

Ruby
Pocket Reference

Michael Fitzgerald

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Ruby Pocket Reference
by Michael Fitzgerald

Copyright © 2007 Michael Fitzgerald. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor:

Rachel Monaghan
Proofreader: Rachel Monaghan
Indexer: Ellen Troutman Zaig

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and

Jessamyn Read

Printing History:
July 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference series
designations, Ruby Pocket Reference, the image of a giraffe, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN-10: 0-596-51481-6
ISBN-13: 978-0-596-51481-5
[TM]

http://safari.oreilly.com
mailto:corporate@oreilly.com

iii

Contents

Running Ruby 2
Running the Ruby Interpreter 3
Using a Shebang Line on Unix/Linux 5
Associating File Types on Windows 5

Reserved Words 7

Operators 9

Comments 10

Numbers 11

Variables 11
Local Variables 12
Instance Variables 12
Class Variables 13
Global Variables 13
Constants 13
Parallel Assignment of Variables 13

Symbols 14

Predefined Variables 14

Pseudovariables 17

Global Constants 18

iv | Contents

Ranges 19

Methods 19
Parentheses 20
Return Values 20
Method Name Conventions 21
Default Arguments 22
Variable Arguments 22
Aliasing Methods 23
Blocks 23
Procs 25

Conditional Statements 27
The if Statement 27
The unless Statement 29
The while Statement 30
The until Statement 31
The case Statement 32
The for Loop 33
The Ternary Operator 34
Executing Code Before or After a Program 34

Classes 34
Instance Variables 36
Accessors 38
Class Variables 39
Class Methods 40
Singletons 40
Inheritance 42
Public, Private, or Protected 42
Modules and Mixins 44

Contents | v

Files 47
Creating a New File 47
Opening an Existing File 48
ARGV and ARGF 48
Renaming and Deleting Files 49
File Inquiries 50
File Modes and Ownership 51

The IO Class 52

Exception Handling 54
The rescue and ensure Clauses 55
The raise Method 55
The catch and throw Methods 56

Object Class 56
Object Instance Methods 57

Kernel Module 62

String Class 72
Expression Substitution 73
General Delimited Strings 73
Here Documents 73
Escape Characters 75
Character Encoding 75
Regular Expressions 76
String Methods 81

Array Class 94
Creating Arrays 94
Array Class Methods 96
Array Instance Methods 96

vi | Contents

Hash Class 106
Creating Hashes 107
Hash Class Methods 108
Hash Instance Methods 108

Time Formatting Directives 113

Interactive Ruby (irb) 114

Ruby Debugger 117

Ruby Documentation 119

RDoc Options 121

RubyGems 125

Rake 131

Ruby Resources 133

Glossary 134

Index 151

1

Chapter 1pseudovariable

Ruby Pocket Reference

Ruby is an open source, object-oriented programming lan-
guage created by Yukihiro “Matz” Matsumoto. First released
in Japan in 1995, Ruby has gained worldwide acceptance as
an easy-to-learn, powerful, and expressive language, espe-
cially since the advent of Ruby on Rails, a web application
framework written in Ruby (http://www.rubyonrails.org).
Ruby’s core is written in the C programming language and
runs on all major platforms. It is an interpreted rather than
compiled language. For more information on Ruby, see http://
www.ruby-lang.org.

Conventions Used in This Book
The following font conventions are used in this book:

Italic
Indicates pathnames and filenames (such as program
names); Internet addresses, such as domain names and
URLs; and emphasized or newly defined terms.

Constant width
Indicates commands and options that should be typed ver-
batim in a file or in irb; or names and keywords in Ruby
programs, including method, variable, and class names.

Constant width italic
Indicates user-supplied values.

Constant width bold
Used to draw attention to parts of programs.

http://www.rubyonrails.org
http://www.ruby-lang.org
http://www.ruby-lang.org

2 | Ruby Pocket Reference

Comments and Questions
Please address comments and questions concerning this
book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (Fax)

There is a web page for this book, which lists errata, examples,
or any additional information. You can access this page at:

http://www.oreilly.com/catalog/9780596514815

To comment or ask technical questions about this book,
send email to:

bookquestions@oreilly.com

For information about books, conferences, Resource Cen-
ters, and the O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

Acknowledgments
This book is dedicated to John H. Atkinson, Jr. (1934–2007).

I want to thank Simon St.Laurent, Ryan Waldron, and Rachel
Monaghan for their help in creating, editing, and producing
this book.

Running Ruby
Test to see whether Ruby is running on your computer by
typing the following at a shell or command prompt:

ruby --version

http://www.oreilly.com/catalog/9780596514815
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Running Ruby | 3

An affirmative response will look similar to this (this exam-
ple is for version 1.8.6 running on Mac OS X):

ruby 1.8.6 (2007-03-13 patchlevel 0) [powerpc-darwin8.9.0]

You can install Ruby on any of the major platforms. For
Ruby file archives and installation instructions, see http://
www.ruby-lang.org/en/downloads.

Running the Ruby Interpreter
Usage:

ruby [switches] [--] [program filename] [arguments]

Switches (or command-line options):

-0[octal]
Specify a record separator (\0 if no argument).

-a
Autosplit mode with -n or -p (splits $_ into $F).

-c
Check syntax only.

-Cdirectory
cd to directory before executing your script or program.

-d
Set debugging flags (set predefined variable $DEBUG to true).

-e 'command'
Execute one line of script. Several -es allowed. Omit
[program filename].

-Fpattern
split() pattern for autosplit (-a).

-i[extension]
Edit ARGV files in place (make backup if extension supplied).

-Idirectory
Specify $LOAD_PATH (predefined variable) directory; may
be used more than once.

http://www.ruby-lang.org/en/downloads
http://www.ruby-lang.org/en/downloads

4 | Ruby Pocket Reference

-Kkcode
Specify the character set. See Table 16.

-l
Enable line-ending processing.

-n
Assume 'while gets(); ... end' loop around your script.

-p
Assume loop like -n but print line also like sed.

-rlibrary
Require the library before executing your script.

-s
Enable some switch parsing for switches after script name.

-S
Look for the script using PATH environment variable.

-T[level]
Turn on tainting checks.

-v
Print version number, then turn on verbose mode (com-
pare --version).

-w
Turn warnings on for your script or program.

-W[level]
Set warning level: 0=silence, 1=medium, and 2=verbose
(default).

-x[directory]
Strip off text before #! shebang line, and optionally cd to
directory.

--copyright
Print the copyright.

--version
Print the version (compare -v).

Running Ruby | 5

Using a Shebang Line on Unix/Linux
A shebang line may appear on the first line of a Ruby pro-
gram (or other program or script). Its job is to help a Unix/
Linux system execute the commands in the program or script
according to a specified interpreter—Ruby, in our case. (This
does not work on Windows.) Here is a program named hi.rb
with a shebang on the first line:

#!/usr/bin/env ruby

puts "Hello, Matz!"

Other alternative shebang lines are #!/usr/bin/ruby or #!/usr/
local/bin/ruby. With a shebang in place, you can type the file-
name (followed by Return or Enter) at a shell prompt without
invoking the Ruby interpreter directly:

$ hi.rb

Associating File Types on Windows
Windows doesn’t know or care about shebang (#!), but you
can achieve a similar effect by creating a file type association
with the assoc and ftype commands on Windows (DOS).
To find out whether an association exists for the file exten-
sion .rb, use the assoc command:

C:\Ruby Code>assoc .rb
File association not found for extension .rb

If it’s not found, associate the .rb extension with a file type:

C:\Ruby Code>assoc .rb=rbFile

Then test to see whether the association exists:

C:\Ruby Code>assoc .rb
.rb=rbFile

Now test to see whether the file type for Ruby exists:

C:\Ruby Code>ftype rbfile
File type 'rbfile' not found or no open command associated
with it.

6 | Ruby Pocket Reference

If not found, you can create it with a command like this:

C:\Ruby Code>ftype rbfile="C:\Program Files\Ruby\bin\
ruby.exe" "%1" %*

Be sure to put the correct path to the executable for the Ruby
interpreter, followed by the substitution variables. %1 is a
substitution variable for the file you want to run, and %*
accepts all other parameters that may appear on the com-
mand line. Test it:

C:\Ruby Code>ftype rbfile
rbfile="C:\Program Files\Ruby\bin\ruby.exe" "%1" %*

Finally, add .rb to the PATHEXT environment variable. See
whether it is there already with set:

C:\Ruby Code>set PATHEXT
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;
.tcl

If it is not there, add it like this:

C:\Ruby Code>set PATHEXT=.rb;%PATHEXT%

Then test it again:

C:\Ruby Code>set PATHEXT
PATHEXT=.rb;.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;
.WSH;.tcl

All is now in order:

C:\Ruby Code>type hi.rb
#!/usr/bin/env ruby

puts "Hello, Matz!"

Make sure you are able to execute the file:

C:\Ruby Code>cacls hi.rb /g username:f
Are you sure (Y/N)?y
processed file: C:\Ruby Code\hi.rb

Run the program by entering the program’s file name at the
command prompt, with or without the file extension:

C:\Ruby Code>hi
Hello, Matz!

Reserved Words | 7

To preserve these settings, you may add these commands to
your autoexec.bat file, or set the environment variables by
selecting Star ➝ Control Panel ➝ System, clicking on the
Advanced tab, and then clicking the Environment Variables
button.

Reserved Words
Table 1 lists Ruby’s reserved words or keywords.

Table 1. Ruby’s reserved words

Reserved word Description

BEGIN Code, enclosed in { }, to run before the program runs.

