloaded

Programming Python, 2nd Edition, O’Reilly

IT-SC book 808

The point to notice here is that there are a variety of ways to ship files around the
Internet -- sockets, FTP, and HTTP (web pages) can all move files between
computers. Technically speaking, we can transfer files with other techniques and
protocols, too -- POP email, NNTP news, and so on.

Each technique has unique properties but does similar work in the end: moving bits
over the Net. All ultimately run over sockets on a particular port, but protocols like
FTP add additional structure to the socket layer, and application models like CGI add
both structure and programmability.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 809

Chapter 13. Larger Web Site Examples I

13.1 "Things to Do When Visiting Chicago"

13.2 The PyMailCgi Web Site

13.3 The Root Page

13.4 Sending Mail by SMTP

13.5 Reading POP Email

13.6 Utility Modules

13.7 CGI Script Trade-offs

13.1 "Things to Do When Visiting Chicago"

This chapter is the fourth part of our look at Python Internet programming, and
continues the last chapter's discussion. In the prior chapter, we explored the
fundamentals of server-side CGI scripting in Python. Armed with that knowledge, in
this and the following chapter we move on to two larger case studies that underscore
advanced CGI topics:

PyMailCgi

This chapter presents PyMailCgi,a web site for reading and sending email that
illustrates security concepts, hidden form fields, URL generation, and more. Because
this system is similar in spirit to the PyMailGui program shown in Chapter 11, this
example also serves as a comparison of web and non-web applications.

PyErrata

Chapter 14, presents PyErrata, a web site for posting book comments and bugs that
introduces database concepts in the CGI domain. This system demonstrates common
ways to store data persistently on the server between web transactions, and
addresses concurrent update problems inherent in the CGI model.

Both of these case studies are based on CGI scripting, but implement full-blown web
sites that do something more useful than the last chapter's examples.

As usual, these chapters split their focus between application-level details and
Python programming concepts. Because both of the case studies presented are fairly
large, they illustrate system design concepts that are important in actual projects.
They also say more about CGI scripts in general. PyMailCgi, for example, introduces
the notions of state retention in hidden fields and URLs, as well as security concerns

Programming Python, 2nd Edition, O’Reilly

IT-SC book 810

and encryption. PyErrata provides a vehicle for exploring persistent database
concepts in the context of web sites.

Neither system here is particularly flashy or feature-rich as web sites go (in fact, the
initial cut of PyMailCgi was thrown together during a layover at a Chicago airport).
Alas, you will find neither dancing bears nor blinking lights at either of these sites.
On the other hand, they were written to serve real purposes, speak more to us about
CGI scripting, and hint at just how far Python server-side programs can take us. In
Chapter 15, we will explore higher-level systems and tools that build upon ideas we
will apply here. For now, let's have some fun with Python on the Web.

13.2 The PyMailCgi Web Site

Near the end of Chapter 11, we built a program called PyMailGui that implemented a
complete Python+Tk email client GUI (if you didn't read that section, you may want
to take a quick look at it now). Here, we're going to do something of the same, but
on the Web: the system presented in this section, PyMailCgi, is a collection of CGI
scripts that implement a simple web-based interface for sending and reading email in
any browser.

Our goal in studying this system is partly to learn a few more CGI tricks, partly to
learn a bit about designing larger Python systems in general, and partly to
underscore the trade-offs between systems implemented for the Web (PyMailCgi)
and systems written to run locally (PyMailGui). This chapter hints at some of these
trade-offs along the way, and returns to explore them in more depth after the
presentation of this system.

13.2.1 Implementation Overview

At the top level, PyMailCgi allows users to view incoming email with the POP interface
and to send new mail by SMTP. Users also have the option of replying to, forwarding,
or deleting an incoming email while viewing it. As implemented, anyone can send
email from the PyMailCgi site, but to view your email, you generally have to install
PyMailCgi at your own site with your own mail server information (due to security
concerns described later).

Viewing and sending email sounds simple enough, but the interaction involved
involves a number of distinct web pages, each requiring a CGI script or HTML file of
its own. In fact, PyMailCgi is a fairly linear system -- in the most complex user
interaction scenario, there are six states (and hence six web pages) from start to
finish. Because each page is usually generated by a distinct file in the CGI world, that
also implies six source files.

To help keep track of how all of PyMailCgi's files fit into the overall system, I wrote
the file in Example 13-1 before starting any real programming. It informally sketches
the user's flow through the system and the files invoked along the way. You can
certainly use more formal notations to describe the flow of control and information
through states such as web pages (e.g., dataflow diagrams), but for this simple
example this file gets the job done.

Example 13-1. PP2E\Internet\Cgi-Web\PyMailCgi\pageflow.txt

Programming Python, 2nd Edition, O’Reilly

IT-SC book 811

file or script creates
-------------- -------

[pymailcgi.html] Root window
 => [onRootViewLink.cgi] Pop password window
 => [onViewPswdSubmit.cgi] List window (loads all pop
mail)
 => [onViewListLink.cgi] View Window +
pick=del|reply|fwd (fetch)
 => [onViewSubmit.cgi] Edit window, or delete+confirm
(del)
 => [onSendSubmit.cgi] Confirmation (sends smtp mail)
 => back to root

 => [onRootSendLink.cgi] Edit Window
 => [onSendSubmit.cgi] Confirmation (sends smtp mail)
 => back to root

This file simply lists all the source files in the system, using => and indentation to
denote the scripts they trigger.

For instance, links on the pymailcgi.html root page invoke onRootViewLink.cgi and
onRootSendLink.cgi, both executable scripts. The script onRootViewLink.cgi
generates a password page, whose Submit button in turn triggers
onViewPswdSubmit.cgi, and so on. Notice that both the view and send actions can
wind up triggering onSendSubmit.cgi to send a new mail; view operations get there
after the user chooses to reply to or forward an incoming mail.

In a system like this, CGI scripts make little sense in isolation, so it's a good idea to
keep the overall page flow in mind; refer to this file if you get lost. For additional
context, Figure 13-1 shows the overall contents of this site, viewed on Windows with
the PyEdit "Open" function.

Figure 13-1. PyMailCgi contents

The temp directory was used only during development. To install this site, all the
files you see here are uploaded to a PyMailCgi subdirectory of my public_html web
directory. Besides the page-flow HTML and CGI script files invoked by user
interaction, PyMailCgi uses a handful of utility modules as well:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 812

commonhtml.py is a library of HTML tools.

externs.py isolates access to modules imported from other systems.

loadmail.py encapsulates mailbox fetches.

secret.py implements configurable password encryption.

PyMailCgi also reuses parts of the pymail.py and mailconfig.py modules we wrote in
Chapter 11; on my web server, these are installed in a special directory that is not
necessarily the same as their location in the examples distribution (they show up in
another server directory, not shown in Figure 13-1). As usual, PyMailCgi also uses a
variety of standard Python library modules: smtplib, poplib, rfc822, cgi, urllib,
time, rotor, and the like.

Carry-on Software

PyMailCgi works as planned and illustrates more CGI and email concepts,
but I want to point out a few caveats up front. The application was initially
written during a two-hour layover in Chicago's O'Hare airport (though
debugging took a few hours more). I wrote it to meet a specific need -- to
be able to read and send email from any web browser while traveling around
the world teaching Python classes. I didn't design it to be aesthetically
pleasing to others and didn't spend much time focusing on its efficiency.

I also kept this example intentionally simple for this book. For example,
PyMailCgi doesn't provide all the features of the PyMailGui program in
Chapter 11, and reloads email more than it probably should. In other words,
you should consider this system a work in progress; it's not yet software
worth selling. On the other hand, it does what it was intended to do, and
can be customized by tweaking its Python source code -- something that
can't be said of all software sold.

13.2.2 Presentation Overview

PyMailCgi is a challenge to present in a book like this, because most of the "action" is
encapsulated in shared utility modules (especially one called commonhtml.py); the
CGI scripts that implement user interaction don't do much by themselves. This
architecture was chosen deliberately, to make scripts simple and implement a
common look-and-feel. But it means you must jump between files to understand
how the system works.

To make this example easier to digest, we're going to explore its code in two chunks:
page scripts first, and then the utility modules. First, we'll study screen shots of the
major web pages served up by the system and the HTML files and top-level Python
CGI scripts used to generate them. We begin by following a send mail interaction,
and then trace how existing email is processed. Most implementation details will be
presented in these sections, but be sure to flip ahead to the utility modules listed
later to understand what the scripts are really doing.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 813

I should also point out that this is a fairly complex system, and I won't describe it in
exhaustive detail; be sure to read the source code along the way for details not
made explicit in the narrative. All of the system's source code appears in this section
(and also at http://examples.oreilly.com/python2), and we will study the key
concepts in this system here. But as usual with case studies in this book, I assume
that you can read Python code by now and will consult the example's source code for
more details. Because Python's syntax is so close to executable pseudocode, systems
are sometimes better described in Python than in English.

13.3 The Root Page

Let's start off by implementing a main page for this example. The file shown in
Example 13-2 is primarily used to publish links to the Send and View functions'
pages. It is coded as a static HTML file, because there is nothing to generate on the
fly here.

Example 13-2. PP2E\Internet\Cgi-Web\PyMailCgi\pymailcgi.html

<HTML><BODY>
<TITLE>PyMailCgi Main Page</TITLE>
<H1 align=center>PyMailCgi</H1>
<H2 align=center>A POP/SMTP Email Interface</H2>
<P align=center><I>Version 1.0, April 2000</I></P>

<table><tr><td><hr>
<P>

<IMG src="../PyErrata/ppsmall.gif" align=left
alt="[Book Cover]" border=1 hspace=10>
This site implements a simple web-browser interface to POP/SMTP email
accounts. Anyone can send email with this interface, but for security
reasons, you cannot view email unless you install the scripts with your
own email account information, in your own server account directory.
PyMailCgi is implemented as a number of Python-coded CGI scripts that
run on
a server machine (not your local computer), and generate HTML to
interact
with the client/browser. See the book <I>Programming Python, 2nd
Edition</I>
for more details.</P>

<tr><td><hr>
<h2>Actions</h2>
<P>
View, Reply, Forward, Delete POP
mail
Send a new email message by SMTP
</P>

<tr><td><hr>
<P>Caveats: PyMailCgi 1.0 was initially written during a 2-hour layover
at
Chicago's O'Hare airport. This release is not nearly as fast or
complete

Programming Python, 2nd Edition, O’Reilly

IT-SC book 814

as PyMailGui (e.g., each click requires an Internet transaction, there
is no save operation, and email is reloaded often). On the other hand,
PyMailCgi runs on any web broswer, whether you have Python (and Tk)
installed on your machine or not.

<P>Also note that if you use these scripts to read your own email,
PyMailCgi
does not guarantee security for your account password, so be careful
out there.
See the notes in the View action page as well as the book for more
information
on security policies. Also see:

The <I>PyMailGui</I> program in the Email directory, which
 implements a client-side Python+Tk email GUI
The <I>pymail.py</I> program in the Email directory, which
 provides a simple command-line email interface
The Python imaplib module which supports the IMAP email protocol
 instead of POP
The upcoming openSSL support for secure transactions in the new
 Python 1.6 socket module
</P>
</table><hr>

<IMG SRC="../PyErrata/PythonPoweredSmall.gif" ALIGN=left
ALT="[Python Logo]" border=0 hspace=15>
More examples
</BODY></HTML>

The file pymailcgi.html is the system's root page and lives in a PyMailCgi
subdirectory of my web directory that is dedicated to this application (and helps keep
its files separate from other examples). To access this system, point your browser
to:

http://starship.python.net/~lutz/PyMailCgi/pymailcgi.html

If you do, the server will ship back a page like that shown in Figure 13-2.

Figure 13-2. PyMailCgi main page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 815

Now, before you click on the View link here expecting to read your own email, I
should point out that by default, PyMailCgi allows anybody to send email from this
page with the Send link (as we learned earlier, there are no passwords in SMTP). It
does not, however, allow arbitrary users on the Web to read their email accounts
without typing an explicit and unsafe URL or doing a bit of installation and
configuration. This is on purpose, and has to do with security constraints; as we'll
see later, I wrote the system such that it never associates your email username and
password together without encryption.

By default, then, this page is set up to read my (the author's) email account, and
requires my POP password to do so. Since you probably can't guess my password
(and wouldn't find my email helpful if you could), PyMailCgi is not incredibly useful as
installed at this site. To use it to read your email instead, you should install the
system's source code on your own server and tweak a mail configuration file that
we'll see in a moment. For now, let's proceed by using the system as it is installed on
my server, with my POP email account; it works the same way, regardless of which
account it accesses.

13.4 Sending Mail by SMTP

PyMailCgi supports two main functions (as links on the root page): composing and
sending new mail to others, and viewing your incoming mail. The View function leads
to pages that let users reply to, forward, and delete existing email. Since the Send
function is the simplest, let's start with its pages and scripts first.

13.4.1 The Message Composition Page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 816

The Send function steps users through two pages: one to edit a message and one to
confirm delivery. When you click on the Send link on the main page, the script in
Example 13-3 runs on the server.

Example 13-3. PP2E\Internet\Cgi-Web\PyMailCgi\onRootSendLink.cgi

#!/usr/bin/python
On 'send' click in main root window

import commonhtml
from externs import mailconfig

commonhtml.editpage(kind='Write', headers={'From':
mailconfig.myaddress})

No, this file wasn't truncated; there's not much to see in this script, because all the
action has been encapsulated in the commonhtml and externs modules. All that we
can tell here is that the script calls something named editpage to generate a reply,
passing in something called myaddress for its "From" header. That's by design -- by
hiding details in utility modules, we make top-level scripts like this much easier to
read and write. There are no inputs to this script either; when run, it produces a
page for composing a new message, as shown in Figure 13-3.

Figure 13-3. PyMailCgi send (write) page

13.4.2 Send Mail Script

Much like the Tkinter-based PyMailGui client program we met in Chapter 11, this
page provides fields for entering common header values as well as the text of the
message itself. The "From" field is prefilled with a string imported from a module

Programming Python, 2nd Edition, O’Reilly

IT-SC book 817

called mailconfig. As we'll discuss in a moment, that module lives in another
directory on the server in this system, but its contents are the same as in the
PyMailGui example. When we click the Send button of the edit page, Example 13-4
runs on the server.

Example 13-4. PP2E\Internet\Cgi-Web\PyMailCgi\onSendSubmit.cgi

#!/usr/bin/python
On submit in edit window--finish a write, reply, or forward

import cgi, smtplib, time, string, commonhtml
#commonhtml.dumpstatepage(0)
form = cgi.FieldStorage() # parse form input
data

server name from module or get-style url
smtpservername = commonhtml.getstandardsmtpfields(form)

parms assumed to be in form or url here
from commonhtml import getfield # fetch value attributes
From = getfield(form, 'From') # empty fields may not
be sent
To = getfield(form, 'To')
Cc = getfield(form, 'Cc')
Subj = getfield(form, 'Subject')
text = getfield(form, 'text')

caveat: logic borrowed from PyMailGui
date = time.ctime(time.time())
Cchdr = (Cc and 'Cc: %s\n' % Cc) or ''
hdrs = ('From: %s\nTo: %s\n%sDate: %s\nSubject: %s\n'
 % (From, To, Cchdr, date, Subj))
hdrs = hdrs + 'X-Mailer: PyMailCgi Version 1.0 (Python)\n'

Ccs = (Cc and string.split(Cc, ';')) or [] # some servers reject
['']
Tos = string.split(To, ';') + Ccs # cc: hdr line, and To
list
Tos = map(string.strip, Tos) # some addrs can have
','s

try: # smtplib may raise
except
 server = smtplib.SMTP(smtpservername) # or return failed
Tos dict
 failed = server.sendmail(From, Tos, hdrs + text)
 server.quit()
except:
 commonhtml.errorpage('Send mail error')
else:
 if failed:
 errInfo = 'Send mail error\nFailed recipients:\n' + str(failed)
 commonhtml.errorpage(errInfo)
 else:
 commonhtml.confirmationpage('Send mail')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 818

This script gets mail header and text input information from the edit page's form (or
from parameters in an explicit URL), and sends the message off using Python's
standard smtplib module. We studied smtplib in depth in Chapter 11, so I won't
say much more about it now. In fact, the send mail code here looks much like that in
PyMailGui (despite what I've told you about code reuse; this code would be better
made a utility).

A utility in commonhtml ultimately fetches the name of the SMTP server to receive the
message from either the mailconfig module or the script's inputs (in a form field or
URL parameter). If all goes well, we're presented with a generated confirmation
page, as in Figure 13-4.

Figure 13-4. PyMailCgi send confirmation page

Notice that there are no usernames or passwords to be found here; as we saw in
Chapter 11, SMTP requires only a server that listens on the SMTP port, not a user
account or password. As we also saw in that chapter, SMTP send operations that fail
either raise a Python exception (e.g., if the server host can't be reached) or return a
dictionary of failed recipients.

If there is a problem during mail delivery, we get an error page like the one shown in
Figure 13-5. This page reflects a failed recipient -- the else clause of the try
statement we used to wrap the send operation. On an actual exception, the Python
error message and extra details would be displayed.

Figure 13-5. PyMailCgi send error page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 819

Before we move on, you should know that this send mail script is also used to deliver
reply and forward messages for incoming POP mail. The user interface for those
operations is slightly different than for composing new email from scratch, but as in
PyMailGui, the submission handler logic is the same code -- they are really just mail
send operations.

It's also worth pointing out that the commonhtml module encapsulates the generation
of both the confirmation and error pages, so that all such pages look the same in
PyMailCgi no matter where and when they are produced. Logic that generates the
mail edit page in commonhtml is reused by the reply and forward actions too (but
with different mail headers).

In fact, commonhtml makes all pages look similar -- it also provides common page
header (top) and footer (bottom) generation functions, which are used everywhere in
the system. You may have already noticed that all the pages so far follow the same
pattern: they start with a title and horizontal rule, have something unique in the
middle, and end with another rule, followed by a Python icon and link at the bottom.
This common look-and-feel is the product of commonhtml; it generates everything
but the middle section for every page in the system (except the root page, a static
HTML file).

If you are interested in seeing how this encapsulated logic works right now, flip
ahead to Example 13-14. We'll explore its code after we study the rest of the mail
site's pages.

13.4.2.1 Using the send mail script outside a browser

I initially wrote the send script to be used only within PyMailCgi, using values typed
into the mail edit form. But as we've seen, inputs can be sent in either form fields or

Programming Python, 2nd Edition, O’Reilly

IT-SC book 820

URL parameters; because the send mail script checks for inputs in CGI inputs before
importing from the mailconfig module, it's also possible to call this script outside
the edit page to send email. For instance, explicitly typing a URL of this nature into
your browser (but all on one line and with no intervening spaces):

http://starship.python.net/~lutz/
 PyMailCgi/onSendSubmit.cgi?site=smtp.rmi.net&
 From=lutz@rmi.net&
 To=lutz@rmi.net&
 Subject=test+url&
 text=Hello+Mark;this+is+Mark

will indeed send an email message as specified by the input parameters at the end.
That URL string is a lot to type into a browser's address field, of course, but might be
useful if generated automatically by another script. As we saw in Chapter 11, module
urllib can then be used to submit such a URL string to the server from within a
Python program. Example 13-5 shows one way to do it.

Example 13-5. PP2E\Internet\Cgi-Web\PyMailCgi\sendurl.py

Send email by building a URL like this from inputs:
http://starship.python.net/~lutz/
PyMailCgi/onSendSubmit.cgi?site=smtp.rmi.net&
From=lutz@rmi.net&
To=lutz@rmi.net&
Subject=test+url&
text=Hello+Mark;this+is+Mark

from urllib import quote_plus, urlopen

url = 'http://starship.python.net/~lutz/PyMailCgi/onSendSubmit.cgi'
url = url + '?site=%s' % quote_plus(raw_input('Site>'))
url = url + '&From=%s' % quote_plus(raw_input('From>'))
url = url + '&To=%s' % quote_plus(raw_input('To >'))
url = url + '&Subject=%s' % quote_plus(raw_input('Subj>'))
url = url + '&text=%s' % quote_plus(raw_input('text>')) # or
input loop

print 'Reply html:'
print urlopen(url).read() # confirmation or error page html

Running this script from the system command line is yet another way to send an
email message -- this time, by contacting our CGI script on a remote server machine
to do all the work. Script sendurl.py runs on any machine with Python and sockets,
lets us input mail parameters interactively, and invokes another Python script that
lives on a remote machine. It prints HTML returned by our CGI script:

C:\...\PP2E\Internet\Cgi-Web\PyMailCgi>python sendurl.py
Site>smtp.rmi.net
From>lutz@rmi.net
To >lutz@rmi.net
Subj>test sendurl.py
text>But sir, it's only wafer-thin...

Programming Python, 2nd Edition, O’Reilly

IT-SC book 821

Reply html:
<html><head><title>PyMailCgi: Confirmation page (PP2E)</title></head>
<body bgcolor="#FFFFFF"><h1>PyMailCgi Confirmation</h1><hr>
<h2>Send mail operation was successful</h2>
<p>Press the link below to return to the main page.</p>
</p><hr>
<img src="../PyErrata/PythonPoweredSmall.gif"
align=left alt="[Python Logo]" border=0 hspace=15>
Back to root page
</body></html>

The HTML reply printed by this script would normally be rendered into a new web
page if caught by a browser. Such cryptic output might be less than ideal, but you
could easily search the reply string for its components to determine the result (e.g.,
using string.find to look for "successful"), parse out its components with Python's
standard htmllib module, and so on. The resulting mail message -- viewed, for
variety, with Chapter 11's PyMailGui program -- shows up in my account as seen in
Figure 13-6.

Figure 13-6. sendurl.py result

Of course, there are other, less remote ways to send email from a client machine.
For instance, the Python smtplib module itself depends only upon the client and POP
server connections being operational, whereas this script also depends on the CGI
server machine (requests go from client to CGI server to POP server and back).
Because our CGI script supports general URLs, though, it can do more than a
"mailto:" HTML tag, and can be invoked with urllib outside the context of a running
web browser. For instance, scripts like sendurl.py can be used to invoke and test
server-side programs.

13.5 Reading POP Email

So far, we've stepped through the path the system follows to send new mail. Let's
now see what happens when we try to view incoming POP mail.

13.5.1 The POP Password Page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 822

If you flip back to the main page in Figure 13-2, you'll see a View link; pressing it
triggers the script in Example 13-6 to run on the server:

Example 13-6. PP2E\Internet\Cgi-Web\PyMailCgi\onRootViewLink.cgi

#!/usr/bin/python

on view link click on main/root html page
this could almost be a html file because there are likely
no input params yet, but I wanted to use standard header/
footer functions and display the site/user names which must
be fetched; On submission, doesn't send the user along with
password here, and only ever sends both as URL params or
hidden fields after the password has been encrypted by a
user-uploadable encryption module; put html in commonhtml?

page template

pswdhtml = """
<form method=post action=%s/onViewPswdSubmit.cgi>
<p>
Please enter POP account password below, for user "%s" and site "%s".
<p><input name=pswd type=password>
<input type=submit value="Submit"></form></p>

<hr><p><i>Security note</i>: The password you enter above will be
transmitted
over the Internet to the server machine, but is not displayed, is never
transmitted in combination with a username unless it is encrypted, and
is
never stored anywhere: not on the server (it is only passed along as
hidden
fields in subsequent pages), and not on the client (no cookies are
generated).
This is still not totally safe; use your browser's back button to back
out of
PyMailCgi at any time.</p>
"""

generate the password input page

import commonhtml # usual parms
case:
user, pswd, site = commonhtml.getstandardpopfields({}) # from module
here,
commonhtml.pageheader(kind='POP password input') # from
html|url later
print pswdhtml % (commonhtml.urlroot, user, site)
commonhtml.pagefooter()

This script is almost all embedded HTML: the triple-quoted pswdhtml string is
printed, with string formatting, in a single step. But because we need to fetch the
user and server names to display on the generated page, this is coded as an
executable script, not a static HTML file. Module commonhtml either loads user and

Programming Python, 2nd Edition, O’Reilly

IT-SC book 823

server names from script inputs (e.g., appended to the script's URL), or imports
them from the mailconfig file; either way, we don't want to hardcode them into this
script or its HTML, so an HTML file won't do.

Since this is a script, we can also make use of the commonhtml page header and
footer routines to render the generated reply page with the common look-and-feel;
this is shown in Figure 13-7.

Figure 13-7. PyMailCgi view password login page

At this page, the user is expected to enter the password for the POP email account of
the user and server displayed. Notice that the actual password isn't displayed; the
input field's HTML specifies type=password, which works just like a normal text field,
but shows typed input as stars. (See also Example 11-6 for doing this at a console,
and Example 11-23 for doing this in a GUI.)

13.5.2 The Mail Selection List Page

After filling out the last page's password field and pressing its Submit button, the
password is shipped off to the script shown in Example 13-7.

Example 13-7. PP2E\Internet\Cgi-Web\PyMailCgi\onViewPswdSubmit.cgi

#!/usr/bin/python
On submit in pop password input window--make view list

import cgi, StringIO, rfc822, string
import loadmail, commonhtml
from secret import encode # user-defined encoder module
MaxHdr = 35 # max length of email hdrs in list

Programming Python, 2nd Edition, O’Reilly

IT-SC book 824

only pswd comes from page here, rest usually in module
formdata = cgi.FieldStorage()
mailuser, mailpswd, mailsite =
commonhtml.getstandardpopfields(formdata)

try:
 newmail = loadmail.loadnewmail(mailsite, mailuser, mailpswd)
 mailnum = 1
 maillist = []
 for mail in newmail:
 msginfo = []
 hdrs = rfc822.Message(StringIO.StringIO(mail))
 for key in ('Subject', 'From', 'Date'):
 msginfo.append(hdrs.get(key, '?')[:MaxHdr])
 msginfo = string.join(msginfo, ' | ')
 maillist.append((msginfo, commonhtml.urlroot +
'/onViewListLink.cgi',
 {'mnum': mailnum,
 'user': mailuser, #
data params
 'pswd': encode(mailpswd), #
pass in url
 'site': mailsite})) # not
inputs
 mailnum = mailnum+1
 commonhtml.listpage(maillist, 'mail selection list')
except:
 commonhtml.errorpage('Error loading mail index')

This script's main purpose is to generate a selection list page for the user's email
account, using the password typed into the prior page (or passed in a URL). As usual
with encapsulation, most of the details are hidden in other files:

loadmail.loadnewmail reuses the mail module from Chapter 11 to fetch email with
the POP protocol; we need a message count and mail headers here to display an
index list.

commonhtml.listpage generates HTML to display a passed-in list of (text, URL,
parameter-dictionary) tuples as a list of hyperlinks in the reply page; parameter
values show up at the end of URLs in the response.

The maillist list built here is used to create the body of the next page -- a clickable
email message selection list. Each generated hyperlink in the list page references a
constructed URL that contains enough information for the next script to fetch and
display a particular email message.

If all goes well, the mail selection list page HTML generated by this script is rendered
as in Figure 13-8. If you get as much email as I do, you'll probably need to scroll
down to see the end of this page. It looks like Figure 13-9, and follows the common
look-and-feel for all PyMailCgi pages, thanks to commonhtml.

Figure 13-8. PyMailCgi view selection list page, top

Programming Python, 2nd Edition, O’Reilly

IT-SC book 825

Figure 13-9. PyMailCgi view selection list page, bottom

If the script can't access your email account (e.g., because you typed the wrong
password), then its try statement handler instead produces a commonly formatted
error page. Figure 13-10 shows one that gives the Python exception and details as
part of the reply after a genuine exception is caught.

Figure 13-10. PyMailCgi login error page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 826

13.5.2.1 Passing state information in URL link parameters

The central mechanism at work in Example 13-7 is the generation of URLs that
embed message numbers and mail account information. Clicking on any of the View
links in the selection list triggers another script, which uses information in the link's
URL parameters to fetch and display the selected email. As mentioned in the prior
chapter, because the list's links are effectively programmed to "know" how to load a
particular message, it's not too far-fetched to refer to them as smart links -- URLs
that remember what to do next. Figure 13-11 shows part of the HTML generated by
this script.

Figure 13-11. PyMailCgi view list, generated HTML

Did you get all that? You may not be able to read generated HTML like this, but your
browser can. For the sake of readers afflicted with human parsing limitations, here is

Programming Python, 2nd Edition, O’Reilly

IT-SC book 827

what one of those link lines looks like, reformatted with line breaks and spaces to
make it easier to understand:

<tr><th><ahref="http://starship.python.net/~lutz/
 PyMailCgi/onViewListLink.cgi
 ?user=lutz&
 mnum=66&

pswd=%8cg%c2P%1e%f3%5b%c5J%1c%f0&
 site=pop.rmi.net">View 66
<td>test sendurl.py | lutz@rmi.net | Mon Jun 5 17:51:11 2000

PyMailCgi generates fully specified URLs (with server and pathname values imported
from a common module). Clicking on the word "View" in the hyperlink rendered from
this HTML code triggers the onViewListLink script as usual, passing it all the
parameters embedded at the end of the URL: POP username, the POP message
number of the message associated with this link, and POP password and site
information. These values will be available in the object returned by
cgi.FieldStorage in the next script run. Note that the mnum POP message number
parameter differs in each link because each opens a different message when clicked,
and that the text after <td> comes from message headers extracted with the rfc822
module.

The commonhtml module escapes all of the link parameters with the urllib module,
not cgi.escape, because they are part of a URL. This is obvious only in the pswd
password parameter -- its value has been encrypted, but urllib additionally
escapes non-safe characters in the encrypted string per URL convention (that's
where all those %xx come from). It's okay if the encryptor yields odd -- even non-
printable -- characters, because URL encoding makes them legible for transmission.
When the password reaches the next script, cgi.FieldStorage undoes URL escape
sequences, leaving the encrypted password string without % escapes.

It's instructive to see how commonhtml builds up the smart link parameters. Earlier,
we learned how to use the urllib.quote_plus call to escape a string for inclusion in
URLs:

>>> import urllib
>>> urllib.quote_plus("There's bugger all down here on Earth")
'There%27s+bugger+all+down+here+on+Earth'

Module commonhtml, though, calls the higher-level urllib.urlencode function,
which translates a dictionary of name:value pairs into a complete URL parameter
string, ready to add after a ? marker in a URL. For instance, here is urlencode in
action at the interactive prompt:

>>> parmdict = {'user': 'Brian',
... 'pswd': '#!/spam',
... 'text': 'Say no more, squire!'}

>>> urllib.urlencode(parmdict)
'pswd=%23%21/spam&user=Brian&text=Say+no+more,+squire%21'

>>> "%s?%s" % ("http://scriptname.cgi", urllib.urlencode(parmdict))

Programming Python, 2nd Edition, O’Reilly

IT-SC book 828

'http://scriptname.cgi?pswd=%23%21/spam&user=Brian&text=Say+no+more,+sq
uire%21'

Internally, urlencode passes each name and value in the dictionary to the built-in
str function (to make sure they are strings) and then runs each one through
urllib.quote_plus as they are added to the result. The CGI script builds up a list of
similar dictionaries and passes it to commonhtml to be formatted into a selection list
page.[2]

[2] Technically, again, you should generally escape & separators in generated URL links like by
running the URL through cgi.escape, if any parameter's name could be the same as that of
an HTML character escape code (e.g., "&=high"). See the prior chapter for more details;
they aren't escaped here because there are no clashes.

In broader terms, generating URLs with parameters like this is one way to pass state
information to the next script (along with databases and hidden form input fields,
discussed later). Without such state information, the user would have to re-enter the
username, password, and site name on every page they visit along the way. We'll
use this technique again in the next case study, to generate links that "know" how to
fetch a particular database record.

Incidentally, the list generated by this script is not radically different in functionality
from what we built in the PyMailGui program of Chapter 11. Figure 13-12 shows this
strictly client-side GUI's view on the same email list displayed in Figures Figure 13-8
and Figure 13-9.

Figure 13-12. PyMailGui displaying the same view list

However, PyMailGui uses the Tkinter GUI library to build up a user interface instead
of sending HTML to a browser. It also runs entirely on the client and downloads mail
from the POP server to the client machine over sockets on demand. In contrast,
PyMailCgi runs on the server machine and simply displays mail text on the client's
browser -- mail is downloaded from the POP server machine to the starship server,
where CGI scripts are run. These architecture differences have some important
ramifications, which we'll discuss in a few moments.

13.5.2.2 Security protocols

Programming Python, 2nd Edition, O’Reilly

IT-SC book 829

In onViewPswdSubmit's source code (Example 13-7), notice that password inputs are
passed to an encode function as they are added to the parameters dictionary, and
hence show up encrypted in hyperlink URLs. They are also URL-encoded for
transmission (with % escapes) and are later decoded and decrypted within other
scripts as needed to access the POP account. The password encryption step, encode,
is at the heart of PyMailCgi's security policy.

Beginning in Python 1.6, the standard socket module will include optional support for
OpenSSL, an open source implementation of secure sockets that prevents
transmitted data from being intercepted by eavesdroppers on the Net. Unfortunately,
this example was developed under Python 1.5.2 and runs on a server whose Python
did not have secure socket support built in, so an alternative scheme was devised to
minimize the chance that email account information could be stolen off the Net in
transit.

Here's how it works. When this script is invoked by the password input page's form,
it gets only one input parameter: the password typed into the form. The username is
imported from a mailconfig module installed on the server instead of transmitted
together with the unencrypted password (that would be much too easy for malicious
users to intercept).

To pass the POP username and password to the next page as state information, this
script adds them to the end of the mail selection list URLs, but only after the
password has been encrypted by secret.encode -- a function in a module that lives
on the server and may vary in every location that PyMailCgi is installed. In fact,
PyMailCgi was written to not have to know about the password encryptor at all;
because the encoder is a separate module, you can provide any flavor you like.
Unless you also publish your encoder module, the encoded password shipped with
the username won't be of much help to snoopers.

That upshot is that normally, PyMailGui never sends or receives both user and
password values together in a single transaction unless the password is encrypted
with an encryptor of your choice. This limits its utility somewhat (since only a single
account username can be installed on the server), but the alternative of popping up
two pages -- one for password entry and one for user -- is even more unfriendly. In
general, if you want to read your mail with the system as coded, you have to install
its files on your server, tweak its mailconfig.py to reflect your account details, and
change its secret.py encryptor as desired.

One exception: since any CGI script can be invoked with parameters in an explicit
URL instead of form field values, and since commonhtml tries to fetch inputs from the
form object before importing them from mailconfig, it is possible for any person to
use this script to check his or her mail without installing and configuring a copy of
PyMailCgi. For example, a URL like the following (but without the linebreak used to
make it fit here):

http://starship.python.net/~lutz/PyMailCgi/
 onViewPswdSubmit.cgi?user=lutz&pswd=asif&site=pop.rmi.net

will actually load email into a selection list using whatever user, password, and mail
site names are appended. From the selection list, you may then view, reply, forward,
and delete email. Notice that at this point in the interaction, the password you send

Programming Python, 2nd Edition, O’Reilly

IT-SC book 830

in a URL of this form is not encrypted. Later scripts expect that the password inputs
will be sent encrypted, though, which makes it more difficult to use them with
explicit URLs (you would need to match the encrypted form produced by the secret
module on the server). Passwords are encrypted as they are added to links in the
reply page's selection list, and remain encrypted in URLs and hidden form fields
thereafter.

 But please don't use a URL like this, unless you don't care about
exposing your email password. Really. Sending both your
unencrypted mail user ID and password strings across the Net in
a URL like this is extremely unsafe and wide open to snoopers.
In fact, it's like giving them a loaded gun -- anyone who
intercepts this URL will have complete access to your email
account. It is made even more treacherous by the fact that this
URL format appears in a book that will be widely distributed all
around the world.

If you care about security and want to use PyMailCgi, install it
on your own server and configure mailconfig and secret.
That should at least guarantee that your user and password
information will never both be transmitted unencrypted in a
single transaction. This scheme still is not foolproof, so be
careful out there, folks. Without secure sockets, the Internet is a
"use at your own risk" medium.

13.5.3 The Message View Page

Back to our page flow. At this point, we are still viewing the message selection list in
Figure 13-8. When we click on one of its generated hyperlinks, the smart URL
invokes the script in Example 13-8 on the server, sending the selected message
number and mail account information (user, password, and site) as parameters on
the end of the script's URL.

Example 13-8. PP2E\Internet\Cgi-Web\PyMailCgi\onViewListLink.cgi

#!/usr/bin/python

On user click of message link in main selection list;
cgi.FieldStorage undoes any urllib escapes in the link's
input parameters (%xx and '+' for spaces already undone);

import cgi, rfc822, StringIO
import commonhtml, loadmail
from secret import decode
#commonhtml.dumpstatepage(0)

form = cgi.FieldStorage()
user, pswd, site = commonhtml.getstandardpopfields(form)
try:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 831

 msgnum = form['mnum'].value # from
url link
 newmail = loadmail.loadnewmail(site, user, decode(pswd))
 textfile = StringIO.StringIO(newmail[int(msgnum) - 1]) # don't
eval!
 headers = rfc822.Message(textfile)
 bodytext = textfile.read()
 commonhtml.viewpage(msgnum, headers, bodytext, form) #
encoded pswd
except:
 commonhtml.errorpage('Error loading message')

Again, most of the work here happens in the loadmail and commonhtml modules,
which are listed later in this section (Example 13-12 and Example 13-14). This script
adds logic to decode the input password (using the configurable secret encryption
module) and extract the selected mail's headers and text using the rfc822 and
StringIO modules, just as we did in Chapter 11.[3]

[3] Notice that the message number arrives as a string and must be converted to an integer in
order to be used to fetch the message. But we're careful not convert with eval here, since this
is a string passed over the Net and could have arrived embedded at the end of an arbitrary
URL (remember that earlier warning?).

If the message can be loaded and parsed successfully, the result page (shown in
Figure 13-13) allows us to view, but not edit, the mail's text. The function
commonhtml.viewpage generates a "read-only" HTML option for all the text widgets
in this page.

Figure 13-13. PyMailCgi view page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 832

View pages like this have a pull-down action selection list near the bottom; if you
want to do more, use this list to pick an action (Reply, Forward, or Delete), and click
on the Next button to proceed to the next screen. If you're just in a browsing frame
of mind, click the "Back to root page" link at the bottom to return to the main page,
or use your browser's Back button to return to the selection list page.

13.5.3.1 Passing state information in HTML hidden input fields

What you don't see on the view page in Figure 13-13 is just as important as what
you do. We need to refer to Example 13-14 for details, but there's something new
going on here. The original message number, as well as the POP user and (still
encrypted) password information sent to this script as part of the smart link's URL,
wind up being copied into the HTML used to create this view page, as the values of
"hidden" input fields in the form. The hidden field generation code in commonhtml
looks like this:

 print '<form method=post action="%s/onViewSubmit.cgi">' % urlroot
 print '<input type=hidden name=mnum value="%s">' % msgnum
 print '<input type=hidden name=user value="%s">' % user # from
page|url
 print '<input type=hidden name=site value="%s">' % site # for
deletes
 print '<input type=hidden name=pswd value="%s">' % pswd # pswd
encoded

Much like parameters in generated hyperlink URLs, hidden fields in a page's HTML
allow us to embed state information inside this web page itself. Unless you view that
page's source, you can't see this state information, because hidden fields are never
displayed. But when this form's Submit button is clicked, hidden field values are
automatically transmitted to the next script along with the visible fields on the form.

Figure 13-14 shows the source code generated for a different message's view page;
the hidden input fields used to pass selected mail state information are embedded
near the top.

Figure 13-14. PyMailCgi view page, generated HTML

Programming Python, 2nd Edition, O’Reilly

IT-SC book 833

The net effect is that hidden input fields in HTML, just like parameters at the end of
generated URLs, act like temporary storage areas and retain state between pages
and user interaction steps. Both are the Web's equivalent to programming language
variables. They come in handy any time your application needs to remember
something between pages.

Hidden fields are especially useful if you cannot invoke the next script from a
generated URL hyperlink with parameters. For instance, the next action in our script
is a form submit button (Next), not a hyperlink, so hidden fields are used to pass
state. As before, without these hidden fields, users would need to re-enter POP
account details somewhere on the view page if they were needed by the next script
(in our example, they are required if the next action is Delete).

13.5.3.2 Escaping mail text and passwords in HTML

Notice that everything you see on the message view page in Figure 13-13 is escaped
with cgi.escape. Header fields and the text of the mail itself might contain
characters that are special to HTML and must be translated as usual. For instance,
because some mailers allow you to send messages in HTML format, it's possible that
an email's text could contain a </textarea> tag, which would throw the reply page
hopelessly out of sync if not escaped.

One subtlety here: HTML escapes are important only when text is sent to the
browser initially (by the CGI script). If that text is later sent out again to another
script (e.g., by sending a reply), the text will be back in its original, non-escaped
format when received again on the server. The browser parses out escape codes and
does not put them back again when uploading form data, so we don't need to undo
escapes later. For example, here is part of the escaped text area sent to a browser
during a Reply transaction (use your browser's View Source option to see this live):

<tr><th align=right>Text:
<td><textarea name=text cols=80 rows=10 readonly>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 834

more stuff

--Mark Lutz (http://rmi.net/~lutz) [PyMailCgi 1.0]

> -----Original Message-----
> From: lutz@rmi.net
> To: lutz@rmi.net
> Date: Tue May 2 18:28:41 2000
>
> <table><textarea>
> </textarea></table>
> --Mark Lutz (http://rmi.net/~lutz) [PyMailCgi 1.0]
>
>
> > -----Original Message-----

After this reply is delivered, its text looks as it did before escapes (and exactly as it
appeared to the user in the message edit web page):

more stuff

--Mark Lutz (http://rmi.net/~lutz) [PyMailCgi 1.0]

> -----Original Message-----
> From: lutz@rmi.net
> To: lutz@rmi.net
> Date: Tue May 2 18:28:41 2000
>
> <table><textarea>
> </textarea></table>
> --Mark Lutz (http://rmi.net/~lutz) [PyMailCgi 1.0]
>
>
> > -----Original Message-----

Did you notice the odd characters in the hidden password field of the generated
HTML screen shot (Figure 13-14)? It turns out that the POP password is still
encrypted when placed in hidden fields of the HTML. For security, they have to be:
values of a page's hidden fields can be seen with a browser's View Source option,
and it's not impossible that the text of this page could be intercepted off the Net.

The password is no longer URL-encoded when put in the hidden field, though, even
though it was when it appeared at the end of the smart link URL. Depending on your
encryption module, the password might now contain non-printable characters when
generated as a hidden field value here; the browser doesn't care, as long as the field
is run through cgi.escape like everything else added to the HTML reply stream. The
commonhtml module is careful to route all text and headers through cgi.escape as
the view page is constructed.

As a comparison, Figure 13-15 shows what the mail message captured in Figure 13-
13 looks like when viewed in PyMailGui, the client-side Tkinter-based email tool from
Chapter 11. PyMailGui doesn't need to care about things like passing state in URLs or
hidden fields (it saves state in Python variables) or escaping HTML and URL strings

Programming Python, 2nd Edition, O’Reilly

IT-SC book 835

(there are no browsers, and no network transmission steps once mail is
downloaded). It does require Python to be installed on the client, but we'll get into
that in a few pages.

Figure 13-15. PyMailGui viewer, same message

13.5.4 The Message Action Pages

At this point in our hypothetical PyMailCgi web interaction, we are viewing an email
message (Figure 13-13) that was chosen from the selection list page. On the
message view page, selecting an action from the pull-down list and clicking the Next
button invokes the script in Example 13-9 on the server to perform a reply, forward,
or delete operation for the selected message.

Example 13-9. PP2E\Internet\Cgi-WebPyMaiCgi\onViewSubmit.cgi

#!/usr/bin/python
On submit in mail view window, action selected=(fwd, reply, delete)

import cgi, string
import commonhtml, secret
from externs import pymail, mailconfig
from commonhtml import getfield

def quotetext(form):
 """
 note that headers come from the prior page's form here,
 not from parsing the mail message again; that means that
 commonhtml.viewpage must pass along date as a hidden field
 """
 quoted = '\n-----Original Message-----\n'
 for hdr in ('From', 'To', 'Date'):
 quoted = quoted + '%s: %s\n' % (hdr, getfield(form, hdr))
 quoted = quoted + '\n' + getfield(form, 'text')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 836

 quoted = '\n' + string.replace(quoted, '\n', '\n> ')
 return quoted

form = cgi.FieldStorage() # parse form or url data
user, pswd, site = commonhtml.getstandardpopfields(form)

try:
 if form['action'].value == 'Reply':
 headers = {'From': mailconfig.myaddress,
 'To': getfield(form, 'From'),
 'Cc': mailconfig.myaddress,
 'Subject': 'Re: ' + getfield(form, 'Subject')}
 commonhtml.editpage('Reply', headers, quotetext(form))

 elif form['action'].value == 'Forward':
 headers = {'From': mailconfig.myaddress,
 'To': '',
 'Cc': mailconfig.myaddress,
 'Subject': 'Fwd: ' + getfield(form, 'Subject')}
 commonhtml.editpage('Forward', headers, quotetext(form))

 elif form['action'].value == 'Delete':
 msgnum = int(form['mnum'].value) # or string.atoi, but
not eval()
 commonhtml.runsilent(# mnum field is required
here
 pymail.deletemessages,
 (site, user, secret.decode(pswd), [msgnum], 0))
 commonhtml.confirmationpage('Delete')

 else:
 assert 0, 'Invalid view action requested'
except:
 commonhtml.errorpage('Cannot process view action')

This script receives all information about the selected message as form input field
data (some hidden, some not) along with the selected action's name. The next step
in the interaction depends upon the action selected:

Reply and Forward actions generate a message edit page with the original message's
lines automatically quoted with a leading >.

Delete actions trigger immediate deletion of the email being viewed, using a tool
imported from the pymail module from Chapter 11.

All these actions use data passed in from the prior page's form, but only the Delete
action cares about the POP username and password and must decode the password
received (it arrives here from hidden form input fields generated in the prior page's
HTML).

13.5.4.1 Reply and forward

If you select Reply as the next action, the message edit page in Figure 13-16 is
generated by the script. Text on this page is editable, and pressing this page's Send
button again triggers the send mail script we saw in Example 13-4. If all goes well,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 837

we'll receive the same confirmation page we got earlier when writing new mail from
scratch (Figure 13-4).

Figure 13-16. PyMailCgi reply page

Forward operations are virtually the same, except for a few email header differences.
All of this busy-ness comes "for free," because Reply and Forward pages are
generated by calling commonhtml.editpage, the same utility used to create a new
mail composition page. Here, we simply pass the utility preformatted header line
strings (e.g., replies add "Re:" to the subject text). We applied the same sort of
reuse trick in PyMailGui, but in a different context. In PyMailCgi, one script handles
three pages; in PyMailGui, one callback function handles three buttons, but the
architecture is similar.

13.5.4.2 Delete

Selecting the Delete action on a message view page and pressing Next will cause the
onViewSubmit script to immediately delete the message being viewed. Deletions are
performed by calling a reusable delete utility function coded in Chapter 11; the call
to the utility is wrapped in a commonhtml.runsilent call that prevents print
statements in the utility from showing up in the HTML reply stream (they are just
status messages, not HTML code). Figure 13-17 shows a delete operation in action.

Figure 13-17. PyMailCgi view page, delete selected

Programming Python, 2nd Edition, O’Reilly

IT-SC book 838

As mentioned, Delete is the only action that uses the POP account information (user,
password, and site) that was passed in from hidden fields on the prior (message
view) page. By contrast, the Reply and Forward actions format an edit page, which
ultimately sends a message to the SMTP server; no POP information is needed or
passed. But at this point in the interaction, the POP password has racked up more
than a few frequent flyer miles. In fact, it may have crossed phone lines, satellite
links, and continents on its journey from machine to machine. This process is
illustrated here:

Input (Client): The password starts life by being typed into the login page on the
client (or being embedded in an explicit URL), unencrypted. If typed into the input
form in a web browser, each character is displayed as a star (*).

Load index (Client to CGI server to POP server): It is next passed from the client to
the CGI server, which sends it on to your POP server in order to load a mail index.
The client sends only the password, unencrypted.

List page URLs (CGI server to client): To direct the next script's behavior, the
password is embedded in the mail selection list web page itself as hyperlink URL
parameters, encrypted and URL-encoded.

Load message (Client to CGI server to POP server): When an email is selected from
the list, the password is sent to the next script within the script's URL; the CGI script
decrypts it and passes it on to the POP server to fetch the selected message.

View page fields (CGI server to client): To direct the next script's behavior, the
password is embedded in the view page itself as HTML hidden input fields, encrypted
and HTML-escaped.

Delete (Client to CGI server to POP server): Finally, the password is again passed
from client to CGI server, this time as hidden form field values; the CGI script
decrypts it and passes it to the POP server to delete.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 839

Along the way, scripts have passed the password between pages as both a URL
parameter and an HTML hidden input field; either way, they have always passed its
encrypted string, and never passed an unencrypted password and username
together in any transaction. Upon a Delete request, the password must be decoded
here using the secret module before passing it to the POP server. If the script can
access the POP server again and delete the selected message, another confirmation
page appears, as shown in Figure 13-18.

Figure 13-18. PyMailCgi delete confirmation

Note that you really should click "Back to root page" after a successful deletion --
don't use your browser's Back button to return to the message selection list at this
point, because the delete has changed the relative numbers of some messages in the
list. PyMilGui worked around this problem by only deleting on exit, but PyMailCgi
deletes mail immediately since there is no notion of "on exit." Clicking on a view link
in an old selection list page may not bring up the message you think it should, if it
comes after a message that was deleted.

This is a property of POP email in general: incoming mail simply adds to the mail list
with higher message numbers, but deletions remove mail from arbitrary locations in
the list and hence change message numbers for all mail following the ones deleted.
Even PyMailGui may get some message numbers wrong if mail is deleted by another
program while the GUI is open (e.g., in a second PyMailGui instance). Alternatively,
both mailers could delete all email off the server as soon as it is downloaded, such
that deletions wouldn't impact POP identifiers (Microsoft Outlook uses this scheme,
for instance), but this requires additional mechanisms for storing deleted email
persistently for later access.

One subtlety: for replies and forwards, the onViewSubmit mail action script builds up
a > -quoted representation of the original message, with original "From:", "To:", and
"Date:" header lines prepended to the mail's original text. Notice, though, that the
original message's headers are fetched from the CGI form input, not by reparsing the
original mail (the mail is not readily available at this point). In other words, the script
gets mail header values from the form input fields of the view page. Because there is
no "Date" field on the view page, the original message's date is also passed along to
the action script as a hidden input field to avoid reloading the message. Try tracing
through the code in this chapter's listings to see if you can follow dates from page to
page.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 840

13.6 Utility Modules

This section presents the source code of the utility modules imported and used by
the page scripts shown above. There aren't any new screen shots to see here,
because these are utilities, not CGI scripts (notice their .py extensions). Moreover,
these modules aren't all that useful to study in isolation, and are included here
primarily to be referenced as you go through the CGI scripts' code. See earlier in this
chapter for additional details not repeated here.

13.6.1 External Components

When I install PyMailCgi and other server-side programs shown in this book, I simply
upload the contents of the Cgi-Web examples directory on my laptop to the top-level
web directory on my server account (public_html). The Cgi-Web directory also lives
on this book's CD (see http://examples.oreilly.com/python2), a mirror of the one on
my PC. I don't copy the entire book examples distribution to my web server, because
code outside the Cgi-Web directory isn't designed to run on a web server.

When I first installed PyMailCgi, however, I ran into a problem: it's written to reuse
modules coded in other parts of the book, and hence in other directories outside Cgi-
Web. For example, it reuses the mailconfig and pymail modules we wrote in
Chapter 11, but neither lives in the CGI examples directory. Such external
dependencies are usually okay, provided we use package imports or configure
sys.path appropriately on startup. In the context of CGI scripts, though, what lives
on my development machine may not be what is available on the web server
machine where the scripts are installed.

To work around this (and avoid uploading the full book examples distribution to my
web server), I define a directory at the top-level of Cgi-Web called Extern, to which
any required external modules are copied as needed. For this system, Extern
includes a subdirectory called Email, where the mailconfig and pymail modules are
copied for upload to the server.

Redundant copies of files are less than ideal, but this can all be automated with
install scripts that automatically copy to Extern and then upload Cgi-Web contents
via FTP using Python's ftplib module (discussed in Chapter 11). Just in case I
change this structure, though, I've encapsulated all external name accesses in the
utility module in Example 13-10.

Example 13-10. PP2E\Internet\Cgi-Web\PyMailCgi\externs.py

Isolate all imports of modules that live outside of the
PyMailCgi PyMailCgi directory. Normally, these would come
from PP2E.Internet.Email, but when I install PyMailCgi,
I copy just the Cgi-Web directory's contents to public_html
on the server, so there is no PP2E directory on the server.
Instead, I either copy the imports referenced in this file to
the PyMailCgi parent directory, or tweak the dir appended to
the sys.path module search path here. Because all other
modules get the externals from here, there is only one place
to change when they are relocated. This may be arguably

Programming Python, 2nd Edition, O’Reilly

IT-SC book 841

gross, but I only put Internet code on the server machine.

import sys
sys.path.append('..') # see dir where Email installed
on server
from Extern import Email # assumes a ../Extern dir with
Email dir
from Extern.Email import pymail # can use names Email.pymail or
pymail
from Extern.Email import mailconfig

This module appends the parent directory of PyMailCgi to sys.path to make the
Extern directory visible (remember, PYTHONPATH might be anything when CGI
scripts are run as user "nobody") and preimports all external names needed by
PyMailCgi into its own namespace. It also supports future changes; because all
external references in PyMailCgi are made through this module, I have to change
only this one file if externals are later installed differently.

As a reference, Example 13-11 lists part of the external mailconfig module again.
For PyMailCgi, it's copied to Extern, and may be tweaked as desired on the server
(for example, the signature string differs slightly in this context). See the pymail.py
file in Chapter 11, and consider writing an automatic copy-and-upload script for the
Cgi-Web\Extern directory a suggested exercise; it's not proved painful enough to
compel me to write one of my own.

Example 13-11. PP2E\Internet\Cgi-Web\Extern\Email\mailconfig.py

email scripts get server names from here:
change to reflect your machine/user names;
could get these in command line instead

SMTP email server machine (send)
smtpservername = 'smtp.rmi.net' # or starship.python.net,
'localhost'

POP3 email server machine, user (retrieve)
popservername = 'pop.rmi.net' # or starship.python.net,
'localhost'
popusername = 'lutz' # password is requested when
run

...rest omitted

personal info used by PyMailGui to fill in forms;
sig-- can be a triple-quoted block, ignored if empty string;
addr--used for initial value of "From" field if not empty,

myaddress = 'lutz@rmi.net'
mysignature = '--Mark Lutz (http://rmi.net/~lutz) [PyMailCgi 1.0]'

13.6.2 POP Mail Interface

Programming Python, 2nd Edition, O’Reilly

IT-SC book 842

The loadmail utility module in Example 13-12 depends on external files and
encapsulates access to mail on the remote POP server machine. It currently exports
one function, loadnewmail, which returns a list of all mail in the specified POP
account; callers are unaware of whether this mail is fetched over the Net, lives in
memory, or is loaded from a persistent storage medium on the CGI server machine.
That is by design -- loadmail changes won't impact its clients.

Example 13-12. PP2E\Internet\Cgi-Web\PyMailCgi\loadmail.py

mail list loader; future--change me to save mail list between
cgi script runs, to avoid reloading all mail each time; this
won't impact clients that use the interfaces here if done well;
for now, to keep this simple, reloads all mail on each operation

from commonhtml import runsilent # suppress print's (no verbose
flag)
from externs import Email

load all mail from number 1 up
this may trigger an exception

def loadnewmail(mailserver, mailuser, mailpswd):
 return runsilent(Email.pymail.loadmessages,
 (mailserver, mailuser, mailpswd))

It's not much to look at -- just an interface and calls to other modules. The
Email.pymail.loadmessages function (reused here from Chapter 11) uses the
Python poplib module to fetch mail over sockets. All this activity is wrapped in a
commonhtml.runsilent function call to prevent pymail print statements from going
to the HTML reply stream (although any pymail exceptions are allowed to propagate
normally).

As it is, though, loadmail loads all incoming email to generate the selection list
page, and reloads all email again every time you fetch a message from the list. This
scheme can be horribly inefficient if you have lots of email sitting on your server;
I've noticed delays on the order of a dozen seconds when my mailbox is full. On the
other hand, servers can be slow in general, so the extra time taken to reload mail
isn't always significant; I've witnessed similar delays on the server for empty
mailboxes and simple HTML pages too.

More importantly, loadmail is intended only as a first-cut mail interface --
something of a usable prototype. If I work on this system further, it would be
straightforward to cache loaded mail in a file, shelve, or database on the server, for
example. Because the interface exported by loadmail would not need to change to
introduce a caching mechanism, clients of this module would still work. We'll explore
server storage options in the next chapter.

13.6.3 POP Password Encryption

Programming Python, 2nd Edition, O’Reilly

IT-SC book 843

Time to call the cops. We discussed the approach to password security adopted by
PyMailCgi earlier. In brief, it works hard to avoid ever passing the POP account
username and password across the Net together in a single transaction, unless the
password is encrypted according to module secret.py on the server. This module can
be different everywhere PyMailCgi is installed and can be uploaded anew at any time
-- encrypted passwords aren't persistent and live only for the duration of one mail-
processing interaction session.[4] Example 13-13 is the encryptor module I installed
on my server while developing this book.

[4] Note that there are other ways to handle password security, beyond the custom encryption
schemes described in this section. For instance, Python's socket module now supports the
server-side portion of the OpenSSL secure sockets protocol. With it, scripts may delegate the
security task to web browsers and servers. On the other hand, such schemes do not afford as
good an excuse to introduce Python's standard encryption tools in this book.

Example 13-13. PP2E\Internet\Cgi-Web\PyMailCgi\secret.py

###
########
PyMailCgi encodes the pop password whenever it is sent to/from client
over
the net with a user name as hidden text fields or explicit url
params; uses
encode/decode functions in this module to encrypt the pswd--upload
your own
version of this module to use a different encryption mechanism;
pymail also
doesn't save the password on the server, and doesn't echo pswd as
typed, but
this isn't 100% safe--this module file itself might be vulnerable to
some
malicious users; Note: in Python 1.6, the socket module will include
standard
(but optional) support for openSSL sockets on the server, for
programming
secure Internet transactions in Python; see 1.6 socket module docs;
###
########

forceReadablePassword = 0
forceRotorEncryption = 1

import time, string
dayofweek = time.localtime(time.time())[6]

###
########
string encoding schemes
###
########

if not forceReadablePassword:
 # don't do anything by default: the urllib.quote or
 # cgi.escape calls in commonhtml.py will escape the
 # password as needed to embed in in URL or HTML; the
 # cgi module undoes escapes automatically for us;

Programming Python, 2nd Edition, O’Reilly

IT-SC book 844

 def stringify(old): return old
 def unstringify(old): return old

else:
 # convert encoded string to/from a string of digit chars,
 # to avoid problems with some special/nonprintable chars,
 # but still leave the result semi-readable (but encrypted);
 # some browser had problems with escaped ampersands, etc.;

 separator = '-'

 def stringify(old):
 new = ''
 for char in old:
 ascii = str(ord(char))
 new = new + separator + ascii # '-ascii-ascii-
ascii'
 return new

 def unstringify(old):
 new = ''
 for ascii in string.split(old, separator)[1:]:
 new = new + chr(int(ascii))
 return new

###
########
encryption schemes
###
########

if (not forceRotorEncryption) and (dayofweek % 2 == 0):
 # use our own scheme on evenly-numbered days (0=monday)
 # caveat: may fail if encode/decode over midnite boundary

 def do_encode(pswd):
 res = ''
 for char in pswd:
 res = res + chr(ord(char) + 1) # add 1 to each ascii
code
 return str(res)

 def do_decode(pswd):
 res = ''
 for char in pswd:
 res = res + chr(ord(char) - 1)
 return res

else:
 # use the standard lib's rotor module to encode pswd
 # this does a better job of encryption than code above

 import rotor
 mykey = 'pymailcgi'

 def do_encode(pswd):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 845

 robj = rotor.newrotor(mykey) # use enigma
encryption
 return robj.encrypt(pswd)

 def do_decode(pswd):
 robj = rotor.newrotor(mykey)
 return robj.decrypt(pswd)

###
########
top-level entry points
###
########

def encode(pswd):
 return stringify(do_encode(pswd)) # encrypt plus string
encode

def decode(pswd):
 return do_decode(unstringify(pswd))

This encryptor module implements two alternative encryption schemes: a simple
ASCII character code mapping, and Enigma-style encryption using the standard
rotor module. The rotor module implements a sophisticated encryption strategy,
based on the "Enigma" encryption machine used by the Nazis to encode messages
during World War II. Don't panic, though; Python's rotor module is much less prone
to cracking than the Nazis'!

In addition to encryption, this module also implements an encoding method for
already-encrypted strings. By default, the encoding functions do nothing, and the
system relies on straight URL encoding. An optional encoding scheme translates the
encrypted string to a string of ASCII code digits separated by dashes. Either
encoding method makes non-printable characters in the encrypted string printable.

13.6.3.1 Default encryption scheme: rotor

To illustrate, let's test this module's tools interactively. First off, we'll experiment
with Python's standard rotor module, since it's at the heart of the default encoding
scheme. We import the module, make a new rotor object with a key (and optionally,
a rotor count), and call methods to encrypt and decrypt:

C:\...\PP2E\Internet\Cgi-Web\PyMailCgi>python
>>> import rotor
>>> r = rotor.newrotor('pymailcgi') # (key, [,numrotors])
>>> r.encrypt('abc123') # may return non-printable
chars
' \323an\021\224'

>>> x = r.encrypt('spam123') # result is same len as
input
>>> x
'* _\344\011pY'
>>> len(x)
7
>>> r.decrypt(x)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 846

'spam123'

Notice that the same rotor object can encrypt multiple strings, that the result may
contain non-printable characters (printed as \ascii escape codes when displayed,
possibly in octal form), and that the result is always the same length as the original
string. Most importantly, a string encrypted with rotor can be decrypted in a
different process (e.g., in a later CGI script) if we recreate the rotor object:

C:\...\PP2E\Internet\Cgi-Web\PyMailCgi>python
>>> import rotor
>>> r = rotor.newrotor('pymailcgi') # can be decrypted in new
process
>>> r.decrypt('* _\344\011pY') # use "\ascii" escapes for
two chars
'spam123'

Our secret module by default simply uses rotor to encrypt, and does no additional
encoding of its own. It relies on URL encoding when the password is embedded in a
URL parameter, and HTML escaping when the password is embedded in hidden form
fields. For URLs, the following sorts of calls occur:

>>> from secret import encode, decode
>>> x = encode('abc$#<>&+') # CGI scripts do this
(rotor)
>>> x
' \323a\016\317\326\023\0163'

>>> import urllib # urllib.urlencode does
this
>>> y = urllib.quote_plus(x)
>>> y
'+%d3a%0e%cf%d6%13%0e3'

>>> a = urllib.unquote_plus(y) # cgi.FieldStorage does
this
>>> a
' \323a\016\317\326\023\0163'

>>> decode(a) # CGI scripts do this
(rotor)
'abc$#<>&+'

13.6.3.2 Alternative encryption schemes

To show how to write alternative encryptors and encoders, secret also includes a
digits-string encoder and a character-code shuffling encryptor; both are enabled with
global flag variables at the top of the module:

forceReadablePassword

If set to true, the encrypted password is encoded into a string of ASCII code digits
separated by dashes. Defaults to false to fall back on URL and HTML escape
encoding.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 847

forceRotorEncryption

If set to false and the encryptor is used on an even-numbered day of the week, the
simple character-code encryptor is used instead of rotor. Defaults to true to force
rotor encryption.

To show how these alternatives work, lets's set forceReadablePassword to 1 and
forceRotorEncryption to 0, and reimport. Note that these are global variables that
must be set before the module is imported (or reloaded), because they control the
selection of alternative def statements. Only one version of each kind of function is
ever made by the module:

C:\...\PP2E\Internet\Cgi-Web\PyMailCgi>python
>>> from secret import *
>>> x = encode('abc$#<>&+')
>>> x
'-98-99-100-37-36-61-63-39-44'

>>> y = decode(x)
>>> y
'abc$#<>&+'

This really happens in two steps, though -- encryption and then encoding (the top-
level encode and decode functions orchestrate the two steps). Here's what the steps
look like when run separately:

>>> t = do_encode('abc$#<>&+') # just our encryption
>>> t
"bcd%$=?',"
>>> stringify(t) # add our own encoding
'-98-99-100-37-36-61-63-39-44'

>>> unstringify(x) # undo encoding
"bcd%$=?',"
>>> do_decode(unstringify(x)) # undo both steps
'abc$#<>&+'

This alternative encryption scheme merely adds 1 to the each character's ASCII code
value, and the encoder inserts the ASCII code integers of the result. It's also
possible to combine rotor encryption and our custom encoding (set both
forceReadablePassword and forceRotorEncryption to 1), but URL encoding
provided by urllib works just as well. Here are a variety of schemes in action;
secret.py is edited and saved before each reload:

>>> import secret
>>> secret.encode('spam123') # default: rotor, no extra
encoding
'* _\344\011pY'

>>> reload(secret) # forcereadable=1, forcerotor=0
<module 'secret' from 'secret.py'>
>>> secret.encode('spam123')
'-116-113-98-110-50-51-52'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 848

>>> reload(secret) # forcereadable=1, forcerotor=1
<module 'secret' from 'secret.py'>
>>> secret.encode('spam123')
'-42-32-95-228-9-112-89'
>>> ord('Y') # the last one is really a 'Y'
89

>>> reload(secret) # back to default rotor, no
stringify
<module 'secret' from 'secret.pyc'>
>>> import urllib
>>> urllib.quote_plus(secret.encode('spam123'))
'%2a+_%e4%09pY'
>>> 0x2a # the first is really 42, '*'
42
>>> chr(42)
'*'

You can provide any kind of encryption and encoding logic you like in a custom
secret.py, as long as it adheres to the expected protocol -- encoders and decoders
must receive and return a string. You can also alternate schemes by days of the
week as done here (but note that this can fail if your system is being used when the
clock turns over at midnight!), and so on. A few final pointers:

Other Python encryption tools

There are additional encryption tools that come with Python or are available for
Python on the Web; see http://www.python.org and the library manual for details.
Some encryption schemes are considered serious business and may be protected by
law from export, but these rules change over time.

Secure sockets support

As mentioned, Python 1.6 (not yet out as I wrote this) will have standard support for
OpenSSL secure sockets in the Python socket module. OpenSSL is an open source
implementation of the secure sockets protocol (you must fetch and install it
separately from Python -- see http://www.openssl.org). Where it can be used, this
will provide a better and less limiting solution for securing information like passwords
than the manual scheme we've adopted here.

For instance, secure sockets allow usernames and passwords to be entered into and
submitted from a single web page, thereby supporting arbitrary mail readers. The
best we can do without secure sockets is to either avoid mixing unencrypted user
and password values and assume that some account data and encryptors live on the
server (as done here), or to have two distinct input pages or URLs (one for each
value). Neither scheme is as user-friendly as a secure sockets approach. Most
browsers already support SSL; to add it to Python on your server, see the Python 1.6
(and beyond) library manual.

Internet security is a much bigger topic than can be addressed fully here, and we've
really only scratched its surface. For additional information on security issues,
consult books geared exclusively towards web programming techniques.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 849

On my server, the secret.py file will be changed over time, in
case snoopers watch the book's web site. Moreover, its source
code cannot be viewed with the getfile CGI script coded in
Chapter 12. That means that if you run this system live,
passwords in URLs and hidden form fields may look very
different than seen in this book. My password will have changed
by the time you read these words too, or else it would be
possible to know my password from this book alone!

13.6.4 Common Utilities Module

The file commonhtml.py, shown in Example 13-14, is the Grand Central Station of
this application -- its code is used and reused by just about every other file in the
system. Most of it is self-explanatory, and I've already said most of what I wanted to
say about it earlier, in conjunction with the CGI scripts that use it.

I haven't talked about its debugging support, though. Notice that this module assigns
sys.stderr to sys.stdout, in an attempt to force the text of Python error messages
to show up in the client's browser (remember, uncaught exceptions print details to
sys.stderr). That works sometimes in PyMailCgi, but not always -- the error text
shows up in a web page only if a page_header call has already printed a response
preamble. If you want to see all error messages, make sure you call page_header
(or print Content-type: lines manually) before any other processing. This module
also defines functions that dump lots of raw CGI environment information to the
browser (dumpstatepage), and that wrap calls to functions that print status
messages so their output isn't added to the HTML stream (runsilent).

I'll leave the discovery of any remaining magic in this code up to you, the reader.
You are hereby admonished to go forth and read, refer, and reuse.

Example 13-14. PP2E\Internet\Cgi-Web\PyMailCgi\commonhtml.py

#!/usr/bin/python

generate standard page header, list, and footer HTML;
isolates html generation-related details in this file;
text printed here goes over a socket to the client,
to create parts of a new web page in the web browser;
uses one print per line, instead of string blocks;
uses urllib to escape parms in url links auto from a
dict, but cgi.escape to put them in html hidden fields;
some of the tools here are useful outside pymailcgi;
could also return html generated here instead of
printing it, so it could be included in other pages;
could also structure as a single cgi script that gets
and tests a next action name as a hidden form field;
caveat: this system works, but was largely written
during a 2-hour layover at the Chicago O'Hare airport:
some components could probably use a bit of polishing;
to run standalone on starship via a commandline, type

Programming Python, 2nd Edition, O’Reilly

IT-SC book 850

"python commonhtml.py"; to run standalone via a remote
web brower, rename file with .cgi and run fixcgi.py.

import cgi, urllib, string, sys
sys.stderr = sys.stdout # show error messages in browser
from externs import mailconfig # from a package somewhere on server

my address root
urlroot = 'http://starship.python.net/~lutz/PyMailCgi'

def pageheader(app='PyMailCgi', color='#FFFFFF', kind='main', info=''):
 print 'Content-type: text/html\n'
 print '<html><head><title>%s: %s page (PP2E)</title></head>' %
(app, kind)
 print '<body bgcolor="%s"><h1>%s %s</h1><hr>' % (color, app, (info
or kind))

def pagefooter(root='pymailcgi.html'):
 print '</p><hr>'
 print '<img src="../PyErrata/PythonPoweredSmall.gif" '
 print 'align=left alt="[Python Logo]" border=0 hspace=15>'
 print 'Back to root page' % root
 print '</body></html>'

def formatlink(cgiurl, parmdict):
 """
 make "%url?key=val&key=val" query link from a dictionary;
 escapes str() of all key and val with %xx, changes ' ' to +
 note that url escapes are different from html (cgi.escape)
 """
 parmtext = urllib.urlencode(parmdict) # calls
urllib.quote_plus
 return '%s?%s' % (cgiurl, parmtext) # urllib does all
the work

def pagelistsimple(linklist): # show simple
ordered list
 print ''
 for (text, cgiurl, parmdict) in linklist:
 link = formatlink(cgiurl, parmdict)
 text = cgi.escape(text)
 print '\n %s' % (link, text)
 print ''

def pagelisttable(linklist): # show list in a
table
 print '<p><table border>' # escape text to be
safe
 count = 1
 for (text, cgiurl, parmdict) in linklist:
 link = formatlink(cgiurl, parmdict)
 text = cgi.escape(text)
 print '<tr><th>View %d<td>\n %s' % (link,
count, text)
 count = count+1
 print '</table>'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 851

def listpage(linkslist, kind='selection list'):
 pageheader(kind=kind)
 pagelisttable(linkslist) # [('text', 'cgiurl',
{'parm':'value'})]
 pagefooter()

def messagearea(headers, text, extra=''):
 print '<table border cellpadding=3>'
 for hdr in ('From', 'To', 'Cc', 'Subject'):
 val = headers.get(hdr, '?')
 val = cgi.escape(val, quote=1)
 print '<tr><th align=right>%s:' % hdr
 print ' <td><input type=text '
 print ' name=%s value="%s" %s size=60>' % (hdr, val, extra)
 print '<tr><th align=right>Text:'
 print '<td><textarea name=text cols=80 rows=10 %s>' % extra
 print '%s\n</textarea></table>' % (cgi.escape(text) or '?') # if
has </>s

def viewpage(msgnum, headers, text, form):
 """
 on View + select (generated link click)
 very subtle thing: at this point, pswd was url encoded in the
 link, and then unencoded by cgi input parser; it's being embedded
 in html here, so we use cgi.escape; this usually sends nonprintable
 chars in the hidden field's html, but works on ie and ns anyhow:
 in url: ?user=lutz&mnum=3&pswd=%8cg%c2P%1e%f0%5b%c5J%1c%f3&...
 in html: <input type=hidden name=pswd value="...nonprintables..">
 could urllib.quote the html field here too, but must urllib.unquote
 in next script (which precludes passing the inputs in a URL instead
 of the form); can also fall back on numeric string fmt in secret.py
 """
 pageheader(kind='View')
 user, pswd, site = map(cgi.escape, getstandardpopfields(form))
 print '<form method=post action="%s/onViewSubmit.cgi">' % urlroot
 print '<input type=hidden name=mnum value="%s">' % msgnum
 print '<input type=hidden name=user value="%s">' % user # from
page|url
 print '<input type=hidden name=site value="%s">' % site # for
deletes
 print '<input type=hidden name=pswd value="%s">' % pswd # pswd
encoded
 messagearea(headers, text, 'readonly')

 # onViewSubmit.quotetext needs date passed in page
 print '<input type=hidden name=Date value="%s">' %
headers.get('Date','?')
 print '<table><tr><th align=right>Action:'
 print '<td><select name=action>'
 print ' <option>Reply<option>Forward<option>Delete</select>'
 print '<input type=submit value="Next">'
 print '</table></form>' # no 'reset' needed
here
 pagefooter()

def editpage(kind, headers={}, text=''):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 852

 # on Send, View+select+Reply, View+select+Fwd
 pageheader(kind=kind)
 print '<form method=post action="%s/onSendSubmit.cgi">' % urlroot
 if mailconfig.mysignature:
 text = '\n%s\n%s' % (mailconfig.mysignature, text)
 messagearea(headers, text)
 print '<input type=submit value="Send">'
 print '<input type=reset value="Reset">'
 print '</form>'
 pagefooter()

def errorpage(message):
 pageheader(kind='Error') # or
sys.exc_type/exc_value
 exc_type, exc_value = sys.exc_info()[:2] # but
safer,thread-specific
 print '<h2>Error Description</h2><p>', message
 print '<h2>Python Exception</h2><p>', cgi.escape(str(exc_type))
 print '<h2>Exception details</h2><p>', cgi.escape(str(exc_value))
 pagefooter()

def confirmationpage(kind):
 pageheader(kind='Confirmation')
 print '<h2>%s operation was successful</h2>' % kind
 print '<p>Press the link below to return to the main page.</p>'
 pagefooter()

def getfield(form, field, default=''):
 # emulate dictionary get method
 return (form.has_key(field) and form[field].value) or default

def getstandardpopfields(form):
 """
 fields can arrive missing or '' or with a real value
 hard-coded in a url; default to mailconfig settings
 """
 return (getfield(form, 'user', mailconfig.popusername),
 getfield(form, 'pswd', '?'),
 getfield(form, 'site', mailconfig.popservername))

def getstandardsmtpfields(form):
 return getfield(form, 'site', mailconfig.smtpservername)

def runsilent(func, args):
 """
 run a function without writing stdout
 ex: suppress print's in imported tools
 else they go to the client/browser
 """
 class Silent:
 def write(self, line): pass
 save_stdout = sys.stdout
 sys.stdout = Silent() # send print to
dummy object
 try: # which has a write
method

Programming Python, 2nd Edition, O’Reilly

IT-SC book 853

 result = apply(func, args) # try to return func
result
 finally: # but always restore
stdout
 sys.stdout = save_stdout
 return result

def dumpstatepage(exhaustive=0):
 """
 for debugging: call me at top of a cgi to
 generate a new page with cgi state details
 """
 if exhaustive:
 cgi.test() # show page with form,
environ, etc.
 else:
 pageheader(kind='state dump')
 form = cgi.FieldStorage() # show just form fields
names/values
 cgi.print_form(form)
 pagefooter()
 sys.exit()

def selftest(showastable=0): # make phony web
page
 links = [# [(text, url,
{parms})]
 ('text1', urlroot + '/page1.cgi', {'a':1}),
 ('text2', urlroot + '/page1.cgi', {'a':2, 'b':'3'}),
 ('text3', urlroot + '/page2.cgi', {'x':'a b', 'y':'a<b&c',
'z':'?'}),
 ('te<>4', urlroot + '/page2.cgi', {'<x>':'', 'y':'<a>',
'z':None})]
 pageheader(kind='View')
 if showastable:
 pagelisttable(links)
 else:
 pagelistsimple(links)
 pagefooter()

if __name__ == '__main__': # when run, not
imported
 selftest(len(sys.argv) > 1) # html goes to
stdout

13.7 CGI Script Trade-offs

As shown in this chapter, PyMailCgi is still something of a system in the making, but
it does work as advertised: by pointing a browser at the main page's URL, I can
check and send email from anywhere I happen to be, as long as I can find a machine
with a web browser. In fact, any machine and browser will do: Python doesn't even
have to be installed.[5] That's not the case with the PyMailGui client-side program we
wrote in Chapter 11.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 854

[5] This property can be especially useful when visiting government institutions, which seem to
generally provide web browser accessibility, but restrict administrative functions and broader
network connectivity to officially cleared system administrators (and international spies).

But before we all jump on the collective Internet bandwagon and utterly abandon
traditional APIs like Tkinter, a few words of larger context are in order. Besides
illustrating larger CGI applications in general, this example was chosen to underscore
some of the trade-offs you run into when building applications to run on the Web.
PyMailGui and PyMailCgi do roughly the same things, but are radically different in
implementation:

PyMailGui is a traditional user-interface program: it runs entirely on the local
machine, calls out to an in-process GUI API library to implement interfaces, and talks
to the Internet through sockets only when it has to (e.g., to load or send email on
demand). User requests are routed immediately to callback handler functions or
methods running locally, with shared variables that automatically retain state
between requests. For instance, PyMailGui only loads email once, keeps it in
memory, and only fetches newly arrived messages on future loads because its
memory is retained between events.

PyMailCgi, like all CGI systems, consists of scripts that reside and run on a server
machine, and generate HTML to interact with a user at a web browser on the client
machine. It runs only in the context of a web browser, and handles user requests by
running CGI scripts remotely on the server. Unless we add a real database system,
each request handler runs autonomously, with no state information except that
which is explicitly passed along by prior states as hidden form fields or URL
parameters. As coded, PyMailCgi must reload all email whenever it needs to process
incoming email in any way.

On a basic level, both systems use the Python POP and SMTP modules to fetch and
send email through sockets. But the implementation alternatives they represent have
some critical ramifications that you should know about when considering delivering
systems on the Web:

Performance costs

Networks are slower than CPUs . As implemented, PyMailCgi isn't nearly as fast or as
complete as PyMailGui. In PyMailCgi, every time the user clicks a submit button, the
request goes across the network. More specifically, every user request incurs a
network transfer overhead, every callback handler (usually) takes the form of a
newly spawned process on the server, parameters come in as text strings that must
be parsed out, and the lack of state information on the server between pages means
that mail needs to be reloaded often. In contrast, user clicks in PyMailGui trigger in-
process function calls instead of network traffic and process forks, and state is easily
saved as Python in-process variables (e.g., the loaded-mail list is retained between
clicks). Even with an ultra-fast Internet connection, a server-side CGI system is
slower than a client-side program.[6]

[6] To be fair, some Tkinter operations are sent to the underlying Tcl library as strings
too, which must be parsed. This may change in time; but the contrast here is with
CGI scripts versus GUI libraries in general, not with a particular library's
implementation.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 855

Some of these bottlenecks may be designed away at the cost of extra program
complexity. For instance, some web servers use threads and process pools to
minimize process creation for CGI scripts. Moreover, some state information can be
manually passed along from page to page in hidden form fields and generated URL
parameters, and state can be saved between pages in a concurrently accessible
database to minimize mail reloads (see the PyErrata case study in Chapter 14 for an
example). But there's no getting past the fact that routing events over a network to
scripts is much slower than calling a Python function directly.

Complexity costs

HTML isn't pretty . Because PyMailCgi must generate HTML to interact with the user
in a web browser, it is also more complex (or at least, less readable) than PyMailGui.
In some sense, CGI scripts embed HTML code in Python. Because the end result of
this is a mixture of two very different languages, creating an interface with HTML in a
CGI script can be much less straightforward than making calls to a GUI API such as
Tkinter.

Witness, for example, all the care we've taken to escape HTML and URLs in this
chapter's examples; such constraints are grounded in the nature of HTML.
Furthermore, changing the system to retain loaded-mail list state in a database
between pages would introduce further complexities to the CGI-based solution.
Secure sockets (e.g., OpenSSL, to be supported in Python 1.6) would eliminate
manual encryption costs, but introduce other overheads.

Functionality costs

HTML can only say so much. HTML is a portable way to specify simple pages and
forms, but is poor to useless when it comes to describing more complex user
interfaces. Because CGI scripts create user interfaces by writing HTML back to a
browser, they are highly limited in terms of user-interface constructs.

For example, consider implementing an image-processing and animation program as
CGI scripts: HTML doesn't apply once we leave the domain of fill-out forms and
simple interactions. This is precisely the limitation that Java applets were designed to
address -- programs that are stored on a server but pulled down to run on a client
on demand, and given access to a full-featured GUI API for creating richer user
interfaces. Nevertheless, strictly server-side programs are inherently limited by the
constraints of HTML. The animation scripts we wrote at the end of Chapter 8, for
example, are well beyond the scope of server-side scripts.

Portability benefits

All you need is a browser . On the client side, at least. Because PyMailCgi runs over
the Web, it can be run on any machine with a web browser, whether that machine
has Python and Tkinter installed or not. That is, Python needs to be installed on only
one computer: the web server machine where the scripts actually live and run. As
long as you know that the users of your system have an Internet browser,
installation is simple.

Python and Tkinter, you will recall, are very portable too -- they run on all major
window systems (X, Windows, Mac) -- but to run a client-side Python/Tk program
such as PyMailGui, you need Python and Tkinter on the client machine itself. Not so

Programming Python, 2nd Edition, O’Reilly

IT-SC book 856

with an application built as CGI scripts: they will work on Macintosh, Linux, Windows,
and any other machine that can somehow render HTML web pages. In this sense,
HTML becomes a sort of portable GUI API language in CGI scripts, interpreted by
your web browser. You don't even need the source code or bytecode for the CGI
scripts themselves -- they run on a remote server that exists somewhere else on the
Net, not on the machine running the browser.

Execution requirements

But you do need a browser. That is, the very nature of web-enabled systems can
render them useless in some environments. Despite the pervasiveness of the
Internet, there are still plenty of applications that run in settings that don't have web
browsers or Internet access. Consider, for instance, embedded systems, real-time
systems, and secure government applications. While an Intranet (a local network
without external connections) can sometimes make web applications feasible in some
such environments, I have recently worked at more than one company whose client
sites had no web browsers to speak of. On the other hand, such clients may be more
open to installing systems like Python on local machines, as opposed to supporting
an internal or external network.

Administration requirements

You really need a server too . You can't write CGI-based systems at all without
access to a web sever. Further, keeping programs on a centralized server creates
some fairly critical administrative overheads. Simply put, in a pure client/server
architecture, clients are simpler, but the server becomes a critical path resource and
a potential performance bottleneck. If the centralized server goes down, you, your
employees, and your customers may be knocked out of commission. Moreover, if
enough clients use a shared server at the same time, the speed costs of web-based
systems become even more pronounced. In fact, one could make the argument that
moving towards a web server architecture is akin to stepping backwards in time -- to
the time of centralized mainframes and dumb terminals. Whichever way we step,
offloading and distributing processing to client machines at least partially avoids this
processing bottleneck.

So what's the best way to build applications for the Internet -- as client-side
programs that talk to the Net, or as server-side programs that live and breathe on
the Net? Naturally, there is no one answer to that question, since it depends upon
each application's unique constraints. Moreover, there are more possible answers to
it than we have proposed here; most common CGI problems already have common
proposed solutions. For example:

Client-side solutions

Client- and server-side programs can be mixed in many ways. For instance, applet
programs live on a server, but are downloaded to and run as client-side programs
with access to rich GUI libraries (more on applets when we discuss JPython in
Chapter 15). Other technologies, such as embedding JavaScript or Python directly in
HTML code, also support client-side execution and richer GUI possibilities; such
scripts live in HTML on the server, but run on the client when downloaded and access
browser components through an exposed object model (see the discussion Section
15.8 near the end of Chapter 15). The emerging Dynamic HTML (DHTML) extensions
provide yet another client-side scripting option for changing web pages after they

Programming Python, 2nd Edition, O’Reilly

IT-SC book 857

have been constructed. All of these client-side technologies add extra complexities all
their own, but ease some of the limitations imposed by straight HTML.

State retention solutions

Some web application servers (e.g., Zope, described in Chapter 15) naturally support
state retention between pages by providing concurrently accessible object databases.
Some of these systems have a real underlying database component (e.g., Oracle and
mySql); others may make use of files or Python persistent object shelves with
appropriate locking (as we'll explore in the next chapter). Scripts can also pass state
information around in hidden form fields and generated URL parameters, as done in
PyMailCgi, or store it on the client machine itself using the standard cookie protocol.

Cookies are bits of information stored on the client upon request from the server. A
cookie is created by sending special headers from the server to the client within the
response HTML (Set-Cookie: name=value). It is then accessed in CGI scripts as the
value of a special environment variable containing cookie data uploaded from the
client (HTTP_COOKIE). Search http://www.python.org for more details on using
cookies in Python scripts, including the freely available cookie.py module, which
automates the cookie translation process.[7] Cookies are more complex than program
variables and are somewhat controversial (some see them as intrusive), but they can
offload some simple state retention tasks.

[7] Also see the new standard cookie module in Python release 2.0.

HTML generation solutions

Add-ons can also take some of the complexity out of embedding HTML in Python CGI
scripts, albeit at some cost to execution speed. For instance, the HTMLgen system
described in Chapter 15 lets programs build pages as trees of Python objects that
"know" how to produce HTML. When a system like this is employed, Python scripts
deal only with objects, not the syntax of HTML itself. Other systems such as PHP and
Active Server Pages (described in the same chapter) allow scripting language code to
be embedded in HTML and executed on the server, to dynamically generate or
determine part of the HTML that is sent back to a client in response to requests.

Clearly, Internet technology does imply some design trade-offs, and is still evolving
rapidly. It is nevertheless an appropriate delivery context for many (though not all)
applications. As with every design choice, you must be the judge. While delivering
systems on the Web may have some costs in terms of performance, functionality,
and complexity, it is likely that the significance of those overheads will diminish with
time.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 858

Chapter 14. Larger Web Site Examples II

14.1 "Typos Happen"

14.2 The PyErrata Web Site

14.3 The Root Page

14.4 Browsing PyErrata Reports

14.5 Submitting PyErrata Reports

14.6 PyErrata Database Interfaces

14.7 Administrative Tools

14.8 Designing for Reuse and Growth

14.1 "Typos Happen"

This chapter presents the second of two server-side Python web programming case
studies. It covers the design and implementation of PyErrata, a CGI-based web site
implemented entirely in Python that allows users to post book comments and error
reports, and demonstrates the concepts underlying persistent database storage in
the CGI world. As we'll see, this case study teaches both server-side scripting and
Python development techniques.

14.2 The PyErrata Web Site

The last chapter concluded with a discussion of the downsides of deploying
applications on the Web. But now that I've told you all the reasons you might not
want to design systems for the Web, I'm going to completely contradict myself and
present a system that cries out for a web-based implementation. This chapter
presents the PyErrata web site, a Python program that lets arbitrary people on
arbitrary machines submit book comments and bug reports (usually called errata)
over the Web, using just a web browser.

PyErrata is in some ways simpler than the PyMailCgi case study presented in the
previous chapter. From a user's perspective, PyErrata is more hierarchical than
linear: user interactions are shorter and spawn fewer pages. There is also little state
retention in web pages themselves in PyErrata; URL parameters pass state in only
one isolated case, and no hidden form fields are generated.

On the other hand, PyErrata introduces an entirely new dimension: persistent data
storage. State (error and comment reports) is stored permanently by this system on
the server, either in flat pickle files or a shelve-based database. Both raise the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 859

specter of concurrent updates, since any number of users out in cyberspace may be
accessing the site at the same time.

14.2.1 System Goals

Before you ponder too long over the seeming paradox of a book that comes with its
own bug-reporting system, I should provide a little background. Over the last five
years, I've been fortunate enough to have had the opportunity to write four books, a
large chapter in a reference book, and various magazine articles and training
materials. Changes in the Python world have also provided opportunities to rewrite
books from the ground up. It's been both wildly rewarding and lucrative work (well,
rewarding, at least).

But one of the first big lessons one learns upon initiation in the publishing business is
that typos are a fact of life. Really. No matter how much of a perfectionist you are,
books will have bugs. Furthermore, big books tend to have more bugs than little
books, and in the technical publishing domain, readers are often sufficiently savvy
and motivated to send authors email when they find those bugs.

That's a terrific thing, and helps authors weed out typos in reprints. I always
encourage and appreciate email from readers. But I get lots of email -- at times, so
much so that given my schedule, I find it difficult to even reply to every message, let
alone investigate and act on every typo report. I get lots of other email too, and can
miss a reader's typo report if I'm not careful.

About a year ago, I realized that I just couldn't keep up with all the traffic and
started thinking about alternatives. One obvious way to cut down on the overhead of
managing reports is to delegate responsibility -- to offload at least some report-
processing tasks to the people who generate the reports. That is, I needed to
somehow provide a widely available system, separate from my email account, that
automates report posting and logs reports to be reviewed as time allows.

Of course, that's exactly the sort of need that the Internet is geared to. By
implementing an error-reporting system as a web site, any reader can visit and log
reports from any machine with a browser, whether they have Python installed or not.
Moreover, those reports can be logged in a database at the web site for later
inspection by both author and readers, instead of requiring manual extraction from
incoming email.

The implementation of these ideas is the PyErrata system -- a web site implemented
with server-side Python programs. PyErrata allows readers to post bug reports and
comments about this edition of Programming Python, as well as view the collection of
all prior posts by various sort keys. Its goal is to replace the traditional errata list
pages I've had to maintain manually for other books in the past.

More than any other web-based example in this book, PyErrata demonstrates just
how much work can be saved with a little Internet scripting. To support the first
edition of this book, I hand-edited an HTML file that listed all known bugs. With
PyErrata, server-side programs generate such pages dynamically from a user-
populated database. Because list pages are produced on demand, PyErrata not only
publishes and automates list creation, it also provides multiple ways to view report
data. I wouldn't even try to reorder the first edition's static HTML file list.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 860

PyErrata is something of an experiment in open systems, and as such is vulnerable
to abuse. I still have to manually investigate reports, as time allows. But it at least
has the potential to ease one of the chores that generally goes unmentioned in
typical publishing contracts.

14.2.2 Implementation Overview

Like other web-based systems in this part of the book, PyErrata consists of a
collection of HTML files, Python utility modules, and Python-coded CGI scripts that
run on a shared server instead of on a client. Unlike those other web systems,
PyErrata also implements a persistent database and defines additional directory
structures to support it. Figure 14-1 shows the top-level contents of the site, seen on
Windows from a PyEdit Open dialog.

Figure 14-1. PyErrata site contents

You will find a similar structure on this book's CD-ROM (view CD-ROM content online
at http://examples.oreilly.com/python2). To install this site on the Net, all the files
and directories you see here are uploaded to the server machine and stored in a
PyErrata subdirectory within the root of the directory that is exposed to the Web (my
public_html directory). The top-level files of this site implement browse and submit
operations as well as database interfaces. A few resource page files and images show
up in this listing too, but are ignored in this book. Besides files, this site has
subdirectories of its own:

Mutex is a Python package that contains a mutual-exclusion utility module used for
shelves, as well as test scripts for this utility model.

AdminTools includes system utility scripts that are run standalone from the command
line.

DbaseFiles holds the file-based database, with separate subdirectories for errata and
comment pickle files.

DbaseShelve contains the shelve-based database, with separate shelve files for
errata and comments.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 861

We'll meet the contents of the database subdirectories later in this chapter, when
exploring the database implementation.

14.2.3 Presentation Strategy

PyErrata takes logic factoring, code reuse, and encapsulation to extremes. Top-level
scripts, for example, are often just a few lines long and ultimately invoke generic
logic in common utility modules. With such an architecture, mixing short code
segments with lots of screen shots makes it tough to trace the flow of control
through the program.

To make this system easier to study, we're going to take a slightly different approach
here. PyErrata's implementation will be presented in three main sections
corresponding to major functional areas of the system: report browsing, report
submission, and database interfaces. The site root page will be shown before these
three sections, but mostly just for context; it's simple, static HTML.

Within the browsing and submission sections, all user interaction models (and screen
shots) are shown first, followed by all the source code used to implement that
interaction. Like the PyForm example in Chapter 16, PyErrata is at heart a database-
access program, and its database interfaces are ultimately the core of the system.
Because these interfaces encapsulate most low-level storage details, though, we'll
save their presentation for last.

Although you still may have to jump around some to locate modules across
functional boundaries, this organization of all the code for major chunks of the
system in their own sections should help minimize page-flipping.

Use the Source, Luke

I want to insert the standard case-study caveat here: although this chapter
does explain major concepts along the way, understanding the whole story
is left partly up to you. As always, please consult the source code listings in
this chapter (and at http://examples.oreilly.com/python2) for details not
spelled out explicitly. I've taken this minimal approach deliberately, mostly
because I assume you already know a lot about CGI scripting and the
Python language by this point in the book, but also because real-world
development time is spent as much on reading other people's code as on
writing your own. Python makes both tasks relatively easy, but now is your
chance to see how for yourself.

I also wish to confess right off that this chapter has a hidden agenda.
PyErrata not only shows more server-side scripting techniques, but also
illustrates common Python development concepts at large. Along the way,
we focus on this system's current software architecture and point out a
variety of design alternatives. Be sure to pay special attention to the way
that logic has been layered into multiple abstraction levels. For example, by
separating database and user-interface (page generation) code, we
minimize code redundancy and cross-module dependencies and maximize
code reuse. Such techniques are useful in all Python systems, web-based or

Programming Python, 2nd Edition, O’Reilly

IT-SC book 862

not.

14.3 The Root Page

Let's start at the top. In this chapter we will study the complete implementation of
PyErrata, but readers are also encouraged to visit the web site where it lives to
sample the flavor of its interaction first-hand. Unlike PyMailCgi, there are no
password constraints in PyErrata, so you can access all of its pages without any
configuration steps.

PyErrata installs as a set of HTML files and Python CGI scripts, along with a few
image files. As usual, you can simply point your web browser to the system's root
page to run the system live while you study this chapter. Its root page currently lives
here:[1]

[1] But be sure to see this book's web site, http://rmi.net/~lutz/about-pp.html, for an updated
link if the one listed here no longer works by the time you read this book. Web sites seem to
change addresses faster than developers change jobs.

http://starship.python.net/~lutz/PyErrata/pyerrata.html

If you go to this address, your browser will be served the page shown in Figure 14-2.
PyErrata supports both submission and browsing of comments and error reports; the
four main links on this page essentially provide write and read access to its
databases over the Web.

Figure 14-2. PyErrata main page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 863

The static HTML code file downloaded to produce this page is listed in Example 14-1.
The only parts we're interested in are shown in bold: links to the submission and
browsing pages for comments and errata. There is more to this page, but we're only
dealing with the parts shown in the screen shot. For instance, the site will eventually
also include resource page HTML files (e.g., Python resources and changes), but we'll
ignore those components in this book.

Example 14-1. PP2E\Internet\Cgi-Web\PyErrata\pyerrata.html

<HTML><BODY>
<TITLE>PyErrata: PP2E Errata Page</TITLE>
<H1 align=center>PyErrata</H1>
<H2 align=center>The PP2E Updates Page</H2>
<P align=center><I>Version 1.0, November 1999</I></P>

<HR><P>

<IMG src="ppsmall.gif" align=left alt="[Book Cover]" border=1
hspace=8>

Welcome. This is the official place where corrections, supplements,
and other supporting information for the book <I>Programming Python,
2nd Edition</I> are maintained. This site is also described in the
book:
most of its interaction is implemented in
Python as server-
side
CGI scripts, and most submitted information is stored in files on the
starship

Programming Python, 2nd Edition, O’Reilly

IT-SC book 864

server.
<P>
You may both browse items, and submit new ones here. This site is
primarily
used for automatic, reader-controlled tracking of book corrections
("errata");
if you find a bug, please take a moment to fill out the errata
submission
form, so we can fix it in a later printing. Select a link below to
submit
or browse book-related items.
</P>
<HR>

<H2>Submit</H2>

Errata report
General comment

<H2>Browse</H2>

Errata reports
General comments

<H2>Library</H2>

Supplements
Python changes
Program patch files

<HR>

<IMG SRC="PythonPoweredSmall.gif"
 ALIGN=left ALT="[Python Logo]" border=0 hspace=10>
More examples
</BODY></HTML>

14.4 Browsing PyErrata Reports

On to the first major system function: browsing report records. Before we study the
code used to program browse operations, let's get a handle on the sort of user
interaction it is designed to produce. If you're the sort that prefers to jump into code
right away, it's okay to skip the next two sections for now, but be sure to come back
here to refer to the screen shots as you study code listed later.

14.4.1 User Interface: Browsing Comment Reports

As shown in Figure 14-2, PyErrata lets us browse and submit two kinds of reports:
general comments and errata (bug) reports. Clicking the "General comments" link in
the Browse section of the root page brings up the page shown in Figure 14-3.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 865

Figure 14-3. Browse comments, selection page

Now, the first thing you should know about PyErrata's browse feature is that it allows
users to query and view the report database in multiple ways. Reports may be
ordered by any report field and displayed in three different formats. The top-level
browse pages essentially serve to configure a query against the report database and
the presentation of its result.

To specify an ordering, first select a sort criterion: a report field name by which
report listings are ordered. Fields take the form of radio buttons on this page. To
specify a report display format, select one of three option buttons:

Simple list yields a simple sorted list page.

With index generates a sorted list page, with hyperlinks at the top that jump to the
starting point of each sort key value in the page when clicked.

Index only produces a page containing only hyperlinks for each sort key value, which
fetch and display matching records when clicked.

Figure 14-4 shows the simple case produced by clicking the "Submit date" sort key
button, selecting the "Simple list" display option, and pressing the Submit Query
button to contact a Python script on the server. It's a scrollable list of all comment
reports in the database ordered by submission date.

Figure 14-4. Browse comments, "Simple list" option

Programming Python, 2nd Edition, O’Reilly

IT-SC book 866

In all query results, each record is displayed as a table of attribute field values (as
many as are present in the record) followed by the text of the record's description
field. The description is typically multiple lines long, so it's shown separately and
without any HTML reformatting (i.e., as originally typed). If there are multiple
records in a list, they are separated by horizontal lines.

Simple lists like this work well for small databases, but the other two display options
are better suited to larger report sets. For instance, if we instead pick the "With
index" option, we are served up a page that begins with a list of links to other
locations in the page, followed by a list of records ordered and grouped by a sort
key's value. Figure 14-5 shows the "With index" option being used with the "Report
state" sort key.

Figure 14-5. Browse comments, "With index" option

Programming Python, 2nd Edition, O’Reilly

IT-SC book 867

To view reports, the user can either scroll through the list or click on one of the links
at the top; they follow in-page hyperlinks to sections of the report list where a given
key value's records begin. Internally, these hyperlinks use file.html#section
section-link syntax that is supported by most browsers, and in-page tags. The
important parts of the generated HTML code look like this:

<title>PP2E Comment list</title>
<h1>Comment list, sorted by "Report state"</h1><hr>
<h2>Index</h2>
Not yet verified
Rejected - not a real bug
Verified by author
<hr>
<h2>Key = "Not yet verified"</h2><hr>
<p><table border>
<tr><th align=right>Submit date:<td>1999/09/21, 06:07:43
...more...

Figure 14-6 shows the result of clicking one such link in a page sorted instead by
submit date. Notice the #S4 at the end of the result's URL. We'll see how these tags
are automatically generated in a moment.

Figure 14-6. Browse comments, "With index" listing

Programming Python, 2nd Edition, O’Reilly

IT-SC book 868

For very large databases, it may be impractical to list every record's contents on the
same page; the third PyErrata display format option provides a solution. Figure 14-7
shows the page produced by the "Index only" display option, with "Submit date"
chosen for report order. There are no records on this page, just a list of hyperlinks
that "know" how to fetch records with the listed key value when clicked. They are
another example of what we've termed smart links -- they embed key and value
information in the hyperlink's URL.

Figure 14-7. Browse comments, "Index only" selection list

Programming Python, 2nd Edition, O’Reilly

IT-SC book 869

PyErrata generates these links dynamically; they look like the following, except that
I've added line-feeds to make them more readable in this book:

<title>PP2E Comment list</title>
<h1>Comment list, sorted by "Submit date"</h1><hr>
<h2>Index</h2>
<a href="index.cgi?kind=Comment&
 sortkey=Submit+date&
 value=1999/09/21,+06%3a06%3a50">1999/09/21,
06:06:50
<a href="index.cgi?kind=Comment&
 sortkey=Submit+date&
 value=1999/09/21,+06%3a07%3a22">1999/09/21,
06:07:22
...more...
<hr>

Note the URL-encoded parameters in the links this time; as you'll see in the code,
this is Python's urllib module at work again. Also notice that unlike the last
chapter's PyMailCgi example, PyErrata generates minimal URLs in lists (without
server and path names -- they are inferred and added by the browser from the prior
page's address). If you view the generated page's source code, the underlying smart
links are more obvious; Figure 14-8 shows one such index page's code.[2]

[2] Like PyMailCgi, the & character in the generated URLs is not escaped by PyErrata, since its
parameter name doesn't clash with HTML character escape names. If yours might, be sure to
use cgi.escape on URLs to be inserted into web pages.

Figure 14-8. PyErrata generated links code

Programming Python, 2nd Edition, O’Reilly

IT-SC book 870

Clicking on a link in the "Index only" page fetches and displays all records in the
database with the displayed value in the displayed key field. For instance, pressing
the second to last link in the index page (Figure 14-7) yields the page shown in
Figure 14-9. As usual, generated links appear in the address field of the result.

Figure 14-9. Browse comments, "Index only" link clicked

If we ask for an index based on field "Submitter name," we generate similar results
but with different key values in the list and URLs; Figure 14-10 shows the result of
clicking such an index page link. This is the same record as Figure 14-9, but was
accessed via name key, not submit date. By treating records generically, PyErrata
provides multiple ways to view and access stored data.

Figure 14-10. Browse comments, "Index only" page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 871

14.4.2 User Interface: Browsing Errata Reports

PyErrata maintains two distinct databases -- one for general comments and one for
genuine error reports. To PyErrata, records are just objects with fields; it treats both
comments and errata the same, and is happy to use whatever database it is passed.
Because of that, the interface for browsing errata records is almost identical to that
for comments, and as we'll see in the implementation section, it largely uses the
same code.

Errata reports differ, though, in the fields they contain. Because there are many
more fields that can be filled out here, the root page of the errata browse function is
slightly different. As seen in Figure 14-11, sort fields are selected from a pull-down
selection list rather than radiobuttons. Every attribute of an errata report can be
used as a sort key, even if some reports have no value for the field selected. Most
fields are optional; as we'll see later, reports with empty field values are shown as
value ? in index lists and grouped under value (none) in report lists.

Figure 14-11. Browse errata, selection page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 872

Once we've picked a sort order and display format and submitted our query, things
look much the same as for comments (albeit with labels that say Errata instead of
Comment). For instance, Figure 14-12 shows the "With index" option for errata
sorted by submit date.

Figure 14-12. Browse errata, "With index" display

Clicking one of the links on this page leads to a section of the report page list, as in
Figure 14-13; again, the URL at the top uses #section hyperlinks.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 873

Figure 14-13. Browse errata, report list

The "Index only" mode works the same here too: Figure 14-14 shows the index page
for sort field "Chapter number". Notice the "?" entry; if clicked, it will fetch and
display all records with an empty chapter number field. In the display, their empty
key values print as (none). In the database, it's really an empty string.

Figure 14-14. Browse errata, "Index only" link page

Clicking on the "16" entry brings up all errata tagged with that chapter number in
the database; Figure 14-15 shows that only one was found this time.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 874

Figure 14-15. Browse errata, "Index only" link clicked

14.4.3 Using Explicit URLs with PyErrata

Because Python's cgi module treats form inputs and URL parameters the same way,
you can also use explicit URLs to generate most of the pages shown so far. In fact,
PyErrata does too; the URL shown at the top of Figure 14-15:

http://starship.python.net/~lutz/
 PyErrata/index.cgi?kind=Errata&sortkey=Chapter+number&value=16

was generated by PyErrata internally to represent a query to be sent to the next
script (mostly -- the browser actually adds the first part, through PyErrata/). But
there's nothing preventing a user (or another script) from submitting that fully
specified URL explicitly to trigger a query and reply. Other pages can be fetched with
direct URLs too; this one loads the index page itself:

http://starship.python.net/~lutz/
 PyErrata/browseErrata.cgi?key=Chapter+number&display=indexonly

Likewise, if you want to query the system for all comments submitted under a given
name, you can either navigate through the system's query pages, or type a URL like
this:

http://starship.python.net/~lutz/
 PyErrata/index.cgi?kind=Comment&sortkey=Submitter+name&value=Bob

You'll get a page with Python exception information if there are no matches for the
key and value in the specified database. If you instead just want to fetch a comment
list sorted by submit dates (e.g., to parse in another script), type this:

http://starship.python.net/~lutz/
 PyErrata/browseComments.cgi?key=Submit+date&display=list

Programming Python, 2nd Edition, O’Reilly

IT-SC book 875

If you access this system outside the scope of its form pages like this, be sure to
specify a complete URL and URL-encoded parameter values. There is no notion of a
prior page, and because most key values originate from values in user-provided
reports, they may contain arbitrary characters.

It's also possible to use explicit URLs to submit new reports -- each field may be
passed as a URL's parameter to the submit script:

http://starship.python.net/~lutz/
 PyErrata/submitComment.cgi?Description=spam&Submitter+name=Bob

but we won't truly understand what this does until we reach Section 14.5 later in this
chapter.

14.4.4 Implementation: Browsing Comment Reports

Okay, now that we've seen the external behavior of the browse function, let's roll up
our sleeves and dig into its implementation. The following sections list and discuss
the source code files that implement PyErrata browse operations. All of these live on
the web server; some are static HTML files and others are executable Python scripts.
As you read, remember to refer back to the user interface sections to see the sorts
of pages produced by the code.

As mentioned earlier, this system has been factored for reuse: top-level scripts don't
do much but call out to generalized modules with appropriate parameters. The
database where submitted reports are stored is completely encapsulated as well;
we'll study its implementation later in this chapter, but for now we can be mostly
ignorant of the medium used to store information.

The file in Example 14-2 implements the top-level comment browsing page.

Example 14-2. PP2E\Internet\Cgi-Web\PyErrata\browseComments.html

<html><body bgcolor="#FFFFFF">
<title>PP2E Browse Comments</title>
<h1>PP2E Browse Comment Reports</h1>

<p>Please select the field you wish to sort by below, and press
the submit button to display comments. The display does not include
any emailed reports which have not been manually posted. Click
'With index' for a top-of-page index, or 'Index only' for an index
with links to individual pages.
</p>

<hr>
<form method=POST action="browseComments.cgi">
 <h3>Sort reports by:</h3>

 <p><input type=radio name=key value="Submit date" checked> Submit
date
 <p><input type=radio name=key value="Submitter name"> Submitter
name
 <p><input type=radio name=key value="Submitter email"> Submitter
email

Programming Python, 2nd Edition, O’Reilly

IT-SC book 876

 <p><input type=radio name=key value="Report state"> Report state

 <h3>Display options:</h3>
 <p><input type=radio name=display value="list">Simple list
 <input type=radio name=display value="indexed" checked>With
index
 <input type=radio name=display value="indexonly">Index only
 <p><input type=submit>
</form>

<hr>
Back to errata page
</body></html>

This is straight and static HTML code, as opposed to a script (there's nothing to
construct dynamically here). As with all forms, clicking its submit button triggers a
CGI script (Example 14-3) on the server, passing all the input fields' values.

Example 14-3. PP2E\Internet\Cgi-Web\PyErrata\browseComments.cgi

#!/usr/bin/python

from dbswitch import DbaseComment # dbfiles or dbshelve
from browse import generatePage # reuse html formatter
generatePage(DbaseComment, 'Comment') # load data, send page

There's not much going on here, because all the machinery used to perform a query
has been split off to the browse module (shown in Example 14-6) so that it can be
reused to browse errata reports too. Internally, browsing both kinds of records is
handled the same way; here, we pass in only items that vary between comment and
errata browsing operations. Specifically, we pass in the comment database object
and a "Comment" label for use in generated pages. Module browse is happy to query
and display records from any database we pass to it.

The dbswitch module used here (and listed in Example 14-13) simply selects
between flat-file and shelve database mechanisms. By making the mechanism choice
in a single module, we need to update only one file to change to a new medium; this
CGI script is completely independent of the underlying database mechanism.
Technically, the object dbswitch.DbaseComment is a class object, used later to
construct a database interface object in the browse module.

14.4.5 Implementation: Browsing Errata Reports

The file in Example 14-4 implements the top-level errata browse page, used to select
a report sort order and display format. Fields are in a pull-down selection list this
time, but otherwise this page is similar to that for comments.

Example 14-4. PP2E\Internet\Cgi-Web\PyErrata\browseErrata.html

<html><body bgcolor="#FFFFFF">
<title>PP2E Browse Errata</title>
<h1>PP2E Browse Errata Reports</h1>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 877

<p>Please select the field you wish to sort by below, and press
the submit button to display reports. The display does not include
any emailed reports which have not yet been manually posted. Click
'With index' for a top-of-page index, or 'Index only' for an index
with links to individual pages.
</p>

<hr>
<form method=POST action="browseErrata.cgi">
 <h3>Sort reports by:</h3>
 <select name=key>
 <option>Page number
 <option>Type
 <option>Submit date
 <option>Severity
 <option>Chapter number
 <option>Part number
 <option>Printing date
 <option>Submitter name
 <option>Submitter email
 <option>Report state
 </select>
 <h3>Display options:</h3>
 <p><input type=radio name=display value="list">Simple list
 <input type=radio name=display value="indexed" checked>With
index
 <input type=radio name=display value="indexonly">Index only
 <p><input type=submit>
</form>

<hr>
Back to errata page
</body></html>

When submitted, the form in this HTML file invokes the script in Example 14-5 on the
server.

Example 14-5. PP2E\Internet\Cgi-Web\PyErrata\browseErrata.cgi

#!/usr/bin/python

from dbswitch import DbaseErrata # dbfiles or dbshelve
from browse import generatePage # reuse html formatter
generatePage(DbaseErrata) # load data, send page

Again, there's not much to speak of here. In fact, it's nearly identical to the comment
browse script, because both use the logic split off into the browse module. Here, we
just pass a different database for the browse logic to process.

14.4.6 Common Browse Utility Modules

To fully understand how browse operations work, we need to explore the module in
Example 14-6, which is used by both comment and errata browse operations.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 878

Example 14-6. PP2E\Internet\Cgi-Web\PyErrata\browse.py

on browse requests: fetch and display data in new page;
report data is stored in dictionaries on the database;
caveat: the '#Si' section links generated for top of page
indexes work on a recent Internet Explorer, but have been
seen to fail on an older Netscape; if they fail, try
using 'index only' mode, which uses url links to encode
information for creating a new page; url links must be
encoded with urllib, not cgi.escape (for text embedded in
the html reply stream; IE auto changes space to %20 when
url is clicked so '+' replacement isn't always needed,
but urllib.quote_plus is more robust; web browser adds
http://server-name/root-dir/PyErrata/ to indexurl;

import cgi, urllib, sys, string
sys.stderr = sys.stdout # show errors in browser
indexurl = 'index.cgi' # minimal urls in links

def generateRecord(record):
 print '<p><table border>'
 rowhtml = '<tr><th align=right>%s:<td>%s\n'
 for field in record.keys():
 if record[field] != '' and field != 'Description':
 print rowhtml % (field, cgi.escape(str(record[field])))

 print '</table></p>'
 field = 'Description'
 text = string.strip(record[field])
 print '<p>%s
<pre>%s</pre><hr>' % (field,
cgi.escape(text))

def generateSimpleList(dbase, sortkey):
 records = dbase().loadSortedTable(sortkey) # make list
 for record in records:
 generateRecord(record)

def generateIndexOnly(dbase, sortkey, kind):
 keys, index = dbase().loadIndexedTable(sortkey) # make index
links
 print '<h2>Index</h2>' # for load on
click
 for key in keys:
 html = '%s'
 htmlkey = cgi.escape(str(key))
 urlkey = urllib.quote_plus(str(key)) # html or url
escapes
 urlsortkey = urllib.quote_plus(sortkey) # change
spaces to '+'
 print html % (indexurl,
 kind, urlsortkey, (urlkey or '(none)'), (htmlkey
or '?'))
 print '<hr>'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 879

def generateIndexed(dbase, sortkey):
 keys, index = dbase().loadIndexedTable(sortkey)
 print '<h2>Index</h2>'
 section = 0 # make index
 for key in keys:
 html = '%s'
 print html % (section, cgi.escape(str(key)) or '?')
 section = section + 1
 print '<hr>'
 section = 0 # make details
 for key in keys:
 html = '<h2>Key = "%s"</h2><hr>'
 print html % (section, cgi.escape(str(key)))
 for record in index[key]:
 generateRecord(record)
 section = section + 1

def generatePage(dbase, kind='Errata'):
 form = cgi.FieldStorage()
 try:
 sortkey = form['key'].value
 except KeyError:
 sortkey = None

 print 'Content-type: text/html\n'
 print '<title>PP2E %s list</title>' % kind
 print '<h1>%s list, sorted by "%s"</h1><hr>' % (kind, str(sortkey))

 if not form.has_key('display'):
 generateSimpleList(dbase, sortkey)

 elif form['display'].value == 'list': # dispatch on display
type
 generateSimpleList(dbase, sortkey) # dict would work
here too

 elif form['display'].value == 'indexonly':
 generateIndexOnly(dbase, sortkey, kind)

 elif form['display'].value == 'indexed':
 generateIndexed(dbase, sortkey)

This module in turn heavily depends on the top-level database interfaces we'll meet
in a few moments. For now, all we need to know at this high level of abstraction is
that the database exports interfaces for loading report records and sorting and
grouping them by key values, and that report records are stored away as dictionaries
in the database with one key per field in the report. Two top-level interfaces are
available for accessing stored reports:

dbase().loadSortedTable(sortkey) loads records from the generated database
interface object into a simple list, sorted by the key whose name is passed in. It
returns a list of record dictionaries sorted by a record field.

dbase().loadIndexedTable(sortkey) loads records from the generated database
interface object into a dictionary of lists, grouped by values of the passed-in key

Programming Python, 2nd Edition, O’Reilly

IT-SC book 880

(one dictionary entry per sort key value). It returns both a dictionary of record-
dictionary lists to represent the grouping by key, as well as a sorted-keys list to give
ordered access into the groups dictionary (remember, dictionaries are unordered).

The simple list display option uses the first call, and both index display options use
the second to construct key-value lists and sets of matching records. We will see the
implementation of these calls and record store calls later. Here, we only care that
they work as advertised.

Technically speaking, any mapping for storing a report record's fields in the database
will do, but dictionaries are the storage unit in the system as currently coded. This
representation was chosen for good reasons:

It blends well with the CGI form field inputs object returned by cgi.FieldStorage.
Submit scripts simply merge form field input dictionaries into expected field
dictionaries to configure a record.

It's more direct than other representations. For instance, it's easy to generically
process all fields by stepping through the record dictionary's keys list, while using
classes and attribute names for fields is less direct and might require frequent
getattr calls.

It's more flexible than other representations. For instance, dictionary keys can have
values that attribute names cannot (e.g., embedded spaces), and so map well to
arbitrary form field names.

More on the database later. For the "Index only" display mode, the browse module
generates links that trigger the script in Example 14-7 when clicked. There isn't a lot
to see in this file either, because most page generation is again delegated to the
generateRecord function in the browse module in Example 14-6. The passed-in
"kind" field is used to select the appropriate database object class to query here; the
passed-in sort field name and key values are then used to extract matching records
returned by the database interface.

Example 14-7. PP2E\Internet\Cgi-Web\PyErrata\index.cgi

#!/usr/bin/python

run when user clicks on a hyperlink generated for
index-only mode by browse.py; input parameters are
hard-coded into the link url, but there's nothing
stopping someone from creating a similar link on
their own--don't eval() inputs (security concern);
note that this script assumes that no data files
have been deleted since the index page was created;
cgi.FieldStorage undoes any urllib escapes in the
input parameters (%xx and '+' for spaces undone);

import cgi, sys, dbswitch
from browse import generateRecord
sys.stderr = sys.stdout
form = cgi.FieldStorage() # undoes url
encoding

Programming Python, 2nd Edition, O’Reilly

IT-SC book 881

inputs = {'kind':'?', 'sortkey':'?', 'value':'?'}
for field in inputs.keys():
 if form.has_key(field):
 inputs[field] = cgi.escape(form[field].value) # adds html
encoding

if inputs['kind'] == 'Errata':
 dbase = dbswitch.DbaseErrata
else:
 dbase = dbswitch.DbaseComment

print 'Content-type: text/html\n'
print '<title>%s group</title>' % inputs['kind']
print '<h1>%(kind)s list
For "%(sortkey)s" == "%(value)s"</h1><hr>'
% inputs

keys, index = dbase().loadIndexedTable(inputs['sortkey'])
key = inputs['value']
if key == '(none)': key = ''
for record in index[key]:
 generateRecord(record)

In a sense, this index script is a continuation of browse, with a page in between. We
could combine these source files with a bit more work and complexity, but their logic
really must be run in distinct processes. In interactive client-side programs, a pause
for user input might simply take the form of a function call (e.g., to raw_input); in
the CGI world, though, such a pause generally requires spawning a distinct process
to handle the input.

There are two additional points worth underscoring before we move on. First of all,
the "With index" option has its limitations. Notice how the browse module generates
in-page #section hyperlinks, and then tags each key's section in the records list
with a header line that embeds an tag, using a counter to
generate unique section labels. This all relies on the fact that the database interface
knows how to return records grouped by key values (one list per key). Unfortunately,
in-page links like this may not work on all browsers (they've failed on older
Netscapes); if they don't work in yours, use the "Index only" option to access
records by key groups.

The second point is that since all report fields are optional, the system must handle
empty or missing fields gracefully. Because submit scripts (described in the next
section) define a fixed set of fields for each record type, the database never really
has "missing" fields in records; empty fields are simply stored as empty strings and
omitted in record displays. When empty values are used in index lists, they are
displayed as ?; within key labels and URLs, they are denoted as string (none), which
is internally mapped to the empty string in the index and browse modules just listed
(empty strings don't work well as URL parameters). This is subtle, so see these
modules for more details.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 882

A word on redundancy: notice that the list of possible sort fields
displayed in the browse input pages is hardcoded into their
HTML files. Because the submit scripts we'll explore next ensure
that all records in a database have the same set of fields, the
HTML files' lists will be redundant with records stored away in
the databases.

We could in principle build up the HTML sort field lists by
inspecting the keys of any record in the comment and errata
databases (much as we did in the language selector example in
Chapter 12), but that may require an extra database operation.
These lists also partially overlap with the fields list in both
submit page HTML and submit scripts, but seem different
enough to warrant some redundancy.

14.5 Submitting PyErrata Reports

The next major functional area in PyErrata serves to implement user-controlled
submission of new comment and errata reports. As before, let's begin by getting a
handle on this component's user-interface model before inspecting its code.

14.5.1 User Interface: Submitting Comment Reports

As we've seen, PyErrata supports two user functions: browsing the reports database
and adding new reports to it. If you click the "General comment" link in the Submit
section of the root page shown in Figure 14-2, you'll be presented with the comment
submission page shown in Figure 14-16.

Figure 14-16. Submit comments, input page

Programming Python, 2nd Edition, O’Reilly

IT-SC book 883

This page initially comes up empty; the data we type into its form fields is submitted
to a server-side script when we press the submit button at the bottom. If the system
was able to store the data as a new database record, a confirmation like the one in
Figure 14-17 is reflected back to the client.

Figure 14-17. Submit comments, confirmation page

All fields in submit forms are optional except one; if we leave the "Description" field
empty and send the form, we get the error page shown in Figure 14-18 (generated
during an errata submission). Comments and error reports without descriptions

Programming Python, 2nd Edition, O’Reilly

IT-SC book 884

aren't incredibly useful, so we kick such requests out. All other report fields are
stored empty if we send them empty (or missing altogether) to the submit scripts.

Figure 14-18. Submit, missing field error page

Once we've submitted a comment, we can go back to the browse pages to view it in
the database; Figure 14-19 shows the one we just added, accessed by key
"Submitter name" and in "With index" display format mode.

Figure 14-19. Submit comments, verifying result

14.5.2 User Interface: Submitting Errata Reports

Here again, the pages generated to submit errata reports are virtually identical to
the ones we just saw for submitting comments, as comments and errata are treated

Programming Python, 2nd Edition, O’Reilly

IT-SC book 885

the same within the system. Both are instances of generic database records with
different sets of fields. But also as before, the top-level errata submission page
differs, because there are many more fields that can be filled in; Figure 14-20 shows
the top of this input page.

Figure 14-20. Submit errata, input page (top)

There are lots of fields here, but only the description is required. The idea is that
users will fill in as many fields as they like to describe the problem; all text fields
default to an empty string if no value is typed into them. Figure 14-21 shows a
report in action with most fields filled with relevant information.

Figure 14-21. Submit errata, input page (filled)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 886

When we press the submit button, we get a confirmation page as before (Figure 14-
22), this time with text customized to thank us for an errata instead of a comment.

Figure 14-22. Submit errata, confirmation

As before, we can verify a submission with the browse pages immediately after it has
been confirmed. Let's bring up an index list page for submission dates and click on
the new entry at the bottom (Figure 14-23). Our report is fetched from the errata
database and displayed in a new page (Figure 14-24). Note that the display doesn't
include a "Page number" field: we left it blank on the submit form. PyErrata displays
only nonempty record fields when formatting web pages. Because it treats all records
generically, the same is true for comment reports; at its core, PyErrata is a very
generic system that doesn't care about the meaning of data stored in records.

Figure 14-23. Submit errata, verify result (index)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 887

Figure 14-24. Submit errata, verify result (record)

Because not everyone wants to post to a database viewable by everyone in the world
with a browser, PyErrata also allows both comments and errata to be sent by email
instead of being automatically added to the database. If we click the "Email report
privately" checkbox near the bottom of the submit pages before submission, the
report's details are emailed to me (their fields show up as a message in my mailbox),
and we get the reply in Figure 14-25.

Figure 14-25. Submit errata, email mode confirmation

Programming Python, 2nd Edition, O’Reilly

IT-SC book 888

Finally, if the directory or shelve file that represents the database does not grant
write access to everyone (remember, CGI scripts run as user "nobody"), our scripts
won't be able to store the new record. Python generates an exception, which is
displayed in the client's browser because PyErrata is careful to route exception text
to sys.stdout. Figure 14-26 shows an exception page I received before making the
database directory in question writable with the shell command chmod 777
DbaseFiles/errataDB.

Figure 14-26. Submit errata, exception (need chmod 777 dir)

14.5.3 Implementation: Submitting Comment Reports

Now that we've seen the external behavior of PyErrata submit operations, it's time to
study their internal workings. Top-level report submission pages are defined by static
HTML files. Example 14-8 shows the comment page's file.

Example 14-8. PP2E\Internet\Cgi-Web\PyErrata\submitComment.html

<html><body bgcolor="#FFFFFF">
<title>PP2E Submit Comment</title>
<h1>PP2E Submit Comment</h1>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 889

<p>Please fill out the form below and press the submit button to
send your information. By default, your report will be automatically
entered in a publically browsable database, where it will eventually
be reviewed by the author. If you prefer to send your comments to the
author by private email instead, click the "Email" button before you
submit. All the fields except the description text are optional.
Thank you for your report.
</p>

<hr>
<form method=POST action="submitComment.cgi">
 <table>
 <tr>
 <th align=right>Description:
 <td><textarea name="Description" cols=40 rows=10>Type your
comment here
 </textarea>
 <tr>
 <th align=right>Your name:
 <td><input type=text size=35 name="Submitter name">
 <tr>
 <th align=right>Your email, webpage:
 <td><input type=text size=35 name="Submitter email">
 <tr>
 <th align=right>Email report privately?:
 <td><input type=checkbox name="Submit mode" value="email">
 <tr>
 <th></th>
 <td><input type=submit value="Submit Comment">
 <input type=reset value="Reset Form">
 </table>
</form>

<hr>
Back to errata page
</body></html>

The CGI script that is invoked when this file's form is submitted, shown in Example
14-9, does the work of storing the form's input in the database and generating a
reply page.

Example 14-9. PP2E\Internet\Cgi-Web\PyErrata\submitComment.cgi

#!/usr/bin/python

DEBUG=0
if DEBUG:
 import sys
 sys.stderr = sys.stdout
 print "Content-type: text/html"; print

import traceback
try:
 from dbswitch import DbaseComment # dbfiles or dbshelve
 from submit import saveAndReply # reuse save logic

Programming Python, 2nd Edition, O’Reilly

IT-SC book 890

 replyStored = """
 Your comment has been entered into the comments database.
 You may view it by returning to the main errata page, and
 selecting Browse/General comments, using your name, or any
 other report identifying information as the browsing key."""

 replyMailed = """
 Your comment has been emailed to the author for review.
 It will not be automatically browsable, but may be added to
 the database anonymously later, if it is determined to be
 information of general use."""

 inputs = {'Description':'', 'Submit mode':'',
 'Submitter name':'', 'Submitter email':''}

 saveAndReply(DbaseComment, inputs, replyStored, replyMailed)

except:
 print "\n\n<PRE>"
 traceback.print_exc()

Don't look too hard for database or HTML-generation code here; it's all been factored
out to the submit module, listed in a moment, so it can be reused for errata
submissions too. Here, we simply pass it things that vary between comment and
errata submits: database, expected input fields, and reply text.

As before, the database interface object is fetched from the switch module to select
the currently supported storage medium. Customized text for confirmation pages
(replyStored, replyMailed) winds up in web pages and is allowed to vary per
database.

The inputs dictionary in this script provides default values for missing fields and
defines the format of comment records in the database. In fact, this dictionary is
stored in the database: within the submit module, input fields from the form or an
explicit URL are merged in to the inputs dictionary created here, and the result is
written to the database as a record.

More specifically, the submit module steps through all keys in inputs and picks up
values of those keys from the parsed form input object, if present. The result is that
this script guarantees that records in the comments database will have all the fields
listed in inputs, but no others. Because all submit requests invoke this script, this is
true even if superfluous fields are passed in an explicit URL; only fields in inputs are
stored in the database.

Notice that almost all of this script is wrapped in a try statement with an empty
except clause. This guarantees that every (uncaught) exception that can possibly
happen while our script runs will return to this try and run its exception handler;
here, it runs the standard traceback.print_exc call to print exception details to the
web browser in unformatted (<PRE>) mode.

14.5.4 Implementation: Submitting Errata Reports

Programming Python, 2nd Edition, O’Reilly

IT-SC book 891

The top-level errata submission page in Figures Figure 14-20 and Figure 14-21 is
also rendered from a static HTML file on the server, listed in Example 14-10. There
are more input fields here, but it's similar to comments.

Example 14-10. PP2E\Internet\Cgi-Web\PyErrata\submitErrata.html

<html><body bgcolor="#FFFFFF">
<title>PP2E Submit Errata</title>
<h1>PP2E Submit Errata Report</h1>

<p>Please fill out the form below and press the submit button to
send your information. By default, your report will be automatically
entered in a publically browsable database, where it will eventually
be reviewed and verified by the author. If you prefer to send your
comments to the author by private email instead, click the "Email"
button before you submit.

<p>All the fields except the description text are optional;
for instance, if your note applies to the entire book, you can leave
the page, chapter, and part numbers blank. For the printing date, see
the lower left corner of one of the first few pages; enter a string of
the form mm/dd/yy. Thank you for your report.
</p>

<hr>
<form method=POST action="submitErrata.cgi">
 <table>
 <tr>
 <th align=right>Problem type:
 <td><select name="Type">
 <option>Typo
 <option>Grammar
 <option>Program bug
 <option>Suggestion
 <option>Other
 </select>
 <tr>
 <th align=right>Problem severity:
 <td><select name="Severity">
 <option>Low
 <option>Medium
 <option>High
 <option>Unknown
 </select>
 <tr>
 <th align=right>Page number:
 <td><input type=text name="Page number">
 <tr>
 <th align=right>Chapter number:
 <td><input type=text name="Chapter number">
 <tr>
 <th align=right>Part number:
 <td><input type=text name="Part number">
 <tr>
 <th align=right>Printing date:
 <td><input type=text name="Printing date">

Programming Python, 2nd Edition, O’Reilly

IT-SC book 892

 <tr>
 <th align=right>Description:
 <td><textarea name="Description" cols=60 rows=10>Type a
description here
 </textarea>
 <tr>
 <th align=right>Your name:
 <td><input type=text size=40 name="Submitter name">
 <tr>
 <th align=right>Your email, webpage:
 <td><input type=text size=40 name="Submitter email">
 <tr>
 <th align=right>Email report privately?:
 <td><input type=checkbox name="Submit mode" value="email">
 <tr>
 <th></th>
 <td><input type=submit value="Submit Report">
 <input type=reset value="Reset Form">
 </table>
</form>

<hr>
Back to errata page
</body></html>

The script triggered by the form on this page, shown in Example 14-11, also looks
remarkably similar to the submitComment script shown in Example 14-9. Because
both scripts simply use factored-out logic in the submit module, all we need do here
is pass in appropriately tailored confirmation pages text and expected input fields. As
before, real CGI inputs are merged into the script's inputs dictionary to yield a
database record; the stored record will contain exactly the fields listed here.

Example 14-11. PP2E\Internet\Cgi-Web\PyErrata\submitErrata.cgi

#!/usr/bin/python

DEBUG=0
if DEBUG:
 import sys
 sys.stderr = sys.stdout
 print "Content-type: text/html"; print

import traceback
try:
 from dbswitch import DbaseErrata # dbfiles or dbshelve
 from submit import saveAndReply # reuse save logic

 replyStored = """
 Your report has been entered into the errata database.
 You may view it by returning to the main errata page, and
 selecting Browse/Errata reports, using your name, or any
 other report identifying information as the browsing key."""

 replyMailed = """
 Your report has been emailed to the author for review.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 893

 It will not be automatically browsable, but may be added to
 the database anonymously later, if it is determined to be
 information of general interest."""

 # 'Report state' and 'Submit date' are added when written

 inputs = {'Type':'', 'Severity':'',
 'Page number':'', 'Chapter number':'', 'Part
number':'',
 'Printing Date':'', 'Description':'', 'Submit
mode':'',
 'Submitter name':'', 'Submitter email':''}

 saveAndReply(DbaseErrata, inputs, replyStored, replyMailed)

except:
 print "\n\n<pre>"
 traceback.print_exc()

14.5.5 Common Submit Utility Module

Both comment and errata reports ultimately invoke functions in the module in
Example 14-12 to store to the database and generate a reply page. Its primary goal
is to merge real CGI inputs into the expected inputs dictionary and post the result to
the database or email. We've already described the basic ideas behind this module's
code, so we don't have much new to say here.

Notice, though, that email-mode submissions (invoked when the submit page's email
checkbox is checked) use an os.popen shell command call to send the report by
email; messages arrive in my mailbox with one line per nonempty report field. This
works on my Linux web server, but other mail schemes such as the smptlib module
(discussed in Chapter 11) are more portable.

Example 14-12. PP2E\Internet\Cgi-Web\PyErrata\submit.py

on submit request: store or mail data, send reply page;
report data is stored in dictionaries on the database;
we require a description field (and return a page with
an error message if it's empty), even though the dbase
mechanism could handle empty description fields--it
makes no sense to submit a bug without a description;

import cgi, os, sys, string
mailto = 'lutz@rmi.net' # or lutz@starship.python.net
sys.stderr = sys.stdout # print errors to browser
print "Content-type: text/html\n"

thankyouHtml = """
<TITLE>Thank you</TITLE>
<H1>Thank you</H1>
<P>%s</P>
<HR>"""

Programming Python, 2nd Edition, O’Reilly

IT-SC book 894

errorHtml = """
<TITLE>Empty field</TITLE>
<H1>Error: Empty %s</H1>
<P>Sorry, you forgot to provide a '%s' value.
Please go back to the prior page and try again.</P>
<HR>"""

def sendMail(inputs): # email data to
author
 text = '' # or 'mailto:' form
action
 for key, val in inputs.items(): # or smtplib.py or
sendmail
 if val != '':
 text = text + ('%s = %s\n' % (key, val))
 mailcmd = 'mail -s "PP2E Errata" %s' % mailto
 os.popen(mailcmd, 'w').write(text)

def saveAndReply(dbase, inputs, replyStored, replyMailed):
 form = cgi.FieldStorage()
 for key in form.keys():
 if key in inputs.keys():
 inputs[key] = form[key].value # pick out entered
fields

 required = ['Description']
 for field in required:
 if string.strip(inputs[field]) == '':
 print errorHtml % (field, field) # send error page to
browser
 break
 else:
 if inputs['Submit mode'] == 'email':
 sendMail(inputs) # email data direct to
author
 print thankyouHtml % replyMailed
 else:
 dbase().storeItem(inputs) # store data in file
on server
 print thankyouHtml % replyStored

This module makes use of one additional database interface to store record
dictionaries: dbase().storeItem(inputs). However, we need to move on to the
next section to fully understand the processing that this call implies.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 895

Another redundancy caveat: the list of expected fields in the
inputs dictionaries in submit scripts is the same as the input
fields list in submit HTML files. In principle again, we could
instead generate the HTML file's fields list using data in a
common module to remove this redundancy. However, that
technique may not be as directly useful here, since each field
requires description text in the HTML file only.

14.6 PyErrata Database Interfaces

Now that we've seen the user interfaces and top-level implementations of browse
and submit operations, this section proceeds down one level of abstraction to the
third and last major functional area in the PyErrata system.

Compared to other systems in this part of the book, one of the most unique technical
features of PyErrata is that it must manage persistent data. Information posted by
readers needs to be logged in a database for later review. PyErrata stores reports as
dictionaries, and includes logic to support two database storage mediums -- flat
pickle files and shelves -- as well as tools for synchronizing data access.

14.6.1 The Specter of Concurrent Updates

There is a variety of ways for Python scripts to store data persistently: files, object
pickling, object shelves, real databases, and so on. In fact, Chapter 16 is devoted
exclusively to this topic and provides more in-depth coverage than we require here.[3]
Those storage mediums all work in the context of server-side CGI scripts too, but the
CGI environment almost automatically introduces a new challenge: concurrent
updates. Because the CGI model is inherently parallel, scripts must take care to
ensure that database writes and reads are properly synchronized to avoid data
corruption and incomplete records.

[3] But see Chapter 16 if you could use a bit of background information on this topic. The
current chapter introduces and uses only the simplest interfaces of the object pickle and
shelve modules, and most module interface details are postponed until that later chapter.

Here's why. With PyErrata, a given reader may visit the site and post a report or
view prior posts. But in the context of a web application, there is no way to know
how many readers may be posting or viewing at once: any number of people may
press a form's submit button at the same time. As we've seen, form submissions
generally cause the HTTP server to spawn a new process to handle the request.
Because these handler processes all run in parallel, if one hundred users all press
submit at the same time, there will be one hundred CGI script processes running in
parallel on the server, all of which may try to update (or read) the reports database
at the same time.

Due to all this potential parallel traffic, server-side programs that maintain a
database must somehow guarantee that database updates happen one at a time, or
the database could be corrupted. The likelihood of two particular scenarios increases
with the number of site users:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 896

Concurrent writers: If two processes try to update the same file at once, we may
wind up with part of one process's new data intermixed with another's, lose part of
one process's data, or otherwise corrupt stored data.

Concurrent reader and writer: Similarly, if a process attempts to read a record that is
being written by another, it may fetch an incomplete report. In effect, the database
must be managed as a shared resource among all possible CGI handler processes,
whether they update or not.

Constraints vary per database medium, and while it's generally okay for multiple
processes to read a database at the same time, writers (and updates in general)
almost always need to have exclusive access to a shared database. There is a variety
of ways to make database access safe in a potentially concurrent environment such
as CGI-based web sites:

Database systems

If you are willing to accept the extra complexity of using a full-blown database
system in your application (e.g, Sybase, Oracle, mySql), most provide support for
concurrent access in one form or another.

Central database servers

It's also possible to coordinate access to shared data stores by routing all data
requests to a perpetually running manager program that you implement yourself.
That is, each time a CGI script needs to hit the database, it must ask a data server
program for access via a communications protocol such as socket calls.

File naming conventions

If it is feasible to store each database record in a separate flat file, we can
sometimes avoid or minimize the concurrent access problems altogether by giving
each flat file a distinct name. For instance, if each record's filename includes both the
file's creation time and the ID of the process that created it, it will be unique for all
practical purposes, since a given process updates only one particular file. In this
scheme, we rely on the operating system's filesystem to make records distinct, by
storing them in unique files.

File locking protocols

If the entire database is physically stored as a single file, we can use operating-
system tools to lock the file during update operations. On Unix and Linux servers,
exclusively locking a file will block other processes that need it until the lock is
released; when used consistently by all processes, such a mechanism automatically
synchronizes database accesses. Python shelves support concurrent readers but not
concurrent updates, so we must add locks of our own to use them as dynamic data
stores in CGI scripting.

In this section, we implement both of the last two schemes for PyErrata to illustrate
concurrent data-access fundamentals.

14.6.2 Database Storage Structure

Programming Python, 2nd Edition, O’Reilly

IT-SC book 897

First of all, let's get a handle on what the system really stores. If you flip back to
Figure 14-1, you'll notice that there are two top-level database directories:
DbaseShelve (for the shelve mechanism) and DbaseFiles (for file-based storage).
Each of these directories has unique contents.

14.6.2.1 Shelve database

For shelve-based databases, the DbaseShelve directory's contents are shown in
Figure 14-27. The commentDB and errataDB files are the shelves used to store
reports, and the .lck and .log files are lock and log files generated by the system. To
start a new installation from scratch, only the two .lck files are needed initially (and
can be simply empty files); the system creates the shelve and log files as records are
stored.

Figure 14-27. PyErrata shelve-based directory contents

We'll explore the Python shelve module in more detail in the next part of this book,
but the parts of it used in this chapter are straightforward. Here are the basic shelve
interfaces we'll use in this example:

import shelve # load the standard shelve module
dbase = shelve.open('filename') # open shelve (create if doesn't
yet exist)
dbase['key'] = object # store almost any object in shelve
file
object = dbase['key'] # fetch object from shelve in
future run
dbase.keys() # list of keys stored in the
shelve
dbase.close() # close shelve's file

In other words, shelves are like dictionaries of Python objects that are mapped to an
external file, and so persist between program runs. Objects in a shelve are stored
away and later fetched with a key. In fact, it's not inaccurate to think of shelves as
dictionaries that live on after a program exits, and must be explicitly opened.

Like dictionaries, each distinct value stored in a shelve must have a unique key.
Because there is no field in a comment or errata report that is reliably unique among
all reports, we need to generate one of our own. Record submit time is close to being

Programming Python, 2nd Edition, O’Reilly

IT-SC book 898

unique, but there is no guarantee that two users (and hence two processes) won't
submit a report in the same second.

To assign each record a unique slot in the shelve, the system generates a uniquekey
string for each, containing the submission time (seconds since the Unix "epoch" as a
floating-point value) and the process ID of the storing CGI script. Since the
dictionary values stored in the shelve contain all the report information we're
interested in, shelve keys need only be unique, not meaningful. Records are loaded
by blindly iterating over the shelve's keys list.

In addition to generating unique keys for records, shelves must accommodate
concurrent updates. Because shelves are mapped to single files in the filesystem
(here, errataDB and commentDB), we must synchronize all access to them in a
potentially parallel process environment such as CGI scripting.

In its current form, the Python shelve module supports concurrent readers but not
concurrent updates, so we need to add such functionality ourselves. The PyErrata
implementation of the shelve database-storage scheme uses locks on the .lck files to
make sure that writers (submit processes) gain exclusive access to the shelve before
performing updates. Any number of readers may run in parallel, but writers must run
alone and block all other processes -- readers and writers -- while they update the
shelve.

Notice that we use a separate .lck file for locks, rather than locking the shelve file
itself. In some systems, shelves are mapped to multiple files, and in others (e.g.,
GDBM), locks on the underlying shelve file are reserved for use by the DBM
filesystem itself. Using our own lock file subverts such reservations and is more
portable among DBM implementations.

14.6.2.2 Flat-file database

Things are different with the flat-files database medium; Figure 14-28 shows the
contents of the file-based errata database subdirectory, DbaseFiles/errataDB. In this
scheme, each report is stored in a distinct and uniquely named flat file containing a
pickled report-data dictionary. A similar directory exists for comments,
DbaseFiles/commentDB. To start from scratch here, only the two subdirectories must
exist; files are added as reports are submitted.

Figure 14-28. PyErrata file-based directory contents

Programming Python, 2nd Edition, O’Reilly

IT-SC book 899

Python's object pickler converts ("serializes") in-memory objects to and from
specially coded strings in a single step, and therefore comes in handy for storing
complex objects like the dictionaries PyErrata uses to represent report records.[4]
We'll also study the pickle module in depth in Part IV, but its interfaces employed
by PyErrata are simple as well:

[4] PyErrata could also simply write report record dictionaries to files with one field key and
value per text line, and split lines later to rebuild the record. It could also just convert the
record dictionary to its string representation with the str built-in function, write that string to
the file manually, and convert the string back to a dictionary later with the built-in eval
function (which may or may not be slower, due to the general parsing overhead of eval). As
we'll see in the next part of this book, though, object pickling is a much more powerful and
general approach to object storage -- it also handles things like class instance objects and
shared and cyclic object references well. See table wrapper classes in the PyForm example in
Chapter 16 for similar topics.

pickle.dump(object, outputfile) # store object in a file
object = pickle.load(inputfile) # load object back from file

For flat files, the system-generated key assigned to a record follows the same format
as for shelves, but here it is used to name the report's file. Because of that, record
keys are more apparent (we see them when listing the directory), but still don't need
to convey any real information. They need only be unique for each stored record to
yield a unique file. In this storage scheme, records are processed by iterating over
directory listings returned by the standard glob.glob call on name pattern *.data
(see Chapter 2, for a refresher on the glob module).

In a sense, this flat-file approach uses the filesystem as a shelve and relies on the
operating system to segregate records as files. It also doesn't need to care much
about concurrent access issues; because generated filenames make sure that each
report is stored in its own separate file, it's impossible for two submit processes to
be writing the same file at once. Moreover, it's okay to read one report while another
is being created; they are truly distinct files.

We still need to be careful, though, to avoid making a file visible to reader directory
listings until it is complete, or else we may read a half-finished file. This case is
unlikely in practice -- it can happen only if the writer still hasn't finished by the time
the reader gets around to that file in its directory listing. But to avoid problems,
submit scripts first write data to a temporary file, and move the temporary file to the
real *.data name only after it is complete.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 900

14.6.3 Database Switch

On to code listings. The first database module, shown in Example 14-13, simply
selects between a file-based mechanism and shelve-based mechanism; we make the
choice here alone to avoid impacting other files when we change storage schemes.

Example 14-13. PP2E\Internet\Cgi-Web\PyErrata\dbswitch.py

for testing alternative underlying database mediums;
since the browse, submit, and index cgi scripts import
dbase names from here only, they'll get whatever this
module loads; in other words, to switch mediums, simply
change the import here; eventually we could remove this
interface module altogether, and load the best medium's
module directly, but the best may vary by use patterns;

one directory per dbase, one flat pickle file per submit

from dbfiles import DbaseErrata, DbaseComment

one shelve per dbase, one key per submit, with mutex update locks

from dbshelve import DbaseErrata, DbaseComment

14.6.4 Storage-Specific Classes for Files and Shelves

The next two modules implement file- and shelve-based database-access objects;
the classes they define are the objects passed and used in the browse and submit
scripts. Both are really just subclasses of the more generic class in dbcommon; in
Example 14-14, we fill in methods that define storage scheme-specific behavior, but
the superclass does most of the work.

Example 14-14. PP2E\Internet\Cgi-Web\PyErrata\dbfiles.py

store each item in a distinct flat file, pickled;
dbcommon assumes records are dictionaries, but we don't here;
chmod to 666 to allow admin access (else 'nobody' owns);
subtlety: unique filenames prevent multiple writers for any
given file, but it's still possible that a reader (browser)
may try to read a file while it's being written, if the
glob.glob call returns the name of a created but still
incomplete file; this is unlikely to happen (the file
would have to still be incomplete after the time from glob
to unpickle has expired), but to avoid this risk, files are
created with a temp name, and only moved to the real name
when they have been completely written and closed;

Programming Python, 2nd Edition, O’Reilly

IT-SC book 901

cgi scripts with persistent data are prone to parallel
updates, since multiple cgi scripts may be running at once;

import dbcommon, pickle, glob, os

class Dbase(dbcommon.Dbase):
 def writeItem(self, newdata):
 name = self.dirname + self.makeKey()
 file = open(name, 'w')
 pickle.dump(newdata, file) # store in new file
 file.close()
 os.rename(name, name+'.data') # visible to globs
 os.chmod(name+'.data', 0666) # owned by 'nobody'

 def readTable(self):
 reports = []
 for filename in glob.glob(self.dirname + '*.data'):
 reports.append(pickle.load(open(filename, 'r')))
 return reports

class DbaseErrata(Dbase):
 dirname = 'DbaseFiles/errataDB/'

class DbaseComment(Dbase):
 dirname = 'DbaseFiles/commentDB/'

The shelve interface module listed in Example 14-15 provides the same methods
interface, but implements them to talk to shelves. Its class also mixes in the mutual-
exclusion class to get file locking; we'll study that class's code in a few pages.

Notice that this module extends sys.path so that a platform-specific FCNTL module
(described later in this chapter) becomes visible to the file-locking tools. This is
necessary in the CGI script context only, because the module search path given to
CGI user "nobody" doesn't include the platform-specific extension modules directory.
Both the file and shelve classes set newly created file permissions to octal 0666, so
that users besides "nobody" can read and write. If you've forgotten whom "nobody"
is, see earlier discussions of permission and ownership issues in this and the
previous two chapters.

Example 14-15. PP2E\Internet\Cgi-Web\PyErrata\dbshelve.py

store items in a shelve, with file locks on writes;
dbcommon assumes items are dictionaries (not here);
chmod call assumes single file per shelve (e.g., gdbm);
shelve allows simultaneous reads, but if any program
is writing, no other reads or writes are allowed,
so we obtain the lock before all load/store ops
need to chown to 0666, else only 'nobody' can write;
this file doen't know about fcntl, but mutex doesn't
know about cgi scripts--one of the 2 needs to add the
path to FCNTL module for cgi script use only (here);
we circumvent whatever locking mech the underlying
dbm system may have, since we acquire alock on our own

Programming Python, 2nd Edition, O’Reilly

IT-SC book 902

non-dbm file before attempting any dbm operation;
allows multiple simultaneous readers, but writers
get exclusive access to the shelve; lock calls in
MutexCntl block and later resume callers if needed;

cgi runs as 'nobody' without
the following default paths
import sys
sys.path.append('/usr/local/lib/python1.5/plat-linux2')

import dbcommon, shelve, os
from Mutex.mutexcntl import MutexCntl

class Dbase(MutexCntl, dbcommon.Dbase): # mix mutex,
dbcommon, mine
 def safe_writeItem(self, newdata):
 dbase = shelve.open(self.filename) # got excl access:
update
 dbase[self.makeKey()] = newdata # save in shelve,
safely
 dbase.close()
 os.chmod(self.filename, 0666) # else others can't
change

 def safe_readTable(self):
 reports = [] # got shared
access: load
 dbase = shelve.open(self.filename) # no writers will
be run
 for key in dbase.keys():
 reports.append(dbase[key]) # fetch data,
safely
 dbase.close()
 return reports

 def writeItem(self, newdata):
 self.exclusiveAction(self.safe_writeItem, newdata)

 def readTable(self):
 return self.sharedAction(self.safe_readTable)

class DbaseErrata(Dbase):
 filename = 'DbaseShelve/errataDB'

class DbaseComment(Dbase):
 filename = 'DbaseShelve/commentDB'

14.6.5 Top-Level Database Interface Class

Here, we reach the top-level database interfaces that our CGI scripts actually call.
The class in Example 14-16 is "abstract" in the sense that it cannot do anything by
itself. We must provide and create instances of subclasses that define storage-
specific methods, rather than making instances of this class directly.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 903

In fact, this class deliberately leaves the underlying storage scheme undefined and
raises assertion errors if a subclass doesn't fill in the required details. Any storage-
specific class that provides writeItem and readTable methods can be plugged into
this top-level class's interface model. This includes classes that interface with flat
files, shelves, and other specializations we might add in the future (e.g., schemes
that talk to full-blown SQL or object databases, or that cache data in persistent
servers).

In a sense, subclasses take the role of embedded component objects here; they
simply need to provide expected interfaces. Because the top-level interface has been
factored out to this single class, we can change the underlying storage scheme
simply by selecting a different storage-specific subclass (as in dbswitch); the top-
level database calls remain unchanged. Moreover, changes and optimizations to top-
level interfaces will likely impact this file alone.

Since this is a superclass common to storage-specific classes, we also here define
record key generation methods and insert common generated attributes (submit
date, initial report state) into new records before they are written.

Example 14-16. PP2E\Internet\Cgi-Web\PyErrata\dbcommon.py

an abstract superclass with shared dbase access logic;
stored records are assumed to be dictionaries (or other
mapping), one key per field; dbase medium is undefined;
subclasses: define writeItem and readTable as appropriate
for the underlying file medium--flat files, shelves, etc.
subtlety: the 'Submit date' field added here could be kept
as a tuple, and all sort/select logic will work; but since
these values may be embedded in a url string, we don't want
to convert from string to tuple using eval in index.cgi;
for consistency and safety, we convert to strings here;
if not for the url issue, tuples work fine as dict keys;
must use fixed-width columns in time string to sort;
this interface may be optimized in future releases;

import time, os

class Dbase:

 # store

 def makeKey(self):
 return "%s-%s" % (time.time(), os.getpid())

 def writeItem(self, newdata):
 assert 0, 'writeItem must be customized'

 def storeItem(self, newdata):
 secsSinceEpoch = time.time()
 timeTuple = time.localtime(secsSinceEpoch)
 y_m_d_h_m_s = timeTuple[:6]
 newdata['Submit date'] = '%s/%02d/%02d, %02d:%02d:%02d' %
y_m_d_h_m_s

Programming Python, 2nd Edition, O’Reilly

IT-SC book 904

 newdata['Report state'] = 'Not yet verified'
 self.writeItem(newdata)

 # load

 def readTable(self):
 assert 0, 'readTable must be customized'

 def loadSortedTable(self, field=None): # returns a
simple list
 reports = self.readTable() # ordered by
field sort
 if field:
 reports.sort(lambda x, y, f=field: cmp(x[f], y[f]))
 return reports

 def loadIndexedTable(self, field):
 reports = self.readTable()
 index = {}
 for report in reports:
 try:
 index[report[field]].append(report) # group by field
values
 except KeyError:
 index[report[field]] = [report] # add first for
this key
 keys = index.keys()
 keys.sort() # sorted keys,
groups dict
 return keys, index

14.6.6 Mutual Exclusion for Shelves

We've at last reached the bottom of the PyErrata code hierarchy: code that
encapsulates file locks for synchronizing shelve access. The class listed in Example
14-17 provides tools to synchronize operations, using a lock on a file whose name is
provided by systems that use the class.

It includes methods for locking and unlocking the file, but also exports higher-level
methods for running function calls in exclusive or shared mode. Method
sharedAction is used to run read operations, and exclusiveAction handles writes.
Any number of shared actions can occur in parallel, but exclusive actions occur all by
themselves and block all other action requests in parallel processes. Both kinds of
actions are run in try-finally statements to guarantee that file locks are unlocked
on action exit, normal or otherwise.

Example 14-17. PP2E\Internet\Cgi-Web\PyErrata\Mutex\mutexcntl.py

generally useful mixin, so a separate module;
requires self.filename attribute to be set, and
assumes self.filename+'.lck' file already exists;
set mutexcntl.debugMutexCntl to toggle logging;
writes lock log messages to self.filename+'.log';

Programming Python, 2nd Edition, O’Reilly

IT-SC book 905

import fcntl, os, time
from FCNTL import LOCK_SH, LOCK_EX, LOCK_UN

debugMutexCntl = 1
processType = {LOCK_SH: 'reader', LOCK_EX: 'writer'}

class MutexCntl:
 def lockFile(self, mode):
 self.logPrelock(mode)
 self.lock = open(self.filename + '.lck') # lock file in this
process
 fcntl.flock(self.lock.fileno(), mode) # waits for lock
if needed
 self.logPostlock()

 def lockFileRead(self): # allow > 1 reader:
shared
 self.lockFile(LOCK_SH) # wait if any write
lock

 def lockFileWrite(self): # writers get
exclusive lock
 self.lockFile(LOCK_EX) # wait if any lock:
r or w

 def unlockFile(self):
 self.logUnlock()
 fcntl.flock(self.lock.fileno(), LOCK_UN) # unlock for
other processes

 def sharedAction(self, action, *args): # higher level
interface
 self.lockFileRead() # block if a
write lock
 try:
 result = apply(action, args) # any number shared
at once
 finally: # but no exclusive
actions
 self.unlockFile() # allow new
writers to run
 return result

 def exclusiveAction(self, action, *args):
 self.lockFileWrite() # block if any
other locks
 try:
 result = apply(action, args) # no other actions
overlap
 finally:
 self.unlockFile() # allow new
readers/writers
 return result

 def logmsg(self, text):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 906

 if not debugMutexCntl: return
 log = open(self.filename + '.log', 'a') # append to the
end
 log.write('%s\t%s\n' % (time.time(), text)) # output won't
overwrite
 log.close() # but it may
intermingle

 def logPrelock(self, mode):
 self.logmsg('Requested: %s, %s' % (os.getpid(),
processType[mode]))
 def logPostlock(self):
 self.logmsg('Aquired: %s' % os.getpid())
 def logUnlock(self):
 self.logmsg('Released: %s' % os.getpid())

This file lock management class is coded in its own module by design, because it is
potentially worth reusing. In PyErrata, shelve database classes mix it in with multiple
inheritance to implement mutual exclusion for database writers.

This class assumes that a lockable file exists as name self.filename (defined in
client classes) with a .lck extension; like all instance attributes, this name can vary
per client of the class. If a global variable is true, the class also optionally logs all
lock operations in a file of the same name as the lock, but with a .log extension.

Notice that the log file is opened in a append mode; on Unix systems, this mode
guarantees that the log file text written by each process appears on a line of its own,
not intermixed (multiple copies of this class may write to the log from parallel CGI
script processes). To really understand how this class works, though, we need to say
more about Python's file-locking interface.

14.6.6.1 Using fcntl.flock to lock files

When we studied threads in Chapter 3, we saw that the Python thread module
includes a mutual-exclusion lock mechanism that can be used to synchronize
threads' access to shared global memory resources. This won't usually help us much
in the CGI environment, however, because each database request generally comes
from a distinct process spawned by the HTTP server to handle an incoming request.
That is, thread locks work only within the same process, because all threads run
within a single process.

For CGI scripts, we usually need a locking mechanism that spans multiple processes
instead. On Unix systems, the Python standard library exports a tool based on
locking files, and therefore may be used across process boundaries. All of this magic
happens in these two lines in the PyErrata mutex class:

fcntl.flock(self.lock.fileno(), mode) # waits for lock if
needed
fcntl.flock(self.lock.fileno(), LOCK_UN) # unlock for other
processes

The fcntl.flock call in the standard Python library attempts to acquire a lock
associated with a file, and by default blocks the calling process if needed until the
lock can be acquired. The call accepts a file descriptor integer code (the stdio file

Programming Python, 2nd Edition, O’Reilly

IT-SC book 907

object's fileno method returns one for us) and a mode flag defined in standard
module FCNTL, which takes one of three values in our system:

LOCK_EX requests an exclusive lock, typically used for writers. This lock is granted
only if no other locks are held (exclusive or shared) and blocks all other lock
requests (exclusive or shared) until the lock is released. This guarantees that
exclusive lock holders run alone.

LOCK_SH requests a shared lock, typically used for readers. Any number of processes
can hold shared locks at the same time, but one is granted only if no exclusive lock
is held, and new exclusive lock requests are blocked until all shared locks are
released.

LOCK_UN unlocks a lock previously acquired by the calling process so that other
processes can acquire locks and resume execution.

In database terms, the net effect is that readers wait only if a write lock is held by
another process, and writers wait if any lock is held -- read or write. Though used to
synchronize processes, this scheme is more complex and powerful than the simple
acquire/release model for locks in the Python thread module, and is different from
the class tools available in the higher-level threading module. However, it could be
emulated by both these thread modules.

fcntl.flock internally calls out to whatever file-locking mechanism is available in
the underlying operating system,[5] and therefore you can consult the corresponding
Unix or Linux manpage for more details. It's also possible to avoid blocking if a lock
can't be acquired, and there are other synchronization tools in the Python library
(e.g., "fifos"), but we will ignore such options here.

[5] Locking mechanisms vary per platform and may not exist at all. For instance, the flock call
is not currently supported on Windows as of Python 1.5.2, so you may need to replace this call
with a platform-specific alternative on some server machines.

14.6.6.2 Mutex test scripts

To help us understand the PyErrata synchronization model, let's get a better feel for
the underlying file-locking primitives by running a few simple experiments. Examples
Example 14-18 and Example 14-19 implement simple reader and writer processes
using the flock call directly instead of our class. They request shared and exclusive
locks, respectively.

Example 14-18. PP2E\Internet\Cgi-Web\PyErrata\Mutex\testread.py

#!/usr/bin/python

import os, fcntl, time
from FCNTL import LOCK_SH, LOCK_UN
print os.getpid(), 'start reader', time.time()

file = open('test.lck', 'r') # open the lock file
for fd
fcntl.flock(file.fileno(), LOCK_SH) # block if a writer
has lock

Programming Python, 2nd Edition, O’Reilly

IT-SC book 908

print os.getpid(), 'got read lock', time.time() # any number of
readers can run

time.sleep(3)
print 'lines so far:', os.popen('wc -l Shared.txt').read(),

print os.getpid(), 'unlocking\n'
fcntl.flock(file.fileno(), LOCK_UN) # resume blocked
writers now

In this simple test, locks on text file test.lck are used to synchronize read and write
access to a text file appended by writers. The appended text file plays the role of
PyErrata shelve databases, and the reader and writer scripts in Examples Example
14-18 and Example 14-19 stand in for its browse and submit script processes.

Example 14-19. PP2E\Internet\Cgi-Web\PyErrata\Mutex\testwrite.py

#!/usr/bin/python

import os, fcntl, time
from FCNTL import LOCK_EX, LOCK_UN
print os.getpid(), 'start writer', time.time()

file = open('test.lck', 'r') # open the lock file
fcntl.flock(file.fileno(), LOCK_EX) # block if any read
or write
print os.getpid(), 'got write lock', time.time() # only 1 writer at
a time

log = open('Shared.txt', 'a')
time.sleep(3)
log.write('%d Hello\n' % os.getpid())

print os.getpid(), 'unlocking\n'
fcntl.flock(file.fileno(), LOCK_UN) # resume blocked
read or write

To start a set of readers and writers running in parallel, Example 14-20 uses the
Unix fork/execl call combination to launch program processes (both calls are
described in Chapter 3).

Example 14-20. PP2E\Internet\Cgi-Web\PyErrata\Mutex\launch-test.py

#!/usr/bin/python

launch test program processes
run with ./launch-test.py > launch-test.out
try spawning reader before writer, then writer
before reader--second process blocks till first
unlocks in both cases; if launches 2 readers
initially, both get lock and block writer; if
launch 2 writers first then 2 readers, 2nd writer
waits for first, both readers wait for both
writers, and both readers get lock at same time;
in test below, the first writer runs, then all

Programming Python, 2nd Edition, O’Reilly

IT-SC book 909

readers run before any writer; if readers are
first, all run before any writer; (all on linux)

import os

for i in range(1):
 if os.fork() == 0:
 os.execl("./testwrite.py")

for i in range(2): # copy this process
 if os.fork() == 0: # if in new child process
 os.execl("./testread.py") # overlay with test program

for i in range(2):
 if os.fork() == 0:
 os.execl("./testwrite.py") # same, but start writers

for i in range(2):
 if os.fork() == 0:
 os.execl("./testread.py")

for i in range(1):
 if os.fork() == 0:
 os.execl("./testwrite.py")

Comments in this script give the results for running its logic various ways on Linux.
Pragmatic note: after copying these files over from Windows in an FTP'd tar file, I
first had to give them executable permissions and convert them from DOS to Unix
line-feed format before Linux would treat them as executable programs:[6]

[6] The +x syntax in the chmod shell command here means "set the executable bit" in the file's
permission bit-string for "self", the current user. At least on my machine, chmod accepts both
the integer bit-strings used earlier and symbolic forms like this. Note that we run these tests
on Linux because the Python os.fork call doesn't work on Windows, at least as of Python
1.5.2. It may eventually, but for now Windows scripts use os.spawnv instead (see Chapter 3
for details).

[mark@toy .../PyErrata/Mutex]$ chmod +x *.py
[mark@toy .../PyErrata/Mutex]$ python $X/PyTools/fixeoln_all.py tounix
"*.py"
__init__.py
launch-mutex-simple.py
launch-mutex.py
launch-test.py
mutexcntl.py
testread-mutex.py
testread.py
testwrite-mutex.py
testwrite.py

Once they've been so configured as executables, we can run all three of these scripts
from the Linux command line. The reader and writer scripts access a Shared.txt file,
which is meant to simulate a shared resource in a real parallel application (e.g., a
database in the CGI realm):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 910

[mark@toy ...PyErrata/Mutex]$./testwrite.py
1010 start writer 960919842.773
1010 got write lock 960919842.78
1010 unlocking

[mark@toy ...PyErrata/Mutex]$./testread.py
1013 start reader 960919900.146
1013 got read lock 960919900.153
lines so far: 132 Shared.txt
1013 unlocking

The launch-test script simply starts a batch of the reader and writer scripts that
run as parallel processes to simulate a concurrent environment (e.g., web browsers
contacting a CGI script all at once):

[mark@toy ...PyErrata/Mutex]$ python launch-test.py
1016 start writer 960919933.206
1016 got write lock 960919933.213
1017 start reader 960919933.416
1018 start reader 960919933.455
1022 start reader 960919933.474
1021 start reader 960919933.486
1020 start writer 960919933.497
1019 start writer 960919933.508
1023 start writer 960919933.52
1016 unlocking

1017 got read lock 960919936.228
1018 got read lock 960919936.234
1021 got read lock 960919936.24
1022 got read lock 960919936.246
lines so far: 133 Shared.txt
1022 unlocking

lines so far: 133 Shared.txt
1018 unlocking

lines so far: 133 Shared.txt
1017 unlocking

lines so far: 133 Shared.txt
1021 unlocking

1019 got write lock 960919939.375
1019 unlocking

1020 got write lock 960919942.379
1020 unlocking

1023 got write lock 960919945.388
1023 unlocking

This output is a bit cryptic; most lines list process ID, text, and system time, and
each process inserts a three-second delay (via time.sleep) to simulate real
activities. If you look carefully, you'll notice that all processes start at roughly the
same time, but access to the shared file is synchronized into this sequence:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 911

One writer grabs the file first.

Next, all readers get it at the same time, three seconds later.

Finally, all other writers get the file one after another, three seconds apart.

The net result is that writer processes always access the file alone while all others
are blocked. Such a sequence will avoid concurrent update problems.

14.6.6.3 Mutex class test scripts

To test our mutex class outside the scope of PyErrata, we simply rewrite these
scripts to hook into the class's interface. The output of Examples Example 14-21 and
Example 14-22 is similar to the raw fcntl versions shown previously, but an
additional log file is produced to help trace lock operations.

Example 14-21. PP2E\Internet\Cgi-Web\PyErrata\Mutex\testread-
mutex.py

#!/usr/bin/python
import os, time
from mutexcntl import MutexCntl

class app(MutexCntl):
 def go(self):
 self.filename = 'test'
 print os.getpid(), 'start mutex reader'
 self.sharedAction(self.report) # can report with
others
 # but not during
update
 def report(self):
 print os.getpid(), 'got read lock'
 time.sleep(3)
 print 'lines so far:', os.popen('wc -l Shared.txt').read(),
 print os.getpid(), 'unlocking\n'

if __name__ == '__main__': app().go()

Unlike PyErrata, we don't need to change sys.path to allow FCNTL imports in the
mutexcntl module in Examples Example 14-21 and Example 14-22, because we'll
run these scripts as ourself, not the CGI user "nobody" (my path includes the
directory where FCNTL lives).

Example 14-22. PP2E\Internet\Cgi-Web\PyErrata\Mutex\testwrite-
mutex.py

#!/usr/bin/python
import os, time
from mutexcntl import MutexCntl

class app(MutexCntl):
 def go(self):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 912

 self.filename = 'test'
 print os.getpid(), 'start mutex writer'
 self.exclusiveAction(self.update) # must do this
alone;
 # no update or
report
 def update(self): # can run at
same time
 print os.getpid(), 'got write lock'
 log = open('Shared.txt', 'a')
 time.sleep(3)
 log.write('%d Hello\n' % os.getpid())
 print os.getpid(), 'unlocking\n'

if __name__ == '__main__': app().go()

The launcher is the same as Example 14-20, but Example 14-23 starts multiple
copies of the class-based readers and writers. Run Example 14-23 on your server
with various process counts to follow the locking mechanism.

Example 14-23. PP2E\Internet\Cgi-Web\PyErrata\launch-mutex.py

#!/usr/bin/python
launch test program processes
same, but start mutexcntl clients

import os

for i in range(1):
 if os.fork() == 0:
 os.execl("./testwrite-mutex.py")

for i in range(2):
 if os.fork() == 0:
 os.execl("./testread-mutex.py")

for i in range(2):
 if os.fork() == 0:
 os.execl("./testwrite-mutex.py")

for i in range(2):
 if os.fork() == 0:
 os.execl("./testread-mutex.py")

for i in range(1):
 if os.fork() == 0:
 os.execl("./testwrite-mutex.py")

The output of the class-based test is more or less the same. Processes start up in a
different order, but the synchronization behavior is identical -- one writer writes, all
readers read, then remaining writers write one at a time:

[mark@toy .../PyErrata/Mutex]$ python launch-mutex.py
1035 start mutex writer
1035 got write lock
1037 start mutex reader

Programming Python, 2nd Edition, O’Reilly

IT-SC book 913

1040 start mutex reader
1038 start mutex writer
1041 start mutex reader
1039 start mutex writer
1036 start mutex reader
1042 start mutex writer
1035 unlocking

1037 got read lock
1041 got read lock
1040 got read lock
1036 got read lock
lines so far: 137 Shared.txt
1036 unlocking

lines so far: 137 Shared.txt
1041 unlocking

lines so far: 137 Shared.txt
1040 unlocking

lines so far: 137 Shared.txt
1037 unlocking

1038 got write lock
1038 unlocking

1039 got write lock
1039 unlocking

1042 got write lock
1042 unlocking

All times have been removed from launcher output this time, because our mutex
class automatically logs lock operations in a separate file, with times and process
IDs; the three-second sleep per process is more obvious in this format:

[mark@toy .../PyErrata/Mutex]$ cat test.log
960920109.518 Requested: 1035, writer
960920109.518 Aquired: 1035
960920109.626 Requested: 1040, reader
960920109.646 Requested: 1038, writer
960920109.647 Requested: 1037, reader
960920109.661 Requested: 1041, reader
960920109.674 Requested: 1039, writer
960920109.69 Requested: 1036, reader
960920109.701 Requested: 1042, writer
960920112.535 Released: 1035
960920112.542 Aquired: 1037
960920112.55 Aquired: 1041
960920112.557 Aquired: 1040
960920112.564 Aquired: 1036
960920115.601 Released: 1036
960920115.63 Released: 1041
960920115.657 Released: 1040
960920115.681 Released: 1037

Programming Python, 2nd Edition, O’Reilly

IT-SC book 914

960920115.681 Aquired: 1038
960920118.689 Released: 1038
960920118.696 Aquired: 1039
960920121.709 Released: 1039
960920121.716 Aquired: 1042
960920124.728 Released: 1042

Finally, this is what the shared text file looks like after all these processes have
exited stage left. Each writer simply added a line with its process ID; it's not the
most amazing of parallel process results, but if you pretend that this is our PyErrata
shelve-based database, these tests seem much more meaningful:

[mark@toy .../PyErrata/Mutex]$ cat Shared.txt
1010 Hello
1016 Hello
1019 Hello
1020 Hello
1023 Hello
1035 Hello
1038 Hello
1039 Hello
1042 Hello

14.7 Administrative Tools

Now that we have finished implementing a Python-powered, web-enabled,
concurrently accessible report database, and published web pages and scripts that
make that database accessible to the cyberworld at large, we can sit back and wait
for reports to come in. Or almost; there still is no way for the site owner to view or
delete records offline. Moreover, all records are tagged as "not yet verified" on
submission, and must somehow be verified or rejected.

This section lists a handful of tersely documented PyErrata scripts that accomplish
such tasks. All are Python programs shipped in the top-level AdminTools directory
and are assumed to be run from a shell command line on the server (or other
machine, after database downloads). They implement simple database content
dumps, database backups, and database state-changes and deletions for use by the
errata site administrator.

These tasks are infrequent, so not much work has gone into these tools. Frankly,
some fall into the domain of "quick and dirty" hackerage and aren't as robust as they
could be. For instance, because these scripts bypass the database interface classes
and speak directly to the underlying file structures, changes in the underlying file
mechanisms will likely break these tools. Also in a more polished future release,
these tools might instead sprout GUI- or web-based user interfaces to support over-
the-net administration. For now, such extensions are left as exercises for the
ambitious reader.

14.7.1 Backup Tools

Programming Python, 2nd Edition, O’Reilly

IT-SC book 915

System backup tools simply spawn the standard Unix tar and gzip command-line
programs to copy databases into single compressed files. You could write a shell
script for this task too, but Python works just as well, as shown in Examples Example
14-24 and Example 14-25.

Example 14-24. PP2E\Internet\Cgi-
Web\PyErrata\AdminTools\backupFiles.py

#!/usr/bin/python
import os
os.system('tar -cvf DbaseFiles.tar ../DbaseFiles')
os.system('gzip DbaseFiles.tar')

Example 14-25. PP2E\Internet\Cgi-
Web\PyErrata\AdminTools\backupShelve.py

#!/usr/bin/python
import os
os.system('tar -cvf DbaseShelve.tar ../DbaseShelve')
os.system('gzip DbaseShelve.tar')

14.7.2 Display Tools

The scripts in Examples Example 14-26 and Example 14-27 produce raw dumps of
each database structure's contents. Because the databases use pure Python storage
mechanisms (pickles, shelves), these scripts can work one level below the published
database interface classes; whether they should depends on how much code you're
prepared to change when your database model evolves. Apart from printing
generated record filenames and shelve keys, there is no reason that these scripts
couldn't be made less brittle by instead calling the database classes'
loadSortedTable methods. Suggested exercise: do better.

Example 14-26. PP2E\Internet\Cgi-
Web\PyErrata\AdminTools\dumpFiles.py

#!/usr/bin/python
import glob, pickle

def dump(kind):
 print '\n', kind, '='*60, '\n'
 for file in glob.glob("../DbaseFiles/%s/*.data" % kind):
 print '\n', '-'*60
 print file
 print pickle.load(open(file, 'r'))

dump('errataDB')
dump('commentDB')

Example 14-27. PP2E\Internet\Cgi-
Web\PyErrata\AdminTools\dumpShelve.py

#!/usr/bin/python

Programming Python, 2nd Edition, O’Reilly

IT-SC book 916

import shelve
e = shelve.open('../DbaseShelve/errataDB')
c = shelve.open('../DbaseShelve/commentDB')

print '\n', 'Errata', '='*60, '\n'
print e.keys()
for k in e.keys(): print '\n', k, '-'*60, '\n', e[k]

print '\n', 'Comments', '='*60, '\n'
print c.keys()
for k in c.keys(): print '\n', k, '-'*60, '\n', c[k]

Running these scripts produces the following sorts of results (truncated at 80
characters to fit in this book). It's not nearly as pretty as the web pages generated
for the user in PyErrata, but could be piped to other command-line scripts for further
offline analysis and processing. For instance, the dump scripts' output could be sent
to a report-generation script that knows nothing of the Web:

[mark@toy .../Internet/Cgi-Web/PyErrata/AdminTools]$ python
dumpFiles.py

errataDB ==

--
../DbaseFiles/errataDB/937907956.159-5157.data
{'Page number': '42', 'Type': 'Typo', 'Severity': 'Low', 'Chapter
number': '3'...

--
...more...

commentDB ==

--
../DbaseFiles/commentDB/937908410.203-5352.data
{'Submit date': '1999/09/21, 06:06:50', 'Submitter email':
'bob@bob.com',...

--
...more...

[mark@toy .../Internet/Cgi-Web/PyErrata/AdminTools]$ python
dumpShelve.py

Errata ==

['938245136.363-20046', '938244808.434-19964']

938245136.363-20046 ---

{'Page number': '256', 'Type': 'Program bug', 'Severity': 'High',
'Chapter nu...

Programming Python, 2nd Edition, O’Reilly

IT-SC book 917

938244808.434-19964 ---

{'Page number': 'various', 'Type': 'Suggestion', 'Printing Date': '',
'Chapte...

Comments ==

['938245187.696-20054']

938245187.696-20054 ---

{'Submit date': '1999/09/25, 03:39:47', 'Submitter email':
'bob@bob.com', 'Re...

14.7.3 Report State-Change Tools

Our last batch of command-line tools allows the site owner to mark reports as
verified or rejected and to delete reports altogether. The idea is that someone will
occasionally run these scripts offline, as time allows, to change states after
investigating reports. And this is the end to our quest for errata automation: the
investigation process itself is assumed to require both time and brains.

There are no interfaces in the database's classes for changing existing reports, so
these scripts can at least make a case for going below the classes to the physical
storage mediums. On the other hand, the classes could be extended to support such
update operations too, with interfaces that could also be used by future state-change
tools (e.g., web interfaces).

To minimize some redundancy, let's first define state-change functions in a common
module listed in Example 14-28, so they may be shared by both the file and shelve
scripts.

Example 14-28. PP2E\Internet\Cgi-
Web\PyErrata\AdminTools\verifycommon.py

put common verify code in a shared module for consistency and
reuse; could also generalize dbase update scan, but this helps

def markAsVerify(report):
 report['Report state'] = 'Verified by author'

def markAsReject(report):
 reason = '' # input reject reason
text
 while 1: # prepend to original
desc
 try:
 line = raw_input('reason>')
 except EOFError:
 break
 reason = reason + line + '\n'
 report['Report state'] = 'Rejected - not a real bug'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 918

 report['Description'] = ('Reject reason: ' + reason +
 '\n[Original description=>]\n' +
report['Description'])

To process state changes on the file -based database, we simply iterate over all the
pickle files in the database directories, as shown in Example 14-29.

Example 14-29. PP2E\Internet\Cgi-
Web\PyErrata\AdminTools\verifyFiles.py

#!/usr/bin/python

report state change and deletion operations;
also need a tool for anonymously publishing reports
sent by email that are of general interest--for now,
they can be entered with the submit forms manually;
this is text-based: the idea is that records can be
browsed in the errata page first (sort by state to
see unverified ones), but an edit gui or web-based
verification interface might be very useful to add;

import glob, pickle, os
from verifycommon import markAsVerify, markAsReject

def analyse(kind):
 for file in glob.glob("../DbaseFiles/%s/*.data" % kind):
 data = pickle.load(open(file, 'r'))
 if data['Report state'] == 'Not yet verified':
 print data
 if raw_input('Verify?') == 'y':
 markAsVerify(data)
 pickle.dump(data, open(file, 'w'))
 elif raw_input('Reject?') == 'y':
 markAsReject(data)
 pickle.dump(data, open(file, 'w'))
 elif raw_input('Delete?') == 'y':
 os.remove(file) # same as os.unlink

print 'Errata...'; analyse('errataDB')
print 'Comments...'; analyse('commentDB')

When run from the command line, the script displays one report's contents at a time
and pauses after each to ask if it should be verified, rejected, or deleted. Here is the
beginning of one file database verify session, shown with line wrapping so you can
see what I see (it's choppy but compact):

[mark@toy .../Internet/Cgi-Web/PyErrata/AdminTools]$ python
verifyFiles.py
Errata...
{'Page number': '12', 'Type': 'Program bug', 'Printing Date': '',
'Chapter numbe
r': '', 'Submit date': '1999/09/21, 06:17:13', 'Report state': 'Not yet
verified

Programming Python, 2nd Edition, O’Reilly

IT-SC book 919

', 'Submitter name': 'Lisa Lutz', 'Submitter email': '', 'Description':
'1 + 1 =
 2, not 3...\015\012', 'Submit mode': '', 'Part number': '', 'Severity
': 'High'}
Verify?n
Reject?n
Delete?n
{'Page number': '', 'Type': 'Program bug', 'Printing Date': '',
'Chapter number'
: '16', 'Submit date': '1999/09/21, 06:20:22', 'Report state': 'Not yet
verified
', 'Submitter name': 'jerry', 'Submitter email':
'http://www.jerry.com', 'Descri
ption': 'Help! I just spilled coffee all over
my\015\012computer...\015\012
 ', 'Submit mode': '', 'Part number': '', 'Severity': 'Unknown'}
Verify?n
Reject?y
reason>It's not Python's fault
reason>(ctrl-d)
 ...more...

Verifications and rejections change records, but deletions actually remove them from
the system. In verifycommon, a report rejection prompts for an explanation and
concatenates it to the original description. Deletions delete the associated file with
os.remove; this feature may come in handy if the system is ever abused by a
frivolous user (including me, while writing examples for this book). The shelve -
based version of the verify script looks and feels similar, but deals in shelves instead
of flat files, as shown in Example 14-30.

Example 14-30. PP2E\Internet\Cgi-
Web\PyErrata\AdminTools\verifyShelve.py

#!/usr/bin/python

like verifyFiles.py, but do it to shelves;
caveats: we should really obtain a lock before shelve
updates here, and there is some scan logic redundancy

import shelve
from verifycommon import markAsVerify, markAsReject

def analyse(dbase):
 for k in dbase.keys():
 data = dbase[k]
 if data['Report state'] == 'Not yet verified':
 print data
 if raw_input('Verify?') == 'y':
 markAsVerify(data)
 dbase[k] = data
 elif raw_input('Reject?') == 'y':
 markAsReject(data)
 dbase[k] = data
 elif raw_input('Delete?') == 'y':

Programming Python, 2nd Edition, O’Reilly

IT-SC book 920

 del dbase[k]

print 'Errata...'; analyse(shelve.open('../DbaseShelve/errataDB'))
print 'Comments...'; analyse(shelve.open('../DbaseShelve/commentDB'))

Note that the verifycommon module helps ensure that records are marked
consistently and avoids some redundancy. However, the file and shelve verify scripts
still look very similar; it might be better to further generalize the notion of database
update scans by moving this logic into the storage-specific database interface classes
shown earlier.

Short of doing so, there is not much we can do about the scan-logic redundancy or
storage-structure dependencies of the file and shelve verify scripts. The existing
load-list database class methods won't help, because they don't provide the
generated filename and shelve key details we need to rewrite records here. To make
the administrative tools more robust, some database class redesign would probably
be in order -- which seems as good a segue to the next section as any.

14.8 Designing for Reuse and Growth

I admit it: PyErrata may be thrifty, but it's also a bit self-centered. The database
interfaces presented in the prior sections work as planned and serve to separate all
database processing from CGI scripting details. But as shown in this book, these
interfaces aren't as generally reusable as they could be; moreover, they are not yet
designed to scale up to larger database applications.

Let's wrap up this chapter by donning our software code review hats for just a few
moments and exploring some design alternatives for PyErrata. In this section, I
highlight the PyErrata database interface's obstacles to general applicability, not as
self-deprecation, but to show how programming decisions can impact reusability.

Something else is going on in this section too. There is more concept than code here,
and the code that is here is more like an experimental design than a final product.
On the other hand, because that design is coded in Python, it can be run to test the
feasibility of design alternatives; as we've seen, Python can be used as a form of
executable pseudocode.

14.8.1 Reusability

As we saw, code reuse is pervasive within PyErrata: top-level calls filter down to
common browse and submit modules, which in turn call database classes that reuse
a common module. But what about sharing PyErrata code with other systems?
Although not designed with generality in mind, PyErrata's database interface
modules could almost be reused to implement other kinds of file- and shelve-based
databases outside the context of PyErrata itself. However, we need a few more
tweaks to turn these interfaces into widely useful tools.

As is, shelve and file-directory names are hardcoded into the storage-specific
subclass modules, but another system could import and reuse their Dbase classes
and provide different directory names. Less generally, though, the dbcommon module
adds two attributes to all new records (submit-time and report-state) that may or

Programming Python, 2nd Edition, O’Reilly

IT-SC book 921

may not be relevant outside PyErrata. It also assumes that stored values are
mappings (dictionaries), but that is less PyErrata-specific.

If we were to rewrite these classes for more general use, it would make sense to first
repackage the four DbaseErrata and DbaseComment classes in modules of their own
(they are very specific instances of file and shelve databases). We would probably
also want to somehow relocate dbcommon's insertion of submit-time and report-state
attributes from the dbcommon module to these four classes themselves (these
attributes are specific to PyErrata databases). For instance, we might define a new
DbasePyErrata class that sets these attributes and is a mixed-in superclass to the
four PyErrata storage-specific database classes:

in new module
class DbasePyErrata:
 def storeItem(self, newdata):
 secsSinceEpoch = time.time()
 timeTuple = time.localtime(secsSinceEpoch)
 y_m_d_h_m_s = timeTuple[:6]
 newdata['Submit date'] = '%s/%02d/%02d, %02d:%02d:%02d' %
y_m_d_h_m_s
 newdata['Report state'] = 'Not yet verified'
 self.writeItem(newdata)

in dbshelve
class Dbase(MutexCntl, dbcommon.Dbase):
 # as is

in dbfiles
class Dbase(dbcommon.Dbase):
 # as is

in new file module
class DbaseErrata(DbasePyErrata, dbfiles.Dbase):
 dirname = 'DbaseFiles/errataDB/'
class DbaseComment(DbasePyErrata, dbfiles.Dbase):
 dirname = 'DbaseFiles/commentDB/'

in new shelve module
class DbaseErrata(DbasePyErrata, dbshelve.Dbase):
 filename = 'DbaseShelve/errataDB'
class DbaseComment(DbasePyErrata, dbshelve.Dbase):
 filename = 'DbaseShelve/commentDB'

There are more ways to structure this than we have space to cover here. The point is
that by factoring out application-specific code, dbshelve and dbfiles modules not
only serve to keep PyErrata interface and database code distinct, but also become
generally useful data-storage tools.

14.8.2 Scalability

PyErrata's database interfaces were designed for this specific application's storage
requirements alone and don't directly support very large databases. If you study the
database code carefully, you'll notice that submit operations update a single item,
but browse requests load entire report databases all at once into memory. This

Programming Python, 2nd Edition, O’Reilly

IT-SC book 922

scheme works fine for the database sizes expected in PyErrata, but performs badly
for larger data sets. We could extend the database classes to handle larger data sets
too, but they would likely require new top-level interfaces altogether.

Before I stopped updating it, the static HTML file used to list errata from the first
edition of this book held just some 60 reports, and I expect a similarly small data set
for other books and editions. With such small databases, it's reasonable to load an
entire database into memory (i.e., into Python lists and dictionaries) all at once, and
frequently. Indeed, the time needed to transfer a web page containing 60 records
across the Internet likely outweighs the time it takes to load 60 report files or shelve
keys on the server.

On the other hand, the database may become too slow if many more reports than
expected are posted. There isn't much we could do to optimize the "Simple list" and
"With index" display options, since they really do display all records. But for the
"Index only" option, we might be able to change our classes to load only records
having a selected value in the designated report field.

For instance, we could work around database load bottlenecks by changing our
classes to implement delayed loading of records: rather than returning the real
database, load requests could return objects that look the same but fetch actual
records only when needed. Such an approach might require no changes in the rest of
the system's code, but may be complex to implement.

14.8.2.1 Multiple shelve field indexing

Perhaps a better approach would be to define an entirely new top-level interface for
the "Index only" option -- one that really does load only records matching a field
value query. For instance, rather than storing all records in a single shelve, we could
implement the database as a set of index shelves, one per record field, to associate
records by field values. Index shelve keys would be values of the associated field;
shelve values would be lists of records having that field value. The shelve entry lists
might contain either redundant copies of records, or unique names of flat files
holding the pickled record dictionaries, external to the index shelves (as in the
current flat-file model).

For example, the PyErrata comment database could be structured as a directory of
flat files to hold pickled report dictionaries, together with five shelves to index the
values in all record fields (submitter-name, submitter-email, submit-mode, submit-
date, report-state). In the report-state shelve, there would be one entry for each
possible report state (verified, rejected, etc.); each entry would contain a list of
records with just that report-state value. Field value queries would be fast, but store
and load operations would become more complex:

To store a record in such a scheme, we would first pickle it to a uniquely named flat
file, then insert that file's name into lists in all five shelves, using each field's value
as shelve key.

To load just the records matching a field/value combination, we would first index
that field's shelve on the value to fetch a filename list, and step through that list to
load matching records only, from flat pickle files.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 923

Let's take the leap from hypothetical to concrete, and prototype these ideas in
Python. If you're following closely, you'll notice that what we're really talking about
here is an extension to the flat-file database structure, one that merely adds index
shelves. Hence, one possible way to implement the model is as a subclass of the
current flat-file classes. Example 14-31 does just that, as proof of the design
concept.

Example 14-31. PP2E\Internet\PyErrata\AdminTools\dbaseindexed.py

###

add field index shelves to flat-file database mechanism;
to optimize "index only" displays, use classes at end of this file;
change browse, index, submit to use new loaders for "Index only"
mode;
minor nit: uses single lock file for all index shelve read/write ops;
storing record copies instead of filenames in index shelves would be
slightly faster (avoids opening flat files), but would take more
space;
falls back on original brute-force load logic for fields not indexed;
shelve.open creates empty file if doesn't yet exist, so never fails;
to start, create DbaseFilesIndex/{commentDB,errataDB}/indexes.lck;
###

import sys; sys.path.insert(0, '..') # check admin parent dir
first
from Mutex import mutexcntl # fcntl path okay: not
'nobody'
import dbfiles, shelve, pickle, string, sys

class Dbase(mutexcntl.MutexCntl, dbfiles.Dbase):
 def makeKey(self):
 return self.cachedKey
 def cacheKey(self): # save
filename
 self.cachedKey = dbfiles.Dbase.makeKey(self) # need it
here too
 return self.cachedKey

 def indexName(self, fieldname):
 return self.dirname + string.replace(fieldname, ' ', '-')

 def safeWriteIndex(self, fieldname, newdata, recfilename):
 index = shelve.open(self.indexName(fieldname))
 try:
 keyval = newdata[fieldname] # recs have
all fields
 reclist = index[keyval] # fetch, mod,
rewrite
 reclist.append(recfilename) # add to
current list
 index[keyval] = reclist
 except KeyError:
 index[keyval] = [recfilename] # add to new
list

Programming Python, 2nd Edition, O’Reilly

IT-SC book 924

 def safeLoadKeysList(self, fieldname):
 if fieldname in self.indexfields:
 keys = shelve.open(self.indexName(fieldname)).keys()
 keys.sort()
 else:
 keys, index = self.loadIndexedTable(fieldname)
 return keys

 def safeLoadByKey(self, fieldname, fieldvalue):
 if fieldname in self.indexfields:
 dbase = shelve.open(self.indexName(fieldname))
 try:
 index = dbase[fieldvalue]
 reports = []
 for filename in index:
 pathname = self.dirname + filename + '.data'
 reports.append(pickle.load(open(pathname, 'r')))
 return reports
 except KeyError:
 return []
 else:
 key, index = self.loadIndexedTable(fieldname)
 try:
 return index[fieldvalue]
 except KeyError:
 return []

 # top-level interfaces (plus dbcommon and dbfiles)

 def writeItem(self, newdata):
 # extend to update indexes
 filename = self.cacheKey()
 dbfiles.Dbase.writeItem(self, newdata)
 for fieldname in self.indexfields:
 self.exclusiveAction(self.safeWriteIndex,
 fieldname, newdata, filename)

 def loadKeysList(self, fieldname):
 # load field's keys list only
 return self.sharedAction(self.safeLoadKeysList, fieldname)

 def loadByKey(self, fieldname, fieldvalue):
 # load matching recs lisy only
 return self.sharedAction(self.safeLoadByKey, fieldname,
fieldvalue)

class DbaseErrata(Dbase):
 dirname = 'DbaseFilesIndexed/errataDB/'
 filename = dirname + 'indexes'
 indexfields = ['Submitter name', 'Submit date', 'Report state']

class DbaseComment(Dbase):
 dirname = 'DbaseFilesIndexed/commentDB/'
 filename = dirname + 'indexes'
 indexfields = ['Submitter name', 'Report state'] # index just
these

Programming Python, 2nd Edition, O’Reilly

IT-SC book 925

self-test

if __name__ == '__main__':
 import os
 dbase = DbaseComment()
 os.system('rm %s*' % dbase.dirname) # empty dbase
dir
 os.system('echo > %s.lck' % dbase.filename) # init lock
file

 # 3 recs; normally have submitter-email and description, not page
 # submit-date and report-state are added auto by rec store method
 records = [{'Submitter name': 'Bob', 'Page': 38, 'Submit mode':
''},
 {'Submitter name': 'Brian', 'Page': 40, 'Submit mode':
''},
 {'Submitter name': 'Bob', 'Page': 42, 'Submit mode':
'email'}]
 for rec in records: dbase.storeItem(rec)

 dashes = '-'*80
 def one(item):
 print dashes; print item
 def all(list):
 print dashes
 for x in list: print x

 one('old stuff')
 all(dbase.loadSortedTable('Submitter name')) # load
flat list
 all(dbase.loadIndexedTable('Submitter name')) # load,
grouped
 #one(dbase.loadIndexedTable('Submitter name')[0])
 #all(dbase.loadIndexedTable('Submitter name')[1]['Bob'])
 #all(dbase.loadIndexedTable('Submitter name')[1]['Brian'])

 one('new stuff')
 one(dbase.loadKeysList('Submitter name')) # bob,
brian
 all(dbase.loadByKey('Submitter name', 'Bob')) # two
recs match
 all(dbase.loadByKey('Submitter name', 'Brian')) # one rec
mathces
 one(dbase.loadKeysList('Report state')) # all
match
 all(dbase.loadByKey('Report state', 'Not yet verified'))

 one('boundary cases')
 all(dbase.loadByKey('Submit mode', '')) # not
indexed: load
 one(dbase.loadByKey('Report state', 'Nonesuch')) # unknown
value: []
 try: dbase.loadByKey('Nonesuch', 'Nonesuch') # bad
fields: exc

Programming Python, 2nd Edition, O’Reilly

IT-SC book 926

 except: print 'Nonesuch failed'

This module's code is something of an executable prototype, but that's much of the
point here. The fact that we can actually run experiments coded in Python helps
pinpoint problems in a model early on.

For instance, I had to redefine the makeKey method here to cache filenames locally
(they are needed for index shelves too). That's not quite right, and if I were to adopt
this database interface, I would probably change the file class to return generated
filenames, not discard them. Such misfits can often be uncovered only by writing real
code -- a task that Python optimizes by design.

If this module is run as a top-level script, its self-test code at the bottom of the file
executes with the following output. I don't have space to explain it in detail, but try
to match it up with the module's self-test code to trace how queries are satisfied with
and without field indexes:

[mark@toy .../Internet/Cgi-Web/PyErrata/AdminTools]$ python
dbaseindexed.py

old stuff

{'Submit date': '2000/06/13, 11:45:01', 'Page': 38, 'Submit mode': '',
'Report s
tate': 'Not yet verified', 'Submitter name': 'Bob'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 42, 'Submit mode':
'email', 'Rep
ort state': 'Not yet verified', 'Submitter name': 'Bob'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 40, 'Submit mode': '',
'Report s
tate': 'Not yet verified', 'Submitter name': 'Brian'}

['Bob', 'Brian']
{'Bob': [{'Submit date': '2000/06/13, 11:45:01', 'Page': 38, 'Submit
mode': '',
'Report state': 'Not yet verified', 'Submitter name': 'Bob'}, {'Submit
date': '2
000/06/13, 11:45:01', 'Page': 42, 'Submit mode': 'email', 'Report
state': 'Not y
et verified', 'Submitter name': 'Bob'}], 'Brian': [{'Submit date':
'2000/06/13,
11:45:01', 'Page': 40, 'Submit mode': '', 'Report state': 'Not yet
verified', 'S
ubmitter name': 'Brian'}]}

new stuff

['Bob', 'Brian']

Programming Python, 2nd Edition, O’Reilly

IT-SC book 927

{'Submit date': '2000/06/13, 11:45:01', 'Page': 38, 'Submit mode': '',
'Report s
tate': 'Not yet verified', 'Submitter name': 'Bob'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 42, 'Submit mode':
'email', 'Rep
ort state': 'Not yet verified', 'Submitter name': 'Bob'}

{'Submit date': '2000/06/13, 11:45:01', 'Page': 40, 'Submit mode': '',
'Report s
tate': 'Not yet verified', 'Submitter name': 'Brian'}

['Not yet verified']

{'Submit date': '2000/06/13, 11:45:01', 'Page': 38, 'Submit mode': '',
'Report s
tate': 'Not yet verified', 'Submitter name': 'Bob'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 40, 'Submit mode': '',
'Report s
tate': 'Not yet verified', 'Submitter name': 'Brian'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 42, 'Submit mode':
'email', 'Rep
ort state': 'Not yet verified', 'Submitter name': 'Bob'}

boundary cases

{'Submit date': '2000/06/13, 11:45:01', 'Page': 38, 'Submit mode': '',
'Report s
tate': 'Not yet verified', 'Submitter name': 'Bob'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 40, 'Submit mode': '',
'Report s
tate': 'Not yet verified', 'Submitter name': 'Brian'}

[]
Nonesuch failed

[mark@toy .../PyErrata/AdminTools]$ ls DbaseFilesIndexed/commentDB/
960918301.263-895.data 960918301.506-895.data Submitter-name
indexes.log
960918301.42-895.data Report-state indexes.lck

[mark@toy .../PyErrata/AdminTools]$ more
DbaseFilesIndexed/commentDB/indexes.log
960918301.266 Requested: 895, writer
960918301.266 Aquired: 895
960918301.36 Released: 895
960918301.36 Requested: 895, writer
960918301.361 Aquired: 895
960918301.419 Released: 895
960918301.422 Requested: 895, writer
960918301.422 Aquired: 895
960918301.46 Released: 895

Programming Python, 2nd Edition, O’Reilly

IT-SC book 928

 ...more...