END Code, enclosed in { }, to run when the program ends.

alias Creates an alias for an existing method, operator, or global
variable.

and Logical operator; same as && except and has lower
precedence.

begin Begins a code block or group of statements; closes with
end.

break Terminates a while or until loop, or a method inside a
block.

case Compares an expression with a matching when clause;
closes with end. See when.

class Defines a class; closes with end.

def Defines a method; closes with end.

defined? A special operator that determines whether a variable,
method, super method, or block exists.

do Begins a block, and executes code in that block; closes with
end.

else Executes following code if previous conditional is not true,
set with if, elsif, unless, or case. See if, elsif.

elsif Executes following code if previous conditional is not true,
set with if or elsif.

end Ends a code block (group of statements) started with
begin, class, def, do, if, etc.

8 | Ruby Pocket Reference

ensure Always executes at block termination; use after last rescue.

false Logical or Boolean false; instance of FalseClass; a
pseudovariable. See true.

for Begins a for loop; used with in.

if Executes code block if conditional statement is true. Closes
with end. Compare unless, until.

in Used with for loop. See for.

module Defines a module; closes with end.

next Jumps to the point immediately before the evaluation of
the loop’s conditional. Compare redo.

nil Empty, uninitialized, or invalid; always false, but not the
same as zero; object of NilClass; a pseudovariable.

not Logical operator; same as !.

or Logical operator; same as || except or has lower
precedence.

redo Jumps after a loop’s conditional. Compare next.

rescue Evaluates an expression after an exception is raised; used
before ensure.

retry When called outside of rescue, repeats a method call;
inside rescue, jumps to top of block (begin).

return Returns a value from a method or block. May be omitted,
but method or block always return a value, whether it is
explicit or not.

self Current object (receiver invoked by a method); a
pseudovariable.

super Calls method of the same name in the superclass. The
superclass is the parent of this class.

then Separator used withif,unless,when,case, and
rescue. May be omitted, unless conditional is all on one line.

true Logical or Boolean true; instance of TrueClass; a
pseudovariable. See false.

undef Makes a method undefined in the current class.

unless Executes code block if conditional statement is false.
Compare if, until.

Table 1. Ruby’s reserved words (continued)

Reserved word Description

Operators | 9

Operators
Table 2 lists all of Ruby’s operators in descending order of
precedence. Operators that are implemented as methods may
be overridden and are indicated in the Method column.

until Executes code block while conditional statement is false.
Compare if, unless.

when Starts a clause (one or more) under case.

while Executes code while the conditional statement is true.

yield Executes the block passed to a method.

_ _FILE_ _ Name of current source file; a pseudovariable.

_ _LINE_ _ Number of current line in the current source file; a
pseudovariable.

Table 2. Ruby’s operators

Operator Description Method

:: Scope resolution

[] []= Reference, set �

** Raise to power (exponentiation) �

+ - ! ~ Positive (unary), negative (unary),
logical negation, complement

� (not !)

* / % Multiplication, division, modulo
(remainder)

�

+ - Addition, subtraction �

<< >> Shift left, shift right �

& Bitwise and �

| ^ Bitwise or, bitwise exclusive or �

> >= < <= Greater than, greater than or equal
to, less than, less than or equal to

�

<=> == === !=
=~ !~

Equality comparison (spaceship,
equality, equality, not equal to,
match, not match

� (not != or !~)

Table 1. Ruby’s reserved words (continued)

Reserved word Description

10 | Ruby Pocket Reference

Comments
A comment hides a line, part of a line, or several lines from
the Ruby interpreter. You can use the hash character (#) at
the beginning of a line:

I am a comment. Just ignore me.

Or, a comment may be on the same line after a statement or
expression:

name = "Floydene" # ain't that a name to beat all

You can make a comment run over several lines, like this:

This is a comment.
This is a comment, too.
This is a comment, too.
I said that already.

Here is another form. This block comment conceals several
lines from the interpreter with =begin/=end:

=begin
This is a comment.
This is a comment, too.
This is a comment, too.
I said that already.
=end

&& Logical and

|| Logical or

.. ... Range inclusive, range exclusive � (not ...)

? : Ternary

= += -= *= /= %=
**= <<= >>= &= |=
^= &&= ||=

Assignment, abbreviated
assignment

not Logical negation

and or Logical composition

defined? Special operator (no precedence)

Table 2. Ruby’s operators (continued)

Operator Description Method

Variables | 11

A block can comment out one line or as many lines as you
want.

Numbers
Numbers are not primitives; each number is an object, an
instance of one of Ruby’s numeric classes. Numeric is Ruby’s
base class for numbers. The numeric class Fixnum is used for
integers, fixed-length numbers with bit lengths of the native
machine word, minus 1. The Float class is for floating-point
numbers, which use the native architecture’s double-precision
floating-point representation internally. The Bignum class is
used to hold integers larger than Fixnum can hold. Bignums are
created automatically if any operation or assignment yields a
result too large for Fixnum. The only limitation on the size
integer Bignum can represent is the available memory in the
operating system:

2411 # integer, of class Fixnum
2_411 # integer, of class Fixnum, underscore ignored
241.1 # float, of class Float
3.7e4 # scientific notation, of class Float
3E4 # scientific notation, of class Float
3E-4 # scientific notation, with sign before
 exponent
0444 # octal, of class Fixnum
0xfff # hexadecimal, of class Fixnum
0b1101 # binary, of class Fixnum
4567832704 # integer, of class Bignum

Figure 1 shows a hierarchy of Ruby’s math classes.

Variables
A variable is an identifier that is assigned to an object, and
that object may hold a value. The type of the value is assigned
at runtime. Ruby variables are not declared nor statically
typed. Ruby uses duck typing, a kind of dynamic typing. If a
value behaves or acts like a certain type, such as an integer,
Ruby gives it a context, and it is treated in that context.

12 | Ruby Pocket Reference

Duck typing comes from the concept that if it walks like a
duck, quacks like a duck, flies like a duck, and swims like a
duck (or integer or float, etc.), then it is probably a duck. If a
variable is able to act like an integer, for example, then it is
legal to use it in that context.

Local Variables
A local variable has a local scope or context. For example, if
a variable is defined inside of a method or a loop, its scope is
within the method or loop where it was defined. Local vari-
able names must start with a lowercase letter or with an
underscore character (_), such as alpha or _beta, and cannot
be prefixed with a special character (as in @, @@, or $).

Instance Variables
An instance variable belongs to a particular instance of a class
(hence the name) and can only be accessed from outside that
instance via an accessor (or helper) method. Instance vari-
ables are always prefixed with a single at sign (@), as in
@hello. See the upcoming section “Classes.”

Figure 1. Hierarchy of Ruby math classes

Object

Numeric

Integer

Bignum

Matrix

Rational

Complex
Fixnum

Math
module

Precision
module

Variables | 13

Class Variables
A class variable is shared among all instances of a class. Only
one copy of a class variable exists for a given class. In Ruby,
it is prefixed by two at signs (@@), such as @@times. You have
to initialize (declare a value for) a class variable before you
use it. See the upcoming section “Classes.”

Global Variables
Global variables are available globally to a program, inside
any structure. Their scope is the whole program. They are
prefixed by a dollar sign ($), such as $amount. Matz’s opinion
on global variables is, and I quote, “They are ugly, so don’t
use them.” I would take his advice. You can use a singleton
instead. See the upcoming section “Singletons.”

Constants
Constant variable names must begin with a capital letter
(Matz), and by convention are frequently all capitals (MATZ).
This makes make them easy to spot. As their name suggests,
constants are not expected to change their value after their
initial assignment. Because Ruby is a flexible language, there
are a couple of notable exceptions to this. First, you can
reassign a constant in Ruby, though Ruby will generate a
warning if you do, and it’s not a good idea. Second, and
more importantly, since constants refer to objects, the con-
tents of the object to which the constant refers may change
without Ruby generating a warning. Thus, Ruby constants
are called mutable, because, although the constant is only
expected to refer to a single object throughout the program,
what’s contained in that object may vary.

Parallel Assignment of Variables
With parallel assignment, you can assign several values to
several variables in a single expression. A list of variables,
separated by commas, can be placed to the left of the equals

14 | Ruby Pocket Reference

sign, with the list of values to assign them (in order) on the
right. Here is an example:

x, y, z = 100, 200, 500

You can also assign values of different types:

a, b, c = "cash", 1.99, 100

Symbols
Ruby has a special object called a symbol. Symbols are like
placeholders for identifiers and strings; they are always pre-
fixed by a colon (:), such as :en and :logos. Most impor-
tantly, only one copy of the symbol is held in a single memory
address, as long as the program is running. You don’t
directly create a symbol by assigning a value to one. You cre-
ate a symbol by calling the to_sym or intern methods on a
string, or by assigning a symbol to a symbol:

name = "Brianna"
name.to_sym # => :Brianna
:Brianna.id2name # => "Brianna"
name == :Brianna.id2name # => true

Predefined Variables
Table 3 lists all of Ruby’s predefined variables.

Table 3. Predefined variables

Predefined variable Description

$! The exception information message containing the last
exception raised. raise sets this variable. Access with =>
in a rescue clause.

$@ The stack backtrace of the last exception, retrievable via
Exception#backtrace.

$& The string matched by the last successful pattern match in
this scope, or nil if the last pattern match failed. Same as
m[0] where m is a MatchData object. Read only. Local.

Predefined Variables | 15

$` String preceding whatever was matched by the last
successful pattern match in the current scope, or nil if the
last pattern match failed. Same asm.pre_matchwherem
is a MatchData object. Read only. Local.

$' String following whatever was matched by the last
successful pattern match in the current scope, or nil if the
last pattern match failed. Same as m.post_matchwhere
m is a MatchData object. Read only. Local.