One drawback to this interface is that it works only on a machine that supports the
fcntl.flock call (notice that I ran the previous test on Linux). If you want to use
these classes to support indexed file/shelve databases on other machines, you could
delete or stub out this call in the mutex module to do nothing and return. You won't
get safe updates if you do, but many applications don't need to care:

try:
 import fcntl
 from FCNTL import *
except ImportError:
 class fakeFcntl:
 def flock(self, fileno, flag): return
 fcntl = fakeFcntl()
 LOCK_SH = LOCK_EX = LOCK_UN = 0

You might instead instrument MutexCntl.lockFile to do nothing in the presence of
a command-line argument flag, mix in a different MutexCntl class at the bottom that
does nothing on lock calls, or hunt for platform-specific locking mechanisms (e.g.,
the Windows extensions package exports a Windows-only file locking call; see its
documentation for details).

Regardless of whether you use locking or not, the dbaseindexed flat-files plus
multiple-shelve indexing scheme can speed access by keys for large databases.
However, it would also require changes to the top-level CGI script logic that
implements "Index only" displays, and so is not without seams. It may also perform
poorly for very large databases, as record information would span multiple files. If
pressed, we could finally extend the database classes to talk to a real database
system such as Oracle, MySQL, PostGres, or Gadfly (described in Chapter 16).

All of these options are not without trade-offs, but we have now come dangerously
close to stepping beyond the scope of this chapter. Because the PyErrata database
modules were designed with neither general applicability nor broad scalability in
mind, additional mutations are left as suggested exercises.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 929

Chapter 15. Advanced Internet Topics

15.1 "Surfing on the Shoulders of Giants"

15.2 Zope: A Web Publishing Framework

15.3 HTMLgen: Web Pages from Objects

15.4 JPython (Jython): Python for Java

15.5 Grail: A Python-Based Web Browser

15.6 Python Restricted Execution Mode

15.7 XML Processing Tools

15.8 Windows Web Scripting Extensions

15.9 Python Server Pages

15.10 Rolling Your Own Servers in Python

15.1 "Surfing on the Shoulders of Giants"

This chapter concludes our look at Python Internet programming by exploring a
handful of Internet-related topics and packages. We've covered many Internet topics
in the previous five chapters -- socket basics, client and server-side scripting tools,
and programming full-blown web sites with Python. Yet we still haven't seen many of
Python's standard built-in Internet modules in action. Moreover, there is a rich
collection of third-party extensions for scripting the Web with Python that we have
not touched on at all.

In this chapter, we explore a grab-bag of additional Internet-related tools and third-
party extensions of interest to Python Internet developers. Along the way, we meet
larger Internet packages, such as HTMLgen, JPython, Zope, PSP, Active Scripting,
and Grail. We'll also study standard Python tools useful to Internet programmers,
including Python's restricted execution mode, XML support, COM interfaces, and
techniques for implementing proprietary servers. In addition to their practical uses,
these systems demonstrate just how much can be achieved by wedding a powerful
object-oriented scripting language such as Python to the Web.

Before we start, a disclaimer: none of these topics is presented in much detail here,
and undoubtedly some interesting Internet systems will not be covered at all.
Moreover, the Internet evolves at lightning speed, and new tools and techniques are
certain to emerge after this edition is published; indeed, most of the systems in this
chapter appeared in the five years after the first edition of this book was written, and

Programming Python, 2nd Edition, O’Reilly

IT-SC book 930

the next five years promise to be just as prolific. As always, the standard moving-
target caveat applies: read the Python library manual's Internet section for details
we've skipped, and stay in touch with the Python community at
http://www.python.org for information about extensions not covered due to a lack of
space or a lack of clairvoyance.

15.2 Zope: A Web Publishing Framework

Zope is an open source web-application server and toolkit, written in and
customizable with Python. It is a server-side technology that allows web designers to
implement sites and applications by publishing Python object hierarchies on the Web.
With Zope, programmers can focus on writing objects, and let Zope handle most of
the underlying HTTP and CGI details. If you are interested in implementing more
complex web sites than the form-based interactions we've seen in the last three
chapters, you should investigate Zope: it can obviate many of the tasks that web
scripters wrestle with on a daily basis.

Sometimes compared to commercial web toolkits such as ColdFusion, Zope is made
freely available over the Internet by a company called Digital Creations and enjoys a
large and very active development community. Indeed, many attendees at a recent
Python conference were attracted by Zope, which had its own conference track. The
use of Zope has spread so quickly that many Pythonistas now look to it as Python's
"killer application" -- a system so good that it naturally pushes Python into the
development spotlight. At the least, Zope offers a new, higher-level way of
developing sites for the Web, above and beyond raw CGI scripting.[1]

[1] Over the years, observers have also pointed to other systems as possible Python "killer
applications," including Grail, Python's COM support on Windows, and JPython. I hope they're
all right, and fully expect new killers to arise after this edition is published. But at the time
that I write this, Zope is attracting an astonishing level of interest among both developers and
investors.

15.2.1 Zope Components

Zope began life as a set of tools (part of which was named "Bobo") placed in the
public domain by Digital Creations. Since then, it has grown into a large system with
many components, a growing body of add-ons (called "products" in Zope parlance),
and a fairly steep learning curve. We can't do it any sort of justice in this book, but
since Zope is one of the most popular Python-based applications at this writing, I'd
be remiss if I didn't provide a few details here.

In terms of its core components, Zope includes the following parts:

Zope Object Request Broker (ORB)

At the heart of Zope, the ORB dispatches incoming HTTP requests to Python objects
and returns results to the requestor, working as a perpetually running middleman
between the HTTP CGI world and your Python objects. The Zope ORB is described
further in the next section.

HTML document templates

Programming Python, 2nd Edition, O’Reilly

IT-SC book 931

Zope provides a simple way to define web pages as templates, with values
automatically inserted from Python objects. Templates allow an object's HTML
representation to be defined independently of the object's implementation. For
instance, values of attributes in a class instance object may be automatically plugged
into a template's text by name. Template coders need not be Python coders, and
vice versa.

Object database

To record data persistently, Zope comes with a full object-oriented database system
for storing Python objects. The Zope object database is based on the Python pickle
serialization module we'll meet in the next part of this book, but adds support for
transactions, lazy object fetches (sometimes called delayed evaluation), concurrent
access, and more. Objects are stored and retrieved by key, much as they are with
Python's standard shelve module, but classes must subclass an imported
Persistent superclass, and object stores are instances of an imported
PickleDictionary object. Zope starts and commits transactions at the start and end
of HTTP requests.

Zope also includes a management framework for administrating sites, as well as a
product API used to package components. Zope ships with these and other
components integrated into a whole system, but each part can be used on its own as
well. For instance, the Zope object database can be used in arbitrary Python
applications by itself.

15.2.2 What's Object Publishing?

If you're like me, the concept of publishing objects on the Web may be a bit vague at
first glance, but it's fairly simple in Zope: the Zope ORB automatically maps URLs
requested by HTTP into calls on Python objects. Consider the Python module and
function in Example 15-1 .

Example 15-1. PP2E\Internet\Other\messages.py

"A Python module published on the Web by Zope"

def greeting(size='brief', topic='zope'):
 "a published Python function"
 return 'A %s %s introduction' % (size, topic)

This is normal Python code, of course, and says nothing about Zope, CGI, or the
Internet at large. We may call the function it defines from the interactive prompt as
usual:

C:\...\PP2E\Internet\Other>python
>>> import messages
>>> messages.greeting()
'A brief zope introduction'

>>> messages.greeting(size='short')
'A short zope introduction'

>>> messages.greeting(size='tiny', topic='ORB')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 932

'A tiny ORB introduction'

But if we place this module file, along with Zope support files, in the appropriate
directory on a server machine running Zope, it automatically becomes visible on the
Web. That is, the function becomes a published object -- it can be invoked through a
URL, and its return value becomes a response page. For instance, if placed in a cgi-
bin directory on a server called myserver.net, the following URLs are equivalent to
the three calls above:

http://www.myserver.net/cgi-bin/messages/greeting
http://www.myserver.net/cgi-bin/messages/greeting?size=short
http://www.myserver.net/cgi-bin/messages/greeting?size=tiny&topic=ORB

When our function is accessed as a URL over the Web this way, the Zope ORB
performs two feats of magic:

The URL is automatically translated into a call to the Python function. The first part of
the URL after the directory path (messages) names the Python module, the second
(greeting) names a function or other callable object within that module, and any
parameters after the ? become keyword arguments passed to the named function.

After the function runs, its return value automatically appears in a new page in your
web browser. Zope does all the work of formatting the result as a valid HTTP
response.

In other words, URLs in Zope become remote function calls, not just script
invocations. The functions (and methods) called by accessing URLs are coded in
Python, and may live at arbitrary places on the Net. It's as if the Internet itself
becomes a Python namespace, with one module directory per server.

Zope is a server-side technology based on objects, not text streams; the main
advantage of this scheme is that the details of CGI input and output are handled by
Zope, while programmers focus on writing domain objects, not on text generation.
When our function is accessed with a URL, Zope automatically finds the referenced
object, translates incoming parameters to function call arguments, runs the function,
and uses its return value to generate an HTTP response. In general, a URL like:

http://servername/dirpath/module/object1/object2/method?arg1=val1&arg2=
val2

is mapped by the Zope ORB running on servername into a call to a Python object in
a Python module file installed in dirpath, taking the form:

module.object1.object2.method(arg1=val1, arg2=val2)

The return value is formatted into an HTML response page sent back to the client
requestor (typically a browser). By using longer paths, programs can publish
complete hierarchies of objects; Zope simply uses Python's generic object-access
protocols to fetch objects along the path.

As usual, a URL like those listed here can appear as the text of a hyperlink, typed
manually into a web browser, or used in an HTTP request generated by a program
(e.g., using Python's urllib module in a client-side script). Parameters are listed at

Programming Python, 2nd Edition, O’Reilly

IT-SC book 933

the end of these URLs directly, but if you post information to this URL with a form
instead, it works the same way:

<form action="http://www.myserver.net/cgi-bin/messages/greeting"
method=POST>
 Size: <input type=text name=size>
 Topic: <input type=text name=topic value=zope>
 <input type=submit>
</form>

Here, the action tag references our function's URL again; when the user fills out this
form and presses its submit button, inputs from the form sent by the browser
magically show up as arguments to the function again. These inputs are typed by the
user, not hardcoded at the end of a URL, but our published function doesn't need to
care. In fact, Zope recognizes a variety of parameter sources and translates them all
into Python function or method arguments: form inputs, parameters at the end of
URLs, HTTP headers and cookies, CGI environment variables, and more.

This just scratches the surface of what published objects can do, though. For
instance, published functions and methods can use the Zope object database to save
state permanently, and Zope provides many more advanced tools such as debugging
support, precoded HTTP servers for use with the ORB, and finer-grained control over
responses to URL requestors.

For all things Zope, visit http://www.zope.org. There, you'll find up-to-date releases,
as well as documentation ranging from tutorials to references to full-blown Zope
example sites. Also see this book's CD (view CD-ROM content online at
http://examples.oreilly.com/python2) for a copy of the Zope distribution, current as
of the time we went to press.

Python creator Guido van Rossum and his Pythonlabs team of
core Python developers have moved from BeOpen to Digital
Creations, home of the Zope framework introduced here.
Although Python itself remains an open source system, Guido's
presence at Digital Creations is seen as a strategic move that
will foster future growth of both Zope and Python.

15.3 HTMLgen: Web Pages from Objects

One of the things that makes CGI scripts complex is their inherent dependence on
HTML: they must embed and generate legal HTML code to build user interfaces.
These tasks might be easier if the syntax of HTML were somehow removed from CGI
scripts and handled by an external tool.

HTMLgen is a third-party Python tool designed to fill this need. With it, programs
build web pages by constructing trees of Python objects that represent the desired
page and "know" how to format themselves as HTML. Once constructed, the program
asks the top of the Python object tree to generate HTML for itself, and out comes a
complete, legally formatted HTML web page.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 934

Programs that use HTMLgen to generate pages need never deal with the syntax of
HTML; instead, they can use the higher-level object model provided by HTMLgen and
trust it to do the formatting step. HTMLgen may be used in any context where you
need to generate HTML. It is especially suited for HTML generated periodically from
static data, but can also be used for HTML creation in CGI scripts (though its use in
the CGI context incurs some extra speed costs). For instance, HTMLgen would be
ideal if you run a nightly job to generate web pages from database contents.
HTMLgen can also be used to generate documents that don't live on the Web at all;
the HTML code it produces works just as well when viewed offline.

15.3.1 A Brief HTMLgen Tutorial

We can't investigate HTMLgen in depth here, but let's look at a few simple examples
to sample the flavor of the system. HTMLgen is shipped as a collection of Python
modules that must be installed on your machine; once it's installed, you simply
import objects from the HTMLgen module corresponding to the tag you wish to
generate, and make instances:

C:\Stuff\HTMLgen\HTMLgen>python
>>> from HTMLgen import *
>>> p = Paragraph("Making pages from objects is easy\n")
>>> p
<HTMLgen.Paragraph instance at 7dbb00>
>>> print p
<P>Making pages from objects is easy
</P>

Here, we make a HTMLgen.Paragraph object (a class instance), passing in the text to
be formatted. All HTMLgen objects implement __str__ methods and can emit legal
HTML code for themselves. When we print the Paragraph object, it emits an HTML
paragraph construct. HTMLgen objects also define append methods, which do the
right thing for the object type; Paragraphs simply add appended text to the end of
the text block:

>>> p.append("Special < characters > are & escaped")
>>> print p
<P>Making pages from objects is easy
Special < characters > are & escaped</P>

Notice that HTMLgen escaped the special characters (e.g., < means <) so that
they are legal HTML; you don't need to worry about writing either HTML or escape
codes yourself. HTMLgen has one class for each HTML tag; here is the List object at
work, creating an ordered list:

>>> choices = ['python', 'tcl', 'perl']
>>> print List(choices)

python
tcl
perl

Programming Python, 2nd Edition, O’Reilly

IT-SC book 935

In general, HTMLgen is smart about interpreting data structures you pass to it. For
instance, embedded sequences are automatically mapped to the HTML code for
displaying nested lists:

>>> choices = ['tools', ['python', 'c++'], 'food', ['spam', 'eggs']]
>>> l = List(choices)
>>> print l

tools

 python
 c++

food

 spam
 eggs

Hyperlinks are just as easy: simply make and print an Href object with the link
target and text. (The text argument can be replaced by an image, as we'll see later
in Example 15-3.)

>>> h = Href('http://www.python.org', 'python')
>>> print h
python

To generate HTML for complete pages, we create one of the HTML document objects,
append its component objects, and print the document object. HTMLgen emits a
complete page's code, ready to be viewed in a browser:

>>> d = SimpleDocument(title='My doc')
>>> p = Paragraph('Web pages made easy')
>>> d.append(p)
>>> d.append(h)
>>> print d
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>

<!-- This file generated using Python HTMLgen module. -->
<HEAD>
 <META NAME="GENERATOR" CONTENT="HTMLgen 2.2.2">
 <TITLE>My doc</TITLE>
</HEAD>
<BODY>
<P>Web pages made easy</P>

python

</BODY> </HTML>

There are other kinds of document classes, including a SeriesDocument that
implements a standard layout for pages in a series. SimpleDocument is simple
indeed: it's essentially a container for other components, and generates the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 936

appropriate wrapper HTML code. HTMLgen also provides classes such as Table, Form
, and so on, one for each kind of HTML construct.

Naturally, you ordinarily use HTMLgen from within a script, so you can capture the
generated HTML in a file or send it over an Internet connection in the context of a
CGI application (remember, printed text goes to the browser in the CGI script
environment). The script in Example 15-2 does roughly what we just did
interactively, but saves the printed text in a file.

Example 15-2. PP2E\Internet\Other\htmlgen101.py

import sys
from HTMLgen import *

p = Paragraph('Making pages from objects is easy.\n')
p.append('Special < characters > are & escaped')

choices = ['tools', ['python', 'c++'], 'food', ['spam', 'eggs']]
l = List(choices)

s = SimpleDocument(title="HTMLgen 101")
s.append(Heading(1, 'Basic tags'))
s.append(p)
s.append(l)
s.append(HR())
s.append(Href('http://www.python.org', 'Python home page'))

if len(sys.argv) == 1:
 print s # send html to sys.stdout or real file
else:
 open(sys.argv[1], 'w').write(str(s))

This script also uses the HR object to format a horizontal line, and Heading to insert a
header line. It either prints HTML to the standard output stream (if no arguments are
listed) or writes HTML to an explicitly named file; the str built-in function invokes
object __str__ methods just as print does. Run this script from the system
command line to make a file, using one of the following:

C:\...\PP2E\Internet\Other>python htmlgen101.py > htmlgen101.html
C:\...\PP2E\Internet\Other>python htmlgen101.py htmlgen101.html

Either way, the script's output is a legal HTML page file, which you can view in your
favorite browser by typing the output filename in the address field or clicking on the
file in your file explorer. Either way, it will look a lot like Figure 15-1.

Figure 15-1. Viewing htmlgen101.py output in a browser

Programming Python, 2nd Edition, O’Reilly

IT-SC book 937

See file htmlgen101.html in the examples distribution if you wish to inspect the
HTML generated to describe this page directly (it looks much like the prior
document's output). Example 15-3 shows another script that does something less
hardcoded: it constructs a web page to display its own source code.

Example 15-3. PP2E\Internet\Other\htmlgen101-b.py

import sys
from HTMLgen import *
d = SimpleDocument(title="HTMLgen 101 B")

show this script
text = open('htmlgen101-b.py', 'r').read()
d.append(Heading(1, 'Source code'))
d.append(Paragraph(PRE(text)))

add gif and links
site = 'http://www.python.org'
gif = 'PythonPoweredSmall.gif'
image = Image(gif, alt='picture', align='left', hspace=10, border=0)

d.append(HR())
d.append(Href(site, image))
d.append(Href(site, 'Python home page'))

if len(sys.argv) == 1:
 print d
else:
 open(sys.argv[1], 'w').write(str(d))

We use the PRE object here to specify preformatted text, and the Image object to
generate code to display a GIF file on the generated page. Notice that HTML tag
options such as alt and align are specified as keyword arguments when making
HTMLgen objects. Running this script and pointing a browser at its output yields the
page shown in Figure 15-2; the image at the bottom is also a hyperlink, because it
was embedded inside an Href object.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 938

Figure 15-2. Viewing htmlgen101-b.py output in a browser

And that (along with a few nice advanced features) is all there is to using HTMLgen.
Once you become familiar with it, you can construct web pages by writing Python
code, without ever needing to manually type HTML tags again. Of course, you still
must write code with HTMLgen instead of using a drag-and-drop page layout tool,
but that code is incredibly simple and supports the addition of more complex
programming logic where needed to construct pages dynamically.

In fact, now that you're familiar with HTMLgen, you'll see that many of the HTML files
shown earlier in this book could have been simplified by recoding them to use
HTMLgen instead of direct HTML code. The earlier CGI scripts could have used
HTMLgen as well, albeit with additional speed overheads -- printing text directly is
faster than generating it from object trees, though perhaps not significantly so (CGI
scripts are generally bound to network speeds, not CPU speed).

HTMLgen is open source software, but it is not a standard part of Python and must
therefore be installed separately. You can find a copy of HTMLgen on this book's CD
(see http://examples.oreilly.com/python2), but the Python web site should have its
current location and version. Once installed, simply add the HTMLgen path to your
PYTHONPATH variable setting to gain access to its modules. For more documentation
about HTMLgen, see the package itself: its html subdirectory includes the HTMLgen
manual in HTML format.

15.4 JPython (Jython): Python for Java

Programming Python, 2nd Edition, O’Reilly

IT-SC book 939

JPython (recently renamed "Jython") is an entirely distinct implementation of the
Python programming language that allows programmers to use Python as a scripting
component in Java-based applications. In short, JPython makes Python code look like
Java, and consequently offers a variety of technology options inherited from the Java
world. With JPython, Python code may be run as client-side applets in web browsers,
as server-side scripts, and in a variety of other roles. JPython is distinct from other
systems mentioned in this section in terms of its scope: while it is based on the core
Python language we've seen in this book, it actually replaces the underlying
implementation of that language rather than augmenting it.[2]

[2] At this writing, JPython is the second implementation of the Python language. By contrast,
the standard, original implementation of Python is sometimes now referred to as "CPython,"
because it is implemented in ANSI C. Among other things, the JPython implementation is
driving a clearer definition of the Python language itself, independent of a particular
implementation's effects. A new Python implementation for Microsoft's C#/.NET environment
is also on the way (see later in this chapter) and may further drive a definition of what it
means to be Python.

This section briefly explores JPython and highlights some of the reasons you may or
may not want to use it instead of the standard Python implementation. Although
JPython is primarily of interest to programmers writing Java-based applications, it
underscores integration possibilities and language definition issues that merit the
attention of all Python users. Because JPython is Java-centric, you need to know
something about Java development to make the most sense of JPython, and this
book doesn't pretend to teach that in the next few pages. For more details,
interested readers should consult other materials, including JPython documentation
at http://www.jython.org.

The JPython port is now called "Jython." Although you are likely
to still see it called by its original JPython name on the Net (and
in this book) for some time, the new Jython title will become
more common as time goes by.

15.4.1 A Quick Introduction to JPython

Functionally speaking, JPython is a collection of Java classes that run Python code. It
consists of a Python compiler, written in Java, that translates Python scripts to Java
bytecodes so they can be executed by a Java virtual machine -- the runtime
component that executes Java programs and is used by major web browsers.
Moreover, JPython automatically exposes all Java class libraries for use in Python
scripts. In a nutshell, here's what comes with the JPython system:

Python-to-Java-bytecode compiler

JPython always compiles Python source code into Java bytecode and passes it to a
Java virtual machine (JVM) runtime engine to be executed. A command-line compiler
program, jpythonc, is also able to translate Python source code files into Java .class
and .jar files, which can then be used as Java applets, beans, servlets, and so on. To
the JVM, Python code run through JPython looks the same as Java code. Besides
making Python code work on a JVM, JPython code also inherits all aspects of the Java

Programming Python, 2nd Edition, O’Reilly

IT-SC book 940

runtime system, including Java's garbage collection and security models. jpythonc
also imposes Java source file class rules.

Access to Java class libraries (extending)

JPython uses Java's reflection API (runtime type information) to expose all available
Java class libraries to Python scripts. That is, Python programs written for the
JPython system can call out to any resident Java class automatically simply by
importing it. The Python-to-Java interface is completely automatic and remarkably
seamless -- Java class libraries appear as though they are coded in Python. Import
statements in JPython scripts may refer to either JPython modules or Java class
libraries. For instance, when a JPython script imports java.awt, it gains access to all
the tools available in the awt library. JPython internally creates a "dummy" Python
module object to serve as an interface to awt at import time. This dummy module
consists of hooks for dispatching calls from JPython code to Java class methods and
automatically converting datatypes between Java and Python representations as
needed. To JPython scripts, Java class libraries look and feel exactly like normal
Python modules (albeit with interfaces defined by the Java world).

Unified object model

JPython objects are actually Java objects internally. In fact, JPython implements
Python types as instances of a Java PyObject class. By contrast, C Python classes
and types are still distinct in the current release. For instance, in JPython, the
number 123 is an instance of the PyInteger Java class, and you can specify things
like [].__class__ since all objects are class instances. That makes data mapping
between languages simple: Java can process Python objects automatically, because
they are Java objects. JPython automatically converts types between languages
according to a standard type map as needed to call out to Java libraries, and selects
among overloaded Java method signatures.

API for running Python from Java (embedding)

JPython also provides interfaces that allow Java programs to execute JPython code.
As for embedding in C and C++, this allows Java applications to be customized by
bits of dynamically written JPython code. For instance, JPython ships with a Java
PythonInterpreter class, which allows Java programs to create objects that
function as Python namespaces for running Python code. Each PythonInterpreter
object is roughly a Python module, with methods such as exec(a string of Python
code), execfile(a Python filename), and get and set methods for assigning Python
global variables. Because Python objects are really instances of a Java PyObject
class, an enclosing Java layer can access and process data created by Python code
naturally.

Interactive Python command line

Like the standard Python implementation, JPython comes with an interactive
command line that runs code immediately after it is typed. JPython's jpython
program is equivalent to the python executable we've been using in this book;
without arguments, it starts an interactive session. Among other things, this allows
JPython programmers to import and test class components actually written in Java.
This ability alone is compelling enough to interest many Java programmers.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 941

Interface automations

Java libraries are somewhat easier to use in JPython code than in Java. That's
because JPython automates some of the coding steps Java implies. For instance,
callback handlers for Java GUI libraries may be simple Python functions, even though
Java coders need to provide methods in fully specified classes (Java does not have
first-class function objects). JPython also makes Java class data members accessible
as both Python attribute names (object.name) and object constructor keyword
arguments (name=value); such Python syntax is translated into calls to getName and
setName accessor methods in Java classes. We'll see these automation tricks in
action in the following examples. You don't have to use any of these (and they may
confuse Java programmers at first glance), but they further simplify coding in
JPython, and give Java class libraries a more Python-like flavor.

The net effect of all this is that JPython allows us to write Python programs that can
run on any Java-aware machine -- in particular, in the context of most web
browsers. More importantly, because Python programs are translated into Java
bytecodes, JPython provides an incredibly seamless and natural integration between
the two languages. Both walk and talk in terms of the Java model, so calls across
language boundaries are trivial. With JPython's approach, it's even possible to
subclass a Java class in Python and vice versa.

So why go to all this trouble to mix Python into Java environments? The most
obvious answer is that JPython makes Java components easier to use: JPython
scripts are typically a fraction of the size of their Java equivalents, and much less
complex. More generally, the answer is really the same as it is for C and C++
environments: Python, as an easy-to-use, object-oriented scripting language,
naturally complements the Java programming language.

By now, it is clear to most people that Java is too complex to serve as a scripting or
rapid-development tool. But this is exactly where Python excels; by adding Python to
the mix with JPython, we add a scripting component to Java systems, exactly as we
do when integrating Python with C or C++. For instance, we can use JPython to
quickly prototype Java systems, test Java classes interactively, and open up Java
systems for end-user customization. In general, adding Python to Java development
can significantly boost programmer productivity, just as it does for C and C++
systems.

JPython Versus the Python C API

Functionally, JPython is primarily an integration system: it allows us to mix
Python with Java components. We also study ways to integrate Python with
C and C++ components in the next part of this book. It's worth noting that
we need different techniques to integrate Python with Java (such as the
JPython compiler), because Java is a somewhat closed system: it prefers an
all-Java mix. The C and C++ integration tools are generally less restrictive
in terms of language assumptions, and any C-compatible language
components will do. Java's strictness is partly due to its security goals, but
the net effect is to foster integration techniques that are specific to Java
alone.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 942

On the other hand, because Java exposes runtime type information through
its reflection API, JPython can largely automate the conversions and
dispatching needed to access Java components from Python scripts; Python
code simply imports and calls Java components. When mixing Python with C
or C++, we must provide a "glue" code layer that integrates the two
languages explicitly. Some of this can be automated (with the SWIG system
we'll meet later in this text). No glue code is required in JPython, however,
because JPython's (and Java's) developers have done all the linkage work
already, in a generic fashion. It is also possible to mix in C/C++ components
with Java via its native call interface (JNI), but this can be cumbersome and
may cancel out Java's reported portability and security benefits.

15.4.2 A Simple JPython Example

Once a Python program is compiled with JPython, it is all Java: the program is
translated to Java bytecodes, it uses Java classes to do its work, and there is no
Python left except for the original source code. Because the compiler tool itself is
also written in Java, JPython is sometimes called "100% pure Java." That label may
be more profound to marketeers than programmers, though, because JPython scripts
are still written using standard Python syntax. For instance, Example 15-4 is a legal
JPython program, derived from an example originally written by Guido van Rossum.

Example 15-4. PP2E\Internet\Other\jpython.py

implement a simple calculator in JPython;
evaluation runs a full expression all at
once using the Python eval() built-in--
JPython's compiler is present at run-time

from java import awt # get access to Java class
libraries
from pawt import swing # they look like Python modules
here

labels = ['0', '1', '2', '+', # labels for calculator buttons
 '3', '4', '5', '-', # will be used for a 4x4 grid
 '6', '7', '8', '*',
 '9', '.', '=', '/']

keys = swing.JPanel(awt.GridLayout(4, 4)) # do Java class library
magic
display = swing.JTextField() # Python data auto-
mapped to Java

def push(event): # callback for regular
keys
 display.replaceSelection(event.actionCommand)

def enter(event): # callback for the '='
key

Programming Python, 2nd Edition, O’Reilly

IT-SC book 943

 display.text = str(eval(display.text)) # use Python eval() to
run expr
 display.selectAll()

for label in labels: # build up button widget
grid
 key = swing.JButton(label) # on press, invoke Python
funcs
 if label == '=':
 key.actionPerformed = enter
 else:
 key.actionPerformed = push
 keys.add(key)

panel = swing.JPanel(awt.BorderLayout()) # make a swing panel
panel.add("North", display) # text plus key grid in
middle
panel.add("Center", keys)
swing.test(panel) # start in a GUI viewer

The first thing you should notice is that this is genuine Python code -- JPython scripts
use the same core language that we've been using all along in this book. That's good
news, both because Python is such an easy language to use and because you don't
need to learn a new, proprietary scripting language to use JPython. It also means
that all of Python's high-level language syntax and tools are available. For example,
in this script, the Python eval built-in function is used to parse and evaluate
constructed expressions all at once, saving us from having to write an expression
evaluator from scratch.

15.4.3 Interface Automation Tricks

The previous calculator example also illustrates two interface automations performed
by JPython: function callback and attribute mappings. Java programmers may have
already noticed that this example doesn't use classes. Like standard Python and
unlike Java, JPython supports but does not impose OOP. Simple Python functions
work fine as callback handlers. In Example 15-4, assigning key.actionPerformed to
a Python function object has the same effect as registering an instance of a class
that defines a callback handler method:

def push(event):
 ...
key = swing.JButton(label)
key.actionPerformed = push

This is noticeably simpler than the more Java-like:

class handler(awt.event.ActionListener):
 def actionPerformed(self, event):
 ...
key = swing.JButton(label)
key.addActionListener(handler())

JPython automatically maps Python functions to the Java class method callback
model. Java programmers may now be wondering why we can assign to something

Programming Python, 2nd Edition, O’Reilly

IT-SC book 944

named key.actionPerformed in the first place. JPython's second magic feat is to
make Java data members look like simple object attributes in Python code. In
abstract terms, JPython code of the form:

X = Object(argument)
X.property = value + X.property

is equivalent to the more traditional and complex Java style:

X = Object(argument)
X.setProperty(value + X.getProperty())

That is, JPython automatically maps attribute assignments and references to Java
accessor method calls by inspecting Java class signatures (and possibly Java
BeanInfo files if used). Moreover, properties can be assigned with keyword
arguments in object constructor calls, such that:

X = Object(argument, property=value)

is equivalent to both this more traditional form:

X = Object(argument)
X.setProperty(value)

as well as the following, which relies on attribute name mapping:

X = Object(argument)
X.property = value

We can combine both callback and property automation for an even simpler version
of the callback code snippet:

def push(event):
 ...
key = swing.JButton(label, actionPerformed=push)

You don't need to use these automation tricks, but again, they make JPython scripts
simpler, and that's most of the point behind mixing Python with Java.

15.4.4 Writing Java Applets in JPython

I would be remiss if I didn't include a brief example of JPython code that more
directly masquerades as a Java applet: code that lives on a server machine but is
downloaded to and run on the client machine when its Internet address is
referenced. Most of the magic behind this is subclassing the appropriate Java class in
a JPython script, demonstrated in Example 15-5.

Example 15-5. PP2E\Internet\Other\jpython-applet.py

#######################################
a simple java applet coded in Python
#######################################

Programming Python, 2nd Edition, O’Reilly

IT-SC book 945

from java.applet import Applet # get java
superclass

class Hello(Applet):
 def paint(self, gc): # on paint
callback
 gc.drawString("Hello applet world", 20, 30) # draw text
message

if __name__ == '__main__': # if run
standalone
 import pawt # get java
awt lib
 pawt.test(Hello()) # run under
awt loop

The Python class in this code inherits all the necessary applet protocol from the
standard Java Applet superclass, so there is not much new to see here. Under
JPython, Python classes can always subclass Java classes, because Python objects
really are Java objects when compiled and run. The Python-coded paint method in
this script will be automatically run from the Java AWT event loop as needed; it
simply uses the passed-in gc user-interface handle object to draw a text message.

If we use JPython's jpythonc command-line tool to compile this into a Java .class file
and properly store that file on a web server, it can then be used exactly like applets
written in Java. Because most web browsers include a JVM, this means that such
Python scripts may be used as client-side programs that create sophisticated user-
interface devices within the browser, and so on.

15.4.5 JPython Trade-offs

Depending on your background, though, the somewhat less good news about
JPython is that even though the calculator and applet scripts discussed here are
straight Python code, the libraries they use are different than what we've seen so
far. In fact, the library calls employed are radically different. The calculator, for
example, relies primarily on imported Java class libraries, not standard Python
libraries. You really need to understand Java's awt and swing libraries to make sense
of its code, and this library skew between language implementations becomes more
acute as programs grow larger. The applet example is even more Java-bound: it
depends both on Java user-interface libraries and Java applet protocols.

If you are already familiar with Java libraries, this isn't an issue at all, of course. But
because most of the work performed by realistic programs is done by using libraries,
the fact that most JPython code relies on very different libraries makes compatibility
with standard Python less potent than it may seem at first glance. To put that more
strongly, apart from very trivial core language examples, many JPython programs
won't run on the standard Python interpreter, and many standard Python programs
won't work under JPython.

Generally, JPython presents a number of trade-offs, partly due to its relative
immaturity as of this writing. I want to point out up front that JPython is indeed an
excellent Java scripting tool -- arguably the best one available, and most of its trade-
offs are probably of little or no concern to Java developers. For instance, if you are

Programming Python, 2nd Edition, O’Reilly

IT-SC book 946

coming to JPython from the Java world, the fact that Java libraries are at the heart of
JPython scripts may be more asset than downside. But if you are presented with a
choice between the standard and Java-based Python language implementations,
some of JPython's implications are worth knowing about:

JPython is not yet fully compatible with the standard Python language

At this writing, JPython is not yet totally compatible with the standard Python
language, as defined by the original C implementation. In subtle ways, the core
Python language itself works differently in JPython. For example, until very recently,
assigning file-like objects to the standard input sys.stdin failed, and exceptions
were still strings, not class objects. The list of incompatibilities (viewable at
http://www.jython.org) will likely shrink over time, but will probably never go away
completely. Moreover, new language features are likely to show up later in JPython
than in the standard C-based implementation.

JPython requires programmers to learn Java development too

Language syntax is only one aspect of programming. The library skew mentioned
previously is just one example of JPython's dependence on the Java system. Not only
do you need to learn Java libraries to get real work done in JPython, but you also
must come to grips with the Java programming environment in general. Many
standard Python libraries have been ported to JPython, and others are being adopted
regularly. But major Python tools such as Tkinter GUIs may show up late or never in
JPython (and instead are replaced with Java tools).[3] In addition, many core Python
library features cannot be supported in JPython, because they would violate Java's
security constraints. For example, the os.system call for running shell commands
may never become available in JPython.

[3] But see the note at the end of the later section on Grail; an early port of Tkinter
for JPython is already available on the Net.

JPython applies only where a JVM is installed or shipped

You need the Java runtime to run JPython code. This may sound like a non-issue
given the pervasiveness of the Internet, but I have very recently worked in more
than one company for which delivering applications to be run on JVMs was not an
option. Simply put, there was no JVM to be found at the customer's site. In such
scenarios, JPython is either not an option, or will require you to ship a JVM with your
application just to run your compiled JPython code. Shipping the standard Python
system with your products is completely free; shipping a JVM may require licensing
and fees. This may become less of a concern as robust open source JVMs appear.
But if you wish to use JPython today and can't be sure that your clients will be able
to run your systems in Java-aware browsers (or other JVM components), you should
consider the potential costs of shipping a Java runtime system with your products.[4]

[4] Be sure you can get a JVM to develop those products too! Installing JPython on
Windows 98 while writing this book proved painful, not because of JPython, but
because I also had to come to grips with Java commands to run during installation,
and track down and install a JVM other than the one provided by Microsoft.
Depending on your platform, you may be faced with JPython's Java-dependence
even before you type your first line of code.

JPython doesn't support Python extension modules written in C or C++

Programming Python, 2nd Edition, O’Reilly

IT-SC book 947

At present, no C or C++ extension modules written to work with the C Python
implementation will work with JPython. This is a major impediment to deploying
JPython outside the scope of applications run in a browser. To date, the half-million-
strong Python user community has developed thousands of extensions written for C
Python, and these constitute much of the substance of the Python development
world. JPython's current alternative is to instead expose Java class libraries and ask
programmers to write new extensions in Java. But this dismisses a vast library of
prior and future Python art. In principle, C extensions could be supported by Java's
native call interface, but it's complex, has not been done, and can negate Java
portability and security.

JPython is noticeably slower than C Python

Today, Python code generally runs slower under the JPython implementation. How
much slower depends on what you test, which JVM you use to run your test, whether
a just-in-time (JIT) compiler is available, and which tester you cite. Posted
benchmarks have run the gamut from 1.7 times slower than C Python, to 10 times
slower, and up to 100 times slower. Regardless of the exact number, the extra layer
of logic JPython requires to map Python to the Java execution model adds speed
overheads to an already slow JVM and makes it unlikely that JPython will ever be as
fast as the C Python implementation. Given that C Python is already slower than
compiled languages like C, the additional slowness of JPython makes it less useful
outside the realm of Java scripting. Furthermore, the Swing GUI library used by
JPython scripts is powerful, but generally considered to be the slowest and largest of
all Python GUI options. Given that Python's Tkinter library is a portable and standard
GUI solution, Java's proprietary user-interface tools by themselves are probably not
reason enough to use the JPython implementation.

JPython is less robust than C Python

At this writing, JPython is substantially more buggy than the standard C
implementation of the language. This is certainly due to its younger age and smaller
user base and varies from JVM to JVM, but you are more likely to hit snags in
JPython. In contrast, C Python has been amazingly bug-free since its introduction in
1990.

JPython may be less portable than C Python

It's also worth noting that as of this writing, the core Python language is far more
portable than Java (despite marketing statements to the contrary). Because of that,
deploying standard Python code with the Java-based JPython implementation may
actually lessen its portability. Naturally, this depends on the set of extensions you
use, but standard Python runs today on everything from handheld PDAs and PCs to
Cray supercomputers and IBM mainframes.

Some incompatibilities between JPython and standard Python can be very subtle. For
instance, JPython inherits all of the Java runtime engine's behavior, including Java
security constraints and garbage collection. Java garbage collection is not based on
standard Python's reference count scheme, and therefore can automatically collect
cyclic objects.[5] It also means that some common Python programming idioms won't
work. For example, it's typical in Python to code file-processing loops in this form:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 948

[5] But Python 2.0's garbage collector can now collect cyclic objects too. See the 2.0 release
notes and Appendix A.

for filename in bigfilenamelist:
 text = open(filename).read()
 dostuffwith(text)

That works because files are automatically closed when garbage-collected in
standard Python, and we can be sure that the file object returned by the open call
will be immediately garbage collected (it's a temporary, so there are no more
references as soon as we call read). It won't work in JPython, though, because we
can't be sure when the temporary file object will be reclaimed. To avoid running out
of file descriptors, we usually need to code this differently for JPython:

for filename in bigfilenamelist:
 file = open(filename)
 text = file.read()
 dostuffwith(text)
 file.close()

You may face a similar implementation mismatch if you assume that output files are
immediately closed: open(name,'w').write(bytes) collects and closes the
temporary file object and hence flushes the bytes out to the file under the standard
C implementation of Python only, while JPython instead collects the file object at
some arbitrary time in the future. In addition to such file-closing concerns, Python
__del__ class destructors are never called in JPython, due to complications
associated with object termination.

15.4.6 Picking Your Python

Because of concerns such as those just mentioned, the JPython implementation of
the Python language is probably best used only in contexts where Java integration or
web browser interoperability are crucial design concerns. You should always be the
judge, of course, but the standard C implementation seems better suited to most
other Python applications. Still, that leaves a very substantial domain to JPython --
almost all Java systems and programmers can benefit from adding JPython to their
tool sets.

JPython allows programmers to write programs that use Java class libraries in a
fraction of the code and complexity required by Java-coded equivalents. Hence,
JPython excels as an extension language for Java-based systems, especially those
that will run in the context of web browsers. Because Java is a standard component
of most web browsers, JPython scripts will often run automatically without extra
install steps on client machines. Furthermore, even Java-coded applications that
have nothing to do with the Web can benefit from JPython's ease of use; its
seamless integration with Java class libraries makes JPython simply the best Java
scripting and testing tool available today.

For most other applications, though, the standard Python implementation, possibly
integrated with C and C++ components, is probably a better design choice. The
resulting system will likely run faster, cost less to ship, have access to all Python
extension modules, be more robust and portable, and be more easily maintained by
people familiar with standard Python.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 949

On the other hand, I want to point out again that the trade-offs listed here are
mostly written from the Python perspective; if you are a Java developer looking for a
scripting tool for Java-based systems, many of these detriments may be of minor
concern. And to be fair, some of JPython's problems may be addressed in future
releases; for instance, its speed will probably improve over time. Yet even as it
exists today, JPython clearly makes an ideal extension-language solution for Java-
based applications, and offers a much more complete Java scripting solution than
those currently available for other scripting languages.[6]

[6] Other scripting languages have addressed Java integration by reimplementing a Java virtual
machine in the underlying scripting language or by integrating their original C implementations
with Java using the Java native call interface. Neither approach is anywhere near as seamless
and powerful as generating real Java bytecode.

For more details, see the JPython package included on this book's CD (see
http://examples.oreilly.com/python2), and consult the JPython home page, currently
maintained at http://www.jython.org. At least one rumor has leaked concerning an
upcoming JPython book as well, so check http://www.python.org for developments
on this front. See also the sidebar later in this chapter about the new Python
implementation for the C#/.NET environment on Windows. It seems likely that there
will be three Pythons to choose from very soon (not just two), and perhaps more in
the future. All will likely implement the same core Python language we've used in
this text, but may emphasize alternative integration schemes, application domains,
development environments, and so on.

15.5 Grail: A Python-Based Web Browser

I briefly mentioned the Grail browser near the start of Chapter 10. Many of Python's
Internet tools date back to and reuse the work that went into Grail, a full-blown
Internet web browser that:

Is written entirely in Python

Uses the Tkinter GUI API to implement its user interface and render pages

Downloads and runs Python/Tkinter scripts as client-side applets

As mentioned earlier, Grail was something of a proof-of-concept for using Python to
code large-scale Internet applications. It implements all the usual Internet protocols
and works much like common browsers such as Netscape and Internet Explorer.
Grail pages are implemented with the Tk text widgets that we met in the GUI part of
this book.

More interestingly, the Grail browser allows applets to be written in Python. Grail
applets are simply bits of Python code that live on a server but are run on a client. If
an HTML document references a Python class and file that live on a server machine,
Grail automatically downloads the Python code over a socket and runs it on the client
machine, passing it information about the browser's user interface. The downloaded
Python code may use the passed-in browser context information to customize the
user interface, add new kinds of widgets to it, and perform arbitrary client-side
processing on the local machine. Roughly speaking, Python applets in Grail serve the
same purposes as Java applets in common Internet browsers: they perform client-

Programming Python, 2nd Edition, O’Reilly

IT-SC book 950

side tasks that are too complex or slow to implement with other technologies such as
server-side CGI scripts and generated HTML.

15.5.1 A Simple Grail Applet Example

Writing Grail applets is remarkably straightforward. In fact, applets are really just
Python/Tkinter programs; with a few exceptions, they don't need to "know" about
Grail at all. Let's look at a short example; the code in Example 15-6 simply adds a
button to the browser, which changes its appearance each time it's pressed (its
bitmap is reconfigured in the button callback handler).

There are two components to this page definition: an HTML file and the Python
applet code it references. As usual, the grail.html HTML file that follows describes
how to format the web page when the HTML's URL address is selected in a browser.
But here, the APP tag also specifies a Python applet (class) to be run by the browser.
By default, the Python module is assumed to have the same name as the class and
must be stored in the same location (URL directory) as the HTML file that references
it. Additional APP tag options can override the applet's default location.

Example 15-6. PP2E\Internet\Other\grail.html

<HEAD>
<TITLE>Grail Applet Test Page</TITLE>
</HEAD>
<BODY>
<H1>Test an Applet Here!</H1>
Click this button!
<APP CLASS=Question>
</BODY>

The applet file referenced by the HTML is a Python script that adds widgets to the
Tkinter-based Grail browser. Applets are simply classes in Python modules. When the
APP tag is encountered in the HTML, the Grail browser downloads the Question.py
source code module (Example 15-7) and makes an instance of its Question class,
passing in the browser widget as the master (parent). The master is the hook that
lets applets attach new widgets to the browser itself; applets extend the GUI
constructed by the HTML in this way.

Example 15-7. PP2E\Internet\Other\Question.py

Python applet file: Question.py
in the same location (URL) as the html file
that references it; adds widgets to browser;

from Tkinter import *

class Question: # run by grail?
 def __init__(self, parent): # parent=browser
 self.button = Button(parent,
 bitmap='question',
 command=self.action)
 self.button.pack()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 951

 def action(self):
 if self.button['bitmap'] == 'question':
 self.button.config(bitmap='questhead')
 else:
 self.button.config(bitmap='question')

if __name__ == '__main__':
 root = Tk() # run standalone?
 button = Question(root) # parent=Tk: top-level
 root.mainloop()

Notice that nothing in this class is Grail- or Internet-specific; in fact, it can be run
(and tested) standalone as a Python/Tkinter program. Figure 15-3 is what it looks
like if run standalone on Windows (with a Tk application root object as the master);
when run by Grail (with the browser/page object as the master), the button appears
as part of the web page instead. Either way, its bitmap changes on each press.

Figure 15-3. Running a Grail applet standalone

In effect, Grail applets are simply Python modules that are linked into HTML pages by
using the APP tag. The Grail browser downloads the source code identified by an APP
tag and runs it locally on the client during the process of creating the new page. New
widgets added to the page (like the button here) may run Python callbacks on the
client later, when activated by the user.

Applets interact with the user by creating one or more arbitrary Tk widgets. Of
course, the previous example is artificial; but notice that the button's callback
handler could do anything we can program in Python: updating persistent
information, popping up new user interaction dialogs, calling C extensions, etc.
However, by working in concert with Python's restricted execution mode (discussed
later) applets can be prevented from performing potentially unsafe operations, like
opening local files and talking over sockets.

Figure 15-4 shows a screen shot of Grail in action, hinting at what's possible with
Python code downloaded to and run on a client. It shows the animated "game of life"
demo; everything you see here is implemented using Python and the Tkinter GUI
interface. To run the demo, you need to install Python with the Tk extension and
download the Grail browser to run locally on your machine or copy it off the CD.
Then point your browser to a URL where any Grail demo lives.

Figure 15-4. A Grail applet demo

Programming Python, 2nd Edition, O’Reilly

IT-SC book 952

Having said all that, I should add that Grail is no longer formally maintained, and is
now used primarily for research purposes (Guido never intended for Grail to put
Netscape or Microsoft out of business). You can still get it for free (find it at
http://www.python.org) and use it for surfing the Web or experimenting with
alternative web browser concepts, but it is not the active project it was a few years
ago.

If you want to code web browser applets in Python, the more common approach
today is to use the JPython system described previously to compile your scripts into
Java applet bytecode files, and use Java libraries for your scripts' user-interface
portions. Embedding Python code in HTML with the Active Scripting extension
described later in this chapter is yet another way to integrate client-side code.

Alas, this advice may change over time too. For instance, if
Tkinter is ever ported to JPython, you will be able to build GUIs
in applet files with Tkinter, rather than with Java class libraries.
In fact, as I wrote this, an early release of a complete Java JNI
implementation of the Python built-in _tkinter module (which
allows JPython scripts to import and use the Tkinter module in
the standard Python library) was available on the Net at
http://jtkinter.sourceforge.net. Whether this makes Tkinter a
viable GUI option under JPython or not, all current approaches
are subject to change. Grail, for instance, was a much more
prominent tool when the first edition of this book was written. As
ever, be sure to keep in touch with developments in the Python
community at http://www.python.org; clairvoyance isn't all it's

k d t b

Programming Python, 2nd Edition, O’Reilly

IT-SC book 953

cracked up to be.

15.6 Python Restricted Execution Mode

In prior chapters, I've been careful to point out the dangers of running arbitrary
Python code that was shipped across the Internet. There is nothing stopping a
malicious user, for instance, from sending a string such as os.system('rm *') in a
form field where we expect a simple number; running such a code string with the
built-in eval function or exec statement may, by default, really work -- it might just
delete all the files in the server or client directory where the calling Python script
runs!

Moreover, a truly malicious user can use such hooks to view or download password
files, and otherwise access, corrupt, or overload resources on your machine. Alas,
where there is a hole, there is probably a hacker. As I've cautioned, if you are
expecting a number in a form, you should use simpler string conversion tools such as
int or string.atoi instead of interpreting field contents as Python program syntax
with eval.

But what if you really want to run Python code transmitted over the Net? For
instance, you may wish to put together a web-based training system that allows
users to run code from a browser. It is possible to do this safely, but you need to use
Python's restricted execution mode tools when you ask Python to run the code.
Python's restricted execution mode support is provided in two standard library
modules, rexec and bastion. rexec is the primary interface to restricted execution,
while bastion can be used to restrict and monitor access to object attributes.

On Unix systems, you can also use the standard resource module to limit things like
CPU time and memory consumption while the code is running. Python's library
manual goes into detail on these modules, but let's take a brief look at rexec here.

15.6.1 Using rexec

The restricted execution mode implemented by rexec is optional -- by default, all
Python code runs with full access to everything available in the Python language and
library. But when we enable restricted mode, code executes in what is commonly
called a "sandbox" model -- access to components on the local machine is limited.
Operations that are potentially unsafe are either disallowed or must be approved by
code you can customize by subclassing. For example, the script in Example 15-8
runs a string of program code in a restricted environment and customizes the default
rexec class to restrict file access to a single, specific directory.

Example 15-8. PP2E\Internet\Other\restricted.py

#!/usr/bin/python
import rexec, sys
Test = 1
if sys.platform[:3] == 'win':
 SafeDir = r'C:\temp'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 954

else:
 SafeDir = '/tmp/'

def commandLine(prompt='Input (ctrl+z=end) => '):
 input = ''
 while 1:
 try:
 input = input + raw_input(prompt) + '\n'
 except EOFError:
 break
 print # clear for Windows
 return input

if not Test:
 import cgi # run on the web? - code from
form
 form = cgi.FieldStorage() # else input interactively to
test
 input = form['input'].value
else:
 input = commandLine()

subclass to customize default rules: default=write modes disallowed
class Guard(rexec.RExec):
 def r_open(self, name, mode='r', bufsz=-1):
 if name[:len(SafeDir)] != SafeDir:
 raise SystemError, 'files outside %s prohibited' % SafeDir
 else:
 return open(name, mode, bufsz)

limit system resources (not available on Windows)
if sys.platform[:3] != 'win':
 import resource # at most 5 cpu seconds
 resource.setrlimit(resource.RLIMIT_CPU, (5, 5))

run code string safely
guard = Guard()
guard.r_exec(input) # ask guard to check and do opens

When we run Python code strings with this script on Windows, safe code works as
usual, and we can read and write files that live in the C:\temp directory, because our
custom Guard class's r_open method allows files with names beginning with
"C:\temp" to proceed. The default r_open in rexec.RExec allows all files to be read,
but all write requests fail. Here, we type code interactively for testing, but it's exactly
as if we received this string over the Internet in a CGI script's form field:

C:\...\PP2E\Internet\Other>python restricted.py
Input (ctrl+z=end) => x = 5
Input (ctrl+z=end) => for i in range(x): print 'hello%d' % i,
Input (ctrl+z=end) => hello0 hello1 hello2 hello3 hello4

C:\...\PP2E\Internet\Other>python restricted.py
Input (ctrl+z=end) => open(r'C:\temp\rexec.txt', 'w').write('Hello
rexec\n')
Input (ctrl+z=end) =>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 955

C:\...\PP2E\Internet\Other>python restricted.py
Input (ctrl+z=end) => print open(r'C:\temp\rexec.txt', 'r').read()
Input (ctrl+z=end) => Hello rexec

On the other hand, attempting to access files outside the allowed directory will fail in
our custom class, as will inherently unsafe things such as opening sockets, which
rexec always makes out of bounds by default:

C:\...\PP2E\Internet\Other>python restricted.py
Input (ctrl+z=end) => open(r'C:\stuff\mark\hack.txt',
'w').write('BadStuff\n')
Input (ctrl+z=end) => Traceback (innermost last):
 File "restricted.py", line 41, in ?
 guard.r_exec(input) # ask guard to check and do opens
 File "C:\Program Files\Python\Lib\rexec.py", line 253, in r_exec
 exec code in m.__dict__
 File "<string>", line 1, in ?
 File "restricted.py", line 30, in r_open
 raise SystemError, 'files outside %s prohibited' % SafeDir
SystemError: files outside C:\temp prohibited

C:\...\PP2E\Internet\Other>python restricted.py
Input (ctrl+z=end) => open(r'C:\stuff\mark\secret.py', 'r').read()
Input (ctrl+z=end) => Traceback (innermost last):
 File "restricted.py", line 41, in ?
 guard.r_exec(input) # ask guard to check and do opens
 File "C:\Program Files\Python\Lib\rexec.py", line 253, in r_exec
 exec code in m.__dict__
 File "<string>", line 1, in ?
 File "restricted.py", line 30, in r_open
 raise SystemError, 'files outside %s prohibited' % SafeDir
SystemError: files outside C:\temp prohibited

C:\...\PP2E\Internet\Other>python restricted.py
Input (ctrl+z=end) => from socket import *
Input (ctrl+z=end) => s = socket(AF_INET, SOCK_STREAM)
Input (ctrl+z=end) => Traceback (innermost last):
 File "restricted.py", line 41, in ?
 guard.r_exec(input) # ask guard to check and do opens
 ...part ommitted...
 File "C:\Program Files\Python\Lib\ihooks.py", line 324, in
load_module
 exec code in m.__dict__
 File "C:\Program Files\Python\Lib\plat-win\socket.py", line 17, in ?
 _realsocketcall = socket
NameError: socket

And what of that nasty rm * problem? It's possible in normal Python mode like
everything else, but not when running in restricted mode. Python makes some
potentially dangerous attributes of the os module, such as system (for running shell
commands), disallowed in restricted mode:

C:\temp>python
>>> import os
>>> os.system('ls -l rexec.txt')
-rwxrwxrwa 1 0 0 13 May 4 15:45 rexec.txt

Programming Python, 2nd Edition, O’Reilly

IT-SC book 956

0
>>>
C:\temp>python %X%\Part2\internet\other\restricted.py
Input (ctrl+z=end) => import os
Input (ctrl+z=end) => os.system('rm *.*')
Input (ctrl+z=end) => Traceback (innermost last):
 File "C:\PP2ndEd\examples\Part2\internet\other\restricted.py", line
41, in ?
 guard.r_exec(input) # ask guard to check and do opens
 File "C:\Program Files\Python\Lib\rexec.py", line 253, in r_exec
 exec code in m.__dict__
 File "<string>", line 2, in ?
AttributeError: system

Internally, restricted mode works by taking away access to certain APIs (imports are
controlled, for example) and changing the __builtins__ dictionary in the module
where the restricted code runs to reference a custom and safe version of the
standard __builtin__ built-in names scope. For instance, the custom version of
name __builtins_ _.open references a restricted version of the standard file open
function. rexec also keeps customizable lists of safe built-in modules, safe os and
sys module attributes, and more. For the rest of this story, see the Python library
manual.

Restricted execution mode is not necessarily tied to Internet
scripting. It can be useful any time you need to run Python code
of possibly dubious origin. For instance, we will use Python's
eval and exec built-ins to evaluate arithmetic expressions and
input commands in a calculator program later in the book.
Because user input is evaluated as executable code in this
context, there is nothing preventing a user from knowingly or
unknowingly entering code that can do damage when run (e.g.,
they might accidentally type Python code that deletes files).
However, the risk of running raw code strings becomes more
prevalent in applications that run on the Web, since they are
inherently open to both use and abuse. Although JPython
inherits the underlying Java security model, pure Python
systems such as Zope, Grail, and custom CGI scripts can all
benefit from restricted execution of strings sent over the Net.

15.7 XML Processing Tools

Python ships with XML parsing support in its standard library and plays host to a
vigorous XML special-interest group. XML (eXtended Markup Language) is a tag-
based markup language for describing many kinds of structured data. Among other
things, it has been adopted in roles such as a standard database and Internet
content representation by many companies. As an object-oriented scripting
language, Python mixes remarkably well with XML's core notion of structured
document interchange, and promises to be a major player in the XML arena.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 957

XML is based upon a tag syntax familiar to web page writers. Python's xmllib library
module includes tools for parsing XML. In short, this XML parser is used by defining a
subclass of an XMLParser Python class, with methods that serve as callbacks to be
invoked as various XML structures are detected. Text analysis is largely automated
by the library module. This module's source code, file xmllib.py in the Python library,
includes self-test code near the bottom that gives additional usage details. Python
also ships with a standard HTML parser, htmllib, that works on similar principles
and is based upon the sgmllib SGML parser module.

Unfortunately, Python's XML support is still evolving, and describing it is well beyond
the scope of this book. Rather than going into further details here, I will instead
point you to sources for more information:

Standard library

First off, be sure to consult the Python library manual for more on the standard
library's XML support tools. At the moment, this includes only the xmllib parser
module, but may expand over time.

PyXML SIG package

At this writing, the best place to find Python XML tools and documentation is at the
XML SIG (Special Interest Group) web page at http://www.python.org (click on the
"SIGs" link near the top). This SIG is dedicated to wedding XML technologies with
Python, and publishes a free XML tools package distribution called PyXML. That
package contains tools not yet part of the standard Python distribution, including
XML parsers implemented in both C and Python, a Python implementation of SAX
and DOM (the XML Document Object Model), a Python interface to the Expat parser,
sample code, documentation, and a test suite.

Third-party tools

You can also find free, third-party Python support tools for XML on the Web by
following links at the XML SIGs web page. These include a DOM implementation for
CORBA environments (4DOM) that currently supports two ORBs (ILU and Fnorb) and
much more.

Documentation

As I wrote these words, a book dedicated to XML processing with Python was on the
eve of its publication; check the books list at http://www.python.org or your favorite
book outlet for details.

Given the rapid evolution of XML technology, I wouldn't wager on any of these
resources being up to date a few years after this edition's release, so be sure to
check Python's web site for more recent developments on this front.

In fact, the XML story changed substantially between the time I
wrote this section and when I finally submitted it to O'Reilly. In
Python 2.0, some of the tools described here as the PyXML SIG

k h d th i i t t d d l d l

Programming Python, 2nd Edition, O’Reilly

IT-SC book 958

package have made their way into a standard xml module
package in the Python library. In other words, they ship and
install with Python itself; see the Python 2.0 library manual for
more details. O'Reilly has a book in the works on this topic called
Python and XML.

15.8 Windows Web Scripting Extensions

Although this book doesn't cover the Windows-specific extensions available for
Python in detail, a quick look at Internet scripting tools available to Windows
programmers is in order here. On Windows, Python can be used as a scripting
language for both the Active Scripting and Active Server Pages systems, which
provide client- and server-side control of HTML-based applications. More generally,
Python programs can also take the role of COM and DCOM clients and servers on
Windows.

You should note that at this point in time, everything in this section works only on
Microsoft tools, and HTML embedding runs only under Internet Explorer (on the
client) and Internet Information Server (on the server). If you are interested in
portability, other systems in this chapter may address your needs better (see
JPython's client-side applets, PSP's server-side scripting support, and Zope's server-
side object publishing model). On the other hand, if portability isn't a concern, the
following techniques provide powerful ways to script both sides of a web
conversation.

15.8.1 Active Scripting: Client-Side Embedding

Active Scripting is a technology that allows scripting languages to communicate with
hosting applications. The hosting application provides an application-specific object
model API, which exposes objects and functions for use in the scripting language
programs.

In one if its more common roles, Active Scripting provides support that allows
scripting language code embedded in HTML pages to communicate with the local web
browser through an automatically exposed object model API. Internet Explorer, for
instance, utilizes Active Scripting to export things such as global functions and user-
interface objects for use in scripts embedded in HTML. With Active Scripting, Python
code may be embedded in a web page's HTML between special tags; such code is
executed on the client machine and serves the same roles as embedded JavaScript
and VBScript.

15.8.1.1 Active Scripting basics

Unfortunately, embedding Python in client-side HTML works only on machines where
Python is installed and Internet Explorer is configured to know about the Python
language (by installing the win32all extension package discussed in a moment).
Because of that, this technology doesn't apply to most of the browsers in cyberspace
today. On the other hand, if you can configure the machines on which a system is to
be delivered, this is a nonissue.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 959

Before we get into a Python example, let's look at the way standard browser
installations handle other languages embedded in HTML. By default, IE (Internet
Explorer) knows about JavaScript (really, Microsoft's Jscript implementation of it)
and VBScript (a Visual Basic derivative), so you can embed both of those languages
in any delivery scenario. For instance, the HTML file in Example 15-9 embeds
JavaScript code, the default IE scripting language on my PC.

Example 15-9. PP2E\Internet\Other\activescript-js.html

<HTML>
<BODY>
<H1>Embedded code demo: JavaScript</H1>
<SCRIPT>

// popup 3 alert boxes while this page is
// being constructed on client side by IE;
// JavaScript is the default script language,
// and alert is an automatically exposed name

function message(i) {
 if (i == 2) {
 alert("Finished!");
 }
 else {
 alert("A JavaScript-generated alert => " + i);
 }
}

for (count = 0; count < 3; count += 1) {
 message(count);
}

</SCRIPT>
</BODY></HTML>

All the text between the <SCRIPT> and </SCRIPT> tags in this file is JavaScript code.
Don't worry about its syntax -- this book isn't about JavaScript, and we'll see a
simpler Python equivalent in a moment. The important thing to know is how this
code is used by the browser.

When a browser detects a block of code like this while building up a new page, it
locates the appropriate interpreter, tells the interpreter about global object names,
and passes the code to the interpreter for execution. The global names become
variables in the embedded code and provide links to browser context. For instance,
the name alert in the code block refers to a global function that creates a message
box. Other global names refer to objects that give access to the browser's user
interface: window objects, document objects, and so on.

This HTML file can be run on the local machine by clicking on its name in a file
explorer. It can also be stored on a remote server and accessed via its URL in a
browser. Whichever way you start it, three pop-up alert boxes created by the
embedded code appear during page construction. Figure 15-5 shows one under IE.

Figure 15-5. IE running embedded JavaScript code

Programming Python, 2nd Edition, O’Reilly

IT-SC book 960

The VBScript (Visual Basic) version of this example appears in Example 15-10, so
you can compare and contrast.[7] It creates three similar pop-ups when run, but the
windows say "VBScript" everywhere. Notice the Language option in the <SCRIPT> tag
here; it must be used to declare the language to IE (in this case, VBScript) unless
your embedded scripts speak in its default tongue. In the JavaScript version in
Example 15-9, Language wasn't needed, because JavaScript was the default
language. Other than this declaration, IE doesn't care what language you insert
between <SCRIPT> and </SCRIPT>; in principle, Active Scripting is a language-
neutral scripting engine.

[7] Again, feel free to ignore most of this example's syntax. I'm not going to teach either
JavaScript or VBScript syntax in this book, nor will I tell you which of the three versions of this
example is clearer (though you can probably guess my preference). The first two versions are
included partly for comparison by readers with a web development background.

Example 15-10. PP2E\Internet\Other\activescript-vb.html

<HTML>
<BODY>
<H1>Embedded code demo: VBScript</H1>
<SCRIPT Language=VBScript>

' do the same but with embedded VBScript;
' the Language option in the SCRIPT tag
' tells IE which interpreter to use

sub message(i)
 if i = 2 then
 alert("Finished!")
 else
 alert("A VBScript-generated alert => " & i)
 end if
end sub

for count = 0 to 2 step 1
 message(count)
next

Programming Python, 2nd Edition, O’Reilly

IT-SC book 961

</SCRIPT>
</BODY></HTML>

So how about putting Python code in that page, then? Alas, we need to do a bit more
first. Although IE is language-neutral in principle, it does support some languages
better than others, at least today. Moreover, other browsers may be more rigid and
not support the Active Scripting concept at all.

For example, on my machine and with my installed browser versions (IE 5, Netscape
4), the previous JavaScript example works on both IE and Netscape, but the Visual
Basic version works only on IE. That is, IE directly supports VBScript and JavaScript,
while Netscape handles only JavaScript. Neither browser as installed can run
embedded Python code, even though Python itself is already installed on my
machine. There's more to do before we can replace the JavaScript and VBScript code
in our HTML pages with Python.

15.8.1.2 Teaching IE about Python

To make the Python version work, you must do more than simply installing Python
on your PC. You must also register Python with IE. Luckily, this is mostly an
automatic process, thanks to the work of the Python Windows extension developers;
you merely need to install a package of Windows extensions.

Here's how this works. The tool to perform the registration is part of the Python
Win32 extensions, which are not included in the standard Python system. To make
Python known to IE, you must:

First install the standard Python distribution your PC (you should have done this
already by now -- simply double-click the Python self-installer).

Then download and install the win32all package separately from
http://www.python.org (you can also find it at
http://examples.oreilly.com/python2).[8]

[8] However, you may not need to download the win32all package. The ActivePython
Python distribution available from ActiveState (http://www.activestate.com), for
example, comes with the Windows extensions package.

The win32all package includes the win32COM extensions for Python, plus the
PythonWin IDE (a simple interface for editing and running Python programs, written
with the MFC interfaces in win32all) and lots of other Windows-specific tools not
covered in this book. The relevant point here is that installing win32all
automatically registers Python for use in IE. If needed, you can also perform this
registration manually by running the following Python script file located in the win32
extensions package: python\win32comext\axscript\client\pyscript.py.

Once you've registered Python with IE this way, Python code embedded in HTML
works just like our JavaScript and VBScript examples -- IE presets Python global
names to expose its object model and passes the embedded code to your Python
interpreter for execution. Example 15-11 shows our alerts example again,
programmed with embedded Python code.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 962

Example 15-11. PP2E\Internet\Other\activescript-py.html

<HTML>
<BODY>
<H1>Embedded code demo: Python</H1>
<SCRIPT Language=Python>

do the same but with python, if configured;
embedded python code shows three alert boxes
as page is loaded; any Python code works here,
and uses auto-imported global funcs and objects

def message(i):
 if i == 2:
 alert("Finished!")
 else:
 alert("A Python-generated alert => %d" % i)

for count in range(3): message(count)

</SCRIPT>
</BODY></HTML>

Figure 15-6 shows one of the three pop-ups you should see when you open this file
in IE after installing the win32all package (you can simply click on the file's icon in
Windows' file explorer to open it). Note that the first time you access this page, IE
may need to load Python, which could induce an apparent delay on slower machines;
later accesses generally start up much faster because Python has already been
loaded.

Figure 15-6. IE running embedded Python code

Regrettably, this example still works only on IE Version 4 and higher, and not on the
Netscape browser on my machine (and reportedly fails on Netscape 6 and Mozilla as
well). In other words (at least today and barring new browser releases), not only is

Programming Python, 2nd Edition, O’Reilly

IT-SC book 963

Active Scripting a Windows-only technology, but using it as a client-side web browser
tool for Python works only on machines where Python is installed and registered to
IE, and even then only under IE.

It's also worth knowing that even when you do get Python to work under IE, your
Python code runs in restricted mode, with limited access to machine resources (e.g.,
your code can't open sockets -- see the rexec module description earlier in this
chapter for details). That's probably what you want when running code downloaded
over the Net, and can be changed locally (the implementation is coded in Python),
but it limits the utility and scope of your Python scripts embedded in HTML.

The good news is that this does work -- with a simple configuration step, Python
code can be embedded in HTML and be made to run under IE, just like JavaScript
and VBScript. For many applications, the Windows and IE-only constraint is
completely acceptable. Active Scripting is a straightforward way to add client-side
Python scripting for web browsers, especially when you can control the target
delivery environment. For instance, machines running on an Intranet within a
company may have well-known configurations. In such scenarios, Active Scripting
lets developers apply all the power of Python in their client-side scripts.

15.8.2 Active Server Pages: Server-Side Embedding

Active Server Pages (ASPs) use a similar model: Python code is embedded in the
HTML that defines a web page. But ASP is a server-side technology; embedded
Python code runs on the server machine and uses an object-based API to
dynamically generate portions of the HTML that is ultimately sent back to the client-
side browser. As we saw in the last three chapters, Python server-side CGI scripts
embed and generate HTML, and deal with raw inputs and output streams. By
contrast, server-side ASP scripts are embedded in HTML and use a higher-level
object model to get their work done.

Just like client-side Active Scripting, ASP requires you to install Python and the
Python Windows win32all extensions package. But because ASP runs embedded
code on the server, you need to configure Python only on one machine. Like CGI
scripts in general, this generally makes Python ASP scripting much more widely
applicable, as you don't need Python support on every client. Unlike CGI scripts,
however, ASP requires you to run Microsoft's IIS (Internet Information Server)
today.

15.8.2.1 A short ASP example

We can't discuss ASP in any real detail here, but here's an example of what an ASP
file looks like when Python code is embedded:

<HTML><BODY>
<SCRIPT RunAt=Server Language=Python>

code here is run at the server

</SCRIPT>
</BODY></HTML>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 964

As before, code may be embedded inside SCRIPT tag pairs. This time, we tell ASP to
run the code at the server with the RunAt option; if omitted, the code and its tags
are passed through to the client and run by IE (if configured properly). ASP also
recognizes code enclosed in <% and %> delimiters and allows a language to be
specified for the entire page. This form is more handy if there are multiple chunks of
code in a page, as shown in Example 15-12.

Example 15-12. PP2E\Internet\Other\asp-py.asp

<HTML><BODY>
<%@ Language=Python %>

<%

Python code here, using global names Request (input), Response
(output), etc.

Response.Write("Hello ASP World from URL %s" %
 Request.ServerVariables("PATH_INFO"))
%>
</BODY></HTML>

However the code is marked, ASP executes it on the server after passing in a handful
of named objects that the code may use to access input, output and server context.
For instance, the automatically imported Request and Response objects give access
to input and output context. The code here calls a Response.Write method to send
text back to the browser on the client (much like a print statement in a simple
Python CGI script), as well as Request.ServerVariables to access environment
variable information. To make this script run live, you'll need to place it in the proper
directory on a server machine running IIS with ASP support.

15.8.3 The COM Connection

At their core, both IE and IIS are based on the COM (Component Object Model)
integration system -- they implement their object APIs with standard COM interfaces
and look to the rest of the world like any other COM object. From a broader
perspective, Python can be used as both a scripting and implementation language for
any COM object. Although the COM mechanism used to run Python code embedded
within HTML is automated and hidden, it can also be employed explicitly to make
Python programs take the role of both COM clients and servers. COM is a general
integration technology and is not strictly tied to Internet scripting, but a brief
introduction here might help demystify some of the Active Scripting magic behind
HTML embedding.

15.8.3.1 A brief introduction to COM

COM is a Microsoft technology for language-neutral component integration. It is
sometimes marketed as ActiveX, partially derived from a system called OLE, and is
the technological heart of the Active Scripting system we met earlier.[9] COM also
sports a distributed extension known as DCOM that allows communicating objects to
be run on remote machines. Implementing DCOM often simply involves running

Programming Python, 2nd Edition, O’Reilly

IT-SC book 965

through Windows registry configuration steps to associate servers with machines on
which they run.

[9] Roughly, OLE (Object Linking and Embedding) was a precursor to COM, and Active Scripting
is just a technology that defines COM interfaces for activities such as passing objects to
arbitrary programming language interpreters by name. Active Scripting is not much more than
COM itself with a few extensions, but acronym- and buzzword-overload seem to run rampant
in the Windows development world.

Operationally, COM defines a standard way for objects implemented in arbitrary
languages to talk to each other, using a published object model. For example, COM
components can be written in and used by programs written in Visual Basic, Visual
C++, Delphi, PowerBuilder, and Python. Because the COM indirection layer hides the
differences between all the languages involved, it's possible for Visual Basic to use
an object implemented in Python and vice versa.

Moreover, many software packages register COM interfaces to support end-user
scripting. For instance, Microsoft Excel publishes an object model that allows any
COM-aware scripting language to start Excel and programmatically access
spreadsheet data. Similarly, Microsoft Word can be scripted through COM to
automatically manipulate documents. COM's language-neutrality means that
programs written in any programming language with a COM interface, including
Visual Basic and Python, can be used to automate Excel and Word processing.

Of most relevance to this chapter, Active Scripting also provides COM objects that
allow scripts embedded in HTML to communicate with Microsoft's Internet Explorer
(on the client) and Internet Information Server (on the server). Both systems
register their object models with Windows such that they can be invoked from any
COM-aware language. For example, when Internet Explorer extracts and executes
Python code embedded in HTML, some Python variable names are automatically
preset to COM object components that give access to IE context and tools (alert in
Example 15-11). Calls to such components from Python code are automatically
routed through COM back to IE.

15.8.3.2 Python COM clients

With the win32all Python extension package installed, though, we can also write
Python programs that serve as registered COM servers and clients, even if they have
nothing to do with the Internet at all. For example, the Python program in Example
15-13 acts as a client to the Microsoft Word COM object.

Example 15-13. PP2E\Internet\Other\Com\comclient.py

a COM client coded in Python: talk to MS-Word via its COM object
model; uses either dynamic dispatch (run-time lookup/binding),
or the static and faster type-library dispatch if makepy.py has
been run; install the windows win32all extensions package to use
this interface; Word runs hidden unless Visible is set to 1 (and
Visible lets you watch, but impacts interactive Word sessions);

from sys import argv
docdir = 'C:\\temp\\'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 966

if len(argv) == 2: docdir = argv[1] # ex: comclient.py a:\

from win32com.client import Dispatch # early or late
binding
word = Dispatch('Word.Application') # connect/start word
word.Visible = 1 # else word runs
hidden

create and save new doc file
newdoc = word.Documents.Add() # call word methods
spot = newdoc.Range(0,0)
spot.InsertBefore('Hello COM client world!') # insert some text
newdoc.SaveAs(docdir + 'pycom.doc') # save in doc file
newdoc.SaveAs(docdir + 'copy.doc')
newdoc.Close()

open and change a doc file
olddoc = word.Documents.Open(docdir + 'copy.doc')
finder = word.Selection.Find
finder.text = 'COM'
finder.Execute()
word.Selection.TypeText('Automation')
olddoc.Close()

and so on: see Word's COM interface specs

This particular script starts Microsoft Word -- known as Word.Application to
scripting clients -- if needed, and converses with it through COM. That is, calls in this
script are automatically routed from Python to Microsoft Word and back. This code
relies heavily on calls exported by Word, which are not described in this book. Armed
with documentation for Word's object API, though, we could use such calls to write
Python scripts that automate document updates, insert and replace text, create and
print documents, and so on.

For instance, Figure 15-7 shows the two Word .doc files generated when the previous
script is run on Windows: both are new files, and one is a copy of the other with a
text replacement applied. The interaction that occurs while the script runs is more
interesting: because Word's Visible attribute is set to 1, you can actually watch
Word inserting and replacing text, saving files, etc., in response to calls in the script.
(Alas, I couldn't quite figure out how to paste a movie clip in this book.)

Figure 15-7. Word files generated by Python COM client

Programming Python, 2nd Edition, O’Reilly

IT-SC book 967

In general, Python COM client calls may be dispatched either dynamically by run-
time look-ups in the Windows registry, or statically using type libraries created by
running a Python utility script at development time (makepy.py). These dispatch
modes are sometimes called late and early dispatch binding, respectively. Dynamic
(late) dispatch skips a development step but is slower when clients are running, due
to all the required look-ups.[10]

[10] Actually, makepy can also be executed at runtime now, so you may no longer need to
manually run it during development. See the makepy documentation available in the latest
Windows extensions package for breaking details.

Luckily, we don't need to know which scheme will be used when we write client
scripts. The Dispatch call used in Example 15-13 to connect to Word is smart
enough to use static binding if server type libraries exist, or dynamic binding if they
do not. To force dynamic binding and ignore any generated type libraries, replace the
first line with this:

from win32com.client.dynamic import Dispatch # always late binding

However calls are dispatched, the Python COM interface performs all the work of
locating the named server, looking up and calling the desired methods or attributes,
and converting Python datatypes according to a standard type map as needed. In
the context of Active Scripting, the underlying COM model works the same way, but
the server is something like IE or IIS (not Word), the set of available calls differs,
and some Python variables are preassigned to COM server objects. The notions of
"client" and "server" can become somewhat blurred in these scenarios, but the net
result is similar.

15.8.3.3 Python COM servers

Python scripts can also be deployed as COM servers, and provide methods and
attributes that are accessible to any COM-aware programming language or system.
This topic is too complex to cover well here, but exporting a Python object to COM is

Programming Python, 2nd Edition, O’Reilly

IT-SC book 968

mostly just a matter of providing a set of class attributes to identify the server and
utilizing the proper win32com registration utility calls. Example 15-14 is a simple
COM server coded in Python as a class.

Example 15-14. PP2E\Internet\Other\Com\comserver.py

a COM server coded in Python; the _reg_ class attributes
give registry parameters, and others list methods and attrs;
for this to work, you must install Python and the win32all
package, this module file must live on your Python path,
and the server must be registered to COM (see code at end);
run pythoncom.CreateGuid() to make your own _reg_clsid_ key;

import sys
from win32com.server.exception import COMException # what to
raise
import win32com.server.util # server
tools
globhellos = 0

class MyServer:

 # com info settings
 _reg_clsid_ = '{1BA63CC0-7CF8-11D4-98D8-BB74DD3DDE3C}'
 _reg_desc_ = 'Example Python Server'
 _reg_progid_ = 'PythonServers.MyServer' # external
name
 _reg_class_spec_ = 'comserver.MyServer' # internal
name
 _public_methods_ = ['Hello', 'Square']
 _public_attrs_ = ['version']

 # python methods
 def __init__(self):
 self.version = 1.0
 self.hellos = 0
 def Square(self, arg): # exported
methods
 return arg ** 2
 def Hello(self): # global
variables
 global globhellos # retain
state, but
 globhellos = globhellos + 1 # self
vars don't
 self.hellos = self.hellos + 1
 return 'Hello COM server world [%d, %d]' % (globhellos,
self.hellos)

registration functions
def Register(pyclass=MyServer):
 from win32com.server.register import UseCommandLine
 UseCommandLine(pyclass)
def Unregister(classid=MyServer._reg_clsid_):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 969

 from win32com.server.register import UnregisterServer
 UnregisterServer(classid)

if __name__ == '__main__': # register server if file run or
clicked
 Register() # unregisters if --unregister cmd-
line arg

As usual, this Python file must be placed in a directory in Python's module search
path. Besides the server class itself, the file includes code at the bottom to
automatically register and unregister the server to COM when the file is run:

To register a server, simply call the UseCommandLine function in the
win32com.server.register package and pass in the Python server class. This
function uses all the special class attribute settings to make the server known to
COM. The file is set to automatically call the registration tools if it is run by itself
(e.g., when clicked in a file explorer).

To unregister a server, simply pass an --unregister argument on the command line
when running this file. When run this way, the script automatically calls
UseCommandLine again to unregister the server; as its name implies, this function
inspects command-line arguments and knows to do the right thing when --
unregister is passed. You can also unregister servers explicitly with the
UnregisterServer call demonstrated near the end of this script, though this is less
commonly used.

Perhaps the more interesting part of this code, though, is the special class attribute
assignments at the start of the Python class. These class annotations can provide
server registry settings (the _reg_ attributes), accessibility constraints (the
public names), and more. Such attributes are specific to the Python COM
framework, and their purpose is to configure the server.

For example, the _reg_class_spec_ is simply the Python module and class names
separated by a period. If set, the resident Python interpreter uses this attribute to
import the module and create an instance of the Python class it defines, when
accessed by a client.[11]

[11] But note that the _reg_class_spec_ attribute is no longer strictly needed, and not
specifying it avoids a number of PYTHONPATH issues. Because such settings are prone to
change, you should always consult the latest Windows extensions package reference manuals
for details on this and other class annotation attributes.

Other attributes may be used to identify the server in the Windows registry. The
_reg_clsid_ attribute, for instance, gives a globally unique identifier (GUID) for the
server and should vary in every COM server you write. In other words, don't use the
value in this script. Instead, do what I did to make this ID, and paste the result
returned on your machine into your script:[12]

[12] The A:/> prompt shows up here only because I copied the COM scripts to a floppy so I
could run them on a machine with the win32all extension installed. You should be able to run
from the directory where these scripts live in the examples tree.

A:\>python
>>> import pythoncom

Programming Python, 2nd Edition, O’Reilly

IT-SC book 970

>>> pythoncom.CreateGuid()
<iid:{1BA63CC0-7CF8-11D4-98D8-BB74DD3DDE3C}>

GUIDs are generated by running a tool shipped with the Windows extensions
package; simply import and call the pythoncom.CreateGuid() function and insert
the returned text in the script. Windows uses the ID stamped into your network card
to come up with a complex ID that is likely to be unique across servers and
machines. The more symbolic Program ID string, _reg_progid_, can be used by
clients to name servers too, but is not as likely to be unique.

The rest of the server class is simply pure-Python methods, which implement the
exported behavior of the server; that is, things to be called from clients. Once this
Python server is annotated, coded, and registered, it can be used in any COM-aware
language. For instance, programs written in Visual Basic, C++, Delphi, and Python
may access its public methods and attributes through COM; of course, other Python
programs can also simply import this module, but the point of COM is to open up
components for even wider reuse.[13]

[13] But you should be aware of a few type rules. In Python 1.5.2, Python-coded COM servers
must be careful to use a fixed number of function arguments, and convert passed-in strings
with the str built-in function. The latter of these constraints arises because COM passes
strings as Unicode strings. Because Python 1.6 and 2.0 now support both Unicode and normal
strings, though, this constraint should disappear soon. When using COM as a client (i.e., code
that calls COM), you may pass a string or Unicode object, and the conversion is done
automatically; when coding a COM server (i.e., code called by COM), strings are always
passed in as Unicode objects.

15.8.3.3.1 Using the Python server from a Python client

Let's put this Python COM server to work. The Python script in Example 15-15 tests
the server two ways: first by simply importing and calling it directly, and then by
employing Python's client-side COM interfaces shown earlier to invoke it less directly.
When going through COM, the PythonServers.MyServer symbolic program ID we
gave the server (by setting class attribute _reg_progid_) can be used to connect to
this server from any language (including Python).

Example 15-15. PP2E\Internet\Other\Com\comserver-test.py

test the Python-coded COM server from Python two ways

def testViaPython(): # test without
com
 from comserver import MyServer # use Python class
name
 object = MyServer() # works as for
any class
 print object.Hello()
 print object.Square(8)
 print object.version

def testViaCom():
 from win32com.client import Dispatch # test via client-
side com

Programming Python, 2nd Edition, O’Reilly

IT-SC book 971

 server = Dispatch('PythonServers.MyServer') # use Windows
registry name
 print server.Hello() # call public
methods
 print server.Square(12)
 print server.version # access
attributes

if __name__ == '__main__':
 testViaPython() # test module,
server
 testViaCom() # com object
retains state
 testViaCom()

If we've properly configured and registered the Python COM server, we can talk to it
by running this Python test script. In the following, we run the server and client files
from an MS-DOS console box (though they can usually be run by mouse clicks as
well). The first command runs the server file by itself to register the server to COM;
the second executes the test script to exercise the server both as an imported
module (testViaPython) and as a server accessed through COM (testViaCom):

A:\>python comserver.py
Registered: PythonServers.MyServer

A:\>python comserver-test.py
Hello COM server world [1, 1]
64
1.0
Hello COM server world [2, 1]
144
1.0
Hello COM server world [3, 1]
144
1.0

A:\>python comserver.py --unregister
Unregistered: PythonServers.MyServer

Notice the two numbers at the end of the Hello output lines: they reflect current
values of a global variable and a server instance attribute. Global variables in the
server's module retain state as long as the server module is loaded; by contrast,
each COM Dispatch (and Python class) call makes a new instance of the server
class, and hence new instance attributes. The third command unregisters the server
in COM, as a cleanup step. Interestingly, once the server has been unregistered, it's
no longer usable, at least not through COM:

A:\>python comserver-test.py
Hello COM server world [1, 1]
64
1.0
Traceback (innermost last):
 File "comserver-test.py", line 21, in ?
 testViaCom() # com object
retains

Programming Python, 2nd Edition, O’Reilly

IT-SC book 972

 File "comserver-test.py", line 14, in testViaCom
 server = Dispatch('PythonServers.MyServer') # use Windows
register
 ...more deleted...
pywintypes.com_error: (-2147221005, 'Invalid class string', None, None)

15.8.3.3.2 Using the Python server from a VB client

The comserver-test.py script just listed demonstrates how to use a Python COM
server from a Python COM client. Once we've created and registered a Python COM
server, though, it's available to any language that sports a COM interface. For
instance, Example 15-16 shows the sort of code we write to access the Python server
from Visual Basic. Clients coded in other languages (e.g., Delphi or Visual C++) are
analogous, but syntax and instantiation calls may vary.

Example 15-16. PP2E\Internet\Other\Com\comserver-test.bas

Sub runpyserver()
 ' use python server from vb client
 ' alt-f8 in word to start macro editor
 Set server = CreateObject("PythonServers.MyServer")
 hello1 = server.hello()
 square = server.square(32)
 pyattr = server.Version
 hello2 = server.hello()
 sep = Chr(10)
 Result = hello1 & sep & square & sep & pyattr & sep & hello2
 MsgBox Result
End Sub

The real trick (at least for someone as naive about VB as this author) is how to make
this code go. Because VB is embedded in Microsoft Office products such as Word,
one approach is to test this code in the context of those systems. Try this: start
Word, press Alt and F8 together, and you'll wind up in the Word macro dialog. There,
enter a new macro name, press Create, and you'll find yourself in a development
interface where you can paste and run the VB code just shown.

I don't teach VB tools in this book, so you'll need to consult other documents if this
fails on your end. But it's fairly simple once you get the knack -- running the VB code
in this context produces the Word pop-up box in Figure 15-8, showing the results of
VB calls to our Python COM server. Global variable and instance attribute values at
the end of both Hello reply messages are the same this time, because we make only
one instance of the Python server class: in VB, by calling CreateObject, with the
program ID of the desired server.

Figure 15-8. VB client running Python COM server

Programming Python, 2nd Edition, O’Reilly

IT-SC book 973

But because we've now learned how to embed VBScript in HTML pages, another way
to kick off the VB client code is to put it in a web page and rely on IE to launch it for
us. The bulk of the HTML file in Example 15-17 is the same as the Basic file shown
previously, but tags have been added around the code to make it a bona fide web
page.

Example 15-17. PP2E\Internet\Other\Com\comserver-test-vbs.html

<HTML><BODY>
<P>Run Python COM server from VBScript embedded in HTML via IE</P>
<SCRIPT Language=VBScript>

Sub runpyserver()
 ' use python server from vb client
 ' alt-f8 in word to start macro editor
 Set server = CreateObject("PythonServers.MyServer")
 hello1 = server.hello()
 square = server.square(9)
 pyattr = server.Version
 hello2 = server.hello()
 sep = Chr(10)
 Result = hello1 & sep & square & sep & pyattr & sep & hello2
 MsgBox Result
End Sub

runpyserver()

</SCRIPT>
</BODY></HTML>

There is an incredible amount of routing going on here, but the net result is similar
to running the VB code by itself. Clicking on this file starts Internet Explorer
(assuming it is registered to handle HTML files), which strips out and runs the
embedded VBScript code, which in turn calls out to the Python COM server. That is,
IE runs VBScript code that runs Python code -- a control flow spanning three
systems, an HTML file, a Python file, and the IE implementation. With COM, it just
works. Figure 15-9 shows IE in action running the HTML file above; the pop-up box is
generated by the embedded VB code as before.

Figure 15-9. IE running a VBScript client running a Python COM server

Programming Python, 2nd Edition, O’Reilly

IT-SC book 974

If your client code runs but generates a COM error, make sure that the win32all
package has been installed, that the server module file is in a directory on Python's
path, and that the server file has been run by itself to register the server with COM.
If none of that helps, you're probably already beyond the scope of this text. (Please
see additional Windows programming resources for more details.)

15.8.3.4 The bigger COM picture

So what does writing Python COM servers have to do with the Internet motif of this
chapter? After all, Python code embedded in HTML simply plays the role of COM
client to IE or IIS systems that usually run locally. Besides showing how such
systems work their magic, I've presented this topic here because COM, at least in its
grander world view, is also about communicating over networks.

Although we can't get into details in this text, COM's distributed extensions make it
possible to implement Python-coded COM servers to run on machines that are
arbitrarily remote from clients. Although largely transparent to clients, COM object
calls like those in the preceding client scripts may imply network transfers of
arguments and results. In such a configuration, COM may be used as a general
client/server implementation model and a replacement for technologies such as RPC
(Remote Procedure Calls).

For some applications, this distributed object approach may even be a viable
alternative to Python's other client and server-side scripting tools we've studied in
this part of the book. Moreover, even when not distributed, COM is an alternative to
the lower-level Python/C integration techniques we'll meet later in this book.

Once its learning curve is scaled, COM is a straightforward way to integrate arbitrary
components and provides a standardized way to script and reuse systems. However,
COM also implies a level of dispatch indirection overhead and is a Windows-only
solution at this writing. Because of that, it is generally not as fast or portable as
some of the other client/server and C integration schemes discussed in this book.
The relevance of such trade-offs varies per application.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 975

As you can probably surmise, there is much more to the Windows scripting story
than we cover here. If you are interested in more details, O'Reilly's Python
Programming on Win32 provides an excellent presentation of these and other
Windows development topics. Much of the effort that goes into writing scripts
embedded in HTML involves using the exposed object model APIs, which are
deliberately skipped in this book; see Windows documentation sources for more
details.

The New C# Python Compiler

Late-breaking news: a company called ActiveState
(http://www.activestate.com) announced a new compiler for Python after
this chapter was completed. This system (tentatively titled Python.NET) is a
new, independent Python language implementation like the JPython system
described earlier in this chapter, but compiles Python scripts for use in the
Microsoft C# language environment and .NET framework (a software
component system based on XML that fosters cross-language
interoperability). As such, it opens the door to other Python web scripting
roles and modes in the Windows world.

If successful, this new compiler system promises to be the third Python
implementation (with JPython and the standard C implementation) and an
exciting development for Python in general. Among other things, the C#-
based port allows Python scripts to be compiled to binary .exe files and
developed within the Visual Studio IDE. As in the JPython Java-based
implementation, scripts are coded using the standard Python core language
presented in this text, and translated to be executed by the underlying C#
system. Moreover, .NET interfaces are automatically integrated for use in
Python scripts: Python classes may subclass, act as, and use .NET
components.

Also like JPython, this new alternative implementation of Python has a
specific target audience and will likely prove to be of most interest to
developers concerned with C# and .NET framework integration. ActiveState
also plans to roll out a whole suite of Python development products besides
this new compiler; be sure to watch the Python and ActiveState web sites
for more details.

15.9 Python Server Pages

Though still somewhat new at this writing, Python Server Pages (PSP) is a server-
side technology that embeds JPython code inside HTML. PSP is a Python-based
answer to other server-side embedded scripting approaches.

The PSP scripting engine works much like Microsoft's Active Server Pages (ASP,
described earlier) and Sun's Java Server Pages (JSP) specification. At the risk of
pushing the acronym tolerance envelope, PSP has also been compared to PHP, a
server-side scripting language embedded in HTML. All of these systems, including
PSP, embed scripts in HTML and run them on the server to generate the response
stream sent back to the browser on the client; scripts interact with an exposed

Programming Python, 2nd Edition, O’Reilly

IT-SC book 976

object model API to get their work done. PSP is written in pure Java, however, and
so is portable to a wide variety of platforms (ASP applications can be run only on
Microsoft platforms).

PSP uses JPython as its scripting language, reportedly a vastly more appropriate
choice for scripting web sites than the Java language used in Java Server Pages.
Since JPython code is embedded under PSP, scripts have access to the large number
of Python and JPython tools and add-ons from within PSPs. In addition, scripts may
access all Java libraries, thanks to JPython's Java integration support.

We can't cover PSP in detail here; but for a quick look, Example 15-18, adapted from
an example in the PSP documentation, illustrates the structure of PSPs.

Example 15-18. PP2E\Internet\Other\hello.psp

$[
Generate a simple message page with the client's IP address
]$
<HTML><HEAD>
<TITLE>Hello PSP World</TITLE>
</HEAD>
<BODY>
$[include banner.psp]$
<H1>Hello PSP World</H1>

$[
Response.write("Hello from PSP, %s." % (Request.server["REMOTE_ADDR"])
)
]$

</BODY></HTML>

A page like this would be installed on a PSP-aware server machine and referenced by
URL from a browser. PSP uses $[and]$ delimiters to enclose JPython code
embedded in HTML; anything outside these pairs is simply sent to the client browser,
while code within these markers is executed. The first code block here is a JPython
comment (note the # character); the second is an include statement that simply
inserts another PSP file's contents.

The third piece of embedded code is more useful. As in Active Scripting technologies,
Python code embedded in HTML uses an exposed object API to interact with the
execution context -- in this case, the Response object is used to write output to the
client's browser (much like a print in a CGI script), and Request is used to access
HTTP headers for the request. The Request object also has a params dictionary
containing GET and POST input parameters, as well as a cookies dictionary holding
cookie information stored on the client by a PSP application.

Notice that the previous example could have just as easily been implemented with a
Python CGI script using a Python print statement, but PSP's full benefit becomes
clearer in large pages that embed and execute much more complex JPython code to
produce a response.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 977

PSP runs as a Java servlet and requires the hosting web site to support the Java
Servlet API, all of which is beyond the scope of this text. For more details about PSP,
visit its web site, currently located at http://www.ciobriefings.com/psp, but search
http://www.python.org for other links if this one changes over time.

15.10 Rolling Your Own Servers in Python

Most of the Internet modules we looked at in the last few chapters deal with client-
side interfaces such as FTP and POP, or special server-side protocols such as CGI
that hide the underlying server itself. If you want to build servers in Python by hand,
you can do so either manually or by using higher-level tools.

15.10.1 Coding Solutions

We saw the sort of code needed to build servers manually in Chapter 10. Python
programs typically implement servers either by using raw socket calls with threads,
forks, or selects to handle clients in parallel, or by using the SocketServer module.

In either case, to serve requests made in terms of higher-level protocols such as
FTP, NNTP, and HTTP, you must listen on the protocol's port and add appropriate
code to handle the protocol's message conventions. If you go this route, the client-
side protocol modules in Python's standard library can help you understand the
message conventions used. You may also be able to uncover protocol server
examples in the Demos and Tools directories of the Python source distribution and
on the Net at large (search http://www.python.org). See prior chapters for more
details on writing socket-based servers.

As a higher-level interface, Python also comes with precoded HTTP web protocol
server implementations, in the form of three standard modules. BaseHTTPServer
implements the server itself; this class is derived from the standard
SocketServer.TCPServer class. SimpleHTTPServer and CGIHTTPServer implement
standard handlers for incoming HTTP requests; the former handles simple web page
file requests, while the latter also runs referenced CGI scripts on the server machine
by forking processes.

For example, to start a CGI-capable HTTP server, simply run Python code like that
shown in Example 15-19 on the server machine.

Example 15-19. PP2E\Internet\Other\webserver.py

#!/usr/bin/python

implement a HTTP server in Python which
knows how to run server-side CGI scripts;
change root dir for your server machine

import os
from BaseHTTPServer import HTTPServer
from CGIHTTPServer import CGIHTTPRequestHandler
os.chdir("/home/httpd/html") # run in html
root dir

Programming Python, 2nd Edition, O’Reilly

IT-SC book 978

srvraddr = ("", 80) # my hostname,
portnumber
srvrobj = HTTPServer(srvraddr, CGIHTTPRequestHandler)
srvrobj.serve_forever() # run as
perpetual demon

This assumes that you have appropriate permissions to run such a script, of course;
see the Python library manual for more details on precoded HTTP server and request
handler modules. Once you have your server running, you can access it in any web
browser or by using either the Python httplib module, which implements the client
side of the HTTP protocol, or the Python urllib module, which provides a file-like
interface to data fetched from a named URL address (see the urllib examples in
Chapter 11Chapter 11, and Chapter 13, and use a URL of the form "http://..." to
access HTTP documents).

15.10.2 Packaged Solutions

Finally, you can deploy full-blown, open source, and Python-friendly web servers and
tools that are freely available on the Net. These may change over time too, but here
are a few current options:

Medusa, asyncore

The Medusa system (http://www.nightmare.com/medusa) is an architecture for
building long-running, high-performance network servers in Python, and is used in
several mission-critical systems. Beginning in Python 1.5.2, the core of Medusa is
now standard in Python, in the form of the asyncore and asynchat library modules.
These standard modules may be used by themselves to build high-performance
network servers, based on an asynchronous, multiplexing, single-process model.
They use an event loop built using the select system call presented in Chapter 10 of
this book to provide concurrency without spawning threads or processes, and are
well-suited to handling short-lived transactions. See the Python library for details.
The complete Medusa system (not shipped with Python) also provides precoded HTTP
and FTP servers; it is free for noncommercial use, but requires a license otherwise.

Zope

If you are doing any server-side work at all, be sure to consider the Zope open
source web application server, described earlier in this chapter and at
http://www.zope.org. Zope provides a full-featured web framework that implements
an object model that is well beyond standard server-side CGI scripting. The Zope
world has also developed full-blown servers (e.g., Zserver).

Mailman

If you are looking for email list support, be sure to explore the GNU mailing list
manager, otherwise known as Mailman. Written in Python, Mailman provides a
robust, quick, and feature-rich email discussion list tool. Mailman allows users to
subscribe over the Web, supports web-based administration, and provides mail-to-
news gateways and integrated spam prevention (spam of the junk mail variety, that
is). At this time, http://www.list.org is the place to find more Mailman details.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 979

Apache

If you are adventurous, you may be interested in the highly configurable Apache
open source web server. Apache is one of the dominant servers used on the Web
today, despite its free nature. Among many other things, it supports running Python
server-side scripts in a variety of modes; see the site http://www.apache.org for
details on Apache itself.

PyApache

If you use Apache, also search the Python web site for information on the PyApache
Apache server module (sometimes called mod_pyapache), which embeds a Python
interpreter inside Apache to speed up the process of launching Python server-side
scripts. CGI scripts are passed to the embedded interpreter directly, avoiding
interpreter startup costs. PyApache also opens up the possibility of scripting Apache's
internal components.

mod_python

As I wrote this chapter, another package for embedding Python within the Apache
web server appeared on the open source landscape: mod_python, available at
http://www.modpython.org. According to its release notes, mod_python also allows
Python to be embedded in Apache, with a substantial boost in performance and
added flexibility. The beta release announcement for this system appeared on
comp.lang.python the very week that this section was written, so check the Web for
its current status.

Be sure to watch http://www.python.org for new developments on the server front,
as well as late-breaking advances in Python web scripting techniques in general.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 980

Part IV: Assorted Topics

This part of the book is a collection of additional Python application topics. Most of
the tools presented along the way can be used in a wide variety of application
domains. You'll find the following chapters here:

Chapter 16. This chapter covers commonly used and advanced Python techniques for
storing information between program executions -- DBM files, object pickling
(serialization), object shelves, and Python's SQL database interfaces.

Chapter 17. This chapter explores techniques for implementing more advanced data
structures in Python -- stacks, sets, binary search trees, graphs, and the like. In
Python, these take the form of object implementations.

Chapter 18. This chapter addresses Python tools and techniques for parsing text-
based information -- string splits and joins, regular expression matching, recursive
descent parsing, and advanced language-based topics.

This is the last pure Python part of the book and makes heavy use of tools presented
earlier in the text, especially the Tkinter GUI library. For instance, a tree browser is
used to illustrate various object structures, a form browser helps make database
concepts more concrete, and a calculator GUI serves to demonstrate language
processing and code reuse concepts.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 981

Chapter 16. Databases and Persistence

16.1 "Give Me an Order of Persistence, but
Hold the Pickles"

16.2 Persistence Options in Python

16.3 DBM Files

16.4 Pickled Objects

16.5 Shelve Files

16.6 SQL Database Interfaces

16.7 PyForm: A Persistent Object Viewer

16.1 "Give Me an Order of Persistence, but Hold the
Pickles"

So far in this book, we've used Python in the system programming, GUI
development, and Internet scripting domains -- three of Python's most common
applications. In the next three chapters, we're going to take a quick look at other
major Python programming topics: persistent data, data structure techniques, and
text and language processing tools. None of these are covered exhaustively (each
could easily fill a book alone), but we'll sample Python in action in these domains and
highlight their core concepts. If any of these chapters spark your interest, additional
resources are readily available in the Python world.

16.2 Persistence Options in Python

In this chapter, our focus is on persistent data -- the kind that outlives a program
that creates it. That's not true by default for objects a script constructs; things like
lists, dictionaries, and even class instance objects live in your computer's memory
and are lost as soon as the script ends. To make data longer-lived, we need to do
something special. In Python programming, there are at least five traditional ways to
save information between program executions:

Flat files: storing text and bytes

DBM keyed files: keyed access to strings

Pickled objects: serializing objects to byte streams

Shelve files: storing pickled objects in DBM keyed files

Programming Python, 2nd Edition, O’Reilly

IT-SC book 982

Database systems: full-blown SQL and object database systems

We studied Python's simple (or "flat") file interfaces in earnest in Chapter 2, and
have been using them ever since. Python provides standard access to both the stdio
filesystem (through the built-in open function), as well as lower-level descriptor-
based files (with the built-in os module). For simple data storage tasks, these are all
that many scripts need. To save for use in a future program run, simply write data
out to a newly opened file on your computer and read it back from that file later. As
we've seen, for more advanced tasks, Python also supports other file-like interfaces
such as pipes, fifos, and sockets.

Since we've already explored flat files, I won't say more about them here. The rest of
this chapter introduces the remaining topics on the list earlier in this section. At the
end, we'll also meet a GUI program for browsing the contents of things like shelves
and DBM files. Before that, though, we need to learn what manner of beast these
are.

16.3 DBM Files

Flat files are handy for simple persistence tasks, but are generally geared towards a
sequential processing mode. Although it is possible to jump around to arbitrary
locations with seek calls, flat files don't provide much structure to data beyond the
notion of bytes and text lines.

DBM files, a standard tool in the Python library for database management, improve
on that by providing key-based access to stored text strings. They implement a
random-access, single-key view on stored data. For instance, information related to
objects can be stored in a DBM file using a unique key per object and later can be
fetched back directly with the same key. DBM files are implemented by a variety of
underlying modules (including one coded in Python), but if you have Python, you
have a DBM.

16.3.1 Using DBM Files

Although DBM filesystems have to do a bit of work to map chunks of stored data to
keys for fast retrieval (technically, they generally use a technique called hashing to
store data in files), your scripts don't need to care about the action going on behind
the scenes. In fact, DBM is one of the easiest ways to save information in Python --
DBM files behave so much like in-memory dictionaries that you may forget you're
actually dealing with a file. For instance, given a DBM file object:

Indexing by key fetches data from the file.

Assigning to an index stores data in the file.

DBM file objects also support common dictionary methods such as keys-list fetches
and tests, and key deletions. The DBM library itself is hidden behind this simple
model. Since it is so simple, let's jump right into an interactive example that creates
a DBM file and shows how the interface works:

% python

Programming Python, 2nd Edition, O’Reilly

IT-SC book 983

>>> import anydbm # get interface: dbm, gdbm,
ndbm,..
>>> file = anydbm.open('movie', 'c') # make a dbm file called
'movie'
>>> file['Batman'] = 'Pow!' # store a string under key
'Batman'
>>> file.keys() # get the file's key
directory
['Batman']
>>> file['Batman'] # fetch value for key
'Batman'
'Pow!'

>>> who = ['Robin', 'Cat-woman', 'Joker']
>>> what = ['Bang!', 'Splat!', 'Wham!']
>>> for i in range(len(who)):
... file[who[i]] = what[i] # add 3 more "records"
...
>>> file.keys()
['Joker', 'Robin', 'Cat-woman', 'Batman']
>>> len(file), file.has_key('Robin'), file['Joker']
(4, 1, 'Wham!')
>>> file.close() # close sometimes
required

Internally, importing anydbm automatically loads whatever DBM interface is available
in your Python interpreter, and opening the new DBM file creates one or more
external files with names that start with the string "movie" (more on the details in a
moment). But after the import and open, a DBM file is virtually indistinguishable
from a dictionary. In effect, the object called file here can be thought of as a
dictionary mapped to an external file called movie.

Unlike normal dictionaries, though, the contents of file are retained between
Python program runs. If we come back later and restart Python, our dictionary is still
available. DBM files are like dictionaries that must be opened:

% python
>>> import anydbm
>>> file = anydbm.open('movie', 'c') # open existing dbm file
>>> file['Batman']
'Pow!'

>>> file.keys() # keys gives an index
list
['Joker', 'Robin', 'Cat-woman', 'Batman']
>>> for key in file.keys(): print key, file[key]
...
Joker Wham!
Robin Bang!
Cat-woman Splat!
Batman Pow!

>>> file['Batman'] = 'Ka-Boom!' # change Batman slot
>>> del file['Robin'] # delete the Robin entry
>>> file.close() # close it after changes

Programming Python, 2nd Edition, O’Reilly

IT-SC book 984

Apart from having to import the interface and open and close the DBM file, Python
programs don't have to know anything about DBM itself. DBM modules achieve this
integration by overloading the indexing operations and routing them to more
primitive library tools. But you'd never know that from looking at this Python code --
DBM files look like normal Python dictionaries, stored on external files. Changes
made to them are retained indefinitely:

% python
>>> import anydbm # open dbm file again
>>> file = anydbm.open('movie', 'c')
>>> for key in file.keys(): print key, file[key]
...
Joker Wham!
Cat-woman Splat!
Batman Ka-Boom!

As you can see, this is about as simple as it can be. Table 16-1 lists the most
commonly used DBM file operations. Once such a file is opened, it is processed just
as though it were an in-memory Python dictionary. Items are fetched by indexing the
file object by key and stored by assigning to a key.

Table 16-1. DBM File Operations

Python Code Action Description

import anydbm Import
Get dbm, gdbm ,... whatever is
installed

file = anydbm.open('filename',
'c') Open[1] Create or open an existing DBM file

file['key'] = 'value' Store Create or change the entry for key

value = file['key'] Fetch Load the value for entry key

count = len(file) Size Return the number of entries stored

index = file.keys() Index Fetch the stored keys list

found = file. has_key('key') Query See if there's an entry for key

del file['key'] Delete Remove the entry for key

Programming Python, 2nd Edition, O’Reilly

IT-SC book 985

file.close() Close Manual close, not always needed

[1] In Python versions 1.5.2 and later, be sure to pass a string c as a second argument when
calling anydbm.open, to force Python to create the file if it does not yet exist, and simply open
it otherwise. This used to be the default behavior but is no longer. You do not need the c
argument when opening shelves discussed ahead -- they still use an "open or create" mode by
default if passed no open mode argument. Other open mode strings can be passed to anydbm
(e.g., n to always create the file, and r for read only -- the new default); see the library
reference manuals for more details.

Despite the dictionary-like interface, DBM files really do map to one or more external
files. For instance, the underlying gdbm interface writes two files, movie.dir and
movie.pag, when a GDBM file called movie is made. If your Python was built with a
different underlying keyed-file interface, different external files might show up on
your computer.

Technically, module anydbm is really an interface to whatever DBM-like filesystem
you have available in your Python. When creating a new file, anydbm today tries to
load the dbhash, gdbm , and dbm keyed-file interface modules; Pythons without any
of these automatically fall back on an all-Python implementation called dumbdbm.
When opening an already-existing DBM file, anydbm tries to determine the system
that created it with the whichdb module instead. You normally don't need to care
about any of this, though (unless you delete the files your DBM creates).

Note that DBM files may or may not need to be explicitly closed, per the last entry in
Table 16-1. Some DBM files don't require a close call, but some depend on it to flush
changes out to disk. On such systems, your file may be corrupted if you omit the
close call. Unfortunately, the default DBM on the 1.5.2 Windows Python port, dbhash
(a.k.a., bsddb), is one of the DBM systems that requires a close call to avoid data
loss. As a rule of thumb, always close your DBM files explicitly after making changes
and before your program exits, to avoid potential problems. This rule extends by
proxy to shelves, a topic we'll meet later in this chapter.

16.4 Pickled Objects

Probably the biggest limitation of DBM keyed files is in what they can store: data
stored under a key must be a simple text string. If you want to store Python objects
in a DBM file, you can sometimes manually convert them to and from strings on
writes and reads (e.g., with str and eval calls), but this only takes you so far. For
arbitrarily complex Python objects like class instances, you need something more.
Class instance objects, for example, cannot be later recreated from their standard
string representations.

The Python pickle module, a standard part of the Python system, provides the
conversion step needed. It converts Python in-memory objects to and from a single
linear string format, suitable for storing in flat files, shipping across network sockets,
and so on. This conversion from object to string is often called serialization --
arbitrary data structures in memory are mapped to a serial string form. The string
representation used for objects is also sometimes referred to as a byte-stream, due
to its linear format.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 986

16.4.1 Using Object Pickling

Pickling may sound complicated the first time you encounter it, but the good news is
that Python hides all the complexity of object-to-string conversion. In fact, the pickle
module's interfaces are incredibly simple to use. The following list describes a few
details of this interface.

P = pickle.Pickler(file)

Make a new pickler for pickling to an open output file object file.

P.dump(object)

Write an object onto the pickler's file/stream.

pickle.dump(object, file)

Same as the last two calls combined: pickle an object onto an open file.

U = pickle.Unpickler(file)

Make an unpickler for unpickling from an open input file object file.

object = U.load()

Read an object from the unpickler's file/stream.

object = pickle.load(file)

Same as the last two calls combined: unpickle an object from an open file.

string = pickle.dumps(object)

Return the pickled representation of object as a character string.

object = pickle.loads(string)

Read an object from a character string instead of a file.

Pickler and Unpickler are exported classes. In all of these, file is either an open
file object or any object that implements the same attributes as file objects:

Pickler calls the file's write method with a string argument.

Unpickler calls the file's read method with a byte count, and readline without
arguments.

Any object that provides these attributes can be passed in to the "file" parameters.
In particular, file can be an instance of a Python class that provides the read/write
methods. This lets you map pickled streams to in-memory objects, for arbitrary use.
It also lets you ship Python objects across a network, by providing sockets wrapped

Programming Python, 2nd Edition, O’Reilly

IT-SC book 987

to look like files in pickle calls at the sender and unpickle calls at the receiver (see
Making Sockets Look Like Files in Chapter 10, for more details).

In more typical use, to pickle an object to a flat file, we just open the file in write-
mode, and call the dump function; to unpickle, reopen and call load:

% python
>>> import pickle
>>> table = {'a': [1, 2, 3], 'b': ['spam', 'eggs'], 'c':{'name':'bob'}}
>>> mydb = open('dbase', 'w')
>>> pickle.dump(table, mydb)

% python
>>> import pickle
>>> mydb = open('dbase', 'r')
>>> table = pickle.load(mydb)
>>> table

{'b': ['spam', 'eggs'], 'a': [1, 2, 3], 'c': {'name': 'bob'}}

To make this process simpler still, the module in Example 16-1 wraps pickling and
unpickling calls in functions that also open the files where the serialized form of the
object is stored.

Example 16-1. PP2E\Dbase\filepickle.py

import pickle

def saveDbase(filename, object):
 file = open(filename, 'w')
 pickle.dump(object, file) # pickle to file
 file.close() # any file-like object will do

def loadDbase(filename):
 file = open(filename, 'r')
 object = pickle.load(file) # unpickle from file
 file.close() # recreates object in memory
 return object

To store and fetch now, simply call these module functions:

C:\...\PP2E\Dbase>python
>>> from filepickle import *
>>> L = [0]
>>> D = {'x':0, 'y':L}
>>> table = {'A':L, 'B':D} # L appears twice
>>> saveDbase('myfile', table) # serialize to file

C:\...\PP2E\Dbase>python
>>> from filepickle import *
>>> table = loadDbase('myfile') # reload/unpickle
>>> table
{'B': {'x': 0, 'y': [0]}, 'A': [0]}
>>> table['A'][0] = 1
>>> saveDbase('myfile', table)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 988

C:\...\PP2E\Dbase>python
>>> from filepickle import *
>>> print loadDbase('myfile') # both L's updated as expected
{'B': {'x': 0, 'y': [1]}, 'A': [1]}

Python can pickle just about anything, except compiled code objects, instances of
classes that do not follow importability rules we'll meet later, and instances of some
built-in and user-defined types that are coded in C or depend upon transient
operating system states (e.g., open file objects cannot be pickled). A PicklingError
is raised if an object cannot be pickled.

Refer to Python's library manual for more information on the pickler. And while you
are flipping (or clicking) through that manual, be sure to also see the entries for the
cPickle module -- a reimplementation of pickle coded in C for faster performance.
Also check out marshal, a module that serializes an object, too, but can only handle
simple object types. If available in your Python, the shelve module automatically
chooses the cPickle module for faster serialization, not pickle. I haven't explained
shelve yet, but I will now.

16.5 Shelve Files

Pickling allows you to store arbitrary objects on files and file-like objects, but it's still
a fairly unstructured medium; it doesn't directly support easy access to members of
collections of pickled objects. Higher-level structures can be added, but they are not
inherent:

You can sometimes craft your own higher-level pickle file organizations with the
underlying filesystem (e.g., you can store each pickled object in a file whose name
uniquely identifies the object), but such an organization is not part of pickling itself
and must be manually managed.

You can also store arbitrarily large dictionaries in a pickled file and index them by
key after they are loaded back into memory; but this will load the entire dictionary
all at once when unpickled, not just the entry you are interested in.

Shelves provide some structure to collections of pickled objects. They are a type of
file that stores arbitrary Python objects by key for later retrieval, and they are a
standard part of the Python system. Really, they are not much of a new topic --
shelves are simply a combination of DBM files and object pickling:

To store an in-memory object by key, the shelve module first serializes the object to
a string with the pickle module, and then it stores that string in a DBM file by key
with the anydbm module.

To fetch an object back by key, the shelve module first loads the object's serialized
string by key from a DBM file with the anydbm module, and then converts it back to
the original in-memory object with the pickle module.

Because shelve uses pickle internally, it can store any object that pickle can:
strings, numbers, lists, dictionaries, cyclic objects, class instances, and more.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 989

16.5.1 Using Shelves

In other words, shelve is just a go-between; it serializes and deserializes objects so
that they can be placed in DBM files. The net effect is that shelves let you store
nearly arbitrary Python objects on a file by key, and fetch them back later with the
same key. Your scripts never see all this interfacing, though. Like DBM files, shelves
provide an interface that looks like a dictionary that must be opened. To gain access
to a shelve, import the module and open your file:

import shelve
dbase = shelve.open("mydbase")

Internally, Python opens a DBM file with name mydbase, or creates it if it does not
yet exist. Assigning to a shelve key stores an object:

dbase['key'] = object

Internally, this assignment converts the object to a serialized byte-stream and stores
it by key on a DBM file. Indexing a shelve fetches a stored object:

value = dbase['key']

Internally, this index operation loads a string by key from a DBM file and unpickles it
into an in-memory object that is the same as the object originally stored. Most
dictionary operations are supported here, too:

len(dbase) # number of items stored
dbase.keys() # stored item key index

And except for a few fine points, that's really all there is to using a shelve. Shelves
are processed with normal Python dictionary syntax, so there is no new database API
to learn. Moreover, objects stored and fetched from shelves are normal Python
objects; they do not need to be instances of special classes or types to be stored
away. That is, Python's persistence system is external to the persistent objects
themselves. Table 16-2 summarizes these and other commonly used shelve
operations.

Table 16-2. Shelve File Operations

Python Code Action Description

import shelve Import Get dbm, gdbm ,... whatever is installed

file = shelve.open('filename') Open Create or open an existing DBM file

file['key'] = anyvalue Store Create or change the entry for key

Programming Python, 2nd Edition, O’Reilly

IT-SC book 990

value = file['key'] Fetch Load the value for entry key

count = len(file) Size Return the number of entries stored

index = file.keys() Index Fetch the stored keys list

found = file. has_key('key') Query See if there's an entry for key

del file['key'] Delete Remove the entry for key

file.close() Close Manual close, not always needed

Because shelves export a dictionary-like interface, too, this table is almost identical
to the DBM operation table. Here, though, the module name anydbm is replaced by
shelve, open calls do not require a second c argument, and stored values can be
nearly arbitrary kinds of objects, not just strings. You still should close shelves
explicitly after making changes to be safe, though; shelves use anydbm internally and
some underlying DBMs require closes to avoid data loss or damage.

16.5.2 Storing Built-in Object Types

Let's run an interactive session to experiment with shelve interfaces:

% python
>>> import shelve
>>> dbase = shelve.open("mydbase")
>>> object1 = ['The', 'bright', ('side', 'of'), ['life']]
>>> object2 = {'name': 'Brian', 'age': 33, 'motto': object1}
>>> dbase['brian'] = object2
>>> dbase['knight'] = {'name': 'Knight', 'motto': 'Ni!'}
>>> dbase.close()

Here, we open a shelve and store two fairly complex dictionary and list data
structures away permanently by simply assigning them to shelve keys. Because
shelve uses pickle internally, almost anything goes here -- the trees of nested
objects are automatically serialized into strings for storage. To fetch them back, just
reopen the shelve and index:

% python
>>> import shelve
>>> dbase = shelve.open("mydbase")
>>> len(dbase) # entries
2

Programming Python, 2nd Edition, O’Reilly

IT-SC book 991

>>> dbase.keys() # index
['knight', 'brian']

>>> dbase['knight'] # fetch
{'motto': 'Ni!', 'name': 'Knight'}

>>> for row in dbase.keys():
... print row, '=>'
... for field in dbase[row].keys():
... print ' ', field, '=', dbase[row][field]
...
knight =>
 motto = Ni!
 name = Knight
brian =>
 motto = ['The', 'bright', ('side', 'of'), ['life']]
 age = 33
 name = Brian

The nested loops at the end of this session step through nested dictionaries -- the
outer scans the shelve, and the inner scans the objects stored in the shelve. The
crucial point to notice is that we're using normal Python syntax both to store and to
fetch these persistent objects as well as to process them after loading.

16.5.3 Storing Class Instances

One of the more useful kinds of objects to store in a shelve is a class instance.
Because its attributes record state and its inherited methods define behavior,
persistent class objects effectively serve the roles of both database records and
database-processing programs. For instance, consider the simple class shown in
Example 16-2, which is used to model people.

Example 16-2. PP2E\Dbase\person.py (version 1)

a person object: fields + behavior

class Person:
 def __init__(self, name, job, pay=0):
 self.name = name
 self.job = job
 self.pay = pay # real instance data
 def tax(self):
 return self.pay * 0.25 # computed on call
 def info(self):
 return self.name, self.job, self.pay, self.tax()

We can make some persistent objects from this class by simply creating instances as
usual, and storing them by key on an opened shelve:

C:\...\PP2E\Dbase>python
>>> from person import Person
>>> bob = Person('bob', 'psychologist', 70000)
>>> emily = Person('emily', 'teacher', 40000)
>>>

Programming Python, 2nd Edition, O’Reilly

IT-SC book 992

>>> import shelve
>>> dbase = shelve.open('cast') # make new shelve
>>> for obj in (bob, emily): # store objects
>>> dbase[obj.name] = obj # use name for key
>>> dbase.close() # need for bsddb

When we come back and fetch these objects in a later Python session or script, they
are recreated in memory as they were when they were stored:

C:\...\PP2E\Dbase>python
>>> import shelve
>>> dbase = shelve.open('cast') # reopen shelve
>>>
>>> dbase.keys() # both objects are here
['emily', 'bob']
>>> print dbase['emily']
<person.Person instance at 799940>
>>>
>>> print dbase['bob'].tax() # call: bob's tax
17500.0

Notice that calling Bob's tax method works even though we didn't import the Person
class here. Python is smart enough to link this object back to its original class when
unpickled, such that all the original methods are available through fetched objects.

16.5.4 Changing Classes of Stored Objects

Technically, Python reimports a class to recreate its stored instances as they are
fetched and unpickled. Here's how this works:

Store

When Python pickles a class instance to store it in a shelve, it saves the instance's
attributes plus a reference to the instance's class. Really, Python serializes and
stores the instance's __dict__ attribute dictionary along with source file information
for the class's module.

Fetch

When Python unpickles a class instance fetched from a shelve, it recreates the
instance object in memory by reimporting the class and assigning the saved attribute
dictionary to a new empty instance of the class.

The key point in this is that the class itself is not stored with its instances, but is
instead reimported later when instances are fetched. The upshot is that by modifying
external classes in module files, we can change the way stored objects' data is
interpreted and used without actually having to change those stored objects. It's as
if the class is a program that processes stored records.

To illustrate, suppose the Person class from the previous section was changed to the
source code in Example 16-3.

Example 16-3. PP2E\Dbase\person.py (version 2)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 993

a person object: fields + behavior
change: the tax method is now a computed attribute

class Person:
 def __init__(self, name, job, pay=0):
 self.name = name
 self.job = job
 self.pay = pay # real instance data
 def __getattr__(self, attr): # on person.attr
 if attr == 'tax':
 return self.pay * 0.30 # computed on access
 else:
 raise AttributeError # other unknown names
 def info(self):
 return self.name, self.job, self.pay, self.tax

This revision has a new tax rate (30%), introduces a __getattr__ qualification
overload method, and deletes the original tax method. Tax attribute references are
intercepted and computed when accessed:

C:\...\PP2E\Dbase>python
>>> import shelve
>>> dbase = shelve.open('cast') # reopen shelve
>>>
>>> print dbase.keys() # both objects are here
['emily', 'bob']
>>> print dbase['emily']
<person.Person instance at 79aea0>
>>>
>>> print dbase['bob'].tax # no need to call tax()
21000.0

Because the class has changed, tax is now simply qualified, not called. In addition,
because the tax rate was changed in the class, Bob pays more this time around. Of
course, this example is artificial, but when used well, this separation of classes and
persistent instances can eliminate many traditional database update programs -- in
most cases, you can simply change the class, not each stored instance, for new
behavior.

16.5.5 Shelve Constraints

Although shelves are generally straightforward to use, there are a few rough edges
worth knowing about.

16.5.5.1 Keys must be strings

First of all, although they can store arbitrary objects, keys must still be strings. The
following fails, unless you convert the integer 42 to string "42" manually first:

dbase[42] = value # fails, but str(42) will work

This is different from in-memory dictionaries, which allow any immutable object to
be used as a key, and derives from the shelve's use of DBM files internally.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 994

16.5.5.2 Objects are only unique within a key

Although the shelve module is smart enough to detect multiple occurrences of a
nested object and recreate only one copy when fetched, this only holds true within a
given slot:

dbase[key] = [object, object] # okay: only one copy stored and
fetched

dbase[key1] = object
dbase[key2] = object # bad?: two copies of object in the
shelve

When key1 and key2 are fetched, they reference independent copies of the original
shared object; if that object is mutable, changes from one won't be reflected in the
other. This really stems from the fact the each key assignment runs an independent
pickle operation -- the pickler detects repeated objects but only within each pickle
call. This may or may not be a concern in your practice and can be avoided with
extra support logic, but an object can be duplicated if it spans keys.

16.5.5.3 Updates must treat shelves as fetch-modify-store mappings

Because objects fetched from a shelve don't know that they came from a shelve,
operations that change components of a fetched object only change the in-memory
copy, not the data on a shelve:

dbase[key].attr = value # shelve unchanged

To really change an object stored on a shelve, fetch it into memory, change its parts,
and then write it back to the shelve as a whole by key assignment:

object = dbase[key] # fetch it
object.attr = value # modify it
dbase[key] = object # store back-shelve changed

16.5.5.4 Concurrent updates not allowed

As we learned near the end of Chapter 14, the shelve module does not currently
support simultaneous updates. Simultaneous readers are okay, but writers must be
given exclusive access to the shelve. You can trash a shelve if multiple processes
write to it at the same time, and this is a common potential in things like CGI server-
side scripts. If your shelves may be hit by multiple processes, be sure to wrap
updates in calls to the fcntl.flock built-in we explored in Chapter 14.

16.5.5.5 Pickler class constraints

In addition to these shelve constraints, storing class instances in a shelve adds a set
of additional rules you need to be aware of. Really, these are imposed by the pickle
module, not shelve, so be sure to follow these if you store class objects with pickle
directly, too.

Classes must be importable

Programming Python, 2nd Edition, O’Reilly

IT-SC book 995

The Python pickler stores instance attributes only when pickling an instance object,
and reimports the class later to recreate the instance. Because of that, the classes of
stored objects must be importable when objects are unpickled -- they must be coded
unnested at the top level of a module file visible on PYTHONPATH. Further, they must
be associated with a real module when instances are pickled, not a top-level script
(with module name __main__), and you need to be careful about moving class
modules after instances are stored. When an instance is unpickled, Python must find
its class's module on PYTHONPATH using the original module name (including any
package path prefixes), and fetch the class from that module using the original class
name. If the module or class has been moved or renamed, it might not be found.

Class changes must be backwards-compatible

Although Python lets you change a class while instances of it are stored on a shelve,
those changes must be backwards-compatible with the objects already stored. For
instance, you cannot change the class to expect an attribute not associated with
already-stored persistent instances unless you first manually update those stored
instances or provide extra conversion protocols on the class.

In a prior Python release, persistent object classes also had to either use
constructors with no arguments, or they had to provide defaults for all constructor
arguments (much like the notion of a C++ copy constructor). This constraint was
dropped as of Python 1.5.2 -- classes with non-defaulted constructor arguments now
work fine in the pickling system.[2]

[2] Subtle thing: internally, Python now avoids calling the class to recreate a pickled instance
and instead simply makes a class object generically, inserts instance attributes, and sets the
instance's __class__ pointer to the original class directly. This avoids the need for defaults,
but it also means that the class __init__ constructors are no longer called as objects are
unpickled, unless you provide extra methods to force the call. See the library manual for more
details, and see the pickle module's source code (pickle.py in the source library) if you're
curious about how this works. Better yet, see the formtable module listed ahead in this
chapter -- it does something very similar with __class__ links to build an instance object from
a class and dictionary of attributes, without calling the class's __init__ constructor. This
makes constructor argument defaults unnecessary in classes used for records browsed by
PyForm, but it's the same idea.

16.5.5.6 Other persistence limitations

In addition to the above constraints, keep in mind that files created by an underlying
DBM system are not necessarily compatible with all possible DBM implementations.
For instance, a file generated by gdbm may not be readable by a Python with another
DBM module installed, unless you explicitly import gdbm instead of anydbm (assuming
it's installed at all). If DBM file portability is a concern, make sure that all the
Pythons that will read your data use compatible DBM modules.

Finally, although shelves store objects persistently, they are not really object-
oriented database systems (OODBs). Such systems also implement features like
object decomposition and delayed ("lazy") component fetches, based on generated
object IDs: parts of larger objects are loaded into memory only as they are accessed.
It's possible to extend shelves to support such features, but you don't need to -- the
Zope system described in Chapter 15, includes an implementation of a more
complete OODB system. It is constructed on top of Python's built-in persistence
support, but offers additional features for advanced data stores. See the previous
chapter for information and links.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 996

16.6 SQL Database Interfaces

Shelves are a powerful tool; they allow scripts to throw Python objects on a keyed-
access file and load them back later in a single step. They aren't quite a full-blown
database system, though; objects (records) are accessed with a single key, and
there is no notion of SQL queries. It's as if shelves were a database with a single
index and no other query-processing support.

Although it's possible to build a multiple-index interface to store data with multiple
shelves, it's not a trivial task and requires manually coded extensions (see the
dbaseindexed module in the PyErrata system near the end of Chapter 14 for a
prototype of this concept).

For industrial-strength persistence needs, Python also supports relational database
systems. Today, there are freely available interfaces that let Python scripts utilize all
common database systems, both free and commercial: Oracle, Sybase, Informix,
mSql, MySql, Interbase, Postgres, ODBC, and more. In addition, the Python
community has defined a database API specification that works portably with a
variety of underlying database packages. Scripts written for this API can be migrated
to different database vendor packages with minimal or no source code changes.

16.6.1 Interface Overview

Unlike all the persistence topics presented in this chapter and book so far, though,
SQL databases are optional extensions that are not part of Python itself, and you
need to know SQL to make the most sense of their interfaces. Because I don't have
space to teach SQL in this text, this section instead gives a brief overview of the API;
please consult other SQL references and the database API resources mentioned in
the next section for more details.

The good news is that you can access SQL databases from Python, through a
straightforward and portable model. The Python database API specification defines
an interface for communicating with underlying database systems from Python
scripts. Vendor-specific database interfaces for Python may or may not conform to
this API completely, but all database extensions for Python seem minor variations on
a theme. SQL databases in Python are grounded on a few concepts:

Connection objects represent a connection to a database, are the interface to
rollback and commit operations, and generate cursor objects.

Cursor objects represent a single SQL statement submitted as a string, and can be
used to step through SQL statement results.

Query results of SQL select statements are returned to scripts as Python lists of
Python tuples, representing database tables of rows. Within these row tuples, field
values are normal Python objects such as strings, integers, and floats, or special
types (e.g., [('bob',38), ('emily',37)]).

Beyond this, the API defines a standard set of database exception types, special
database type object constructors (e.g., nulls and dates), and informational calls.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 997

For instance, to establish a database connection under the Python API-compliant
Oracle interface available from Digital Creations, install the extension and then run a
line of this form:

connobj = Connect("user/password@system")

The string argument's contents may vary per database and vendor, but they
generally contain what you provide to log in to your database system. Once you have
a connection object, there a variety of things you can do with it, including:

connobj.close()
close connection now (not at object __del__ time)

connobj.commit()
commit any pending transactions to the database

connobj.rollback()
roll database back to start of pending transactions

connobj.getSource(proc)
fetch stored procedure's code

But one of the most useful things to do with a connection object is to generate a
cursor object:

cursobj = connobj.cursor()
return a new cursor object for running SQL

Cursor objects have a set of methods, too (e.g., close to close the cursor before its
destructor runs), but the most important may be this one:

cursobj.execute(sqlstring [, parm, parm,...])
run SQL query or command string

The execute method can be used to run a variety of SQL statement strings:

DDL definition statements (e.g., CREATE TABLE)

DML modification statements (e.g., UPDATE or INSERT)

DQL query statements (e.g., SELECT)

For DML statements, execute returns the number of rows effected. For DQL query
statements, a None is returned and you must call one of the fetch methods to
complete the operation:

tuple = cursobj.fetchone()
fetch next row of a query result
listoftuple = cursobj.fetchmany([size])
fetch next set of rows of query result
listoftuple = cursobj.fetchall()
fetch all remaining rows of the result

Programming Python, 2nd Edition, O’Reilly

IT-SC book 998

And once you've received fetch method results, table information is processed using
normal Python list and tuple object operations (e.g., you can step through the tuples
in a fetchall result list with a simple for loop). Most Python database interfaces
also allow you to provide values to be passed to SQL statement strings, by providing
targets and a tuple of parameters. For instance:

query = 'SELECT name, shoesize FROM spam WHERE job = ? AND age = ?'
cursobj.execute(query, (value1, value2))
results = cursobj.fetchall()
for row in results: ...

In this event, the database interface utilizes prepared statements (an optimization
and convenience) and correctly passes the parameters to the database regardless of
their Python types. The notation used to code targets in the query string may vary in
some database interfaces (e.g., ":p1" and ":p2", rather than "?" and "?"); in any
event, this is not the same as Python's "%" string formatting operator.

Finally, if your database supports stored procedures, you can generally call them
with the callproc method, or by passing an SQL CALL or EXEC statement string to
the execute method; use a fetch variant to retrieve its results.

16.6.2 Resources

There is more to database interfaces than the basics just mentioned, but additional
API documentation is readily available on the Web. Perhaps the best resource for
information about database extensions today is the home page of the Python
database special interest group (SIG). Go to http://www.python.org, click on the
SIGs link near the top, and navigate to the database group's page (or go straight to
http://www.python.org/sigs/db-sig, the page's current address at the time of
writing). There, you'll find API documentation, links to database vendor-specific
extension modules, and more.

While you're at python.org, be sure to also explore the Gadfly database package -- a
Python-specific SQL-based database extension, which sports wide portability, socket
connections for client/server modes, and more. Gadfly loads data into memory, so it
is currently somewhat limited in scope. On the other hand, it is ideal for prototyping
database applications -- you can postpone cutting a check to a vendor until it's time
to scale up for deployment. Moreover, Gadfly is suitable by itself for a variety of
applications -- not every system needs large data stores, but many can benefit from
the power of SQL.

16.7 PyForm: A Persistent Object Viewer

Rather than going into additional database interface details that are freely available
at python.org, I'm going to close out this chapter by showing you one way to
combine the GUI technology we met earlier in the text with the persistence
techniques introduced in this chapter. This section presents PyForm,a Tkinter GUI
designed to let you browse and edit tables of records:

Tables browsed are shelves, DBM files, in-memory dictionaries, or any other object
that looks and feels like a dictionary.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 999

Records within tables browsed can be class instances, simple dictionaries, strings, or
any other object that can be translated to and from a dictionary.

Although this example is about GUIs and persistence, it also illustrates Python design
techniques. To keep its implementation both simple and type-independent, the
PyForm GUI is coded to expect tables to look like dictionaries of dictionaries. To
support a variety of table and record types, PyForm relies on separate wrapper
classes to translate tables and records to the expected protocol:

At the top table level, the translation is easy -- shelves, DBM files, and in-memory
dictionaries all have the same key-based interface.

At the nested record level, the GUI is coded to assume that stored items have a
dictionary-like interface, too, but classes intercept dictionary operations to make
records compatible with the PyForm protocol. Records stored as strings are
converted to and from the dictionary objects on fetches and stores; records stored as
class instances are translated to and from attribute dictionaries. More specialized
translations can be added in new table wrapper classes.

The net effect is that PyForm can be used to browse and edit a wide variety of table
types, despite its dictionary interface expectations. When PyForm browses shelves
and DBM files, table changes made within the GUI are persistent -- they are saved in
the underlying files. When used to browse a shelve of class instances, PyForm
essentially becomes a GUI frontend to a simple object database, one built using
standard Python persistence tools.

16.7.1 Doing It the Hard Way

Before we get to the GUI, though, let's see why you'd want one in the first place. To
experiment with shelves in general, I first coded a canned test data file. The script in
Example 16-4 hardcodes a dictionary used to populate databases (cast), as well as
a class used to populate shelves of class instances (Actor).

Example 16-4. PP2E\Dbase\testdata.py

definitions for testing shelves, dbm, and formgui

cast = {
 'rob': {'name': ('Rob', 'P'), 'job': 'writer', 'spouse':
'Laura'},
 'buddy': {'name': ('Buddy', 'S'), 'job': 'writer', 'spouse':
'Pickles'},
 'sally': {'name': ('Sally', 'R'), 'job': 'writer'},
 'laura': {'name': ('Laura', 'P'), 'spouse': 'Rob', 'kids':1},
 'milly': {'name': ('Milly', '?'), 'spouse': 'Jerry', 'kids':2},
 'mel': {'name': ('Mel', 'C'), 'job': 'producer'},
 'alan': {'name': ('Alan', 'B'), 'job': 'comedian'}
}

class Actor: # unnested file-
level class
 def __init__(self, name=(), job=''): # no need for arg
defaults,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1000

 self.name = name # for new pickler or
formgui
 self.job = job
 def __setattr__(self, attr, value): # on setattr():
validate
 if attr == 'kids' and value > 10: # but set it
regardless
 print 'validation error: kids =', value
 if attr == 'name' and type(value) != type(()):
 print 'validation error: name type =', type(value)
 self.__dict__[attr] = value # don't trigger
__setattr__

The cast object here is intended to represent a table of records (it's really a
dictionary of dictionaries when written out in Python syntax like this). Now, given
this test data, it's easy to populate a shelve with cast dictionaries. Simply open a
shelve and copy over cast, key for key, as shown in Example 16-5.

Example 16-5. PP2E\Dbase\castinit.py

import shelve
from testdata import cast
db = shelve.open('data/castfile') # create a new shelve
for key in cast.keys():
 db[key] = cast[key] # store dictionaries in shelve

Once you've done that, it's almost as easy to verify your work with a script that
prints the contents of the shelve, as shown in Example 16-6.

Example 16-6. PP2E\Dbase\castdump.py

import shelve
db = shelve.open('data/castfile') # reopen shelve
for key in db.keys(): # show each key,value
 print key, db[key]

Here are these two scripts in action, populating and displaying a shelve of
dictionaries:

C:\...\PP2E\Dbase>python castinit.py
C:\...\PP2E\Dbase>python castdump.py
alan {'job': 'comedian', 'name': ('Alan', 'B')}
mel {'job': 'producer', 'name': ('Mel', 'C')}
buddy {'spouse': 'Pickles', 'job': 'writer', 'name': ('Buddy', 'S')}
sally {'job': 'writer', 'name': ('Sally', 'R')}
rob {'spouse': 'Laura', 'job': 'writer', 'name': ('Rob', 'P')}
milly {'spouse': 'Jerry', 'name': ('Milly', '?'), 'kids': 2}
laura {'spouse': 'Rob', 'name': ('Laura', 'P'), 'kids': 1}

So far, so good. But here is where you reach the limitations of manual shelve
processing: to modify a shelve, you need much more general tools. You could write
little Python scripts that each perform very specific updates. Or you might even get
by for awhile typing such update commands by hand in the interactive interpreter:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1001

>>> import shelve
>>> db = shelve.open('data/castfile')
>>> rec = db['rob']
>>> rec['job'] = 'hacker'
>>> db['rob'] = rec

For all but the most trivial databases, though, this will get tedious in a hurry --
especially for a system's end users. What you'd really like is a GUI that lets you view
and edit shelves arbitrarily, and can be started up easily from other programs and
scripts, as shown in Example 16-7.

Example 16-7. PP2E\Dbase\castview.py

import shelve
from TableBrowser.formgui import FormGui # after initcast
db = shelve.open('data/castfile') # reopen shelve file
FormGui(db).mainloop() # browse existing shelve-
of-dicts

To make this particular script work, we need to move on to the next section.

16.7.2 Doing It the Graphical Way

The path traced in the last section really is what led me to write PyForm, a GUI tool
for editing arbitrary tables of records. When those tables are shelves and DBM files,
the data PyForm displays is persistent; it lives beyond the GUI's lifetime. Because of
that, PyForm can be seen as a simple database browser.

16.7.2.1 PyForm GUI code

We've already met all the GUI interfaces PyForm uses earlier in this book, so I won't
go into all of its implementation details here (see the chapters in Part II, for
background details). Before we see the code at all, though, let's see what it does.
Figure 16-1 shows PyForm in action on Windows, browsing a shelve of persistent
instance objects, created from the testdata module's Actor class. It looks slightly
different but works the same on Linux and Macs.

Figure 16-1. PyForm displaying a shelf of Actor objects

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1002

PyForm uses a three-window interface to the table being browsed; all windows are
packed for proper window expansion and clipping, as set by the rules we studied
earlier in this book. The window in the upper left of Figure 16-1 is the main window,
created when PyForm starts; it has buttons for navigating through a table, finding
items by key, and updating, creating, and deleting records (more useful when
browsing tables that persist between runs). The table (dictionary) key of the record
currently displayed shows up in the input field in the middle of this window.

The "index" button pops up the listbox window in the upper right, and selecting a
record in either window at the top creates the form window at the bottom. The form
window is used both to display a record and to edit it -- if you change field values
and press "store," the record is updated. Pressing "new" clears the form for input of
new values (fill in the "Key=>" field and press "store" to save the new record).

Field values are typed with Python syntax, so strings are quoted (more on this later).
When browsing a table with records that contain different sets of field names,
PyForm erases and redraws the form window for new field sets as new records are
selected; to avoid seeing the window recreated, use the same format for all records
within a given table.

On to the code. The first thing I did when writing PyForm was to code utility
functions to hide some of the details of widget creation. By making a few simplifying
assumptions (e.g., packing protocol), the module in Example 16-8 helps keep some
GUI coding details out of the rest of the PyForm implementation.

Example 16-8. PP2E\Dbase\guitools.py

added extras for entry width, calcgui font/color

from Tkinter import *

def frame(root, side, **extras):
 widget = Frame(root)
 widget.pack(side=side, expand=YES, fill=BOTH)
 if extras: apply(widget.config, (), extras)
 return widget

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1003

def label(root, side, text, **extras):
 widget = Label(root, text=text, relief=RIDGE)
 widget.pack(side=side, expand=YES, fill=BOTH)
 if extras: apply(widget.config, (), extras)
 return widget

def button(root, side, text, command, **extras):
 widget = Button(root, text=text, command=command)
 widget.pack(side=side, expand=YES, fill=BOTH)
 if extras: apply(widget.config, (), extras)
 return widget

def entry(root, side, linkvar, **extras):
 widget = Entry(root, relief=SUNKEN, textvariable=linkvar)
 widget.pack(side=side, expand=YES, fill=BOTH)
 if extras: apply(widget.config, (), extras)
 return widget

Armed with this utility module, the file in Example 16-9 implements the rest of the
PyForm GUI. It uses the GuiMixin module we wrote in Chapter 9, for simple access
to standard popup dialogs. It's also coded as a class that can be specialized in
subclasses, or attached to a larger GUI. I run PyForm as a standalone program.
Attaching its FormGui class really attaches its main window only, but it can be used
to provide a pre-coded table browser widget for other GUIs.

This file's FormGui class creates the GUI shown in Figure 16-1, and responds to user
interaction in all three of the interface's windows. Because we've already covered all
the GUI tools that PyForm uses, you should study this module's source code listing
for additional implementation details. Notice, though, that this file knows almost
nothing about the table being browsed, other than that it looks and feels like a
dictionary of dictionaries. To understand how PyForm supports browsing things like
shelves of class instances, you will need to look elsewhere (or at least wait for the
next module).

Example 16-9. PP2E\Dbase\TableBrowser\formgui.py

#!/usr/local/bin/python
###

PyForm: a persistent table viewer GUI. Uses guimixin for std dialogs.
Assumes the browsed table has a dictionary-of-dictionary interface,
and
relies on table wrapper classes to convert other structures as
needed.
Store an initial record with dbinit script to start a dbase from
scratch.
Caveat: doesn't do object method calls, shows complex field values
poorly.
###

from Tkinter import * # Tk widgets
from guitools import frame, label, button, entry # widget
builders
from PP2E.Gui.Tools.guimixin import GuiMixin # common methods

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1004

class FormGui(GuiMixin, Frame):
 def __init__(self, mapping): # an extended
frame
 Frame.__init__(self) # on default
top-level
 self.pack(expand=YES, fill=BOTH) # all parts
expandable
 self.master.title('PyForm 2.0 - Table browser')
 self.master.iconname("PyForm")
 self.makeMainBox()
 self.table = mapping # a dict, dbm, shelve,
Table,..
 self.index = mapping.keys() # list of table keys
 self.cursor = -1 # current index position
 self.currslots = [] # current form's
(key,text)s
 self.currform = None # current form window
 self.listbox = None # index listbox window

 def makeMainBox(self):
 frm = frame(self, TOP)
 frm.config(bd=2)
 button(frm, LEFT, 'next', self.onNext) # next in list
 button(frm, LEFT, 'prev', self.onPrev) # backup in list
 button(frm, LEFT, 'find', self.onFind) # find from key
 frm = frame(self, TOP)
 self.keytext = StringVar() # current
record's key
 label(frm, LEFT, 'KEY=>') # change before
'find'
 entry(frm, LEFT, self.keytext)
 frm = frame(self, TOP)
 frm.config(bd=2)
 button(frm, LEFT, 'store', self.onStore) # updated entry
data
 button(frm, LEFT, 'new', self.onNew) # clear fields
 button(frm, LEFT, 'index', self.onMakeList) # show key list
 button(frm, LEFT, 'delete', self.onDelete) # show key list
 button(self, BOTTOM,'quit', self.quit) # from guimixin

 def onPrev(self):
 if self.cursor <= 0:
 self.infobox('Backup', "Front of table")
 else:
 self.cursor = self.cursor - 1
 self.display()

 def onNext(self):
 if self.cursor >= len(self.index)-1:
 self.infobox('Advance', "End of table")
 else:
 self.cursor = self.cursor + 1
 self.display()

 def sameKeys(self, record): # can we reuse the same
form?

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1005

 keys1 = record.keys()
 keys2 = map(lambda x:x[0], self.currslots)
 keys1.sort(); keys2.sort() # keys list order
differs
 return keys1 == keys2 # if insertion-order
differs

 def display(self):
 key = self.index[self.cursor] # show record at index
cursor
 self.keytext.set(key) # change key in main
box
 record = self.table[key] # in dict, dbm, shelf,
class
 if self.sameKeys(record):
 self.currform.title('PyForm - Key=' + `key`)
 for (field, text) in self.currslots:
 text.set(`record[field]`) # same fields? reuse
form
 else: # expr `x` works like
repr(x)
 if self.currform:
 self.currform.destroy() # different fields?
 new = Toplevel() # replace current box
 new.title('PyForm - Key=' + `key`) # new resizable window
 new.iconname("pform")
 left = frame(new, LEFT)
 right = frame(new, RIGHT)
 self.currslots = [] # list of (field,
entry)
 for field in record.keys():
 label(left, TOP, `field`) # key,value to strings
 text = StringVar() # we could sort keys
here
 text.set(`record[field]`)
 entry(right, TOP, text, width=40)
 self.currslots.append((field, text))
 self.currform = new
 new.protocol('WM_DELETE_WINDOW', lambda:0) # ignore
destroy's
 self.selectlist() # update
listbox

 def onStore(self):
 if not self.currform: return
 key = self.keytext.get()
 if key in self.index: # change existing
record
 record = self.table[key] # not:
self.table[key][field]=
 else:
 record = {} # create a new record
 self.index.append(key) # add to index and
listbox
 if self.listbox:
 self.listbox.insert(END, key) # or at
len(self.index)-1

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1006

 for (field, text) in self.currslots:
 try: # fill out dictionary
rec
 record[field] = eval(text.get()) # convert back from
string
 except:
 self.errorbox('Bad data: "%s" = "%s"' % (field,
text.get()))
 record[field] = None
 self.table[key] = record # add to dict, dbm,
shelf,...
 self.onFind(key) # readback: set
cursor,listbox

 def onNew(self):
 if not self.currform: return # clear input form
and key
 self.keytext.set('?%d' % len(self.index)) # default key unless
typed
 for (field, text) in self.currslots: # clear key/fields
for entry
 text.set('')
 self.currform.title('Key: ?')

 def onFind(self, key=None):
 target = key or self.keytext.get() # passed in, or
entered
 try:
 self.cursor = self.index.index(target) # find label in
keys list
 self.display()
 except:
 self.infobox('Not found', "Key doesn't exist", 'info')

 def onDelete(self):
 if not self.currform or not self.index: return
 currkey = self.index[self.cursor]
 del self.table[currkey] # table, index,
listbox
 del self.index[self.cursor:self.cursor+1] # like
"list[i:i+1] = []"
 if self.listbox:
 self.listbox.delete(self.cursor) # delete from
listbox
 if self.cursor < len(self.index):
 self.display() # show next
record if any
 elif self.cursor > 0:
 self.cursor = self.cursor-1 # show prior if
delete end
 self.display()
 else: # leave box if
delete last
 self.onNew()

 def onList(self,evnt):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1007

 if not self.index: return # on listbox double-
click
 index = self.listbox.curselection() # fetch selected
key text
 label = self.listbox.get(index) # or use
listbox.get(ACTIVE)
 self.onFind(label) # and call method
here

 def onMakeList(self):
 if self.listbox: return # already up?
 new = Toplevel() # new resizable
window
 new.title("PyForm - Key Index") # select keys from a
listbox
 new.iconname("pindex")
 frm = frame(new, TOP)
 scroll = Scrollbar(frm)
 list = Listbox(frm, bg='white')
 scroll.config(command=list.yview, relief=SUNKEN)
 list.config(yscrollcommand=scroll.set, relief=SUNKEN)
 scroll.pack(side=RIGHT, fill=BOTH)
 list.pack(side=LEFT, expand=YES, fill=BOTH) # pack last,
clip first
 for key in self.index: # add to list-
box
 list.insert(END, key) # or: sort list
first
 list.config(selectmode=SINGLE, setgrid=1) # select,resize
modes
 list.bind('<Double-1>', self.onList) # on double-
clicks
 self.listbox = list
 if self.index and self.cursor >= 0: # highlight
position
 self.selectlist()
 new.protocol('WM_DELETE_WINDOW', lambda:0) # ignore
destroy's

 def selectlist(self): # listbox tracks
cursor
 if self.listbox:
 self.listbox.select_clear(0, self.listbox.size())
 self.listbox.select_set(self.cursor)

if __name__ == '__main__':
 from PP2E.Dbase.testdata import cast # self-test code
 for k in cast.keys(): print k, cast[k] # view in-memory
dict-of-dicts
 FormGui(cast).mainloop()
 for k in cast.keys(): print k, cast[k] # show modified table
on exit

The file's self-test code starts up the PyForm GUI to browse the in-memory
dictionary of dictionaries called cast in the testdata module listed earlier. To start
PyForm, you simply make and run the FormGui class object this file defines, passing

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1008

in the table to be browsed. Here are the messages that show up in stdout after
running this file and editing a few entries displayed in the GUI; the dictionary is
displayed on GUI startup and exit:

C:\...\PP2E\Dbase\TableBrowser>python formgui.py
alan {'job': 'comedian', 'name': ('Alan', 'B')}
sally {'job': 'writer', 'name': ('Sally', 'R')}
rob {'spouse': 'Laura', 'job': 'writer', 'name': ('Rob', 'P')}
mel {'job': 'producer', 'name': ('Mel', 'C')}
milly {'spouse': 'Jerry', 'name': ('Milly', '?'), 'kids': 2}
buddy {'spouse': 'Pickles', 'job': 'writer', 'name': ('Buddy', 'S')}
laura {'spouse': 'Rob', 'name': ('Laura', 'P'), 'kids': 1}

alan {'job': 'comedian', 'name': ('Alan', 'B')}
jerry {'spouse': 'Milly', 'name': 'Jerry', 'kids': 0}
sally {'job': 'writer', 'name': ('Sally', 'R')}
rob {'spouse': 'Laura', 'job': 'writer', 'name': ('Rob', 'P')}
mel {'job': 'producer', 'name': ('Mel', 'C')}
milly {'spouse': 'Jerry', 'name': ('Milly', '?'), 'kids': 2}
buddy {'spouse': 'Pickles', 'job': 'writer', 'name': ('Buddy', 'S')}
laura {'name': ('Laura', 'P'), 'kids': 3, 'spouse': 'bob'}

The last line (in bold) represents a change made in the GUI. Since this is an in-
memory table, changes made in the GUI are not retained (dictionaries are not
persistent by themselves). To see how to use the PyForm GUI on persistent stores
like DBM files and shelves, we need to move on to the next topic.

16.7.2.2 PyForm table wrappers

The following file defines generic classes that "wrap" (interface with) various kinds of
tables for use in PyForm. It's what makes PyForm useful for a variety of table types.

The prior module was coded to handle GUI chores, and assumes that tables expose a
dictionary-of-dictionaries interface. Conversely, this next module knows nothing
about the GUI, but provides the translations necessary to browse non-dictionary
objects in PyForm. In fact, this module doesn't even import Tkinter at all -- it strictly
deals in object protocol conversions and nothing else. Because PyForm's
implementation is divided into functionally distinct modules like this, it's easier to
focus on each module's task in isolation.

Here is the hook between the two modules: for special kinds of tables, PyForm's
FormGui is passed an instance of the Table class coded here. The Table class
intercepts table index fetch and assignment operations, and uses an embedded
record wrapper class to convert records to and from dictionary format as needed.

For example, because DBM files can store only strings, Table converts real
dictionaries to and from their printable string representation on table stores and
fetches. For class instances, Table extracts the object's __dict__ attribute
dictionary on fetches, and copies a dictionary's fields to attributes of a newly
generated class instance on stores.[3] The end result is that the GUI thinks the table
is all dictionaries, even if it is really something very different here.

[3] Subtle thing revisited: like the new pickle module, PyForm tries to generate a new class
instance on store operations by simply setting a generic instance object's __class__ pointer to

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1009

the original class; only if this fails does PyForm fall back on calling the class with no
arguments (in which case the class must have defaults for any constructor arguments other
than "self"). Assignment to __class__ can fail in restricted execution mode. See class
InstanceRecord in the source listing for further details.

While you study this module's listing, shown in Example 16-10, notice that there is
nothing here about the record formats of any particular database. In fact, there was
none in the GUI-related formgui module either. Because neither module cares about
the structure of fields used for database records, both can be used to browse
arbitrary records.

Example 16-10. PP2E\Dbase\formtable.py

###

PyForm table wrapper classes and tests
Because PyForm assumes a dictionary-of-dictionary interface, this
module
converts strings and class instance records to and from dicts.
PyForm
contains the table mapping--Table is not a PyForm subclass. Note
that
some of the wrapper classes may be useful outside PyForm--DmbOfString
can
wrap a dbm containing arbitrary datatypes. Run the dbinit scripts to
start a new database from scratch, and run the dbview script to
browse
a database other than the one tested here. No longer requires
classes to
have defaults in constructor args, and auto picks up record class
from the
first one fetched if not passed in to class-record wrapper. Caveat:
still
assumes that all instances in a table are instances of the same
class.
###

###

records within tables
###

class DictionaryRecord:
 def todict(self, value):
 return value # to dictionary: no need to
convert
 def fromdict(self, value):
 return value # from dictionary: no need to
convert

class StringRecord:
 def todict(self, value):
 return eval(value) # convert string to dictionary
(or any)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1010

 def fromdict(self, value):
 return str(value) # convert dictionary (or any) to
string

class InstanceRecord:
 def __init__(self, Class=None): # need class object to make
instances
 self.Class = Class
 def todict(self, value): # convert instance to attr
dictionary
 if not self.Class: # get class from obj if not yet
known
 self.Class = value.__class__
 return value.__dict__
 def fromdict(self, value): # convert attr dictionary to
instance
 try:
 class Dummy: pass # try what new
pickle does
 instance = Dummy() # fails in
restricted mode
 instance.__class__ = self.Class
 except: # else call class,
no args
 instance = self.Class() # init args need
defaults
 for attr in value.keys():
 setattr(instance, attr, value[attr]) # set instance
attributes
 return instance # may run
Class.__setattr__

###

table containing records
###

class Table:
 def __init__(self, mapping, converter): # table object, record
converter
 self.table = mapping # wrap arbitrary table
mapping
 self.record = converter # wrap arbitrary record
types

 def storeItems(self, items): # initialize from
dictionary
 for key in items.keys(): # do __setitem__ to
xlate, store
 self[key] = items[key]

 def printItems(self): # print wrapped mapping
 for key in self.keys(): # do self.keys to get
table keys
 print key, self[key] # do __getitem__ to
fetch, xlate

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1011

 def __getitem__(self, key): # on tbl[key] index
fetch
 rawval = self.table[key] # fetch from table
mapping
 return self.record.todict(rawval) # translate to
dictionary

 def __setitem__(self, key, value): # on tbl[key]=val index
assign
 rawval = self.record.fromdict(value) # translate from
dictionary
 self.table[key] = rawval # store in table mapping

 def __delitem__(self, key): # delete from table
mapping
 del self.table[key]

 def keys(self): # get table mapping keys
index
 return self.table.keys()

 def close(self):
 if hasattr(self.table, 'close'): # call table close if
has one
 self.table.close() # may need for
shelves, dbm

###

table/record combinations
###

import shelve, anydbm

def ShelveOfInstance(filename, Class=None):
 return Table(shelve.open(filename), InstanceRecord(Class))
def ShelveOfDictionary(filename):
 return Table(shelve.open(filename), DictionaryRecord())
def ShelveOfString(filename):
 return Table(shelve.open(filename), StringRecord())

def DbmOfString(filename):
 return Table(anydbm.open(filename, 'c'), StringRecord())

def DictOfInstance(dict, Class=None):
 return Table(dict, InstanceRecord(Class))
def DictOfDictionary(dict):
 return Table(dict, DictionaryRecord())
def DictOfString(filename):
 return Table(dict, StringRecord())

ObjectOfInstance = DictOfInstance # other mapping objects
ObjectOfDictionary = DictOfDictionary # classes that look like
dicts
ObjectOfString = DictOfString

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1012

###

test common applications
###

if __name__ == '__main__':
 from sys import argv
 from formgui import FormGui # get dict-based gui
 from PP2E.Dbase.testdata import Actor, cast # get class, dict-
of-dicts

 TestType = 'shelve' # shelve, dbm, dict
 TestInit = 0 # init file on
startup?
 TestFile = '../data/shelve1' # external filename
 if len(argv) > 1: TestType = argv[1]
 if len(argv) > 2: TestInit = int(argv[2])
 if len(argv) > 3: TestFile = argv[3]

 if TestType == 'shelve': # python formtbl.py
shelve?
 print 'shelve-of-instance test'
 table = ShelveOfInstance(TestFile, Actor) # wrap shelf in
Table object
 if TestInit:
 table.storeItems(cast) # python formtbl.py
shelve 1
 FormGui(table).mainloop()
 table.close()
 ShelveOfInstance(TestFile).printItems() # class picked up
on fetch

 elif TestType == 'dbm': # python formtbl.py
dbm
 print 'dbm-of-dictstring test'
 table = DbmOfString(TestFile) # wrap dbm in Table
object
 if TestInit:
 table.storeItems(cast) # python formtbl.py
dbm 1
 FormGui(table).mainloop()
 table.close()
 DbmOfString(TestFile).printItems() # dump new table
contents

Besides the Table and record-wrapper classes, the module defines generator
functions (e.g., ShelveOfInstance) that create a Table for all reasonable table and
record combinations. Not all combinations are valid; DBM files, for example, can only
contain dictionaries coded as strings, because class instances don't easily map to the
string value format expected by DBM. However, these classes are flexible enough to
allow additional Table configurations to be introduced.

The only thing that is GUI-related about this file at all is its self-test code at the end.
When run as a script, this module starts a PyForm GUI to browse and edit either a

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1013

shelve of persistent Actor class instances or a DBM file of dictionaries, by passing in
the right kind of Table object. The GUI looks like the one we saw in Figure 16-1
earlier; when run without arguments, the self-test code lets you browse a shelve of
class instances:

C:\...\PP2E\Dbase\TableBrowser>python formtable.py
shelve-of-instance test
 ...display of contents on exit...

Because PyForm displays a shelve this time, any changes you make are retained
after the GUI exits. To reinitialize the shelve from the cast dictionary in testdata,
pass a second argument of "1" ("0" means don't reinitialize the shelve). To override
the script's default shelve filename, pass a different name as a third argument:

C:\...\PP2E\Dbase\TableBrowser>python formtable.py shelve 1
C:\...\PP2E\Dbase\TableBrowser>python formtable.py shelve 0
../data/shelve1

To instead test PyForm on a DBM file of dictionaries mapped to strings, pass a dbm in
the first command-line argument; the next two arguments work the same:

C:\...\PP2E\Dbase\TableBrowser>python formtable.py dbm 1 ..\data\dbm1
dbm-of-dictstring test
 ...display of contents on exit...

Finally, because these self-tests ultimately process concrete shelve and DBM files,
you can manually open and inspect their contents using normal library calls. Here is
what they look like when opened in an interactive session:

C:\...\PP2E\Dbase\data>ls
dbm1 myfile shelve1

C:\...\PP2E\Dbase\data>python
>>> import shelve
>>> db = shelve.open('shelve1')
>>> db.keys()
['alan', 'buddy', 'sally', 'rob', 'milly', 'laura', 'mel']
>>> db['laura']
<PP2E.Dbase.testdata.Actor instance at 799850>

>>> import anydbm
>>> db = anydbm.open('dbm1')
>>> db.keys()
['alan', 'mel', 'buddy', 'sally', 'rob', 'milly', 'laura']
>>> db['laura']
"{'name': ('Laura', 'P'), 'kids': 2, 'spouse': 'Rob'}"

The shelve file contains real Actor class instance objects, and the DBM file holds
dictionaries converted to strings. Both formats are retained in these files between
GUI runs and are converted back to dictionaries for later redisplay.[4]

[4] Note that DBM files of dictionaries use str and eval to convert to and from strings, but
could also simply store the pickled representations of record dictionaries in DBM files instead
using pickle. But since this is exactly what a shelve of dictionaries does, the str/eval
scheme was chosen for illustration purposes here instead. Suggested exercise: add a new

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1014

PickleRecord record class based upon the pickle module's loads and dumps functions
described earlier in this chapter, and compare its performance to StringRecord. See also the
pickle file database structure in Chapter 14; its directory scheme with one flat-file per record
could be used to implement a "table" here, too, with appropriate Table subclassing.

16.7.2.3 PyForm creation and view utility scripts

The formtable module's self-test code proves that it works, but it is limited to
canned test case files and classes. What about using PyForm for other kinds of
databases that store more useful kinds of data?

Luckily, both the formgui and formtable modules are written to be generic -- they
are independent of a particular database's record format. Because of that, it's easy
to point PyForm to databases of your own; simply import and run the FormGui object
with the (possibly wrapped) table you wish to browse.

The required startup calls are not too complex, and you could type them at the
interactive prompt every time you want to browse a database; but it's usually easier
to store them in scripts so they can be reused. The script in Example 16-11, for
example, can be run to open PyForm on any shelve containing records stored in class
instance or dictionary format.

Example 16-11. PP2E\Dbase\dbview.py

view any existing shelve directly; this is more general than a
"formtable.py shelve 1 filename" cmdline--only works for Actor;
pass in a filename (and mode) to use this to browse any shelve:
formtable auto picks up class from the first instance fetched;
run dbinit1 to (re)initialize dbase shelve with a template.

from sys import argv
from formtable import *
from formgui import FormGui

mode = 'class'
file = '../data/mydbase-' + mode
if len(argv) > 1: file = argv[1] # dbview.py file?
mode??
if len(argv) > 2: mode = argv[2]

if mode == 'dict':
 table = ShelveOfDictionary(file) # view dictionaries
else:
 table = ShelveOfInstance(file) # view class objects

FormGui(table).mainloop()
table.close() # close needed for
some dbm

The only catch here is that PyForm doesn't handle completely empty tables very
well; there is no way to add new records within the GUI unless a record is already
present. That is, PyForm has no record layout design tool; its "new" button simply
clears an existing input form.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1015

Because of that, to start a new database from scratch, you need to add an initial
record that gives PyForm the field layout. Again, this requires only a few lines of
code that could be typed interactively, but why not instead put it in generalized
scripts for reuse? The file in Example 16-12, shows one way to go about initializing a
PyForm database with a first empty record.

Example 16-12. PP2E\Dbase\dbinit1.py

store a first record in a new shelve to give initial fields list;
PyForm GUI requires an existing record before you can more records;
delete the '?' key template record after real records are added;
change mode, file, template to use this for other kinds of data;
if you populate shelves from other data files you don't need this;
see dbinit2 for object-based version, and dbview to browse shelves.

import os
from sys import argv
mode = 'class'
file = '../data/mydbase-' + mode
if len(argv) > 1: file = argv[1] # dbinit1.py file?
mode??
if len(argv) > 2: mode = argv[2]
try:
 os.remove(file) # delete if
present
except: pass

if mode == 'dict':
 template = {'name': None, 'age': None, 'job': None} # start dict
shelve
else:
 from PP2E.Dbase.person import Person # one arg
defaulted
 template = Person(None, None) # start
object shelve

import shelve
dbase = shelve.open(file) # create it
now
dbase['?empty?'] = template
dbase.close()

Now, simply change some of this script's settings or pass in command-line
arguments to generate a new shelve-based database for use in PyForm. You can
substitute any fields list or class name in this script to maintain a simple object
database with PyForm that keeps track of real-world information (we'll see two such
databases in action in a moment). The empty record shows up with key "?empty?"
when you first browse the database with dbview; replace it with a first real record
using the PyForm "store" key, and you are in business. As long as you don't change
the database's shelve outside of the GUI, all its records will have the same fields
format, as defined in the initialization script.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1016

But notice that the dbinit1 script goes straight to the shelve file to store the first
record; that's fine today, but might break if PyForm is ever changed to do something
more custom with its stored data representation. Perhaps a better way to populate
tables outside the GUI is to use the Table wrapper classes it employs. The following
alternative script, for instance, initializes a PyForm database with generated Table
objects, not direct shelve operations (see Example 16-13).

Example 16-13. PP2E\Dbase\dbinit2.py

this works too--based on Table objects not manual shelve ops;
store a first record in shelve, as required by PyForm GUI.

from formtable import *
import sys, os

mode = 'dict'
file = '../data/mydbase-' + mode
if len(sys.argv) > 1: file = sys.argv[1]
if len(sys.argv) > 2: mode = sys.argv[2]
try:
 os.remove(file)
except: pass

if mode == 'dict':
 table = ShelveOfDictionary(file)
 template = {'name': None, 'shoesize': None, 'language': 'Python'}
else:
 from PP2E.Dbase.person import Person
 table = ShelveOfInstance(file, Person)
 template = Person(None, None).__dict__

table.storeItems({'?empty?': template})
table.close()

Let's put these scripts to work to initialize and edit a couple of custom databases.
Figure 16-2 shows one being browsed after initializing the database with a script,
and adding a handful of real records within the GUI.

Figure 16-2. A shelf of Person objects (dbinit1, dbview)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1017

The listbox here shows the record I added to the shelve within the GUI. I ran the
following commands to initialize the database with a starter record and open it in
PyForm to add records (that is, Person class instances):

C:\...\PP2E\Dbase\TableBrowser>python dbinit1.py

C:\...\PP2E\Dbase\TableBrowser>python dbview.py

You can tweak the class name or fields dictionary in the dbinit scripts to initialize
records for any sort of database you care to maintain with PyForm; use dictionaries if
you don't want to represent persistent objects with classes (but classes let you add
other sorts of behavior as methods not visible under PyForm). Be sure to use a
distinct filename for each database; the initial "?empty?" record can be deleted as
soon as you add a real entry (later, simply select an entry from the listbox and press
"new" to clear the form for input of a new record's values).

The data displayed in the GUI represents a true shelve of persistent Person class
instance objects -- changes and additions made in the GUI will be retained for the
next time you view this shelve with PyForm. If you like to type, though, you can still
open the shelve directly to check PyForm's work:

C:\...\PP2E\Dbase\data>ls
mydbase-class myfile shelve1

C:\...\PP2E\Dbase\data>python
>>> import shelve
>>> db = shelve.open('mydbase-class')
>>> db.keys()
['emily', 'jerry', '?empty?', 'bob', 'howard']
>>> db['bob']
<PP2E.Dbase.person.Person instance at 798d70>
>>> db['emily'].job
'teacher'
>>> db['bob'].tax
30000.0

Notice that "bob" is an instance of the Person class we met earlier in this chapter
(see the shelve section). Assuming that the person module is still the version that
introduced a __getattr__ method, asking for a shelved object's tax attribute
computes a value on the fly, because this really invokes a class method. Also note
that this works even though Person was never imported here -- Python loads the
class internally when recreating its shelved instances.

You can just as easily base a PyForm-compatible database on an internal dictionary
structure, instead of classes. Figure 16-3 shows one being browsed, after being
initialized with a script and populated with the GUI.

Figure 16-3. A shelf of dictionaries (dbinit2, dbview)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1018

Besides its different internal format, this database has a different record structure
(its record's field names differ from the last example), and it is stored in a shelve file
of its own. Here are the commands I used to initialize and edit this database:

C:\...\PP2E\Dbase\TableBrowser>python dbinit2.py ../data/mydbase-dict
dict

C:\...\PP2E\Dbase\TableBrowser>python dbview.py ../data/mydbase-dict
dict

After adding a few records (that is, dictionaries) to the shelve, you can either view
them again in PyForm or open the shelve manually to verify PyForm's work:

C:\...\PP2E\Dbase\data>ls
mydbase-class mydbase-dict myfile shelve1

C:\...\PP2E\Dbase\data>python
>>> db = shelve.open('mydbase-dict')
>>> db.keys()
['tom', 'guido', '?empty?', 'larry', 'randal', 'mel']
>>> db['guido']
{'shoesize': 42, 'name': 'benevolent dictator', 'language': 'Python'}
>>> db['mel']['shoesize']
{'left': 7.5, 'right': 7L}

This time, shelve entries are really dictionaries, not instances of a class or converted
strings. PyForm doesn't care, though -- because all tables are wrapped to conform to
PyForm's interface, both formats look the same when browsed in the GUI.

Notice that the "shoe size" and "language" fields in this screen shot really are a
dictionary and list. You can type any Python expression syntax into this GUI's form
fields to give values (that's why strings are quoted there). PyForm uses the Python
backquotes expression to convert value objects for display (`x` is like repr(x),
which is like str(x), but quotes are added around strings). To convert from a string
back to value objects, PyForm uses the Python eval function to parse and evaluate
the code typed in fields. The key entry/display field in the main window does not add
or accept quotes around the key string, because keys must still be strings in things
like shelves (even though fields can be arbitrary types).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1019

As we've seen at various points in this book, eval (and its
statement cousin, exec) is powerful but dangerous -- you never
know when a user might type something that removes files,
hangs the system, emails your boss, and so on. If you can't be
sure that field values won't contain harmful code (whether
malicious or otherwise), use the rexec restricted execution
mode tools we met in Chapter 15 to evaluate strings.
Alternatively, you can simply limit the kinds of expressions
allowed and evaluate them with simpler tools (e.g., int, str,
string.atoi).

Although PyForm expects to find a dictionary-of-dictionary interface (protocol) in the
tables it browses, a surprising number of objects fit this mold because dictionaries
are so pervasive in Python object internals. In fact, PyForm can be used to browse
things that have nothing to do with the notion of database tables of records at all, as
long as they can be made to conform to the protocol.

For instance, the Python sys.modules table we met in Chapter 2 is a built-in
dictionary of loaded module objects. With an appropriate wrapper class to make
modules look like dictionaries, there's no reason we can't browse the in-memory
sys.modules with PyForm too, as shown in Example 16-14.

Example 16-14. PP2E\Dbase\TableBrowser\viewsysmod.py

view the sys.modules table in FormGui

class modrec:
 def todict(self, value):
 return value.__dict__ # not dir(value): need dict
 def fromdict(self, value):
 assert 0, 'Module updates not supported'

import sys
from formgui import FormGui
from formtable import Table
FormGui(Table(sys.modules, modrec())).mainloop()

This script defines a class to pull out a module's __dict__ attribute dictionary
(formtable's InstanceRecord won't do, because it also looks for a __class__). The
rest of it simply passes sys.modules to PyForm (FormGui) wrapped in a Table
object; the result appears in Figure 16-4.

Figure 16-4. FormGui browsing sys.modules (viewsysmod)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1020

With similar record and table wrappers, all sorts of objects could be viewed in
PyForm. As usual in Python, all that matters is that they provide a compatible
interface.

16.7.2.4 PyForm limitations

Although the sys.modules viewer script works, it also highlights a few limitations of
PyForm's current design:

Two levels only

PyForm is set up to handle a two-dimensional table/record mapping structure only.
You can't descend further into fields shown in the form, large data structures in fields
print as long strings, and complex objects like nested modules, classes, and
functions that contain attributes of their own simply show their default print
representation. We could add object viewers to inspect nested objects interactively,
but they might be complex to code.

No big (giant) forms

PyForm is not equipped to handle a large number of record fields -- if you select the
os module's entry in the index listbox in Figure 16-4, you'll get a huge form that is
likely too big to even fit on your screen (the os module has lots and lots of
attributes; it goes off my screen after about 40). We could fix this with a scrollbar,
but it's unlikely that records in the databases that PyForm was designed to view will
have many dozens of fields.

Data attributes only

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1021

PyForm displays record attribute values, but does not support calling method
functions of objects being browsed, and cannot display dynamically computed
attributes (e.g., the tax attribute in Person objects).

One class per table

PyForm currently assumes all instances in a table are of the same class, even though
that's not a requirement for shelves in general.

In other words, there is room for improvement if you care to experiment. There are
other coding styles you might wish to explore, as well. For instance, PyForm current
overloads table index fetch and assignment, and the GUI uses dictionaries to
represent records internally. It would be almost as easy to overload record field
index fetch and assignment instead, and add a Table method for creating a new
empty record. In this scheme, records held in PyForm would be whatever object the
table stores (not dictionaries), and each field fetch or assignment in PyForm would
be routed back to record wrapper classes. The downside of this approach is that
PyForm could not browse any object unless it is wrapped in a Table. Raw dictionaries
would not work, because they have no method for making new empties. Moreover,
DBM files that map whole records to strings might need extra logic to handle field-at-
a-time requests.

On the other hand, extensions in this domain are somewhat open-ended, so we'll
leave them as suggested exercises. PyForm was never meant to be a general Python
object viewer. But as a simple GUI interface to tables of persistent objects, it meets
its design goals as planned. Python's shelves and classes make such systems both
easy to code and powerful to use. Complex data can be stored and fetched in a
single step, and augmented with methods that provide dynamic record behavior. As
an added bonus, by programming such programs in Python and Tkinter, they are
automatically portable among all major GUI platforms. When you mix Python
persistence and GUIs, you get a lot of features "for free."

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1022

Chapter 17. Data Structures

17.1 "Roses Are Red, Violets Are Blue; Lists
Are Mutable, and So Is Class Foo"

17.2 Implementing Stacks

17.3 Implementing Sets

17.4 Binary Search Trees

17.5 Graph Searching

17.6 Reversing Sequences

17.7 Permuting Sequences

17.8 Sorting Sequences

17.9 Data Structures Versus Python Built-ins

17.10 PyTree: A Generic Tree Object Viewer

17.1 "Roses Are Red, Violets Are Blue; Lists Are Mutable,
and So Is Class Foo"

Data structures are a central theme in most programs, whether you know it or not.
It may not always be obvious, because Python provides a set of built-in types that
make it easy to deal with structured data: lists, strings, tuples, dictionaries, and the
like. For simple systems, these types are usually enough. Technically, dictionaries
make many of the classical searching algorithms unnecessary in Python, and lists
replace much of the work you'd do to support collections in lower-level languages.
Both are so easy to use, though, that you generally never give them a second
thought.

But for advanced applications, we may need to add more sophisticated types of our
own to handle extra requirements. In this chapter, we'll explore a handful of
advanced data structure implementations in Python: sets, stacks, graphs, and so on.
As we'll see, data structures take the form of new object types in Python, integrated
into the language's type model. That is, objects we code in Python become full-
fledged datatypes -- they can look and feel just like built-in lists, numbers, and
dictionaries, to the scripts that use them.

Although the examples in this chapter illustrate advanced programming techniques,
they also underscore Python's support for writing reusable software. By coding object
implementations with classes, modules, and other Python tools, they naturally

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1023

become generally useful components, which may be used in any program that
imports them. In effect, we will be building libraries of data structure classes,
whether we plan for it or not.

In addition, although the examples in this chapter are pure Python code, we will also
be building a path towards the next part of the book here. From the most general
perspective, new Python objects can be implemented in either Python or an
integrated language such as C. In particular, pay attention to the stack objects
implemented in the first section of this chapter; they will later be reimplemented in C
to gauge both the benefits and complexity of C migration.

17.2 Implementing Stacks

Stacks are a common and straightforward data structure, used in a variety of
applications: language processing, graph searches, etc. In short, stacks are a last-in-
first-out collection of objects: the last item added to the collection is always the next
one to be removed. Clients use stacks by:

Pushing items onto the top

Popping items off the top

Depending on client requirements, there may also be tools for such tasks as testing
if the stack is empty, fetching the top item without popping it, iterating over a
stack's items, testing for item membership, etc.

In Python, a simple list is often adequate for implementing a stack: because we can
change lists in place, we can either add and delete items from the front (left) or end
(right). Table 17-1 summarizes various built-in operations available for implementing
stack-like behavior with Python lists, depending on whether the stack "top" is the
first or last node in the list. In this table, string 'c' is the top item on the stack.

Table 17-1. Stacks as Lists

Operation Top is end-of-list Top is front-of-list Top is front-of-list

New stack=['a','b','c'] stack=['c','b','a'] stack=['c','b','a']

Push stack.append('d') stack.insert(0,'d') stack[0:0] = ['d']

Pop[1]
X = stack[-1];

del stack[-1]

x = stack[0];

del stack[:1]

x = stack[0];

stack[:1] = []

[1] In fact, Python 1.5 introduced a list pop method designed to be used in conjunction with
append to implement stacks: to push, say list.append(value), to pop, say x=list.pop().
The pop method is equivalent to fetching and then deleting the last item at offset -1 (and
equal to the last row in column 2 of Table 17-1). Because lists are a type (not a class),

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1024

though, you still may need to use the stack class techniques in this chapter to do something
custom.

This list arrangement works and will be relatively fast. But it also binds stack-based
programs to the stack representation chosen: stack operations will all be hardcoded.
If we later want to change how a stack is represented, or extend its basic operations,
we're stuck: every stack-based program will have to be updated.

For instance, to add logic that monitors the number of stack operations a program
performs, we'd have to add code around each hardcoded stack operation. In a large
system, this operation may be nontrivial. As we'll see in the next chapter, we may
also decide to move stacks to a C-based implementation, if they prove to be a
performance bottleneck. As a general rule, hardcoded operations on built-in data
structures don't support future migrations as well as we'd sometimes like.

17.2.1 A Stack Module

Perhaps a better approach is to encapsulate stack implementations using Python's
code reuse tools. Let's begin by implementing a stack as a module containing a
Python list, plus functions to operate on it (see Example 17-1).

Example 17-1. PP2E\Dstruct\Basic\stack1.py

stack = [] # on first import
error = 'stack1.error' # local exceptions

def push(obj):
 global stack # use 'global' to change
 stack = [obj] + stack # add item to the front

def pop():
 global stack
 if not stack:
 raise error, 'stack underflow' # raise local error
 top, stack = stack[0], stack[1:] # remove item at front
 return top

def top():
 if not stack: # raise local error
 raise error, 'stack underflow' # or let IndexError occur
 return stack[0]

def empty(): return not stack # is the stack []?
def member(obj): return obj in stack # item in stack?
def item(offset): return stack[offset] # index the stack
def length(): return len(stack) # number entries
def dump(): print '<Stack:%s>' % stack

This module creates a list object (stack) and exports functions to manage access to
it. The stack is declared global in functions that change it, but not in those that just
reference it. The module also defines an error object (error) that can be used to
catch exceptions raised locally in this module. Some stack errors are built-in
exceptions: method item triggers IndexError for out-of-bounds indexes.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1025

Most of the stack's functions just delegate the operation to the embedded list used to
represent the stack. In fact, the module is really just a wrapper around a Python list.
But this extra layer of interface logic makes clients independent of the actual
implementation of the stack. So, we're able to change the stack later without
impacting its clients.

As usual, one of the best ways to understand such code is to see it in action. Here's
an interactive session that illustrates the module's interfaces:

C:\...\PP2E\Dstruct\Basic>python
>>> import stack1
>>> stack1.push('spam')
>>> stack1.push(123)
>>> stack1.top()
123
>>> stack1.stack
[123, 'spam']
>>> stack1.pop()
123
>>> stack1.dump()
<Stack:['spam']>
>>> stack1.pop()
'spam'
>>> stack1.empty()
1
>>> for c in 'spam': stack1.push(c)
...
>>> while not stack1.empty():
... print stack1.pop(),
...
m a p s

Other operations are analogous, but the main thing to notice here is that all stack
operations are module functions. For instance, it's possible to iterate over the stack,
but we need to use counter-loops and indexing function calls (item). There's nothing
preventing clients from accessing (and changing) stack1.stack directly, but doing
so defeats the purpose of interfaces like this one.

17.2.2 A Stack Class

Perhaps the biggest drawback of the module-based stack is that it supports only a
single stack object. All clients of the stack module effectively share the same stack.
Sometimes we want this feature: a stack can serve as a shared-memory object for
multiple modules. But to implement a true stack datatype, we need to use classes.

To illustrate, let's define a full-featured stack class. The Stack class shown in
Example 17-2 defines a new datatype, with a variety of behavior. Like the module,
the class uses a Python list to hold stacked objects. But this time, each instance gets
its own list. The class defines both "real" methods, and specially named methods
that implement common type operations. Comments in the code describe special
methods.

Example 17-2. PP2E\Dstruct\Basic\stack2.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1026

error = 'stack2.error' # when imported: local
exception

class Stack:
 def __init__(self, start=[]): # self is the instance
object
 self.stack = [] # start is any sequence:
stack..
 for x in start: self.push(x)
 self.reverse() # undo push's order
reversal
 def push(self, obj): # methods: like module +
self
 self.stack = [obj] + self.stack # top is front of list
 def pop(self):
 if not self.stack: raise error, 'underflow'
 top, self.stack = self.stack[0], self.stack[1:]
 return top
 def top(self):
 if not self.stack: raise error, 'underflow'
 return self.stack[0]
 def empty(self):
 return not self.stack # instance.empty()

 # overloads
 def __repr__(self):
 return '[Stack:%s]' % self.stack # print,
backquotes,..
 def __cmp__(self, other):
 return cmp(self.stack, other.stack) # '==', '>, '<=',
'!=',..
 def __len__(self):
 return len(self.stack) # len(instance), not
instance
 def __add__(self, other):
 return Stack(self.stack + other.stack) # instance1 +
instance2
 def __mul__(self, reps):
 return Stack(self.stack * reps) # instance * reps
 def __getitem__(self, offset):
 return self.stack[offset] # intance[offset],
in, for
 def __getslice__(self, low, high):
 return Stack(self.stack[low : high]) # instance[low:high]
 def __getattr__(self, name):
 return getattr(self.stack, name) #
instance.sort()/reverse()/..

Now distinct instances are created by calling the Stack class like a function. In most
respects, the Stack class implements operations exactly like the stack module in
Example 17-1. But here, access to the stack is qualified by self, the subject
instance object. Each instance has its own stack attribute, which refers to the
instance's own list. Furthermore, instance stacks are created and initialized in the
__init__ constructor method, not when the module is imported. Let's make a couple
of stacks to see how this all works in practice:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1027

>>> from stack2 import Stack
>>> x = Stack() # make a stack object, push items
>>> x.push('spam')
>>> x.push(123)
>>> x # __repr__ prints a stack
[Stack:[123, 'spam']]

>>> y = Stack() # two distinct stacks objects
>>> y.push(3.1415) # they do not share content
>>> y.push(x.pop())
>>> x, y
([Stack:['spam']], [Stack:[123, 3.1415]])

>>> z = Stack() # third distinct stack object
>>> for c in 'spam': z.push(c)
...
>>> while z: print z.pop(), # __len__ tests stack truth
...
m a p s

>>> z = x + y # __add__ handles stack +
>>> z # holds three different types
[Stack:['spam', 123, 3.1415]]
>>> for item in z: print item, # __getitem__ does for
...
spam 123 3.1415

Like lists and dictionaries, Stack defines both methods and operators for
manipulating instances by attribute qualification and expressions. Additionally, it
defines the __getattr__ metaclass method to intercept references to attributes not
defined in the class and to route them to the wrapped list object (to support list
methods: sort, append, reverse, etc.). Many of the module's operations become
operators in the class. Table 17-2 shows the equivalence of module and class
operations (columns 1 and 2) and gives the class method that comes into play for
each (column 3).

Table 17-2. Module/Class Operation Comparison

Module Operations Class Operations Class Method

module.empty() not instance __len__

module.member(x) x in instance __getitem__

module.item(i) instance[i] __getitem__

module.length() len(instance) __len__

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1028

module.dump() print instance __repr__

range() counter loops for x in instance __getitem__

manual loop logic instance + instance __add__

module.stack.reverse() instance.reverse() __getattr__

module.push/pop/top instance.push/pop/top push/pop/top

In effect, classes let us extend Python's set of built-in types with reusable types
implemented in Python modules. Class-based types may be used just like built-in
types: depending on which operation methods they define, classes can implement
numbers, mappings, and sequences, and may be mutable or not. Class-based types
may also fall somewhere in between these categories.

17.2.3 Customization: Performance Monitors

So far we've seen how classes support multiple instances and integrate better with
Python's object model by defining operator methods. One of the other main reasons
for using classes is to allow for future extensions and customizations. By
implementing stacks with a class, we can later add subclasses that specialize the
implementation for new demands.

For instance, suppose we've started using the Stack class in Example 17-2, but we
start running into performance problems. One way to isolate bottlenecks is to
instrument data structures with logic that keeps track of usage statistics, which we
can analyze after running client applications. Because Stack is a class, we can add
such logic in a new subclass, without affecting the original stack module (or its
clients). The subclass in Example 17-3 extends Stack to keep track of overall
push/pop usage frequencies and to record the maximum size of each instance.

Example 17-3. PP2E\Dstruct\Basic\stacklog.py

from stack2 import Stack # extends imported Stack

class StackLog(Stack): # count pushes/pops, max-
size
 pushes = pops = 0 # shared/static class
members
 def __init__(self, start=[]): # could also be module vars
 self.maxlen = 0
 Stack.__init__(self, start)
 def push(self, object):
 Stack.push(self, object) # do real push
 StackLog.pushes = StackLog.pushes + 1 # overall stats

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1029

 self.maxlen = max(self.maxlen, len(self)) # per-instance
stats
 def pop(self):
 StackLog.pops = StackLog.pops + 1 # overall counts
 return Stack.pop(self) # not 'self.pops':
instance
 def stats(self):
 return self.maxlen, self.pushes, self.pops # get counts from
instance

This subclass works the same as the original Stack; it just adds monitoring logic.
The new stats method is used to get a statistics tuple through an instance:

>>> from stacklog import StackLog
>>> x = StackLog()
>>> y = StackLog() # make two stack objects
>>> for i in range(3): x.push(i) # and push object on them
...
>>> for c in 'spam': y.push(c)
...
>>> x, y # run inherited __repr__
([Stack:[2, 1, 0]], [Stack:['m', 'a', 'p', 's']])
>>> x.stats(), y.stats()
((3, 7, 0), (4, 7, 0))
>>>
>>> y.pop(), x.pop()
('m', 2)
>>> x.stats(), y.stats() # my maxlen, all pushes,
all pops
((3, 7, 2), (4, 7, 2))

Notice the use of class attributes to record overall pushes and pops, and instance
attributes for per-instance maximum length. By hanging attributes on different
objects, we can expand or narrow their scopes.

17.2.4 Optimization: Tuple Tree Stacks

One of the nice things about wrapping objects up in classes is that you are free to
change the underlying implementation without breaking the rest of your program.
Optimizations can be added in the future, for instance, with minimal impact; the
interface is unchanged, even if the internals are. There are a variety of ways to
implement stacks, some more efficient than others. So far, our stacks have used
slicing and concatenation to implement pushing and popping. This method is
relatively inefficient: both operations make copies of the wrapped list object. For
large stacks, this practice can add a significant time penalty.

One way to speed up such code is to change the underlying data structure
completely. For example, we can store the stacked objects in a binary tree of tuples:
each item may be recorded as a pair: (object, tree), where object is the stacked
item, and tree is either another tuple pair giving the rest of the stack or None to
designate an empty stack. A stack of items [1,2,3,4] would be internally stored as
a tuple tree (1,(2,(3,(4,None)))).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1030

This tuple-based representation is similar to the notion of "cons-cells" in Lisp-family
languages: the object on the left is the car, and the rest of the tree on the right is
the cdr. Because we add or remove only a top tuple to push and pop items, this
structure avoids copying the entire stack. For large stacks, the benefit might be
significant. The next class, shown in Example 17-4, implements these ideas.

Example 17-4. PP2E\Dstruct\Basic\stack3.py

class Stack:
 def __init__(self, start=[]): # init from any sequence
 self.stack = None # even other
(fast)stacks
 for i in range(-len(start), 0):
 self.push(start[-i - 1]) # push in reverse order
 def push(self, node): # grow tree 'up/left'
 self.stack = node, self.stack # new root tuple: (node,
tree)
 def pop(self):
 node, self.stack = self.stack # remove root tuple
 return node # TypeError if empty
 def empty(self):
 return not self.stack # is it 'None'?
 def __len__(self): # on: len, not
 len, tree = 0, self.stack
 while tree:
 len, tree = len+1, tree[1] # visit right subtrees
 return len
 def __getitem__(self, index): # on: x[i], in, for
 len, tree = 0, self.stack
 while len < index and tree: # visit/count nodes
 len, tree = len+1, tree[1]
 if tree:
 return tree[0] # IndexError if out-of-
bounds
 else: raise IndexError # so 'in' and 'for' stop
 def __repr__(self): return '[FastStack:' + `self.stack` + ']'

This class's __getitem__ method handles indexing, in tests, and for loop iteration
as before, but this version has to traverse a tree to find a node by index. Notice that
this isn't a subclass of the original Stack class. Since nearly every operation is
implemented differently here, inheritance won't really help. But clients that restrict
themselves to the operations that are common to both classes can still use them
interchangeably -- they just need to import a stack class from a different module to
switch implementations. Here's a session with this stack version; as long as we stick
to pushing, popping, indexing, and iterating, this version is essentially
indistinguishable from the original:

>>> from stack3 import Stack
>>> x = Stack()
>>> y = Stack()
>>> for c in 'spam': x.push(c)
...
>>> for i in range(3): y.push(i)
...
>>> x

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1031

[FastStack:('m', ('a', ('p', ('s', None))))]
>>> y
[FastStack:(2, (1, (0, None)))]

>>> len(x), x[2], x[-1]
(4, 'p', 'm')
>>> x.pop()
'm'
>>> x
[FastStack:('a', ('p', ('s', None)))]
>>>
>>> while y: print y.pop(),
...
2 1 0

17.2.5 Optimization: In-place List Modifications

Perhaps a better way to speed up the stack object, though, is to fall back on the
mutability of Python's list object. Because lists can be changed in place, they can be
modified more quickly than any of the prior examples. In-place change operations
like append are prone to complications when a list is referenced from more than one
place. But because the list inside the stack object isn't meant to be used directly,
we're probably safe here. The module in Example 17-5 shows one way to implement
a stack with in-place changes; some operator overloading methods have been
dropped to keep this simple. The new Python pop method it uses is equivalent to
indexing and deleting the item at offset -1 (top is end-of-list here).

Example 17-5. PP2E\Dstruct\Basic\stack4.py

error = 'stack4.error' # when imported: local
exception

class Stack:
 def __init__(self, start=[]): # self is the instance
object
 self.stack = [] # start is any sequence:
stack..
 for x in start: self.push(x)
 def push(self, obj): # methods: like module +
self
 self.stack.append(obj) # top is end of list
 def pop(self):
 if not self.stack: raise error, 'underflow'
 return self.stack.pop() # like fetch and delete
stack[-1]
 def top(self):
 if not self.stack: raise error, 'underflow'
 return self.stack[-1]
 def empty(self):
 return not self.stack # instance.empty()
 def __len__(self):
 return len(self.stack) # len(instance), not
intance
 def __getitem__(self, offset):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1032

 return self.stack[offset] # instance[offset], in,
for
 def __repr__(self): return '[Stack:%s]' % self.stack

This version works like the original in module stack2, too -- just replace stack2 with
stack4 in the previous interaction to get a feel for its operation. The only obvious
difference is that stack items are in reverse when printed (i.e., the top is the end):

>>> from stack4 import Stack
>>> x = Stack()
>>> x.push('spam')
>>> x.push(123)
>>> x
[Stack:['spam', 123]]
>>>
>>> y = Stack()
>>> y.push(3.1415)
>>> y.push(x.pop())
>>> x, y
([Stack:['spam']], [Stack:[3.1415, 123]])
>>> y.top()
123

17.2.6 Timing the Improvements

The in-place changes stack object probably runs faster than both the original and the
tuple-tree version, but the only way to really be sure how much faster is to time the
alternative implementations. Since this could be something we'll want to do more
than once, let's first define a general module for timing functions in Python. In
Example 17-6, the built-in time module provides a clock function that we can use to
get the current CPU time in floating-point seconds, and the function timer.test
simply calls a function reps times and returns the number of elapsed seconds by
subtracting stop from start CPU times.

Example 17-6. PP2E\Dstruct\Basic\timer.py

def test(reps, func, *args):
 import time
 start = time.clock() # current CPU tim in float
seconds
 for i in xrange(reps): # call function reps times
 apply(func, args) # discard any return value
 return time.clock() - start # stop time - start time

Next, we define a test driver script (see Example 17-7). It expects three command-
line arguments: the number of pushes, pops, and indexing operations to perform
(we'll vary these arguments to test different scenarios). When run at the top level,
the script creates 200 instances of the original and optimized stack classes, and
performs the specified number of operations on each stack.[2] Pushes and pops
change the stack; indexing just accesses it.

[2] If you have a copy of the first edition of this book lying around, you might notice that I had
to scale all test factors way up to get even close to the run times I noticed before. Both Python
and chips have gotten a lot faster in five years.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1033

Example 17-7. PP2E\Dstruct\Basic\stacktime.py

import stack2 # list-based stacks: [x]+y
import stack3 # tuple-tree stacks: (x,y)
import stack4 # in-place stacks: y.append(x)
import timer # general function timer function

rept = 200
from sys import argv
pushes, pops, items = eval(argv[1]), eval(argv[2]), eval(argv[3])

def stackops(stackClass):
 #print stackClass.__module__
 x = stackClass('spam') # make a stack object
 for i in range(pushes): x.push(i) # exercise its methods
 for i in range(items): t = x[i]
 for i in range(pops): x.pop()

print 'stack2:', timer.test(rept, stackops, stack2.Stack) # pass class
to test
print 'stack3:', timer.test(rept, stackops, stack3.Stack) #
rept*(push+pop+ix)
print 'stack4:', timer.test(rept, stackops, stack4.Stack)

Here are some of the timings reported by the test driver script. The three outputs
represent the measured run times in seconds for the original, tuple, and in-place
stacks. For each stack type, the first test creates 200 stack objects and performs
roughly 120,000 stack operations (200 rept x (200 pushes + 200 indexes + 200
pops)), in the test duration times listed. These results were obtained on a 650 MHz
Pentium III Windows machine, and a Python 1.5.2 install:

C:\...\PP2E\Dstruct\Basic>python stacktime.py 200 200 200
stack2: 1.67890008213
stack3: 7.70020952413
stack4: 0.694291724635

C:\...\PP2E\Dstruct\Basic>python stacktime.py 200 50 200
stack2: 1.06876246669
stack3: 7.48964866994
stack4: 0.477584270605

C:\...\PP2E\Dstruct\Basic>python stacktime.py 200 200 50
stack2: 1.34536448817
stack3: 0.795615917129
stack4: 0.57297976835

C:\...\PP2E\Dstruct\Basic>python stacktime.py 200 200 0
stack2: 1.33500477715
stack3: 0.300776077373
stack4: 0.533050336077

If you look closely enough, you'll notice that the results show that the tuple-based
stack (stack3) performs better when we do more pushing and popping, but worse if
we do much indexing. Indexing lists is extremely fast for built-in lists, but very slow
for tuple trees -- the Python class must traverse the tree manually. The in-place

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1034

change stacks (stack4) are almost always fastest, unless no indexing is done at all -
- tuples won by a hair in the last test case. Since pushes and pops are most of what
clients would do to a stack, tuples are a contender, despite their poor indexing
performance. Of course, we're talking about fractions of a second after many tens of
thousands of operations; in many applications, your users probably won't care either
way.

17.3 Implementing Sets

Another commonly used data structure is the set, a collection of objects that support
operations such as:

Intersection

Make a new set with all items in common.

Union

Make a new set with all items in either operand.

Membership

Test if an item exists in a set.

And there are others, depending on the intended use. Sets come in handy for dealing
with more abstract group combinations. For instance, given a set of engineers and a
set of writers, you can pick out individuals who do both activities by intersecting the
two sets. A union of such sets would contain either type of individual, but only
include any given individual once.

Python lists, tuples, and strings come close to the notion of a set: the in operator
tests membership, for iterates, etc. Here, we add operations not directly supported
by Python sequences. The idea is that we're extending built-in types for unique
requirements.