$+ Last bracket matched by the last successful search pattern,
or nil if the last pattern match failed. Useful if you don’t
know which of a set of alternative patterns matched. Read
only. Local.

$1, $2 . . . Subpattern from the corresponding set of parentheses in
the last successful pattern matched, not counting patterns
matched in nested blocks that have been exited already, or
nil if the last pattern match failed. Same as m[n] where
m is a MatchData object. Read only. Local.

$~ Information about the last match in the current scope.
Regex#match returns the last match information.
Setting this variable affects match variables like $&, $+,
$1, $2, etc. The nth subexpression can be retrieved by
$~[nth]. Local.

$= Case-insensitive flag; nil by default.

$/ Input record separator, newline by default. Works like
awk’s RS variable. If it is set to nil, a whole file will be read
at once. gets, readline, etc. take the input record
separator as an optional argument.

$\ Output record separator for print and IO#write; nil by
default.

$, Output field separator between arguments; also the default
separator for Array#join, which allows you to indicate a
separator explicitly.

$; The default separator for String#split; nil by
default.

$. The current input line number of the last file that was read.
Same as ARGF.lineno.

Table 3. Predefined variables (continued)

Predefined variable Description

16 | Ruby Pocket Reference

$< The virtual concatenation file of the files given by
command-line arguments, or standard input (in case no
argument file is supplied). $<.filename returns the
current filename. Synonym for ARGF.

$> Default output for print, printf, $stdout by default.
Synonym for $defout.

$_ Last input line of string by gets or readline in the
current scope; set to nil if gets or readline meets
EOF. Local.

$0 Name of the current Ruby program being executed.

$* Command-line arguments given for the script. The options
for the Ruby interpreter are already removed.

$$ Process number (process.pid) of the Ruby program
being executed.

$? Exit status of the last executed process.

$: Synonym for $LOAD_PATH.

$" Array containing the module names loaded by require.
Used for prevent require from loading modules twice.

$DEBUG True if -d or --debug switch is set.

$defout Default output for print, printf; $stdout by default.
Synonym for $>.

$F Receives output from split when -a specified. Set if -a
is set along with -p and -n.

$FILENAME Name of the file currently being read from ARGF. Same as
ARGF.filename or $<.filename.

$LOAD_PATH Synonym for $:.

$SAFE Security level:
0 No checks on externally supplied (tainted) date. Default.
1 Potentially dangerous operations using tainted data are

forbidden.
2 Potentially dangerous operations performed on

processes and files are forbidden.
3 All newly created objects are considered tainted.
4 Modification of global data is forbidden.

Table 3. Predefined variables (continued)

Predefined variable Description

Pseudovariables | 17

Pseudovariables
Table 4 shows Ruby’s pseudovariables. A pseudovariable is
an object that looks like a variable, acts like a constant, and
can’t be assigned a value. These are also listed in Table 1.

$stdin The current standard input; STDIN by default.

$stdout The current standard output; STDOUT by default.

$stderr The current standard error output; STDERR by default.

$VERBOSE True if verbose flag is set by the -v, -w, or --verbose
switch of the Ruby interpreter.

$-0 Alias of $/.

$-a True if option -a is set. Read-only.

$-d Alias of $DEBUG.

$-F Alias of $;.

$-i In in-place-edit mode, holds the extension, otherwise nil.
Can enable or disable in-place-edit mode.

$-I Alias of $:.

$-l True if option -lis set. Read-only.

$-p True if option -pis set. Read-only.

Table 4. Pseudovariables in Ruby

Pseudovariable Description

false Logical or Boolean false; instance of FalseClass.

nil Empty, uninitialized, or invalid; always false, but not the
same as zero; object of NilClass.

self Current object (receiver invoked by a method).

true Logical or Boolean true; instance of TrueClass.

_ _FILE_ _ Name of current source file.

_ _LINE_ _ Number of current line in the current source file.

Table 3. Predefined variables (continued)

Predefined variable Description

18 | Ruby Pocket Reference

Global Constants
Table 5 describes all of Ruby’s global constants.

Table 5. Global constants

Constant Description

ARGF I/O-like stream that allows access to a virtual concatenation
of all files provided on the command line, or standard input
if no files are provided. Synonym for $<.

ARGV Array that contains all the command-line arguments
passed to a program. Synonym for $*.

DATA An input stream for reading the lines of code following the
_ _END_ _ directive. Not defined if _ _END_ _ is not
present in code.

ENV A hash-like object containing the program’s environment
variables; can be treated as a hash.

FALSE Synonym for false; false is preferred.

NIL Synonym for nil; nil is preferred.

PLATFORM Synonym for RUBY_PLATFORM. Deprecated.

RELEASE_DATE Synonym for RUBY_RELEASE_DATE. Deprecated.

RUBY_PLATFORM A string indicating the platform of the Ruby interpreter;
e.g., “powerpc-darwin8.9.0.”

RUBY_RELEASE_DATE A string indicating the release date of the Ruby interpreter;
e.g., “2007-03-13.”

RUBY_VERSION The Ruby version; e.g., “1.8.6.”

STDERR Standard error output stream with default value of
$stderr.

STDIN Standard input stream with default value of $stdin.

STDOUT Standard output stream with default value of $stdout.

TOPLEVEL_BINDING A Binding object at Ruby’s top level.

TRUE Synonym for true; true is preferred.

VERSION Synonym for RUBY_VERSION. Deprecated.

Methods | 19

Ranges
Ruby supports ranges by means of the .. (inclusive) and ...
(exclusive) operators. For example, the range 1..12 includes
the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, inclusive. How-
ever, in the range 1...12, the ending value 12 is excluded; in
other words, the effective numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11.

The === method determines whether a value is a member of,
or included in a range:

(1..25) === 14 # => true, in range
(1..25) === 26 # => false, out of range
(1...25) === 25 # => false, out of range (... used)

You can use a range to do things like create an array of digits:

(1..9).to_a # => [1, 2, 3, 4, 5, 6, 7, 8, 9]

You can also create a range like this:

digits = Range.new(1, 9)
digits.to_a # => [1, 2, 3, 4, 5, 6, 7, 8, 9]

Methods
Methods provide a way to collect programming statements
and expressions into one place so that you can use them con-
veniently and, if necessary, repeatedly. Most of the operators
in Ruby are actually methods. Here is a simple definition of a
method named hello, created with the keywords def and
end:

def hello
 puts "Hello, world!"
end

hello # => Hello, world!

20 | Ruby Pocket Reference

You can undefine a method with undef:

undef hello # undefines the method named hello

hello # try calling this method now
NameError: undefined local variable or method `hello' for
main:Object
 from (irb):11
 from :0

Methods can take arguments. The repeat method shown
here takes two arguments, word and times:

def repeat(word, times)
 puts word * times
end

repeat("Hello! ", 3) # => Hello! Hello! Hello!
repeat "Goodbye! ", 4 # => Goodbye! Goodbye! Goodbye!
Goodbye!

Parentheses
Parentheses are optional in most Ruby method definitions
and calls. If you don’t use parentheses when calling a method
that takes arguments, you may get warnings, depending on
the argument types.

Return Values
Methods have return values. In other languages, you explic-
itly return a value with a return statement. In Ruby, the
value of the last expression evaluated is returned, with or
without an explicit return statement. This is a Ruby idiom.
You can also define a return value explicitly with the return
keyword:

def hello
return "Hello, world!"

end

Methods | 21

Method Name Conventions
Ruby has conventions about the last character in method
names—conventions that are very common but not enforced
by the language. If a method name ends with a question
mark (?), such as eql?, it means that the method returns a
Boolean—true or false. For example:

x = 1.0
y = 1.0
x.eql? y # => true

If a method name ends in an exclamation point (!), like
delete!, it indicates that the method is destructive, meaning
it makes in-place changes to an object, rather than to a copy;
that is, it changes the object itself. See the difference in the
result of the String methods delete and delete!:

der_mensch = "Matz!" # => "Matz!"
der_mensch.delete("!") # => "Matz"
puts der_mensch # => Matz!
der_mensch.delete!("!") # => "Matz"
puts der_mensch # => Matz

If a method name ends in an equals sign (=), in the form
family_name=, it means that the method is a setter—one that
performs an assignment to, or sets a variable such as an
instance variable in, a class:

class Name
 def family_name=(family)
 @family_name = family
 end
 def given_name=(given)
 @given_name = given
 end
end

n = Name.new
n.family_name= "Matsumoto" # => "Matsumoto"
n.given_name= "Yukihiro" # => "Yukihiro"
p n # => <Name:0x1d441c @family_name="Matsumoto", @given_
name="Yukihiro">

22 | Ruby Pocket Reference

Default Arguments
The repeat method shown earlier has two arguments. You
can give those arguments default values by using an equals
sign followed by a value. When you call the method without
arguments, the defaults are used automatically. Redefine
repeat with default values: Hello for word, and 3 for times.
Call it first without arguments, then with them.

def repeat(word="Hello! ", times=3)
 puts word * times
end

repeat # => Hello! Hello! Hello!

repeat("Goodbye! ", 5) # => Goodbye! Goodbye! Goodbye!
Goodbye! Goodbye!