17.3.1 Set Functions

As before, let's first start out with a function-based set manager. But this time,
instead of managing a shared set object in a module, let's define functions to
implement set operations on passed-in Python sequences (see Example 17-8).

Example 17-8. PP2E\Dstruct\Basic\inter.py

def intersect(seq1, seq2):
 res = [] # start with an empty list
 for x in seq1: # scan the first sequence
 if x in seq2:
 res.append(x) # add common items to the end
 return res

def union(seq1, seq2):
 res = list(seq1) # make a copy of seq1

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1035

 for x in seq2: # add new items in seq2
 if not x in res:
 res.append(x)
 return res

These functions work on any type of sequence -- lists strings, tuples, and other
objects that conform to the sequence protocols expected by these functions (for
loops, in membership tests). In fact, we can even use them on mixed object types:
the last two commands in the following code compute the intersection and union of a
list and a tuple. As usual in Python, the object interface is what matters, not the
specific types:

C:\...\PP2E\Dstruct\Basic>python
>>> from inter import *
>>> s1 = "SPAM"
>>> s2 = "SCAM"
>>> intersect(s1, s2), union(s1, s2)
(['S', 'A', 'M'], ['S', 'P', 'A', 'M', 'C'])
>>> intersect([1,2,3], (1,4))
[1]
>>> union([1,2,3], (1,4))
[1, 2, 3, 4]

Notice that the result is always a list here, regardless of the type of sequences
passed in. We could work around this by converting types or by using a class to
sidestep this issue (and we will in a moment). But type conversions aren't clear- cut
if the operands are mixed-type sequences. Which type do we convert to?

17.3.1.1 Supporting multiple operands

If we're going to use the intersect and union functions as general tools, one useful
extension is support for multiple arguments (i.e., more than two). The functions in
Example 17-9 use Python's variable-length argument lists feature to compute the
intersection and union of arbitrarily many operands.

Example 17-9. PP2E\Dstruct\Basic\inter2.py

def intersect(*args):
 res = []
 for x in args[0]: # scan the first list
 for other in args[1:]: # for all other arguments
 if x not in other: break # this item in each one?
 else:
 res.append(x) # add common items to the end
 return res

def union(*args):
 res = []
 for seq in args: # for all sequence-arguments
 for x in seq: # for all nodes in argument
 if not x in res:
 res.append(x) # add new items to result
 return res

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1036

The multi-operand functions work on sequences in the same way as the original
functions, but they support three or more operands. Notice that the last two
examples in the following session work on lists with embedded compound objects:
the in tests used by the intersect and union functions apply equality testing to
sequence nodes recursively, as deep as necessary to determine collection
comparison results:

C:\...\PP2E\Dstruct\Basic>python
>>> from inter2 import *
>>> s1, s2, s3 = 'SPAM', 'SLAM', 'SCAM'
>>> intersect(s1, s2)
['S', 'A', 'M']
>>> intersect(s1, s2, s3)
['S', 'A', 'M']
>>> intersect(s1, s2, s3, 'HAM')
['A', 'M']

>>> union(s1, s2), union(s1, s2, s3)
(['S', 'P', 'A', 'M', 'L'], ['S', 'P', 'A', 'M', 'L', 'C'])
>>> intersect([1,2,3], (1,4), range(5))
[1]

>>> s1 = (9, (3.14, 1), "bye", [1,2], "mello")
>>> s2 = [[1,2], "hello", (3.14, 0), 9]
>>> intersect(s1, s2)
[9, [1, 2]]
>>> union(s1, s2)
[9, (3.14, 1), 'bye', [1, 2], 'mello', 'hello', (3.14, 0)]

17.3.2 Set Classes

The set functions can operate on a variety of sequences, but they aren't as friendly
as true objects. Among other things, your scripts need to keep track of the
sequences passed into these functions manually. Classes can do better: the class in
Example 17-10 implements a set object that can hold any type of object. Like the
stack classes, it's essentially a wrapper around a Python list with extra set
operations.

Example 17-10. PP2E\Dstruct\Basic\set.py

class Set:
 def __init__(self, value = []): # on object creation
 self.data = [] # manages a local list
 self.concat(value)
 def intersect(self, other): # other is any sequence type
 res = [] # self is the instance subject
 for x in self.data:
 if x in other:
 res.append(x)
 return Set(res) # return a new Set
 def union(self, other):
 res = self.data[:] # make a copy of my list
 for x in other:
 if not x in res:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1037

 res.append(x)
 return Set(res)
 def concat(self, value): # value: a list, string, Set...
 for x in value: # filters out duplicates
 if not x in self.data:
 self.data.append(x)

 def __len__(self): return len(self.data)
 def __getitem__(self, key): return self.data[key]
 def __and__(self, other): return self.intersect(other)
 def __or__(self, other): return self.union(other)
 def __repr__(self): return '<Set:' + `self.data` + '>'

The Set class is used like the Stack class we saw earlier in this chapter: we make
instances and apply sequence operators plus unique set operations to them.
Intersection and union can be called as methods, or by using the & and | operators
normally used for built-in integer objects. Because we can string operators in
expressions now (e.g., x & y & z), there is no obvious need to support multiple
operands in intersect/union methods here. As with all objects, we can either use the
Set class within a program, or test it interactively as follows:

>>> from set import Set
>>> users1 = Set(['Bob', 'Emily', 'Howard', 'Peeper'])
>>> users2 = Set(['Jerry', 'Howard', 'Carol'])
>>> users3 = Set(['Emily', 'Carol'])
>>> users1 & users2
<Set:['Howard']>
>>> users1 | users2
<Set:['Bob', 'Emily', 'Howard', 'Peeper', 'Jerry', 'Carol']>
>>> users1 | users2 & users3
<Set:['Bob', 'Emily', 'Howard', 'Peeper', 'Carol']>
>>> (users1 | users2) & users3
<Set:['Emily', 'Carol']>
>>> users1.data
['Bob', 'Emily', 'Howard', 'Peeper']

17.3.3 Optimization: Moving Sets to Dictionaries

Once you start using the Set class, the first problem you might encounter is its
performance: its nested for loops and in scans become exponentially slow. That
slowness may or may not be significant in your applications, but library classes
should generally be coded as efficiently as possible.

One way to optimize set performance is by changing the implementation to use
dictionaries instead of lists, for storing sets internally -- items may be stored as the
keys of a dictionary whose values are all None. Because lookup time is constant and
short for dictionaries, the in list scans of the original set may be replaced with direct
dictionary fetches in this scheme. In traditional terms, moving sets to dictionaries
replaces slow linear searches with fast hash tables.

The module in Example 17-11 implements this idea. Its class is a subclass of the
original set, and redefines the methods that deal with the internal representation but
inherits others. The inherited & and | methods trigger the new intersect and union

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1038

methods here, and the inherited len method works on dictionaries as is. As long as
Set clients are not dependent on the order of items in a set, they can switch to this
version directly by just changing the name of the module where Set is imported
from; the class name is the same.

Example 17-11. PP2E\Dstruct\Basic\fastset.py

import set
 # fastset.Set extends
set.Set
class Set(set.Set):
 def __init__(self, value = []):
 self.data = {} # manages a local dictionary
 self.concat(value) # hashing: linear search
times
 def intersect(self, other):
 res = {}
 for x in other: # other: a sequence or Set
 if self.data.has_key(x): # use hash-table lookup
 res[x] = None
 return Set(res.keys()) # a new dictionary-based
Set
 def union(self, other):
 res = {} # other: a sequence or Set
 for x in other: # scan each set just once
 res[x] = None
 for x in self.data.keys(): # '&' and '|' come back
here
 res[x] = None # so they make new fastset's
 return Set(res.keys())
 def concat(self, value):
 for x in value: self.data[x] = None

 # inherit and, or, len
 def __getitem__(self, key): return self.data.keys()[key]
 def __repr__(self): return '<Set:' + `self.data.keys()`
+ '>'

This works about the same as the previous version:

>>> from fastset import Set
>>> users1 = Set(['Bob', 'Emily', 'Howard', 'Peeper'])
>>> users2 = Set(['Jerry', 'Howard', 'Carol'])
>>> users3 = Set(['Emily', 'Carol'])
>>> users1 & users2
<Set:['Howard']>
>>> users1 | users2
<Set:['Emily', 'Howard', 'Jerry', 'Carol', 'Peeper', 'Bob']>
>>> users1 | users2 & users3
<Set:['Emily', 'Howard', 'Carol', 'Peeper', 'Bob']>
>>> (users1 | users2) & users3
<Set:['Emily', 'Carol']>
>>> users1.data
{'Emily': None, 'Bob': None, 'Peeper': None, 'Howard': None}

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1039

The main functional difference in this version is the order of items in the set:
because dictionaries are randomly ordered, this set's order will differ from the
original. For instance, you can store compound objects in sets, but the order of items
varies in this version:

>>> import set, fastset
>>> a = set.Set([(1,2), (3,4), (5,6)])
>>> b = set.Set([(3,4), (7,8)])
>>> a & b
<Set:[(3, 4)]>
>>> a | b
<Set:[(1, 2), (3, 4), (5, 6), (7, 8)]>

>>> a = fastset.Set([(1,2), (3,4), (5,6)])
>>> b = fastset.Set([(3,4), (7,8)])
>>> a & b
<Set:[(3, 4)]>
>>> a | b
<Set:[(3, 4), (1, 2), (7, 8), (5, 6)]>
>>> b | a
<Set:[(3, 4), (5, 6), (1, 2), (7, 8)]>

Sets aren't supposed to be ordered anyhow, so this isn't a showstopper. A deviation
that might matter, though, is that this version cannot be used to store unhashable
objects. This stems from the fact that dictionary keys must be immutable. Because
values are stored in keys, dictionary sets can contain only things like tuples, strings,
numbers, and class objects with immutable signatures. Mutable objects like lists and
dictionaries won't work directly. For example, the call:

fastset.Set([[1,2],[3,4]])

raises an exception with this dictionary-based set, but works with the original set
class. Tuples work here because they are immutable; Python computes hash values
and tests key equality as expected.

17.3.3.1 Timing the results

So how did we do on the optimization front? Example 17-12 contains a script to
compare set class performance. It reuses the timer module used earlier to test
stacks.

Example 17-12. PP2E\Dstruct\Basic\settime.py

import timer, sys
import set, fastset

def setops(Class):
 a = Class(range(50)) # a 50-integer set
 b = Class(range(20)) # a 20-integer set
 c = Class(range(10))
 d = Class(range(5))
 for i in range(5):
 t = a & b & c & d # 3 intersections
 t = a | b | c | d # 3 unions

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1040

if __name__ == '__main__':
 rept = int(sys.argv[1])
 print 'set => ', timer.test(rept, setops, set.Set)
 print 'fastset =>', timer.test(rept, setops, fastset.Set)

The setops function makes four sets and combines them with intersection and union
operators five times. A command-line argument controls the number of times this
whole process is repeated. More accurately, each call to setops makes 34 Set
instances (4 + [5 x (3 + 3)]), and runs the intersect and union methods 15 times
each (5 x 3) in the for loop's body. On the same test machine, the performance
improvement is equally dramatic this time around:

C:\...\PP2E\Dstruct\Basic>python settime.py 50
set => 1.5440352671
fastset => 0.446057593993

C:\...\PP2E\Dstruct\Basic>python settime.py 100
set => 2.77783486146
fastset => 0.888354648921

C:\...\PP2E\Dstruct\Basic>python settime.py 200
set => 5.7762634305
fastset => 1.77677885985

At least for this test case, the simple set implementation is over three times slower
than dictionary-based sets. In fact, this threefold speedup is probably sufficient.
Python dictionaries are already optimized hash tables that you might be hard-
pressed to improve on. Unless there is evidence that dictionary-based sets are still
too slow, our work here is probably done.

Using the Python Profiler

The Python profiler provides another way to gather performance data
besides timing sections of code as done in this chapter. Because the profiler
tracks all function calls, it provides much more information in a single blow.
As such, it's a more powerful way to isolate bottlenecks in slow programs --
after profiling, you should have a good idea where to focus your
optimization efforts.

The profiler ships with Python as the standard library module called
profile, and provides a variety of interfaces for measuring code
performance. It is structured and used much like the pdb command-line
debugger: import the profile module and call its functions with a code
string to measure performance. The simplest profiling interface is its
profile.run(statementstring) function. When invoked, the profiler
runs the code string, collects statistics during the run, and issues a report on
the screen when the statement completes.

The report's format is straightforward and well-documented in the Python
library manual. By default, it lists the number of calls and times spent in
each function invoked during the run. When the profiler is enabled, each

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1041

interpreter event is routed to a Python handler. This gives an accurate
picture of performance, but tends to make the program being profiled run
much slower than normal.

17.3.4 Optimizing fastset by Coding Techniques (or Not)

As coded, there seems to be a bottleneck in the fastset class: each time we call a
dictionary's keys method, Python makes a new list to hold the result, and this can
happen repeatedly during intersections and unions. If you are interested in trying to
optimize this further, see the following files in the book CD (view CD-ROM content
online at http://examples.oreilly.com/python2):

PP2E\Dstruct\Basic\fastset2.py

PP2E\Dstruct\Basic\fastset3.py

I wrote these to try to speed up sets further, but failed miserably. It turns out that
adding extra code to try to shave operations usually negates the speedup you obtain.
There may be faster codings, but the biggest win here was likely in changing the
underlying data structure to dictionaries, not in minor code tweaks.

As a rule of thumb, your intuition about performance is almost always wrong in a
dynamic language like Python: the algorithm is usually the real culprit behind
performance problems, not the coding style or even the implementation language.
By removing the combinatorial list scanning algorithm of the original set class, the
Python implementation became dramatically faster.

In fact, moving the original set class to C without fixing the algorithm would not have
addressed the real performance problem. Coding tricks don't usually help as much
either, and they make your programs difficult to understand. In Python, it's almost
always best to code for readability first and optimize later if needed. Despite its
simplicity, fastset is fast indeed.

17.3.5 Adding Relational Algebra to Sets (CD)

If you are interested in studying additional set-like operations coded in Python, see
the following files on this book's CD (see http://examples.oreilly.com/python2):

PP2E\Dstruct\Basic\rset.py : RSet implementation

PP2E\Dstruct\Basic\reltest.py : Test script for RSet

The RSet subclass defined in rset.py adds basic relational algebra operations for sets
of dictionaries. It assumes the items in sets are mappings (rows), with one entry per
column (field). RSet inherits all the original Set operations (iteration, intersection,
union, & and | operators, uniqueness filtering, etc.), and adds new operations as
methods:

Select

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1042

Return a set of nodes that have a field equal to a given value.

Bagof

Collect set nodes that satisfy an expression string.

Find

Select tuples according to a comparison, field, and value.

Match

Find nodes in two sets with the same values for common fields.

Product

Compute a Cartesian product: concatenate tuples from two sets.

Join

Combine tuples from two sets that have the same value for a field.

Project

Extract named fields from the tuples in a table.

Difference

Remove one set's tuples from another.

Alternative implementations of set difference operations can also be found in the
diff.py file in the same CD directory.

17.4 Binary Search Trees

Binary trees are a data structure that impose an order on inserted nodes: items less
than a node are stored in its left subtree, and items greater than a node are inserted
in the right. At the bottom, the subtrees are empty. Because of this structure, binary
trees naturally support quick, recursive traversals -- at least ideally, every time you
follow a link to a subtree, you divide the search space in half.[3]

[3] If you're looking for a more graphical image of binary trees, skip ahead to the
PyTreeexamples at the end of this chapter, or simply run it on your own machine.

Binary trees are named for the implied branch-like structure of their subtree links.
Typically, their nodes are implemented as a triple of values: (LeftSubtree,
NodeValue, RightSubtree). Beyond that, there is fairly wide latitude in the tree
implementation. Here we'll use a class-based approach:

BinaryTree is a header object, which initializes and manages the actual tree.

EmptyNode is the empty object, shared at all empty subtrees (at the bottom).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1043

BinaryNode objects are nonempty tree nodes with a value and two subtrees.

Rather than coding distinct search functions, binary trees are constructed with
"smart" objects (class instances) that know how to handle insert/lookup and printing
requests and pass them to subtree objects. In fact, this is another example of the
OOP composition relationship in action: tree nodes embed other tree nodes and pass
search requests off to the embedded subtrees. A single empty class instance is
shared by all empty subtrees in a binary tree, and inserts replace an EmptyNode with
a BinaryNode at the bottom (see Example 17-13).

Example 17-13. PP2E\Dstruct\Classics\btree.py

class BinaryTree:
 def __init__(self): self.tree = EmptyNode()
 def __repr__(self): return `self.tree`
 def lookup(self, value): return self.tree.lookup(value)
 def insert(self, value): self.tree = self.tree.insert(value)

class EmptyNode:
 def __repr__(self):
 return '*'
 def lookup(self, value): # fail at the bottom
 return 0
 def insert(self, value):
 return BinaryNode(self, value, self) # add new node at
bottom

class BinaryNode:
 def __init__(self, left, value, right):
 self.data, self.left, self.right = value, left, right
 def lookup(self, value):
 if self.data == value:
 return 1
 elif self.data > value:
 return self.left.lookup(value) # look in left
 else:
 return self.right.lookup(value) # look in
right
 def insert(self, value):
 if self.data > value:
 self.left = self.left.insert(value) # grow in left
 elif self.data < value:
 self.right = self.right.insert(value) # grow in
right
 return self
 def __repr__(self):
 return '(%s, %s, %s)' % (`self.left`, `self.data`,
`self.right`)

As usual, BinaryTree can contain objects of any type that support the expected
interface protocol -- here, > and < comparisons. This includes class instances with
the __cmp__ method. Let's experiment with this module's interfaces. The following
code stuffs five integers into a new tree, and then searches for values 0...9:

C:\...\PP2E\Dstruct\Classics>python

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1044

>>> from btree import BinaryTree
>>> x = BinaryTree()
>>> for i in [3,1,9,2,7]: x.insert(i)
...
>>> for i in range(10): print (i, x.lookup(i)),
...
(0, 0) (1, 1) (2, 1) (3, 1) (4, 0) (5, 0) (6, 0) (7, 1) (8, 0) (9, 1)

To watch this tree grow, add a print statement after each insert. Tree nodes print
themselves as triples, and empty nodes print as *. The result reflects tree nesting:

>>> y = BinaryTree()
>>> y
*
>>> for i in [3,1,9,2,7]:
... y.insert(i); print y
...
(*, 3, *)
((*, 1, *), 3, *)
((*, 1, *), 3, (*, 9, *))
((*, 1, (*, 2, *)), 3, (*, 9, *))
((*, 1, (*, 2, *)), 3, ((*, 7, *), 9, *))

At the end of this chapter, we'll see another way to visualize trees in a GUI (which
means you're invited to flip ahead now). Node values in this tree object can be any
comparable Python object; for instances, here is a tree of strings:

>>> z = BinaryTree()
>>> for c in 'badce': z.insert(c)
...
>>> z
((*, 'a', *), 'b', ((*, 'c', *), 'd', (*, 'e', *)))
>>> z = BinaryTree()
>>> for c in 'abcde': z.insert(c)
...
>>> z
(*, 'a', (*, 'b', (*, 'c', (*, 'd', (*, 'e', *)))))

Notice the last result here: if items inserted into a binary tree are already ordered,
then you wind up with a linear structure, and you lose the search-space partitioning
magic of binary trees (the tree grows in right branches only). This is a worst-case
scenario, and binary trees generally do a good job of dividing up values in practice.
But if you are interested in pursuing this topic further, see a data structures text for
tree-balancing techniques that automatically keep the tree as dense as possible.

Also note that to keep the code simple, these trees store a value only, and lookups
return a 1 or (true or false). In practice, you sometimes may want to store both a
key and an associated value (or even more) at each tree node. Example 17-14
shows what such a tree object looks like, for any prospective lumberjacks in the
audience.

Example 17-14. PP2E\Dstruct\Classics\btree-keys.py

class KeyedBinaryTree:
 def __init__(self): self.tree = EmptyNode()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1045

 def __repr__(self): return `self.tree`
 def lookup(self, key): return self.tree.lookup(key)
 def insert(self, key, val): self.tree = self.tree.insert(key, val)

class EmptyNode:
 def __repr__(self):
 return '*'
 def lookup(self, key): # fail at the
bottom
 return None
 def insert(self, key, val):
 return BinaryNode(self, key, val, self) # add node at
bottom

class BinaryNode:
 def __init__(self, left, key, val, right):
 self.key, self.val = key, val
 self.left, self.right = left, right
 def lookup(self, key):
 if self.key == key:
 return self.val
 elif self.key > key:
 return self.left.lookup(key) # look in left
 else:
 return self.right.lookup(key) # look in
right
 def insert(self, key, val):
 if self.key == key:
 self.val = val
 elif self.key > key:
 self.left = self.left.insert(key, val) # grow in left
 elif self.key < key:
 self.right = self.right.insert(key, val) # grow in
right
 return self
 def __repr__(self):
 return ('(%s, %s=%s, %s)' %
 (`self.left`, `self.key`, `self.val`, `self.right`))

if __name__ == '__main__':
 t = KeyedBinaryTree()
 for (key, val) in [('bbb', 1), ('aaa', 2), ('ccc', 3)]:
 t.insert(key, val)
 print t
 print t.lookup('aaa'), t.lookup('ccc')
 t.insert('ddd', 4)
 t.insert('aaa', 5) # changes key's value
 print t

And here is this script's self-test code at work; nodes simply have more content this
time around:

C:\...\PP2E\Dstruct\Classics>python btree-keys.py
((*, 'aaa'=2, *), 'bbb'=1, (*, 'ccc'=3, *))
2 3
((*, 'aaa'=5, *), 'bbb'=1, (*, 'ccc'=3, (*, 'ddd'=4, *)))

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1046

17.5 Graph Searching

Many problems can be represented as a graph, which is a set of states with
transitions ("arcs") that lead from one state to another. For example, planning a
route for a trip is really a graph search problem in disguise -- the states are places
you'd like to visit, and the arcs are the transportation links between them.

This section presents simple Python programs that search through a directed, cyclic
graph to find the paths between a start state and a goal. Graphs can be more
general than trees, because links may point at arbitrary nodes -- even ones already
searched (hence the word "cyclic").

The graph used to test searchers in this section is sketched in Figure 17-1. Arrows at
the end of arcs indicate valid paths (e.g., A leads to B, E, and G). The search
algorithms will traverse this graph in a depth-first fashion, and trap cycles in order to
avoid looping. If you pretend that this is a map, where nodes represent cities, and
arcs represent roads, this example will probably seem a bit more meaningful.

Figure 17-1. A directed graph

The first thing we need to do is choose a way to represent this graph in a Python
script. One approach is to use built-in datatypes and searcher functions. The file in
Example 17-15 builds the test graph as a simple dictionary: each state is a dictionary
key, with a list of keys of nodes it leads to (i.e., its arcs). This file also defines a
function that we'll use to run a few searches in the graph.

Example 17-15. PP2E\Dstruct\Classics\gtestfunc.py

Graph = {'A': ['B', 'E', 'G'],
 'B': ['C'], # a directed, cyclic graph
 'C': ['D', 'E'], # stored as a dictionary
 'D': ['F'], # 'key' leads-to [nodes]
 'E': ['C', 'F', 'G'],
 'F': [],
 'G': ['A'] }

def tests(searcher): # test searcher function
 print searcher('E', 'D', Graph) # find all paths from 'E'
to 'D'
 for x in ['AG', 'GF', 'BA', 'DA']:
 print x, searcher(x[0], x[1], Graph)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1047

Now let's code two modules that implement the actual search algorithms. They are
both independent of the graph to be searched (it is passed in as an argument). The
first searcher, in Example 17-16, uses recursion to walk through the graph.

Example 17-16. PP2E\Dstruct\Classics\gsearch1.py

find all paths from start to goal in graph

def search(start, goal, graph):
 solns = []
 generate([start], goal, solns, graph) # collect paths
 solns.sort(lambda x, y: cmp(len(x), len(y))) # sort by path
length
 return solns

def generate(path, goal, solns, graph):
 state = path[-1]
 if state == goal: # found goal
here
 solns.append(path) # change solns
in-place
 else: # check all arcs
here
 for arc in graph[state]: # skip cycles on
path
 if arc not in path:
 generate(path + [arc], goal, solns, graph)

if __name__ == '__main__':
 import gtestfunc
 gtestfunc.tests(search)

The second searcher, in Example 17-17, uses an explicit stack of paths to be
expanded using the tuple-tree stack representation we explored earlier in this
chapter.

Example 17-17. PP2E\Dstruct\Classics\gsearch2.py

use paths stack instead of recursion

def search(start, goal, graph):
 solns = generate(([start], []), goal, graph)
 solns.sort(lambda x, y: cmp(len(x), len(y)))
 return solns

def generate(paths, goal, graph): # returns solns
list
 solns = [] # use a tuple-
stack
 while paths:
 front, paths = paths # pop the top
path
 state = front[-1]
 if state == goal:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1048

 solns.append(front) # goal on this
path
 else:
 for arc in graph[state]: # add all
extensions
 if arc not in front:
 paths = (front + [arc]), paths
 return solns

if __name__ == '__main__':
 import gtestfunc
 gtestfunc.tests(search)

Both searchers keep track of nodes visited along a path, to avoid cycles. If an
extension is already on the current path, it is a loop. The resulting solutions list is
sorted by increasing lengths using the list sort method and the built-in cmp
comparison function. To test the searcher modules, simply run them; their self-test
code calls the canned search test in the gtestfunc module:

C:\...\PP2E\Dstruct\Classics>python gsearch1.py
[['E', 'C', 'D'], ['E', 'G', 'A', 'B', 'C', 'D']]
AG [['A', 'G'], ['A', 'E', 'G'], ['A', 'B', 'C', 'E', 'G']]
GF [['G', 'A', 'E', 'F'], ['G', 'A', 'B', 'C', 'D', 'F'],
 ['G', 'A', 'B', 'C', 'E', 'F'], ['G', 'A', 'E', 'C', 'D', 'F']]
BA [['B', 'C', 'E', 'G', 'A']]
DA []

C:\...\PP2E\Dstruct\Classics>python gsearch2.py
[['E', 'C', 'D'], ['E', 'G', 'A', 'B', 'C', 'D']]
AG [['A', 'G'], ['A', 'E', 'G'], ['A', 'B', 'C', 'E', 'G']]
GF [['G', 'A', 'E', 'F'], ['G', 'A', 'E', 'C', 'D', 'F'],
 ['G', 'A', 'B', 'C', 'E', 'F'], ['G', 'A', 'B', 'C', 'D', 'F']]
BA [['B', 'C', 'E', 'G', 'A']]
DA []

This output shows lists of possible paths through the test graph; I added two line
breaks to make it more readable. Notice that both searchers find the same paths in
all tests, but the order in which they find those solutions may differ. The gsearch2
order depends on how and when extensions are added to its path's stack.

17.5.1 Moving Graphs to Classes

Using dictionaries to represent graphs is efficient: connected nodes are located by a
fast hashing operation. But depending on the application, other representations
might make more sense. For instance, classes can be used to model nodes in a
network, too, much like the binary tree example earlier. As classes, nodes may
contain content useful for more sophisticated searches. To illustrate, Example 17-18
shows an alternative coding for our graph searcher; its algorithm is closest to
gsearch1.

Example 17-18. PP2E\Dstruct\Classics\graph.py

build graph with objects that know how to search

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1049

class Graph:
 def __init__(self, label, extra=None):
 self.name = label # nodes=inst
objects
 self.data = extra # graph=linked
objs
 self.arcs = []
 def __repr__(self):
 return self.name
 def search(self, goal):
 Graph.solns = []
 self.generate([self], goal)
 Graph.solns.sort(lambda x,y: cmp(len(x), len(y)))
 return Graph.solns
 def generate(self, path, goal):
 if self == goal: # class ==
tests addr
 Graph.solns.append(path) # or
self.solns: same
 else:
 for arc in self.arcs:
 if arc not in path:
 arc.generate(path + [arc], goal)

if __name__ == '__main__':
 import gtestobj1
 gtestobj1.tests(Graph)

In this version, graphs are represented as a network of embedded class instance
objects. Each node in the graph contains a list of the node objects it leads to (arcs),
which it knows how to search. The generate method walks through the objects in
the graph. But this time, links are directly available on each node's arcs list; there is
no need to index (or pass) a dictionary to find linked objects.

To test, the module in Example 17-19 builds the test graph again, this time using
linked instances of the Graph class. Notice the use of exec in the self-test code: it
executes dynamically constructed strings to do the work of seven assignment
statements (A=Graph('A'), B=Graph('B'), etc.).

Example 17-19. PP2E\Dstruct\Classics\gtestobj1.py

def tests(Graph):
 for name in "ABCDEFG": # make objects
first
 exec "%s = Graph('%s')" % (name, name) #
label=variable-name

 A.arcs = [B, E, G]
 B.arcs = [C] # now configure their links:
 C.arcs = [D, E] # embedded class-instance list
 D.arcs = [F]
 E.arcs = [C, F, G]
 G.arcs = [A]

 A.search(G)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1050

 for (start, stop) in [(E,D), (A,G), (G,F), (B,A), (D,A)]:
 print start.search(stop)

You run this test by running the graph module to pass in a graph class, like this:

C:\...\PP2E\Dstruct\Classics>python graph.py
[[E, C, D], [E, G, A, B, C, D]]
[[A, G], [A, E, G], [A, B, C, E, G]]
[[G, A, E, F], [G, A, B, C, D, F], [G, A, B, C, E, F], [G, A, E, C, D,
F]]
[[B, C, E, G, A]]
[]

The results are the same as for the functions, but node name labels are not quoted:
nodes on path lists here are Graph instances, and this class's __repr__ scheme
suppresses quotes. Example 17-20 is one last graph test before we move on; sketch
the nodes and arcs on paper if you have more trouble following the paths than
Python.

Example 17-20. PP2E\Dstruct\Classics\gtestobj2.py

from graph import Graph

S = Graph('s')
P = Graph('p') # a graph of spam
A = Graph('a') # make node objects
M = Graph('m')

S.arcs = [P, M] # S leads to P and M
P.arcs = [S, M, A] # arcs: embedded objects
A.arcs = [M]
print S.search(M) # find all paths from S to M

This test finds three paths in its graph between nodes S and M. If you'd like to see
more Python graph code, check out the files in directory MoreGraphs on the CD (see
http://examples.oreilly.com/python2). These are roughly the same as the ones listed
here, but add user interaction as each solution is found. In addition, we've really only
scratched the surface of this domain here; see other books for additional topics (e.g.,
breadth- and best-first search):

C:\...\PP2E\Dstruct\Classics>python gtestobj2.py
[[s, m], [s, p, m], [s, p, a, m]]

17.6 Reversing Sequences

Reversal of collections is another typical operation. We can code it either recursively
or iteratively in Python, and as functions or class methods. Example 17-21 is a first
attempt at two simple reversal functions.

Example 17-21. PP2E\Dstruct\Classics\rev1.py

def reverse(list): # recursive
 if list == []:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1051

 return []
 else:
 return reverse(list[1:]) + list[:1]

def ireverse(list): # iterative
 res = []
 for x in list: res = [x] + res
 return res

Both reversal functions work correctly on lists. But if we try reversing nonlist
sequences (strings, tuples, etc.) we're in trouble: the ireverse function always
returns a list for the result regardless of the type of sequence passed:

>>> ireverse("spam")
['m', 'a', 'p', 's']

Much worse, the recursive reverse version won't work at all for nonlists -- it gets
stuck in an infinite loop. The reason is subtle: when reverse reaches the empty
string (""), it's not equal to the empty list ([]), so the else clause is selected. But
slicing an empty sequence returns another empty sequence (indexes are scaled): the
else clause recurs again with an empty sequence, and without raising an exception.
The net effect is that this function gets stuck in a loop, calling itself over and over
again until Python runs out of memory.

The versions in Example 17-22 fix both problems by using generic sequence handling
techniques:

reverse uses the not operator to detect the end of the sequence and returns the
empty sequence itself, rather than an empty list constant. Since the empty sequence
is the type of the original argument, the + operation always builds the correct type
sequence as the recursion unfolds.

ireverse makes use of the fact that slicing a sequence returns a sequence of the
same type. It first initializes the result to the slice [:0], a new, empty slice of the
argument's type. Later, it uses slicing to extract one-node sequences to add to the
result's front, instead of a list constant.

Example 17-22. PP2E\Dstruct\Classics\rev2.py

def reverse(list):
 if not list: # empty? (not always [])
 return list # the same sequence type
 else:
 return reverse(list[1:]) + list[:1] # add front item on the
end

def ireverse(list):
 res = list[:0] # empty, of same type
 for i in range(len(list)):
 res = list[i:i+1] + res # add each item to front
 return res

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1052

These functions work on any sequence, and return a new sequence of the same type
as the sequence passed in. If we pass in a string, we get a new string as the result.
In fact, they reverse any sequence object that responds to slicing, concatenation,
and len -- even instances of Python classes and C types. In other words, they can
reverse any object that has sequence interface protocols. Here they are working on
lists, strings, and tuples:

% python
>>> from rev2 import *
>>> reverse([1,2,3]), ireverse([1,2,3])
([3, 2, 1], [3, 2, 1])
>>> reverse("spam"), ireverse("spam")
('maps', 'maps')
>>> reverse((1.2, 2.3, 3.4)), ireverse((1.2, 2.3, 3.4))
((3.4, 2.3, 1.2), (3.4, 2.3, 1.2))

17.7 Permuting Sequences

The functions defined in Example 17-23 shuffle sequences in a number of ways:

permute constructs a list with all valid permutations of any sequence.

subset constructs a list with all valid permutations of a specific length.

combo works like subset, but order doesn't matter: permutations of the same items
are filtered out.

These results are useful in a variety of algorithms: searches, statistical analysis, and
more. For instance, one way to find an optimal ordering for items is to put them in a
list, generate all possible permutations, and simply test each one in turn. All three of
the functions make use of the generic sequence slicing tricks of the reversal
functions in the prior section, so that the result list contains sequences of the same
type as the one passed in (e.g., when we permute a string, we get back a list of
strings).

Example 17-23. PP2E\Dstruct\Classics\permcomb.py

def permute(list):
 if not list: # shuffle any
sequence
 return [list] # empty
sequence
 else:
 res = []
 for i in range(len(list)):
 rest = list[:i] + list[i+1:] # delete
current node
 for x in permute(rest): # permute the
others
 res.append(list[i:i+1] + x) # add node at
front
 return res

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1053

def subset(list, size):
 if size == 0 or not list: # order
matters here
 return [list[:0]] # an empty
sequence
 else:
 result = []
 for i in range(len(list)):
 pick = list[i:i+1] # sequence
slice
 rest = list[:i] + list[i+1:] # keep [:i]
part
 for x in subset(rest, size-1):
 result.append(pick + x)
 return result

def combo(list, size):
 if size == 0 or not list: # order
doesn't matter
 return [list[:0]] # xyz == yzx
 else:
 result = []
 for i in range(0, (len(list) - size) + 1): # iff enough
left
 pick = list[i:i+1]
 rest = list[i+1:] # drop [:i]
part
 for x in combo(rest, size - 1):
 result.append(pick + x)
 return result

As in the reversal functions, all three of these work on any sequence object that
supports len, slicing, and concatenation operations. For instance, we can use
permute on instances of some of the stack classes defined at the start of this
chapter; we'll get back a list of stack instance objects with shuffled nodes.

Here are our sequence shufflers in action. Permuting a list enables us to find all the
ways the items can be arranged. For instance, for a four-item list, there are 24
possible permutations (4 x 3 x 2 x 1). After picking one of the four for the first
position, there are only three left to choose from for the second, and so on. Order
matters: [1,2,3] is not the same as [1,3,2], so both appear in the result:

C:\...\PP2E\Dstruct\Classics>python
>>> from permcomb import *
>>> permute([1,2,3])
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
>>> permute('abc')
['abc', 'acb', 'bac', 'bca', 'cab', 'cba']
>>> permute('help')
['help', 'hepl', 'hlep', 'hlpe', 'hpel', 'hple', 'ehlp', 'ehpl',
'elhp', 'elph',
 'ephl', 'eplh', 'lhep', 'lhpe', 'lehp', 'leph', 'lphe', 'lpeh',
'phel', 'phle',
 'pehl', 'pelh', 'plhe', 'pleh']

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1054

combo results are related to permutations, but a fixed-length constraint is put on the
result, and order doesn't matter: abc is the same as acb, so only one is added to the
result set:

>>> combo([1,2,3], 3)
[[1, 2, 3]]
>>> combo('abc', 3)
['abc']
>>> combo('abc', 2)
['ab', 'ac', 'bc']
>>> combo('abc', 4)
[]
>>> combo((1, 2, 3, 4), 3)
[(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
>>> for i in range(0, 6): print i, combo("help", i)
...
0 ['']
1 ['h', 'e', 'l', 'p']
2 ['he', 'hl', 'hp', 'el', 'ep', 'lp']
3 ['hel', 'hep', 'hlp', 'elp']
4 ['help']
5 []

Finally, subset is just fixed-length permutations; order matters, so the result is
larger than for combo. In fact, calling subset with the length of the sequence is
identical to permute:

>>> subset([1,2,3], 3)
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
>>> subset('abc', 3)
['abc', 'acb', 'bac', 'bca', 'cab', 'cba']
>>> for i in range(0, 6): print i, subset("help", i)
...
0 ['']
1 ['h', 'e', 'l', 'p']
2 ['he', 'hl', 'hp', 'eh', 'el', 'ep', 'lh', 'le', 'lp', 'ph', 'pe',
'pl']
3 ['hel', 'hep', 'hle', 'hlp', 'hpe', 'hpl', 'ehl', 'ehp', 'elh',
'elp', 'eph',
 'epl', 'lhe', 'lhp', 'leh', 'lep', 'lph', 'lpe', 'phe', 'phl',
'peh', 'pel',
 'plh', 'ple']
4 ['help', 'hepl', 'hlep', 'hlpe', 'hpel', 'hple', 'ehlp', 'ehpl',
'elhp',
 'elph', 'ephl', 'eplh', 'lhep', 'lhpe', 'lehp', 'leph', 'lphe',
'lpeh',
 'phel', 'phle', 'pehl', 'pelh', 'plhe', 'pleh']
5 ['help', 'hepl', 'hlep', 'hlpe', 'hpel', 'hple', 'ehlp', 'ehpl',
'elhp',
 'elph', 'ephl', 'eplh', 'lhep', 'lhpe', 'lehp', 'leph', 'lphe',
'lpeh',
 'phel', 'phle', 'pehl', 'pelh', 'plhe', 'pleh']

17.8 Sorting Sequences

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1055

Another staple of many systems is sorting: ordering items in a collection according to
some constraint. The script in Example 17-24 defines a simple sort routine in Python,
which orders a list of objects on a field. Because Python indexing is generic, the field
can be an index or key -- this function can sort lists of either sequences or
mappings.

Example 17-24. PP2E\Dstruct\Classics\sort1.py

def sort(list, field):
 res = [] # always returns a
list
 for x in list:
 i = 0
 for y in res:
 if x[field] <= y[field]: break # list node goes here?
 i = i+1
 res[i:i] = [x] # insert in result
slot
 return res

if __name__ == '__main__':
 table = [{'name':'john', 'age':25}, {'name':'doe', 'age':32}]
 print sort(table, 'name')
 print sort(table, 'age')
 table = [('john', 25), ('doe', 32)]
 print sort(table, 0)
 print sort(table, 1)

Here is this module's self-test code in action:

C:\...\PP2E\Dstruct\Classics>python sort1.py
[{'age': 32, 'name': 'doe'}, {'age': 25, 'name': 'john'}]
[{'age': 25, 'name': 'john'}, {'age': 32, 'name': 'doe'}]
[('doe', 32), ('john', 25)]
[('john', 25), ('doe', 32)]

17.8.1 Adding Comparison Functions

Since functions can be passed in like any other object, we can easily allow for an
optional comparison function. In the next version (Example 17-25), the second
argument takes a function that should return true if its first argument should be
placed before its second. A lambda is used to provide an ascending-order test by
default. This sorter also returns a new sequence that is the same type as the
sequence passed in, by applying the slicing techniques used in earlier sections: if you
sort a tuple of nodes, you get back a tuple.

Example 17-25. PP2E\Dstruct\Classics\sort2.py

def sort(seq, func=(lambda x,y: x <= y)): # default:
ascending
 res = seq[:0] # return seq's
type
 for j in range(len(seq)):
 i = 0

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1056

 for y in res:
 if func(seq[j], y): break
 i = i+1
 res = res[:i] + seq[j:j+1] + res[i:] # seq can be
immutable
 return res

if __name__ == '__main__':
 table = ({'name':'doe'}, {'name':'john'})
 print sort(list(table), (lambda x, y: x['name'] > y['name']))
 print sort(tuple(table), (lambda x, y: x['name'] <= y['name']))
 print sort('axbyzc')

This time, the table entries are ordered per a field comparison function passed in:

C:\...\PP2E\Dstruct\Classics>python sort2.py
[{'name': 'john'}, {'name': 'doe'}]
({'name': 'doe'}, {'name': 'john'})
abcxyz

This version also dispenses with the notion of a field altogether and lets the passed-
in function handle indexing if needed. That makes this version much more general;
for instance, it's also useful for sorting strings.

17.9 Data Structures Versus Python Built-ins

Now that I've shown you all these complicated algorithms, I need to also tell you
that at least in some cases, they may not be an optimal approach. Built-in types like
lists and dictionaries are often a simpler and more efficient way to represent data.
For instance:

Binary trees

These may be useful in many applications, but Python dictionaries already provide a
highly optimized, C-coded, search table tool. Indexing a dictionary by key is likely to
be faster than searching a Python-coded tree structure:

>>> x = {}
>>> for i in [3,1,9,2,7]: x[i] = None # insert
>>> for i in range(10): print (i, x.has_key(i)), # lookup
(0, 0) (1, 1) (2, 1) (3, 1) (4, 0) (5, 0) (6, 0) (7, 1) (8, 0)
(9, 1)

Because dictionaries are built in to the language, they are always available, and will
usually be faster than Python-based data structure implementations.

Graph algorithms

These serve many purposes, but a purely Python-coded implementation of a very
large graph might be less efficient than you want in some applications. Graph
programs tend to require peak performance; using dictionaries instead of class
instances to represent graphs may boost performance some, but using linked-in
compiled extensions may as well.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1057

Sorting algorithms

These are an important part of many programs too, but Python's built-in list sort
method is so fast that you would be hard pressed to beat it in Python in most
scenarios. In fact, it's generally better to convert sequences to lists first just so you
can use the built-in:

temp = list(sequence)
temp.sort()
...use items in temp...

For custom sorts, simply pass in a comparison function of your own:

>>> L = [{'n':3}, {'n':20}, {'n':0}, {'n':9}]
>>> L.sort(lambda x, y: cmp(x['n'], y['n']))
>>> L
[{'n': 0}, {'n': 3}, {'n': 9}, {'n': 20}]

Reversal algorithms

These are generally superfluous by the same token -- because Python lists provide a
fast reverse method, you may be better off converting a non-list to a list first, just
so that you can run the built-in list method.

Don't misunderstand: sometimes you really do need objects that add functionality to
built-in types, or do something more custom. The set classes we met, for instance,
add tools not directly supported by Python today, and the tuple-tree stack
implementation was actually faster than one based upon built-in lists for common
usage patterns. Permutations are something you need to add on your own too.

Moreover, class encapsulations make it possible to change and extend object
internals without impacting the rest of your system. They also support reuse much
better than built-in types -- types are not classes today, and cannot be specialized
directly without wrapper class logic.

Yet because Python comes with a set of built-in, flexible, and optimized datatypes,
data structure implementations are often not as important in Python as they are in
lesser-equipped languages such as C or C++. Before you code that new datatype, be
sure to ask yourself if a built-in type or call might be more in line with the Python
way of thinking.

17.10 PyTree: A Generic Tree Object Viewer

Up to now, this chapter has been command-line-oriented. To wrap up, I want to
show you a program that merges the GUI technology we studied earlier in the book
with some of the data structure ideas we've met in this chapter.

This program is called PyTree, a generic tree data structure viewer written in Python
with the Tkinter GUI library. PyTree sketches out the nodes of a tree on screen as
boxes connected by arrows. It also knows how to route mouseclicks on drawn tree
nodes back to the tree, to trigger tree-specific actions. Because PyTree lets you
visualize the structure of the tree generated by a set of parameters, it's a fun way
explore tree-based algorithms.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1058

PyTree supports arbitrary tree types by "wrapping" real trees in interface objects.
The interface objects implement a standard protocol by communicating with the
underlying tree object. For the purposes of this chapter, PyTree is instrumented to
display binary search trees ; for the next chapter, it's also set up to render
expression parse trees. New trees can be viewed by coding wrapper classes to
interface to new tree types.

The GUI interfaces PyTree utilizes were covered in depth earlier in this book, so I
won't go over this code in much detail here. See Part II, for background details, and
be sure to run this program on your own computer to get a better feel for its
operation. Because it is written with Python and Tkinter, it should be portable to
Windows, Unix, and Macs.

17.10.1 Running PyTree

Before we get to the code, let's see what PyTree looks like. You can launch PyTree
from the PyDemos launcher bar (see the top-level of the examples distribution
source tree at http://examples.oreilly.com/python2), or by directly running the
treeview.py file listed in Example 17-27. Figure 17-2 shows PyTree in action
displaying the binary tree created by the "test1" button. Trees are sketched as labels
embedded in a canvas, and connected by lines with arrows. The lines reflect parent-
to-child relationships in the actual tree; PyTree attempts to layout the tree to
produce a more or less uniform display like this one.

Figure 17-2. PyTree viewing a binary search tree (test1)

PyTree's window consists of a canvas with vertical and horizontal scrolls, and a set of
controls at the bottom -- radiobuttons for picking the type of tree you wish to

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1059

display, a set of buttons that trigger canned tree drawing tests, and an input field for
typing text to specify and generate a new tree. The set of test buttons changes if you
pick the Parser radiobutton (you get one less test button); PyTree use widget
pack_forget and pack methods to hide and show tree-specific buttons on the fly.

When you pick one of the canned test buttons, it displays in the input field the string
you would type to generate the tree drawn. For binary trees, type a list of values
separated by spaces and press the "input" button or the Enter key to generate a new
tree; the new tree is the result of inserting the typed values from left to right. For
parse trees, you input an expression string in the input field instead (more on this
later). Figure 17-3 shows the result of typing a set of values into the input field and
submitting; the resulting binary tree shows up in the canvas.

Figure 17-3. A binary tree typed manually with on-click pop-up

Notice the pop-up in this screen shot; left-clicking on a displayed tree node with your
mouse runs whatever action a tree wrapper class defines, and displays its result in
the pop-up. Binary trees have no action to run, so we get a default message in the
pop-up, but parse tress use the mouseclick to evaluate the subtree rooted at the
clicked node (again, more on parse trees later).

Just for fun, maximize this window and press the "test4" button -- it inserts 100
numbers from through 99 into a new binary tree at random, and displays the result.
Figure 17-4 captures one portion of this tree; it's much too large to fit on one screen
(or on one book page), but you can move around the tree with the canvas scrollbars.

Figure 17-4. PyTree viewing a large binary search tree (test4)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1060

PyTree uses an algorithm to connect all parents to their children in this tree without
crossing their connecting lines. It does some up-front analysis to try and arrange
descendents at each level to be as close to their parents as possible. This analysis
step also yields the overall size of a new tree -- PyTree uses it to reset the scrollable
area size of the canvas for each tree drawn.

17.10.2 Pytree Source Code

Let's move on to the code. Similar to PyForm in the prior chapter, PyTree is coded as
two modules; here, one module handles the task of sketching trees in the GUI, and
another implements wrappers to interface to various tree types and extends the GUI
with extra widgets.

17.10.2.1 Tree-independent GUI implementation

The module in Example 17-26 does the work of drawing trees in a canvas. It's coded
to be independent of any particular tree structure -- its TreeViewer class delegates
to its TreeWrapper class when it needs tree-specific information for the drawing
(e.g., node label text, node child links). TreeWrapper in turn expects to be
subclassed for a specific kind of tree; in fact it raises assertion errors if you try to
use it without subclassing. In design terms, TreeViewer embeds a TreeWrapper; it's
almost as easy to code TreeViewer subclasses per tree type, but that limits a viewer
GUI to one particular kind of tree (see treeview_subclasses.py at
http://examples.oreilly.com/python2 for a subclassing-based alternative).

Trees are drawn in two steps -- a planning traversal the builds a layout data
structure that links parents and children, and a drawing step that uses the generated

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1061

plan to draw and link node labels on the canvas. The two-step approach simplifies
some of the logic required to layout trees uniformly. Study this listing for more
details.

Example 17-26. PP2E\Dstruct\TreeView\treeview_wrappers.py

###

PyTree: sketch arbitrary tree data structures in a scrolled canvas;
this version uses tree wrapper classes embedded in the viewer gui
to support arbitrary trees (i.e.. composition, not viewer
subclassing);
also adds tree node label click callbacks--run tree specific actions;
see treeview_subclasses.py for subclass-based alternative structure;
subclassing limits one tree viewer to one tree type, wrappers do not;
see treeview_left.py for an alternative way to draw the tree object;
see and run treeview.py for binary and parse tree wrapper test cases;
###

from Tkinter import *
from tkMessageBox import showinfo

Width, Height = 350, 350 # start canvas size (reset
per tree)
Rowsz = 100 # pixels per tree row
Colsz = 100 # pixels per tree col

###################################
interface to tree object's nodes
###################################

class TreeWrapper: # subclass for a tree type
 def children(self, treenode):
 assert 0, 'children method must be specialized for tree type'
 def label(self, treenode):
 assert 0, 'label method must be specialized for tree type'
 def value(self, treenode):
 return ''
 def onClick(self, treenode): # node label click callback
 return ''
 def onInputLine(self, line, viewer): # input line sent callback
 pass

###########$######################
tree view gui, tree independent
##################################

class TreeViewer(Frame):
 def __init__(self, wrapper, parent=None, tree=None, bg='brown',
fg='beige'):
 Frame.__init__(self, parent)
 self.pack(expand=YES, fill=BOTH)
 self.makeWidgets(bg) # build gui: scrolled
canvas

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1062

 self.master.title('PyTree 1.0') # assume I'm run
standalone
 self.wrapper = wrapper # embed a TreeWrapper
object
 self.fg = fg # setTreeType changes
wrapper
 if tree:
 self.drawTree(tree)

 def makeWidgets(self, bg):
 self.title = Label(self, text='PyTree 1.0')
 self.canvas = Canvas(self, bg=bg, borderwidth=0)
 vbar = Scrollbar(self)
 hbar = Scrollbar(self, orient='horizontal')

 self.title.pack(side=TOP, fill=X)
 vbar.pack(side=RIGHT, fill=Y) # pack canvas
after bars
 hbar.pack(side=BOTTOM, fill=X)
 self.canvas.pack(side=TOP, fill=BOTH, expand=YES)

 vbar.config(command=self.canvas.yview) # call on
scroll move
 hbar.config(command=self.canvas.xview)
 self.canvas.config(yscrollcommand=vbar.set) # call on
canvas move
 self.canvas.config(xscrollcommand=hbar.set)
 self.canvas.config(height=Height, width=Width) # viewable area
size

 def clearTree(self):
 mylabel = 'PyTree 1.0 - ' + self.wrapper.__class__.__name__
 self.title.config(text=mylabel)
 self.unbind_all('<Button-1>')
 self.canvas.delete('all') # clear events,
drawing

 def drawTree(self, tree):
 self.clearTree()
 wrapper = self.wrapper
 levels, maxrow = self.planLevels(tree, wrapper)
 self.canvas.config(scrollregion=(#
scrollable area
 0, 0, (Colsz * maxrow), (Rowsz * len(levels)))) # upleft,
lowright
 self.drawLevels(levels, maxrow, wrapper)

 def planLevels(self, root, wrap):
 levels = []
 maxrow = 0 # traverse
tree to
 currlevel = [(root, None)] # layout rows,
cols
 while currlevel:
 levels.append(currlevel)
 size = len(currlevel)
 if size > maxrow: maxrow = size

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1063

 nextlevel = []
 for (node, parent) in currlevel:
 if node != None:
 children = wrap.children(node) # list
of nodes
 if not children:
 nextlevel.append((None, None)) # leave
a hole
 else:
 for child in children:
 nextlevel.append((child, node)) # parent
link
 currlevel = nextlevel
 return levels, maxrow

 def drawLevels(self, levels, maxrow, wrap):
 rowpos = 0 # draw tree
per plan
 for level in levels: # set click
handlers
 colinc = (maxrow * Colsz) / (len(level) + 1) # levels is
treenodes
 colpos = 0
 for (node, parent) in level:
 colpos = colpos + colinc
 if node != None:
 text = wrap.label(node)
 more = wrap.value(node)
 if more: text = text + '=' + more
 win = Label(self.canvas, text=text,
 bg=self.fg, bd=3,
relief=RAISED)
 win.pack()
 win.bind('<Button-1>',
 lambda e, n=node, handler=self.onClick:
handler(e, n))
 self.canvas.create_window(colpos, rowpos,
anchor=NW,
 window=win, width=Colsz*.5,
height=Rowsz*.5)
 if parent != None:
 self.canvas.create_line(
 parent.__colpos + Colsz*.25, # from x-y,
to x-y
 parent.__rowpos + Rowsz*.5,
 colpos + Colsz*.25, rowpos, arrow='last',
width=1)
 node.__rowpos = rowpos
 node.__colpos = colpos # mark node,
private attrs
 rowpos = rowpos + Rowsz

 def onClick(self, event, node):
 label = event.widget
 wrap = self.wrapper
 text = 'Label = ' + wrap.label(node) # on label click
 value = wrap.value(node)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1064

 if value:
 text = text + '\nValue = ' + value # add tree text if
any
 result = wrap.onClick(node) # run tree action
if any
 if result:
 text = text + '\n' + result # add action result
 showinfo('PyTree', text) # popup std dialog

 def onInputLine(self, line): # feed text to tree
wrapper
 self.wrapper.onInputLine(line, self) # ex: parse and
redraw tree

 def setTreeType(self, newTreeWrapper): # change tree type
drawn
 if self.wrapper != newTreeWrapper: # effective on next
draw
 self.wrapper = newTreeWrapper
 self.clearTree() # else old node,
new wrapper

17.10.2.2 Tree wrappers and test widgets

The other half of PyTree consists of a module that defines TreeWrapper subclasses
that interface to binary and parser trees, implements canned test case buttons, and
adds the control widgets to the bottom of the PyTree window.[4] These control
widgets were split off into this separate module (in Example 17-27) on purpose,
because the PyTree canvas might be useful as a viewer component in other GUI
applications.

[4] If you're looking for a coding exercise, try adding another wrapper class and radiobutton to
view the KeyedBinaryTree we wrote earlier in this chapter. You'll probably want to display the
key in the GUI, and pop up the associated value on clicks.

Example 17-27. PP2E\Dstruct\TreeView\treeview.py

PyTree launcher script
wrappers for viewing tree types in the book, plus test cases/gui

import string
from Tkinter import *
from treeview_wrappers import TreeWrapper, TreeViewer
from PP2E.Dstruct.Classics import btree
from PP2E.Lang.Parser import parser2

binary tree wrapper

class BinaryTreeWrapper(TreeWrapper): # embed binary tree in
viewer
 def children(self, node): # adds viewer protocols
 try: # to interface with tree
 return [node.left, node.right]

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1065

 except:
 return None
 def label(self, node):
 try:
 return str(node.data)
 except:
 return str(node)
 def onInputLine(self, line, viewer): # on test entry at
bottom
 items = string.split(line) # make tree from text
input
 t = btree.BinaryTree() # draw resulting btree
 for x in items: t.insert(x) # no onClick handler
here
 viewer.drawTree(t.tree)

binary tree extension

class BinaryTree(btree.BinaryTree):
 def __init__(self, viewer): # embed viewer in tree
 btree.BinaryTree.__init__(self) # but viewer has a
wrapper
 self.viewer = viewer
 def view(self):
 self.viewer.drawTree(self.tree)

parse tree wrapper

class ParseTreeWrapper(TreeWrapper):
 def __init__(self): # embed parse tree in
viewer
 self.dict = {} # adds viewer protocols
 def children(self, node):
 try:
 return [node.left, node.right]
 except:
 try:
 return [node.var, node.val]
 except:
 return None
 def label(self, node):
 for attr in ['label', 'num', 'name']:
 if hasattr(node, attr):
 return str(getattr(node, attr))
 return 'set'
 def onClick(self, node): # on tree label
click
 try: # tree-specific
action
 result = node.apply(self.dict) # evaluate subtree
 return 'Value = ' + str(result) # show result in
popup
 except:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1066

 return 'Value = <error>'
 def onInputLine(self, line, viewer): # on input line
 p = parser2.Parser() # parse expr text
 p.lex.newtext(line) # draw resulting
tree
 t = p.analyse()
 if t: viewer.drawTree(t)

canned test cases (or type new nodelists/exprs in input field)

def shownodes(sequence):
 sequence = map(str, sequence) # convert nodes to strings
 entry.delete(0, END) # show nodes in text field
 entry.insert(0, string.join(sequence, ' '))

def test1_binary(): # tree type is binary
wrapper
 nodes = [3, 1, 9, 2, 7] # make a binary tree
 tree = BinaryTree(viewer) # embed viewer in tree
 for i in nodes: tree.insert(i)
 shownodes(nodes) # show nodes in input field
 tree.view() # sketch tree via
embedded viewer

def test2_binary():
 nodes = 'badce'
 tree = btree.BinaryTree() # embed wrapper in viewer
 for c in nodes: tree.insert(c) # make a binary tree
 shownodes(nodes)
 viewer.drawTree(tree.tree) # ask viewer to draw it

def test3_binary():
 nodes = 'abcde'
 tree = BinaryTree(viewer)
 for c in nodes: tree.insert(c)
 shownodes(nodes)
 tree.view()

def test4_binary():
 tree = BinaryTree(viewer)
 import random # make a big binary tree
 nodes = range(100) # insert 100 nodes at
random
 order = [] # and sketch in viewer
 while nodes:
 item = random.choice(nodes)
 nodes.remove(item)
 tree.insert(item)
 order.append(item)
 shownodes(order)
 tree.view()

def test_parser(expr):
 parser = parser2.Parser() # tree type is parser
wrapper

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1067

 parser.lex.newtext(expr) # subtrees evaluate when
clicked
 tree = parser.analyse() # input line parses new
expr
 entry.delete(0, END) # vars set in wrapper
dictionary
 entry.insert(0, expr) # see lang/text chapter for
parser
 if tree: viewer.drawTree(tree)

def test1_parser(): test_parser("1 + 3 * (2 * 3 + 4)")
def test2_parser(): test_parser("set temp 1 + 3 * 2 * 3 + 4")
def test3_parser(): test_parser("set result temp + ((1 + 3) * 2) * (3
+ 4)")

build viewer with extra widgets to test tree types

if __name__ == '__main__':
 root = Tk() # build a single viewer
gui
 bwrapper = BinaryTreeWrapper() # add extras: input line,
test btns
 pwrapper = ParseTreeWrapper() # make wrapper objects
 viewer = TreeViewer(bwrapper, root) # start out in binary mode

 def onRadio():
 if var.get() == 'btree':
 viewer.setTreeType(bwrapper) # change viewer's
wrapper
 for btn in p_btns: btn.pack_forget() # erase parser
test buttons
 for btn in b_btns: btn.pack(side=LEFT) # unhide binary
buttons
 elif var.get() == 'ptree':
 viewer.setTreeType(pwrapper)
 for btn in b_btns: btn.pack_forget()
 for btn in p_btns: btn.pack(side=LEFT)

 var = StringVar()
 var.set('btree')
 Radiobutton(root, text='Binary', command=onRadio,
 variable=var, value='btree').pack(side=LEFT)
 Radiobutton(root, text='Parser', command=onRadio,
 variable=var, value='ptree').pack(side=LEFT)
 b_btns = []
 b_btns.append(Button(root, text='test1', command=test1_binary))
 b_btns.append(Button(root, text='test2', command=test2_binary))
 b_btns.append(Button(root, text='test3', command=test3_binary))
 b_btns.append(Button(root, text='test4', command=test4_binary))
 p_btns = []
 p_btns.append(Button(root, text='test1', command=test1_parser))
 p_btns.append(Button(root, text='test2', command=test2_parser))
 p_btns.append(Button(root, text='test3', command=test3_parser))
 onRadio()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1068

 def onInputLine():
 line = entry.get() # use per current tree
wrapper type
 viewer.onInputLine(line) # type a node list or
expression

 Button(root, text='input', command=onInputLine).pack(side=RIGHT)
 entry = Entry(root)
 entry.pack(side=RIGHT, expand=YES, fill=X)
 entry.bind('<Return>', lambda event: onInputLine()) # button or
enter key
 root.mainloop() # start up
the gui

17.10.3 Pytree Does Parse Trees, Too

Finally, I want to show you what happens when you click the Parser radiobutton in
the PyTree window. The GUI changes over to an expression parse tree viewer, by
simply using a different tree wrapper class: the label at the top changes, the test
buttons change, and input is now entered as an arithmetic expression to be parsed
and sketched. Figure 17-5 shows a tree generated for the expression string displayed
in the input field.

Figure 17-5. PyTree viewing an expression parse tree

PyTree is designed to be generic -- it displays both binary and parse trees, but is
easy to extend for new tree types with new wrapper classes. On the GUI, you can
switch between binary and parser tree types at any time by clicking the
radiobuttons. Input typed into the input field is always evaluated according to the

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1069

current tree type. When the viewer is in parse tree mode, clicking on a node in the
tree evaluates the part of the expression represented by the parse tree rooted at the
node you clicked. Figure 17-6 shows the pop-up you get when you click the root
node of the tree displayed.

Figure 17-6. PyTree pop-up after clicking a parse tree node

When viewing parse trees, PyTree becomes a sort of visual calculator -- you can
generate arbitrary expression trees and evaluate any part of them by clicking on
nodes displayed. But at this point, there is not much more I can tell you about these
kinds of trees until you move on to Chapter 18.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1070

Chapter 18. Text and Language

18.1 "See Jack Hack. Hack, Jack, Hack"

18.2 Strategies for Parsing Text in Python

18.3 String Module Utilities

18.4 Regular Expression Matching

18.5 Parser Generators

18.6 Hand-Coded Parsers

18.7 PyCalc: A Calculator Program/Object

18.1 "See Jack Hack. Hack, Jack, Hack"

In one form or another, processing text-based information is one of the more
common tasks that applications need to perform. This can include anything from
scanning a text file by columns to analyzing statements in a language defined by a
formal grammar. Such processing usually is called parsing -- analyzing the structure
of a text string. In this chapter, we'll explore ways to handle language and text-
based information and summarize some Python development concepts in sidebars
along the way.

Some of this material is advanced, but the examples are small. For instance,
recursive descent parsing is illustrated with a simple example to show how it can be
implemented in Python. We'll also see that it's often unnecessary to write custom
parsers for each language processing task in Python. They can usually be replaced
by exporting APIs for use in Python programs, and sometimes by a single built-in
function call. Finally, this chapter closes by presenting PyCalc -- a calculator GUI
written in Python, and the last major Python coding example in this text. As we'll
see, writing calculators isn't much more difficult than juggling stacks while scanning
text.

18.2 Strategies for Parsing Text in Python

In the grand scheme of things, there are a variety of ways to handle text processing
in Python:

Built-in string objects

String module (and method) utilities

Regular expression matching

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1071

Parser-generator integrations

Hand-coded parsers

Running Python code with eval and exec built-ins

For simpler tasks, Python's built-in string object is often all we really need. Python
strings can be indexed, concatenated, sliced, and processed both with built-in
functions and with the string module. Our emphasis in this chapter, though, is on
higher-level tools and techniques for analyzing textual information. Let's briefly
explore each of the other approaches above with representative examples.

18.3 String Module Utilities

Python's string module includes a variety of text-processing utilities that go above
and beyond string expression operators. For instance:

string.find performs substring searches.

string.atoi converts strings to integers.

string.strip removes leading and trailing whitespace.

string.upper converts to uppercase.

string.replace performs substring substitutions.

The Python library manual includes an exhaustive list of available tools. Moreover, as
of Python 2.0, Unicode (wide) strings are fully supported by Python string tools, and
most of the string module's functions are also now available as string object
methods. For instance, in Python 2.0, the following two expressions are equivalent:

string.find(str, substr) # traditional
str.find(substr) # new in 2.0

except that the second form does not require callers to import the string module
first. As usual, you should consult the library manuals and Appendix A, for late-
breaking news on the string tools front.

In terms of this chapter's main focus, though, Python's built-in tools for splitting and
joining strings around tokens turn out to be especially useful when it comes to
parsing text:

string.split

Splits a string into substrings, using either whitespace (tabs, spaces, newlines) or an
explicitly passed string as a delimiter.

string.join

Concatenates a list or tuple of substrings, adding a space or an explicitly passed
separator string between each.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1072

As we saw earlier in this book, split chops a string into a list of substrings, and
join puts them back together:[1]

[1] Earlier Python releases had similar tools called spitfields and joinfields; the more
modern (and less verbose) split and join are the preferred way to spell these today.

>>> import string
>>> string.split('A B C D')
['A', 'B', 'C', 'D']
>>> string.split('A+B+C+D', '+')
['A', 'B', 'C', 'D']
>>> string.join(['a', 'b', 'c'], '--')
'a--b--c'

Despite their simplicity, they can handle surprisingly complex text-parsing tasks.
Moreover, the string module is very fast because it has been migrated to C. For
instance, to quickly replace all tabs in a file with four periods, pipe the file into a
script that looks like this:

from sys import *
from string import *
stdout.write(join(split(stdin.read(), '\t'), '.'*4))

The split call here divides input around tabs, and the join puts it back together
with periods where tabs had been. The combination of the two calls is equivalent to
using the global replacement call in the string module as follows:

stdout.write(replace(stdin.read(), '\t', '.'*4))

18.3.1 Summing Columns in a File

Let's look at a couple of practical applications of string splits and joins. In many
domains, scanning files by columns is a fairly common task. For instance, suppose
you have a file containing columns of numbers output by another system, and you
need to sum each column's numbers. In Python, string splitting does the job (see
Example 18-1). As an added bonus, it's easy to make the solution a reusable tool in
Python.

Example 18-1. PP2E\Lang\summer.py

#!/usr/local/bin/python
import string

def summer(numCols, fileName):
 sums = [0] * numCols # make list of
zeros
 for line in open(fileName, 'r').readlines(): # scan file's
lines
 cols = string.split(line) # split up columns
 for i in range(numCols): # around
blanks/tabs
 sums[i] = sums[i] + eval(cols[i]) # add numbers to
sums

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1073

 return sums

if __name__ == '__main__':
 import sys
 print summer(eval(sys.argv[1]), sys.argv[2]) # '% summer.py
cols file'

As usual, you can both import this module and call its function, and run it as a shell
tool from the command line. The summer calls split to make a list of strings
representing the line's columns, and eval to convert column strings to numbers.
Here's an input file that uses both blanks and tabs to separate columns:

C:\...\PP2E\Lang>type table1.txt
1 5 10 2 1.0
2 10 20 4 2.0
3 15 30 8 3
4 20 40 16 4.0
C:\...\PP2E\Lang>python summer.py 5 table1.txt
[10, 50, 100, 30, 10.0]

Notice that because the summer script uses eval to convert file text to numbers, you
could really store arbitrary Python expressions in the file. Here, for example, it's run
on a file of Python code snippets:

C:\...\PP2E\Lang>type table2.txt
2 1+1 1<<1 eval("2")
16 2*2*2*2 pow(2,4) 16.0
3 len('abc') [1,2,3][2] {'spam':3}['spam']

C:\...\PP2E\Lang>python summer.py 4 table2.txt
[21, 21, 21, 21.0]

We'll revisit eval later in this chapter when we explore expression evaluators.[2]

[2] Also see the grid examples in Chapter 8, for another example of eval table magic at work.
The summer script here is a much simpler version of that chapter's column sum logic.

18.3.2 Parsing and Unparsing Rule Strings

Example 18-2 demonstrates one way that splitting and joining strings can be used to
parse sentences in a simple language. It is taken from a rule-based expert system
shell (holmes) that is written in Python and included at
http://examples.oreilly.com/python2 (see the top-level Ai examples directory). Rule
strings in holmes take the form:

"rule <id> if <test1>, <test2>... then <conclusion1>, <conclusion2>..."

Tests and conclusions are conjunctions of terms ("," means "and"). Each term is a
list of words or variables separated by spaces; variables start with ?. To use a rule, it
is translated to an internal form -- a dictionary with nested lists. To display a rule, it
is translated back to the string form. For instance, given a call:

rules.internal_rule('rule x if a ?x, b then c, d ?x')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1074

the conversion in function internal_rule proceeds as follows:

string = 'rule x if a ?x, b then c, d ?x'
i = ['rule x', 'a ?x, b then c, d ?x']
t = ['a ?x, b', 'c, d ?x']
r = ['', 'x']
result = {'rule':'x', 'if':[['a','?x'], ['b']], 'then':[['c'],
['d','?x']]}

It first splits around the if, then around the then, and finally around rule. The
result is the three substrings that were separated by the keywords. Test and
conclusion substrings are split around "," and spaces last. join is used to convert
back (unparse) to the original string for display. Example 18-2 is the concrete
implementation of this scheme.

Example 18-2. PP2E\Lang\rules.py

from string import split, join, strip

def internal_rule(string):
 i = split(string, ' if ')
 t = split(i[1], ' then ')
 r = split(i[0], 'rule ')
 return {'rule':strip(r[1]), 'if':internal(t[0]),
'then':internal(t[1])}

def external_rule(rule):
 return ('rule ' + rule['rule'] +
 ' if ' + external(rule['if']) +
 ' then ' + external(rule['then']) + '.')

def internal(conjunct):
 res = [] # 'a b, c d'
 for clause in split(conjunct, ','): # -> ['a b', ' c d']
 res.append(split(clause)) # -> [['a','b'],
['c','d']]
 return res

def external(conjunct):
 strs = []
 for clause in conjunct: # [['a','b'],
['c','d']]
 strs.append(join(clause)) # -> ['a b', 'c d']
 return join(strs, ', ') # -> 'a b, c d'

As usual, we can test components of this module interactively:

>>> import rules
>>> rules.internal('a ?x, b')
[['a', '?x'], ['b']]

>>> rules.internal_rule('rule x if a ?x, b then c, d ?x')
{'if': [['a', '?x'], ['b']], 'rule': 'x', 'then': [['c'], ['d', '?x']]}

>>> r = rules.internal_rule('rule x if a ?x, b then c, d ?x')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1075

>>> rules.external_rule(r)
'rule x if a ?x, b then c, d ?x.'

Parsing by splitting strings around tokens like this only takes you so far: there is no
direct support for recursive nesting of components, and syntax errors are not
handled very gracefully. But for simple language tasks like this, string splitting might
be enough, at least for prototyping systems. You can always add a more robust rule
parser later or reimplement rules as embedded Python code or classes .

Lesson 1: Prototype and Migrate

As a rule of thumb, use the string module's functions instead of things
like regular expressions whenever you can. They tend to be much faster,
because they've been moved to a C language implementation. When you
import string, it internally replaces most of its content with functions
imported from the strop C extension module; strop methods are
reportedly 100-1000 times faster than their Python-coded equivalents. [a]

The string module was originally written in Python but demands for string
efficiency prompted recoding it in C. The result was dramatically faster
performance for string client programs without impacting the interface.
That is, string module clients became instantly faster without having to be
modified for the new C-based module. A similar migration was applied to the
pickle module we met in Chapter 16 -- the newer cPickle recoding is
compatible but much faster.

Which is a great lesson about Python development: modules can be coded
quickly in Python at first, and translated to C later for efficiency if required.
Because the interface to Python and C extension modules is identical (both
are imported), C translations of modules are backward compatible with their
Python prototypes. The only impact of the translation of such modules on
clients is an improvement in performance.

There is usually no need to move every module to C for delivery of an
application: you can pick and choose performance-critical modules (like
string and pickle) for translation, and leave others coded in Python.
Use the timing and profiling techniques of the prior chapter to isolate which
modules will give the most improvement when translated to C. C-based
extension modules are introduced in the next part of this book.

Actually, in Python 2.0, the string module has changed its
implementation again: it is now a frontend to new string methods, which are
able to also handle Unicode strings. As mentioned, most string functions
are also available as object methods in 2.0. For instance,
string.split(X) is now simply a synonym for X.split(); both
forms are supported, but the latter may become prevalent over time. Either
way, clients of the original string module are not affected by this change
-- yet another lesson!

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1076

[a] Actually, in Python 2.0, the string module has changed its implementation again: it is now
a frontend to new strng methods, which are able to also handle Unicode strings. As
mentioned, most string functions are also available as object methods in 2.0. For instance,
string.split (X) is now simply a synonym for X.split(); both forms are supported, but
the latter may become prevalent over time. Either way, clients of the original string module
are not affected by this change—yet another lesson!

18.3.2.1 More on the holmes expert system shell

So how are these rules actually used? As mentioned, the rule parser we just met is
part of the Python-coded holmes expert system shell. This book does not cover
holmes in detail due to lack of space; see the PP2E\AI\ExpertSystem directory on the
book CD (see http://examples.oreilly.com/python2) for its code and documentation.
But by way of introduction, holmes is an inference engine that performs forward and
backward chaining deduction on rules that you supply. For example, a rule:

rule pylike if ?X likes coding, ?X likes spam then ?X likes Python

can be used both to prove whether someone likes Python (backward, from "then" to
"if"), and to deduce that someone likes Python from a set of known facts (forward,
from "if" to "then"). Deductions may span multiple rules, and rules that name the
same conclusion represent alternatives. Holmes also performs simple pattern-
matching along the way to assign the variables that appear in rules (e.g., ?X), and is
able to explain its work.

To make this all more concrete, let's step through a simple holmes session. The +=
interactive command adds a new rule to the rule base by running the rule parser,
and @@ prints the current rule base:

C:..\PP2E\Ai\ExpertSystem\holmes\holmes>python holmes.py
-Holmes inference engine-
holmes> += rule pylike if ?X likes coding, ?X likes spam then ?X likes
Python
holmes> @@
rule pylike if ?X likes coding, ?X likes spam then ?X likes Python.

Now, to kick off a backward-chaining proof of a goal, use the ?- command. A proof
explanation is shown here; holmes can also tell you why it is asking a question.
Holmes pattern variables can show up in both rules and queries; in rules, variables
provide generalization; in a query, they provide an answer:

holmes> ?- mel likes Python
is this true: "mel likes coding" ? y
is this true: "mel likes spam" ? y
yes: (no variables)

show proof ? yes
 "mel likes Python" by rule pylike
 "mel likes coding" by your answer
 "mel likes spam" by your answer
more solutions? n

holmes> ?- linda likes ?X
is this true: "linda likes coding" ? y
is this true: "linda likes spam" ? y

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1077

yes: linda likes Python

Forward-chaining from a set of facts to conclusions is started with a +- command.
Here, the same rule is being applied but in a different way:

holmes> +- chris likes spam, chris likes coding
I deduced these facts...
 chris likes Python
I started with these facts...
 chris likes spam
 chris likes coding
time: 0.0

More interestingly, deductions chain through multiple rules when part of a rule's "if"
is mentioned in another rule's "then":

holmes> += rule 1 if thinks ?x then human ?x
holmes> += rule 2 if human ?x then mortal ?x
holmes> ?- mortal bob
is this true: "thinks bob" ? y
yes: (no variables)

holmes> +- thinks bob
I deduced these facts...
 human bob
 mortal bob
I started with these facts...
 thinks bob
time: 0.0

Finally, the @= command is used to load files of rules that implement more
sophisticated knowledgebases; the rule parser is run on each rule in the file. Here is
a file that encodes animal classification rules; other example files are available on
the CD (see http://examples.oreilly.com/python2) if you'd like to experiment:

holmes> @= ..¸bases\zoo.kb
holmes> ?- it is a penguin
is this true: "has feathers" ? why
to prove "it is a penguin" by rule 17
this was part of your original query.
is this true: "has feathers" ? y
is this true: "able to fly" ? n
is this true: "black color" ? y
yes: (no variables)

Type "stop" to end a session and "help" for a full commands list, and see the text
files in the holmes directories for more details. Holmes is an old system written
before Python 1.0 (and around 1993), but still works unchanged on all platforms
under Python 1.5.2.

18.4 Regular Expression Matching

Splitting and joining strings is a simple way to process text, as long as it follows the
format you expect. For more general text analysis tasks, Python provides regular

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1078

expression matching utilities. Regular expressions (REs) are simply strings that
define patterns to be matched against other strings. You supply a pattern and a
string, and ask if the string matches your pattern. After a match, parts of the string
matched by parts of the pattern are made available to your script. That is, matches
not only give a yes/no answer, but they can pick out substrings as well.

Regular expression pattern strings can be complicated (let's be honest -- they can be
downright gross to look at). But once you get the hang of them, they can replace
larger hand-coded string search routines. In Python, regular expressions are not part
of the syntax of the Python language itself, but are supported by extension modules
that you must import to use. The modules define functions for compiling pattern
strings into pattern objects, matching these objects against strings, and fetching
matched substrings after a match.

Beyond those generalities, Python's regular expression story is complicated a little by
history:

The regex module (old)

In earlier Python releases, a module called regex was the standard (and only) RE
module. It was fast and supported patterns coded in awg, grep, and emacs style, but
it is now somewhat deprecated (though it will likely still be available for some time to
come).

The re module (new)

Today, you should use re, a new RE module for Python, that was introduced
sometime around Python release 1.5. This module provides a much richer RE pattern
syntax that tries to be close to that used to code patterns in the Perl language (yes,
REs are a feature of Perl worth emulating). For instance, re supports the notions of
named groups, character classes, and non-greedy matches -- RE pattern operators
that match as few characters as possible (other RE pattern operators always match
the longest possible substring).

Up until very recently, re was generally slower than regex, so you had to choose
between speed and Perl-like RE syntax. Today, though, re has been optimized with
the sre implementation, to the extent that regex no longer offers any clear
advantages. Moreover, re in Python 2.0 now supports matching Unicode strings
(strings with 16-bit wide characters for representing large character sets).

Because of this migration, I've recoded RE examples in this text to use the new re
module instead of regex. The old regex-based versions are still available on the
book's CD (see http://examples.oreilly.com/python2), in directory PP2E\lang\old-
regex. If you find yourself having to migrate old regex code, you can also find a
document describing the translation steps needed at http://www.python.org. Both
modules' interfaces are similar, but re introduces a match object and changes
pattern syntax in minor ways.

Having said that, I also want to warn you that REs are a complex topic that cannot
be covered in depth here. If this area sparks your interest, the text Mastering
Regular Expressions from O'Reilly is a good next step to take.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1079

18.4.1 Using the re Module

The Python re module comes with functions that can search for patterns right away
or make compiled pattern objects for running matches later. Pattern objects (and
module search calls) in turn generate match objects, which contain information
about successful matches and matched substrings. The next few sections describe
the module's interfaces and some of the operators you can use to code patterns.

18.4.1.1 Module functions

The top level of the module provides functions for matching, substitution, pre-
compiling, and so on:

compile(pattern [, flags])

Compile a RE pattern string into a regular expression object, for later matching. See
the reference manual for the flags argument's meaning.

match(pattern, string [, flags])

If zero or more characters at start of string match the pattern string, return a
corresponding MatchObject instance, or None if no match is found.

search(pattern, string [, flags])

Scan through string for a location matching pattern, and return a corresponding
MatchObject instance, or None if no match is found.

split(pattern, string [, maxsplit])

Split string by occurrences of pattern. If capturing () are used in the pattern,
then occurrences of patterns or subpatterns are also returned.

sub(pattern, repl, string [, count])

Return the string obtained by replacing the (first count) leftmost non-overlapping
occurrences of pattern (a string or a RE object) in string by repl.

subn(pattern, repl, string [, count])

Same as sub, but returns a tuple: (new-string, number-of-changes-made).

18.4.1.2 Compiled pattern objects

At the next level, pattern objects provide similar attributes, but the pattern string is
implied. The re.compile function in the previous section is useful to optimize
patterns that may be matched more than once (compiled patterns match faster).
Pattern objects returned by re.compile have these sorts of attributes:

match(string [, pos] [, endpos])
search(string [, pos] [, endpos])

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1080

split(string [, maxsplit])
sub(repl, string [, count])
subn(repl, string [, count])

Same as the re functions, but the pattern is implied, and pos and endpos give
start/end string indexes for the match.

18.4.1.3 Match objects

Finally, when a match or search function or method is successful, you get back a
match object (None comes back on failed matches). Match objects export a set of
attributes of their own, including:

group([g1, g2, ...])

Returns the substring that matched a parenthesized groups in the pattern.

groups()

Returns a tuple of all groups' substrings of the match.

start([group]) , end([group])

Indices of the start and end of the substring matched by group (or the entire
matched string, if no group).

span([group])

Returns the two-item tuple: (start(group),end(group)).

18.4.1.4 Regular expression patterns

Regular expression strings are built up by concatenating single-character regular
expression forms, shown in Table 18-1. The longest-matching string is usually
matched by each form, except for the non-greedy operators. In the table, R means
any regular expression form, C is a character, and N denotes a digit.

Table 18-1. re Pattern Syntax

. Matches any character (including newline if DOTALL flag specified)

^ Matches start of the string (of every line in MULTILINE mode)

$ Matches end of the string (of every line in MULTILINE mode)

C Any non-special character matches itself

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1081

R* Zero or more of preceding regular expression R (as many as
possible)

R+ One or more of preceding regular expression R (as many as
possible)

R? Zero or one occurrence of preceding regular expression R

R{m,n} Matches from m to n repetitions of preceding regular expression R

R*?, R+?, R??,
R{m,n}?

Same as *, +, and ? but matches as few characters/times as
possible; these are known as non-greedy match operators (unlike
others, they match and consume as few characters as possible)

[] Defines character set: e.g. [a-zA-Z] to match all letters

[^] Defines complemented character set: matches if char is not in set

\ Escapes special chars (e.g., *?+|()) and introduces special
sequences

\\ Matches a literal \ (write as \\\\ in pattern, or r\\)

R|R Alternative: matches left or right R

RR Concatenation: match both Rs

(R) Matches any RE inside (), and forms a group (retains matched
substring)

(?: R) Same but doesn't delimit a group

(?= R) Matches if R matches next, but doesn't consume any of the string
(e.g., X (?=Y) matches X only if followed by Y)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1082

(?! R) Matches if R doesn't match next. Negative of (?=R)

(?P<name>R) Matches any RE inside (), and delimits a named group

(?P=name) Matches whatever text was matched by the earlier group named
name

(?#...) A comment; ignored

(?letter) Set mode flag; letter is one of i, L, m, s, x (see library manual)

Within patterns, ranges and selections can be combined. For instance, [a-zA-Z0-
9_]+ matches the longest possible string of one or more letters, digits, or
underscores. Special characters can be escaped as usual in Python strings: [\t]*
matches zero or more tabs and spaces (i.e., it skips whitespace).

The parenthesized grouping construct, (R), lets you extract matched substrings after
a successful match. The portion of the string matched by the expression in
parentheses is retained in a numbered register. It's available through the group
method of a match object after a successful match.

In addition to the entries in this table, special sequences in Table 18-2 can be used
in patterns, too. Due to Python string rules, you sometimes must double up on
backslashes (\\) or use Python raw strings (r'...') to retain backslashes in the
pattern.

Table 18-2. re Special Sequences

\num Match text of group num (numbered from 1)

\A Matches only at the start of the string

\b Empty string at word boundaries

\B Empty string not at word boundary

\d Any decimal digit (like [0-9])

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1083

\D Any nondecimal digit character (like [^O-9])

\s Any whitespace character (like [\t\n\r\f\v])

\S Any nonwhitespace character (like [^ \t\n\r\f\v])

\w Any alphanumeric character (uses LOCALE flag)

\W Any nonalphanumeric character (uses LOCALE flag)

\Z Matches only at the end of the string

The Python library manual gives additional details. But to demonstrate how the re
interfaces are typically used, we'll turn to some short examples.

18.4.2 Basic Patterns

To illustrate how to combine RE operators, let's start with a few short test files that
match simple pattern forms. Comments in Example 18-3 describe the operations
exercised; check Table 18-1 to see which operators are used in these patterns.

Example 18-3. PP2E\lang\re-basics.py

literals, sets, ranges (all print 2 = offset where pattern found)

import re # the one to use today

pattern, string = "A.C.", "xxABCDxx" # nonspecial chars match
themself
matchobj = re.search(pattern, string) # '.' means any one char
if matchobj: # search returns match
object or None
 print matchobj.start() # start is index where
matched

pattobj = re.compile("A.*C.*") # 'R*' means zero or more Rs
matchobj = pattobj.search("xxABCDxx") # compile returns pattern
obj
if matchobj: # patt.search returns match
obj
 print matchobj.start()

selection sets
print re.search(" *A.C[DE][D-F][^G-ZE]G\t+ ?", "..ABCDEFG\t..").start(
)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1084

alternatives
print re.search("A|XB|YC|ZD", "..AYCD..").start() # R1|R2 means R1
or R2

word boundaries
print re.search(r"\bABCD", "..ABCD ").start() # \b means word
boundary
print re.search(r"ABCD\b", "..ABCD ").start() # use r'...' to
escape '\'

Notice that there are a variety of ways to kick off a match with re -- by calling
module search functions and by making compiled pattern objects. In either event,
you can hang on to the resulting match object or not. All the print statements in this
script show a result of 2 -- the offset where the pattern was found in the string. In
the first test, for example, "A.C." matches the "ABCD" at offset 2 in the search string
(i.e., after the first "xx"):

C:\...\PP2E\Lang>python re-basic.py
2
2
2
2
2
2

In Example 18-4, parts of the pattern strings enclosed in parentheses delimit groups
; the parts of the string they matched are available after the match.

Example 18-4. PP2E\lang\re-groups.py

groups (extract substrings matched by REs in '()' parts)

import re

patt = re.compile("A(.)B(.)C(.)") # saves 3 substrings
mobj = patt.match("A0B1C2") # each '()' is a
group, 1..n
print mobj.group(1), mobj.group(2), mobj.group(3) # group() gives
substring

patt = re.compile("A(.*)B(.*)C(.*)") # saves 3 substrings
mobj = patt.match("A000B111C222") # groups() gives
all groups
print mobj.groups()

print re.search("(A|X)(B|Y)(C|Z)D", "..AYCD..").groups()

patt = re.compile(r"[\t]*#\s*define\s*([a-z0-9_]*)\s*(.*)")
mobj = patt.search(" # define spam 1 + 2 + 3") # parts of
C #define
print mobj.groups() # \s is
whitespace

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1085

In the first test here, for instance, the three (.) groups each match a single
character, but retain the character matched; calling group pulls out the bits
matched. The second test's (.*) groups match and retain any number of characters.
The last test here matches C #define lines; more on this later.

C:\...\PP2E\Lang>python re-groups.py
0 1 2
('000', '111', '222')
('A', 'Y', 'C')
('spam', '1 + 2 + 3')

Finally, besides matches and substring extraction, re also includes tools for string
replacement or substitution (see Example 18-5).

Example 18-5. PP2E\lang\re-subst.py

substitutions (replace occurrences of patt with repl in string)

import re
print re.sub('[ABC]', '*', 'XAXAXBXBXCXC')
print re.sub('[ABC]_', '*', 'XA-XA_XB-XB_XC-XC_')

In the first test, all characters in the set are replaced; in the second, they must be
followed by an underscore:

C:\...\PP2E\Lang>python re-subst.py
X*X*X*X*X*X*
XA-X*XB-X*XC-X*

18.4.3 Scanning C Header Files for Patterns

The script in Example 18-6 puts these pattern operators to more practical use. It
uses regular expressions to find #define and #include lines in C header files and
extract their components. The generality of the patterns makes them detect a
variety of line formats; pattern groups (the parts in parentheses) are used to extract
matched substrings from a line after a match.

Example 18-6. PP2E\Lang\cheader.py

#! /usr/local/bin/python
import sys, re
from string import strip

pattDefine = re.compile(# compile to
pattobj
 '^#[\t]*define[\t]+([a-zA-Z0-9_]+)[\t]*(.*)') # "# define xxx
yyy..."

pattInclude = re.compile(
 '^#[\t]*include[\t]+[<"]([a-zA-Z0-9_/\.]+)') # "# include
<xxx>..."

def scan(file):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1086

 count = 0
 while 1: # scan line-by-line
 line = file.readline()
 if not line: break
 count = count + 1
 matchobj = pattDefine.match(line) # None if match fails
 if matchobj:
 name = matchobj.group(1) # substrings for (...)
parts
 body = matchobj.group(2)
 print count, 'defined', name, '=', strip(body)
 continue
 matchobj = pattInclude.match(line)
 if matchobj:
 start, stop = matchobj.span(1) # start/stop indexes
of (...)
 filename = line[start:stop] # slice out of line
 print count, 'include', filename # same as
matchobj.group(1)

if len(sys.argv) == 1:
 scan(sys.stdin) # no args: read stdin
else:
 scan(open(sys.argv[1], 'r')) # arg: input file name

To test, let's run this script on the text file in Example 18-7.

Example 18-7. PP2E\Lang\test.h

#ifndef TEST_H
#define TEST_H

#include <stdio.h>
#include <lib/spam.h>
include "Python.h"

#define DEBUG
#define HELLO 'hello regex world'
define SPAM 1234

#define EGGS sunny + side + up
#define ADDER(arg) 123 + arg
#endif

Notice the spaces after # in some of these lines; regular expressions are flexible
enough to account for such departures from the norm. Here is the script at work,
picking out #include and #define lines and their parts; for each matched line, it
prints the line number, the line type, and any matched substrings:

C:\...\PP2E\Lang>python cheader.py test.h
2 defined TEST_H =
4 include stdio.h
5 include lib/spam.h
6 include Python.h
8 defined DEBUG =

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1087

9 defined HELLO = 'hello regex world'
10 defined SPAM = 1234
12 defined EGGS = sunny + side + up
13 defined ADDER = (arg) 123 + arg

18.4.4 A File Pattern Search Utility

The next script searches for patterns in a set of files, much like the grep command-
line program. We wrote file and directory searchers earlier, in Chapter 5. Here, the
file searches look for patterns instead of simple strings (see Example 18-8). The
patterns are typed interactively separated by a space, and the files to be searched
are specified by an input pattern for Python's glob.glob filename expansion tool we
studied earlier, too.

Example 18-8. PP2E\Lang\pygrep1.py

#!/usr/local/bin/python
import sys, re, glob
from string import split

help_string = """
Usage options.
interactive: % pygrep1.py
"""

def getargs():
 if len(sys.argv) == 1:
 return split(raw_input("patterns? >")), raw_input("files? >")
 else:
 try:
 return sys.argv[1], sys.argv[2]
 except:
 print help_string
 sys.exit(1)

def compile_patterns(patterns):
 res = []
 for pattstr in patterns:
 try:
 res.append(re.compile(pattstr)) # make re patt
object
 except: # or use re.match
 print 'pattern ignored:', pattstr
 return res

def searcher(pattfile, srchfiles):
 patts = compile_patterns(pattfile) # compile for
speed
 for file in glob.glob(srchfiles): # all matching
files
 lineno = 1 # glob uses re
too
 print '\n[%s]' % file
 for line in open(file, 'r').readlines(): # all lines
in file

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1088

 for patt in patts:
 if patt.search(line): # try all
patterns
 print '%04d)' % lineno, line, # match if not
None
 break
 lineno = lineno+1

if __name__ == '__main__':
 apply(searcher, getargs())

Here's what a typical run of this script looks like; it searches all Python files in the
current directory for two different patterns, compiled for speed. Notice that files are
named by a pattern, too -- Python's glob module also uses reinternally:

C:\...\PP2E\Lang>python pygrep1.py
patterns? >import.*string spam
files? >*.py

[cheader.py]

[finder2.py]
0002) import string, glob, os, sys

[patterns.py]
0048) mobj = patt.search(" # define spam 1 + 2 + 3")

[pygrep1.py]

[rules.py]

[summer.py]
0002) import string

[__init__.py]

18.5 Parser Generators

If you have any background in parsing theory, you may know that neither regular
expressions nor string splitting is powerful enough to handle more complex language
grammars (roughly, they don't have the "memory" required by true grammars). For
more sophisticated language analysis tasks, we sometimes need a full-blown parser.
Since Python is built for integrating C tools, we can write integrations to traditional
parser generator systems such as yacc and bison. Better yet, we could use an
integration that already exists.

There are also Python-specific parsing systems accessible from Python's web site.
Among them, the kwParsing system, developed by Aaron Watters, is a parser
generator written in Python, and the SPARK toolkit, developed by John Aycock, is a
lightweight system that employs the Earley algorithm to work around technical
problems with LALR parser generation (if you don't know what that means, you
probably don't need to care). Since these are all complex tools, though, we'll skip
their details in this text. Consult http://www.python.org for information on parser
generator tools available for use in Python programs.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1089

Lesson 2: Don't Reinvent the Wheel

Speaking of parser generators: to use some of these tools in Python
programs, you'll need an extension module that integrates them. The first
step in such scenarios should always be to see if the extension already
exists in the public domain. Especially for common tools like these, chances
are that someone else has already written an integration that you can use
off-the-shelf instead of writing one from scratch.

Of course, not everyone can donate all their extension modules to the public
domain, but there's a growing library of available components that you can
pick up for free and a community of experts to query. Visit
http://www.python.org for links to Python software resources. With some
half a million Python users out there as I write this book, there is much that
can be found in the prior-art department.

Of special interest to this chapter, also see YAPPS -- Yet Another Python Parser
System. YAPPS is a parser generator written in Python. It uses supplied rules to
generate human-readable Python code that implements a recursive descent parser.
The parsers generated by YAPPS look much like (and are inspired by) the hand-
coded expression parsers shown in the next section. YAPPS creates LL(1) parsers,
which are not as powerful as LALR parsers, but sufficient for many language tasks.
For more on YAPPS, see http://theory.stanford.edu/~amitp/Yapps.

18.6 Hand-Coded Parsers

Since Python is a general purpose programming language, it's also reasonable to
consider writing a hand-coded parser. For instance, recursive descent parsing is a
fairly well-known technique for analyzing language-based information. Since Python
is a very high-level language, writing the parser itself is usually easier than it would
be in a traditional language like C or C++.

To illustrate, this section develops a custom parser for a simple grammar: it parses
and evaluates arithmetic expression strings. This example also demonstrates the
utility of Python as a general-purpose programming language. Although Python is
often used as a frontend or rapid development language, it's also useful for the kinds
of things we'd normally write in a systems development language like C or C++.

18.6.1 The Expression Grammar

The grammar our parser will recognize can be described as follows:

goal -> <expr> END [number, variable, (]
goal -> <assign> END [set]

assign -> 'set' <variable> <expr> [set]

expr -> <factor> <expr-tail> [number, variable, (]

expr-tail -> ^ [END,)]

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1090

expr-tail -> '+' <factor> <expr-tail> [+]
expr-tail -> '-' <factor> <expr-tail> [-]

factor -> <term> <factor-tail> [number, variable, (]

factor-tail -> ^ [+, -, END,)]
factor-tail -> '*' <term> <factor-tail> [*]
factor-tail -> '/' <term> <factor-tail> [/]

term -> <number> [number]
term -> <variable> [variable]
term -> '(' <expr> ')' [(]

tokens: (,), num, var, -, +, /, *, set, end

This is a fairly typical grammar for a simple expression language, and it allows for
arbitrary expression nesting (some example expressions appear at the end of the
testparser module listing in Example 18-11). Strings to be parsed are either an
expression or an assignment to a variable name (set). Expressions involve numbers,
variables, and the operators +, -, *, and /. Because factor is nested in expr in the
grammar, * and / have higher precedence (i.e., bind tighter) than + and -.
Expressions can be enclosed in parentheses to override precedence, and all
operators are left associative -- that is, group on the left (e.g., 1-2-3 is treated the
same as (1-2)-3).

Tokens are just the most primitive components of the expression language. Each
grammar rule earlier is followed in square brackets by a list of tokens used to select
it. In recursive descent parsing, we determine the set of tokens that can possibly
start a rule's substring, and use that information to predict which rule will work
ahead of time. For rules that iterate (the -tail rules), we use the set of possibly
following tokens to know when to stop. Typically, tokens are recognized by a string
processor (a "scanner"), and a higher-level processor (a "parser") uses the token
stream to predict and step through grammar rules and substrings.

18.6.2 The Parser's Code

The system is structured as two modules, holding two classes:

The scanner handles low-level character-by-character analysis.

The parser embeds a scanner and handles higher-level grammar analysis.

The parser is also responsible for computing the expression's value and testing the
system. In this version, the parser evaluates the expression while it is being parsed.
To use the system, we create a parser with an input string and call its parse
method. We can also call parse again later with a new expression string.

There's a deliberate division of labor here. The scanner extracts tokens from the
string, but knows nothing about the grammar. The parser handles the grammar, but
is naive about the string itself. This modular structure keeps the code relatively
simple. And it's another example of the OOP composition relationship at work:
parsers embed and delegate to scanners.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1091

The module in Example 18-9 implements the lexical analysis task -- detecting the
expression's basic tokens by scanning the text string left to right on demand. Notice
that this is all straightforward logic here; such analysis can sometimes be performed
with regular expressions instead (described earlier), but the pattern needed to detect
and extract tokens in this example would be too complex and fragile for my tastes. If
your tastes vary, try recoding this module with re.