Variable Arguments
You can be flexible about the number of arguments that a
method has, because Ruby lets you pass a variable number of
arguments by prefixing an argument with a splat (*):

def num_args(*args)
 length = args.size
 label = length == 1 ? " argument" : " arguments"
 num = length.to_s + label + " (" + args.inspect + ")"
 num
end

puts num_args # => 0 arguments ([])

puts num_args(1) # => 1 argument ([1])

puts num_args(100, 2.5, "three")
=> 3 arguments ([100, 2.5, "three"])

You can have set arguments along with variable arguments:

def two_plus(one, two, *args)
 length = args.size
 label = length == 1 ? " variable argument" : " variable
arguments"

Methods | 23

 num = length.to_s + label + " (" + args.inspect + ")"
 num
end

puts two_plus(1, 2) # => 0 variable arguments ([])

puts two_plus(1000, 3.5, 14.3)
=> 1 variable argument ([14.3])

puts two_plus(100, 2.5, "three", 70, 14.3)
=> 3 variable arguments (["three", 70, 14.3])

Aliasing Methods
Ruby has a keyword, alias, that creates method aliases.
Aliasing means that you in effect create a copy of the method
with a new method name, though both method invocations
will point to the same object. The following example illus-
trates how to create an alias for the method greet:

def greet
 puts "Hello, baby!"
end

alias baby greet # alias greet as baby

greet # call it
Hello, baby!

baby # call the aliased version
Hello, baby!

Blocks
A block in Ruby is more than just a code block or group of
statements. A Ruby block is always invoked in conjunction
with a method, as you will see. In fact, blocks are closures,
sometimes referred to as nameless functions. They are like a
method within another method that refers to or shares vari-
ables with the enclosing or outer method. In Ruby, the clo-
sure or block is wrapped by braces ({}) or by do/end, and
depends on the associated method (such as each) to work.

24 | Ruby Pocket Reference

Here is an example call to a block on the method each from
Array:

pacific = ["Washington", "Oregon", "California"]

pacific.each do |element|
 puts element
end

The name in the bars (|element|) can be any name you want.
The block uses it as a local variable to keep track of every ele-
ment in the array, and later uses it to do something with the
element. You can replace do/end with a pair of braces, as is
most commonly done. The braces actually have a higher pre-
cedence than do/end:

pacific.each { |e| puts e }

If you use a variable name that already exists in the contain-
ing scope, the block assigns that variable each successive
value, which may or may not be what you want. It does not
generate a local variable to the block with that name, as some
might expect. Thus, you get this behavior:

j = 7
(1..4).to_a.each { | j | } # j now equals 4

The yield statement

A yield statement executes a block associated with a
method. For example, this gimme method contains nothing
more than a yield statement:

def gimme
yield

end

To find out what yield does, call gimme and see what happens:

gimme
LocalJumpError: no block given
 from (irb):11:in `gimme'
 from (irb):13
 from :0

Methods | 25

You get an error here because yield’s job is to execute the
code block that is associated with the method. That was
missing in the call to gimme. We can avoid this error by using
the block_given? method (from Kernel). Redefine gimme with
an if statement:

def gimme
 if block_given?
 yield
 else
 puts "I'm blockless!"
 end
end

Try again with and without a block:

gimme { print "Say hi to the people." } # => Say hi to the
people.

gimme # => I'm blockless!

Redefine gimme to contain two yields, then call it with a
block:

def gimme
 if block_given?
 yield
 yield
 else
 puts "I'm blockless!"
 end
end

gimme { print "Say hi again. " } # => Say hi again. Say hi
again.

Another thing you should know is that after yield executes,
control comes back to the next statement immediately fol-
lowing yield.

Procs
Ruby lets you store procedures—or procs—as objects, com-
plete with their context. You can do this several ways. You
can create a proc with new on the Proc class or by calling

26 | Ruby Pocket Reference

either the lambda or proc method from Kernel. Calling lambda
or proc is preferred over Proc.new because lambda and proc do
parameter checking. Consider this example:

count = Proc.new { [1,2,3,4,5].each do |i| print i end;
puts }
your_proc = lambda { puts "Lurch: 'You rang?'" }
my_proc = proc { puts "Morticia: 'Who was at the door,
Lurch?'" }

What kind of objects did you just create?
puts count.class, your_proc.class, my_proc.class

Calling all procs
count.call # => 12345
your_proc.call # => Lurch: 'You rang?'
my_proc.call # => Morticia: 'Who was at the door, Lurch?'

You can convert a block passed as a method argument to a
Proc object by preceding the argument name with an amper-
sand (&) as follows:

def return_block
yield

end

def return_proc(&proc)
yield

end

return_block { puts "Got block!" }
return_proc { puts "Got block, convert to proc!" }

The method return_block has no arguments. All it has is a
yield statement in its body. The yield statement’s purpose,
once again, is to execute a block when the block is passed to
a method. The next method, return_proc, has one argu-
ment, &proc. When a method has an argument preceded by
an ampersand, it accepts the block, when one is submitted,
and converts it to a Proc object. With yield in the body, the
method executes the block cum proc, without having to
bother with the Proc call method.

Conditional Statements | 27

Conditional Statements
A conditional statement tests whether a statement is true or
false and performs logic based on the answer. Both true and
false are pseudovariables—you can’t assign values to them.
The former is an object of TrueClass, and the latter is an
object of FalseClass.

The if Statement
These statements begin with if and close with end:

if x == y then puts "x equals y" end

if x != y: puts "x is not equal to y" end

if x > y
 puts "x is greater than y"
end

The separator then (or its synonym :) is optional unless the
statement is on one line.

Negation

The negation operator ! reverses the true/false value of its
expression:

if !x == y then puts "x does not equal y" end

if !x > y
 puts "x is not greater than y"
end

Multiple tests

Combine multiple tests in an if statement using && and ||, or
their synonyms and and or, which have lower precedence:

ruby = "nifty"
programming = "fun"

if ruby == "nifty" && programming == "fun"
 puts "Keep programming!"
end

28 | Ruby Pocket Reference

if a == 10 && b == 27 && c == 43 && d == -14
 print sum = a + b + c + d
end

if ruby=="nifty" and programming=="fun" and
weather=="nice"
 puts "Stop programming and go outside for a break!"
end

if a == 10 || b == 27 || c = 43 || d = -14
 print sum = a + b + c + d
end

if ruby == "nifty" or programming == "fun"
 puts "Keep programming!"
end

Statement modifier for if

You can also use if as a statement modifier by placing the if
at the end of the statement:

puts "x is less than y" if x < y

The else statement

Add an optional else to execute a statement when if is not
true:

if x >= y
 puts "x greater than or equal to y"
else
 puts "x is not greater than or equal to y"
end

The elsif statement

Use one or more optional elsif statements to test multiple
statements (ending with an optional else—it must be last):

if x == y
 puts "x equals y"
elsif x != y
 puts "x is not equal to y"
elsif x > y
 puts "x is greater than y"

Conditional Statements | 29

elsif x < y
 puts "x is less than y"
elsif x >= y
 puts "x is greater than or equal to y"
elsif x <= y
 puts "x is less than or equal to y"
else
 puts "Arrrrgh!"
end

Here is a tighter way of using elsifs with a colon after each
test:

lang = "de"

if lang == "en": print "dog"
elsif lang == "es": print "perro"
elsif lang == "fr": print "chien"
elsif lang == "de": print "Hund"

 else puts "No language set; default = 'dog'".
end

Don’t follow the else (the last statement) with a colon.

The unless Statement
An unless statement is a negated form of the if statement.
This example of unless:

unless lang == "de"
 dog = "dog"
else
 dog = "Hund"
end

is a negated form of this if statement (both accomplish the
same thing):

if lang == "de"
 dog = "Hund"
else
 dog = "dog"
end

This example is saying, in effect, that unless the value of lang
is de, dog will be assigned the value of dog; otherwise, assign
dog the value Hund.

30 | Ruby Pocket Reference

Statement modifier for unless

As with if, you can also use unless as a statement modifier:

puts num += 1 unless num > 88

The while Statement
A while loop executes the code it contains as long as its con-
ditional statement remains true:

i = 0
breeds = ["quarter", "arabian", "appalosa", "paint"]
puts breeds.size # => 4
temp = []

while i < breeds.size do
 temp << breeds[i].capitalize
 i +=1
end

temp.sort! # => ["Appalosa", "Arabian", "Paint",
"Quarter"]
breeds.replace(temp)
p breeds # => ["Appalosa", "Arabian", "Paint", "Quarter"]

The do keyword is optional:

Another form of while you can use is with begin and end,
where the code in the loop is evaluated before the condi-
tional is checked (like do/while in C):

temp = 98.3

begin
 print "Your temperature is " + temp.to_s + " Fahrenheit. "
 puts "I think you're okay."
 temp += 0.1
end while temp < 98.6

puts "Your temperature is " + temp.to_s + " Fahrenheit."

You can break out of a while loop with the keyword break:

while i < breeds.size
 temp << breeds[i].capitalize
break if temp[i] == "Arabian"

Conditional Statements | 31

 i +=1
end
p temp # => ["Quarter", "Arabian"]

When the if modifier following break found Arabian in the
temp array, it broke out of the loop right then.

Statement modifier for while

As with if, you can use while as a statement modifier, at the
end of a statement:

cash = 100_000.00
sum = 0

cash += 1.00, sum while cash < 1_000_000.00 # underscore
ignored

The until Statement
As unless is a negated form of if, until is a negated form of
while. Compare the following statements:

weight = 150
while weight < 200 do
 puts "Weight: " + weight.to_s
 weight += 5
end

Here is the same logic expressed with until:

weight = 150
until weight == 200 do
 puts "Weight: " + weight.to_s
 weight += 5
end

And as with while, you have another form you can use with
until, that is, with begin/end:

weight = 150

begin
 puts "Weight: " + weight.to_s
 weight += 5
end until weight == 200

32 | Ruby Pocket Reference

In this form, the statements in the loop are evaluated once
before the conditional is checked.