Example 18-9. PP2E\Lang\Parser\scanner.py

the scanner (lexical analyser)

import string
SyntaxError = 'SyntaxError' # local errors
LexicalError = 'LexicalError'

class Scanner:
 def __init__(self, text):
 self.next = 0
 self.text = text + '\0'

 def newtext(self, text):
 Scanner.__init__(self, text)

 def showerror(self):
 print '=> ', self.text
 print '=> ', (' ' * self.start) + '^'

 def match(self, token):
 if self.token != token:
 raise SyntaxError, [token]
 else:
 value = self.value
 if self.token != '\0':
 self.scan() # next token/value
 return value # return prior value

 def scan(self):
 self.value = None
 ix = self.next
 while self.text[ix] in string.whitespace:
 ix = ix+1
 self.start = ix

 if self.text[ix] in ['(', ')', '-', '+', '/', '*', '\0']:
 self.token = self.text[ix]
 ix = ix+1

 elif self.text[ix] in string.digits:
 str = ''
 while self.text[ix] in string.digits:
 str = str + self.text[ix]
 ix = ix+1
 if self.text[ix] == '.':
 str = str + '.'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1092

 ix = ix+1
 while self.text[ix] in string.digits:
 str = str + self.text[ix]
 ix = ix+1
 self.token = 'num'
 self.value = string.atof(str)
 else:
 self.token = 'num'
 self.value = string.atol(str)

 elif self.text[ix] in string.letters:
 str = ''
 while self.text[ix] in (string.digits + string.letters):
 str = str + self.text[ix]
 ix = ix+1
 if string.lower(str) == 'set':
 self.token = 'set'
 else:
 self.token = 'var'
 self.value = str

 else:
 raise LexicalError
 self.next = ix

The parser module's class creates and embeds a scanner for its lexical chores, and
handles interpretation of the expression grammar's rules and evaluation of the
expression's result, as shown in Example 18-10.

Example 18-10. PP2E\Lang\Parser\parser1.py

the parser (syntax analyser, evaluates during parse)

UndefinedError = 'UndefinedError'
from scanner import Scanner, LexicalError, SyntaxError

class Parser:
 def __init__(self, text=''):
 self.lex = Scanner(text) # embed a scanner
 self.vars = {'pi':3.14159} # add a variable

 def parse(self, *text):
 if text: # main entry-point
 self.lex.newtext(text[0]) # reuse this parser?
 try:
 self.lex.scan() # get first token
 self.Goal() # parse a sentence
 except SyntaxError:
 print 'Syntax Error at column:', self.lex.start
 self.lex.showerror()
 except LexicalError:
 print 'Lexical Error at column:', self.lex.start
 self.lex.showerror()
 except UndefinedError, name:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1093

 print "'%s' is undefined at column:" % name, self.lex.start
 self.lex.showerror()

 def Goal(self):
 if self.lex.token in ['num', 'var', '(']:
 val = self.Expr()
 self.lex.match('\0') # expression?
 print val
 elif self.lex.token == 'set': # set command?
 self.Assign()
 self.lex.match('\0')
 else:
 raise SyntaxError

 def Assign(self):
 self.lex.match('set')
 var = self.lex.match('var')
 val = self.Expr()
 self.vars[var] = val # assign name in dict

 def Expr(self):
 left = self.Factor()
 while 1:
 if self.lex.token in ['\0', ')']:
 return left
 elif self.lex.token == '+':
 self.lex.scan()
 left = left + self.Factor()
 elif self.lex.token == '-':
 self.lex.scan()
 left = left - self.Factor()
 else:
 raise SyntaxError

 def Factor(self):
 left = self.Term()
 while 1:
 if self.lex.token in ['+', '-', '\0', ')']:
 return left
 elif self.lex.token == '*':
 self.lex.scan()
 left = left * self.Term()
 elif self.lex.token == '/':
 self.lex.scan()
 left = left / self.Term()
 else:
 raise SyntaxError

 def Term(self):
 if self.lex.token == 'num':
 val = self.lex.match('num') # numbers
 return val
 elif self.lex.token == 'var':
 if self.vars.has_key(self.lex.value):
 val = self.vars[self.lex.value] # lookup name's
value
 self.lex.scan()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1094

 return val
 else:
 raise UndefinedError, self.lex.value
 elif self.lex.token == '(':
 self.lex.scan()
 val = self.Expr() # sub-
expression
 self.lex.match(')')
 return val
 else:
 raise SyntaxError

if __name__ == '__main__':
 import testparser # self-test code
 testparser.test(Parser, 'parser1') # test local Parser

If you study this code closely, you'll notice that the parser keeps a dictionary
(self.vars) to manage variable names: they're stored in the dictionary on a set
command and fetched from it when they appear in an expression. Tokens are
represented as strings, with an optional associated value (a numeric value for
numbers and a string for variable names).

The parser uses iteration (while loops) instead of recursion, for the expr-tail and
factor-tail rules. Other than this optimization, the rules of the grammar map
directly onto parser methods: tokens become calls to the scanner, and nested rule
references become calls to other methods.

When file parser1.py is run as a top-level program, its self-test code is executed,
which in turn simply runs a canned test in the module shown in Example 18-11. Note
that all integer math uses Python long integers (unlimited precision integers),
because the scanner converts numbers to strings with string.atol. Also notice that
mixed integer/floating-point operations cast up to floating point since Python
operators are used to do the actual calculations.

Example 18-11. PP2E\Lang\Parser\testparser.py

parser test code

def test(ParserClass, msg):
 print msg, ParserClass
 x = ParserClass('4 / 2 + 3') # allow different Parser's
 x.parse()

 x.parse('3 + 4 / 2') # like eval('3 + 4 / 2')...
 x.parse('(3 + 4) / 2')
 x.parse('4 / (2 + 3)')
 x.parse('4.0 / (2 + 3)')
 x.parse('4 / (2.0 + 3)')
 x.parse('4.0 / 2 * 3')
 x.parse('(4.0 / 2) * 3')
 x.parse('4.0 / (2 * 3)')
 x.parse('(((3))) + 1')

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1095

 y = ParserClass()
 y.parse('set a 4 / 2 + 1')
 y.parse('a * 3')
 y.parse('set b 12 / a')
 y.parse('b')

 z = ParserClass()
 z.parse('set a 99')
 z.parse('set a a + 1')
 z.parse('a')

 z = ParserClass()
 z.parse('pi')
 z.parse('2 * pi')
 z.parse('1.234 + 2.1')

def interact(ParserClass): # command-line entry
 print ParserClass
 x = ParserClass()
 while 1:
 cmd = raw_input('Enter=> ')
 if cmd == 'stop':
 break
 x.parse(cmd)

Correlate the following results to print statements in the self-test module:

C:\...\PP2E\Lang\Parser>python parser1.py
parser1 __main__.Parser
5L
5L
3L
0L
0.8
0.8
6.0
6.0
0.666666666667
4L
9L
4L
100L
3.14159
6.28318
3.334

As usual, we can also test and use the system interactively:

% python
>>> import parser1
>>> x = parser1.Parser()
>>> x.parse('1 + 2')
3L

Error cases are trapped and reported:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1096

>>> x.parse('1 + a')
'a' is undefined at column: 4
=> 1 + a
=> ^
>>> x.parse('1+a+2')
'a' is undefined at column: 2
=> 1+a+2
=> ^
>>> x.parse('1 * 2 $')
Lexical Error at column: 6
=> 1 * 2 $
=> ^
>>> x.parse('1 * - 1')
Syntax Error at column: 4
=> 1 * - 1
=> ^
>>> x.parse('1 * (9')
Syntax Error at column: 6
=> 1 * (9
=> ^

Pathologically big numbers are handled well, because Python's built-in objects and
operators are used along the way:

>>> x.parse('888.9999999')
8.88888888889e+44
>>> x.parse('999 + 2')
1001L
>>> x.parse('999999999999999999999999999999.88888888888 + 1.1')
1e+30

In addition, there is an interactive loop interface in the testparser module, if you
want to use the parser as a simple command-line calculator (or if you get tired of
typing parser method calls). Pass the Parser class, so testparser can make one of
its own:

>>> import testparser
>>> testparser.interact(parser1.Parser)
Enter=> 4 * 3 + 5
17L
Enter=> 5 + 4 * 3
17L
Enter=> (5 + 4) * 3
27L
Enter=> set a 99
Enter=> set b 66
Enter=> a + b
165L
Enter=> # + 1
Lexical Error at column: 0
=> # + 1
=> ^
Enter=> a * b + c
'c' is undefined at column: 8
=> a * b + c
=> ^

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1097

Enter=> a * b * + c
Syntax Error at column: 8
=> a * b * + c
=> ^
Enter=> a
99L
Enter=> a * a * a
970299L
Enter=> stop
>>>

Lesson 3: Divide and Conquer

As the parser system demonstrates, modular program design is almost
always a major win. By using Python's program structuring tools (functions,
modules, classes, etc.), big tasks can be broken down into small,
manageable parts that can be coded and tested independently.

For instance, the scanner can be tested without the parser by making an
instance with an input string and calling its scan or match methods
repeatedly. We can even test it like this interactively, from Python's
command line. By separating programs into logical components, they
become easier to understand and modify. Imagine what the parser would
look like if the scanner's logic was embedded rather than called.

18.6.3 Adding a Parse Tree Interpreter

One weakness in the parser1 program is that it embeds expression evaluation logic
in the parsing logic: the result is computed while the string is being parsed. This
makes evaluation quick, but it can also make it difficult to modify the code,
especially in larger systems. To simplify, we could restructure the program to keep
expression parsing and evaluation separate. Instead of evaluating the string, the
parser can build up an intermediate representation of it that can be evaluated later.
As an added incentive, building the representation separately makes it available to
other analysis tools (e.g., optimizers, viewers, and so on).

Example 18-12 shows a variant of parser1 that implements this idea. The parser
analyzes the string and builds up a parse tree -- that is, a tree of class instances that
represents the expression and that may be evaluated in a separate step. The parse
tree is built from classes that "know" how to evaluate themselves: to compute the
expression, we just ask the tree to evaluate itself. Root nodes in the tree ask their
children to evaluate themselves and then combine the results by applying a single
operator. In effect, evaluation in this version is simply a recursive traversal of a tree
of embedded class instances constructed by the parser.

Example 18-12. PP2E\Lang\Parser\parser2.py

TraceDefault = 0
UndefinedError = "UndefinedError"
from scanner import Scanner, SyntaxError, LexicalError

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1098

the interpreter (a smart objects tree)

class TreeNode:
 def validate(self, dict): # default error check
 pass
 def apply(self, dict): # default evaluator
 pass
 def trace(self, level): # default unparser
 print '.'*level + '<empty>'

ROOTS

class BinaryNode(TreeNode):
 def __init__(self, left, right): # inherited methods
 self.left, self.right = left, right # left/right branches
 def validate(self, dict):
 self.left.validate(dict) # recurse down branches
 self.right.validate(dict)
 def trace(self, level):
 print '.'*level + '[' + self.label + ']'
 self.left.trace(level+3)
 self.right.trace(level+3)

class TimesNode(BinaryNode):
 label = '*'
 def apply(self, dict):
 return self.left.apply(dict) * self.right.apply(dict)

class DivideNode(BinaryNode):
 label = '/'
 def apply(self, dict):
 return self.left.apply(dict) / self.right.apply(dict)

class PlusNode(BinaryNode):
 label = '+'
 def apply(self, dict):
 return self.left.apply(dict) + self.right.apply(dict)

class MinusNode(BinaryNode):
 label = '-'
 def apply(self, dict):
 return self.left.apply(dict) - self.right.apply(dict)

LEAVES

class NumNode(TreeNode):
 def __init__(self, num):
 self.num = num # already numeric
 def apply(self, dict): # use default validate
 return self.num
 def trace(self, level):
 print '.'*level + `self.num`

class VarNode(TreeNode):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1099

 def __init__(self, text, start):
 self.name = text # variable name
 self.column = start # column for errors
 def validate(self, dict):
 if not dict.has_key(self.name):
 raise UndefinedError, (self.name, self.column)
 def apply(self, dict):
 return dict[self.name] # validate before apply
 def assign(self, value, dict):
 dict[self.name] = value # local extension
 def trace(self, level):
 print '.'*level + self.name

COMPOSITES

class AssignNode(TreeNode):
 def __init__(self, var, val):
 self.var, self.val = var, val
 def validate(self, dict):
 self.val.validate(dict) # don't validate var
 def apply(self, dict):
 self.var.assign(self.val.apply(dict), dict)
 def trace(self, level):
 print '.'*level + 'set '
 self.var.trace(level + 3)
 self.val.trace(level + 3)

the parser (syntax analyser, tree builder)

class Parser:
 def __init__(self, text=''):
 self.lex = Scanner(text) # make a scanner
 self.vars = {'pi':3.14159} # add constants
 self.traceme = TraceDefault

 def parse(self, *text): # external interface
 if text:
 self.lex.newtext(text[0]) # reuse with new text
 tree = self.analyse() # parse string
 if tree:
 if self.traceme: # dump parse-tree?
 print; tree.trace(0)
 if self.errorCheck(tree): # check names
 self.interpret(tree) # evaluate tree

 def analyse(self):
 try:
 self.lex.scan() # get first token
 return self.Goal() # build a parse-tree
 except SyntaxError:
 print 'Syntax Error at column:', self.lex.start
 self.lex.showerror()
 except LexicalError:
 print 'Lexical Error at column:', self.lex.start

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1100

 self.lex.showerror()

 def errorCheck(self, tree):
 try:
 tree.validate(self.vars) # error checker
 return 'ok'
 except UndefinedError, varinfo:
 print "'%s' is undefined at column: %d" % varinfo
 self.lex.start = varinfo[1]
 self.lex.showerror() # returns None

 def interpret(self, tree):
 result = tree.apply(self.vars) # tree evals itself
 if result != None: # ignore 'set' result
 print result

 def Goal(self):
 if self.lex.token in ['num', 'var', '(']:
 tree = self.Expr()
 self.lex.match('\0')
 return tree
 elif self.lex.token == 'set':
 tree = self.Assign()
 self.lex.match('\0')
 return tree
 else:
 raise SyntaxError

 def Assign(self):
 self.lex.match('set')
 vartree = VarNode(self.lex.value, self.lex.start)
 self.lex.match('var')
 valtree = self.Expr()
 return AssignNode(vartree, valtree) # two
subtrees

 def Expr(self):
 left = self.Factor() # left
subtree
 while 1:
 if self.lex.token in ['\0', ')']:
 return left
 elif self.lex.token == '+':
 self.lex.scan()
 left = PlusNode(left, self.Factor()) # add root-
node
 elif self.lex.token == '-':
 self.lex.scan()
 left = MinusNode(left, self.Factor()) # grows
up/right
 else:
 raise SyntaxError

 def Factor(self):
 left = self.Term()
 while 1:
 if self.lex.token in ['+', '-', '\0', ')']:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1101

 return left
 elif self.lex.token == '*':
 self.lex.scan()
 left = TimesNode(left, self.Term())
 elif self.lex.token == '/':
 self.lex.scan()
 left = DivideNode(left, self.Term())
 else:
 raise SyntaxError

 def Term(self):
 if self.lex.token == 'num':
 leaf = NumNode(self.lex.match('num'))
 return leaf
 elif self.lex.token == 'var':
 leaf = VarNode(self.lex.value, self.lex.start)
 self.lex.scan()
 return leaf
 elif self.lex.token == '(':
 self.lex.scan()
 tree = self.Expr()
 self.lex.match(')')
 return tree
 else:
 raise SyntaxError

self-test code: use my parser, parser1's tester

if __name__ == '__main__':
 import testparser
 testparser.test(Parser, 'parser2') # run with Parser class here

When parser2 is run as a top-level program, we get the same test code output as
for parser1. In fact, it reuses the same test code: both parsers pass in their parser
class object to testparser.test. And since classes are objects, we can also pass
this version of the parser to testparser's interactive loop:
testparser.interact(parser2.Parser). The new parser's external behavior is
identical to that of the original.

Notice that the new parser reuses the same scanner module, too. To catch errors
raised by scanner, it also imports the specific strings that identify the scanner's
exceptions. The scanner and parser can both raise exceptions on errors (lexical
errors, syntax errors, and undefined name errors). They're caught at the top level of
the parser, and end the current parse. There's no need to set and check status flags
to terminate the recursion. Since math is done using long integers, floating-point
numbers, and Python's operators, there's usually no need to trap numeric overflow
or underflow errors. But as is, the parser doesn't handle errors like division by zero:
they make the parser system exit with a Python stack dump. Uncovering the cause
and fix for this is left as an exercise.

18.6.4 Parse Tree Structure

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1102

The intermediate representation of an expression is a tree of class instances, whose
shape reflects the order of operator evaluation. This parser also has logic to print an
indented listing of the constructed parse tree if the traceme attribute is set.
Indentation gives the nesting of subtrees, and binary operators list left subtrees first.
For example:

% python
>>> import parser2
>>> p = parser2.Parser()
>>> p.traceme = 1
>>> p.parse('5 + 4 * 2')

[+]
...5L
...[*]
......4L
......2L
13L

When this tree is evaluated, the apply method recursively evaluates subtrees and
applies root operators to their results. Here, * is evaluated before +, since it's lower
in the tree. The Factor method consumes the * substring before returning a right
subtree to Expr:

>>> p.parse('5 * 4 - 2')

[-]
...[*]
......5L
......4L
...2L
18L

In this example, * is evaluated before -. The Factor method loops though a
substring of * and / expressions before returning the resulting left subtree to Expr:

>>> p.parse('1 + 3 * (2 * 3 + 4)')

[+]
...1L
...[*]
......3L
......[+]
.........[*]
............2L
............3L
.........4L
31L

Trees are made of nested class instances. From an OOP perspective, it's another way
to use composition. Since tree nodes are just class instances, this tree could be
created and evaluated manually, too:

PlusNode(NumNode(1),
 TimesNode(NumNode(3),

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1103

 PlusNode(TimesNode(NumNode(2), NumNode(3)),
 NumNode(4)))).apply({})

But we might as well let the parser build it for us (Python is not that much like Lisp,
despite what you may have heard).

18.6.5 Exploring Parse Trees with Pytree

But wait -- there is a better way to explore parse tree structures. Figure 18-1 shows
the parse tree generated for string "1 + 3 * (2 * 3 + 4)", displayed in PyTree, the
tree visualization GUI presented at the end of the previous chapter. This only works
because the parser2 module builds the parse tree explicitly (parser1 evaluates
during a parse instead), and because PyTree's code is generic and reusable.

Figure 18-1. Parse tree built for 1 + 3 * (2 * 3 + 4)

If you read the last chapter, you'll recall that PyTree can draw most any tree data
structure, but it is preconfigured to handle binary search trees and the parse trees
we're studying in this chapter. You might also remember that clicking on nodes in a
displayed parse tree evaluates the subtree rooted there. Figure 18-2 shows the pop-
up generated after clicking the tree's root node (you get different results if you click
other parts of tree, because smaller subtrees are evaluated).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1104

Figure 18-2. Clicking the root node to evaluate a tree

PyTree makes it easy to learn about and experiment with the parser. To determine
the tree shape produced for a given expression, start PyTree, click on its Parser
radiobutton, type the expression in the input field at the bottom, and press "input"
(or your Enter key). The parser class is run to generate a tree from your input, and
the GUI displays the result. For instance, Figure 18-3 sketches the parse tree
generated if we remove the parentheses from the first expression in the input field.
The root node evaluates to 23 this time, due to the different shape's evaluation
order.

Figure 18-3. Parse tree for 1 + 3 * 2 * 3 + 4, result=23

To generate an even more different shape, try introducing more parentheses to the
expression and hitting the Enter key again. Figure 18-4 shows a much flatter tree
structure produced by adding a few parentheses to override operator precedence.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1105

Because these parentheses change the tree shape, they also change the expression's
overall result again. Figure 18-5 shows the result pop-up after clicking the root node
in this display.

Figure 18-4. Parse tree built for "(1 + 3) * (2 * (3 + 4))"

Figure 18-5. Clicking and evaluating the root node

Depending upon the operators used within an expression, some very differently
shaped trees yield the same result when evaluated. For instance, Figure 18-6 shows
a more left-heavy tree generated from a different expression string that evaluates to
56 nevertheless.

Figure 18-6. Parse tree for "(1 + 3) * 2 * (3 + 4)", result=56

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1106

Finally, Figure 18-7 shows a parsed assignment statement; clicking the "set" root
assigns variable spam, and clicking node spam then evaluates to -4. If you find the
parser puzzling, try running PyTree like this on your computer to get a better feel for
the parsing process. (I'd like to show more example trees, but I ran out of page real
estate at this point in the book.)

Figure 18-7. Assignment, left-grouping: "set spam 1 - 2 - 3"

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1107

18.6.6 Parsers Versus Python

The hand-coded parser programs shown earlier illustrate some interesting concepts
and underscore the power of Python for general-purpose programming. Depending
on your job description, they may also be typical of the sort of thing you'd write
regularly in a traditional language like C. Parsers are an important component in a
wide variety of applications, but in some cases, they're not as necessary as you
might think. Let me explain why.

So far, we started with an expression parser and added a parse tree interpreter to
make the code easier to modify. As is, the parser works, but it may be slow
compared to a C implementation. If the parser is used frequently, we could speed it
up by moving parts to C extension modules. For instance, the scanner might be
moved to C initially, since it's often called from the parser. Ultimately, we might add
components to the grammar that allow expressions to access application-specific
variables and functions.

All of the these steps constitute good engineering. But depending on your
application, this approach may not be the best one in Python. The easiest way to
evaluate input expressions in Python is often to let Python do it, by calling the eval
built-in function. In fact, we can usually replace the entire expression evaluation
program with one function call. The next example will demonstrate how this is done.

More importantly, the next section underscores a core idea behind the language: if
you already have an extensible, embeddable, high-level language system, why
invent another? Python itself can often satisfy language-based component needs.

18.7 PyCalc: A Calculator Program/Object

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1108

To wrap up this chapter, I'm going to show you a practical application for some of
the parsing technology introduced in the previous section. This section presents
PyCalc -- a Python calculator program with a graphical interface similar to the
calculator programs available on most window systems. But like most of the GUI
examples in this book, PyCalc offers a few advantages over existing calculators.
Because PyCalc is written in Python, it is both easily customized and widely portable
across window platforms. And because it is implemented with classes, it is both a
standalone program and a reusable object library.

18.7.1 A Simple Calculator GUI

Before I show you how to write a full-blown calculator, though, the module shown in
Example 18-13 starts this discussion in simpler terms. It implements a limited
calculator GUI, whose buttons just add text to the input field at the top, to compose
a Python expression string. Fetching and running the string all at once produces
results. Figure 18-8 shows the window this module makes when run as a top-level
script.

Figure 18-8. The calc0 script in action on Windows (result=160.283)

Example 18-13. PP2E\Lang\Calculator\calc0.py

#!/usr/local/bin/python
a simple calculator GUI: expressions run all at once with eval/exec

from Tkinter import *
from PP2E.Dbase.TableBrowser.guitools import frame, button, entry

class CalcGui(Frame):
 def __init__(self, parent=None): # an extended
frame
 Frame.__init__(self, parent) # on default
top-level
 self.pack(expand=YES, fill=BOTH) # all parts
expandable
 self.master.title('Python Calculator 0.1') # 6 frames plus
entry
 self.master.iconname("pcalc1")

 self.names = {} # namespace for
variables
 text = StringVar()
 entry(self, TOP, text)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1109

 rows = ["abcd", "0123", "4567", "89()"]
 for row in rows:
 frm = frame(self, TOP)
 for char in row: button(frm, LEFT, char,
 lambda x=text, y=char: x.set(x.get() +
y))

 frm = frame(self, TOP)
 for char in "+-*/=": button(frm, LEFT, char,
 lambda x=text, y=char: x.set(x.get()+'
'+y+' '))

 frm = frame(self, BOTTOM)
 button(frm, LEFT, 'eval', lambda x=self, y=text: x.eval(y))
 button(frm, LEFT, 'clear', lambda x=text: x.set(''))

 def eval(self, text):
 try:
 text.set(`eval(text.get(), self.names, self.names)`)
 except SyntaxError:
 try:
 exec(text.get(), self.names, self.names)
 except:
 text.set("ERROR") # bad as statement too?
 else:
 text.set('') # worked as a statement
 except:
 text.set("ERROR") # other eval expression
errors

if __name__ == '__main__': CalcGui().mainloop()

18.7.1.1 Building the GUI

Now, this is about as simple as a calculator can be, but it demonstrates the basics.
This window comes up with buttons for entry of numbers, variable names, and
operators. It is built by attaching buttons to frames: each row of buttons is a nested
Frame, and the GUI itself is a Frame subclass, with an attached Entry and six
embedded row frames (grids would work here, too). The calculator's frame, entry
field, and buttons are made expandable in the imported guitools utility module.

This calculator builds up a string to pass to the Python interpreter all at once on
"eval" button presses. Because you can type any Python expression or statement in
the entry field, the buttons are really just a convenience. In fact, the entry field isn't
much more than a command line. Try typing import sys and then dir(sys) to
display sys module attributes in the input field at the top -- it's not what you
normally do with a calculator, but demonstrative nevertheless.[3]

[3] And once again, I need to warn you about running strings like this if you can't be sure they
won't cause damage. See the rexec restricted execution mode module in Chapter 15, for
more details.

In CalcGui's constructor, buttons are coded as lists of strings; each string represents
a row and each character in the string represents a button. Lambdas with default

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1110

argument values are used to set callback data for each button. The callback functions
save the button's character and the linked text entry variable, so that the character
can be added to the end of the entry widget's current string on a press.

Lesson 4: Embedding Beats Parsers

The calculator uses eval and exec to call Python's parser/interpreter at
run-time instead of analyzing and evaluating expressions manually. In
effect, the calculator runs embedded Python code from a Python program.
This works because Python's development environment (the parser and
byte-code compiler) is always a part of systems that use Python. Because
there is no difference between the development and delivery environments,
Python's parser can be used by Python programs.

The net effect here is that the entire expression evaluator has been replaced
with a single call to eval. In broader terms, this is a powerful technique to
remember: the Python language itself can replace many small custom
languages. Besides saving development time, clients have to learn just one
language, one that's potentially simple enough for end-user coding.

Furthermore, Python can take on the flavor of any application. If a language
interface requires application-specific extensions, just add Python classes, or
export an API for use in embedded Python code as a C extension. By
evaluating Python code that uses application-specific extensions, custom
parsers become almost completely unnecessary.

There's also a critical added benefit to this approach: embedded Python
code has access to all the tools and features of a powerful, full-blown
programming language. It can use lists, functions, classes, external
modules, and even larger Python tools like Tkinter, shelves, threads, and
sockets. You'd probably spend years trying to provide similar functionality in
a custom language parser. Just ask Guido.

18.7.1.2 Running code strings

This module implements a GUI calculator in 45 lines of code (counting comments and
blank lines). But to be honest, it cheats: expression evaluation is delegated to
Python. In fact, the built-in eval and exec tools do most of the work here:

eval parses, evaluates, and returns the result of a Python expression represented as
a string.

exec runs an arbitrary Python statement represented as a string; there's no return
value because the code is a string.

Both accept optional dictionaries to be used as global and local namespaces for
assigning and evaluating names used in the code strings. In the calculator,
self.names becomes a symbol table for running calculator expressions. A related
Python function, compile, can be used to precompile code strings before passing
them to eval and exec (use it if you need to run the same string many times).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1111

By default a code string's namespace defaults to the caller's namespaces. If we
didn't pass in dictionaries here, the strings would run in the eval method's
namespace. Since the method's local namespace goes away after the method call
returns, there would be no way to retain names assigned in the string. Notice the
use of nested exception handlers in the eval method:

It first assumes the string is an expression and tries the built-in eval function.

If that fails due to a syntax error, it tries evaluating the string as a statement using
exec.

Finally, if both attempts fail, it reports an error in the string (a syntax error,
undefined name, etc.).

Statements and invalid expressions might be parsed twice, but the overhead doesn't
matter here, and you can't tell if a string is an expression or a statement without
parsing it manually. Note that the "eval" button evaluates expressions, but = sets
Python variables by running an assignment statement. Variable names are
combinations of letter keys abcd (or any name typed directly). They are assigned
and evaluated in a dictionary used to represent the calculator's namespace.

18.7.1.3 Extending and attaching

Clients that reuse this calculator are as simple as the calculator itself. Like most
class-based Tkinter GUIs, this one can be extended in subclasses -- Example 18-14
customizes the simple calculator's constructor to add extra widgets.

Example 18-14. PP2E\Lang\Calculator\calc0ext.py

from Tkinter import *
from calc0 import CalcGui

class Inner(CalcGui): # extend
gui
 def __init__(self):
 CalcGui.__init__(self)
 Label(self, text='Calc Subclass').pack() # add
after
 Button(self, text='Quit', command=self.quit).pack() # top
implied

Inner().mainloop()

It can also be embedded in a container class -- Example 18-15 attaches the simple
calculator's widget package, and extras, to a common parent.

Example 18-15. PP2E\Lang\Calculator\calc0emb.py

from Tkinter import *
from calc0 import CalcGui # add parent, no master
calls

class Outer:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1112

 def __init__(self, parent): # embed
gui
 Label(parent, text='Calc Attachment').pack() #
side=top
 CalcGui(parent) # add
calc frame
 Button(parent, text='Quit', command=parent.quit).pack()

root = Tk()
Outer(root)
root.mainloop()

Figure 18-9 shows the result of running both of these scripts from different
command lines. Both have a distinct input field at the top. This works; but to see a
more practical application of such reuse techniques, we need to make the underlying
calculator more practical, too.

Figure 18-9. The calc0 script's object attached and extended

18.7.2 Pycalc -- A Real Calculator GUI

Of course, real calculators don't usually work by building up expression strings and
evaluating them all at once; that approach is really little more than a glorified Python
command line. Traditionally, expressions are evaluated in piecemeal fashion as they
are entered, and temporary results are displayed as soon as they are computed.
Implementing this behavior is a bit more work: expressions must be evaluated
manually instead of calling the eval function only once. But the end result is much
more useful and intuitive.

Lesson 5: Reusability Is Power

Though simple, attaching and subclassing the calculator graphically, as
shown in Figure 18-9, illustrates the power of Python as a tool for writing
reusable software. By coding programs with modules and classes,
components written in isolation almost automatically become general-
purpose tools. Python's program organization features promote reusable
code.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1113

In fact, code reuse is one of Python's major strengths and has been one of
the main themes of this book thus far. Good object-oriented design takes
some practice and forethought, and the benefits of code reuse aren't
apparent immediately. And sometimes we're more interested in a quick fix
rather than a future use for the code.

But coding with some reusability in mind can save development time in the
long run. For instance, the hand-coded parsers shared a scanner, the
calculator GUI uses the guitools module we discussed earlier, and the
next example will reuse the GuiMixin class. Sometimes we're able to
finish part of a job before we start.

This section presents the implementation of PyCalc -- a Python/Tkinter program that
implements such a traditional calculator GUI. Although its evaluation logic is more
complex than the simpler calculator above, it demonstrates advanced programming
techniques and serves as an interesting finale for this chapter.

18.7.2.1 Running PyCalc

As usual, let's look at the GUI before the code. You can run PyCalc from the
PyGadgets and PyDemos launcher bars at the top of the examples tree, or by directly
running file calculator.py listed below (e.g., click it in a file explorer). Figure 18-10
shows PyCalc's main window. By default, it shows operand buttons in black-on-blue
(and opposite for operator buttons), but font and color options can be passed in to
the GUI class's constructor method. Of course, that means gray-on-gray in this book,
so you'll have to run PyCalc yourself to see what I mean.

Figure 18-10. PyCalc calculator at work on Windows

If you do run this, you'll notice that PyCalc implements a normal calculator model --
expressions are evaluated as entered, not all at once at the end. That is, parts of an
expression are computed and displayed as soon as operator precedence and
manually typed parentheses allow. I'll explain how this evaluation works in a
moment.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1114

PyCalc's CalcGui class builds the GUI interface as frames of buttons much like the
simple calculator of the previous section, but PyCalc adds a host of new features.
Among them are another row of action buttons, inherited methods from GuiMixin
(presented in Chapter 9), a new "cmd" button that pops up nonmodal dialogs for
entry of arbitrary Python code, and a recent calculations history pop-up. Figure 18-
11 captures some of PyCalc's pop-up windows.

Figure 18-11. PyCalc calculator with some of its pop-ups

You may enter expressions in PyCalc by clicking buttons in the GUI, typing full
expressions in command-line pop-ups, or typing keys on your keyboard. PyCalc
intercepts key press events and interprets them the same as corresponding button
presses; typing + is like pressing button +, the space bar key is "clear", Enter is
"eval", backspace erases a character, and ? is like pressing "help".

The command-line pop-up windows are nonmodal (you can pop up as many as you
like). They accept any Python code -- press the Run button or your Enter key to
evaluate text in the input field. The result of evaluating this code in the calculator's
namespace dictionary is thrown up in the main window, for use in larger expressions.
You can use this as an escape mechanism to employ external tools in your
calculations. For instance, you can import and use functions coded in Python or C
within these pop-ups. The current value in the main calculator window is stored in
newly opened command-line pop-ups, too, for use in typed expressions.

PyCalc supports long integers (unlimited precision), negatives, and floating-point
numbers, just because Python does: individual operands and expressions are still
evaluated with the eval built-in, which calls the Python parser/interpreter at run-
time. Variable names can be assigned and referenced in the main window with the
letter, =, and "eval" keys; they are assigned in the calculator's namespace dictionary
(more complex variable names may be typed in command-line pop-ups). Note the
use of pi in the history window: PyCalc preimports names in the math and random
modules into the namespace where expressions are evaluated.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1115

18.7.2.2 Evaluating expressions with stacks

Now that you have the general idea of what PyCalc does, I need to say a little bit
about how it does what it does. Most of the changes in this version involve managing
the expression display and evaluating expressions. PyCalc is structured as two
classes:

The CalcGui class manages the GUI itself. It controls input events and is in charge
of the main window's display field at the top. It doesn't evaluate expressions,
though; for that, it sends operators and operands entered in the GUI to an
embedded instance of the Evaluator class.

The Evaluator class manages two stacks. One stack records pending operators
(e.g., +), and one records pending operands (e.g, 3.141). Temporary results are
computed as new operators are sent from CalcGui and pushed onto the operands
stack.

As you can see from this, the magic of expression evaluation boils down to juggling
the operator and operand stacks. While scanning expression strings from left to right
as they are entered, operands are pushed along the way, but operators delimit
operands and may trigger temporary results before they are pushed. Here's the
general scenario:

When a new operator is seen (i.e., when an operator button or key is pressed), the
prior operand in the entry field is pushed onto the operands stack.

The operator is then added to the operators stack, but only after all pending
operators of higher precedence have been popped and applied to pending operands
(e.g., pressing + makes any pending * operators on the stack fire).

When "eval" is pressed, all remaining operators are popped and applied to all
remaining operands, and the result is the last remaining value on the operands
stack.

In the end, the last value on the operands stack is displayed in the calculator's entry
field, ready for use in another operation. This evaluation algorithm is probably best
described by working through examples. Let's step through the entry of a few
expressions and watch the evaluation stacks grow.

PyCalc stack tracing is enabled with the debugme flag in the module; if true, the
operator and operand stacks are displayed on stdout each time the Evaluator class
is about to apply an operator and reduce (pop) the stacks. A tuple holding the stack
lists (operators, operands) is printed on each stack reduction; tops of stack are at
the ends of the lists. For instance, here is the console output after typing and
evaluating a simple string:

1) Entered keys: "5 * 3 + 4 <eval>" [result = 19]

(['*'], ['5', '3']) [on '+' press: displays "15"]
(['+'], ['15', '4']) [on 'eval' press: displays "19"]

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1116

Note that the pending (stacked) * subexpression is evaluated when the + is pressed:
* operators bind tighter than +, so the code is evaluated immediately before the +
operator is pushed. When the + button is pressed, the entry field contains 3. In
general, the entry field always holds the prior operand when an operator button is
pressed. Since the text entry's value is pushed onto the operands stack before the
operator is applied, we have to pop results before displaying them after "eval" or) is
pressed (otherwise the results are pushed onto the stack twice):

2) "5 + 3 * 4 <eval>" [result = 17]

(['+', '*'], ['5', '3', '4']) [on 'eval' press]
(['+'], ['5', '12']) [displays "17"]

Here, the pending + isn't evaluated when the * button is pressed: since * binds
tighter, we need to postpone the + until the * can be evaluated. The * operator isn't
popped until its right operand has been seen. On the "eval" press there are two
operators to pop and apply to operand stack entries:

3) "5 + 3 + 4 <eval>" [result = 12]

(['+'], ['5', '3']) [on the second '+']
(['+'], ['8', '4']) [on 'eval']

For strings of same-precedence operators like this one, we pop and evaluate
immediately as we scan left to right, instead of postponing evaluation. This results in
a left-associative evaluation, in the absence of parentheses: 5+3+4 is evaluated as
((5+3)+4). Order doesn't matter for + and * operations:

4) "1 + 3 * (1 + 3 * 4) <eval>" [result = 40]

(['+', '*', '(', '+', '*'], ['1', '3', '1', '3', '4']) [on ')']
(['+', '*', '(', '+'], ['1', '3', '1', '12']) [displays
"13"]
(['+', '*'], ['1', '3', '13']) [on 'eval']
(['+'], ['1', '39'])

In this case, all the operators and operands are stacked (postponed) until we press
the) button at the end. When the) button is pressed, the parenthesized
subexpression is popped and evaluated, and 13 is displayed in the entry field. On
pressing "eval", the rest is evaluated, and the final result (40) is shown. The result is
the left operand of another operator. In fact, any temporary result can be used
again: if we keep pressing an operator button without typing new operands, it's
reapplied to the result of the prior press. Figure 18-12 shows how the two stacks
look at their highest level while scanning the expression in the preceding example
trace. The top operator is applied to the top two operands and the result is pushed
back for the operator below:

5) "1 + 3 * (1 + 3 * 4 <eval>" [result = *ERROR*]

(['+', '*', '(', '+', '*'], ['1', '3', '1', '3', '4']) [on eval]
(['+', '*', '(', '+'], ['1', '3', '1', '12'])
(['+', '*', '('], ['1', '3', '13'])
(['+', '*'], ['1', '*ERROR*'])
(['+'], ['*ERROR*'])

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1117

(['+'], ['*ERROR*', '*ERROR*'])

Figure 18-12. Evaluation stacks: 1 + 3 * (1 + 3 * 4)

This string triggers an error. PyCalc is casual about error handling. Many errors are
made impossible by the algorithm itself, but things like unmatched parentheses still
trip up the evaluator. But instead of trying to detect all possible error cases explicitly,
a general try statement in the reduce method is used to catch them all: expression
errors, undefined name errors, syntax errors, etc.

Operands and temporary results are always stacked as strings, and each operator
are applied by calling eval. When an error occurs inside an expression, a result
operand of *ERROR* is pushed, which makes all remaining operators fail in eval, too.
ERROR percolates to the top of the expression. At the end, it's the last operand and
is displayed in the text entry field to alert you of the mistake.

18.7.2.3 PyCalc source code

Example 18-16 contains the PyCalc source module that puts these ideas to work in
the context of a GUI. It's a single-file implementation (not counting utilities imported
and reused). Study the source for more details; and as usual, there's no substitute
for interacting with the program on your own to get a better feel for its functionality.

Example 18-16. PP2E\Lang\Calculator\calculator.py

#!/usr/local/bin/python
###

PyCalc 2.0: a Python/Tkinter calculator program and GUI component.
evaluates expressions as they are entered, catches keyboard keys
for expression entry; adds integrated command-line popups, recent
calculations history display popup, fonts and colors configuration,
help and about popups, preimported math/random constants, and more;
###

from Tkinter import * # widgets,
consts
from PP2E.Gui.Tools.guimixin import GuiMixin # quit
method
from PP2E.Dbase.TableBrowser.guitools import * # widget
builders
Fg, Bg, Font = 'black', 'skyblue', ('courier', 16, 'bold') # default
config

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1118

debugme = 1
def trace(*args):
 if debugme: print args

the main class - handles user interface;
an extended Frame, on new Toplevel, or
embedded in another container widget

class CalcGui(GuiMixin, Frame):
 Operators = "+-*/=" # button lists
 Operands = ["abcd", "0123", "4567", "89()"] # customizable

 def __init__(self, parent=None, fg=Fg, bg=Bg, font=Font):
 Frame.__init__(self, parent)
 self.pack(expand=YES, fill=BOTH) # all parts
expandable
 self.eval = Evaluator() # embed a stack
handler
 self.text = StringVar() # make a linked
variable
 self.text.set("0")
 self.erase = 1 # clear "0" text
next
 self.makeWidgets(fg, bg, font) # build the gui
itself
 if not parent or not isinstance(parent, Frame):
 self.master.title('PyCalc 2.0') # title iff owns
window
 self.master.iconname("PyCalc") # ditto for key
bindings
 self.master.bind('<KeyPress>', self.onKeyboard)
 self.entry.config(state='disabled')
 else:
 self.entry.config(state='normal')
 self.entry.focus()

 def makeWidgets(self, fg, bg, font): # 7 frames plus
text-entry
 self.entry = entry(self, TOP, self.text) # font, color
configurable
 for row in self.Operands:
 frm = frame(self, TOP)
 for char in row:
 button(frm, LEFT, char,
 lambda x=self, y=char: x.onOperand(y),
 fg=fg, bg=bg, font=font)

 frm = frame(self, TOP)
 for char in self.Operators:
 button(frm, LEFT, char,
 lambda x=self, y=char: x.onOperator(y),
 fg=bg, bg=fg, font=font)

 frm = frame(self, TOP)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1119

 button(frm, LEFT, 'cmd ', self.onMakeCmdline)
 button(frm, LEFT, 'dot ', lambda x=self: x.onOperand('.'))
 button(frm, LEFT, 'long', lambda x=self: x.text.set(x.text.get(
)+'L'))
 button(frm, LEFT, 'help', self.help)
 button(frm, LEFT, 'quit', self.quit) # from guimixin

 frm = frame(self, BOTTOM)
 button(frm, LEFT, 'eval ', self.onEval)
 button(frm, LEFT, 'hist ', self.onHist)
 button(frm, LEFT, 'clear', self.onClear)

 def onClear(self):
 self.eval.clear()
 self.text.set('0')
 self.erase = 1

 def onEval(self):
 self.eval.shiftOpnd(self.text.get()) # last or only opnd
 self.eval.closeall() # apply all optrs
left
 self.text.set(self.eval.popOpnd()) # need to pop: optr
next?
 self.erase = 1

 def onOperand(self, char):
 if char == '(':
 self.eval.open()
 self.text.set('(') # clear text next
 self.erase = 1
 elif char == ')':
 self.eval.shiftOpnd(self.text.get()) # last or only
nested opnd
 self.eval.close() # pop here too:
optr next?
 self.text.set(self.eval.popOpnd())
 self.erase = 1
 else:
 if self.erase:
 self.text.set(char) # clears last
value
 else:
 self.text.set(self.text.get() + char) # else append
to opnd
 self.erase = 0

 def onOperator(self, char):
 self.eval.shiftOpnd(self.text.get()) # push opnd on left
 self.eval.shiftOptr(char) # eval exprs to left?
 self.text.set(self.eval.topOpnd()) # push optr, show
opnd|result
 self.erase = 1 # erased on next
opnd|'('

 def onMakeCmdline(self):
 new = Toplevel() # new top-level
window

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1120

 new.title('PyCalc command line') # arbitrary python
code
 frm = frame(new, TOP) # only the Entry
expands
 label(frm, LEFT, '>>>').pack(expand=NO)
 var = StringVar()
 ent = entry(frm, LEFT, var, width=40)
 onButton = (lambda s=self, v=var, e=ent: s.onCmdline(v,e))
 onReturn = (lambda event, s=self, v=var, e=ent:
s.onCmdline(v,e))
 button(frm, RIGHT, 'Run', onButton).pack(expand=NO)
 ent.bind('<Return>', onReturn)
 var.set(self.text.get())

 def onCmdline(self, var, ent): # eval cmdline popup
input
 try:
 value = self.eval.runstring(var.get())
 var.set('OKAY')
 if value != None: # run in eval namespace
dict
 self.text.set(value) # expression or statement
 self.erase = 1
 var.set('OKAY => '+ value)
 except: # result in calc field
 var.set('ERROR') # status in popup field
 ent.icursor(END) # insert point after text
 ent.select_range(0, END) # select msg so next key
deletes

 def onKeyboard(self, event):
 pressed = event.char # on keyboard press event
 if pressed != '': # pretend button was
pressed
 if pressed in self.Operators:
 self.onOperator(pressed)
 else:
 for row in self.Operands:
 if pressed in row:
 self.onOperand(pressed)
 break
 else:
 if pressed == '.':
 self.onOperand(pressed) # can
start opnd
 if pressed in 'Ll':
 self.text.set(self.text.get()+'L') # can't:
no erase
 elif pressed == '\r':
 self.onEval() # enter
key = eval
 elif pressed == ' ':
 self.onClear() #
spacebar = clear
 elif pressed == '\b':
 self.text.set(self.text.get()[:-1]) #
backspace

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1121

 elif pressed == '?':
 self.help()

 def onHist(self):
 # show recent calcs log popup
 # self.infobox('PyCalc History', self.eval.getHist())
 from ScrolledText import ScrolledText
 new = Toplevel() # make new
window
 ok = Button(new, text="OK", command=new.destroy)
 ok.pack(pady=1, side=BOTTOM) # pack
first=clip last
 text = ScrolledText(new, bg='beige') # add Text +
scrollbar
 text.insert('0.0', self.eval.getHist()) # get
Evaluator text
 text.pack(expand=YES, fill=BOTH)

 # new window goes away on ok press or enter key
 new.title("PyCalc History")
 new.bind("<Return>", (lambda event, new=new: new.destroy()))
 ok.focus_set() # make new window modal:
 new.grab_set() # get keyboard focus,
grab app
 new.wait_window() # don't return till
new.destroy

 def help(self):
 self.infobox('PyCalc', 'PyCalc 2.0\n'
 'A Python/Tk calculator\n'
 'August, 1999\n'
 'Programming Python 2E\n\n'
 'Use mouse or keyboard to\n'
 'input numbers and operators,\n'
 'or type code in cmd popup')

####################################
the expression evaluator class
embedded in and used by a CalcGui
instance, to perform calculations
####################################

class Evaluator:
 def __init__(self):
 self.names = {} # a names-space for my
vars
 self.opnd, self.optr = [], [] # two empty stacks
 self.hist = [] # my prev calcs history
log
 self.runstring("from math import *") # preimport math
modules
 self.runstring("from random import *") # into calc's namespace

 def clear(self):
 self.opnd, self.optr = [], [] # leave names intact

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1122

 if len(self.hist) > 64: # don't let hist get
too big
 self.hist = ['clear']
 else:
 self.hist.append('--clear--')

 def popOpnd(self):
 value = self.opnd[-1] # pop/return top|last
opnd
 self.opnd[-1:] = [] # to display and shift
next
 return value

 def topOpnd(self):
 return self.opnd[-1] # top operand (end of
list)

 def open(self):
 self.optr.append('(') # treat '(' like an
operator

 def close(self): # on ')' pop downto
higest '('
 self.shiftOptr(')') # ok if empty: stays
empty
 self.optr[-2:] = [] # pop, or added again
by optr

 def closeall(self):
 while self.optr: # force rest on 'eval'
 self.reduce() # last may be a var
name
 try:
 self.opnd[0] = self.runstring(self.opnd[0])
 except:
 self.opnd[0] = '*ERROR*' # pop else added again
next:

 afterMe = {'*': ['+', '-', '(', '='], # class member
 '/': ['+', '-', '(', '='], # optrs to not pop for
key
 '+': ['(', '='], # if prior optr is
this: push
 '-': ['(', '='], # else: pop/eval prior
optr
 ')': ['(', '='], # all left-associative
as is
 '=': ['('] }

 def shiftOpnd(self, newopnd): # push opnd at optr,
')', eval
 self.opnd.append(newopnd)

 def shiftOptr(self, newoptr): # apply ops with <=
priority
 while (self.optr and
 self.optr[-1] not in self.afterMe[newoptr]):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1123

 self.reduce()
 self.optr.append(newoptr) # push this op above
result
 # optrs assume next
opnd erases
 def reduce(self):
 trace(self.optr, self.opnd)
 try: # collapse the top expr
 operator = self.optr[-1] # pop top optr (at end)
 [left, right] = self.opnd[-2:] # pop top 2 opnds (at
end)
 self.optr[-1:] = [] # delete slice in-place
 self.opnd[-2:] = []
 result = self.runstring(left + operator + right)
 if result == None:
 result = left # assignment? key var
name
 self.opnd.append(result) # push result string
back
 except:
 self.opnd.append('*ERROR*') # stack/number/name
error

 def runstring(self, code):
 try:
 result = `eval(code, self.names, self.names)` # try expr:
string
 self.hist.append(code + ' => ' + result) # add to
hist log
 except:
 exec code in self.names, self.names # try stmt:
None
 self.hist.append(code)
 result = None
 return result

 def getHist(self):
 import string
 return string.join(self.hist, '\n')

def getCalcArgs():
 from sys import argv
 config = {} # get cmdline args in a dict
 for arg in argv[1:]: # ex: -bg black -fg red
 if arg in ['-bg', '-fg']: # font not yet supported
 try:
 config[arg[1:]] = argv[argv.index(arg) + 1]
 except:
 pass
 return config

if __name__ == '__main__':
 apply(CalcGui, (), getCalcArgs()).mainloop() # on default
toplevel window

18.7.2.4 Using PyCalc as a component

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1124

PyCalc serves a standalone program on my desktop, but it's also useful in the
context of other GUIs. Like most of the GUI classes in this book, PyCalc can be
customized with subclass extensions, or embedded in a larger GUI with attachment.
The module in Example 18-17 demonstrates one way to reuse PyCalc's CalcGui class
by extending and embedding, much as done for the simple calculator earlier.

Example 18-17. PP2E\Lang\Calculator\calculator_test.py

###

test calculator use as an extended and embedded gui component;
###

from Tkinter import *
from calculator import CalcGui
from PP2E.Dbase.TableBrowser.guitools import *

def calcContainer(parent=None):
 frm = Frame(parent)
 frm.pack(expand=YES, fill=BOTH)
 Label(frm, text='Calc Container').pack(side=TOP)
 CalcGui(frm)
 Label(frm, text='Calc Container').pack(side=BOTTOM)
 return frm

class calcSubclass(CalcGui):
 def makeWidgets(self, fg, bg, font):
 Label(self, text='Calc Subclass').pack(side=TOP)
 Label(self, text='Calc Subclass').pack(side=BOTTOM)
 CalcGui.makeWidgets(self, fg, bg, font)
 #Label(self, text='Calc Subclass').pack(side=BOTTOM)

if __name__ == '__main__':
 import sys
 if len(sys.argv) == 1: # % calculator_test.py
 root = Tk() # run 3 calcs in same process
 CalcGui(Toplevel()) # each in a new toplevel window
 calcContainer(Toplevel())
 calcSubclass(Toplevel())
 Button(root, text='quit', command=root.quit).pack()
 root.mainloop()
 if len(sys.argv) == 2: # % calculator_testl.py -
 CalcGui().mainloop() # as a standalone window
(default root)
 elif len(sys.argv) == 3: # % calculator_test.py - -
 calcContainer().mainloop() # as an embedded component
 elif len(sys.argv) == 4: # % calculator_test.py - - -
 calcSubclass().mainloop() # as a customized superclass

Figure 18-13 shows the result of running this script with no command-line
arguments. We get instances of the original calculator class, plus the container and
subclass classes defined in this script, all attached to new top-level windows.

Figure 18-13. The calculator_test script: attaching and extending

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1125

These two windows on the right reuse the core PyCalc code running in the window on
the left. All these windows all run in the same process (e.g., quitting one quits them
all), but they all function as independent windows. Note that when running three
calculators in the same process like this, each has its own distinct expression
evaluation namespace because it's a class instance attribute, not a global module-
level variable. Because of that, variables set in one calculator are set in that
calculator only, and don't overwrite settings made in other windows. Similarly, each
calculator has its own evaluation stack manager object, such that calculations in one
window don't appear in or impact other windows at all.

The two extensions in this script are artificial, of course -- they simply add labels at
the top and bottom of the window -- but the concept is widely applicable. You could
reuse the calculator's class by attaching it to any GUI that needs a calculator, and
customize it with subclasses arbitrarily. It's a reusable widget.

18.7.2.5 Adding new buttons in new components

One obvious way to reuse the calculator is to add additional expression feature
buttons -- square roots, inverses, cubes, and the like. You can type such operations
in the command-line pop-ups, but buttons are a bit more convenient. Such features
could also be added to the main calculator implementation itself; but since the set of
features that will be useful may vary per user and application, a better approach
may be to add them in separate extensions. For instance, the class in Example 18-18
adds a few extra buttons to PyCalc by embedding (i.e., attaching) it in a container.

Example 18-18. PP2E\Lang\Calculator\calculator_plus_emb.py

###

a container with an extra row of buttons for common operations;
a more useful customization: adds buttons for more operations (sqrt,
1/x, etc.) by embedding/composition, not subclassing; new buttons are
added after entire CalGui frame because of the packing order/options;
###

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1126

from Tkinter import *
from calculator import CalcGui, getCalcArgs
from PP2E.Dbase.TableBrowser.guitools import frame, button, label

class CalcGuiPlus(Toplevel):
 def __init__(self, **args):
 Toplevel.__init__(self)
 label(self, TOP, 'PyCalc Plus - Container')
 self.calc = apply(CalcGui, (self,), args)
 frm = frame(self, BOTTOM)
 extras = [('sqrt', 'sqrt(%s)'),
 ('x^2 ', '(%s)**2'),
 ('x^3 ', '(%s)**3'),
 ('1/x ', '1.0/(%s)')]
 for (lab, expr) in extras:
 button(frm, LEFT, lab, (lambda m=self.onExtra, e=expr:
m(e)))
 button(frm, LEFT, ' pi ', self.onPi)
 def onExtra(self, expr):
 text = self.calc.text
 eval = self.calc.eval
 try:
 text.set(eval.runstring(expr % text.get()))
 except:
 text.set('ERROR')
 def onPi(self):
 self.calc.text.set(self.calc.eval.runstring('pi'))

if __name__ == '__main__':
 root = Tk()
 button(root, TOP, 'Quit', root.quit)
 apply(CalcGuiPlus, (), getCalcArgs()).mainloop() # -bg,-fg to
calcgui

Because PyCalc is coded as a Python class, you can always achieve a similar effect
by extending PyCalc in a new subclass instead of embedding it, as shown in Example
18-19.

Example 18-19. PP2E\Lang\Calculator\calculator_plus_ext.py

###
#######
a customization with an extra row of buttons for common operations;
a more useful customization: adds buttons for more operations (sqrt,
1/x, etc.) by subclassing to extend the original class, not
embedding;
new buttons show up before frame attached to bottom be calcgui class;
###
#######

from Tkinter import *
from calculator import CalcGui, getCalcArgs
from PP2E.Dbase.TableBrowser.guitools import *

class CalcGuiPlus(CalcGui):
 def makeWidgets(self, *args):

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1127

 label(self, TOP, 'PyCalc Plus - Subclass')
 apply(CalcGui.makeWidgets, (self,) + args)
 frm = frame(self, BOTTOM)
 extras = [('sqrt', 'sqrt(%s)'),
 ('x^2 ', '(%s)**2'),
 ('x^3 ', '(%s)**3'),
 ('1/x ', '1.0/(%s)')]
 for (lab, expr) in extras:
 button(frm, LEFT, lab, (lambda m=self.onExtra, e=expr:
m(e)))
 button(frm, LEFT, ' pi ', self.onPi)
 def onExtra(self, expr):
 try:
 self.text.set(self.eval.runstring(expr % self.text.get(
)))
 except:
 self.text.set('ERROR')
 def onPi(self):
 self.text.set(self.eval.runstring('pi'))

if __name__ == '__main__':
 apply(CalcGuiPlus, (), getCalcArgs()).mainloop() # passes -
bg, -fg on

Notice that these buttons' callbacks use 1.0/x to force float-point division to be used
for inverses (integer division truncates remainders), and wrap entry field values in
parentheses (to sidestep precedence issues). They could instead convert the entry's
text to a number and do real math, but Python does all the work automatically when
expression strings are run raw.

Also note that the buttons added by these scripts simply operate on the current
value in the entry field, immediately. That's not quite the same as expression
operators applied with the stacks evaluator (additional customizations are needed to
make them true operators). Still, these buttons prove the point these scripts are out
to make -- they use PyCalc as a component, both from the outside and below.

Finally, to test both of the extended calculator classes, as well as PyCalc
configuration options, the script in Example 18-20 puts up four distinct calculator
windows (this is the script run by PyDemos).

Example 18-20. PP2E\Lang\Calculator\calculator_plusplus.py

#!/usr/local/bin/python
from Tkinter import Tk, Button, Toplevel
import calculator, calculator_plus_ext, calculator_plus_emb

demo all 3 calculator flavors at once
each is a distinct calculator object and window

root=Tk()
calculator.CalcGui(Toplevel())
calculator.CalcGui(Toplevel(), fg='white', bg='purple')
calculator_plus_ext.CalcGuiPlus(Toplevel(), fg='gold', bg='black')
calculator_plus_emb.CalcGuiPlus(fg='black', bg='red')
Button(root, text='Quit Calcs', command=root.quit).pack()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1128

root.mainloop()

Figure 18-14 shows the result -- four independent calculators in top-level windows
within the same process. The windows on the left and right represent specialized
reuses of PyCalc as a component. Although it may not be obvious in this book, all
four use different color schemes; calculator classes accept color and font
configuration options and pass them down the call chain as needed.

Figure 18-14. The calculator_plusplus script: extend, embed, and configure

As we learned earlier, these calculators could also be run as independent processes
by spawning command lines with the launchmodes module we met in Chapter 3. In
fact, that's how the PyGadgets and PyDemos launcher bars run calculators, so see
their code for more details.

Lesson 6: Have Fun

In closing, here's a less tangible but important aspect of Python
programming. A common remark among new users is that it's easy to "say
what you mean" in Python without getting bogged down in complex syntax
or obscure rules. It's a programmer-friendly language. In fact, it's not too

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1129

uncommon for Python programs to run on the first attempt.

As we've seen in this book, there are a number of factors behind this
distinction -- lack of declarations, no compile steps, simple syntax, useful
built-in objects, and so on. Python is specifically designed to optimize speed
of development (an idea we'll expand on in Chapter 21). For many users,
the end result is a remarkably expressive and responsive language, which
can actually be fun to use.

For instance, the calculator programs shown earlier were first thrown
together in one afternoon, starting from vague, incomplete goals. There was
no analysis phase, no formal design, and no official coding stage. I typed up
some ideas and they worked. Moreover, Python's interactive nature allowed
me to experiment with new ideas and get immediate feedback. Since its
initial development, the calculator has been polished and expanded, but the
core implementation remains unchanged.

Naturally, such a laid-back programming mode doesn't work for every
project. Sometimes more up-front design is warranted. For more demanding
tasks, Python has modular constructs and fosters systems that can be
extended in either Python or C. And, a simple calculator GUI may not be
what some would call "serious" software development. But maybe that's
part of the point, too.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1130

Part V: Integration

This part of the book explores Python's interfaces for communicating with software
components written in other programming languages. Its emphasis is on mixing
Python with programs written in C and C++, but other integration techniques are
also introduced along the way. This part contains two chapters that address the two
primary modes of Python/C integration:

Chapter 19. This chapter presents tools that allow Python scripts to call out to C
components. C components take the form of new modules or object types. This
chapter also covers SWIG -- a system that automatically generates the glue code
needed to export C and C++ libraries to Python scripts and hides much of the
complexity underlying extensions.

Chapter 20. This chapter presents tools that allow C programs to execute Python
scripts. These tools live in the Python runtime API -- a collection of functions exposed
by the Python interpreter and linked in to your C/C++ program. This chapter
concludes with a look at other integration topics and systems -- JPython, COM,
CORBA, and so on.

This part of the book assumes that you know how to read C programs, and is useful
mostly to developers responsible for implementing application integration layers that
route control to and from Python scripts. Yet because C components are at the heart
of many Python systems, a basic understanding of integration concepts can be useful
even to scripters who code strictly in Python.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1131

Chapter 19. Extending Python

19.1 "I Am Lost at C"

19.2 C Extensions Overview

19.3 A Simple C Extension Module

19.4 The SWIG Integration Code Generator

19.5 Wrapping C Environment Calls

19.6 A C Extension Module String Stack

19.7 A C Extension Type String Stack

19.8 Wrapping C++ Classes with SWIG

19.1 "I Am Lost at C"

So far in this book, we've been using Python as it comes out of the box. We have
used interfaces to services outside Python, and coded extensions as Python modules.
But we haven't added any external services beyond the built-in set. For many users,
this makes perfect sense: such standalone programming is one of the main ways
people apply Python. As we've seen, Python comes with batteries included --
interfaces to system tools, Internet protocols, GUIs, filesystems, and much more.

But for many systems, Python's ability to integrate with C-compatible components is
a crucial feature of the language. In fact, Python's role as an extension and interface
language in larger systems is one of the reasons for its popularity and why it is often
called a "scripting" language. Its design supports hybrid systems that mix
components written in a variety of programming languages. Because different
languages have different strengths, being able to pick and choose on a component-
by-component basis is a powerful concept. You can add Python to the mix anywhere
you need an easy-to-use and flexible language tool.

For instance, compiled languages such as C and C++ are optimized for speed of
execution, but are complex to program -- for developers, but especially for end
users. Because Python is optimized for speed of development, using Python scripts to
control or customize software components written in C or C++ can yield more
flexible systems and dramatically faster development modes. Systems designed to
delegate customizations to Python scripts don't need to be shipped with full source
code and don't require end users to learn complex or proprietary languages.
Moreover, moving selected components of a pure Python program to C can optimize
program performance.

19.1.1 Integration Topics

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1132

The last two technical chapters of this book introduce Python's tools for interfacing to
the outside world, and discuss both its ability to be used as an embedded language
tool in other systems and its interfaces for extending Python scripts with new
modules and types implemented in C-compatible languages. I'll also summarize
other integration techniques that are less C-specific, such as COM and JPython.

When you mix Python with C components, either Python or C can be "on top."
Because of that, there are two distinct integration APIs:

The extending interface for running C extensions from Python programs

The embedding interface for running Python code from C programs

This chapter covers extending, and the next explores embedding. Some systems use
only one scheme, but many use both. For instance, embedded Python code run from
C can also use linked-in C extensions to interface with the enclosing application. And
in callback-based systems, C code accessed through extending interfaces may later
use embedding techniques to run Python callback handlers. Python has an open and
reentrant architecture that lets you mix languages arbitrarily.

Before we get into details, I should mention that Python/C integration is a big topic -
- in principle, the entire set of extern C functions in the Python system makes up its
runtime interface. The next two chapters concentrate only on the tools commonly
used to implement integration with external modules. For additional examples
beyond this book and its CD (view CD-ROM content online at
http://examples.oreilly.com/python2), see the Python source code itself; its Modules
and Objects directories are a wealth of code resources. Most of the Python built-ins
we have used in this book -- from simple things such as integers and strings to more
advanced tools such as files, system calls, Tkinter, and DBM -- utilize integration
APIs and can be studied in Python's source code distribution.

These chapters assume that you know basic C programming concepts. If you don't,
you won't miss much by skipping or skimming these chapters. Typically, C
developers code the extending and embedding interfaces of a system, and others do
the bulk of the system's programming with Python alone. But if you know enough
about C programming to recognize a need for an extension language, you probably
already have the required background knowledge for this chapter. The good news in
both chapters is that much of the complexity inherent in integrating Python with a
static compiled language like C can be automated with tools such as SWIG in the
extension domain, and higher-level APIs in the embedding world.

19.2 C Extensions Overview

Because Python itself is coded in C today, compiled Python extensions can be coded
in any language that is C-compatible in terms of call stacks and linking. That includes
C, but also C++ with appropriate "extern C" declarations (which are automatically
provided in Python header files). Python extensions coded in a C-compatible
language can take two forms:

C modules, which look and feel to their clients like Python module files

C types, which behave like standard built-in types (numbers, lists, etc.)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1133

Generally, C modules are used to implement flat function libraries, and C types are
used to code objects that generate multiple instances. Because built-in types are
really just precoded C extension types, your C extension types can do anything that
built-in types can: method calls, addition, indexing, slicing, and so on.[1] In the
current Python release, though, types are not quite classes -- you cannot customize
types by coding a Python subclass unless you add "wrapper" classes as frontend
interfaces to the type. More on this later.

[1] Yes, every time you make an integer or string in Python, you generate a new C type
instance object (whether you know it or not). This isn't as inefficient as you may think,
though; as we'll see, type operations are dispatched through fast C pointers, and Python
internally caches some integers and strings to avoid object creation when possible.

Both C modules and types register their operations with the Python interpreter as C
function pointers. In all cases, the C layer is responsible for converting arguments
passed from Python to C form, and converting results from C to Python form. Python
scripts simply import C extensions and use them as though they were really coded in
Python; C code does all the translation work.

C modules and types are also responsible for communicating errors back to Python,
detecting errors raised by Python API calls, and managing garbage-collector
reference counters on objects retained by the C layer indefinitely -- Python objects
held by your C code won't be garbage-collected as long as you make sure their
reference counts don't fall to zero. C modules and types may either be linked to
Python statically (at build time) or dynamically (when first imported).

19.3 A Simple C Extension Module

At least that's the short story; we need to turn to some code to make this more
concrete. C types generally export a C module with a constructor function. Because
of that (and because they are simpler), let's start off by studying the basics of C
module coding with a quick example.

When you add new or existing C components to Python, you need to code an
interface (or "glue") logic layer in C that handles cross-language dispatching and
data translation. The C source file in Example 19-1 shows how to code one by hand.
It implements a simple C extension module named hello for use in Python scripts,
with a function named message that simply returns its input string argument with
extra text prepended.

Example 19-1. PP2E\Integrate\Extend\Hello\hello.c

/**
 * A simple C extension module for Python, called "hello"; compile
 * this into a ".so" on python path, import and call hello.message;
 **/

#include <Python.h>
#include <string.h>

/* module functions */
static PyObject * /* returns object */

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1134

message(PyObject *self, PyObject *args) /* self unused in
modules */
{ /* args from python
call */
 char *fromPython, result[64];
 if (! PyArg_Parse(args, "(s)", &fromPython)) /* convert Python ->
C */
 return NULL; /* null=raise
exception */
 else {
 strcpy(result, "Hello, "); /* build up C string
*/
 strcat(result, fromPython); /* add passed Python
string */
 return Py_BuildValue("s", result); /* convert C ->
Python */
 }
}

/* registration table */
static struct PyMethodDef hello_methods[] = {
 {"message", message, 1}, /* method name, C func ptr, always-
tuple */
 {NULL, NULL} /* end of table marker */
};
,
/* module initializer */
void inithello() /* called on first import */
{ /* name matters if loaded
dynamically */
 (void) Py_InitModule("hello", hello_methods); /* mod name, table
ptr */
}

Ultimately, Python code will call this C file's message function with a string object and
get a new string object back. First, though, it has to be somehow linked into the
Python interpreter. To use this C file in a Python script, compile it into a dynamically
loadable object file (e.g., hello.so on Linux) with a makefile like the one listed in
Example 19-2, and drop the resulting object file into a directory listed on your
PYTHONPATH module search path setting exactly as though it were a .py or .pyc
file.[2]

[2] Because Python always searches the current working directory on imports, this chapter's
examples will run from the directory you compile them in (".") without any file copies or
moves. Being on PYTHONPATHmatters more in larger programs and installs.

Example 19-2. PP2E\Integrate\Extend\Hello\makefile.hello

Compile hello.c into a shareable object file on Linux,
to be loaded dynamically when first imported by Python.
MYPY is the directory where your Python header files live.

PY = $(MYPY)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1135

hello.so: hello.c
 gcc hello.c -g -I$(PY)/Include -I$(PY) -fpic -shared -o hello.so

clean:
 rm -f hello.so core

This is a Linux makefile (other platforms will vary); to use it to build the extension
module, simply type make -f makefile.hello at your shell. Be sure to include the
path to Python's install directory with -I flags to access Python include (a.k.a.
"header") files. When compiled this way, Python automatically loads and links the C
module when it is first imported by a Python script.

Finally, to call the C function from a Python program, simply import module hello
and call its hello.message function with a string:

[mark@toy ~/.../PP2E/Integrate/Extend/Hello]$ make -f makefile.hello

[mark@toy ~/.../PP2E/Integrate/Extend/Hello]$ python
>>> import hello # import a C module
>>> hello.message('world') # call a C function
'Hello, world'
>>> hello.message('extending')
'Hello, extending'

And that's it -- you've just called an integrated C module's function from Python. The
most important thing to notice here is that the C function looks exactly as if it were
coded in Python. Python callers send and receive normal string objects from the call;
the Python interpreter handles routing calls to the C function, and the C function
itself handles Python/C data conversion chores.

In fact, there is little to distinguish hello as a C extension module at all, apart from
its filename. Python code imports the module and fetches its attributes as if it had
been written in Python. C extension modules even respond to dir calls as usual, and
have the standard module and filename attributes (though the filename doesn't end
in a .py or .pyc this time around):

>>> dir(hello) # C module
attributes
['__doc__', '__file__', '__name__', 'message']

>>> hello.__name__, hello.__file__
('hello', './hello.so')

>>> hello.message # a C function
object
<built-in function message>
>>> hello # a C module object
<module 'hello' from './hello.so'>

Like any module in Python, you can also access the C extension from a script file.
The Python file in Example 19-3, for instance, imports and uses the C extension
module.

Example 19-3. PP2E\Integrate\Extend\Hello\hellouse.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1136

import hello

print hello.message('C')
print hello.message('module ' + hello.__file__)

for i in range(3):
 print hello.message(str(i))

Run this script as any other -- when the script first imports module hello, Python
automatically finds the C module's .so object file in a directory on PYTHONPATH and
links it into the process dynamically. All of this script's output represents strings
returned from the C function in file hello.c :

[mark@toy ~/.../PP2E/Integrate/Extend/Hello]$ python hellouse.py
Hello, C
Hello, module ./hello.so
Hello, 0
Hello, 1
Hello, 2

19.3.1 Compilation and Linking

Now that I've shown you the somewhat longer story, let's fill in the rest of the
details. You always must compile and somehow link C extension files like the hello.c
example with the Python interpreter to make them accessible to Python scripts, but
there is some flexibility on how you go about doing so. For example, the following
rule could be used to compile this C file on Linux too:

hello.so: hello.c
 gcc hello.c -c -g -fpic -I$(PY)/Include -I$(PY) -o hello.o
 gcc -shared hello.o -o hello.so
 rm -f hello.o

To compile the C file into a shareable object file on Solaris, you might instead say
something like this:

hello.so: hello.c
 cc hello.c -c -KPIC -o hello.o
 ld -G hello.o -o hello.so
 rm hello.o

On other platforms, it's more different still. Because compiler options vary widely,
you'll have to consult your C or C++ compiler's documentation or Python's extension
manuals for platform- and compiler-specific details. The point is to determine how to
compile a C source file into your platform's notion of a shareable or dynamically
loaded object file. Once you have, the rest is easy; Python supports dynamic loading
of C extensions on all major platforms today.

19.3.1.1 Dynamic binding

Technically, what I've been showing you so far is called "dynamic binding," and
represents one of two ways to link compiled C extensions with the Python

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1137

interpreter. Since the alternative, "static binding," is more complex, dynamic binding
is almost always the way to go. To bind dynamically, simply:

Compile hello.c into a shareable object file

Put the object file in a directory on Python's module search path

That is, once you've compiled the source code file into a shareable object file, simply
copy or move the object file to a directory listed in PYTHONPATH. It will be
automatically loaded and linked by the Python interpreter at runtime when the
module is first imported anywhere in the Python process (e.g., from the interactive
prompt, a standalone or embedded Python program, or a C API call).

Notice that the only non-static name in the hello.c example C file is the
initialization function. Python calls this function by name after loading the object file,
so its name must be a C global and should generally be of the form "initX", where
"X" is both the name of the module in Python import statements and the name
passed to Py_InitModule. All other names in C extension files are arbitrary, because
they are accessed by C pointer, not by name (more on this later). The name of the C
source file is arbitrary too -- at import time, Python cares only about the compiled
object file.

19.3.1.2 Static binding

Under static binding, extensions are added to the Python interpreter permanently.
This is more complex, though, because you must rebuild Python itself, and hence
need access to the Python source distribution (an interpreter executable won't do).
To link this example statically, add a line like:

hello ~/PP2E/Integrate/Extend/Hello/hello.c

to the Modules/Setup configuration file in the Python source code tree. Alternatively,
you can copy your C file to the Modules directory (or add a link to it there with an ln
command) and add a line to Setup like hello hello.c.

Then, rebuild Python itself by running a make command at the top level of the
Python source tree. Python reconstructs its own makefiles to include the module you
added to Setup, such that your code becomes part of the interpreter and its libraries.
In fact, there's really no distinction between C extensions written by Python users
and services that are a standard part of the language; Python is built with this same
interface. The full format of module declaration lines looks like this (but see the
Modules/Setup configuration file for more details):

<module> ... [<sourceOrObjectFile> ...] [<cpparg> ...] [<library> ...]

Under this scheme, the name of the module's initialization function must match the
name used in the Setup file, or you'll get linking errors when you rebuild Python. The
name of the source or object file doesn't have to match the module name; the
leftmost name is the resulting Python module's name.

19.3.1.3 Static versus dynamic binding

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1138

Static binding works on any platform and requires no extra makefile to compile
extensions. It can be useful if you don't want to ship extensions as separate files, or
if you're on a platform without dynamic linking support. Its downsides are that you
need to update the Python Setup configuration file and rebuild the Python interpreter
itself, so you must therefore have the full source distribution of Python to use static
linking at all. Moreover, all statically linked extensions are always added to your
interpreter, whether or not they are used by a particular program. This can
needlessly increase the memory needed to run all Python programs.

With dynamic binding, you still need Python include files, but can add C extensions
even if all you have is a binary Python interpreter executable. Because extensions
are separate object files, there is no need to rebuild Python itself or to access the full
source distribution. And because object files are only loaded on demand in this
mode, it generally makes for smaller executables too -- Python loads into memory
only the extensions actually imported by each program run. In other words, if you
can use dynamic linking on your platform, you probably should.

19.3.2 Anatomy of a C Extension Module

Though simple, the hello.c example illustrates the structure common to all C
modules. This structure can vary somewhat, but this file consists of fairly typical
boilerplate code:

Python header files

The C file first includes the standard Python.h header file (from the installed Python
Include directory). This file defines almost every name exported by the Python API
to C, and serves as a starting point for exploring the API itself.

Method functions

The file then defines a function to be called from the Python interpreter in response
to calls in Python programs. C functions receive two Python objects as input, and
send either a Python object back to the interpreter as the result, or a NULL to trigger
an exception in the script (more on this later). In C, a PyObject* represents a
generic Python object pointer; you can use more specific type names, but don't
always have to. C module functions can all be declared C "static" (local to the file),
because Python calls them by pointer, not name.

Registration table

Near the end, the file provides an initialized table (array) that maps function names
to function pointers (addresses). Names in this table become module attribute
names that Python code uses to call the C functions. Pointers in this table are used
by the interpreter to dispatch C function calls. In effect, the table "registers"
attributes of the module. A NULL entry terminates the table.

Initialization function

Finally, the C file provides an initialization function, which Python calls the first time
this module is imported into a Python program. This function calls the API function
Py_InitModule to build up the new module's attribute dictionary from the entries in

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1139

the registration table and create an entry for the C module on the sys.modules table
(described in Chapter 12). Once so initialized, calls from Python are routed directly to
the C function through the registration table's function pointers.

19.3.3 Data conversions

C module functions are responsible for converting Python objects to and from C
datatypes. In Example 19-1, message gets two Python input objects passed from the
Python interpreter: args is a Python tuple holding the arguments passed from the
Python caller (the values listed in parentheses in a Python program), and self is
ignored; it is useful only for extension types (discussed later in this chapter).

After finishing its business, the C function can return any of the following to the
Python interpreter: a Python object (known in C as PyObject*), for an actual result;
a Python None, (known in C as Py_None), if the function returns no real result; or a C
NULL pointer, to flag an error and raise a Python exception.

There are distinct API tools for handling input conversions (Python to C) and output
conversions (C to Python). It's up to C functions to implement their call signatures
(argument lists and types) by using these tools properly.

19.3.3.1 Python to C: Using Python argument lists

When the C function is run, the arguments passed from a Python script are available
in the args Python tuple object. The API function PyArg_Parse(and
PyArg_ParseTuple, its cousin that assumes it is converting a tuple object) is
probably the easiest way to extract and convert passed arguments to C form.

PyArg_Parse takes a Python object, a format string, and a variable-length list of C
target addresses. It converts the items in the tuple to C datatype values according to
the format string, and stores the results in the C variables whose addresses are
passed in. The effect is much like C's scanf string function. For example, the hello
module converts a passed-in Python string argument to a C char* using the s
convert code:

PyArg_Parse(args, "(s)", &fromPython) # or PyArg_ParseTuple(args,
"s",...

To handle multiple arguments, simply string format codes together and include
corresponding C targets for each code in the string. For instance, to convert an
argument list holding a string, an integer, and another string to C, say this:

PyArg_Parse(args, "(sis)", &s1, &i, &s2) # or PyArg_ParseTuple(args,
"sis",...

To verify that no arguments were passed, use an empty format string like this:
PyArg_Parse(args, "()"). This API call checks that the number and types of the
arguments passed from Python matches the format string in the call. If there is a
mismatch, it sets an exception and returns zero to C (more on errors below).

19.3.3.2 Python to C: Using Python return values

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1140

As we'll see in Chapter 20, Embedding Python, API functions may also return Python
objects to C as results when Python is being run as an embedded language.
Converting Python return values in this mode is almost the same as converting
Python arguments passed to C extension functions, except that Python return values
are not always tuples. To convert returned Python objects to C form, simply use
PyArg_Parse. Unlike PyArg_ParseTuple, this call takes the same kinds of arguments
but doesn't expect the Python object to be a tuple.

19.3.3.3 C to Python: Returning values to Python

There are two ways to convert C data to Python objects: by using type-specific API
functions, or the general object-builder function Py_BuildValue. The latter is more
general, and is essentially the inverse of PyArg_Parse, in that Py_BuildValue
converts C data to Python objects according to a format string. For instance, to make
a Python string object from a C char*, the hello module uses an s convert code:

return Py_BuildValue("s", result) # "result" is a C char
[]/*

More specific object constructors can be used instead:

return PyString_FromString(result) # same effect

Both calls make a Python string object from a C character array pointer. See the
now-standard Python extension and runtime API manuals for an exhaustive list of
such calls available. Besides being easier to remember, though, Py_BuildValue has
syntax that allows you to build lists in a single step, described next.

19.3.3.4 Common conversion codes

With a few exceptions, PyArg_Parse(Tuple) and Py_BuildValue use the same
conversion codes in format strings. A list of all supported conversion codes appears
in Python's extension manuals. The most commonly used are shown in Table 19-1;
the tuple, list, and dictionary formats can be nested.

Table 19-1. Common Python/C Data Conversion Codes

Format-String
Code

C Datatype Python Object Type

s char* String

s# char*, int String, length

i int Integer

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1141

l long int Integer

c char String

f float Floating-point

d double Floating-point

O PyObject* Raw (unconverted) object

O& &converter, void* Converted object (calls
converter)

(items) Targets or values Nested tuple

[items] Series of arguments/values List

{items}
Series of key,value
arguments

Dictionary

These codes are mostly what you'd expect (e.g., i maps between a C int and a
Python integer object), but here are a few usage notes on this table's entries:

Pass in the address of a char* for s codes when converting to C, not the address of a
char array: Python copies out the address of an existing C string (and you must
copy it to save it indefinitely on the C side: use strdup).

The O code is useful to pass raw Python objects between languages; once you have a
raw object pointer, you can use lower-level API tools to access object attributes by
name, index and slice sequences, and so on.

The O& code lets you pass in C converter functions for custom conversions. This
comes in handy for special processing to map an object to a C datatype not directly
supported by conversion codes (for instance, when mapping to or from an entire C
struct or C++ class-instance). See the extensions manual for more details.

The last two entries, [...] and {...}, are currently supported only by
Py_BuildValue: you can construct lists and dictionaries with format strings, but
can't unpack them. Instead, the API includes type-specific routines for accessing
sequence and mapping components given a raw object pointer.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1142

PyArg_Parsesupports some extra codes, which must not be nested in tuple formats
((...)):

|

The remaining arguments are all optional (varargs). The C targets are unchanged if
arguments are missing in the Python tuple. For instance, si|sd requires two
arguments but allows up to four.

:

The function name follows, for use in error messages set by the call (argument
mismatches). Normally Python sets the error message to a generic string.

;

A full error message follows, running to the end of the format string.

This format code list isn't exhaustive, and the set of convert codes may expand over
time; refer to Python's extension manual for further details.

19.3.4 Error Handling

When you write C extensions, you need to be aware that errors can occur on either
side of the languages fence. The following sections address both possibilities.

19.3.4.1 Raising Python exceptions in C

C extension module functions return a C NULL value for the result object to flag an
error. When control returns to Python, the NULL result triggers a normal Python
exception in the Python code that called the C function. To name an exception, C
code can also set the type and extra data of the exceptions it triggers. For instance,
the PyErr_SetString API function sets the exception object to a Python object and
sets the exception's extra data to a character string:

PyErr_SetString(ErrorObject, message)

We will use this in the next example to be more specific about exceptions raised
when C detects an error. C modules may also set a built-in Python exception; for
instance, returning NULL after saying this:

PyErr_SetString(PyExc_IndexError, "index out-of-bounds")

raises a standard Python IndexError exception with the message string data. When
an error is raised inside a Python API function, both the exception object and its
associated "extra data" are automatically set by Python; there is no need to set it
again in the calling C function. For instance, when an argument-passing error is
detected in the PyArg_Parsefunction, the hello stack module just returns NULL to
propagate the exception to the enclosing Python layer, instead of setting its own
message.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1143

19.3.4.2 Detecting errors that occur in Python

Python API functions may be called from C extension functions, or from an enclosing
C layer when Python is embedded. In either case, C callers simply check the return
value to detect errors raised in Python API functions. For pointer result functions,
Python returns NULL pointers on errors. For integer result functions, Python generally
returns a status code of -1 to flag an error and a or positive value on success.
(PyArg_Parse is an exception to this rule: it returns when it detects an error.) To
make your programs robust, you should check return codes for error indicators after
most Python API calls; some calls can fail for reasons you may not have expected
(e.g., memory overflow).

19.3.5 Reference Counts

The Python interpreter uses a reference-count scheme to implement garbage
collection. Each Python object carries a count of the number of places it is
referenced; when that count reaches zero, Python reclaims the object's memory
space automatically. Normally, Python manages the reference counts for objects
behind the scenes; Python programs simply make and use objects without concern
for managing storage space.

When extending or embedding Python, though, integrated C code is responsible for
managing the reference counts of the Python objects it uses. How important this
becomes depends on how many raw Python objects a C module processes and which
Python API functions it calls. In simple programs, reference counts are of minor, if
any, concern; the hello module, for instance, makes no reference-count
management calls at all.

When the API is used extensively, however, this task can become significant. In later
examples, we'll see calls of these forms show up:

Py_INCREF(obj) increments an object's reference count.

Py_DECREF(obj) decrements an object's reference count (reclaim if zero).

Py_XINCREF(obj) is similar to Py_INCREF(obj), but ignores a NULL object pointer.

Py_XDECREF(obj) is similar to py_DECREF(obj), but ignores a NULL object pointer.

C module functions are expected to return either an object with an incremented
reference count, or NULL to signal an error. As a general rule, API functions that
create new objects increment their reference counts before returning them to C;
unless a new object is to be passed back to Python, the C program that creates it
should eventually decrement the object's counts. In the extending scenario, things
are relatively simple; argument object reference counts need not be decremented,
and new result objects are passed back to Python with their reference counts intact.

The upside of reference counts is that Python will never reclaim a Python object held
by C as long as C increments the object's reference count (or doesn't decrement the
count on an object it owns). Although it requires counter management calls, Python's
garbage collector scheme is fairly well-suited to C integration.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1144

19.4 The SWIG Integration Code Generator

But don't do that. I'm introducing C extension basics so you understand the
underlying structure, but today, C extensions are usually better and more easily
implemented with the SWIG integration code generator.

SWIG -- the Simplified Wrapper and Interface Generator -- is an open source system
created by Dave Beazley. It uses C and C++ type declarations to generate complete
C extension modules that integrate existing libraries for use in Python scripts. The
generated C extension modules are complete: they automatically handle data
conversion, error protocols, reference-count management, and more.

That is, SWIG automatically generates all the "glue" code needed to plug C and C++
components into Python programs; simply compile its output and your extension
work is done. You still have to manage compilation and linking details, but the rest of
the C extension task is done by SWIG.

19.4.1 A Simple SWIG Example

For instance, instead of writing all that C code in the prior section, write the C
function you want to use from Python without any Python integration logic at all, as
though it is to be used from C alone. This is illustrated in Example 19-4.

Example 19-4. PP2E\Integrate\Extend\HelloLib\hellolib.c

/***
 * A simple C library file, with a single function, "message",
 * which is to be made available for use in Python programs.
 * There is nothing about Python here--this C function can be
 * called from a C program, as well as Python (with glue code).
 ***/

#include <string.h>
#include <hellolib.h>

static char result[64]; /* this isn't exported */

char *
message(char *label) /* this is exported */
{
 strcpy(result, "Hello, "); /* build up C string */
 strcat(result, label); /* add passed-in label */
 return result; /* return a temporary */
}

While you're at it, define the usual C header file to declare the function externally; as
shown in Example 19-5. This is probably overkill, but will prove a point.

Example 19-5. PP2E\Integrate\Extend\HelloLib\hellolib.h

/**
 * Define hellolib.c exports to the C namespace, not to Python
 * programs--the latter is defined by a method registration

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1145

 * table in a Python extension module's code, not by this .h;
 **/

extern char *message(char *label);

Now, instead of all the Python extension glue code shown in the prior section, simply
write a SWIG type declarations input file, as in Example 19-6.

Example 19-6. PP2E\Integrate\Extend\Swig\hellolib.i

/**
 * Swig module description file, for a C lib file.
 * Generate by saying "swig -python hellolib.i".
 **/

%module hellowrap

%{
#include <hellolib.h>
%}

extern char *message(char*); /* or: %include
"../HelloLib/hellolib.h" */
 /* or: %include hellolib.h, and use -I
arg */

This file spells out the C function's type signature. In general, SWIG scans files
containing ANSI C and C++ declarations. Its input file can take the form of an
interface description file (usually with an .i suffix), or a C/C++ header or source file.
Interface files like this one are the most common input form; they can contain
comments in C or C++ format, type declarations just like standard header files, and
SWIG directives that all start with %. For example:

%module sets the module's name as known to Python importers.

%{...%} encloses code added to generated wrapper file verbatim.

extern statements declare exports in normal ANSI C/C++ syntax.

%include makes SWIG scan another file (-I flags give search paths).

In this example, SWIG could also be made to read the hellolib.h header file directly.
But one of the advantages of writing special SWIG input files like hellolib.i is that you
can pick and choose which functions are wrapped and exported to Python; scanning
a library's entire header file wraps everything it defines.

SWIG is really a utility that you run from your build scripts, not a programming
language, so there is not much more to show here. Simply add a step to your
makefile that runs SWIG, and compile its output to be linked with Python. Example
19-7 shows one way to do it on Linux.

Example 19-7. PP2E\Integrate\Extend\Swig\makefile.hellolib-swig

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1146

Use SWIG to integrate hellolib.c for use in Python programs.

unless you've run make install
SWIG = ./myswig

PY = $(MYPY)
LIB = ../HelloLib

the library plus its wrapper
hellowrap.so: hellolib_wrap.o $(LIB)/hellolib.o
 ld -shared hellolib_wrap.o $(LIB)/hellolib.o -o hellowrap.so

generated wrapper module code
hellolib_wrap.o: hellolib_wrap.c $(LIB)/hellolib.h
 gcc hellolib_wrap.c -c -g -I$(LIB) -I$(PY)/Include -I$(PY)

hellolib_wrap.c: hellolib.i
 $(SWIG) -python -I$(LIB) hellolib.i

C library code (in another directory)
$(LIB)/hellolib.o: $(LIB)/hellolib.c $(LIB)/hellolib.h
 gcc $(LIB)/hellolib.c -c -g -I$(LIB) -o $(LIB)/hellolib.o

clean:
 rm -f *.o *.so core
force:
 rm -f *.o *.so core hellolib_wrap.c hellolib_wrap.doc

When run on the hellolob.i input file by this makefile, SWIG generates two files:

hellolib_wrap.doc is a text summary of the functions in the module.

hellolib_wrap.c is the generated C extension module glue code file.[3]

[3] You can wade through this generated file on the book's CD (see
http://examples.oreilly.com/python2) if you are so inclined. Also see file
PP2E\Integrate\Extend\HelloLib\hellolib_wrapper.con the CD for a hand-coded
equivalent; it's shorter because SWIG also generates extra support code.

This makefile simply runs SWIG, compiles the generated C glue code file into an .o
object file, and then combines it with hellolib.c 's compiled object file to produce
hellowrap.so. The latter is the dynamically loaded C extension module file, and the
one to place in a directory on your Python module search path (or "." if you're
working in the directory where you compile).

Assuming you've got SWIG set to go, run the makefile to generate and compile
wrappers for the C function. Here is the build process running on Linux:

[mark@toy ~/.../PP2E/Integrate/Extend/Swig]$ make -f makefile.hellolib-
swig
./myswig -python -I../HelloLib hellolib.i
Generating wrappers for Python
gcc hellolib_wrap.c -c -g -I../HelloLib ...more text deleted here...
ld -shared hellolib_wrap.o ../HelloLib/hellolib.o -o hellowrap.so

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1147

And once you've run this makefile, you are finished. The generated C module is used
exactly like the manually coded version shown before, except that SWIG has taken
care of the complicated parts automatically:

[mark@toy ~/.../PP2E/Integrate/Extend/Swig]$ python
>>> import hellowrap # import the
glue+library file
>>> hellowrap.__file__ # cwd always searched on
imports
'./hellowrap.so'
>>> hellowrap.message('swig world')
'Hello, swig world'

In other words, once you learn how to use SWIG, you can largely forget all the
integration coding details introduced in this chapter. In fact, SWIG is so adept at
generating Python glue code that it's usually much easier and less error-prone to
code C extensions for Python as purely C or C++-based libraries first, and later add
them to Python by running their header files through SWIG, as demonstrated here.

19.4.2 SWIG Details

Of course, you must have SWIG before you can run SWIG; it's not part of Python
itself. Unless it is already on your system, fetch SWIG off the Web (or find it at
http://examples.oreilly.com/python2) and build it from its source code. You'll need a
C++ compiler (e.g., g++), but the install is very simple; see SWIG's README file for
more details. SWIG is a command-line program, and generally can be run just by
saying this:

swig -python hellolib.i

In my build environment, things are a bit more complex because I have a custom
SWIG build. I run SWIG from this csh script called myswig:

#!/bin/csh
run custom swig install

source $PP2EHOME/Integrate/Extend/Swig/setup-swig.csh
swig $*

This file in turn sets up pointers to the SWIG install directory by loading the following
csh file, called setup-swig.csh :

source me in csh to run SWIG with an unofficial install

setenv SWIG_LIB /home/mark/PP2ndEd/dev/examples/SWIG/SWIG1.1p5/swig_lib
alias swig "/home/mark/PP2ndEd/dev/examples/SWIG/SWIG1.1p5/swig"

But you won't need either of these files if you run a make install command in the
SWIG source directory to copy it to standard places.

Along the way in this chapter, I'll show you a few more SWIG-based alternatives to
the remaining examples. You should consult the SWIG Python user manual for the
full scoop, but here is a quick look at a few more SWIG highlights:

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1148

C++ "shadow" classes

Later in the chapter, I'll also show you how to use SWIG to integrate C++ classes for
use in your Python scripts. When given C++ class declarations, SWIG generates glue
code that makes C++ classes look just like Python classes in Python scripts. In fact,
C++ classes are Python classes under SWIG; you get what SWIG calls a C++
"shadow" class that interfaces with a C++ coded extension module, which in turn
talks to C++ classes. Because the integration's outer layer is Python classes, those
classes may be subclassed in Python and their instances processed with normal
Python object syntax.

Variables

Besides functions and C++ classes, SWIG can also wrap C global variables and
constants for use in Python: they become attributes of an object named cvar
inserted in generated modules (e.g., module.cvar.name fetches the value of C's
variable name from a SWIG-generated wrapper module).

Pointers

SWIG passes pointers between languages as strings (not as special Python types) for
uniformity, and to allow type safety tests. For instance, a pointer to a Vector type
may look like _100f8e2_Vector_p. You normally won't care, because pointer values
are not much to look at in C either. SWIG can also be made to handle output
parameters and C++ references.

Structs

C structs are converted into a set of get and set accessor functions that are called
to fetch and assign fields with a struct object pointer (e.g.,
module.Vector_fieldx_get(v) fetches C's Vector.fieldx from a Vector pointer v,
like C's v->fieldx). Similar accessor functions are generated for data members and
methods of C++ classes (the C++ class is roughly a struct with extra syntax), but
the SWIG shadow class feature allows you to treat wrapped classes just like Python
classes, instead of calling the lower-level accessor functions.

Although the SWIG examples in this book are simple, you should know that SWIG
handles industrial-strength libraries just as easily. For instance, Python developers
have successfully used SWIG to integrated libraries as complex as Windows
extensions and commonly used graphics APIs.

SWIG can also generate integration code for other scripting languages such as Tcl
and Perl. In fact, one of its underlying goals is to make components independent of
scripting language choices -- C/C++ libraries can be plugged in to whatever scripting
language you prefer to use (I prefer to use Python, but I might be biased). SWIG's
support for things like classes seems strongest for Python, though, probably because
Python is considered to be strong in the classes department. As a language-neutral
integration tool, SWIG addresses some of the same goals as systems like COM and
CORBA (described in Chapter 20), but provides a code-generation-based alternative
instead of an object model.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1149

You can find SWIG on this book's CD (see http://examples.oreilly.com/python2) or
at its home page on the Web, http://www.swig.org. Along with full source code,
SWIG comes with outstanding documentation (including a manual specifically for
Python), so I won't cover all of its features in this book. The documentation also
describes how to build SWIG extensions on Windows. A SWIG book is reportedly in
the works as I write this, so be sure to check the books list at
http://www.python.org for additional resources.

19.5 Wrapping C Environment Calls

Let's move on to a more useful application of C extension modules. The hand-coded
C file in Example 19-8 integrates the standard C library's getenv and putenv shell
environment variable calls for use in Python scripts.

Example 19-8. PP2E\Integrate\Extend\CEnviron\cenviron.c

/**
 * A C extension module for Python, called "cenviron". Wraps the
 * C library's getenv/putenv routines for use in Python programs.
 **/

#include <Python.h>
#include <stdlib.h>
#include <string.h>

/***********************/
/* 1) module functions */
/***********************/

static PyObject * /* returns object
*/
wrap_getenv(PyObject *self, PyObject *args) /* self not used */
{ /* args from python
*/
 char *varName, *varValue;
 PyObject *returnObj = NULL; /*
null=exception */

 if (PyArg_Parse(args, "s", &varName)) { /* Python -> C
*/
 varValue = getenv(varName); /* call C
getenv */
 if (varValue != NULL)
 returnObj = Py_BuildValue("s", varValue); /* C -> Python
*/
 else
 PyErr_SetString(PyExc_SystemError, "Error calling getenv");
 }
 return returnObj;
}

static PyObject *
wrap_putenv(PyObject *self, PyObject *args)
{

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1150

 char *varName, *varValue, *varAssign;
 PyObject *returnObj = NULL;

 if (PyArg_Parse(args, "(ss)", &varName, &varValue))
 {
 varAssign = malloc(strlen(varName) + strlen(varValue) + 2);
 sprintf(varAssign, "%s=%s", varName, varValue);
 if (putenv(varAssign) == 0) {
 Py_INCREF(Py_None); /* C call success */
 returnObj = Py_None; /* reference None */
 }
 else
 PyErr_SetString(PyExc_SystemError, "Error calling putenv");
 }
 return returnObj;
}

/**************************/
/* 2) registration table */
/**************************/

static struct PyMethodDef cenviron_methods[] = {
 {"getenv", wrap_getenv},
 {"putenv", wrap_putenv}, /* method name, address */
 {NULL, NULL}
};

/*************************/
/* 3) module initializer */
/*************************/

void initcenviron() /* called on first import */
{
 (void) Py_InitModule("cenviron", cenviron_methods); /* mod name,
table */
}

This example is less useful now than it was in the first edition of this book -- as we
learned in Part I, not only can you fetch shell environment variables by indexing the
os.environ table, but assigning to a key in this table automatically calls C's putenv
to export the new setting to the C code layer in the process. That is,
os.environ['key'] fetches the value of shell variable 'key', and
os.environ['key']=value assigns a variable both in Python and C.

The second action -- pushing assignments out to C -- was added to Python releases
after the first edition of this book was published. Besides demonstrating additional
extension coding techniques, though, this example still serves a practical purpose:
even today, changes made to shell variables by the C code linked in to a Python
process are not picked up when you index os.environ in Python code. That is, once
your program starts, os.environ reflects only subsequent changes made by Python
code.

If you want your Python code to be truly integrated with shell settings made by your
C extension modules' code, you still must rely on calls to the C library's environment
tools: putenv is available as os.putenv, but getenv is not present in the Python

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1151

library. This will probably rarely, if ever, be an issue; but this C extension module is
not completely without purpose (at least until Guido tightens this up again).[4]

[4] This code is also open to customization (e.g., it can limit the set of shell variables read and
written by checking names), but you could do the same by wrapping os.environ. In fact,
because os.environ is simply a Python UserDict subclass that preloads shell variables on
startup, you could almost add the required getenv call to load C layer changes by simply
wrapping os.environ accesses in a Python class whose __getitem__ calls gentenv before
passing the access off to os.environ. But you still need C's getenv call in the first place, and
it's not available in os today.

This cenviron.c C file creates a Python module called cenviron that does a bit more
than the last example -- it exports two functions, sets some exception descriptions
explicitly, and makes a reference count call for the Python None object (it's not
created anew, so we need to add a reference before passing it to Python). As before,
to add this code to Python, compile and link into an object file; the Linux makefile in
Example 19-9 builds the C source code for dynamic binding.

Example 19-9. PP2E\Integrate\Extend\Cenviron\makefile.cenviron

Compile cenviron.c into cenviron.so--a shareable object file
on Linux, which is loaded dynamically when first imported.