Statement modifier for until

And finally, like while, you can also use until as a statement
modifier:

puts age += 1 until age > 28

The case Statement
Ruby’s case statement together with when provides a way to
express conditional logic in a succinct way. It is similar to the
switch statement found in other languages, but case can check
objects of any type that can respond to the equality property
and/or any equivalence operators, including strings. Using
case/when is more convenient and concise than if/elsif/else
because the logic of == is assumed. Examples follow:

lang = "fr"

dog = case lang
when "en": "dog"
when "es": "perro"
when "fr": "chien"
when "de": "Hund"

 else "dog"
end

The string chien is assigned to the variable dog because the
value of lang is the symbol fr. If the lang variable held a sym-
bol instead of a string, the code would look like:

lang = :de

dog = case lang
when :en: "dog"
when :es: "perro"
when :fr: "chien"
when :de: "Hund"
else "dog"

end

Conditional Statements | 33

The string value Hund is assigned to dog because the value of
lang is :de. The next example uses several ranges to test values.

scale = 8
case scale
 when 0: puts "lowest"
 when 1..3: puts "medium-low"
 when 4..5: puts "medium"
 when 6..7: puts "medium-high"
 when 8..9: puts "high"
 when 10: puts "highest"
 else puts "off scale"
end

The printed response will be high because scale is in the
range 8 to 9, inclusive.

The for Loop
This example of a for loop uses a range (1..10) to print out a
list of numbers from 1 to 10, inclusive. The do is optional,
unless the for loop is on one line:

for i in 1..10 do print i, " " end # => 1 2 3 4 5 6 7 8 9 10

for i in 1..10
 print i, " "
end
=> 1 2 3 4 5 6 7 8 9 10

This for loop prints out a times table (from 1 to 12) for the
number 2:

for i in 1..12
 print "2 x " + i.to_s + " = ", i * 2, "\n"
end

This is a nested for loop that you can use to print times
tables from 1 times to 12 times:

for i in 1..12
 for j in 1..12
 print i.to_s + " x " + j.to_s + " = ", j * i, "\n"
 end
end

34 | Ruby Pocket Reference

An alternative to the for loop is the times method (from class
Integer):

12.times { |i| print i, " " } # => 0 1 2 3 4 5 6 7 8 9 10 11

The Ternary Operator
The ternary or base three operator (?:) is a concise structure
that descended from C to Ruby. It is also called the condi-
tional expression. An example follows:

label = length == 1 ? " argument" : " arguments"

This expression assigns a string value to label based on the
value of length. If the value of length is 1, the string value
argument (singular) will be assigned to label; but if it is not
true—that is, length has a value other than 1—the string
value of label will be arguments (plural).

Executing Code Before or After a Program
The following structures allow code to execute before and
after a program runs. Both BEGIN and END are followed by
blocks enclosed by braces ({}):

BEGIN { puts "Date and time: " + Time.now.to_s }

def bmi(weight, height)
 703.0*(weight.to_f/(height.to_f**2))
end

my_bmi = bmi(196, 73)

puts "Your BMI is: " + x = sprintf("%0.2f", my_bmi)

END { puts "You've got some work ahead of you." }

Classes
In an object-oriented programming language like Ruby, a
class is a container that holds properties (class members) such
as methods and variables. Classes can inherit properties from

Classes | 35

a parent or superclass, creating a hierarchy of classes with a
base class at the root or top. In Ruby, the base class is Object.
Ruby uses single inheritance—that is, a Ruby class can
inherit the properties of only one parent class. (Multiple
inheritance, as is used in C++, allows a class to inherit from
more than one parent.) You can define more than one class
in a single file in Ruby. A class itself is an object, even if you
don’t directly instantiate it. Classes are always open, so you
can add to any class, even a built-in one.

A class is defined with a class keyword, and the definition
concludes with an end:

class Hello

 def initialize(name)
 @name = name
 end

 def hello_matz
 puts "Hello, " + @name + "!"
 end

end

hi = Hello.new("Matz")
hi.hello_matz # => Hello, Matz!

The initialize method defines the instance variable @name
by storing a copy of the name argument passed into the
initialize method. The initialize method is a Ruby con-
vention that acts like a class constructor in other languages,
but not completely. At this point, the instance is already
there, fully instantiated. initialize is the first code that is
executed after the object is instantiated; you can execute just
about any Ruby code in initialize. initialize is always pri-
vate; that is, it is scoped only to the current object, not
beyond it. You access the instance variable @name with the
method hello_matz.

To add a method to an existing class, such as the built-in
class Array, specify the following:

36 | Ruby Pocket Reference

class Array

 def array_of_ten
 (1..10).to_a
 end

end

arr = Array.new
ten = arr.array_of_ten
p ten # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Instance Variables
As mentioned previously, an instance variable is a variable
that is available from within an instance of a class, and is lim-
ited in scope because it belongs to a given object. An instance
variable is prefixed by a single at sign (@), like:

@name = "Easy Jet"

You can define an instance variable inside a method or out-
side of one. You can only access an instance variable from
outside an object via a method. You can, however, access an
instance variable within the object without a method:

class Horse

 @name = "Easy Jet"

end

This works if you only want to reference @name from within
the object. You have no way to retrieve the value of @name
directly from outside of the object. You must define a getter
(accessor) method to retrieve the value:

class Horse

 def name
 @name = "Easy Jet"
 end

end

Classes | 37

h = Horse.new
h.name # => "Easy Jet"

You often want a setter in addition to a getter. A setter is an
accessor method that sets the value of a variable:

class Horse

 def name
 @name
 end

 def name=(value)
 @name = value
 end

end

h = Horse.new
h.name= "Poco Bueno"
h.name # => "Poco Bueno"

The setter method name= follows a Ruby convention: the
name of the method ends with an equals sign (=). This con-
vention is not a requirement. You could call name= whatever
you like, as long as the characters are legal. Here is another
version of the class Horse that initializes the instance variable
@name with the standard initialize method. Later the pro-
gram creates an instance of the class by calling new, and then
accesses the instance variable through the accessor method
horse_name, via the instance horse:

class Horse

 def initialize(name)
@name = name

 end

 def horse_name
@name

 end

end

horse = Horse.new("Doc Bar")
puts horse.horse_name # => Doc Bar

38 | Ruby Pocket Reference

Accessors
Ruby simplifies the creation of getters and setters by meta-
programming with the methods attr, attr_reader, attr_
writer, and attr_accessor, all from the Module class. The
attr method creates a single getter method, named by a sym-
bol, with an optional setter method (if the second argument
is true):

class Dog
attr :bark, true

end

Dog.instance_methods - Object.instance_methods
=> ["bark", "bark="]

dog = Dog.new

dog.bark="Woof!"
puts dog.bark # => Woof!

By calling attr with :bark and true as arguments, the class
Dog will have the instance methods bark and bark=. If you call
attr with only the :bark argument, Dog would have only the
getter method bark. (Notice that you can subtract out
Object’s instance methods with - when retrieving Dog’s
instance methods.)

The attr_reader and attr_writer methods accept as argu-
ments the names of one or more instance variables, then cre-
ate corresponding methods that return (attr_reader) or set
(attr_writer) the values of each instance variable. (Instance
variables are not actually created until you assign values to
them.) Consider this example:

class Dog
attr_reader :bark # getter
attr_writer :bark # setter

end

dog = Dog.new

dog.bark="Woof!"
puts dog.bark # => Woof!

Classes | 39

dog.instance_variables.sort # => ["@bark"]
Dog.instance_methods.sort - Object.instance_methods
=> ["bark", "bark="]

Calling the attr_accessor method does the same job as call-
ing both attr_reader and attr_writer together, for one or
more instance variables:

class Gaits
attr_accessor :walk, :trot, :canter

end

Gaits.instance_methods.sort - Object.instance_methods # =>
["canter", "canter=", "trot", "trot=", "walk", "walk="]

Class Variables
A class variable is shared among all instances of a class, so
only one copy of a class variable exists for a given class. In
Ruby, a class variable is prefixed by two at signs (@@). You
must initialize a class attribute before you use it, such as
@@times = 0.

class Repeat
@@total = 0

 def initialize(string, times)
 @string = string
 @times = times
 end
 def repeat

@@total += @times
 return @string * @times
 end
 def total
 "Total times, so far: " + @@total.to_s
 end
end

data = Repeat.new("ack ", 8)
ditto = Repeat.new("Again! ", 5)
ditty = Repeat.new("Rinse. Lather. Repeat. ", 2)

puts data.repeat # => ack ack ack ack ack ack ack ack
puts data.total # => Total times, so far: 8

40 | Ruby Pocket Reference

puts ditto.repeat # => Again! Again! Again! Again! Again!
puts ditto.total # => Total times, so far: 13

puts ditty.repeat
=> Rinse. Lather. Repeat. Rinse. Lather. Repeat.
puts ditty.total # => Total times, so far: 15

Class Methods
A class method is a method that is associated with a class
(and with a module in Ruby), not an instance of a class. You
can invoke class methods by prefixing the name of the
method with the name of the class to which it belongs, such
as to Math.sqrt(36). Class methods are also called static
methods. You can also associate the name of a module with a
method name, just like with a class, but to use such a method,
you must include the module in a class. To define a class
method, you simply prefix the name of the method with the
name of the class or module (or self) in the method definition:

class Area

Use self.rect or Area.rect
def self.rect(length, width, units="inches")
 def Area.rect(length, width, units="inches")
 area = length*width
 printf("The area of this rectangle is %.2f %s.",
 area, units)
 sprintf("%.2f", area)
 end

end

Area.rect(12.5, 16) # => The area of this rectangle is
200.00 inches.

Singletons
Another way you can define class methods is by using a class
within a class and self—a singleton class. In basic terms, a
singleton is designed so that it can only be instantiated once.