PY = $(MYPY)

cenviron.so: cenviron.c
 gcc cenviron.c -g -I$(PY)/Include -I$(PY) -fpic -shared -o
cenviron.so

clean:
 rm -f *.pyc cenviron.so

To build, type make -f makefile.cenviron at your shell. To run, make sure the .so
file is in a directory on Python's module path ("." works too):

[mark@toy ~/.../PP2E/Integrate/Extend/Cenviron]$ python
>>> import cenviron
>>> cenviron.getenv('USER') # like os.environ[key] but
refetched
'mark'
>>> cenviron.putenv('USER', 'gilligan') # like os.environ[key]=value
>>> cenviron.getenv('USER') # C sees the changes too
'gilligan'

As before, cenviron is a bona fide Python module object after it is imported, with all
the usual attached information:

>>> dir(cenviron)
['__doc__', '__file__', '__name__', 'getenv', 'putenv']
>>> cenviron.__file__
'./cenviron.so'
>>> cenviron.__name__
'cenviron'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1152

>>> cenviron.getenv
<built-in function getenv>
>>> cenviron
<module 'cenviron' from './cenviron.so'>
>>> print cenviron.getenv('HOST'), cenviron.getenv('DISPLAY')
toy :0.0

Here is an example of the problem this module addresses (but you have to pretend
that the getenv calls are made by linked-in C code, not Python):

>>> import os
>>> os.environ['USER'] # initialized from the
shell
'skipper'
>>> from cenviron import getenv, putenv # direct C library call
access
>>> getenv('USER')
'skipper'
>>> putenv('USER', 'gilligan') # changes for C but not
Python
>>> getenv('USER')
'gilligan'
>>> os.environ['USER'] # oops--does not fetch
values again
'skipper'

As is, the C extension module exports a function-based interface, but you can wrap
its functions in Python code that makes the interface look any way you like. For
instance, Example 19-10 makes the functions accessible by dictionary indexing, and
integrates with the os.environ object.

Example 19-10. PP2E\Integrate\Extend\Cenviron\envmap.py

import os
from cenviron import getenv, putenv # get C module's methods

class EnvMapping: # wrap in a Python class
 def __setitem__(self, key, value):
 os.environ[key] = value # on writes: Env[key]=value
 putenv(key, value) # put in os.environ too

 def __getitem__(self, key):
 value = getenv(key) # on reads: Env[key]
 os.environ[key] = value # integrity check
 return value

Env = EnvMapping() # make one instance

And Example 19-11 exports the functions as qualified attribute names instead of
calls. The point here is that you can graft many different sorts of interface models on
top of extension functions by providing Python wrappers (an idea we'll revisit when
we meet type wrappers and SWIG shadow classes later in this chapter).

Example 19-11. PP2E\Integrate\Extend\Cenviron\envattr.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1153

import os
from cenviron import getenv, putenv # get C module's methods

class EnvWrapper: # wrap in a Python class
 def __setattr__(self, name, value):
 os.environ[name] = value # on writes: Env.name=value
 putenv(name, value) # put in os.environ too

 def __getattr__(self, name):
 value = getenv(name) # on reads: Env.name
 os.environ[name] = value # integrity check
 return value

Env = EnvWrapper() # make one instance

19.5.1 But Don't Do That Either -- SWIG

You can manually code extension modules like we just did, but you don't necessarily
have to. Because this example really just wraps functions that already exist in
standard C libraries, the entire cenviron.c C code file of Example 19-8 can be
replaced with a simple SWIG input file that looks like Example 19-12.

Example 19-12. PP2E\Integrate\Extend\Swig\Environ\environ.i

/***
 * Swig module description file, to generate all Python wrapper
 * code for C lib getenv/putenv calls: "swig -python environ.i".
 ***/

%module environ

%{
#include <stdlib.h>
%}

extern char * getenv(const char *varname);
extern int putenv(const char *assignment);

And you're done. Well, almost; you still need to run this file through SWIG and
compile its output. As before, simply add a SWIG step to your makefile, compile its
output file into a shareable object, and you're in business. Example 19-13 is a Linux
makefile that does the job.

Example 19-13. PP2E\Integrate\Extend\Swig\Environ\makefile.environ-
swig

build environ.so extension from SWIG generated code

unless you've run make install
SWIG = ../myswig
PY = $(MYPY)

environ.so: environ_wrap.c

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1154

 gcc environ_wrap.c -g -I$(PY)/Include -I$(PY) -shared -o
environ.so

environ_wrap.c: environ.i
 $(SWIG) -python environ.i

clean:
 rm -f *.o *.so core
force:
 rm -f *.o *.so core environ_wrap.c environ_wrap.doc

When run on environ.i, SWIG generates two files -- environ_wrap.doc (a list of
wrapper function descriptions) and environ_wrap.c (the glue code module file).
Because the functions being wrapped here live in standard linked-in C libraries, there
is nothing to combine with the generated code; this makefile simply runs SWIG and
compiles the wrapper file into a C extension module, ready to be imported:

[mark@toy ~/....../Integrate/Extend/Swig/Environ]$ make -f
makefile.environ-swig
../myswig -python environ.i
Generating wrappers for Python
gcc environ_wrap.c -g -I/... more... -shared -o environ.so

And now you're really done. The resulting C extension module is linked when
imported, and used as before (except that SWIG handled all the gory bits):

[mark@toy ~/....../Integrate/Extend/Swig/Environ]$ python
>>> import environ
>>> environ.getenv('USER')
'mark'
>>> environ.putenv('USER=gilligan') # use C lib call
pattern now
0
>>> environ.getenv('USER')
'gilligan'

>>> dir(environ)
['__doc__', '__file__', '__name__', 'getenv', 'putenv']
>>> environ.__name__, environ.__file__, environ
('environ', './environ.so', <module 'environ' from './environ.so'>)

You could also run SWIG over the C header file where getenv and putenv are
defined, but that would result in wrappers for every function in the header file. With
the input file coded here, you'll wrap only two library functions.

19.6 A C Extension Module String Stack

Let's kick it up another notch -- the following C extension module implements a stack
of strings for use in Python scripts. Example 19-14 demonstrates additional API calls,
but also serves as a basis of comparison. It is roughly equivalent to the Python stack
module we met earlier in Chapter 14 but it stacks only strings (not arbitrary objects),
has limited string storage and stack lengths, and is written in C.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1155

Alas, the last point makes for a complicated program listing -- C code is never quite
as nice to look at as equivalent Python code. C must declare variables, manage
memory, implement data structures, and include lots of extra syntax. Unless you're
a big fan of C, you should focus on the Python interface code in this file, not the
internals of its functions.

Example 19-14. PP2E\Integrate\Extend\Stacks\stackmod.c

/***
 * stackmod.c: a shared stack of character-strings;
 * a C extension module for use in Python programs;
 * linked into python libraries or loaded on import;
 ***/

#include "Python.h" /* Python header files */
#include <stdio.h> /* C header files */
#include <string.h>

static PyObject *ErrorObject; /* locally-raised exception */

#define onError(message) \
 { PyErr_SetString(ErrorObject, message); return NULL; }

/**

* LOCAL LOGIC/DATA (THE STACK)

*******/

#define MAXCHARS 2048
#define MAXSTACK MAXCHARS

static int top = 0; /* index into 'stack' */
static int len = 0; /* size of 'strings' */
static char *stack[MAXSTACK]; /* pointers into 'strings' */
static char strings[MAXCHARS]; /* string-storage area */

/**

* EXPORTED MODULE METHODS/FUNCTIONS

*******/

static PyObject *
stack_push(PyObject *self, PyObject *args) /* args: (string) */
{
 char *pstr;
 if (!PyArg_ParseTuple(args, "s", &pstr)) /* convert args:
Python->C */
 return NULL; /* NULL triggers
exception */
 if (top == MAXSTACK) /* python sets arg-
error msg */
 onError("stack overflow") /* iff maxstack <
maxchars */
 if (len + strlen(pstr) + 1 >= MAXCHARS)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1156

 onError("string-space overflow")
 else {
 strcpy(strings + len, pstr); /* store in string-
space */
 stack[top++] = &(strings[len]); /* push start address
*/
 len += (strlen(pstr) + 1); /* new string-space
size */
 Py_INCREF(Py_None); /* a 'procedure' call
*/
 return Py_None; /* None: no errors */
 }
}

static PyObject *
stack_pop(PyObject *self, PyObject *args)
{ /* no arguments for
pop */
 PyObject *pstr;
 if (!PyArg_ParseTuple(args, "")) /* verify no args
passed */
 return NULL;
 if (top == 0)
 onError("stack underflow") /* return NULL = raise
*/
 else {
 pstr = Py_BuildValue("s", stack[--top]); /* convert result: C-
>Py */
 len -= (strlen(stack[top]) + 1);
 return pstr; /* return new python
string */
 } /* pstr ref-count++
already */
}

static PyObject *
stack_top(PyObject *self, PyObject *args) /* almost same as
item(-1) */
{ /* but different
errors */
 PyObject *result = stack_pop(self, args); /* get top string */
 if (result != NULL)
 len += (strlen(stack[top++]) + 1); /* undo pop */
 return result; /* NULL or string
object */
}

static PyObject *
stack_empty(PyObject *self, PyObject *args) /* no args: '()' */
{
 if (!PyArg_ParseTuple(args, "")) /* or PyArg_NoArgs */
 return NULL;
 return Py_BuildValue("i", top == 0); /* boolean: a python
int */
}

static PyObject *

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1157

stack_member(PyObject *self, PyObject *args)
{
 int i;
 char *pstr;
 if (!PyArg_ParseTuple(args, "s", &pstr))
 return NULL;
 for (i = 0; i < top; i++) /* find arg in stack */
 if (strcmp(pstr, stack[i]) == 0)
 return PyInt_FromLong(1); /* send back a python int
*/
 return PyInt_FromLong(0); /* same as
Py_BuildValue("i" */
}

static PyObject *
stack_item(PyObject *self, PyObject *args) /* return Python string
or NULL */
{ /* inputs = (index):
Python int */
 int index;
 if (!PyArg_ParseTuple(args, "i", &index)) /* convert args to C
*/
 return NULL; /* bad type or arg
count? */
 if (index < 0)
 index = top + index; /* negative: offset
from end */
 if (index < 0 || index >= top)
 onError("index out-of-bounds") /* return NULL =
'raise' */
 else
 return Py_BuildValue("s", stack[index]); /* convert result to
Python */
} /* no need to INCREF
new obj */

static PyObject *
stack_len(PyObject *self, PyObject *args) /* return a Python int or
NULL */
{ /* no inputs */
 if (!PyArg_ParseTuple(args, ""))
 return NULL;
 return PyInt_FromLong(top); /* wrap in python object
*/
}

static PyObject *
stack_dump(PyObject *self, PyObject *args) /* not "print": reserved
word */
{
 int i;
 if (!PyArg_ParseTuple(args, ""))
 return NULL;
 printf("[Stack:\n");
 for (i=top-1; i >= 0; i--) /* formatted output */
 printf("%d: '%s'\n", i, stack[i]);
 printf("]\n");

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1158

 Py_INCREF(Py_None);
 return Py_None;
}

/**

* METHOD REGISTRATION TABLE: NAME-STRING -> FUNCTION-POINTER

*******/

static struct PyMethodDef stack_methods[] = {
 {"push", stack_push, 1}, /* name, address */
 {"pop", stack_pop, 1}, /* '1'=always tuple
args */
 {"top", stack_top, 1},
 {"empty", stack_empty, 1},
 {"member", stack_member, 1},
 {"item", stack_item, 1},
 {"len", stack_len, 1},
 {"dump", stack_dump, 1},
 {NULL, NULL} /* end, for
initmodule */
};

/**

* INITIALIZATION FUNCTION (IMPORT-TIME)

*******/

void
initstackmod()
{
 PyObject *m, *d;

 /* create the module and add the functions */
 m = Py_InitModule("stackmod", stack_methods); /*
registration hook */

 /* add symbolic constants to the module */
 d = PyModule_GetDict(m);
 ErrorObject = Py_BuildValue("s", "stackmod.error"); /* export
exception */
 PyDict_SetItemString(d, "error", ErrorObject); /* add more if
need */

 /* check for errors */
 if (PyErr_Occurred())
 Py_FatalError("can't initialize module stackmod");
}

This C extension file is compiled and statically or dynamically linked with the
interpreter just like in previous examples. File makefile.stack on the CD (see
http://examples.oreilly.com/python2) handles the build with a rule like this:

stackmod.so: stackmod.c

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1159

 gcc stackmod.c -g -I$(PY)/Include -I$(PY) -fpic -shared -o
stackmod.so

The whole point of implementing such a stack in a C extension module (apart from
demonstrating API calls in a Python book) is optimization: in theory, this code should
present a similar interface to the Python stack module we wrote earlier, but run
considerably faster due to its C coding. The interface is roughly the same, though
we've sacrificed some Python flexibility by moving to C -- there are limits on size and
stackable object types:

[mark@toy ~/.../PP2E/Integrate/Extend/Stacks]$ python
>>> import stackmod # load C
module
>>> stackmod.push('new') # call C
functions
>>> stackmod.dump() # dump
format differs
[Stack:
0: 'new'
]
>>> for c in "SPAM": stackmod.push(c)
...
>>> stackmod.dump()
[Stack:
4: 'M'
3: 'A'
2: 'P'
1: 'S'
0: 'new'
]
>>> stackmod.len(), stackmod.top()
(5, 'M')
>>> x = stackmod.pop()
>>> x
'M'
>>> stackmod.dump()
[Stack:
3: 'A'
2: 'P'
1: 'S'
0: 'new'
]
>>> stackmod.push(99)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: argument 1: expected string, int found

Some of the C stack's type and size limitations could be removed by alternate C
coding (which might eventually create something that looks and performs almost
exactly like a Python built-in list). Before we check on this stack's speed, though,
we'll see what can be done about also optimizing our stack classes with a C type.

19.6.1 But Don't Do That Either -- SWIG

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1160

You can manually code extension modules like this, but you don't necessarily have
to. As we saw earlier, if you instead code the stack module's functions without any
notion of Python integration, they can be integrated into Python automatically by
running their type signatures through SWIG. I haven't coded these functions that
way here, because I also need to teach the underlying Python C extension API. But if
I were asked to write a C string stack for Python in any other context, I'd do it with
SWIG instead.

19.7 A C Extension Type String Stack

To implement multiple-instance objects in C, you need to code a C extension type,
not a module. Like Python classes, C types generate multiple-instance objects and
can overload (i.e., intercept and implement) Python expression operators and type
operations. Unlike classes, though, types do not support attribute inheritance by
themselves -- attributes are fetched from a flat names table, not a namespace
objects tree. That makes sense if you realize that Python's built-in types are simply
precoded C extension types; when you ask for the list append method, for instance,
inheritance never enters the picture. We can add inheritance for types by coding
"wrapper" classes, but it is a manual process (more on this later).

One of the biggest drawbacks of types, though, is their size -- to implement a
realistically equipped C type, you need to code lots of not-very-pretty C code, and fill
out type descriptor tables with pointers to link up operation handlers. In fact, C
extension types are so complex that I'm going to cut some details here. To give you
a feel for the overall structure, Example 19-15 presents a C string stack type
implementation, but with the bodies of all its functions stripped out. For the complete
implementation, see this file on the book's CD (see
http://examples.oreilly.com/python2).

This C type roughly implements the same interface as the stack classes we met
earlier in Chapter 17, but imposes a few limits on the stack itself and does not
support specialization by subclassing (it's a type, not a class). The stripped parts use
the same algorithms as the C module in Example 19-14, but operate on the passed-
in self object, which now refers to the particular type instance object being
processed, just as the first argument does in class methods. In types, self is a
pointer to an allocated C struct that represents a type instance object.

Example 19-15. PP2E\Integrate\Extend\Stacks\stacktyp.c

/**
 * stacktyp.c: a character-string stack data-type;
 * a C extension type, for use in Python programs;
 * stacktype module clients can make multiple stacks;
 * similar to stackmod, but 'self' is the instance,
 * and we can overload sequence operators here;
 **/

#include "Python.h"

static PyObject *ErrorObject; /* local exception */
#define onError(message) \
 { PyErr_SetString(ErrorObject, message); return NULL; }

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1161

/**

 * STACK-TYPE INFORMATION

******/

#define MAXCHARS 2048
#define MAXSTACK MAXCHARS

typedef struct { /* stack instance object format */
 PyObject_HEAD /* python header: ref-count +
&typeobject */
 int top, len;
 char *stack[MAXSTACK]; /* per-instance state info */
 char strings[MAXCHARS]; /* same as stackmod, but multiple
copies */
} stackobject;

/**

 * INSTANCE METHODS

******/

static PyObject * /* on "instance.push(arg)" */
stack_push(self, args) /* 'self' is the stack instance object */
 stackobject *self; /* 'args' are args passed to self.push
method */
 PyObject *args;
{ ...
}
static PyObject *
stack_pop(self, args)
 stackobject *self;
 PyObject *args; /* on "instance.pop()" */
{ ...
}
static PyObject *
stack_top(self, args)
 stackobject *self;
 PyObject *args;
{ ...
}
static PyObject *
stack_empty(self, args)
 stackobject *self;
 PyObject *args;
{ ...
}
static struct PyMethodDef stack_methods[] = { /* instance methods
*/
 {"push", stack_push, 1}, /* name/address table
*/
 {"pop", stack_pop, 1}, /* like list
append,sort */

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1162

 {"top", stack_top, 1},
 {"empty", stack_empty, 1}, /* extra ops besides
optrs */
 {NULL, NULL} /* end, for getattr
here */
};

/**

 * BASIC TYPE-OPERATIONS

******/

static stackobject * /* on "x = stacktype.Stack()" */
newstackobject() /* instance constructor function */
{ ... /* these don't get an 'args' input
*/
}
static void /* instance destructor function */
stack_dealloc(self) /* when reference-count reaches zero
*/
 stackobject *self;
{ ... /* do cleanup activity */
}
static int
stack_print(self, fp, flags)
 stackobject *self;
 FILE *fp;
 int flags; /* print self to file */
{ ...
}
static PyObject *
stack_getattr(self, name) /* on "instance.attr" reference */
 stackobject *self; /* make a bound-method or member */
 char *name;
{ ...
}
static int
stack_compare(v, w) /* on all comparisons */
 stackobject *v, *w;
{ ...
}

/**

 * SEQUENCE TYPE-OPERATIONS

******/

static int
stack_length(self)
 stackobject *self; /* called on "len(instance)" */
{ ...
}
static PyObject *

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1163

stack_concat(self, other)
 stackobject *self; /* on "instance + other" */
 PyObject *other; /* 'self' is the instance */
{ ...
}
static PyObject *
stack_repeat(self, n) /* on "instance * N" */
 stackobject *self; /* new stack = repeat self n times
*/
 int n;
{ ...
}
static PyObject *
stack_item(self, index) /* on "instance[offset]", "in/for"
*/
 stackobject *self; /* return the i-th item of self */
 int index; /* negative index pre-adjusted */
{ ...
}
static PyObject *
stack_slice(self, ilow, ihigh)
 stackobject *self; /* on "instance[ilow:ihigh]" */
 int ilow, ihigh; /* negative-adjusted, not scaled
*/
{ ...
}

/**

 * TYPE DESCRIPTORS

******/

static PySequenceMethods stack_as_sequence = { /* sequence supplement
*/
 (inquiry) stack_length, /* sq_length
"len(x)" */
 (binaryfunc) stack_concat, /* sq_concat "x + y"
*/
 (intargfunc) stack_repeat, /* sq_repeat "x * n"
*/
 (intargfunc) stack_item, /* sq_item "x[i],
in" */
 (intintargfunc) stack_slice, /* sq_slice
"x[i:j]" */
 (intobjargproc) 0, /* sq_ass_item "x[i] =
v" */
 (intintobjargproc) 0, /* sq_ass_slice
"x[i:j]=v" */
};

static PyTypeObject Stacktype = { /* main python type-descriptor
*/
 /* type header */ /* shared by all instances */
 PyObject_HEAD_INIT(&PyType_Type)
 0, /* ob_size */

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1164

 "stack", /* tp_name */
 sizeof(stackobject), /* tp_basicsize */
 0, /* tp_itemsize */

 /* standard methods */
 (destructor) stack_dealloc, /* tp_dealloc ref-count==0 */
 (printfunc) stack_print, /* tp_print "print x" */
 (getattrfunc) stack_getattr, /* tp_getattr "x.attr" */
 (setattrfunc) 0, /* tp_setattr "x.attr=v" */
 (cmpfunc) stack_compare, /* tp_compare "x > y" */
 (reprfunc) 0, /* tp_repr `x`, print x */

 /* type categories */
 0, /* tp_as_number +,-
,*,/,%,&,>>,...*/
 &stack_as_sequence, /* tp_as_sequence
+,[i],[i:j],len, ...*/
 0, /* tp_as_mapping [key], len,
...*/

 /* more methods */
 (hashfunc) 0, /* tp_hash "dict[x]" */
 (ternaryfunc) 0, /* tp_call "x()" */
 (reprfunc) 0, /* tp_str "str(x)" */

}; /* plus others: see Include/object.h */

/**

 * MODULE LOGIC

******/

static PyObject *
stacktype_new(self, args) /* on "x = stacktype.Stack(
)" */
 PyObject *self; /* self not used */
 PyObject *args; /* constructor args */
{
 if (!PyArg_ParseTuple(args, "")) /* Module-method function */
 return NULL;
 return (PyObject *)newstackobject(); /* make a new type-instance
object */
} /* the hook from module to
type... */

static struct PyMethodDef stacktype_methods[] = {
 {"Stack", stacktype_new, 1}, /* one function: make a
stack */
 {NULL, NULL} /* end marker, for
initmodule */
};

void
initstacktype() /* on first "import stacktype" */
{

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1165

 PyObject *m, *d;
 m = Py_InitModule("stacktype", stacktype_methods); /* make the
module, */
 d = PyModule_GetDict(m); /* with
'Stack' func */
 ErrorObject = Py_BuildValue("s", "stacktype.error");
 PyDict_SetItemString(d, "error", ErrorObject); /* export
exception */
 if (PyErr_Occurred())
 Py_FatalError("can't initialize module stacktype");

}

19.7.1 Anatomy of a C Extension Type

Although most of file stacktyp.c is missing, there is enough here to illustrate the
global structure common to C type implementations:

Instance struct

The file starts off by defining a C struct called stackobject that will be used to hold
per-instance state information -- each generated instance object gets a newly
malloc'd copy of the struct. It serves the same function as class instance attribute
dictionaries, and contains data that was saved in global variables by the C stack
module.

Instance methods

As in the module, a set of instance methods follows next; they implement method
calls such as push and pop. But here, method functions process the implied instance
object, passed in to the self argument. This is similar in spirit to class methods.
Type instance methods are looked up in the registration table of the code listing
(Example 19-15) when accessed.

Basic type operations

Next, the file defines functions to handle basic operations common to all types:
creation, printing, qualification, and so on. These functions have more specific type
signatures than instance method handlers. The object creation handler allocates a
new stack struct, and initializes its header fields: the reference count is set to 1,
and its type object pointer is set to the Stacktype type descriptor that appears later
in the file.

Sequence operations

Functions for handling sequence type operations come next. Stacks respond to most
sequence operators: len, +, *, and [i]. Much like the __getitem__ class method,
the stack_item indexing handler performs indexing, but also in membership tests
and for iterator loops. These latter two work by indexing an object until an
IndexError exception is caught by Python.

Type descriptors

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1166

The type descriptor tables (really, structs) that appear near the end of the file are
the crux of the matter for types -- Python uses these tables to dispatch an operation
performed on an instance object to the corresponding C handler function in this file.
In fact, everything is routed through these tables; even method attribute lookups
start by running a C stack_getattr function listed in the table (which in turn looks
up the attribute name in a name/function-pointer table). The main Stacktype table
includes a link to the supplemental stack_as_sequence table where sequence
operation handlers are registered; types can provide such tables to register handlers
for mapping, number, and sequence operation sets. See Python's integer and
dictionary objects' source code for number and mapping examples; they are
analogous to the sequence type here, but their operation tables vary.[5]

[5] Note that type descriptor layouts, like most C API tools, are prone to change over
time, and you should always consult Include/object.h in the Python distribution for
an up-to-date list of fields. Some new Python releases may also require that types
written to work with earlier releases be recompiled to pick up descriptor changes. As
always, see Python's extension manuals and its full source code distribution for more
information and examples.

Constructor module

Besides defining a C type, this file also creates a simple C module at the end that
exports a stacktype.Stack constructor function, which Python scripts call to
generate new stack instance objects. The initialization function for this module is the
only C name in this file that is not static (local to the file); everything else is
reached by following pointers -- from instance, to type descriptor, to C handler
function.

Again, see the book CD (see http://examples.oreilly.com/python2) for the full C
stack type implementation. But to give you the general flavor of C type methods,
here is what the C type's pop function looks like; compare this with the C module's
pop function to see how the self argument is used to access per-instance
information in types:

static PyObject *
stack_pop(self, args)
 stackobject *self;
 PyObject *args; /* on "instance.pop()"
*/
{
 PyObject *pstr;
 if (!PyArg_ParseTuple(args, "")) /* verify no args passed
*/
 return NULL;
 if (self->top == 0)
 onError("stack underflow") /* return NULL = raise
*/
 else {
 pstr = Py_BuildValue("s", self->stack[--self->top]);
 self->len -= (strlen(self->stack[self->top]) + 1);
 return pstr;
 }
}

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1167

19.7.2 Compiling and Running

This C extension file is compiled and dynamically or statically linked like previous
examples; file makefile.stack on the CD (see http://examples.oreilly.com/python2)
handles the build like this:

stacktype.so: stacktyp.c
 gcc stacktyp.c -g -I$(PY)/Include -I$(PY) -fpic -shared -o
stacktype.so

Once compiled, you can import the C module and make and use instances of the C
type it defines much as if it were a Python class (but without inheritance). You would
normally do this from a Python script, but the interactive prompt is a convenient
place to test the basics:

[mark@toy ~/.../PP2E/Integrate/Extend/Stacks]$ python
>>> import stacktype # import C constructor
module
>>> x = stacktype.Stack() # make C type
instance object
>>> x.push('new') # call C type methods
>>> x # call C type print
handler
[Stack:
0: 'new'
]

>>> x[0] # call C type index
handler
'new'
>>> y = stacktype.Stack() # make another type
instance
>>> for c in 'SPAM': y.push(c) # a distinct stack
object
...
>>> y
[Stack:
3: 'M'
2: 'A'
1: 'P'
0: 'S'
]

>>> z = x + y # call C type concat
handler
>>> z
[Stack:
4: 'M'
3: 'A'
2: 'P'
1: 'S'
0: 'new'
]

>>> y.pop()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1168

'M'
>>> len(z), z[0], z[-1] # for loops work too
(indexing)
(5, 'new', 'M')

19.7.3 Timing the C Implementations

So how did we do on the optimization front this time? Let's resurrect that timer
module we wrote back in Example 17-6 to compare the C stack module and type to
the Python stack module and classes we coded in Chapter 17. Example 19-16
calculates the system time in seconds that it takes to run tests on all of this book's
stack implementations.

Example 19-16. PP2E\Integrate\Extend\Stacks\exttime.py

#!/usr/local/bin/python
time the C stack module and type extensions
versus the object chapter's Python stack implementations

from PP2E.Dstruct.Basic.timer import test # second count function
from PP2E.Dstruct.Basic import stack1 # python stack module
from PP2E.Dstruct.Basic import stack2 # python stack class:
+/slice
from PP2E.Dstruct.Basic import stack3 # python stack class:
tuples
from PP2E.Dstruct.Basic import stack4 # python stack class:
append/pop
import stackmod, stacktype # c extension type,
module

from sys import argv
rept, pushes, pops, items = 200, 200, 200, 200 # default: 200 * (600
ops)
try:
 [rept, pushes, pops, items] = map(int, argv[1:])
except: pass
print 'reps=%d * [push=%d+pop=%d+fetch=%d]' % (rept, pushes, pops,
items)

def moduleops(mod):
 for i in range(pushes): mod.push('hello') # strings only for C
 for i in range(items): t = mod.item(i)
 for i in range(pops): mod.pop()

def objectops(Maker): # type has no init args
 x = Maker() # type or class
instance
 for i in range(pushes): x.push('hello') # strings only for C
 for i in range(items): t = x[i]
 for i in range(pops): x.pop()

test modules: python/c
print "Python module:", test(rept, moduleops, stack1)
print "C ext module: ", test(rept, moduleops, stackmod), '\n'

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1169

test objects: class/type
print "Python simple Stack:", test(rept, objectops, stack2.Stack)
print "Python tuple Stack:", test(rept, objectops, stack3.Stack)
print "Python append Stack:", test(rept, objectops, stack4.Stack)
print "C ext type Stack: ", test(rept, objectops, stacktype.Stack)

Running this script on Linux produces the following results. As we saw before, the
Python tuple stack is slightly better than the Python in-place append stack in typical
use (when the stack is only pushed and popped), but it is slower when indexed. The
first test here runs 200 repetitions of 200 stack pushes and pops, or 80,000 stack
operations (200 x 400); times listed are test duration seconds:

[mark@toy ~/.../PP2E/Integrate/Extend/Stacks]$ python exttim.py 200 200
200 0
reps=200 * [push=200+pop=200+fetch=0]
Python module: 2.09
C ext module: 0.68

Python simple Stack: 2.15
Python tuple Stack: 0.68
Python append Stack: 1.16
C ext type Stack: 0.5

[mark@toy ~/.../PP2E/Integrate/Extend/Stacks]$ python exttim.py 100 300
300 0
reps=100 * [push=300+pop=300+fetch=0]
Python module: 1.86
C ext module: 0.52

Python simple Stack: 1.91
Python tuple Stack: 0.51
Python append Stack: 0.87
C ext type Stack: 0.38

At least when there are no indexing operations on the stack as in these two tests
(just pushes and pops), the C type is only slightly faster than the best Python stack
(tuples). In fact, it's almost a draw -- in these first two tests, the C type reports only
a tenth of a second speedup after 200 stacks and 80,000 stack operations. It's not
exactly the kind of performance difference that would generate a bug report.[6]

[6] Interestingly, Python has gotten much faster since this book's first edition, relative to C.
Back then, the C type was still almost three times faster than the best Python stack (tuples)
when no indexing was performed. Today, it's almost a draw. One might infer from this that C
migrations have become a third as important as they once were.

The C module comes in at roughly three times faster than the Python module, but
these results are flawed. The stack1 Python module tested here uses the same slow
stack implementation as the Python "simple" stack (stack2). If it was recoded to use
the tuple stack representation used in Chapter 17, its speed would be similar to the
"tuple" figures listed here, and almost identical to the speed of the C module in the
first two tests:

[mark@toy ~/.../PP2E/Integrate/Extend/Stacks]$ python exttim.py 200 200
200 50
reps=200 * [push=200+pop=200+fetch=50]

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1170

Python module: 2.17
C ext module: 0.79

Python simple Stack: 2.24
Python tuple Stack: 1.94
Python append Stack: 1.25
C ext type Stack: 0.52

[mark@toy ~/.../PP2E/Integrate/Extend/Stacks]$ python exttim.py
reps=200 * [push=200+pop=200+fetch=200]
Python module: 2.42
C ext module: 1.1

Python simple Stack: 2.54
Python tuple Stack: 19.09
Python append Stack: 1.54
C ext type Stack: 0.63

But under the different usage patterns simulated in these two tests, the C type wins
the race. It is about twice as fast as the best Python stack (append) when indexing is
added to the test mix, as illustrated by two of the preceding test runs that ran with a
nonzero fetch count. Similarly, the C module would be twice as fast as the best
Python module coding in this case as well.

In other words, the fastest Python stacks are as good as the C stacks if you stick to
pushes and pops, but the C stacks are roughly twice as fast if any indexing is
performed. Moreover, since you have to pick one representation, if indexing is
possible at all you would likely pick the Python append stack; assuming they
represent the best case, C stacks would always be twice as fast.

Of course, the measured time differences are so small that in many applications you
won't care. Further, the C stacks are much more difficult to program, and achieve
their speed by imposing substantial functional limits; in many ways, this is not quite
an apples-to-apples comparison. But as a rule of thumb, C extensions can not only
integrate existing components for use in Python scripts, they can also optimize time-
critical components of pure Python programs. In other scenarios, migration to C
might yield an even larger speedup.

On the other hand, C extensions should generally be used only as a last resort. As
we learned earlier, algorithms and data structures are often bigger influences on
program performance than implementation language. The fact that Python-coded
tuple stacks are just as fast as the C stacks under common usage patterns speaks
volumes about the importance of data structure representation.

19.7.4 Wrapping C Types in Classes

In the current Python implementation, to add inheritance to C types you must have a
class somewhere. The most common way to support type customization is to
introduce a wrapper class -- a Python class that does little but keep a reference to a
type object and pass all operations off to the type. Because such a wrapper adds a
class interface on top of the type, though, it allows the underlying type to be
subclassed and extended as though the type was a class. This is illustrated in
Example 19-17.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1171

Example 19-17. PP2E\Integrate\Extend\Stacks\oopstack.py

import stacktype # get the C type/module
class Stack:
 def __init__(self, start=None): # make/wrap a C type-
instance
 self._base = start or stacktype.Stack() # deleted when class-
instance is
 def __getattr__(self, name):
 return getattr(self._base, name) # methods/members:
type-instance
 def __cmp__(self, other):
 return cmp(self._base, other)
 def __repr__(self): # 'print' is not really
repr
 print self._base,; return ''
 def __add__(self, other): # operators: special
methods
 return Stack(self._base + other._base) # operators are not
attributes
 def __mul__(self, n):
 return Stack(self._base * n) # wrap result in a new
Stack
 def __getitem__(self, i):
 return self._base[i] # 'item': index, in,
for
 def __len__(self):
 return len(self._base)

This wrapper class can be used the same as the C type, because it delegates all
operations to the type instance stored away in the class instance's self._base:

[mark@toy ~/.../PP2E/Integrate/Extend/Stacks]$ python
>>> import oopstack
>>> x = oopstack.Stack()
>>> y = oopstack.Stack()
>>> x.push('class')
>>> for c in "SPAM": y.push(c)
...
>>> x
[Stack:
0: 'class'
]

>>> y[2]
'A'
>>> z = x + y
>>> for s in z: print s,
...
class S P A M

>>> z.__methods__, z.__members__, z.pop()
(['empty', 'pop', 'push', 'top'], ['len'], 'M')
>>> type(z), type(z._base)
(<type 'instance'>, <type 'stack'>)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1172

The point of coding such a wrapper is to better support extensions in Python.
Subclasses really subclass the wrapper class, but because the wrapper is just a thin
interface to the type, it's like subclassing the type itself, as in Example 19-18.

Example 19-18. PP2E\Integrate\Extend\Stacks\substack.py

from oopstack import Stack # get the 'stub' class (C-type
wrapper)

class Substack(Stack):
 def __init__(self, start=[]): # extend the 'new' operation
 Stack.__init__(self) # initialize stack from any
sequence
 for str in start: # start can be another stack
too
 self.push(str)
 def morestuff(self): # add a new method
 print 'more stack stuff'
 def __getitem__(self, i): # extend 'item' to trace
accesses
 print 'accessing cell', i
 return Stack.__getitem__(self, i)

This subclass extends the type (wrapper) to support an initial value at construction
time, prints trace messages when indexed, and introduces a brand new morestuff
method. This subclass is limited (e.g., the result of a + is a Stack, not a Substack),
but proves the point -- wrappers let you apply inheritance and composition
techniques we've met in this book to new types coded in C:

>>> import substack
>>> a = substack.Substack(x + y)
>>> a
[Stack:
4: 'M'
3: 'A'
2: 'P'
1: 'S'
0: 'class'
]

>>> a[3]
accessing cell 3
'A'
>>> a.morestuff()
more stack stuff
>>> b = substack.Substack("C" + "++")
>>> b.pop(), b.pop()
('+', '+')
>>> c = b + substack.Substack(['-', '-'])
>>> for s in c: print s,
...
C - -

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1173

19.7.5 But Don't Do That Either -- SWIG

You can code C types manually like this, but you don't necessarily have to. Because
SWIG knows how to generate glue code for C++ classes, you can instead
automatically generate all the C extension and wrapper class code required to
integrate such a stack object, simply by running SWIG over an appropriate class
declaration. The next section shows how.

19.8 Wrapping C++ Classes with SWIG

One of the neater tricks SWIG can perform is class wrapper generation -- given a
C++ class declaration and special command-line settings, SWIG generates:

A C++ coded Python extension module with accessor functions that interface with
the C++ class's methods and members

A Python coded wrapper class (called a "shadow" class in SWIG-speak) that
interfaces with the C++ class accessor functions module

As before, simply run SWIG in your makefile to scan the C++ class declaration and
compile its outputs. The end result is that by importing the shadow class in your
Python scripts, you can utilize C++ classes as though they were really coded in
Python. Not only can Python programs make and use instances of the C++ class,
they can also customize it by subclassing the generated shadow class.

19.8.1 A Little C++ Class (But Not Too Much)

To see how this all works, we need a C++ class. To illustrate, let's code a simple one
to be used in Python scripts.[7] The following C++ files define a Number class with
three methods (add, sub, display), a data member (data), and a constructor and
destructor. Example 19-19 shows the header file.

[7] For a more direct comparison, you could translate the stack type in Example 19-15 to a
C++ class too, but that yields much more C++ code than I care to show in this Python book.
Moreover, such a translation would sacrifice the type's operator overloading features (SWIG
does not currently map C++ operator overloads).

Example 19-19. PP2E\Integrate\Extend\Swig\Shadow\number.h

class Number
{
public:
 Number(int start);
 ~Number();
 void add(int value);
 void sub(int value);
 void display();
 int data;
};

And Example 19-20 is the C++ class's implementation file; each method prints a
message when called to trace class operations.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1174

Example 19-20. PP2E\Integrate\Extend\Swig\Shadow\number.cxx

#include "number.h"
#include "iostream.h"
// #include "stdio.h"

Number::Number(int start) {
 data = start;
 cout << "Number: " << data << endl; // cout and printf both work
 // printf("Number: %d\n", data); // python print goes to
stdout
}

Number::~Number() {
 cout << "~Number: " << data << endl;
}

void Number::add(int value) {
 data += value;
 cout << "add " << value << endl;
}

void Number::sub(int value) {
 data -= value;
 cout << "sub " << value << endl;
}

void Number::display() {
 cout << "Number = " << data << endl;
}

Just so that you can compare languages, here is how this class is used in a C++
program; Example 19-21 makes a Number object, call its methods, and fetches and
sets its data attribute directly (C++ distinguishes between "members" and
"methods," while they're usually both called "attributes" in Python).

Example 19-21. PP2E\Integrate\Extend\Swig\Shadow\main.cxx

#include "iostream.h"
#include "number.h"

main()
{
 Number *num;
 num = new Number(1); // make a C++ class instance
 num->add(4); // call its methods
 num->display();
 num->sub(2);
 num->display();

 num->data = 99; // set C++ data member
 cout << num->data << endl; // fetch C++ data member
 num->display();
 delete num;
}

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1175

You can use the g++ command-line C++ compiler program to compile and run this
code on Linux. If you don't run Linux, you'll have to extrapolate (there are far too
many C++ compiler differences to list here).

[mark@toy ~/.../PP2E/Integrate/Extend/Swig/Shadow]$ g++ main.cxx
number.cxx
[mark@toy ~/.../PP2E/Integrate/Extend/Swig/Shadow]$ a.out
Number: 1
add 4
Number = 5
sub 2
Number = 3
99
Number = 99
~Number: 99

19.8.2 Wrapping the C++ Class with SWIG

Lets get back to Python. To use the C++ Number class in Python scripts, you need to
code or generate a glue logic layer between the two languages, as in prior examples.
To generate that layer automatically, just write a SWIG input file like the one shown
in Example 19-22.

Example 19-22. PP2E\Integrate\Extend\Swig\Shadow\number.i

/**
 * Swig module description file for wrapping a C++ class.
 * Generate by saying "swig -python -shadow number.i".
 * The C module is generated in file number_wrap.c; here,
 * module 'number' refers to the number.py shadow class.
 **/

%module number

%{
#include "number.h"
%}

%include number.h

This interface file simply directs SWIG to read the C++ class's type signature
information from the included number.h header file. This time, SWIG uses the class
declaration to generate three files, and two different Python modules:

number_wrap.doc, a simple wrapper function description file

number_wrap.c, a C++ extension module with class accessor functions

number.py, a Python shadow class module that wraps accessor functions

The Linux makefile shown in Example 19-23 combines the generated C++ wrapper
code module with the C++ class implementation file to create a numberc.so,the
dynamically loaded extension module that must be in a directory on your Python
module search path when imported from a Python script.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1176

Example 19-23. PP2E\Integrate\Extend\Swig\Shadow\makefile.number-
swig

###

Use SWIG to integrate the number.h C++ class for use in Python
programs.
Note: name "numberc.so" matters, because shadow class imports
numberc.
###

unless you've run make install
SWIG = ../myswig
PY = $(MYPY)

all: numberc.so number.py

wrapper + real class
numberc.so: number_wrap.o number.o
 g++ -shared number_wrap.o number.o -o numberc.so

generated class wrapper module
number_wrap.o: number_wrap.c number.h
 g++ number_wrap.c -c -g -I$(PY)/Include -I$(PY)

number_wrap.c: number.i
 $(SWIG) -c++ -python -shadow number.i

number.py: number.i
 $(SWIG) -c++ -python -shadow number.i

wrapped C++ class code
number.o: number.cxx number.h
 g++ -c -g number.cxx

cxxtest:
 g++ main.cxx number.cxx

clean:
 rm -f *.pyc *.o *.so core a.out
force:
 rm -f *.pyc *.o *.so core a.out number.py number_wrap.c
number_wrap.doc

As usual, run this makefile to generate and compile the necessary glue code into an
extension module that can be imported by Python programs:

[mark@toy ~/....../Integrate/Extend/Swig/Shadow]$ make -f
makefile.number-swig
Generating wrappers for Python
g++ number_wrap.c -c -g -I/...
g++ -c -g number.cxx
g++ -shared number_wrap.o number.o -o numberc.so

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1177

To help demystify SWIG's magic somewhat, here is a portion of the generated C++
number_wrap.c accessor functions module. You can find the full source file at
http://examples.oreilly.com/python2 (or simply generate it yourself). Notice that
this file defines a simple C extension module of functions that generally expect a
C++ object pointer to be passed in (i.e., a "this" pointer in C++ lingo). This is a
slightly different structure than Example 19-17, which wrapped a C type with a
Python class instead, but the net effect is similar:

..._wrap function implementations that run C++ operation syntax...

#define new_Number(_swigarg0) (new Number(_swigarg0))
static PyObject *_wrap_new_Number(PyObject *self, PyObject *args) {
 ...body deleted...

}

#define Number_add(_swigobj,_swigarg0) (_swigobj->add(_swigarg0))
static PyObject *_wrap_Number_add(PyObject *self, PyObject *args) {
 ...body
deleted...

}

#define Number_data_get(_swigobj) ((int) _swigobj->data)
static PyObject *_wrap_Number_data_get(PyObject *self, PyObject *args)
{
 ...body deleted...

}

static PyMethodDef numbercMethods[] = {
 { "Number_data_get", _wrap_Number_data_get, 1 },
 { "Number_data_set", _wrap_Number_data_set, 1 },
 { "Number_display", _wrap_Number_display, 1 },
 { "Number_sub", _wrap_Number_sub, 1 },
 { "Number_add", _wrap_Number_add, 1 },
 { "delete_Number", _wrap_delete_Number, 1 },
 { "new_Number", _wrap_new_Number, 1 },
 { NULL, NULL }
};

SWIGEXPORT(void,initnumberc)() {
 PyObject *m, *d;
 SWIG_globals = SWIG_newvarlink();
 m = Py_InitModule("numberc", numbercMethods);
 d = PyModule_GetDict(m);

On top of the accessor functions module, SWIG generates number.py, the following
shadow class that Python scripts import as the actual interface to the class. This
code is a bit more complicated than the wrapper class we saw in the prior section,
because it manages object ownership and therefore handles new and existing objects
differently. The important thing to notice is that it is a straight Python class that
saves the C++ "this" pointer of the associated C++ object, and passes control to
accessor functions in the generated C++ extension module:

import numberc

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1178

class NumberPtr :
 def __init__(self,this):
 self.this = this
 self.thisown = 0
 def __del__(self):
 if self.thisown == 1 :
 numberc.delete_Number(self.this)
 def add(self,arg0):
 val = numberc.Number_add(self.this,arg0)
 return val
 def sub(self,arg0):
 val = numberc.Number_sub(self.this,arg0)
 return val
 def display(self):
 val = numberc.Number_display(self.this)
 return val
 def __setattr__(self,name,value):
 if name == "data" :
 numberc.Number_data_set(self.this,value)
 return
 self.__dict__[name] = value
 def __getattr__(self,name):
 if name == "data" :
 return numberc.Number_data_get(self.this)
 raise AttributeError,name
 def __repr__(self):
 return "<C Number instance>"
class Number(NumberPtr):
 def __init__(self,arg0) :
 self.this = numberc.new_Number(arg0)
 self.thisown = 1

A subtle thing: the generated C++ module file is named number_wrap.c, but the
Python module name it gives in its initialization function is numberc, which is the
name also imported by the shadow class. The import works because the combination
of the glue code module and the C++ library file is linked into a file numberc.so such
that the imported module file and initialization function names match. When using
shadow classes and dynamic binding, the compiled object file's name must generally
be the module name given in the .i file with an appended "c". In general, given an
input file named interface.i:

%module interface
...declarations...

SWIG generates glue code file interface_wrap.c, which you should somehow compile
into an interfacec.so file to be dynamically loaded on import:

swig -python -shadow interface.i
g++ -c interface.c interface_wrap.c
...more...

g++ -shared interface.o interface_wrap.o -o interfacec.so

The module name interface is reserved for the generated shadow class module,
interface.py. Keep in mind that this implementation structure is subject to change at

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1179

the whims of SWIG's creator, but the interface it yields should remain the same -- a
Python class that shadows the C++ class, attribute for attribute.[8]

[8] While I wrote this, Guido suggested a few times that a future Python release may merge
the ideas of Python classes and C types more closely, and may even be rewritten in C++ to
ease C++ integration in general. If and when that happens, it's possible that SWIG may use C
types to wrap C++ classes, instead of the current accessor functions + Python class approach.
Or not. Watch http://www.swig.org for more recent developments beyond the details
presented in this book.

19.8.3 Using the C++ Class in Python

Once the glue code is generated and compiled, Python scripts can access the C++
class as though it were coded in Python. Example 19-24 repeats the main.cxx file's
class tests; here, though, the C++ class is being utilized from the Python
programming language.

Example 19-24. PP2E\Integrate\Extend\Swig\Shadow\main.py

from number import Number # use C++ class in Python (shadow
class)
 # runs same tests as main.cxx C++ file
num = Number(1) # make a C++ class object in Python
num.add(4) # call its methods from Python
num.display() # num saves the C++ 'this' pointer
num.sub(2)
num.display()

num.data = 99 # set C++ data member, generated
__setattr__
print num.data # get C++ data member, generated
__getattr__
num.display()
del num # runs C++ destructor automatically

Because the C++ class and its wrappers are automatically loaded when imported by
the number shadow class, you run this script like any other:

[mark@toy ~/....../Integrate/Extend/Swig/Shadow]$ python main.py
Number: 1
add 4
Number = 5
sub 2
Number = 3
99
Number = 99
~Number: 99

This output is mostly coming from the C++ class's methods, and is the same as the
main.cxx results shown in Example 19-21. If you really want to use the generated
accessor functions module, you can, as shown in Example 19-25.

Example 19-25. PP2E\Integrate\Extend\Swig\Shadow\main_low.py

from numberc import * # same test as main.cxx

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1180

 # use low-level C accessor function
interface
num = new_Number(1)
Number_add(num, 4) # pass C++ 'this' pointer explicitly
Number_display(num) # use accessor functions in the C
module
Number_sub(num, 2)
Number_display(num)

Number_data_set(num, 99)
print Number_data_get(num)
Number_display(num)
delete_Number(num)

This script generates the same output as main.py, but there is no obvious advantage
to moving from the shadow class to functions here. By using the shadow class, you
get both an object-based interface to C++ and a customizable Python object. For
instance, the Python module shown in Example 19-26 extends the C++ class, adding
an extra print statement to the C++ add method, and defining a brand new mul
method. Because the shadow class is pure Python, this works naturally.

Example 19-26. PP2E\Integrate\Extend\Swig\Shadow\main_subclass.py

from number import Number # sublass C++ class in Python (shadow
class)

class MyNumber(Number):
 def add(self, other):
 print 'in Python add...'
 Number.add(self, other)
 def mul(self, other):
 print 'in Python mul...'
 self.data = self.data * other

num = MyNumber(1) # same test as main.cxx
num.add(4) # using Python subclass of shadow class
num.display() # add() is specialized in Python
num.sub(2)
num.display()

num.data = 99
print num.data
num.display()

num.mul(2) # mul() is implemented in Python
num.display()
del num

Now we get extra messages out of add calls, and mul changes the C++ class's data
member automatically when it assigns self.data:

[mark@toy ~/....../Integrate/Extend/Swig/Shadow]$ python
main_subclass.py
Number: 1
in Python add...

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1181

add 4
Number = 5
sub 2
Number = 3
99
Number = 99
in Python mul...
Number = 198
~Number: 198

In other words, SWIG makes it easy to use C++ class libraries as base classes in
your Python scripts. As usual, you can import the C++ class interactively to
experiment with it some more:

[mark@toy ~/....../Integrate/Extend/Swig/Shadow]$ python
>>> import numberc
>>> numberc.__file__ # the C++ class plus generated glue
module
'./numberc.so'
>>> import number # the generated Python shadow class
module
>>> number.__file__
'number.pyc'

>>> x = number.Number(2) # make a C++ class instance in Python
Number: 2
>>> y = number.Number(4) # make another C++ object
Number: 4
>>> x, y
(<C Number instance>, <C Number instance>)

>>> x.display() # call C++ method (like C++ x-
>display())
Number = 2
>>> x.add(y.data) # fetch C++ data member, call C++
method
add 4
>>> x.display()
Number = 6

>>> y.data = x.data + y.data + 32 # set C++ data member
>>> y.display() # y records the C++ this
pointer
Number = 42

So what's the catch? Nothing much, really, but if you start using SWIG in earnest,
the biggest downside is that SWIG cannot handle every feature of C++ today. If
your classes use advanced C++ tools such as operator overloading and templates,
you may need to hand-code simplified class type declarations for SWIG, instead of
running SWIG over the original class header files.

Also, SWIG's current string-based pointer representation sidesteps conversion and
type-safety issues and works well in most cases, but it has sometimes been accused
of creating performance or interface complications when wrapping existing libraries.
SWIG development is ongoing, so you should consult the SWIG manuals and web
site for more details on these and other topics.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1182

In return for any such trade-offs, though, SWIG can completely obviate the need to
code glue layers to access C and C++ libraries from Python scripts. If you have ever
coded such layers by hand in the past, you already know that this is a very big win.

If you do go the manual route, though, consult Python's standard extension manuals
for more details on both API calls used in this and the next chapter, as well as
additional extension tools we don't have space to cover in this text. C extensions can
run the gamut from short SWIG input files to code that is staunchly wedded to the
internals of the Python interpreter; as a rule of thumb, the former survives the
ravages of time much better than the latter.

Mixing Python and C++

Python's standard implementation is currently coded in C, so all the normal
rules about mixing C programs with C++ programs apply to the Python
interpreter. In fact, there is nothing special about Python in this context, but
here are a few pointers.

When embedding Python in a C++ program, there are no special rules to
follow. Simply link in the Python library and call its functions from C++.
Python's header files automatically wrap themselves in extern "C" {...}
declarations to suppress C++ name-mangling. Hence, the Python library
looks like any other C component to C++; there is no need to recompile
Python itself with a C++ compiler.

When extending Python with C++ components, Python header files are still
C++-friendly, so Python API calls in C++ extensions work like any other
C++ to C call. But be sure to wrap the parts of your extension code made
visible to Python with extern "C" declarations so that they may be called
by Python's C code. For example, to wrap a C++ class, SWIG generates a
C++ extension module that declares its initialization function this way,
though the rest of the module is pure C++.

The only other potential complication involves C++ static or global object
constructor methods when extending. If Python (a C program) is at the top
level of a system, such C++ constructors may not be run when the system
starts up. This behavior may vary per compiler, but if your C++ objects are
not initialized on startup, make sure that your main program is linked by
your C++ compiler, not C.

If you are interested in Python/C++ integration in general, be sure to
consult the C++ special interest group (SIG) pages at
http://www.python.org for information about work in this domain. The CXX
system, for instance, makes it easier to extend Python with C++.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1183

Chapter 20. Embedding Python

20.1 "Add Python. Mix Well. Repeat."

20.2 C Embedding API Overview

20.3 Basic Embedding Techniques

20.4 Registering Callback Handler Objects

20.5 Using Python Classes in C

20.6 ppembed: A High-Level Embedding API

20.7 Other Integration Topics

20.1 "Add Python. Mix Well. Repeat."

In the last chapter, we explored half of the Python/C integration picture -- calling C
services from Python. This mode lets programmers speed up operations by moving
them to C, and utilize external libraries by wrapping them in C extension modules
and types. But the inverse can be just as useful -- calling Python from C. By
delegating selected components of an application to embedded Python code, we can
open them up to onsite changes without having to ship a system's code.

This chapter tells this other half of the Python/C integration tale. It introduces the
Python C interfaces that make it possible for programs written in C-compatible
languages to run Python program code. In this mode, Python acts as an embedded
control language (what some call a "macro" language). Although embedding is
mostly presented in isolation here, keep in mind that Python's integration support is
best viewed as a whole. A system's structure usually determines an appropriate
integration approach: C extensions, embedded code calls, or both. To wrap up, this
chapter concludes by discussing a handful of larger integration platforms, such as
COM and JPython, that present broader component integration possibilities.

20.2 C Embedding API Overview

The first thing you should know about Python's embedded-call API is that it is less
structured than the extension interfaces. Embedding Python in C may require a bit
more creativity on your part than extending; you must pick tools from a general
collection of calls to implement the Python integration, rather than coding to a
boilerplate structure. The upside of this loose structure is that programs can combine
embedding calls and strategies to build up arbitrary integration architectures.

The lack of a more rigid model for embedding is largely the result of a less clear-cut
goal. When extending Python, there is a distinct separation for Python and C

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1184

responsibilities and a clear structure for the integration. C modules and types are
required to fit the Python module/type model by conforming to standard extension
structures. This makes the integration seamless for Python clients: C extensions look
like Python objects and handle most of the work.

But when Python is embedded, the structure isn't as obvious; because C is the
enclosing level, there is no clear way to know what model the embedded Python
code should fit. C may want to run objects fetched from modules, strings fetched
from files or parsed out of documents, and so on. Instead of deciding what C can and
cannot do, Python provides a collection of general embedding interface tools, which
you use and structure according to your embedding goals.

Most of these tools correspond to tools available to Python programs. Table 20-1 lists
some of the more common API calls used for embedding, and their Python
equivalents. In general, if you can figure out how to accomplish your embedding
goals in pure Python code, you can probably find C API tools that achieve the same
results.

Table 20-1. Common API Functions

C API Call Python Equivalent

PyImport_ImportModule import module, __import__

PyImport_ReloadModule reload(module)

PyImport_GetModuleDict sys.modules

PyModule_GetDict module.__dict__

PyDict_GetItemString dict[key]

PyDict_SetItemString dict[key]=val

PyDict_New dict = {}

PyObject_GetAttrString getattr(obj, attr)

PyObject_SetAttrString setattr(obj, attr, val)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1185

PyEval_CallObject apply(funcobj, argstuple)

PyRun_String eval(exprstr), exec stmtstr

PyRun_File execfile(filename)

Because embedding relies on API call selection, though, becoming familiar with the
Python C API is fundamental to the embedding task. This chapter presents a handful
of representative embedding examples and discusses common API calls, but does
not provide a comprehensive list of all tools in the API. Once you've mastered the
examples here, you'll probably need to consult Python's integration manuals for
more details on available calls in this domain. The most recent Python release comes
with two standard manuals for C/C++ integration programmers: Extending and
Embedding, an integration tutorial; and Python/C API, the Python runtime library
reference.

You can find these manuals on the book's CD (view CD-ROM content online at
http://examples.oreilly.com/python2), or fetch their most recent releases at
http://www.python.org. Beyond this chapter, these manuals are likely to be your
best resource for up-to-date and complete Python API tool information.

20.2.1 What Is Embedded Code?

Before we jump into details, let's get a handle on some of the core ideas in the
embedding domain. When this book speaks of "embedded" Python code, it simply
means any Python program structure that can be executed from C. Generally
speaking, embedded Python code can take a variety of forms:

Code strings

C programs can represent Python programs as character strings, and run them as
either expressions or statements (like eval and exec).

Callable objects

C programs can load or reference Python callable objects such as functions,
methods, and classes, and call them with argument lists (like apply).

Code files

C programs can execute entire Python program files by importing modules and
running script files though the API or general system calls (e.g., popen).

The Python binary library is usually what is physically embedded in the C program;
the actual Python code run from C can come from a wide variety of sources:

Code strings might be loaded from files, fetched from persistent databases and
shelves, parsed out of HTML or XML files, read over sockets, built or hardcoded in a

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1186

C program, passed to C extension functions from Python registration code, and so
on.

Callable objects might be fetched from Python modules, returned from other Python
API calls, passed to C extension functions from Python registration code, and so on.

Code files simply exist as files, modules, and executable scripts.

Registration is a technique commonly used in callback scenarios that we will explore
in more detail later in this chapter. But especially for strings of code, there are as
many possible sources as there are for C character strings. For example, C programs
can construct arbitrary Python code dynamically by building and running strings.

Finally, once you have some Python code to run, you need a way to communicate
with it: the Python code may need to use inputs passed in from the C layer, and may
want to generate outputs to communicate results back to C. In fact, embedding
generally becomes interesting only when the embedded code has access to the
enclosing C layer. Usually, the form of the embedded code suggests its
communication mediums:

Code strings that are Python expressions return an expression result as their output.
Both inputs and outputs can take the form of global variables in the namespace in
which a code string is run -- C may set variables to serve as input, run Python code,
and fetch variables as the code's result. Inputs and outputs can also be passed with
exported C extension calls -- Python code may use C modules or types to get or set
variables in the enclosing C layer. Communications schemes are often combined; for
instance, C may preassign global names to objects that export state and interface
calls to the embedded Python code.[1]

[1] If you want an example, flip back to the discussion of Active Scripting in Chapter
15. This system fetches Python code embedded in an HTML web page file, assigns
global variables in a namespace to objects that give access to the web browser's
environment, and runs the Python code in the namespace where the objects were
assigned. I recently worked on a project where we did something similar, but Python
code was embedded in XML documents, and objects preassigned to globals in the
code's namespace represented widgets in a GUI.

Callable objects may accept inputs as function arguments and produce results as
function return values. Passed-in mutable arguments (e.g., lists, dictionaries, class
instances) can be used as both input and output for the embedded code -- changes
made in Python are retained in objects held by C. Objects can also make use of the
global variable and C extension interface techniques described for strings to
communicate with C.

Code files can communicate with most of the same techniques as code strings; when
run as separate programs, files can also employ IPC techniques.

Naturally, all embedded code forms can also communicate with C using general
system-level tools: files, sockets, pipes, and so on. These techniques are generally
less direct and slower, though.

20.3 Basic Embedding Techniques

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1187

As you can probably tell from the preceding overview, there is much flexibility in the
embedding domain. To illustrate common embedding techniques in action, this
section presents a handful of short C programs that run Python code in one form or
another. Most of these examples make use of the simple Python module file shown in
Example 20-1.

Example 20-1. PP2E\Integrate\Embed\Basics\usermod.py

C runs Python code in this module in embedded mode.
Such a file can be changed without changing the C layer.
There is just standard Python code (C does conversions).
You can also run code in standard modules like string.

import string

message = 'The meaning of life...'

def transform(input):
 input = string.replace(input, 'life', 'Python')
 return string.upper(input)

If you know any Python at all, you know that this file defines a string and a function;
the function returns whatever it is passed with string substitution and upper-case
conversions applied. It's easy to use from Python:

[mark@toy ~/.../PP2E/Integrate/Embed/Basics]$ python
>>> import usermod #
import a module
>>> usermod.message #
fetch a string
'The meaning of life...'
>>> usermod.transform(usermod.message) #
call a function
'THE MEANING OF PYTHON...'

With proper API use, it's not much more difficult to use this module the same way in
C.

20.3.1 Running Simple Code Strings

Perhaps the simplest way to run Python code from C is by calling the PyRun_
SimpleString API function. With it, C programs can execute Python programs
represented as C character string arrays. This call is also very limited: all code runs
in the same namespace (module __main__), the code strings must be Python
statements (not expressions), and there is no easy way to communicate inputs or
outputs with the Python code run. Still, it's a simple place to start; the C program in

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1188

Example 20-2 runs Python code to accomplish the same results as the interactive
session listed in the prior section.

Example 20-2. PP2E\Integrate\Embed\Basics\embed-simple.c

/***
 * simple code strings: C acts like the interactive
 * prompt, code runs in __main__, no output sent to C;
 ***/

#include <Python.h> /* standard API def */

main() {
 printf("embed-simple\n");
 Py_Initialize();
 PyRun_SimpleString("import usermod"); /*
load .py file */
 PyRun_SimpleString("print usermod.message"); /*
on python path */
 PyRun_SimpleString("x = usermod.message"); /*
compile and run */
 PyRun_SimpleString("print usermod.transform(x)");
}

The first thing you should notice here is that when Python is embedded, C programs
always call Py_Initializeto initialize linked-in Python libraries before using any
other API functions. The rest of this code is straightforward -- C submits hardcoded
strings to Python that are roughly what we typed interactively. Internally,
PyRun_SimpleString invokes the Python compiler and interpreter to run the
strings sent from C; as usual, the Python compiler is always available in systems that
contain Python.

20.3.1.1 Compiling and running

To build a standalone executable from this C source file, you need to link its
compiled form with the Python library file. In this chapter, "library" usually means
the binary library file (e.g., an .a file on Unix) that is generated when Python is
compiled, not the Python source code library.

Today, everything about Python you need in C is compiled into a single .a library file
when the interpreter is built. The program's main function comes from your C code,
and depending on the extensions installed in your Python, you may also need to link
any external libraries referenced by the Python library.

Assuming no extra extension libraries are needed, Example 20-3 is a minimal Linux
makefile for building the C program in Example 20-2. Again, makefile details vary
per platform, but see Python manuals for hints. This makefile uses the Python
include-files path to find Python.h in the compile step, and adds the Python library
file to the final link step to make API calls available to the C program.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1189

Example 20-3. PP2E\Integrate\Embed\Basics\makefile.1

a linux makefile that builds a C executable that embeds
Python, assuming no external module libs must be linked
in;
uses Python header files, links in the Python lib file;
both may be in other dirs (e.g., /usr) in your install;
set MYPY to your Python install tree, change lib version;

PY = $(MYPY)
PYLIB = $(PY)/libpython1.5.a
PYINC = -I$(PY)/Include -I$(PY)

embed-simple: embed-simple.o
 gcc embed-simple.o $(PYLIB) -g -export-dynamic -lm -
ldl -o embed-simple

embed-simple.o: embed-simple.c
 gcc embed-simple.c -c -g $(PYINC)

Things may not be quite this simple in practice, though, at least not without some
coaxing. The makefile in Example 20-4 is the one I actually used to build all of this
section's C programs on Linux.

Example 20-4. PP2E\Integrate\Embed\Basics\makefile.basics

build all 5 basic embedding examples
with external module libs linked in;
source setup-pp-embed.csh if needed

PY = $(MYPY)
PYLIB = $(PY)/libpython1.5.a
PYINC = -I$(PY)/Include -I$(PY)

LIBS = -L/usr/lib \
 -L/usr/X11R6/lib \
 -lgdbm -ltk8.0 -ltcl8.0 -lX11 -lm -ldl

BASICS = embed-simple embed-string embed-object embed-dict
embed-bytecode

all: $(BASICS)

embed%: embed%.o
 gcc embed$*.o $(PYLIB) $(LIBS) -g -export-dynamic -o
embed$*

embed%.o: embed%.c

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1190

 gcc embed$*.c -c -g $(PYINC)

clean:
 rm -f *.o *.pyc $(BASICS) core

This version links in Tkinter libraries because the Python library file it uses was built
with Tkinter enabled. You may have to link in arbitrarily many more externals for
your Python library, and frankly, chasing down all the linker dependencies can be
tedious. Required libraries may vary per platform and Python install, so there isn't a
lot of advice I can offer to make this process simple (this is C, after all).

But if you're going to do much embedding work, you might want to build Python on
your machine from its source with all unnecessary extensions disabled in the
Modules/Setup file. This produces a Python library with minimal external
dependencies, which links much more easily. For example, if your embedded code
won't be building GUIs, Tkinter can simply be removed from the library; see the
Setup file for details. You can also find a list of external libraries referenced from
your Python in the generated makefiles located in the Python source tree. In any
event, the good news is that you only need to resolve linker dependencies once.

Once you've gotten the makefile to work, run it to build the C program with python
libraries linked in. Run the resulting C program as usual:[2]

[2] My build environment is a little custom (really, odd), so I first need to source
$PP2E/Config/setup-pp-embed.csh to set up PYTHONPATH to point to the source library
directory of a custom Python build on my machine. In Python 1.5.2., at least, Python may
have trouble locating standard library directories when it is embedded, especially if there are
multiple Python installs on the same machine (e.g., the interpreter and library versions may
not match). This probably won't be an issue in your build environment, but see the sourced
file's contents for more details if you get startup errors when you try to run a C program that
embeds Python. You may need to customize your login scripts or source such a setup
configuration file before running the embedding examples, but only if your Python lives in dark
places.

[mark@toy ~/.../PP2E/Integrate/Embed/Basics]$ embed-simple
embed-simple
The meaning of life...
THE MEANING OF PYTHON...

Most of this output is produced by Python print statements sent from C to the
linked-in Python library. It's as if C has become an interactive Python programmer.

However, strings of Python code run by C probably would not be hardcoded in a C
program file like this. They might instead be loaded from a text file, extracted from
HTML or XML files, fetched from a persistent database or socket, and so on. With
such external sources, the Python code strings that are run from C could be changed
arbitrarily without having to recompile the C program that runs them. They may
even be changed onsite, and by end users of a system. To make the most of code
strings, though, we need to move on to more flexible API tools.

20.3.2 Running Code Strings with Results and Namespaces

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1191

Example 20-5 uses the following API calls to run code strings that return expression
results back to C:

Py_Initialize initializes linked-in Python libraries as before

PyImport_ImportModule imports a Python module, returns pointer to it

PyModule_GetDict fetches a module's attribute dictionary object

PyRun_String runs a string of code in explicit namespaces

PyObject_SetAttrString assigns an object attribute by name string

PyArg_Parse converts a Python return value object to C form

The import calls are used to fetch the namespace of the usermod module listed in
Example 20-1 earlier, so that code strings can be run there directly (and will have
access to names defined in that module without qualifications).
Py_Import_ImportModule is like a Python import statement, but the imported
module object is returned to C, not assigned to a Python variable name. Because of
that, it's probably more similar to the Python __import__ built-in function we used
in Example 7-32.

The PyRun_String call is the one that actually runs code here, though. It takes a
code string, a parser mode flag, and dictionary object pointers to serve as the global
and local namespaces for running the code string. The mode flag can be
Py_eval_input to run an expression, or Py_file_input to run a statement;
when running an expression, the result of evaluating the expression is returned from
this call (it comes back as a PyObject* object pointer). The two namespace
dictionary pointer arguments allow you to distinguish global and local scopes, but
they are typically passed the same dictionary such that code runs in a single
namespace.[3]

[3] A related function lets you run files of code but is not demonstrated in this chapter:
PyObject* PyRun_File(FILE *fp, char *filename, mode, globals, locals). Because you
can always load a file's text and run it as a single code string with PyRun_String, the
PyRun_File call is not always necessary. In such multiline code strings, the \n character
terminates lines and indentation groups blocks as usual.

Example 20-5. PP2E\Integrate\Embed\Basics\embed-string.c

/* code-strings with results and namespaces */

#include <Python.h>

main() {
 char *cstr;
 PyObject *pstr, *pmod, *pdict;
 printf("embed-string\n");
 Py_Initialize();

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1192

 /* get usermod.message */
 pmod = PyImport_ImportModule("usermod");
 pdict = PyModule_GetDict(pmod);
 pstr = PyRun_String("message", Py_eval_input, pdict,
pdict);

 /* convert to C */
 PyArg_Parse(pstr, "s", &cstr);
 printf("%s\n", cstr);

 /* assign usermod.X */
 PyObject_SetAttrString(pmod, "X", pstr);

 /* print usermod.transform(X) */
 (void) PyRun_String("print transform(X)",
Py_file_input, pdict, pdict);
 Py_DECREF(pmod);
 Py_DECREF(pstr);
}

When compiled and run, this file produces the same result as its predecessor:

[mark@toy ~/.../PP2E/Integrate/Embed/Basics]$ embed-string
embed-string
The meaning of life...
THE MEANING OF PYTHON...

But very different work goes into producing this output. This time, C fetches,
converts, and prints the value of the Python module's message attribute directly by
running a string expression, and assigns a global variable (X) within the module's
namespace to serve as input for a Python print statement string.

Because the string execution call in this version lets you specify namespaces, you
can better partition the embedded code your system runs -- each grouping can have
a distinct namespace to avoid overwriting other groups' variables. And because this
call returns a result, you can better communicate with the embedded code --
expression results are outputs, and assignments to globals in the namespace in
which code runs can serve as inputs.

Before we move on, I need to explain two coding issues here. First of all, this
program also decrements the reference count on objects passed to it from Python,
using the Py_DECREF call introduced in Chapter 19. These calls are not strictly
needed here (the objects' space is reclaimed when the programs exits anyhow), but
demonstrate how embedding interfaces must manage reference counts when Python
passes their ownership to C. If this was a function called from a larger system, for
instance, you would generally want to decrement the count to allow Python to
reclaim the objects.

Secondly, in a realistic program, you should generally test the return values of all the
API calls in this program immediately to detect errors (e.g., import failure). Error

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1193

tests are omitted in this section's example to keep the code simple, but will appear in
later code listings and should be included in your programs to make them more
robust.

20.3.3 Calling Python Objects

The last two sections dealt with running strings of code, but it's easy for C programs
to deal in terms of Python objects too. Example 20-6 accomplishes the same task as
Examples Example 20-2 and Example 20-5, but uses other API tools to interact with
objects in the Python module directly:

PyImport_ImportModule imports the module from C as before

PyObject_GetAttrString fetches an object's attribute value by name

PyEval_CallObject calls a Python function (or class, or method)

PyArg_Parse converts Python objects to C values

Py_BuildValue converts C values to Python objects

We met both the data conversion functions in the last chapter. The
PyEval_CallObject call in this version is the key call here: it runs the imported
function with a tuple of arguments, much like the Python apply built-in function.
The Python function's return value comes back to C as a PyObject*, a generic
Python object pointer.

Example 20-6. PP2E\Integrate\Embed\Basics\embed-object.c

/* fetch and call objects in modules */

#include <Python.h>

main() {
 char *cstr;
 PyObject *pstr, *pmod, *pfunc, *pargs;
 printf("embed-object\n");
 Py_Initialize();

 /* get usermod.message */
 pmod = PyImport_ImportModule("usermod");
 pstr = PyObject_GetAttrString(pmod, "message");

 /* convert string to C */
 PyArg_Parse(pstr, "s", &cstr);
 printf("%s\n", cstr);
 Py_DECREF(pstr);

 /* call usermod.transform(usermod.message) */

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1194

 pfunc = PyObject_GetAttrString(pmod, "transform");
 pargs = Py_BuildValue("(s)", cstr);
 pstr = PyEval_CallObject(pfunc, pargs);
 PyArg_Parse(pstr, "s", &cstr);
 printf("%s\n", cstr);

 /* free owned objects */
 Py_DECREF(pmod);
 Py_DECREF(pstr);
 Py_DECREF(pfunc); /* not really needed in main(
) */
 Py_DECREF(pargs); /* since all memory goes away
*/
}

When compiled and run, the result is the same again:

[mark@toy ~/.../PP2E/Integrate/Embed/Basics]$ embed-object
embed-object
The meaning of life...
THE MEANING OF PYTHON...

But this output is all generated by C this time -- first by fetching the Python module's
message attribute value, and then by fetching and calling the module's
transform function object directly and printing its return value that is sent back to
C. Input to the transform function is a function argument here, not a preset global
variable. Notice that message is fetched as a module attribute this time, instead of
by running its name as a code string; there is often more than one way to
accomplish the same goals with different API calls.

Running functions in modules like this is a simple way to structure embedding; code
in the module file can be changed arbitrarily without having to recompile the C
program that runs it. It also provides a direct communication model: inputs and
outputs to Python code can take the form of function arguments and return values.

20.3.4 Running Strings in Dictionaries

When we used PyRun_String earlier to run expressions with results, code was
executed in the namespace of an existing Python module. However, sometimes it's
more convenient to create a brand new namespace for running code strings that is
independent of any existing module files. The C file in Example 20-7 shows how; the
new namespace is created as a new Python dictionary object, and a handful of new
API calls are employed in the process:

PyDict_New makes a new empty dictionary object

PyDict_SetItemString assigns to a dictionary's key

PyDict_GetItemString fetches (indexes) a dictionary value by key

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1195

PyRun_String runs a code string in namespaces, as before

PyEval_GetBuiltins gets the built-in scope's module

The main trick here is the new dictionary. Inputs and outputs for the embedded code
strings are mapped to this dictionary by passing it as the code's namespace
dictionaries in the PyRun_String call. The net effect is that the C program in
Example 20-7 works exactly like this Python code:

 >>> d = {}
 >>> d['Y'] = 2
 >>> exec 'X = 99' in d, d
 >>> exec 'X = X + Y' in d, d
 >>> print d['X']
 101

But here, each Python operation is replaced by a C API call.

Example 20-7. PP2E\Integrate\Embed\Basics\embed-dict.c

/***
 * make a new dictionary for code string namespace;
 ***/

#include <Python.h>

main() {
 int cval;
 PyObject *pdict, *pval;
 printf("embed-dict\n");
 Py_Initialize();

 /* make a new namespace */
 pdict = PyDict_New();
 PyDict_SetItemString(pdict, "__builtins__",
PyEval_GetBuiltins());

 PyDict_SetItemString(pdict, "Y", PyInt_FromLong(2));
/* dict['Y'] = 2 */
 PyRun_String("X = 99", Py_file_input, pdict, pdict);
/* run statements */
 PyRun_String("X = X+Y", Py_file_input, pdict, pdict);
/* same X and Y */
 pval = PyDict_GetItemString(pdict, "X");
/* fetch dict['X'] */

 PyArg_Parse(pval, "i", &cval);
/* convert to C */

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1196

 printf("%d\n", cval);
/* result=101 */
 Py_DECREF(pdict);
}

When compiled and run, this C program creates this sort of output:

[mark@toy ~/.../PP2E/Integrate/Embed/Basics]$ embed-dict
embed-dict
101

The output is different this time: it reflects the value of Python variable X assigned
by the embedded Python code strings and fetched by C. In general, C can fetch
module attributes either by calling PyObject_GetAttrString with the module,
or by using PyDict_GetItemString to index the module's attribute dictionary
(expression strings work too, but are less direct). Here, there is no module at all, so
dictionary indexing is used to access the code's namespace in C.

Besides allowing you to partition code string namespaces independent of any Python
module files on the underlying system, this scheme provides a natural
communication mechanism. Values stored in the new dictionary before code is run
serve as inputs, and names assigned by the embedded code can later be fetched out
of the dictionary to serve as code outputs. For instance, the variable Y in the second
string run refers to a name set to 2 by C; X is assigned by the Python code and
fetched later by C code as the printed result.

There is one trick in this code that I need to explain. Each module namespace in
Python has a link to the built-in scope's namespace, where names like open and
len live. In fact, this is the link Python follows during the last step of its
local/global/built-in three-scope name lookup procedure.[4] Today, embedding code is
responsible for setting the __builtins__ scope link in dictionaries that serve as
namespaces. Python sets this link automatically in all other namespaces that host
code execution, and this embedding requirement may be lifted in the future (it
seems a bit too magical to be required for long). For now, simply do what this
example does to initialize the built-ins link, in dictionaries you create for running
code in C.

[4] This link also plays a part in Python's restricted-execution mode, described in Chapter 15.
By changing the built-in scope link to a module with limited attribute sets and customized
versions of built-in calls like open, the rexec module can control machine access from code
run through its interface.

20.3.5 Precompiling Strings to Bytecode

When you call Python function objects from C, you are actually running the already-
compiled bytecode associated with the object (e.g., a function body). When running
strings, Python must compile the string before running it. Because compilation is a
slow process, this can be a substantial overhead if you run a code string more than
once. Instead, precompile the string to a bytecode object to be run later, using the
API calls illustrated in Example 20-8:[5]

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1197

[5] Just in case you flipped ahead to this chapter early: bytecode is simply an intermediate
representation for already compiled program code in the current standard Python
implementation. It's a low-level binary format that can be quickly interpreted by the Python
runtime system. Bytecode is usually generated automatically when you import a module, but
there may be no notion of an import when running raw strings from C.

Py_CompileString compiles a string of code, returns a bytecode object

PyEval_EvalCode runs a compiled bytecode object

The first of these takes the mode flag normally passed to PyRun_String, and a
second string argument that is only used in error messages. The second takes two
namespace dictionaries. These two API calls are used in Example 20-8 to compile
and execute three strings of Python code.

Example 20-8. PP2E\Integrate\Embed\Basics\embed-bytecode.c

/* precompile code strings to bytecode objects */

#include <Python.h>
#include <compile.h>
#include <eval.h>

main() {
 int i;
 char *cval;
 PyObject *pcode1, *pcode2, *pcode3, *presult, *pdict;
 char *codestr1, *codestr2, *codestr3;
 printf("embed-bytecode\n");

 Py_Initialize();
 codestr1 = "import usermod\nprint usermod.message";
/* statements */
 codestr2 = "usermod.transform(usermod.message)";
/* expression */
 codestr3 = "print '%d:%d' % (X, X ** 2),";
/* use input X */

 /* make new namespace dictionary */
 pdict = PyDict_New();
 if (pdict == NULL) return -1;
 PyDict_SetItemString(pdict, "__builtins__",
PyEval_GetBuiltins());

 /* precompile strings of code to bytecode objects */
 pcode1 = Py_CompileString(codestr1, "<embed>",
Py_file_input);
 pcode2 = Py_CompileString(codestr2, "<embed>",
Py_eval_input);

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1198

 pcode3 = Py_CompileString(codestr3, "<embed>",
Py_file_input);

 /* run compiled bytecode in namespace dict */
 if (pcode1 && pcode2 && pcode3) {
 (void) PyEval_EvalCode((PyCodeObject *)pcode1,
pdict, pdict);
 presult = PyEval_EvalCode((PyCodeObject *)pcode2,
pdict, pdict);
 PyArg_Parse(presult, "s", &cval);
 printf("%s\n", cval);
 Py_DECREF(presult);

 /* rerun code object repeatedly */
 for (i = 0; i <= 10; i++) {
 PyDict_SetItemString(pdict, "X",
PyInt_FromLong(i));
 (void) PyEval_EvalCode((PyCodeObject *)pcode3,
pdict, pdict);
 }
 printf("\n");
 }

 /* free referenced objects */
 Py_XDECREF(pdict);
 Py_XDECREF(pcode1);
 Py_XDECREF(pcode2);
 Py_XDECREF(pcode3);
}

This program combines a variety of technique we've already seen. The namespace in
which the compiled code strings run, for instance, is a newly created dictionary (not
an existing module object), and inputs for code strings are passed as preset
variables in the namespace. When built and executed, the first part of the output is
similar to previous examples in this section, but the last line represents running the
same precompiled code string 11 times:

[mark@toy ~/.../PP2E/Integrate/Embed/Basics]$ embed-
bytecode
embed-bytecode
The meaning of life...
THE MEANING OF PYTHON...
0:0 1:1 2:4 3:9 4:16 5:25 6:36 7:49 8:64 9:81 10:100

If your system executes strings multiple times, it is a major speedup to precompile
to bytecode in this fashion.

20.4 Registering Callback Handler Objects

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1199

In examples thus far, C has been running and calling Python code from a standard
main program flow of control. That's not always the way programs work, though; in
some cases, programs are modeled on an event-driven architecture where code is
executed only in response to some sort of event. The event might be an end user
clicking a button in a GUI, the operating system delivering a signal, or simply
software running an action associated with an entry in a table.

In any event (pun accidental), program code in such an architecture is typically
structured as callback handlers -- chunks of code dispatched by event-processing
logic. It's easy to use embedded Python code to implement callback handlers in such
a system; in fact, the event-processing layer can simply use the embedded-call API
tools we saw earlier in this chapter to run Python handlers.

The only new trick in this model is how to make the C layer know what code should
be run for each event. Handlers must somehow be registered to C to associate them
with future events. In general, there is a wide variety of ways to achieve this
code/event association; for instance, C programs can:

Fetch and call functions by event name from one or more module files

Fetch and run code strings associated with event names in a database

Extract and run code associated with event tags in HTML or XML[6]

[6] And if C chooses to do so, it might even run embedded Python code that uses
Python's standard HTML and XML processing tools to parse out the embedded code
associated with an event tag. See the Python library manual for details on these
parsers.

Run Python code that calls back to C to tell it what should be run

And so on. Really, any place you can associate objects or strings with identifiers is a
potential callback registration mechanism. Some of these techniques have
advantages all their own. For instance, callbacks fetched from module files support
dynamic reloading (as we learned in Chapter 9, reload works on modules and does
not update objects held directly). And none of the first three schemes requires users
to code special Python programs that do nothing but register handlers to be run
later.

It is perhaps more common, though, to register callback handlers with the last
approach: letting Python code register handlers with C by calling back to C through
extensions interfaces. Although this scheme is not without trade-offs, it can provide
a natural and direct model in scenarios where callbacks are associated with a large
number of objects.

For instance, consider a GUI constructed by building a tree of widget objects in
Python scripts. If each widget object in the tree can have an associated event
handler, it may be easier to register handlers by simply calling methods of widgets in
the tree. Associating handlers with widget objects in a separate structure such as a
module file or HTML file requires extra cross-reference work to keep the handlers in
sync with the tree.[7]

[7] If you're looking for a more realistic example of Python callback handlers, see the
TkinterGUI system used extensively in this book. Tkinter uses both extending and embedding.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1200

Its extending interface (widget objects) is used to register Python callback handlers, which are
later run with embedding interfaces in response to GUI events. You can study Tkinter's
implementation in the Python source distribution for more details, though its Tk library
interface logic makes it a somewhat challenging read.

The following C and Python files demonstrate the basic coding techniques used to
implement explicitly registered callback handlers. The C file in Example 20-9
implements interfaces for registering Python handlers, as well as code to run those
handlers in response to events:

Event router

The Route_Event function responds to an event by calling a Python function object
previously passed from Python to C.

Callback registration

The Register_Handler function saves a passed-in Python function object pointer in
a C global variable. Python calls Register_Handler through a simple cregister C
extension module created by this file.

Event trigger

To simulate real-world events, the Trigger_Event function can be called from
Python through the generated C module to trigger an event.

In other words, this example uses both the embedding and extending interfaces
we've already met to register and invoke Python event handler code.

Example 20-9. PP2E\Integrate\Mixed\Regist\cregister.c

#include <Python.h>
#include <stdlib.h>

/***/
/* 1) code to route events to Python object */
/* note that we could run strings here instead */
/***/

static PyObject *Handler = NULL; /* keep Python object in C */

void Route_Event(char *label, int count)
{
 char *cres;
 PyObject *args, *pres;

 /* call Python handler */
 args = Py_BuildValue("(si)", label, count); /* make arg-list */
 pres = PyEval_CallObject(Handler, args); /* apply: run a call
*/
 Py_DECREF(args); /* add error checks
*/

 if (pres != NULL) {
 /* use and decref handler result */

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1201

 PyArg_Parse(pres, "s", &cres);
 printf("%s\n", cres);
 Py_DECREF(pres);
 }
}

/***/
/* 2) python extension module to register handlers */
/* python imports this module to set handler objects */
/***/

static PyObject *
Register_Handler(PyObject *self, PyObject *args)
{
 /* save Python callable object */
 Py_XDECREF(Handler); /* called before? */
 PyArg_Parse(args, "O", &Handler); /* one argument? */
 Py_XINCREF(Handler); /* add a reference */
 Py_INCREF(Py_None); /* return 'None': success */
 return Py_None;
}

static PyObject *
Trigger_Event(PyObject *self, PyObject *args)
{
 /* let Python simulate event caught by C */
 static count = 0;
 Route_Event("spam", count++);
 Py_INCREF(Py_None);
 return Py_None;
}

static struct PyMethodDef cregister_methods[] = {
 {"setHandler", Register_Handler}, /* name, address */
 {"triggerEvent", Trigger_Event},
 {NULL, NULL}
};

void initcregister() /* this is called by Python */
{ /* on first "import cregister" */
 (void) Py_InitModule("cregister", cregister_methods);
}

Ultimately, this C file is an extension module for Python, not a standalone C program
that embeds Python (though C could just as well be on top). To compile it into a
dynamically loaded module file, run the makefile in Example 20-10 on Linux (and use
something similar on other platforms). As we learned in the last chapter, the
resulting cregister.so file will be loaded when first imported by a Python script if it is
placed in a directory on Python's module search path (e.g., ".").

Example 20-10. PP2E\Integrate\Mixed\Regist\makefile.regist

Builds cregister.so, a dynamically-loaded C extension
module (shareable), which is imported by register.py

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1202

PY = $(MYPY)
PYINC = -I$(PY)/Include -I$(PY)

CMODS = cregister.so

all: $(CMODS)

cregister.so: cregister.c
 gcc cregister.c -g $(PYINC) -fpic -shared -o cregister.so

clean:
 rm -f *.pyc $(CMODS)

Now that we have a C extension module set to register and dispatch Python
handlers, all we need are some Python handlers. The Python module shown in
Example 20-11 defines two callback handler functions and imports the C extension
module to register handlers and trigger events.

Example 20-11. PP2E\Integrate\Mixed\Regist\register.py

register for and handle event callbacks from C;
compile C code, and run with 'python register.py'

C calls these Python functions;
handle an event, return a result

def callback1(label, count):
 return 'callback1 => %s number %i' % (label, count)

def callback2(label, count):
 return 'callback2 => ' + label * count

Python calls a C extension module
to register handlers, trigger events

import cregister

print '\nTest1:'
cregister.setHandler(callback1)
for i in range(3):
 cregister.triggerEvent() # simulate events caught by C
layer

print '\nTest2:'
cregister.setHandler(callback2)
for i in range(3):
 cregister.triggerEvent() # routes these events to
callback2

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1203

That's it -- the Python/C callback integration is set to go. To kick off the system, run
the Python script; it registers one handler function, forces three events to be
triggered, and then changes the event handler and does it again:

[mark@toy ~/.../PP2E/Integration/Mixed/Regist]$ python register.py

Test1:
callback1 => spam number 0
callback1 => spam number 1
callback1 => spam number 2

Test2:
callback2 => spamspamspam
callback2 => spamspamspamspam
callback2 => spamspamspamspamspam

This output is printed by the C event router function, but its content is the return
values of the handler functions in the Python module. Actually, there is something
pretty wild going on here under the hood. When Python forces an event to trigger,
control flows between languages like this:

From Python to the C event router function

From the C event router function to the Python handler function

Back to the C event router function (where the output is printed)

And finally back to the Python script

That is, we jump from Python to C to Python and back again. Along the way, control
passes through both extending and embedding interfaces. When the Python callback
handler is running, there are two Python levels active, and one C level in the middle.
Luckily, this works; Python's API is reentrant, so you don't need to be concerned
about having multiple Python interpreter levels active at the same time. Each level
runs different code and operates independently.

20.5 Using Python Classes in C

In the previous chapter, we saw how to use C++ classes in Python by wrapping
them with SWIG. But what about going the other way -- using Python classes from
other languages? It turns out that this is really just a matter of applying interfaces
already shown.

Recall that Python scripts generate class instance objects by calling class objects as
though they were functions. To do it from C (or C++), you simply follow the same
steps: import a class from a module (or elsewhere), build an arguments tuple, and
call it to generate an instance using the same C API tools you use to call Python
functions. Once you've got an instance, you can fetch attributes and methods with
the same tools you use to fetch globals out of a module.

To illustrate how this works in practice, Example 20-12 defines a simple Python class
in a module that we can utilize from C.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1204

Example 20-12. PP2E\Integrate\Embed\ApiClients\module.py

call this class from C to make objects

class klass:
 def method(self, x, y):
 return "brave %s %s" % (x, y) # run me from C

This is nearly as simple as it gets, but it's enough to illustrate the basics. As usual,
make sure that this module is on your Python search path (e.g., in the current
directory, or one listed on your PYTHONPATH setting), or else the import call to
access it from C will fail, just as it would in a Python script. Now, here is how you
might make use of this Python class from a Python program:

C:\...\PP2E\Integrate\Embed\ApiClients>python
>>> import module # import the file
>>> object = module.klass() # make class
instance
>>> result = object.method('sir', 'robin') # call class method
>>> print result
brave sir robin

This is fairly easy stuff in Python. You can do all these operations in C too, but it
takes a bit more code. The C file in Example 20-13 implements these steps by
arranging calls to the appropriate Python API tools.

Example 20-13. PP2E\Integrate\Embed\ApiClients\objects-low.c

#include <Python.h>
#include <stdio.h>

main() {
 /* run objects with low-level calls */
 char *arg1="sir", *arg2="robin", *cstr;
 PyObject *pmod, *pclass, *pargs, *pinst, *pmeth, *pres;

 /* instance = module.klass() */
 Py_Initialize();
 pmod = PyImport_ImportModule("module"); /* fetch module */
 pclass = PyObject_GetAttrString(pmod, "klass"); /* fetch
module.class */
 Py_DECREF(pmod);

 pargs = Py_BuildValue("()");
 pinst = PyEval_CallObject(pclass, pargs); /* call class()
*/
 Py_DECREF(pclass);
 Py_DECREF(pargs);

 /* result = instance.method(x,y) */
 pmeth = PyObject_GetAttrString(pinst, "method"); /* fetch bound
method */
 Py_DECREF(pinst);
 pargs = Py_BuildValue("(ss)", arg1, arg2); /* convert to
Python */

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1205

 pres = PyEval_CallObject(pmeth, pargs); /* call method(x,y)
*/
 Py_DECREF(pmeth);
 Py_DECREF(pargs);

 PyArg_Parse(pres, "s", &cstr); /* convert to C */
 printf("%s\n", cstr);
 Py_DECREF(pres);
}

Step through this source file for more details; it's merely a matter of figuring out
how you would accomplish the task in Python, and then calling equivalent C
functions in the Python API. To build this source into a C executable program, run
the makefile in the file's directory (it's analogous to makefiles we've already seen).
After compiling, run it as you would any other C program:

[mark@toy ~/.../PP2E/Integrate/Embed/ApiClients]$ objects-low
brave sir robin

This output might seem anticlimactic, but it actually reflects the return values sent
back to C by the class method in file module.py. C did a lot of work to get this little
string: it imported the module, fetched the class, made an instance, and fetched and
called the instance method, performing data conversions and reference count
management every step of the way. In return for all the work, C gets to use the
techniques shown in this file to reuse any Python class.

Of course, this example would be more complex in practice. As mentioned earlier,
you generally need to check the return value of every Python API call to make sure it
didn't fail. The module import call in this C code, for instance, can fail easily if the
module isn't on the search path; if you don't trap the NULL pointer result, your
program will almost certainly crash when it tries to use the pointer (at least
eventually). Example 20-14 is a recoding of Example 20-13 with full error-checking;
it's big, but it's robust.

Example 20-14. PP2E\Integrate\Embed\ApiClients\objects-err-low.c

#include <Python.h>
#include <stdio.h>
#define error(msg) do { printf("%s\n", msg); exit(1); } while (1)

main() {
 /* run objects with low-level calls and full error checking */
 char *arg1="sir", *arg2="robin", *cstr;
 PyObject *pmod, *pclass, *pargs, *pinst, *pmeth, *pres;

 /* instance = module.klass() */
 Py_Initialize();
 pmod = PyImport_ImportModule("module"); /* fetch module */
 if (pmod == NULL)
 error("Can't load module");

 pclass = PyObject_GetAttrString(pmod, "klass"); /* fetch
module.class */
 Py_DECREF(pmod);
 if (pclass == NULL)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1206

 error("Can't get module.klass");

 pargs = Py_BuildValue("()");
 if (pargs == NULL) {
 Py_DECREF(pclass);
 error("Can't build arguments list");
 }
 pinst = PyEval_CallObject(pclass, pargs); /* call class()
*/
 Py_DECREF(pclass);
 Py_DECREF(pargs);
 if (pinst == NULL)
 error("Error calling module.klass()");

 /* result = instance.method(x,y) */
 pmeth = PyObject_GetAttrString(pinst, "method"); /* fetch bound
method */
 Py_DECREF(pinst);
 if (pmeth == NULL)
 error("Can't fetch klass.method");

 pargs = Py_BuildValue("(ss)", arg1, arg2); /* convert to
Python */
 if (pargs == NULL) {
 Py_DECREF(pmeth);
 error("Can't build arguments list");
 }
 pres = PyEval_CallObject(pmeth, pargs); /* call method(x,y)
*/
 Py_DECREF(pmeth);
 Py_DECREF(pargs);
 if (pres == NULL)
 error("Error calling klass.method");

 if (!PyArg_Parse(pres, "s", &cstr)) /* convert to C */
 error("Can't convert klass.method result");
 printf("%s\n", cstr);
 Py_DECREF(pres);
}

20.6 ppembed: A High-Level Embedding API

But don't do that . As you can probably tell from the last example, embedded-mode
integration code can very quickly become as complicated as extending code for
nontrivial use. Today, no automation solution solves the embedding problem as well
as SWIG addresses extending. Because embedding does not impose the kind of
structure that extension modules and types provide, it's much more of an open-
ended problem; what automates one embedding strategy might be completely
useless in another.

With a little up-front work, though, you can still automate common embedding tasks
by wrapping up calls in a higher-level API. These APIs could handle things such as
error detection, reference counts, data conversions, and so on. One such API,
ppembed, is available on this book's CD (see http://examples.oreilly.com/python2).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1207

It merely combines existing tools in Python's standard C API to provide a set of
easier-to-use calls for running Python programs from C.

20.6.1 Running Objects with ppembed

Example 20-15 demonstrates how to recode objects-err-low.c by linking ppembed's
library files with your program.

Example 20-15. PP2E\Integrate\Embed\ApiClients\object-api.c

#include <stdio.h>
#include "ppembed.h"

main () { /* with
ppembed high-level api */
 int failflag;
 PyObject *pinst;
 char *arg1="sir", *arg2="robin", *cstr;

 failflag = PP_Run_Function("module", "klass", "O",
&pinst, "()") ||
 PP_Run_Method(pinst, "method", "s", &cstr,
"(ss)", arg1, arg2);

 printf("%s\n", (!failflag) ? cstr : "Can't call
objects");
 Py_XDECREF(pinst); free(cstr);
}

This file uses two ppembed calls (the names that start with "PP") to make the class
instance and call its method. Because ppembed handles error checks, reference
counts, data conversions, and so on, there isn't much else to do here. When this
program is run and linked with ppembed library code, it works like the original, but is
much easier to read, write, and debug:

[mark@toy ~/.../PP2E/Integrate/Embed/ApiClients]$ objects-
api
brave sir robin

20.6.2 Running Code Strings with ppembed

The ppembed API provides higher-level calls for most of the embedding techniques
we've seen in this chapter. For example, the C program in Example 20-16 runs code
strings to make the string module capitalize a simple text.

Example 20-16. PP2E\Integrate\Embed\ApiClients\codestring-low.c

#include <Python.h> /* standard API defs */

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1208

void error(char *msg) { printf("%s\n", msg); exit(1); }

main() {
 /* run strings with low-level calls */
 char *cstr;
 PyObject *pstr, *pmod, *pdict; /* with
error tests */
 Py_Initialize();

 /* result = string.upper('spam') + '!' */
 pmod = PyImport_ImportModule("string"); /* fetch
module */
 if (pmod == NULL) /* for
name-space */
 error("Can't import module");

 pdict = PyModule_GetDict(pmod); /*
string.__dict__ */
 Py_DECREF(pmod);
 if (pdict == NULL)
 error("Can't get module dict");

 pstr = PyRun_String("upper('spam') + '!'",
Py_eval_input, pdict, pdict);
 if (pstr == NULL)
 error("Error while running string");

 /* convert result to C */
 if (!PyArg_Parse(pstr, "s", &cstr))
 error("Bad result type");
 printf("%s\n", cstr);
 Py_DECREF(pstr); /* free exported objects, not
pdict */
}

This C program file includes politically correct error tests after each API call. When
run, it prints the result returned by running an uppercase conversion call in the
namespace of the Python string module:

[mark@toy ~/.../PP2E/Integrate/Embed/ApiClients]$
codestring-low
SPAM!

You can implement such integrations by calling Python API functions directly, but you
don't necessarily have to. With a higher-level embedding API like ppembed, the task
can be noticeably simpler, as shown in Example 20-17.

Example 20-17. PP2E\Integrate\Embed\ApiClients\codestring-api.c

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1209

#include "ppembed.h"
#include <stdio.h>
 /* with ppembed
high-level api */
main() {
 char *cstr;
 int err = PP_Run_Codestr(
 PP_EXPRESSION, /*
expr or stmt? */
 "upper('spam') + '!'", "string", /*
code, module */
 "s", &cstr); /*
expr result */
 printf("%s\n", (!err) ? cstr : "Can't run string"); /*
and free(cstr) */
}

When linked with the ppembed library code, this version produces the same result as
the former. Like most higher-level APIs, ppembed makes some usage mode
assumptions that are not universally applicable; when they match the embedding
task at hand, though, such wrapper calls can cut much clutter from programs that
need to run embedded Python code.

20.6.3 Running Customizable Validations

Embedded Python code can do useful work as well. For instance, the C program in
Example 20-18 calls ppembed functions to run a string of Python code fetched from
a file that performs validation tests on inventory data. To save space, I'm not going
list all the components used by this example (though you can find them at
http://examples.oreilly.com/python2). Still, this file shows the embedding portions
relevant to this chapter: it sets variables in the Python code's namespace to serve as
input, runs the Python code, and then fetches names out of the code's namespace as
results.[8]

[8] This is more or less the kind of structure used when Python is embedded in HTML files in
the Active Scripting extension, except that the globals set here (e.g., PRODUCT) become names
preset to web browser objects, and the code is extracted from a web page, not fetched from a
text file with a known name. See Chapter 15.

Example 20-18. PP2E\Integrate\Embed\Inventory\order-string.c

/* run embedded code-string validations */

#include <ppembed.h>
#include <stdio.h>
#include <string.h>
#include "ordersfile.h"

run_user_validation()

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1210

{ /* python is initialized
automatically */
 int i, status, nbytes; /* caveat: should check
status everywhere */
 char script[4096]; /* caveat: should malloc
a big-enough block */
 char *errors, *warnings;
 FILE *file;

 file = fopen("validate1.py", "r"); /*
customizable validations */
 nbytes = fread(script, 1, 4096, file); /* load
python file text */
 script[nbytes] = '\0';

 status = PP_Make_Dummy_Module("orders"); /*
application's own namespace */
 for (i=0; i < numorders; i++) { /* like
making a new dictionary */
 printf("\n%d (%d, %d, '%s')\n",
 i, orders[i].product, orders[i].quantity,
orders[i].buyer);

 PP_Set_Global("orders", "PRODUCT", "i",
orders[i].product); /* int */
 PP_Set_Global("orders", "QUANTITY", "i",
orders[i].quantity); /* int */
 PP_Set_Global("orders", "BUYER", "s",
orders[i].buyer); /* str */

 status = PP_Run_Codestr(PP_STATEMENT, script,
"orders", "", NULL);
 if (status == -1) {
 printf("Python error during validation.\n");
 PyErr_Print(); /* show traceback */
 continue;
 }

 PP_Get_Global("orders", "ERRORS", "s", &errors);
/* can split */
 PP_Get_Global("orders", "WARNINGS", "s",
&warnings); /* on blanks */

 printf("errors: %s\n", strlen(errors)? errors :
"none");
 printf("warnings: %s\n", strlen(warnings)? warnings
: "none");

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1211

 free(errors); free(warnings);
 PP_Run_Function("inventory", "print_files", "",
NULL, "()");
 }
}

main(int argc, char **argv) /* C is on top, Python
is embedded */
{ /* but Python can use C
extensions too */
 run_user_validation(); /* don't need sys.argv
in embedded code */
}

There are a couple of things worth noticing here. First of all, in practice this program
might fetch the Python code file's name or path from configurable shell variables;
here, it is loaded from the current directory. Secondly, you could also code this
program by using straight API calls instead of ppembed, but each of the "PP" calls
here would then grow into a chunk of more complex code. As coded, you can compile
and link this file with Python and ppembed library files to build a program. The
Python code run by the resulting C program lives in Example 20-19; it uses preset
globals and is assumed to set globals to send result strings back to C.

Example 20-19. PP2E\Integrate\Embed\Inventory\validate1.py

embedded validation code, run from C
input vars: PRODUCT, QUANTITY, BUYER
output vars: ERRORS, WARNINGS

import string # all python tools are available
to embedded code
import inventory # plus C extensions, Python
modules, classes,..
msgs, errs = [], [] # warning, error message lists

def validate_order():
 if PRODUCT not in inventory.skus(): # this
function could be imported
 errs.append('bad-product') # from a user-
defined module too
 elif QUANTITY > inventory.stock(PRODUCT):
 errs.append('check-quantity')
 else:
 inventory.reduce(PRODUCT, QUANTITY)
 if inventory.stock(PRODUCT) / QUANTITY < 2:
 msgs.append('reorder-soon:' + `PRODUCT`)

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1212

first, last = BUYER[0], BUYER[1:] # code is
changeable on-site:
if first not in string.uppercase: # this file is
run as one long
 errs.append('buyer-name:' + first) # code-string,
with input and
if BUYER not in inventory.buyers(): # output
vars used by the C app
 msgs.append('new-buyer-added')
 inventory.add_buyer(BUYER)
validate_order()

ERRORS = string.join(errs) # add a space between
messages
WARNINGS = string.join(msgs) # pass out as strings: ""
== none

Don't sweat the details in this code; some components it uses are not listed here
either (see http://examples.oreilly.com/python2 for the full implementation). The
thing you should notice, though, is that this code file can contain any kind of Python
code -- it can define functions and classes, use sockets and threads, and so on.
When you embed Python, you get a full-featured extension language for free.
Perhaps even more importantly, because this file is Python code, it can be changed
arbitrarily without having to recompile the C program. Such flexibility is especially
useful after a system has been shipped and installed.

As discussed earlier, there is a variety of ways to structure embedded Python code.
For instance, you can implement similar flexibility by delegating actions to Python
functions fetched from module files, as illustrated in Example 20-20.

Example 20-20. PP2E\Integrate\Embed\Inventory\order-func.c

/* run embedded module-function validations */

#include <ppembed.h>
#include <stdio.h>
#include <string.h>
#include "ordersfile.h"

run_user_validation() {
 int i, status; /* should check status
everywhere */
 char *errors, *warnings; /* no file/string or
namespace here */
 PyObject *results;

 for (i=0; i < numorders; i++) {
 printf("\n%d (%d, %d, '%s')\n",

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1213

 i, orders[i].product, orders[i].quantity,
orders[i].buyer);

 status = PP_Run_Function(/*
validate2.validate(p,q,b) */
 "validate2", "validate",
 "O", &results,
 "(iis)", orders[i].product,
 orders[i].quantity,
orders[i].buyer);
 if (status == -1) {
 printf("Python error during validation.\n");
 PyErr_Print(); /* show traceback */
 continue;
 }
 PyArg_Parse(results, "(ss)", &warnings, &errors);
 printf("errors: %s\n", strlen(errors)? errors :
"none");
 printf("warnings: %s\n", strlen(warnings)? warnings
: "none");
 Py_DECREF(results); /* ok to free strings */
 PP_Run_Function("inventory", "print_files", "",
NULL, "()");
 }
}

main(int argc, char **argv) {
 run_user_validation();
}

The difference here is that the Python code file (shown in Example 20-21) is
imported, and so must live on the Python module search path. It also is assumed to
contain functions, not a simple list of statements. Strings can live anywhere -- files,
databases, web pages, and so on, and may be simpler for end users to code. But
assuming that the extra requirements of module functions are not prohibitive,
functions provide a natural communication model in the form of arguments and
return values.

Example 20-21. PP2E\Integrate\Embed\Inventory\validate2.py

embedded validation code, run from C
input = args, output = return value tuple

import string
import inventory

def validate(product, quantity, buyer): # function
called by name

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1214

 msgs, errs = [], [] # via
mod/func name strings
 first, last = buyer[0], buyer[1:]
 if first not in string.uppercase:
 errs.append('buyer-name:' + first)
 if buyer not in inventory.buyers():
 msgs.append('new-buyer-added')
 inventory.add_buyer(buyer)
 validate_order(product, quantity, errs, msgs) #
mutable list args
 return string.join(msgs), string.join(errs) # use
"(ss)" format

def validate_order(product, quantity, errs, msgs):
 if product not in inventory.skus():
 errs.append('bad-product')
 elif quantity > inventory.stock(product):
 errs.append('check-quantity')
 else:
 inventory.reduce(product, quantity)
 if inventory.stock(product) / quantity < 2:
 msgs.append('reorder-soon:' + `product`)

20.6.4 ppembed Implementation

The ppembed API originally appeared as an example in the first edition of this book.
Since then, it has been utilized in real systems and become too large to present here
in its entirety. For instance, ppembed also supports debugging embedded code (by
routing it to the pdb debugger module), dynamically reloading modules containing
embedded code, and other features too complex to illustrate usefully here.

But if you are interested in studying another example of Python embedding calls in
action, ppembed's full source code and makefile live in this directory on the enclosed
CD (see http://examples.oreilly.com/python2):

PP2E\Integration\Embed\HighLevelApi

As a sample of the kinds of tools you can build to simplify embedding, the ppembed
API's header file is shown in Example 20-22. You are invited to study, use, copy, and
improve its code as you like. Or simply write an API of your own; the main point to
take from this section is that embedding programs need only be complicated if you
stick with the Python runtime API as shipped. By adding convenience functions such
as those in ppembed, embedding can be as simple as you make it. It also makes
your C programs immune to changes in the Python C core; ideally, only the API must
change if Python ever does.

Be sure to also see file abstract.h in the Python include directory if you are in the
market for higher-level interfaces. That file provides generic type operation calls that
make it easy to do things like creating, filling, indexing, slicing, and concatenating

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1215

Python objects referenced by pointer from C. Also see the corresponding
implementation file, abstract.c, as well as the Python built-in module and type
implementations in the Python source distribution for more examples of lower-level
object access. Once you have a Python object pointer in C, you can do all sorts of
type-specific things to Python inputs and outputs.

Example 20-22. PP2E\Integrate\Embed\HighLevelApi\ppembed.h

/**

 * PPEMBED, VERSION 2.0
 * AN ENHANCED PYTHON EMBEDDED-CALL INTERFACE
 *
 * Wraps Python's run-time embedding API functions for easy
use.
 * Most utilities assume the call is qualified by an
enclosing module
 * (namespace). The module can be a file-name reference or
a dummy module
 * created to provide a namespace for file-less strings.
These routines
 * automate debugging, module (re)loading, input/output
conversions, etc.
 *
 * Python is automatically initialized when the first API
call occurs.
 * Input/output conversions use the standard Python
conversion format
 * codes (described in the C API manual). Errors are
flagged as either
 * a -1 int, or a NULL pointer result. Exported names use
a PP_ prefix
 * to minimize clashes; names in the built-in Python API
use Py prefixes
 * instead (alas, there is no "import" equivalent in C,
just "from*").
 * Also note that the varargs code here may not be portable
to certain
 * C compilers; to do it portably, see the text or file
'vararg.txt'
 * here, or search for string STDARG in Python's source
code files.
 *
 * New in this version/edition: names now have a PP_
prefix, files
 * renamed, compiles to a single .a file, fixed pdb retval
bug for

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1216

 * strings, and char* results returned by the "s" convert
code now
 * point to new char arrays which the caller should free(
) when no
 * longer needed (this was a potential bug in prior
version). Also
 * added new API interfaces for fetching exception info
after errors,
 * precompiling code strings to byte code, and calling
simple objects.
 *
 * Also fully supports Python 1.5 module package imports:
module names
 * in this API can take the form
"package.package.[...].module", where
 * Python maps the package names to a nested directories
path in your
 * file system hierarchy; package dirs all contain
__init__.py files,
 * and the leftmost one is in a directory found on
PYTHONPATH. This
 * API's dynamic reload feature also works for modules in
packages;
 * Python stores the full path name in the sys.modules
dictionary.
 *
 * Caveats: there is no support for advanced things like
threading or
 * restricted execution mode here, but such things may be
added with
 * extra Python API calls external to this API (see the
Python/C API
 * manual for C-level threading calls; see modules rexec
and bastion
 * in the library manual for restricted mode details). For
threading,
 * you may also be able to get by with C threads and
distinct Python
 * namespaces per Python code segments, or Python language
threads
 * started by Python code run from C (see the Python thread
module).
 *
 * Note that Python can only reload Python modules, not C
extensions,
 * but it's okay to leave the dynamic reload flag on even
if you might

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1217

 * access dynamically-loaded C extension modules--in 1.5.2,
Python
 * simply resets C extension modules to their initial
attribute state
 * when reloaded, but doesn't actually reload the C
extension file.

**************/

#ifndef PPEMBED_H
#define PPEMBED_H

#ifdef __cplusplus
extern "C" { /* a C library, but callable from
C++ */
#endif

#include <stdio.h>
#include <Python.h>

extern int PP_RELOAD; /* 1=reload py modules when
attributes referenced */
extern int PP_DEBUG; /* 1=start debugger when
string/function/member run */

typedef enum {
 PP_EXPRESSION, /* which kind of code-string */
 PP_STATEMENT /* expressions and statements
differ */
} PPStringModes;

/***/
/* ppembed-modules.c: load,access module objects */
/***/

extern char *PP_Init(char *modname);
extern int PP_Make_Dummy_Module(char *modname);
extern PyObject *PP_Load_Module(char *modname);
extern PyObject *PP_Load_Attribute(char *modname, char
*attrname);
extern int PP_Run_Command_Line(char *prompt);

/**
/

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1218

/* ppembed-globals.c: read,write module-level variables
*/
/**
/

extern int
 PP_Convert_Result(PyObject *presult, char *resFormat,
void *resTarget);

extern int
 PP_Get_Global(char *modname, char *varname, char
*resfmt, void *cresult);

extern int
 PP_Set_Global(char *modname, char *varname, char
*valfmt, ... /*val*/);

/***/
/* ppembed-strings.c: run strings of Python code */
/***/

extern int /* run C
string of code */
 PP_Run_Codestr(PPStringModes mode, /*
code=expr or stmt? */
 char *code, char *modname, /*
codestr, modnamespace */
 char *resfmt, void *cresult); /*
result type, target */

extern PyObject*
 PP_Debug_Codestr(PPStringModes mode, /* run
string in pdb */
 char *codestring, PyObject *moddict);

extern PyObject *
 PP_Compile_Codestr(PPStringModes mode,
 char *codestr); /*
precompile to bytecode */

extern int
 PP_Run_Bytecode(PyObject *codeobj, /* run a
bytecode object */
 char *modname,
 char *resfmt, void *restarget);

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1219

extern PyObject * /* run
bytecode under pdb */
 PP_Debug_Bytecode(PyObject *codeobject, PyObject
*moddict);

/***/
/* ppembed-callables.c: call functions, classes, etc. */
/***/

extern int
/* mod.func(args) */
 PP_Run_Function(char *modname, char *funcname,
/* func|classname */
 char *resfmt, void *cresult,
/* result target */
 char *argfmt, ... /* arg, arg... */);
/* input arguments*/

extern PyObject*
 PP_Debug_Function(PyObject *func, PyObject *args); /*
call func in pdb */

extern int
 PP_Run_Known_Callable(PyObject *object, /*
func|class|method */
 char *resfmt, void *restarget, /*
skip module fetch */
 char *argfmt, ... /* arg,.. */);

/**
****/
/* ppembed-attributes.c: run object methods, access
members */
/**
****/

extern int
 PP_Run_Method(PyObject *pobject, char *method, /*
uses Debug_Function */
 char *resfmt, void *cresult,
/* output */
 char *argfmt, ... /* arg, arg... */
); /* inputs */

extern int

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1220

 PP_Get_Member(PyObject *pobject, char *attrname,
 char *resfmt, void *cresult);
/* output */

extern int
 PP_Set_Member(PyObject *pobject, char *attrname,
 char *valfmt, ... /* val, val... */
); /* input */

/**
/
/* ppembed-errors.c: get exception data after api error
*/
/**
/

extern void PP_Fetch_Error_Text(); /* fetch (and
clear) exception */

extern char PP_last_error_type[]; /* exception name
text */
extern char PP_last_error_info[]; /* exception data
text */
extern char PP_last_error_trace[]; /* exception
traceback text */

extern PyObject *PP_last_traceback; /* saved exception
traceback object */

#ifdef __cplusplus
}
#endif

#endif (!PPEMBED_H)

20.6.5 Other Integration Examples on the CD

While writing this chapter, I ran out of space before I ran out of examples. Besides
the ppembed API example described in the last section, you can find a handful of
additional Python/C integration self-study examples on this book's CD (see
http://examples.oreilly.com/python2):

PP2E\Integration\Embed\Inventory

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1221

The full implementation of the validation examples listed earlier. This case study
uses the ppembed API to run embedded Python order validations, both as embedded
code strings and as functions fetched from modules. The inventory is implemented
with and without shelves and pickle files for data persistence.

PP2E\Integration\Mixed\Exports

A tool for exporting C variables for use in embedded Python programs.

PP2E\Integration\Embed\TestApi

A simple ppembed test program, shown with and without package import paths to
identify modules.

Some of these are large C examples that are probably better studied than listed.

20.7 Other Integration Topics

In this book, the term integration has largely meant mixing Python with components
written in C or C++ (or other C-compatible languages) in extending and embedding
modes. But from a broader perspective, integration also includes any other
technology that lets us mix Python components into larger systems. This last section
briefly looks at a handful of integration technologies beyond the C API tools we've
seen in this part of the book.

20.7.1 JPython (a.k.a. Jython) Integration

We met JPython in Chapter 15but it is worth another mention in the context of
integration at large. As we saw earlier, JPython supports two kinds of integration:

JPython uses Java's reflection API to allow Python programs to call out to Java class
libraries automatically (extending). The Java reflection API provides Java type
information at runtime, and serves the same purpose as the glue code we've
generated to plug C libraries into Python in this part of the book. In JPython,
however, this runtime type information allows largely automated resolution of Java
calls in Python scripts -- no glue code has to be written or generated.

JPython also provides a Java PythonInterpreter class API that allows Java
programs to run Python code in a namespace (embedding), much like the C API tools
we've used to run Python code strings from C programs. In addition, because
JPython implements all Python objects as instances of a Java PyObject class, it is
straightforward for the Java layer that encloses embedded Python code to process
Python objects.

In other words, JPython allows Python to be both extended and embedded in Java,
much like the C integration strategies we've seen in this part of the book. With the
addition of the JPython system, Python may be integrated with any C-compatible
program by using C API tools, as well as any Java-compatible program by using
JPython.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1222

Although JPython provides a remarkably seamless integration model, Python code
runs slower in the JPython implementation, and its reliance on Java class libraries
and execution environments introduces Java dependencies that may be a concern in
some development scenarios. See Chapter 15 for more JPython details; for the full
story, read the documentation available online at http://www.jython.org (also
available in the JPython package at http://examples.oreilly.com/python2).

20.7.2 COM Integration on Windows

We briefly discussed Python's support for the COM object model on Windows when
we explored Active Scripting in Chapter 15, but it's really a general integration tool
that is useful apart from the Internet too.

Recall that COM defines a standard and language-neutral object model with which
components written in a variety of programming languages may integrate and
communicate. Python's win32all Windows extension package tools allow Python
programs to implement both server and client in the COM interface model.

As such, it provides a powerful way to integrate Python programs with programs
written in other COM-aware languages such as Visual Basic, Delphi, Visual C++,
PowerBuilder, and even other Python programs. Python scripts can also use COM
calls to script popular Microsoft applications such as Word and Excel, since these
systems register COM object interfaces of their own. Moreover, the newcomer Python
implementation (tentatively called Python.NET) for Microsoft's C#/.NET technology
mentioned in Chapter 15 provides another way to mix Python with other Windows
components.

On the downside, COM implies a level of dispatch indirection and is a Windows-only
solution at this writing. Because of that, it is not as fast or as portable as some of the
lower-level integration schemes we've studied in this part of the book (linked-in, in-
process, and direct calls between Python and C-compatible language components).
For nontrivial use, COM is also considered to be a large system, and further details
about it are well beyond the scope of this book.

For more information on COM support and other Windows extensions, refer to
Chapter 15 in this book, and to O'Reilly's Python Programming on Win32. That book
also describes how to use Windows compilers to do Python/C integration in much
more detail than is possible here; for instance, it shows how to use Visual C++ tools
to compile and link Python C/C++ integration layer code. The basic C code behind
low-level extending and embedding on Windows is the same as shown in this book,
but compiling and linking details vary.

20.7.3 CORBA Integration

There is also much support, some of it open source, for using Python in the context
of a CORBA-based application. CORBA stands for the Common Object Request
Broker; it's a language-neutral way to distribute systems among communicating
components, which speak through an object model architecture. As such, it
represents another way to integrate Python components into a larger system.

Python's CORBA support includes the public domain systems ILU (from Xerox) and
fnorb (see http://www.python.org). At this writing, the OMG (Object Management

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1223

Group, responsible for directing CORBA growth) is also playing host to an effort to
elect Python as the standard scripting language for CORBA-based systems. Whether
that ultimately transpires or not, Python is an ideal language for programming
distributed objects, and is being used in such a role by many companies around the
world.

Like COM, CORBA is a large system -- too large for us to even scratch the surface in
this text. For more details, search Python's web site for CORBA-related materials.

20.7.4 Integration Versus Optimization

Given so many integration options, choosing between them can be puzzling. When
should you choose something like COM over writing C extension modules, for
instance? As usual, it depends on why you're interested in mixing external
components into your Python programs in the first place.

Basically, frameworks such as JPython, COM, and CORBA allow Python scripts to
leverage existing libraries of software components, and do a great job of addressing
goals like code reuse and integration. However, they say almost nothing about
optimization: integrated components are not necessarily faster than the Python
equivalents.

On the other hand, Python extension modules and types coded in a compiled
language like C serve two roles: they too can be used to integrate existing
components, but also tend to be a better approach when it comes to boosting
system performance.

20.7.4.1 Framework roles

Let's consider the big picture here. Frameworks such as COM and CORBA can
perhaps be understood as alternatives to the Python/C integration techniques we
met in this part of the book. For example, packaging Python logic as a COM server
makes it available for something akin to embedding -- many languages (including C)
can access it using the COM client-side interfaces we met in Chapter 15. And as we
saw earlier, JPython allows Java to embed and run Python code and objects through
a Java class interface.

Furthermore, frameworks allow Python scripts to use existing component libraries:
standard Java class libraries in JPython, COM server libraries on Windows, and so on.
In such a role, the external libraries exposed by such frameworks are more or less
analogous to Python extension modules. For instance, Python scripts that use COM
client interfaces to access an external object are acting much like importers of C
extension modules (albeit through the COM indirection layer).

20.7.4.2 Extension module roles

Python's C API is designed to serve in many of the same roles. As we've seen, C
extension modules can serve as code reuse and integration tools too -- it's
straightforward to plug existing C and C++ libraries into Python with SWIG. In most
cases, we simply generate and import the glue code created with SWIG to make
almost any existing compiled library available for use in Python scripts[9] . Moreover,

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1224

Python's embedding API allows other languages to run Python code, much like client-
side interfaces in COM.

[9] In fact, it's so easy to plug in libraries with SWIG that extensions are usually best coded
first as simple C/C++ libraries, and later wrapped for use in Python with SWIG. Adding a COM
layer to an existing C library may or may not be as straightforward, but will clearly be less
portable -- COM is currently a Windows-only technology.

One of the primary reasons for writing C extension modules in the first place,
though, is optimization: key parts of Python applications may be implemented or
recoded as C or C++ extension modules to speed up the system at large (as in the
last chapter's stack examples). Moving such components to compiled extension
modules not only improves system performance, but is completely seamless --
module interfaces in Python look the same no matter what programming language
implements the module.

20.7.4.3 Picking an integration technology

By contrast, JPython, COM, and CORBA do not deal directly with optimization goals
at all; they serve only to integrate. For instance, JPython allows Python scripts to
automatically access Java libraries, but generally mandates that non-Python
extensions be coded in Java,a language that is itself usually interpreted and no
speed demon. COM and CORBA focus on the interfaces between components and
leave the component implementation language ambiguous by design. Exporting a
Python class as a COM server, for instance, can make its tools widely reusable on
Windows, but has little to do with performance improvement.

Because of their different focus, frameworks are not quite replacements for the more
direct Python/C extension modules and types we've studied in these last two
chapters, and are less direct (and hence likely slower) than Python's C embedding
API. It's possible to mix-and-match approaches, but the combinations are rarely any
better than their parts. For example, although C libraries can be added to Java with
its native call interface, it's neither a secure nor straightforward undertaking. And
while C libraries can also be wrapped as COM servers to make them visible to Python
scripts on Windows, the end result will probably be slower and no less complex than
a more directly linked-in Python extension module.

As you can see, there are a lot of options in the integration domain. Perhaps the best
parting advice I can give you is simply that different tools are meant for different
tasks. C extension modules and types are ideal at optimizing systems and integrating
libraries, but frameworks offer other ways to integrate components -- JPython for
mixing in Java tools, COM for reusing and publishing objects on Windows, and so on.
As ever, your mileage may vary.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1225

Part VI: The End

This last part of the book wraps up with:

Chapter 21. This chapter discusses Python roles and scope.

Appendix A. This appendix presents Python changes since the first edition.

Appendix B. This appendix gives common Python install and usage details.

Appendix C. This appendix contrasts Python's class model with that of the C++
language, and is intended for C++ developers.

Note that there are no reference appendixes here. For additional reference
resources, consult the Python standard manuals included on this book's CD-ROM
(view CD-ROM content online at http://examples.oreilly.com/python2), or
commercially published reference books such as O'Reilly's Python Pocket Reference.
For additional Python core language material, see O'Reilly's Learning Python. And for
help on other Python-related topics, see the resources mentioned at the end of
Appendix B and at Python's official web site, http://www.python.org.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1226

Chapter 21. Conclusion: Python and the
Development Cycle

21.1 "That's the End of the Book, Now Here's
the Meaning of Life"

21.2 "Something's Wrong with the Way We
Program Computers"

21.3 The "Gilligan Factor"

21.4 Doing the Right Thing

21.5 Enter Python

21.6 But What About That Bottleneck?

21.7 On Sinking the Titanic

21.8 So What's Python: The Sequel

21.9 In the Final Analysis...

21.10 Postscript to the Second Edition

21.1 "That's the End of the Book, Now Here's the
Meaning of Life"

Well, the meaning of Python, anyway. In the introduction to this book I promised
that we'd return to the issue of Python's roles after seeing how it is used in practice.
So in closing, here are some completely subjective comments on the broader
implications of the language.

As I mentioned in the first chapter, Python's focus is on productivity and integration.
I hope that this book has demonstrated some of the benefits of that focus in action.
In this conclusion, let's now go back to the forest -- to revisit Python's roles in more
concrete terms. In particular, Python's role as a prototyping tool can profoundly
affect the development cycle.

21.2 "Something's Wrong with the Way We Program
Computers"

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1227

This has to be one of the most overused lines in the business. Still, given time to
ponder the big picture, most of us would probably agree that we're not quite "there"
yet. Over the last few decades, the computer software industry has made significant
progress on streamlining the development task (anyone remember dropping punch
cards?). But at the same time, the cost of developing potentially useful computer
applications is often still high enough to make them impractical.

Moreover, systems built using modern tools and paradigms are often delivered far
behind schedule. Software engineering remains largely defiant of the sort of
quantitative measurements employed in other engineering fields. In the software
world, it's not uncommon to take one's best time estimate for a new project and
multiply by a factor of two or three to account for unforeseen overheads in the
development task. This situation is clearly unsatisfactory for software managers,
developers, and end users.

21.3 The "Gilligan Factor"

It has been suggested (tongue in cheek) that if there were a patron saint of software
engineers, the honor would fall on none other than Gilligan, the character in the
pervasively popular American television show of the 1960s, Gilligan's Island. Gilligan
is the enigmatic, sneaker-clad first mate, widely held to be responsible for the
shipwreck that stranded the now-residents of the island.

To be sure, Gilligan's situation seems oddly familiar. Stranded on a desert island with
only the most meager of modern technological comforts, Gilligan and his cohorts
must resort to scratching out a living using the resources naturally available. In
episode after episode, we observe the Professor developing exquisitely intricate tools
for doing the business of life on their remote island, only to be foiled in the
implementation phase by the ever-bungling Gilligan.

But clearly it was never poor Gilligan's fault. How could one possibly be expected to
implement designs for such sophisticated applications as home appliances and
telecommunications devices, given the rudimentary technologies available in such an
environment? He simply lacked the proper tools. For all we know, Gilligan may have
had the capacity for engineering on the grandest level. But you can't get there with
bananas and coconuts.

And pathologically, time after time, Gilligan wound up inadvertently sabotaging the
best of the Professor's plans; misusing, abusing, and eventually destroying his
inventions. If he could just pedal his makeshift stationary bicycle faster and faster
(he was led to believe), all would be well. But in the end, inevitably, the coconuts
were sent hurling into the air, the palm branches came crashing down around his
head, and poor Gilligan was blamed once again for the failure of the technology.

Dramatic though this image may be, some observers would consider it a striking
metaphor for the software industry. Like Gilligan, we software engineers are often
asked to perform tasks with arguably inappropriate tools. Like Gilligan, our intentions
are sound, but technology can hold us back. And like poor Gilligan, we inevitably
must bear the brunt of management's wrath when our systems are delivered behind
schedule. You can't get there with bananas and coconuts . . .

21.4 Doing the Right Thing

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1228

Of course, the Gilligan factor is a exaggeration, added for comic effect. But few
would argue that the bottleneck between ideas and working systems has
disappeared completely. Even today, the cost of developing software far exceeds the
cost of computer hardware. Why must programming be so complex?

Let's consider the situation carefully. By and large, the root of the complexity in
developing software isn't related to the role it's supposed to perform -- usually this is
a well-defined real-world process. Rather, it stems from the mapping of real-world
tasks onto computer-executable models. And this mapping is performed in the
context of programming languages and tools.

The path toward easing the software bottleneck must therefore lie, at least partially,
in optimizing the act of programming itself by deploying the right tools. Given this
realistic scope, there's much that can be done now -- there are a number of purely
artificial overheads inherent in our current tools.

21.4.1 The Static Language Build Cycle

Using traditional static languages, there is an unavoidable overhead in moving from
coded programs to working systems: compile and link steps add a built-in delay to
the development process. In some environments, it's common to spend many hours
each week just waiting for a static language application's build cycle to finish. Given
that modern development practice involves an iterative process of building, testing,
and rebuilding, such delays can be expensive and demoralizing (if not physically
painful).

Of course, this varies from shop to shop, and in some domains the demand for
performance justifies build-cycle delays. But I've worked in C++ environments where
programmers joked about having to go to lunch whenever they recompiled their
systems. Except they weren't really joking.

21.4.2 Artificial Complexities

With many traditional programming tools, you can easily lose the forest for the
trees: the act of programming becomes so complex that the real-world goal of the
program is obscured. Traditional languages divert valuable attention to syntactic
issues and development of bookkeeping code. Obviously, complexity isn't an end in
itself; it must be clearly warranted. Yet some of our current tools are so complex
that the language itself makes the task harder and lengthens the development
process.

21.4.3 One Language Does Not Fit All

Many traditional languages implicitly encourage homogeneous, single-language
systems. By making integration complex, they impede the use of multiple-language
tools; therefore, instead of being able to select the right tool for the task at hand,
developers are often compelled to use the same language for every component of an
application. Since no language is good at everything, this constraint inevitably
sacrifices both product functionality and programmer productivity.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1229

Until our machines are as clever at taking directions as we are (arguably, not the
most rational of goals), the task of programming won't go away. But for the time
being, we can make substantial progress by making the mechanics of that task
easier. And this topic is what I want to talk about now.

21.5 Enter Python

If this book has achieved its goals, you should by now have a good understanding of
why Python has been called a "next-generation scripting language." Compared with
similar tools, it has some critical distinctions that we're finally in a position to
summarize:

Tcl

Like Tcl, Python can be used as an embedded extension language. Unlike Tcl, Python
is also a full-featured programming language. For many, Python's data structure
tools and support for programming-in-the-large make it useful in more domains. Tcl
demonstrated the utility of integrating interpreted languages with C modules. Python
provides similar functionality plus a powerful, object-oriented language; it's not just
a command string processor.

Perl

Like Perl, Python can be used for writing shell tools, making it easy to use system
services. Unlike Perl, Python has a simple, readable syntax and a remarkably
coherent design. For some, this makes Python easier to use and a better choice for
programs that must be reused or maintained by others. Without question, Perl is a
powerful system administration tool. But once we move beyond processing text and
files, Python's features become attractive.

Scheme/Lisp

Like Scheme (and Lisp), Python supports dynamic typing, incremental development,
and metaprogramming; it exposes the interpreter's state and supports runtime
program construction. Unlike Lisp, Python has a procedural syntax that is familiar to
users of mainstream languages such as C and Pascal. If extensions are to be coded
by end users, this can be a major advantage.

Smalltalk

Like Smalltalk, Python supports object-oriented programming (OOP) in the context of
a highly dynamic language. Unlike Smalltalk, Python doesn't extend the object
system to include fundamental program control flow constructs. Users need not
come to grips with the concept of if statements as message-receiving objects to use
Python -- Python is more conventional.

Icon

Like Icon, Python supports a variety of high-level datatypes and operations such as
lists, dictionaries, and slicing. Unlike Icon, Python is fundamentally simple.
Programmers (and end users) don't need to master esoteric concepts such as
backtracking just to get started.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1230

BASIC

Like modern structured BASIC dialects, Python has an interpretive/interactive
nature. Unlike most BASICs, Python includes standard support for advanced
programming features such as classes, modules, exceptions, high-level datatypes,
and general C integration.

All of these languages (and others) have merit and unique strengths of their own --
in fact, Python borrowed most of its features from languages such as these. It's not
Python's goal to replace every other language; different tasks require different tools,
and mixed-language development is one of Python's main ideas. But Python's blend
of advanced programming constructs and integration tools make it a natural choice
for the problem domains we've talked about in this book.

21.6 But What About That Bottleneck?

Back to our original question: how can the act of writing software be made easier? At
some level, Python is really "just another computer language." It's certainly true that
Python the language doesn't represent much that's radically new from a theoretical
point of view. So why should we be excited about Python when so many languages
have been tried already?

What makes Python of interest, and what may be its larger contribution to the
development world, is not its syntax or semantics, but its world view: Python's
combination of tools makes rapid development a realistic goal. In a nutshell, Python
fosters rapid development by providing features like these:

Fast build-cycle turnaround

A very high-level, object-oriented language

Integration facilities to enable mixed-language development

Specifically, Python attacks the software development bottleneck on four fronts,
described in the following sections.

21.6.1 Python Provides Immediate Turnaround

Python's development cycle is dramatically shorter than that of traditional tools. In
Python, there are no compile or link steps -- Python programs simply import modules
at runtime and use the objects they contain. Because of this, Python programs run
immediately after changes are made. And in cases where dynamic module reloading
can be used, it's even possible to change and reload parts of a running program
without stopping it at all. Figure 21-1 shows Python's impact on the development
cycle.

Figure 21-1. Development cycles

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1231

Because Python is interpreted, there's a rapid turnaround after program changes.
And because Python's parser is embedded in Python-based systems, it's easy to
modify programs at runtime. For example, we saw how GUI programs developed
with Python allow developers to change the code that handles a button press while
the GUI remains active; the effect of the code change may be observed immediately
when the button is pressed again. There's no need to stop and rebuild.

More generally, the entire development process in Python is an exercise in rapid
prototyping. Python lends itself to experimental, interactive program development,
and encourages developing systems incrementally by testing components in isolation
and putting them together later. In fact, we've seen that we can switch from testing
components (unit tests) to testing whole systems (integration tests) arbitrarily, as
illustrated in Figure 21-2.

Figure 21-2. Incremental development

21.6.2 Python Is "Executable Pseudocode"

Python's very high-level nature means there's less for us to program and manage.
Lack of compile and link steps isn't really enough to address the development- cycle
bottleneck by itself. For instance, a C or C++ interpreter might provide fast

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1232

turnaround but still be almost useless for rapid development: the language is too
complex and low-level.

But because Python is also a simple language, coding is dramatically faster too. For
example, its dynamic typing, built-in objects, and garbage collection eliminate much
of the manual bookkeeping code required in lower-level languages such as C and
C++. Since things like type declarations, memory management, and common data
structure implementations are all conspicuously absent, Python programs are
typically a fraction of the size of their C or C++ equivalents. There's less to write and
read, and thus less opportunity for coding errors.

Because most bookkeeping code is missing, Python programs are easier to
understand and more closely reflect the actual problem they're intended to address.
And Python's high-level nature not only allows algorithms to be realized more
quickly, but also makes it easier to learn the language.

21.6.3 Python Is OOP Done Right

For OOP to be useful, it must be easy to apply. Python makes OOP a flexible tool by
delivering it in a dynamic language. More importantly, its class mechanism is a
simplified subset of C++'s, and it's this simplification that makes OOP useful in the
context of a rapid-development tool. For instance, when we looked at data structure
classes in this book, we saw that Python's dynamic typing let us apply a single class
to a variety of object types; we didn't need to write variants for each supported type.

In fact, Python's OOP is so easy to use that there's really no reason not to apply it in
most parts of an application. Python's class model has features powerful enough for
complex programs, yet because they're provided in simple ways, they don't interfere
with the problem we're trying to solve.

21.6.4 Python Fosters Hybrid Applications

As we've seen earlier in this book, Python's extending and embedding support makes
it useful in mixed-language systems. Without good integration facilities, even the
best rapid-development language is a "closed box" and not generally useful in
modern development environments. But Python's integration tools make it usable in
hybrid, multicomponent applications. As one consequence, systems can
simultaneously utilize the strengths of Python for rapid development, and of
traditional languages such as C for rapid execution.

While it's possible to use Python as a standalone tool, it doesn't impose this mode.
Instead, Python encourages an integrated approach to application development. By
supporting arbitrary mixtures of Python and traditional languages, Python fosters a
spectrum of development paradigms, ranging from pure prototyping to pure
efficiency. Figure 21-3 shows the abstract case.

Figure 21-3. The development mode "slider"

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1233

As we move to the left extreme of the spectrum, we optimize speed of development.
Moving to the right side optimizes speed of execution. And somewhere in between is
an optimum mix for any given project. With Python, not only can we pick the proper
mix for our project, but we can also later move the RAD slider in the picture
arbitrarily as our needs change:

Going to the right

Projects can be started on the left end of the scale in Python and gradually moved
toward the right, module by module, as needed to optimize performance for delivery.

Going to the left

Similarly, we can move strategic parts of existing C or C++ applications on the right
end of the scale to Python, to support end-user programming and customization on
the left end of the scale.

This flexibility of development modes is crucial in realistic environments. Python is
optimized for speed of development, but that alone isn't enough. By themselves,
neither C nor Python is adequate to address the development bottleneck; together,
they can do much more. As shown in Figure 21-4, for instance, apart from
standalone use, one of Python's most common roles splits systems into frontend
components that can benefit from Python's ease-of use and backend modules that
require the efficiency of static languages like C, C++, or FORTRAN.

Whether we add Python frontend interfaces to existing systems or design them in
early on, such a division of labor can open up a system to its users without exposing
its internals.

Figure 21-4. Hybrid designs

When developing new systems, we also have the option of writing entirely in Python
at first and then optimizing as needed for delivery by moving performance-critical
components to compiled languages. And because Python and C modules look the
same to clients, migration to compiled extensions is transparent.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1234

Prototyping doesn't make sense in every scenario. Sometimes splitting a system into
a Python frontend and a C/C++ backend up front works best. And prototyping
doesn't help much when enhancing existing systems. But where it can be applied,
early prototyping can be a major asset. By prototyping in Python first, we can show
results more quickly. Perhaps more critically, end users can be closely involved in the
early stages of the process, as sketched in Figure 21-5. The result is systems that
more closely reflect their original requirements.

Figure 21-5. Prototyping with Python

21.7 On Sinking the Titanic

In short, Python is really more than a language; it implies a development philosophy.
The concepts of prototyping, rapid development, and hybrid applications certainly
aren't new. But while the benefits of such development modes are widely recognized,
there has been a lack of tools that make them practical without sacrificing
programming power. This is one of the main gaps that Python's design fills: Python
provides a simple but powerful rapid development language, along with the
integration tools needed to apply it in realistic development environments.

This combination arguably makes Python unique among similar tools. For instance,
Tcl is a good integration tool but not a full-blown language; Perl is a powerful system
administration language but a weak integration tool. But Python's marriage of a
powerful dynamic language and integration opens the door to fundamentally faster
development modes. With Python, it's no longer necessary to choose between fast
development and fast execution.

By now, it should be clear that a single programming language can't satisfy all our
development goals. In fact, our needs are sometimes contradictory: the goals of
efficiency and flexibility will probably always clash. Given the high cost of making
software, the choice between development and execution speed is crucial. Although
machine cycles are cheaper than programmers, we can't yet ignore efficiency
completely.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1235

But with a tool like Python, we don't need to decide between the two goals at all.
Just as a carpenter wouldn't drive a nail with a chainsaw, software engineers are now
empowered to use the right tool for the task at hand: Python when speed of
development matters, compiled languages when efficiency dominates, and
combinations of the two when our goals are not absolute.

Moreover, we don't have to sacrifice code reuse or rewrite exhaustively for delivery
when applying rapid development with Python. We can have our rapid development
cake and eat it too:

Reusability

Because Python is a high-level, object-oriented language, it encourages writing
reusable software and well-designed systems.

Deliverability

Because Python is designed for use in mixed-language systems, we don't have to
move to more efficient languages all at once.

In typical Python development, a system's frontend and infrastructure may be
written in Python for ease of development and modification, but the kernel is still
written in C or C++ for efficiency. Python has been called the tip of the iceberg in
such systems -- the part visible to end users of a package, as captured in Figure 21-
6.

Figure 21-6. "Sinking the Titanic" with mixed-language systems

Such an architecture uses the best of both worlds: it can be extended by adding
more Python code or by writing C extension modules, depending on performance
requirements. But this is just one of many mixed-language development scenarios:

System interfaces

Packaging code as Python extension modules makes it more accessible.

End-user customization

Delegating logic to embedded Python code provides for onsite changes.

Pure prototyping

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1236

Python prototypes can be moved to C all at once or piecemeal.

Legacy code migration

Moving existing code from C to Python makes it simpler and more flexible.

Standalone use

Of course, using Python all by itself leverages its existing library of tools.

Python's design lets us apply it in whatever way makes sense for each project.

21.8 So What's Python: The Sequel

As we've seen in this book, Python is a multifaceted tool, useful in a wide variety of
domains. What can we say about Python to sum up here? In terms of some of its
best attributes, the Python language is:

General-purpose

Object-oriented

Interpreted

Very high-level

Openly designed

Widely portable

Freely available

And refreshingly coherent

Python is useful for both standalone development and extension work, and optimized
to boost developer productivity on many fronts. But the real meaning of Python is
really up to you, the reader. Since Python is a general-purpose tool, what it "is"
depends on how you choose to use it.

21.9 In the Final Analysis...

I hope this book has taught you something about Python, both the language and its
roles. Beyond this text, there is really no substitute for doing some original Python
programming. Be sure to grab a reference source or two to help you along the way.

The task of programming computers will probably always be challenging. Perhaps
happily, there will continue to be a need for intelligent software engineers, skilled at
translating real-world tasks into computer-executable form, at least for the
foreseeable future. (After all, if it were too easy, none of us would get paid. :-)

But current development practice and tools make our tasks unnecessarily difficult:
many of the obstacles faced by software developers are purely artificial. We have

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1237

come far in our quest to improve the speed of computers; the time has come to
focus our attentions on improving the speed of development. In an era of constantly
shrinking schedules, productivity must be paramount.

Python, as a mixed-paradigm tool, has the potential to foster development modes
that simultaneously leverage the benefits of rapid development and of traditional
languages. While Python won't solve all the problems of the software industry, it
offers hope for making programming simpler, faster, and at least a little more
enjoyable.

It may not get us off that island altogether, but it sure beats bananas and coconuts.

21.10 Postscript to the Second Edition

One of the luxuries of updating a book like this is that you get an opportunity to
debate yourself, or at least your opinions, from years past. With the benefit of five
years' retrospect, I'd like to add a few comments to the original conclusion.

21.10.1 Integration Isn't Everything

The conclusion for this book's first edition stressed the importance of Python's role as
an integration tool. Although the themes underscored there are still valid, I should
point out that not all Python applications rely explicitly on the ability to be mixed
with components written in other languages. Many developers now use Python in
standalone mode, either not having or not noticing integration layers.

For instance, developers who code CGI Internet scripts with Python often code in
pure Python. Somewhere down the call chain, C libraries are called (to access
sockets, databases, and so on), but Python coders often don't need to care. In fact,
this has proven to be true in my own recent experience as well. While working on the
new GUI, system, and Internet examples for this edition, I worked purely in Python
for long periods of time. A few months later I also worked on a Python/C++
integration framework, but this integration project was entirely separate from the
pure Python book examples programming effort. Many projects are implemented in
Python alone.

That is not to say that Python's integration potential is not one of its most profound
attributes -- indeed, most Python systems are composed of combinations of Python
and C. However, in many cases, the integration layer is implemented once by a
handful of advanced developers, while others perform the bulk of the programming
in Python alone. If you're fortunate enough to count yourself among the latter group,
Python's overall ease of use may seem more crucial than its integration role.

21.10.2 The End of the Java Wars

In 1995, the Python community perceived a conflict between Java and Python in
terms of competition for developer mind-share -- hence the sidebar "Python versus
Java: Round 1?" in the first edition. Since then, this has become virtually a nonissue;
I've even deleted this sidebar completely.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1238

This cooling of hostilities has come about partly because Java's role is now better
understood: Java is recognized as a systems development language, not a scripting
language. That is essentially what the sidebar proposed. Java's complexity is on the
order of C++'s (from which it is derived), making it impractical for scripting work,
where short development cycles are at a premium. This is by design -- Java is meant
for tasks where the extra complexity may make sense. Given the great disparity in
their roles, the Python/Java conflict has fizzled.

The truce has also been called on account of the new JPython implementation of
Python. JPython was described in Chapter 15 ; in short, it integrates Python and Java
programs such that applications can be developed as hybrids: parts can be coded in
Python when scripting is warranted, and in Java for performance-intensive parts.
This is exactly the argument made for C/C++ integration in the conclusion of the
first edition; thanks to JPython, the same reasoning behind hybrid systems now
applies to Java-based applications.

The claims made by the old Java sidebar are still true -- Python is simpler, more
open, and easier to learn and apply. But that is as it should be: as a scripting
language, Python naturally complements systems languages like Java and C++,
rather than competing with them. There are still some who would argue that Python
is better suited for many applications now coded in Java. But just as for Python and
C and C++, Python and Java seem to work best as a team.

It's also worth noting that as I write these words, Microsoft has just announced a
new, proprietary language called C# that seems to be intended as a substitute for
Java in Microsoft's systems language offerings. Moreover, a new Python port to the
C#/.NET environment has been announced as well. See Chapter 15 for details -- this
port is roughly to C# what JPython is to Java. Time will tell if C# and Java will do
battle for mindshare. But given that Python integrates with both, the outcome of
these clashes between mega-companies is largely irrelevant; Pythonistas can watch
calmly from the sidelines this time around.

21.10.3 We're Not Off That Island Yet

As I mentioned in the preface to this edition, Python has come far in the last five
years. Companies around the world have adopted it, and Python now boasts a user
base estimated at half a million strong. Yet for all the progress, there is still work to
be done, both in improving and popularizing Python, and in simplifying software
development in general.

As I travel around the world teaching Python classes at companies and organizations,
I still meet many people who are utterly frustrated with the development tools they
are required to use in their jobs. Some even change jobs (or careers) because of
such frustrations. Even well after the onset of the Internet revolution, development
is still harder than it needs to be.

On the other hand, I also meet people who find Python so much fun to use, they
can't imagine going back to their old ways. They use Python both on and off the job
for the pure pleasure of programming.

Five years from now, I hope to report that I meet many more people in the latter
category than the former. After all, Guido may have appeared on the covers of Linux

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1239

Journal and Dr. Dobb's since the first edition of this book, but we still have a bit
more work to do before he makes the cover of Rolling Stone.

A Morality Tale of Perl Versus Python

(The following was posted recently to the rec.humor.funny Usenet
newsgroup by Larry Hastings, and is reprinted here with the original
author's permission. I don't necessarily condone language wars; okay?)

This has been percolating in the back of my mind for a while. It's a scene
from The Empire Strikes Back, reinterpreted to serve a valuable moral
lesson for aspiring programmers.

EXTERIOR: DAGOBAH -- DAY

With Yoda strapped to his back, Luke climbs up one of the many thick vines
that grow in the swamp until he reaches the Dagobah statistics lab. Panting
heavily, he continues his exercises -- grepping, installing new packages,
logging in as root, and writing replacements for two-year-old shell scripts in
Python.

YODA: Code! Yes. A programmer's strength flows from code maintainability.
But beware of Perl. Terse syntax . . . more than one way to do it . . . default
variables. The dark side of code maintainability are they. Easily they flow,
quick to join you when code you write. If once you start down the dark path,
forever will it dominate your destiny, consume you it will.

LUKE: Is Perl better than Python?

YODA: No . . . no . . . no. Quicker, easier, more seductive.

LUKE: But how will I know why Python is better than Perl?

YODA: You will know. When your code you try to read six months from now.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1240

Appendix A. Recent Python Changes

This appendix summarizes prominent changes introduced in Python releases since
the first edition of this book. It is divided into three sections, mostly because the
sections on 1.6 and 2.0 changes were adapted from release note documents:

Changes introduced in Python 2.0 (and 2.1)

Changes introduced in Python 1.6

Changes between the first edition and Python 1.5.2

Python 1.3 was the most recent release when the first edition was published
(October 1996), and Python 1.6 and 2.0 were released just before this second
edition was finished. 1.6 was the last release posted by CNRI, and 2.0 was released
from BeOpen (Guido's two employers prior to his move to Digital Creations); 2.0
adds a handful of features to 1.6.

With a few notable exceptions, the changes over the last five years have introduced
new features to Python, but have not changed it in incompatible ways. Many of the
new features are widely useful (e.g., module packages), but some seem to address
the whims of Python gurus (e.g., list comprehensions) and can be safely ignored by
anyone else. In any event, although it is important to keep in touch with Python
evolution, you should not take this appendix too seriously. Frankly, application
library and tool usage is much more important in practice than obscure language
additions.

For information on the Python changes that will surely occur after this edition's
publication, consult either the resources I maintain at this book's web site
(http://rmi.net/~lutz/about-pp.html), the resources available at Python's web site
(http://www.python.org), or the release notes that accompany Python releases.

A.1 Major Changes in 2.0

This section lists changes introduced in Python release 2.0. Note that third-party
extensions built for Python 1.5.x or 1.6 cannot be used with Python 2.0; these
extensions must be rebuilt for 2.0. Python bytecode files (*.pyc and *.pyo) are not
compatible between releases either.

A.1.1 Core Language Changes

The following sections describe changes made to the Python language itself.

A.1.1.1 Augmented assignment

After nearly a decade of complaints from C programmers, Guido broke down and
added 11 new C-like assignment operators to the language:

+= -= *= /= %= **= <<= >>= &= ^= |=

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1241

The statement A += B is similar to A = A + B except that A is evaluated only once
(useful if it is a complex expression). If A is a mutable object, it may be modified in
place; for instance, if it is a list, A += B has the same effect as A.extend(B).

Classes and built-in object types can override the new operators in order to
implement the in-place behavior; the non-in-place behavior is automatically used as
a fallback when an object does not implement the in-place behavior. For classes, the
method name is the method name for the corresponding non-in-place operator
prepended with an "i" (e.g., __iadd__ implements in-place __add__).

A.1.1.2 List comprehensions

A new expression notation was added for lists whose elements are computed from
another list (or lists):

[<expression> for <variable> in <sequence>]

For example, [i**2 for i in range(4)] yields the list [0,1,4,9]. This is more
efficient than using map with a lambda, and at least in the context of scanning lists,
avoids some scoping issues raised by lambdas (e.g., using defaults to pass in
information from the enclosing scope). You can also add a condition:

[<expression> for <variable> in <sequence> if <condition>]

For example, [w for w in words if w == w.lower()] yields the list of words that
contain no uppercase characters. This is more efficient than filter with a lambda.
Nested for loops and more than one if is supported as well, though using this
seems to yield code that is as complex as nested maps and lambdas (see Python
manuals for more details).

A.1.1.3 Extended import statements

Import statements now allow an "as" clause (e.g., import mod as name), which saves
an assignment of an imported module's name to another variable. This works with
from statements and package paths too (e.g., from mod import var as name. The
word "as" was not made a reserved word in the process. (To import odd filenames
that don't map to Python variable names, see the __import_ _ built-in function.)

A.1.1.4 Extended print statement

The print statement now has an option that makes the output go to a different file
than the default sys.stdout. For instance, to write an error message to sys.stderr,
you can now write:

print >> sys.stderr, "spam"

As a special case, if the expression used to indicate the file evaluates to None, the
current value of sys.stdout is used (like not using >> at all). Note that you can
always write to file objects such as sys.stderr by calling their write method; this
optional extension simply adds the extra formatting performed by the print
statement (e.g., string conversion, spaces between items).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1242

A.1.1.5 Optional collection of cyclical garbage

Python is now equipped with a garbage collector that can hunt down cyclical
references between Python objects. It does not replace reference counting (and in
fact depends on the reference counts being correct), but can decide that a set of
objects belongs to a cycle if all their reference counts are accounted for in their
references to each other. A new module named gc lets you control parameters of the
garbage collection; an option to the Python "configure" script lets you enable or
disable the garbage collection. (See the 2.0 release notes or the library manual to
check if this feature is enabled by default or not; because running this extra garbage
collection step periodically adds performance overheads, the decision on whether to
turn it on by default is pending.)

A.1.2 Selected Library Changes

This is a partial list of standard library changes introduced by Python release 2.0; see
2.0 release notes for a full description of the changes.

A.1.2.1 New zip function

A new function zip was added: zip(seq1,seq2,...) is equivalent to
map(None,seq1,seq2,...) when the sequences have the same length. For instance,
zip([1, 2, 3], [10, 20, 30]) returns [(1,10), (2,20), (3,30)]. When the lists
are not all the same length, the shortest list defines the result's length.

A.1.2.2 XML support

A new standard module named pyexpat provides an interface to the Expat XML
parser. A new standard module package named xml provides assorted XML support
code in (so far) three subpackages: xml.dom , xml.sax , and xml.parsers.

A.1.2.3 New web browser module

The new webbrowser module attempts to provide a platform-independent API to
launch a web browser. (See also the LaunchBrowser script at the end of Chapter 4.)

A.1.3 Python/C Integration API Changes

Portability was ensured to 64-bit platforms under both Linux and Win64, especially
for the new Intel Itanium processor. Large file support was also added for Linux64
and Win64.

The garbage collection changes resulted in the creation of two new slots on an
object, tp_traverse and tp_clear. The augmented assignment changes result in
the creation of a new slot for each in-place operator. The GC API creates new
requirements for container types implemented in C extension modules. See
Include/objimpl.h in the Python source distribution.

A.1.4 Windows Changes

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1243

New popen2, popen3, and popen4 calls were added in the os module.

The os.popen call is now much more usable on Windows 95 and 98. To fix this call
for Windows 9x, Python internally uses the w9xpopen.exe program in the root of
your Python installation (it is not a standalone program). See Microsoft Knowledge
Base article Q150956 for more details.

Administrator privileges are no longer required to install Python on Windows NT or
Windows 2000. The Windows installer also now installs by default in \Python20\ on
the default volume (e.g., C:\Python20), instead of the older-style \Program
Files\Python-2.0\.

The Windows installer no longer runs a separate Tcl/Tk installer; instead, it installs
the needed Tcl/Tk files directly in the Python directory. If you already have a Tcl/Tk
installation, this wastes some disk space (about 4 MB) but avoids problems with
conflicting Tcl/Tk installations and makes it much easier for Python to ensure that
Tcl/Tk can find all its files.

Python 2.1 Alpha Features

Like the weather in Colorado, if you wait long enough, Python's feature set
changes. Just before this edition went to the printer, the first alpha release
of Python 2.1 was announced. Among its new weapons are these:

Functions can now have arbitrary attributes attached to them; simply assign
to function attribute names to associate extra information with the function
(something coders had been doing with formatted documentation stings).

A new rich comparison extension now allows classes to overload individual
comparison operators with distinct methods (e.g., __lt__ overloads <
tests), instead of trying to handle all tests in the single __cmp__ method.

A warning framework provides an interface to messages issued for use of
deprecated features (e.g., the regex module).

The Python build system has been revamped to use the Distutils
package.

A new sys.displayhook attribute allows users to customize the way
objects are printed at the interactive prompt.

Line-by-line file input/output (the file readline method) was made much
faster, and a new xreadlines file method reads just one line at a time in
for loops.

Also: the numeric coercion model used in C extensions was altered, modules
may now set an __all__ name to specify which names they export for
from * imports, the ftplib module now defaults to "passive" mode to
work better with firewalls, and so on.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1244

Other enhancements, such as statically nested scopes and weak references,
were still on the drawing board in the alpha release.

As usual, of course, you should consult this book's web page
(http://www.rmi.net/~lutz/about-pp.html) and Python 2.1 and later release
notes for Python developments that will surely occur immediately after I
ship this insert off to my publisher.

A.2 Major Changes in 1.6

This section lists changes introduced by Python release 1.6; by proxy, most are part
of release 2.0 as well.

A.2.1 Incompatibilities

The append method for lists can no longer be invoked with more than one argument.
This used to append a single tuple made out of all arguments, but was
undocumented. To append a tuple, write l.append((a, b, c)).

The connect, connect_ex, and bind methods for sockets require exactly one
argument. Previously, you could call s.connect(host, port), but this was not by
design; you must now write s.connect((host, port)).

The str and repr functions are now different more often. For long integers, str no
longer appends an "L"; str(1L) is "1", which used to be "1L", and repr(1L) still
returns "1L". For floats, repr now gives 17 digits of precision to ensure that no
precision is lost (on all current hardware).

Some library functions and tools have been moved to the deprecated category,
including some widely used tools such as find. The string module is now simply a
frontend to the new string methods, but given that this module is used by almost
every Python module written to date, it is very unlikely to go away.

A.2.2 Core Language Changes

The following sections describe changes made to the Python language itself.

A.2.2.1 Unicode strings

Python now supports Unicode (i.e., 16-bit wide character) strings. Release 1.6 added
a new fundamental datatype (the Unicode string), a new built-in function unicode,
and numerous C APIs to deal with Unicode and encodings. Unicode string constants
are prefixed with the letter "u", much like raw strings (e.g., u"..."). See the file
Misc/unicode.txt in your Python distribution for details, or visit web site
http://starship.python.net/crew/lemburg/unicode-proposal.txt.

A.2.2.2 String methods

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1245

Many of the functions in the string module are now available as methods of string
objects. For instance, you can now say str.lower() instead of importing the
string module and saying string.lower(str). The equivalent of
string.join(sequence,delimiter) is delimiter.join(sequence). (That is, you
use " ".join(sequence) to mimic string.join(sequence)).

A.2.2.3 New (internal) regular expression engine

The new regular expression engine, SRE, is fully backward-compatible with the old
engine, and is invoked using the same interface (the re module). That is, the re
module's interface remains the way to write matches, and is unchanged; it is simply
implemented to use SRE. You can explicitly invoke the old engine by importing pre,
or the SRE engine by importing sre. SRE is faster than pre, and supports Unicode
(which was the main reason to develop yet another underlying regular expression
engine).

A.2.2.4 apply-like function calls syntax

Special function call syntax can be used instead of the apply function: f(*args,
**kwds) is equivalent to apply(f, args, kwds). You can also use variations like
f(a1, a2, *args, **kwds), and can leave one or the other out (e.g., f(*args),
f(**kwds)).

A.2.2.5 String to number conversion bases

The built-ins int and long take an optional second argument to indicate the
conversion base, but only if the first argument is a string. This makes string.atoi
and string.atol obsolete. (string.atof already was.)

A.2.2.6 Better errors for local name oddities

When a local variable is known to the compiler but undefined when used, a new
exception UnboundLocalError is raised. This is a class derived from NameError, so
code that catches NameError should still work. The purpose is to provide better
diagnostics in the following example:

x = 1
def f():
 print x
 x = x+1

This used to raise a confusing NameError on the print statement.

A.2.2.7 Membership operator overloading

You can now override the in operator by defining a __contains_ _ method. Note
that it has its arguments backward: x in a runs a.__contains__(x) (that's why the
name isn't __in__).

A.2.3 Selected Library Module Changes

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1246

This section lists some of the changes made to the Python standard library.

distutils

New; tools for distributing Python modules.

zipfile

New; read and write zip archives (module gzip does gzip files).

unicodedata

New; access to the Unicode 3.0 database.

_winreg

New; Windows registry access (one without the _ is in progress).

socket , httplib , urllib

Expanded to include optional OpenSSL secure socket support (on Unix only).

_tkinter

Support for Tk versions 8.0 through 8.3.

string

This module no longer uses the built-in C strop module, but takes advantage of the
new string methods to provide transparent support for both Unicode and ordinary
strings.

A.2.4 Selected Tools Changes

This section lists some of the changes made to Python tools.

IDLE

Completely overhauled. See the IDLE home page at http://www.python.org for more
information.

Tools/i18n/pygettext.py

Python equivalent of xgettext message text extraction tool used for
internationalizing applications written in Python.

A.3 Major Changes Between 1.3 and 1.5.2

This section describes significant language, library, tool, and C API changes in Python
between the first edition of this book (Python 1.3) and Python release 1.5.2.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1247

A.3.1 Core Language Changes

The following sections describe changes made to the Python language itself.

A.3.1.1 Pseudo-private class attributes

Python now provides a name-mangling protocol that hides attribute names used by
classes. Inside a class statement, a name of the form _ _X is automatically changed
by Python to _Class_ _X , where Class is the name of the class being defined by
the statement. Because the enclosing class name is prepended, this feature limits
the possibilities of name clashes when you extend or mix existing classes. Note that
this is not a "private" mechanism at all, just a class name localization feature to
minimize name clashes in hierarchies and the shared instance object's namespace at
the bottom of the attribute inheritance links chain.

A.3.1.2 Class exceptions

Exceptions may now take the form of class (and class instance) objects. The intent is
to support exception categories. Because an except clause will now match a raised
exception if it names the raised class or any of its superclasses, specifying
superclasses allows try statements to catch broad categories without listing all
members explicitly (e.g., catching a numeric-error superclass exception will also
catch specific kinds of numeric errors). Python's standard built-in exceptions are now
classes (instead of strings) and have been organized into a shallow class hierarchy;
see the library manual for details.

A.3.1.3 Package imports

Import statements may now reference directory paths on your computer by dotted-
path syntax. For instance:

import directory1.directory2.module # and use path
from directory1.directory2.module import name # and use
"name"

Both load a module nested two levels deep in packages (directories). The leftmost
package name in an import path (directory1) must be a directory within a directory
that is listed in the Python module search path (sys.path initialized from
PYTHONPATH). Thereafter, the import statement's path denotes subdirectories to
follow. Paths prevent module name conflicts when installing multiple Python systems
on the same machine that expect to find their own version of the same module name
(otherwise, only the first on PYTHONPATH wins).

Unlike the older ni module that this feature replaces, the new package support is
always available (without running special imports) and requires each package
directory along an import path to contain a (possibly empty) __init__.py module file
to identify the directory as a package, and serve as its namespace if imported
directly. Packages tend to work better with from than with import, since the full path
must be repeated to use imported objects after an import.

A.3.1.4 New assert statement

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1248

Python 1.5 added a new statement:

assert test [, value]

which is the same as:

if __debug__:
 if not test:
 raise AssertionError, value

Assertions are mostly meant for debugging, but can also be used to specify program
constraints (e.g., type tests on entry to functions).

A.3.1.5 Reserved word changes

The word "assert" was added to the list of Python reserved words; "access" was
removed (it has now been deprecated in earnest).

A.3.1.6 New dictionary methods

A few convenience methods were added to the built-in dictionary object to avoid the
need for manual loops: D.clear(), D.copy(), D.update(), and D.get(). The
first two methods empty and copy dictionaries, respectively. D1.update(D2) is
equivalent to the loop:

for k in D2.keys(): D1[k] = D2[k]

D.get(k) returns D[k] if it exists, or None (or its optional second argument) if the
key does not exist.

A.3.1.7 New list methods

List objects have a new method, pop, to fetch and delete the last item of the list:

x = s.pop()
...is the same as the two statements...
 x = s[-1]; del s[-1]

and extend, to concatenate a list of items on the end, in place:

s.extend(x)
...is the same as...
s[len(s):len(s)] = x

The pop method can also be passed an index to delete (it defaults to -1). Unlike
append, extend is passed an entire list and adds each of its items at the end.

A.3.1.8 "Raw" string constants

In support of regular expressions and Windows, Python allows string constants to be
written in the form r"...\...", which works like a normal string except that Python

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1249

leaves any backslashes in the string alone. They remain as literal \ characters rather
than being interpreted as special escape codes by Python.

A.3.1.9 Complex number type

Python now supports complex number constants (e.g., 1+3j) and complex arithmetic
operations (normal math operators, plus a cmath module with many of the math
module's functions for complex numbers).

A.3.1.10 Printing cyclic objects doesn't core dump

Objects created with code like L.append(L) are now detected and printed specially
by the interpreter. In the past, trying to print cyclic objects caused the interpreter to
loop recursively (which eventually led to a core dump).

A.3.1.11 raise without arguments: re-raise

A raise statement without any exception or extra-data arguments now makes
Python re-raise the most recently raised uncaught exception.

A.3.1.12 raise forms for class exceptions

Because exceptions can now either be string objects or classes and class instances,
you can use any of the following raise statement forms:

raise string # matches except with same string object
raise string, data # same, with optional data

raise class, instance # matches except with class or its superclass
raise instance # same as: raise instance.__class__, instance

raise # reraise last exception

You can also use the following three forms, which are for backwards-compatibility
with earlier releases where all built-in exceptions were strings:

raise class # same as: raise class() (and: raise class,
instance)
raise class, arg # same as: raise class(arg)
raise class, (arg,...) # same as: raise class(args...)

A.3.1.13 Power operator X ** Y

The new ** binary operator computes the left operand raised to the power of the
right operand. It works much like the built-in pow function.

A.3.1.14 Generalized sequence assignments

In an assignment (= statements and other assignment contexts), you can now assign
any sort of sequence on the right to a list or tuple on the left (e.g., (A,B) = seq,
[A,B] = seq). In the past, the sequence types had to match.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1250

A.3.1.15 It's faster

Python 1.5 has been clocked at almost twice the speed of its predecessors on the
Lib/test/pystone.py benchmark. (I've seen almost a threefold speedup in other
tests.)

A.3.2 Library Changes

The following sections describe changes made to the Python standard library.

A.3.2.1 dir(X) now works on more objects

The built-in dir function now reports attributes for modules, classes, and class
instances, as well as for built-in objects such as lists, dictionaries, and files. You
don't need to use members like __methods__ (but you still can).

A.3.2.2 New conversions: int(X), float(X), list(S)

The int and float built-in functions now accept string arguments, and convert from
strings to numbers exactly like string.atoi/atof. The new list(S) built-in
function converts any sequence to a list, much like the older and obscure map(None,
S) trick.

A.3.2.3 The new re regular expression module

A new regular expression module, re, offers full-blown Perl-style regular expression
matching. See Chapter 18, for details. The older regex module described in the first
edition is still available, but considered obsolete.

A.3.2.4 splitfields/joinfields became split/join

The split and join functions in the string module were generalized to do the same
work as the original splitfields and joinfields.

A.3.2.5 Persistence: unpickler no longer calls __init__

Beginning in Python 1.5, the pickle module's unpickler (loader) no longer calls class
__init__ methods to recreate pickled class instance objects. This means that classes
no longer need defaults for all constructor arguments to be used for persistent
objects. To force Python to call the __init_ _ method (as it did before), classes
must provide a special __getinitargs__ method; see the library manual for details.

A.3.2.6 Object pickler coded in C: cPickle

An implementation of the pickle module in C is now a standard part of Python. It's
called cPickle and is reportedly many times faster than the original pickle. If
present, the shelve module loads it instead of pickle automatically.

A.3.2.7 anydbm.open now expects a "c" second argument for prior behavior

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1251

To open a DBM file in "create new or open existing for read+write" mode, pass a "c"
in argument 2 to anydbm.open. This changed as of Python 1.5.2; passing a "c" now
does what passing no second argument used to do (the second argument now
defaults to "r" -- read-only). This does not impact shelve.open.

A.3.2.8 rand module replaced by random module

The rand module is now deprecated; use random instead.

A.3.2.9 Assorted Tkinter changes

Tkinter became portable to and sprouted native look-and-feel for all major platforms
(Windows, X, Macs). There has been a variety of changes in the Tkinter GUI
interface:

StringVar objects can't be called

The __call_ _ method for StringVar class objects was dropped in Python 1.4; that
means you need to explicitly call their get()/set() methods, instead of calling
them with or without arguments.

ScrolledText changed

The ScrolledText widget went through a minor interface change in Python 1.4,
which was apparently backed out in release 1.5 due to code breakage (so never
mind).

Gridded geometry manager

Tkinter now supports Tk's new grid geometry manager. To use it, call the grid
method of widget objects (much like pack , but passes row and column numbers, not
constraints).

New Tkinter documentation site

Fredrik Lundh now maintains a nice set of Tkinter documentation at
http://www.pythonware.com, which provides references and tutorials.

A.3.2.10 CGI module interface change

The CGI interface changed. An older FormContent interface was deprecated in favor
of the FieldStorage object's interface. See the library manual for details.

A.3.2.11 site.py, user.py, and PYTHONHOME

These scripts are automatically run by Python on startup, used to tailor initial paths
configuration. See the library manuals for details.

A.3.2.12 Assignment to os.environ[key] calls putenv

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1252

Assigning to a key in the os.environ dictionary now updates the corresponding
environment variable in the C environment. It triggers a call to the C library's putenv
routine such that the changes are reflected in integrated C code layers as well as in
the environment of any child processes spawned by the Python program. putenv is
now exposed in the os module too (os.putenv).

A.3.2.13 New sys.exc_info() tuple

The new exc_info() function in the sys module returns a tuple of values
corresponding to sys.exc_type and sys.exc_value. These older names access a
single global exception; exc_info is specific to the calling thread.

A.3.2.14 The new operator module

There is a new standard module called operator, which provides functions that
implement most of the built-in Python expression operators. For instance,
operator.add(X,Y) does the same thing as X+Y, but because operator module
exports are functions, they are sometimes handy to use in things like map, so you
don't have to create a function or use a lambda form.

A.3.3 Tool Changes

The following sections describe major Python tool-related changes.

A.3.3.1 JPython (a.k.a. Jython): a Python-to-Java compiler

The new JPython system is an alternative Python implementation that compiles
Python programs to Java Virtual Machine (JVM) bytecode and provides hooks for
integrating Python and Java programs. See Chapter 15.

A.3.3.2 MS-Windows ports: COM, Tkinter

The COM interfaces in the Python Windows ports have evolved substantially since the
first edition's descriptions (it was "OLE" back then); see Chapter 15. Python also now
ships as a self-installer for Windows, with built-in support for the Tkinter interface,
DBM-style files, and more; it's a simple double-click to install today.

A.3.3.3 SWIG growth, C++ shadow classes

The SWIG system has become a primary extension writers' tool, with new "shadow
classes" for wrapping C++ classes. See Chapter 19.

A.3.3.4 Zope (formerly Bobo): Python objects for the Web

This system for publishing Python objects on the Web has grown to become a
popular tool for CGI programmers and web scripters in general. See the Zope section
in Chapter 15.

A.3.3.5 HTMLgen: making HTML from Python classes

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1253

This tool for generating correct HTML files (web page layouts) from Python class
object trees has grown to maturity. See Chapter 15.

A.3.3.6 PMW: Python mega-widgets for Tkinter

The PMW system provides powerful, higher-level widgets for Tkinter-based GUIs in
Python. See Chapter 6.

A.3.3.7 IDLE: an integrated development environment GUI

Python now ships with a point-and-click development interface named IDLE. Written
in Python using the Tkinter GUI library, IDLE either comes in the source library's
Tools directory or is automatically installed with Python itself (on Windows, see
IDLE's entry in the Python menu within your Start button menus). IDLE offers a
syntax-coloring text editor, a graphical debugger, an object browser, and more. If
you have Python with Tk support enabled and are accustomed to more advanced
development interfaces, IDLE provides a feature-rich alternative to the traditional
Python command line. IDLE does not provide a GUI builder today.

A.3.3.8 Other tool growth: PIL, NumPy, Database API

The PIL image processing and NumPy numeric programming systems have matured
considerably, and a portable database API for Python has been released. See
Chapter 6 and Chapter 16.

A.3.4 Python/C Integration API Changes

The following sections describe changes made to the Python C API.

A.3.4.1 A single Python.h header file

All useful Python symbols are now exported in the single Python.h header file; no
other header files need be imported in most cases.

A.3.4.2 A single libpython*.a C library file

All Python interpreter code is now packaged in a single library file when you build
Python. For instance, under Python 1.5, you need only link in libpython1.5.a when
embedding Python (instead of the older scheme's four libraries plus .o's).

A.3.4.3 The "Great (Grand?) Renaming" is complete

All exposed Python symbols now start with a "Py" prefix.

A.3.4.4 Threading support, multiple interpreters

A handful of new API tools provide better support for threads when embedding
Python. For instance, there are tools for finalizing Python (Py_Finalize) and for
creating "multiple interpreters" (Py_NewInterpreter).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1254

Note that spawning Python language threads may be a viable alternative to C-level
threads, and multiple namespaces are often sufficient to isolate names used in
independent system components; both schemes are easier to manage than multiple
interpreters and threads. But in some threaded programs, it's also useful to have one
copy of system modules and structures per thread, and this is where multiple
interpreters come in handy (e.g., without one copy per thread, imports might find an
already-loaded module in the sys.modules table if it was imported by a different
thread). See the new C API documentation manuals for details.

A.3.4.5 New Python C API documentation

There is a new reference manual that ships with Python and documents major C API
tools and behavior. It's not fully fleshed out yet, but it's a useful start.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1255

Appendix B. Pragmatics

This appendix is a very brief introduction to some install-level details of Python use,
and contains a list of Python Internet resources. More information on topics not
covered fully here can be found at other resources:

For additional install details, consult the various README text files in the examples
distribution on this book's CD (view CD-ROM content online at
http://examples.oreilly.com/python2), as well as the README files and other
documentation that accompany the Python distributions and other packages on the
CD. In particular, the README files in the Examples and Examples\PP2E directories
contain book example tree documentation and Python install details not repeated in
this appendix.

For more background information on running Python programs in general, see the
Python manuals included on this book's CD, or the introductory-level O'Reilly text
Learning Python.

For more background information on the core Python language itself, refer to the
Python standard manuals included on this book's CD, and the O'Reilly texts Learning
Python and Python Pocket Reference.

For more information about all things Python, see http://www.python.org.This site
has online Python documentation, interpreter downloads, search engines, and links
to just about every other relevant Python site on the Web. For links to information
about this book, refer back to the Preface.

B.1 Installing Python

This section gives an overview of install-related details -- instructions for putting the
Python interpreter on your computer.

B.1.1 Windows

Python install details vary per platform and are described in the resources just listed.
But as an overview, Windows users will find a Python self-installer executable at
http://examples.oreilly.com/python2 (see the top-level Python 1.5.2 and 2.0
directories). Simply double-click the installer program and answer "yes," "next," or
"default" to step through a default Windows install. Be sure to install Tcl/Tk too, if
you are asked about it along the way.

After the install, you will find an entry for Python in your Start button's Programs
menu; it includes options for running both the IDLE integrated GUI development
interface and the command-line console session, viewing Python's standard manuals,
and more. Python's manuals are installed with the interpreter in HTML form, and
open locally in a web browser when selected.

Python also registers itself to open Python files on Windows, so you can simply click
on Python scripts in a Windows file explorer window to launch them. You can also run
Python scripts by typing python file.py command lines at any DOS command-line

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1256

prompt, provided that the directory containing the python.exe Python interpreter
program is added to your PATH DOS shell variable (see the configuration and
running sections later).

Note that the standard Python package for Windows includes full Tkinter support.
You do not need to install other packages or perform any extra install steps to run
Tkinter GUIs on Windows; simply install Python. All necessary Tkinter components
are installed by the Python self-installer, and Python automatically finds the
necessary components without extra environment settings. The Windows install also
includes the bsddb extension to support DBM-style files.

If you plan on doing any Windows-specific work such as COM development, you will
probably want to install the extra win32all extensions package (available at
http://examples.oreilly.com/python2 as well as at http://www.python.org). This
package registers Python for Active Scripting, provides MFC wrappers and COM
integration, and more (see Chapter 15). Also note that Python distributions available
from other sources (e.g., the ActivePython distribution from ActiveState,
http://www.activestate.com) may include both Python and the Windows extensions
package.

B.1.2 Unix and Linux

Python may already be available on these platforms (it's often installed as a standard
part of Linux these days); check your /usr/bin and /usr/local/bin directories to see if
a Python interpreter is lurking there. If not, Python is generally installed on these
platforms from either an rpm package (which installs Python executables and
libraries automatically) or the source code distribution package (which you unpack
and compile locally on your computer). Compiling Python from its source on Linux is
a trivial task -- usually just a matter of typing two or three simple command lines.
See the Python source distribution's top-level README files and Linux rpm
documentation for more details.

B.1.3 Macintosh and Others

Please see the documentation associated with the Macintosh ports for install and
usage details. For other platforms, you will likely need to find ports at
http://www.python.org and consult the port's install notes or documentation.

B.2 Book Examples Distribution

This section briefly discusses the book's example source code distribution, and
covers example usage details.

B.2.1 The Book Examples Package

The Examples\PP2E CD directory is a Python module package that contains source
code files for all examples presented in this book (and more). The PP2E package in
turn contains nested module packages that partition the example files into
subdirectories by topic. You can either run files straight off the CD, or copy the PP2E

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1257

directory onto your machine's hard drive (copying over allows you to change the
files, and lets Python store their compiled bytecode for faster startups).

Either way, the directory that contains the PP2E root must generally be listed on the
Python module search path (normally, the PYTHONPATH environment variable). This
is the only entry that you must add to the Python path, though; import statements in
book examples are always package import paths relative to the PP2E root directory
unless the imported module lives in the same directory as the importer.

Also in the examples package, you'll find scripts for converting example files' line-
feeds to and from Unix format (they are in DOS format on the CD--see
http://examples.oreilly.com/python2), making files writable (useful after a drag-and-
drop on Windows), and more. See the README files at the top of the Examples and
PP2E directory trees for more details on package tree usage and utilities.

B.2.2 Running the Demo Launcher Scripts

The top level of the CD's Examples\PP2E package (see
http://examples.oreilly.com/python2) includes Python self-configuring scripts that
can be run to launch major book examples, even if you do not configure your
environment. That is, they should work even of you don't set your PATH or
PYTHONPATH shell variables. These two scripts, PyDemos and PyGadgets, are
presented in Chapter 8, and described more fully in both this book's Preface and the
CD's README files (see http://examples.oreilly.com/python2). In most cases, you
should be able to run these scripts right off the book's CD by double-clicking on them
in a file explorer GUI (assuming Python has been installed, of course).

B.3 Environment Configuration

This section introduces Python environment setup details and describes settings that
impact Python programs.

B.3.1 Shell Variables

The following shell environment variables (among others) are usually important
when using Python:

PYTHONPATH

Python's module file search path. If set, it is used to locate modules at run- time
when they're imported by a Python program -- Python looks for an imported module
file or package directory in each directory listed on PYTHONPATH, from left to right.
Python generally searches the home directory of a script as well as the Python
standard source code library directory automatically, so you don't need to add these.
Hint: check sys.path interactively to see how the path is truly set up.

PYTHONSTARTUP

An optional Python initialization file. If used, set this variable to the full path-name of
a file of Python code (a module) that you want to be run each time the Python

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1258

interactive command-line interpreter starts up. This is a convenient way to import
modules you use frequently when working interactively.

PATH

The operating system's executable search path variable. It is used to locate program
files when you type their names at a command line without their full directory paths.
Add the directory containing the python interpreter executable file (or else you must
retype its directory path each time).

In addition, users on platforms other than Windows may need to set variables to use
Tkinter if Tcl/Tk installations cannot be found normally. Set TK_LIBRARY and
TCL_LIBRARY variables to point to the local Tk and Tcl library file directories.

B.3.2 Configuration Settings

The Examples\PP2E\Config directory on the CD (see
http://examples.oreilly.com/python2) contains example configuration files with
comments for Python variable settings. On Windows NT, you can set these variables
in the system settings GUI (more on this in a minute); on Windows 98, you can set
them from DOS batch files, which can be run from your C:\autoexec.bat file to make
sure they are set every time you start your compute. For example, my autoexec file
includes this line:

C:\PP2ndEd\examples\PP2E\Config\setup-pp.bat

which in turn invokes a file that contains these lines to add Python to the system
PATH, and the book examples package root to PYTHONPATH:

REM PATH %PATH%;c:\Python20
PATH %PATH%;c:\"program files"\python

set PP2EHOME=C:\PP2ndEd\examples
set PYTHONPATH=%PP2EHOME%;%PYTHONPATH%

Pick (i.e., remove the REM from) one of the first two lines, depending upon your
Python install -- the first line assumes a Python 2.0 default install, and the second
assumes Python 1.5.2. Also change the PP2EHOME setting here to the directory that
contains the PP2E examples root on your machine (the one shown works on my
computer). On Linux, my ~/.cshrc startup file sources a setup-pp.csh file that looks
similar:

setenv PATH $PATH:/usr/bin
setenv PP2EHOME /home/mark/PP2ndEd/examples
setenv PYTHONPATH $PP2EHOME:$PYTHONPATH

But the syntax used to set variables varies per shell (see the PP2E\Config CD
directory for more details). Setting the PYTHONPATH shell variable to a list of
directories like this works on most platforms, and is the typical way to configure your
module search path. On some platforms, there are other ways to set the search
path. Here are a few platform-specific hints:

Windows port

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1259

The Windows port allows the Windows registry to be used in addition to setting
PYTHONPATH in DOS. On some versions of Windows, rather than changing
C:\autoexec.bat and rebooting, you can also set your path by selecting the Control
Panel, picking the System icon, clicking in the Environment Settings tab, and typing
PYTHONPATH and the path you want (e.g., C:\mydir) in the resulting dialog box.
Such settings are permanent, just like adding them to autoexec.bat.

JPython

Under JPython, the Java implementation of Python, the path may take the form of -
Dpath command-line arguments on the Java command used to launch a program, or
python.path assignments in Java registry files.

B.3.3 Configuring from a Program

In all cases, sys.path represents the search path to Python scripts and is initialized
from path settings in your environment plus standard defaults. This is a normal
Python list of strings that may be changed by Python programs to configure the
search path dynamically. To extend your search path within Python, do this:

import sys
sys.path.append('mydirpath')

Because shell variable settings are available to Python programs in the built-in
os.environ dictionary, a Python script may also say something like
sys.path.append(os.environ['MYDIR'])) to add the directory named by the MYDIR
shell variable to the Python module search path at runtime. Because os.pathsep
gives the character used to separate directory paths on your platform, and
string.split knows how to split up strings around delimiters, this sequence:

import sys, os, string
path = os.environ['MYPYTHONPATH']
dirs = string.split(path, os.pathsep)
sys.path = sys.path + dirs

adds all names in the MYPYTHONPATH list setting to the module search path in the
same way that Python usually does for PYTHONPATH. Such sys.path changes can be
used to dynamically configure the module search path from within a script. They last
only as long as the Python program or session that made them, though, so you are
usually better off setting PYTHONPATH in most cases.

B.4 Running Python Programs

Python code can be typed at a >>> interactive prompt, run from a C program, or
placed in text files and run. There is a variety of ways to run code in files:

Running from a command line

Python files can always be run by typing a command of the form python file.py in
your system shell or console box, as long as the Python interpreter program is on

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1260

your system's search path. On Windows, you can type this command in an MS-DOS
console box; on Linux, use an xterm.

Running by clicking

Depending on your platform, you can usually start Python program files by double-
clicking on their icons in a file explorer user interface. On Windows, for instance, .py
Python files are automatically registered such that they can be run by being clicked
(as are .pyc and .pyw files).

Running by importing and reloading

Files can also be run by importing them, either interactively or from within another
module file. To rerun a module file's code again without exiting Python, be sure to
run a call like reload(module).

Running files in IDLE

For many, running a console window and one or more separate text editor windows
constitutes an adequate Python development environment. For others, IDLE -- the
Python Integrated Development Environment (but really named for Monty Python's
Eric Idle) -- is a development environment GUI for Python. It can also be used to run
existing program files or develop new systems from scratch. IDLE is written in
Python/Tkinter, and thus is portable across Windows, X Windows (Unix), and
Macintosh. It ships (for free) as a standard tool with the Python interpreter. On
Windows, IDLE is installed automatically with Python; see Section B.1.1 under
Section B.1 earlier in this appendix.

IDLE lets you edit, debug, and run Python programs. It does syntax coloring for
edited Python code, sports an object browser the lets you step through your
system's objects in parallel with its source code, and offers a point-and-click
debugger interface for Python. See IDLE's help text and page at
http://www.python.org for more details. Or simply play with it on your machine;
most of its interfaces are intuitive and easy to learn. The only thing IDLE seems to
lack today is a point-and-click GUI builder (but Tkinter's simplicity tends to make
such builders less important in Python work).

Running files in Pythonwin

Pythonwin is another freely available, open source IDE for Python, but is targeted at
Windows platforms only. It makes use of the MFC integration made available to
Python programmers in the win32all Windows-specific Python extensions package
described in Chapter 15. In fact, Pythonwin is something of an example application
of these Windows tools. Pythonwin supports source code editing and launching much
like IDLE does (and there has been some cross-pollination between these systems).
It doesn't sport all the features or portability of IDLE, but offers tools all its own for
Windows developers. Fetch and install the win32all Windows extensions package to
experiment with Pythonwin. You can also find this package on this book's CD (see
http://examples.oreilly.com/python2).

Running Python from other IDEs

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1261

If you are accustomed to more sophisticated development environments, see the
Visual Python products from Active State (http://www.activestate.com), and the
PythonWorks products from PythonWare (http://www.pythonware.com). Both are
emerging as I write this, and promise to provide advanced integrated development
tool suites for Python programmers. For instance, ActiveState's plans include support
for developing Python programs under both Microsoft's Visual Studio and the Mozilla
application environment, as well as a Python port to the C#/.NET environment.
PythonWare's products support visual interface development and a suite of
development tools.

Other platforms have additional ways to launch Python programs (e.g., dropping files
on Mac icons). Here are a few more hints for Unix and Windows users:

Unix and Linux users

You can also make Python module files directly executable by adding the special
#!/usr/bin/python type line at the top of the file and giving the file executable
permissions with a chmod command. If you do, you can run Python files simply by
typing their names (e.g., file.py), as though they were compiled executables. See
Chapter 2, for more details.

Windows users

If you see a flash when you click on a Python program in the file explorer, it's
probably the console box that Python pops up to represent the program's standard
input/output streams. If you want to keep the program's output up so that you can
see it, add a call raw_input() to the bottom of your program; this call pauses until
you press the Enter key. If you write your own GUI and don't want to see the
console pop-up at all, name your source files with a .pyw extension instead of .py.

Windows NT and 2000

You can also launch a Python script file from a command-line prompt simply by
typing the name of the script's file (e.g., file.py). These platforms correctly run the
script with the Python interpreter without requiring the special #! first line needed to
run files directly in Unix. To run Python command lines on Windows 9x platforms,
you'll need to add the word "python" before the filename and make sure the
python.exe executable is on your PATH setting (as described earlier). On all Windows
platforms, you may also click on Python filenames in a Windows explorer to start
them.

B.5 Python Internet Resources

Finally, Table B-1 lists some of the most useful Internet sites for Python information
and resources. Nearly all of these are accessible from Python's home page
(http://www.python.org) and most are prone to change over time, so be sure to
consult Python's home page for up-to-date details.

Table B-1. Python Internet Links

Resource Address

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1262

Python's main web site http://www.python.org

Python's FTP site ftp://ftp.python.org/pub/python

Python's newsgroup comp.lang.python (python-list@cwi.nl)

O'Reilly's main web site http://www.oreilly.com

O'Reilly Python DevCenter http://www.oreillynet.com/python

Book's web site http://www.rmi.net/~lutz/about-pp2e.html

Author's web site http://www.rmi.net/~lutz

Python support mail-list mailto:python-help@python.org

Python online manuals http://www.python.org/doc

Python online FAQ http://www.python.org/doc/FAQ.html

Python special interest groups http://www.python.org/sigs

Python resource searches http://www.python.org/search

Starship (library) http://starship.python.net

Vaults of Parnassus (library) http://www.vex.net/parnassus

JPython's site http://www.jython.org

SWIG's site http://www.swig.org

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1263

Tk's site http://www.scriptics.com

Zope's site http://www.zope.org

ActiveState (tools) http://www.activestate.com

PythonWare (tools) http://www.pythonware.com

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1264

Appendix C. Python Versus C++

This appendix briefly summarizes some of the differences between Python and C++
classes. Python's class system can be thought of as a subset of C++'s. Although
the comparison to Modula 3 may be closer, C++ is the dominant OOP language
today. But in Python, things are intentionally simpler -- classes are simply objects
with attached attributes that may have links to other class objects. They support
generation of multiple instances, customization by attribute inheritance, and operator
overloading, but the object model in Python is comparatively uncluttered. Here are
some specific differences between Python and C++:

Attributes

There is no real distinction between data members and methods in Python; both
simply designate named attributes of instances or classes, bound to functions or
other kinds of objects. Attributes are names attached to objects, and accessed by
qualification: object.attribute. Methods are merely class attributes assigned to
functions normally created with nested def statements; members are just attribute
names assigned to other kinds of objects.

Class object generation

Class statements create class objects and assign them to a name. Statements that
assign names within a class statement generate class attributes, and classes
inherit attributes from all other classes listed in their class statement header line
(multiple inheritance is supported; this is discussed in a moment).

Instance object creation

Calling a class object as though it were a function generates a new class instance
object. An instance begins with an empty namespace that inherits names in the
class's namespace; assignments to instance attributes (e.g., to self attributes
within class method functions) create attributes in the instance.

Object deletion

Both classes and instances (and any data they embed) are automatically reclaimed
when no longer held. There is no new (classes are called instead) and Python's del
statement removes just one reference, unlike C++'s delete.

Member creation

Class and instance attributes, like simple variables, spring into existence when
assigned, are not declared ahead of time, and may reference any type of object
(they may even reference different object datatypes at different times).

Inheritance

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1265

Python inheritance is generally kicked off to search for an attribute name's value:
given an expression of the form object.attribute, Python searches the
namespace object tree at object and above for the first appearance of name
attribute. An inheritance search also occurs when expression operators and type
operations are applied to objects. A new, independent inheritance search is
performed for every object.attribute expression that is evaluated -- even
self.attr expressions within a method function search anew for attr at the
instance object referenced by self and above.

Runtime type information

Python classes are objects in memory at runtime -- they can be passed around a
program to provide a sort of runtime type resource (e.g., a single function can
generate instances of arbitrary classes passed in as an argument). Both class and
instance objects carry interpreter information (e.g., a __dict__ attribute
dictionary), and Python's type function allows object type testing. Instance objects'
__class__ attributes reference the class they were created from, and class
objects' __bases_ _ attributes give class superclasses (base classes).

"this" pointer

Python's equivalent of the C++ this instance pointer is the first argument added to
method function calls (and usually called self by convention). It is usually implicit
in a call but is used explicitly in methods: there is no hidden instance scope for
unqualified names. Python methods are just functions nested in a class statement
that receive the implied instance objects in their leftmost parameters.

Virtual methods

In Python, all methods and data members are virtual in the C++ sense: there is
no notion of a compile-time resolution of attributes based on an object's type. Every
attribute qualification (object.name) is resolved at runtime, based on the qualified
object's type.

Pure virtuals

Methods called by a superclass but not defined by it correspond to C++'s concept of
"pure virtual" methods: methods that must be redefined in a subclass. Since Python
is not statically compiled, there is no need for C++'s special syntax to declare this
case. Calls to undefined methods raise a name error exception at runtime, which
may or may not be caught with try statements.

Static members

There is no static class data declaration; instead, assignments nested in a class
statement generate attribute names associated with the class and shared by all its
instances.

Private members

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1266

There is no notion of true access restrictions for attributes; every member and
method is public in the C++ sense. Attribute hiding is a matter of convention rather
than syntax: C++'s public, private, and protected constraints don't apply
(but see also the new __X class name localization feature in Appendix A).

Const interfaces

Objects may be immutable, but names are not -- there is no equivalent of C++'s
const modifier. Nothing prevents a name or object from being changed in a
method, and methods can change mutable arguments (the self object, for
example). Convention and common sense replaces extra syntax.

Reference parameters

There is no direct analogue for C++'s reference parameters. Python methods may
return multiple values in a tuple and can change passed-in objects if they're mutable
(for instance, by assigning to an object's attributes or changing lists and dictionaries
in place). But there is no aliasing between names at the call and names in a function
header: arguments are passed by assignment, which creates shared object
references.

Operator overloading

Special method names overload operators: there is no operator+ -like syntax but
the effects are similar. For instance, a class attribute named __add__ overloads
(intercepts and implements) application of the + operator to instances of the class;
__getattr__ is roughly like C++ -> overloading. Arbitrary expressions require
coding right-side methods (e.g., _ _radd__).

Templates

Python is dynamically typed -- names are references to arbitrary objects, and there
is no notion of type declarations. C++ templates are neither applicable nor
necessary. Python classes and functions can generally be applied to any object type
that implements the interface protocols (operations and operators) expected by the
class's code. Subjects need not be of a certain datatype.

Friends

Everything is friendly in Python. Because there is no notion of privacy constraints,
any class can access the internals of another.

Function overloading

Python polymorphism is based on virtual method calls: the type of a qualified object
determines what its methods do. Since Python arguments' types are never declared
(dynamically typed), there is nothing like C++'s function overloading for dispatching
to different versions of a function based on the datatypes of its arguments. You can
explicitly test types and argument list lengths in methods instead of writing separate
functions for each type combination (see type built-in function and *args function
argument form).

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1267

Multiple inheritance

Multiple inheritance is coded by listing more than one superclass in parentheses in a
class statement header line. When multiple inheritance is used, Python simply uses
the first appearance of an attribute found during a depth-first, left-to-right search
through the superclass tree. Python resolves multiple inheritance conflicts this way
instead of treating them as errors.

Virtual inheritance

C++'s notion of virtual base classes doesn't quite apply in Python. A Python class
instance is a single namespace dictionary (with a class pointer for access to inherited
attributes). Classes add attributes to the class instance dictionary by assignment.
Because of this structure, each attribute exists in just one place -- the instance
dictionary. For inherited class attributes, the search of the superclass tree resolves
references unambiguously.

Constructors

Python only runs the one _ _init__ method found by the inheritance object tree
search. It doesn't run all accessible classes' constructors automatically; if needed, we
have to call other class constructors manually. But this is no harder than specifying
superclass constructor arguments in C++. Python destructors (__del__) run
when an instance is garbage-collected (i.e., deallocated), not in response to delete
calls.

Scope operators

C++ scope operators of the form Superclass::Method are used to extend
inherited methods and disambiguate inheritance conflicts. Python's closest equivalent
is Superclass.Method, a class object qualification. It isn't required for
inheritance conflict resolution, but can be used to override the default search rule
and to call back to superclasses in method extensions.

Method pointers

Instead of special syntax, Python method references are objects ; they may be
passed, stored in data structures, and so on. Method objects come in two flavors:
bound methods (when an instance is known) are instance/method pairs called later
like simple functions, and unbound methods are simply references to a method
function object and require an instance to be passed explicitly when called.

Naturally, Python has additional class features not found in C++, such as metaclass
protocols : __setattr_ _ can be used to implement alternative interfaces, and an
instance's __class__ pointer can be reset to change the class type of an object
dynamically. Moreover, class attributes can be modified arbitrarily at runtime;
classes are merely objects with attached attribute names.

In addition, Python differs from C++ in numerous ways besides its class model. For
instance, there are neither type declarations nor compile and linking steps in Python;
you cannot overload = in Python as you can in C++ (assignment isn't an operator in

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1268

Python); and pointers, central to much C and C++ programming, are completely
absent in Python (though object references can have some of the same effects).
Instead of pointers, Python programs use first-class objects, which are automatically
allocated and reclaimed.

Most of these differences stem from the fact that Python was designed for speed of
development, not speed of execution; much of C++'s extra syntax would interfere
with Python's purpose. See the O'Reilly text Learning Python for a complete
introduction to Python classes and the remainder of the core Python language.

Programming Python, 2nd Edition, O’Reilly

IT-SC book 1269

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal featured on the cover of Programming Python, Second Edition is an
African rock python, one of approximately 18 species of python. Pythons are
nonvenomous constrictor snakes that live in tropical regions of Africa, Asia, Australia,
and some Pacific Islands. Pythons live mainly on the ground, but they are also
excellent swimmers and climbers. Both male and female pythons retain vestiges of
their ancestral hind legs. The male python uses these vestiges, or spurs, when
courting a female. The python kills its prey by suffocation. While the snake's sharp
teeth grip and hold the prey in place, the python's long body coils around its victim's
chest, constricting tighter each time it breathes out. They feed primarily on
mammals and birds. Python attacks on humans are extremely rare.

Emily Quill was the production editor for Programming Python, Second Edition.
Clairemarie Fisher O'Leary, Nicole Arigo, and Emily Quill copyedited the book. Matt
Hutchinson, Colleen Gorman, Rachel Wheeler, Mary Sheehan, and Jane Ellin
performed quality control reviews. Gabe Weiss, Lucy Muellner, Deborah Smith, Molly
Shangraw, Matt Hutchinson, and Mary Sheehan provided production assistance.
Nancy Crumpton wrote the index.

Edie Freedman designed the cover of this book. The cover image is a 19th-century
engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout
with Quark™XPress 4.1 using Adobe's ITC Garamond font.

David Futato and Melanie Wang designed the interior layout, based on a series
design by Nancy Priest. Cliff Dyer converted the files from Microsoft Word to
FrameMaker 5.5.6, using tools created by Mike Sierra. The text and heading fonts
are ITC Garamond Light and Garamond Book; the code font is Constant Willison. The
illustrations that appear in the book were produced by Robert Romano using
Macromedia FreeHand 8 and Adobe Photoshop 5. This colophon was written by Nicole
Arigo.