Classes | 41

It is often used like a global variable. Ruby has a class for
defining singleton objects; see http://www.ruby-doc.org/core/
classes/Singleton.html. Consider this example:

class Area

class << self

 def rect(length, width, units="inches")
 area = length*width
 printf("The area of this rectangle is %.2f %s.",
 area, units)
 sprintf("%.2f", area)
 end

 end

end

Area.rect(10, 10) # The area of this rectangle is 100.00
inches.=> "100.00"

In this form, you don’t have to prefix the method with the
class name. A singleton class is tied to a particular object, can
be instantiated only once, and is not distinguished by a pre-
fixed name. The method rect is also effectively a singleton
method because it is tied to the singleton class. Here is a way
to define a singleton method, one that is tied to a single
object:

class Singleton
end

s = Singleton.new
def s.handle
 puts "I'm a singleton method!"
end

s.handle # => I'm a singleton method!

http://www.ruby-doc.org/core/classes/Singleton.html
http://www.ruby-doc.org/core/classes/Singleton.html

42 | Ruby Pocket Reference

Inheritance
As mentioned earlier, when a child class inherits or derives
from a parent, it has access to the methods and properties of
the parent class. Inheritance is accomplished with the <
operator:

class Name

 attr_accessor :given_name, :family_name

end

class Address < Name

 attr_accessor :street, :city, :state, :country

end

a = Address.new
puts a.respond_to?(:given_name) # => true

If the class Name were in a different file, you’d just require
that file first, and then the inheritance operation works.

Load path

The system path is not necessarily the same thing as the
Ruby path or load path. Ruby has a predefined variable
called $LOAD_PATH (which also has a Perl-like synonym, $:).
$LOAD_PATH is an array that contains the names of directories
that are searched by load and require methods when loading
files. Ruby can also use the environment variables PATH and
RUBYPATH (if they are set). PATH is the system path and acts as a
search path for Ruby programs, among other things; RUBYPATH
may be the same thing as PATH, but because it takes precedence
over PATH, it is likely to hold other directories beyond it.

Public, Private, or Protected
The visibility or access of methods and constants may be set
with the following methods:

Classes | 43

public
The method is accessible by anyone from anywhere; this
is the default.

private
The receiver for the method is always the current object
or self, so its scope is always the current object (often
helper methods; that is, ones that get called by other
methods to perform some job).

protected
The method can be used only by instances of the class
where it was defined, or by derived classes.

Methods following the keywords private or protected will
have the indicated visibility, until changed or until the defini-
tion ends:

class Names

 def initialize(given, family, nick, pet)
 @given = given
 @family = family
 @nick = nick
 @pet = pet
 end

the methods are public by default

 def given
 @given
 end

 def family
 @family
 end

all following methods private, until changed

private

 def nick
 @nick
 end

44 | Ruby Pocket Reference

all following methods protected, until changed

protected

 def pet
 @pet
 end

end

name = Names.new("Klyde", "Kimball", "Abner", "Teddy
Bear")

name.given # => "Klyde"
name.family # => "Kimball"

see what happens when you call nick or pet

name.nick
name.pet

You can also call the methods after a definition (you must
use symbols for method names):

def pet
 @pet
end

protected :pet

Modules and Mixins
In addition to classes, Ruby also has modules. A module is
like a class, but it cannot be instantiated like a class. A class
can include a module so that when the class is instantiated, it
gets the included module’s methods and so forth. (The
include method comes from the Module class: http://www.
ruby-doc.org/core/classes/Module.html.) The methods from
an included module become instance methods in the class
that includes the module. This is called mixing in, and a
module is referred to as a mixin. You can include more than

http://www.ruby-doc.org/core/classes/Module.html
http://www.ruby-doc.org/core/classes/Module.html

Classes | 45

one module (which is similar to multiple inheritance), but
you can only inherit from one class (single inheritance).
Because identifiers are overridden by the last definition of the
identifier (e.g., for methods or constants), this scheme avoids
name collision. A module is a form of a namespace in Ruby.
A namespace is a set of names—such as method names—that
have a scope or context. A Ruby class can also be considered
a namespace.

A Ruby module associates a single name with a set of
method and constant names. The module name can be used
in classes or in other modules. Generally, the scope or con-
text of such a namespace is the class or module where the
namespace (module name) is included.

A module name must be a constant; that is, it must start with
an uppercase letter. A module can contain methods, con-
stants, other modules, and even classes. It can inherit from
another module, but it may not inherit from a class. As a
class may include a module, it may also include modules that
have inherited other modules. Here’s an example:

module Dice

 # virtual roll of a pair of dice
 def roll
 r_1 = rand(6); r_2 = rand(6)
 r1 = r_1>0?r_1:1; r2 = r_2>0?r_2:6
 total = r1+r2
 printf("You rolled %d and %d (%d).\n", r1, r2, total)
 total
 end

end

class Game
include Dice

end

g = Game.new
g.roll

46 | Ruby Pocket Reference

If the module Dice and the class Game were in separate files,
just require the file containing the module before including
the module. The file containing the Dice module might look
like this:

module Dice

 # virtual roll of a pair of dice
 def roll
 r_1 = rand(6); r_2 = rand(6)
 r1 = r_1>0?r_1:1; r2 = r_2>0?r_2:6
 total = r1+r2

printf("You rolled %d and %d (%d).\n", r1, r2, total)
 total
 end

end

And the file containing the Game class might look like this:

#!/usr/bin/env ruby

require 'dice'

class Game
 include Dice
end

g = Game.new
g.roll

When you define module methods like class methods—that
is, prefixed with the module name (or with self)—you can
call the method as shown here:

module Binary

def self.to_bin(num)
 def Binary.to_bin(num)
 bin = sprintf("%08b", num)
 end

end

Binary.to_bin(123) # => "01111011"

Files | 47

Files
You can manipulate file directories (folders) and files from
within Ruby programs using methods from the Dir and File
classes. For documentation, see http://www.ruby-doc.org/core/
classes/Dir.html and http://www.ruby-doc.org/core/classes/
File.html. For example, you can change directories (using an
absolute path), and then store the value of the directory
path in a variable as follows:

Dir.chdir("/Users/penelope")
home = Dir.pwd # => "/Users/penelope/"
p home # => "/Users/penelope"

If you need a directory, create it with mkdir; later on, delete it
with rmdir (or delete, a synonym of rmdir):

Dir.mkdir("/Users/herman/sandbox")
Dir.rmdir("/Users/herman/sandbox")

You can also set permissions (where the mask 755 sets permis-
sions owner, group, world [anyone] to rwxr-xr-x where r =
read, w = write, and x = execute) on a new directory (not one
that already exists) with mkdir:

Dir.mkdir("/Users/floyd/sandbox", 755)

Creating a New File
To create a new file and open it at the same time, use the
File method new, like this:

file = File.new("file.rb", "w")

The first argument names the new file, and the second argu-
ment specifies the file mode, either r for readable, w for writ-
able, or x for executable. The effects of the different modes
are shown in Table 6.

http://www.ruby-doc.org/core/classes/Dir.html
http://www.ruby-doc.org/core/classes/Dir.html
http://www.ruby-doc.org/core/classes/File.html
http://www.ruby-doc.org/core/classes/File.html

48 | Ruby Pocket Reference

Opening an Existing File
You open an existing file with the open method. Use file.
closed? to test whether a file is closed. It returns true or
false:

file = File.open("my_text.txt")
file.each { |line| print "#{file.lineno}. ", line }
file.closed? # => false
file.close

The expression substitution syntax—that is, #{file.lineno},
inserts the line number in the output, followed by the line
from the file. The open, each, and close methods are all from
the IO class, not File.

ARGV and ARGF
Another interesting way to output the contents of a file is
with ARGV, using only two lines of code:

ARGV << "my_text.txt"
print while gets

Table 6. File modes

Mode Description

"r" Read-only, starts at beginning of file (default mode).

"r+" Read-write, starts at beginning of file.

"w" Write-only, truncates existing file to zero length or creates a new file
for writing.

"w+" Read-write, truncates existing file to zero length or creates a new file
for reading and writing.

"a" Write-only, starts at end of file if file exists, otherwise creates a new
file for writing.

"a+" Read-write, starts at end of file if file exists, otherwise creates a new
file for reading and writing.

"b" (DOS/Windows only) Binary file mode (may appear with any of the
key letters listed above).

Files | 49

ARGV (or $*) is an array, and each of its elements is a file-
name submitted on the command line, usually. But in this
case, we have appended a filename to ARGV directly with <<,
an array method. You can apply any method to ARGV that
you might apply to any other array. For example, try adding
this command:

p ARGV

Or:

p ARGV#[0]

The gets method is a Kernel method that gets lines from
ARGV, and as long as gets returns a string, that line is printed
with print.

ARGF ($<) is, once again, a virtual concatenation of all the files
that appear on the command line:

while line = ARGF.gets
 print line
end

While there is a line to be retrieved from files on the com-
mand line, the code prints that line to standard output. To
see how it works, run the program with several files on the
command line:

argf.rb my_text.txt my_text_2.txt

Both files (if they existed) are printed on the display, one line
at a time.

Renaming and Deleting Files
You can rename and delete files programmatically with Ruby
with the rename and delete methods. Type these lines into
irb:

File.new("to_do.txt", "w")

File.rename("to_do.txt", "chaps.txt")

File.delete("chaps.txt")

50 | Ruby Pocket Reference

File Inquiries
The following command tests whether a file exists before
opening it:

File.open("file.rb") if File::exists?("file.rb")

exist? (singular) is a synonym of exists?.

Inquire whether the file is really a file with file?:

File.file?("my_text.txt") # => true

Or find out if it is a directory with directory?:

a directory
File::directory?("/usr/local/bin") # => true

a file
File::directory?("file.rb") # => false

Test whether the file is readable with readable?, writable
with writable?, and executable with executable?:

File.readable?("mumble.txt") # => true
File.writable?("bumble.txt") # => true
File.executable?("rumble.txt") # => false

You can find out if a file has a length of zero (0) with zero?:

system("touch blurb.txt") # Create a zero-length file
File.zero?("blurb.txt") # => true

Get its size in bytes with size? or size:

File.size?("sonnet_129.txt") # => 594
File.size("sonnet_129.txt") # => 594

size is a synonym for size?.

Finally, inquire about the type of a file with ftype:

File::ftype("file.rb") # => "file"

The ftype method identifies the type of the file by returning
one of the following: file, directory, characterSpecial,
blockSpecial, fifo, link, socket, or unknown.

Files | 51

Find out when a file was created, modified, or last accessed
with ctime, mtime, and atime, respectively:

File::ctime("file.rb") # => Wed May 08 10:06:37 -0700
2007
File::mtime("file.rb") # => Wed May 08 10:44:44 -0700
2007
File::atime("file.rb") # => Wed May 08 10:45:01 -0700
2007

File Modes and Ownership
Use the chmod method with a mask (see Table 7) to change
the mode or permissions/access list of a file:

file = File.new("to_do.txt", "w")
file.chmod(0755)

Another method:

file = File.new("to_do.txt", "w").chmod(0755)
system "ls -l"
=> -rwxr-xr-x 1 ralphy techw 0 May 8 22:13 to_do.txt

This means that only the owner can write the file, but any-
one can read or execute it. Compare:

file = File.new("to_do.txt", "w").chmod(0644)
system "ls -l"
=> -rw-r--r-- 1 ralphy techw 0 May 8 22:13 to_do.txt

Everyone can read the file, but only the owner can write the
file, and no one can execute it.

Table 7. Masks for chmod

Mask Description

0700 rwx mask for owner

0400 r for owner

0200 w for owner

0100 x for owner

0070 rwx mask for group

0040 r for group

52 | Ruby Pocket Reference

You can change the owner and group of a file with the chown
method, which is like the Unix/Linux command chown (you
need superuser or root privileges to use this method):

file = File.new("to_do.txt", "r")
file.chown(109, 3333)

Or:

file = File.new("to_do.txt", "r").chown(109, 3333)

Now perform this system command (works on Unix/Linux
systems only) to see the result:

system "ls -l to_do.txt"
=> -rw-r--r-- 1 109 3333 0 Nov 8 11:38 to_do.txt

The IO Class
The basis for all input and output in Ruby is the IO class, which
represents an input/output (I/O) stream of data in the form of
bytes. Standard streams include standard input stream ($stdin)
or the keyboard; standard output stream ($stdout), the display
or screen; and standard error output stream ($stderr), which is
also the display by default. IO is closely associated with the File
class, and File is the only standard subclass of IO in Ruby. I’ll
show you a sampling of IO code.

0020 w for group

0010 x for group

0007 rwx mask for other

0004 r for other

0002 w for other

0001 x for other

4000 Set user ID on execution

2000 Set group ID on execution

1000 Save swapped text, even after use

Table 7. Masks for chmod (continued)

Mask Description

The IO Class | 53

To create a new I/O stream named ios, use the new method.
The first argument is 1 which is the numeric file descriptor for
standard input. Standard input can also be represented by
the predefined Ruby variable $stdin (see Table 8). The
optional second argument, w, is a mode string meaning write:

ios = IO.new(1, "w")

ios.puts "IO, IO, it's off to the computer lab I go."

$stdout.puts "Do you copy?"

Other mode strings include r or read-only (the default), r+
for read-write, and w for write-only. For details on all avail-
able modes, see Table 9.

Table 8. Standard streams

Stream description
File
descriptor

Predefined
Ruby variable

Rubyenvironment
variable

Standard input stream 0 $stdin STDIN

Standard output stream 1 $stdout STDOUT

Standard error output stream 2 $stderr STDERR

Table 9. I/O modes

Mode Description

r Read-only. Starts at the beginning of the file (default
mode).

r+ Read-write. Starts at the beginning of the file.

w Write-only. Truncates existing file to zero length, or
creates a new file for writing.

w+ Read-write. Truncates existing file to zero length, or
creates a new file for reading and writing.

a Write-only. Starts at the end of file, if the file exists;
otherwise, creates a new file for writing.

a+ Read-write, starts at the end of the file, if file exists;
otherwise, creates a new file for reading and writing.

b Binary file mode. May appear with any of the modes
listed in this table. DOS/Windows only.

54 | Ruby Pocket Reference

With the IO instance method fileno, you can test what the
numeric file descriptor is for your I/O stream (to_i also
works):

ios.fileno # => 1
ios.to_i # => 1

$stdout.fileno # => 1

You can also write strings to the stream (buffer) with the <<
method, then flush the buffer with flush:

ios << "Ask not " << "for whom the bell tolls." << " -John
Donne"

ios.flush # => Ask not for whom the bell tolls. -John
Donne

Finally, close the stream with close (this also flushes any
pending writes):

ios.close

Exception Handling
Exceptions occur when a program gets off course, and the
normal program flow is interrupted. Ruby is prepared to
handle such problems with its own built-in exceptions, but
you can handle them in your own way with exception han-
dling. Ruby’s exception handling model is similar to the C++
and Java models. Table 10 shows a comparison of the key-
words or methods used to perform exception handling in all
three languages.

Table 10. C++, Java and Ruby exception handling compared

C++ Java Ruby

try {} try {} begin/end

catch {} catch {} rescue keyword (or catch method)

Not applicable finally ensure

throw throw raise (or throw method)

Exception Handling | 55

The rescue and ensure Clauses
Handle errors/exceptions by using the rescue and ensure
clauses:

begin
 eval "1 / 0"
rescue ZeroDivisionError
 puts "Oops. You tried to divide by zero again."
 exit 1
ensure
 puts "Tsk. Tsk."
end

The eval method (from Kernel) evaluates a string as a Ruby
statement. The result is disastrous, but this time the rescue
clause catches the error, gives you a custom report in the
form of the Oops string, and exits the program. (exit is
another Kernel method; the argument 1 is a catchall for gen-
eral errors.) You can have more than one ensure clause if
your program calls for it.

Instead of giving its default message, that is,
ZeroDivisionError: divided by 0, Ruby returns the message
in rescue, plus the message in ensure. Even though the pro-
gram exited at the end of the rescue clause, ensure yields its
block, no matter what.

The raise Method
You don’t have to wait for Ruby to raise an exception: you
can raise one on your own with the raise method from
Kernel. If things go haywire in a program, you can raise an
exception with raise:

bad_dog = true

if bad_dog
 raise StandardError, "bad doggy"
else
 arf_arf
end
StandardError: bad doggy

56 | Ruby Pocket Reference

If called without arguments, raise raises a RuntimeError if
there was no previous exception. If raise has only a String
argument, it raises a RuntimeError with the argument as a
message. If the first argument is an exception, such as
StandardError, the exception is raised with the given mes-
sage, if such a message is present.

The catch and throw Methods
Kernel also has the catch and throw methods. catch executes
a block that will properly terminate if there is no accompany-
ing throw. If a throw accompanies catch, Ruby searches for a
catch that has the same symbol as the throw. catch will then
return the value given to throw, if present.

The following program is an adaptation of an example that
came with the ri documentation for catch. throw sends a
message to catch if n is less than or equal to 0:

#!/usr/bin/env ruby

def limit(n)
 puts n
 throw :done if n <= 0
 limit(n-1)
end

catch(:done) { limit(5) }

Object Class
These public methods are in the Object class, the base class
for Ruby. This documentation is adapted and abbreviated
from http://www.ruby-doc.org/core/classes/Object.html, where
you can find code examples and longer explanations. Object
includes the Kernel module, whose methods are listed in the
next section.

http://www.ruby-doc.org/core/classes/Object.html

Object Class | 57

Object Instance Methods
obj == other [or] obj.equal?(other) [or] obj.eql?(other)

At the Object level, == returns true only if obj and other
are the same object. Typically, this method is overridden
in descendant classes to provide class-specific meaning.
Unlike ==, the equal? method should never be overrid-
den by subclasses: it is used to determine object identity
(that is, a.equal?(b) if and only if a is the same object as
b). The eql? method returns true if obj and other have
the same value.

obj === other
For class Object, effectively the same as calling ==, but
typically overridden by descendants to provide meaning-
ful semantics in case statements.

obj =~ other
Overridden by descendants (notably Regexp and String)
to provide meaningful pattern-match semantics.

obj._ _id_ _ [or] obj.object_id
Returns an integer identifier for obj. The same number will
be returned on all calls to id for a given object, and no two
active objects will share an id. Object#object_id is a differ-
ent concept from the :name notation, which returns the
symbol id of name. Replaces the deprecated Object#id.

obj.class
Returns the class of obj, now preferred over Object#type,
because an object’s type in Ruby is only loosely tied to
that object’s class. This method must always be called
with an explicit receiver, because class is also a reserved
word in Ruby.

obj.clone
Produces a shallow copy of obj—the instance variables
of obj are copied, but not the objects they reference.
Copies the frozen and tainted state of obj. See also the
discussion under Object#dup.

58 | Ruby Pocket Reference

obj.display(port=$>)
Prints obj on the given port (default $>).

obj.dup
Produces a shallow copy of obj—the instance variables
of obj are copied, but not the objects they reference. dup
copies the tainted state of obj.

obj.equal?(other) [or] obj.eql?(other) [or] obj == other
See ==.

obj.eql?(other) [or] obj == other [or] obj.equal?(other)
See ==.

obj.extend(module, . . .)
Adds to obj the instance methods from each module given
as a parameter.

obj.freeze
Prevents further modifications to obj. A TypeError will be
raised if modification is attempted. There is no way to
unfreeze a frozen object. See also Object#frozen?.

obj.frozen?
Returns the freeze status of obj.

obj.hash
Generates a Fixnum hash value for this object.

obj.id
Soon-to-be deprecated version of Object#object_id.

obj.inspect
Returns a string containing a human-readable representa-
tion of obj. If not overridden, uses the to_s method to
generate the string.

obj.instance_eval(string [, filename [, lineno]]) [or]
obj.instance_eval { | | block }

Evaluates a string containing Ruby source code, or the
given block, within the context of the receiver (obj). In
order to set the context, the variable self is set to obj

Object Class | 59

while the code is executing, giving the code access to
obj’s instance variables. In the version of instance_eval
that takes a string, the optional second and third parame-
ters supply a filename and starting line number lineno
that are used when reporting compilation errors.

obj.instance_of?(class)
Returns true if obj is an instance of the given class. See
also Object#kind_of?.

obj.instance_variable_defined?(symbol)
Returns true if the given instance variable is defined in
obj.

obj.instance_variable_get(symbol)
Returns the value of the given instance variable, or nil if
the instance variable is not set.

obj.instance_variable_set(symbol, obj)
Sets the instance variable named by symbol to object,
thereby frustrating the efforts of the class’s author to
attempt to provide proper encapsulation. The variable
did not have to exist prior to this call.

obj.instance_variables
Returns an array of instance variable names for the
receiver.

obj.is_a?(class) [or] obj.kind_of?(class)
Returns true if class is the class of obj, or if class is one
of the superclasses of obj or modules included in obj.

obj.method(sym)
Looks up the named method as a receiver in obj, return-
ing a Method object (or raising NameError). The Method
object acts as a closure in obj’s object instance, so
instance variables and the value of self remain available.

obj.methods
Returns a list of the names of methods publicly accessi-
ble in obj. This will include all the methods accessible in
the ancestors of obj.

60 | Ruby Pocket Reference

obj.nil? [or] nil.nil? [or] anything_else.nil?
Returns true if receiver is nil. Only the object nil
responds true to nil?.

obj.private_methods(all=true)
Returns the list of private methods accessible to obj. If
the all parameter is set to false, only those methods in
the receiver will be listed.

obj.protected_methods(all=true)
Returns the list of protected methods accessible to obj. If
the all parameter is set to false, only those methods in
the receiver will be listed.

obj.public_methods(all=true)
Returns the list of public methods accessible to obj. If the
all parameter is set to false, only those methods in the
receiver will be listed.

obj.remove_instance_variable(symbol)
Removes the named instance variable from obj, return-
ing that variable’s value.

obj.respond_to?(symbol, include_private=false)
Returns true if obj responds to the given method. Pri-
vate methods are included in the search only if the
optional second parameter evaluates to true.

obj.send(symbol [, args . . .]) [or]
obj._ _send_ _(symbol [, args . . .])

Invokes the method identified by symbol, passing it any
arguments specified. You can use _ _send_ _ if the name
send clashes with an existing method in obj.

obj.singleton_method_added(symbol)
Invoked as a callback whenever a singleton method is
added to the receiver.

obj.singleton_method_removed(symbol)
Invoked as a callback whenever a singleton method is
removed from the receiver.

Object Class | 61

obj.singleton_method_undefined(symbol)
Invoked as a callback whenever a singleton method is
undefined in the receiver.

obj.singleton_methods(all=true)
Returns an array of the names of singleton methods for
obj. If the optional all parameter is true, the list will
include methods in modules included in obj.

obj.taint
Marks obj as tainted—if the $SAFE level is set appropri-
ately, many method calls which might alter the running
program’s environment will refuse to accept tainted
strings.

obj.tainted?
Returns true if the object is tainted.

obj.to_a
Returns an array representation of obj. For objects of
class Object and others that don’t explicitly override the
method, the return value is an array containing self.
However, this latter behavior will soon be obsolete.

obj.to_enum(method = :each, *args) [or]
obj.enum_for(method = :each, *args)

Returns Enumerable::Enumerator.new(self, method,
*args).

obj.to_s
Returns a string representing obj. The default to_s prints
the object’s class and an encoding of the object id. As a
special case, the top-level object that is the initial execu-
tion context of Ruby programs returns main.

obj.type
Deprecated synonym for Object#class.

obj.untaint
Removes the taint from obj.

62 | Ruby Pocket Reference

Kernel Module
These public methods are in the Kernel module, the module
that is included in the Object class, the base class of Ruby.
This documentation is adapted and abbreviated from http://
www.ruby-doc.org/core/classes/Kernel.html, where you can
find code examples and longer explanations:

Array(arg)
Returns arg as an Array.

Float(arg)
Returns arg converted to a float.

Integer(arg)
Converts arg to a Fixnum or Bignum.

String(arg)
Converts arg to a String by calling its to_s method.

URI(uri_str)
Alias for URI.parse.

`cmd`
Returns the standard output of running cmd in a subshell.

abort [or] Kernel::abort [or] Process::abort
Terminate execution immediately, effectively by calling
Kernel.exit(1).

at_exit { block }
Converts block to a Proc object (and therefore binds it at
the point of call) and registers it for execution when the
program exits.

autoload(module, filename)
Registers filename to be loaded (using Kernel::require)
the first time that module—which may be a String or a
symbol—is accessed.

binding
Returns a Binding object, describing the variable and
method bindings at the point of call.

http://www.ruby-doc.org/core/classes/Kernel.html
http://www.ruby-doc.org/core/classes/Kernel.html

Kernel Module | 63

block_given? [or] iterator?
Returns true if yield would execute a block in the cur-
rent context. The iterator? form is mildly deprecated.

callcc { |cont| block }
Generates a continuation object, which it passes to the
associated block.

caller(start=1)
Returns the current execution stack—an array contain-
ing strings in the form file:line or file:line: in
method. The optional start parameter determines the
number of initial stack entries to omit from the result.

catch(symbol) { | | block }
If a throw is executed, Ruby searches up its stack for a
catch block with a tag corresponding to the throw’s
symbol.

chomp [or] chomp(string)
Equivalent to $_ = $_.chomp(string). See String#chomp.

chomp! [or] chomp!(string)
Equivalent to $_.chomp!(string). See String#chomp!.

chop
Equivalent to ($_.dup).chop!, except nil is never
returned. See String#chop!.

chop!
Equivalent to $_.chop!.

eval(string [, binding [, filename [, lineno]]])
Evaluates the Ruby expression(s) in string. If binding is
given, the evaluation is performed in its context. The
binding may be a Binding object or a Proc object. If the
optional filename and lineno parameters are present,
they will be used when reporting syntax errors.

exec(command [, arg, . . .])
Replaces the current process by running the given exter-
nal command.

64 | Ruby Pocket Reference

exit(integer=0) [or] Kernel::exit(integer=0) [or]
Process::exit(integer=0)

Initiates the termination of the Ruby script by raising the
SystemExit exception.

Process.exit!(fixnum=-1)
Exits the process immediately. fixnum is returned to the
underlying system as the exit status.

fail [or] fail(string) [or] fail(exception [, string [,
array]])

See raise.

Kernel.fork [{ block }] [or] Process.fork [{ block }]
Creates a subprocess. If a block is specified, that block is
run in the subprocess, and the subprocess terminates
with a status of zero. Otherwise, the fork call returns
twice, once in the parent, returning the process ID of the
child, and once in the child, returning nil.

format(format_string [, arguments . . .]) [or]
sprintf(format_string [, arguments . . .])

See sprintf.

gets(separator=$/)
Returns (and assigns to $_) the next line from the list of
files in ARGV (or $*), or from standard input if no files are
present on the command line. Returns nil at end of file.
The optional argument specifies the record separator.

global_variables
Returns an array of the names of global variables.

gsub(pattern, replacement) [or] gsub(pattern) { | . . .| block }
Equivalent to $_.gsub except that $_ receives the modi-
fied result.

gsub!(pattern, replacement) [or] gsub!(pattern) { |...| block }
Equivalent to Kernel::gsub, except nil is returned if $_ is
not modified.

iterator?
See block_given?.

Kernel Module | 65

proc { | . . .| block } [or] lambda { | . . .| block }
Equivalent to Proc.new, except the resulting Proc objects
check the number of parameters passed when called.

load(filename, wrap=false)
Loads and executes the Ruby program in the file
filename.

local_variables
Returns the names of the current local variables.

loop { | . . .| block }
Repeatedly executes the block.

obj.method_missing(symbol [, *args])
Invoked by Ruby when obj is sent a message it cannot
handle. symbol is the symbol for the method called, and
args are any arguments that were passed to it.

open(path [, mode [, perm]]) [or]
open(path [, mode [, perm]]) |io| block }

Creates an IO object connected to the given stream, file,
or subprocess.

p(obj, . . .)
For each obj, directly writes obj.inspect followed by the
current output record separator to the program’s stan-
dard output.

pretty_inspect()
Returns a pretty printed object as a string.

print(obj, . . .)
Prints each object in turn to $stdout.

printf(io, string [, obj . . .]) [or] printf(string [, obj . . .])
Equivalent to io.write(sprintf(string, obj, . . .) or
$stdout.write(sprintf(string, obj, . . .).

proc { | . . .| block }
See lambda.

putc(int)
Equivalent to $stdout.putc(int).

66 | Ruby Pocket Reference

puts(obj, . . .)
Equivalent to $stdout.puts(obj, . . .).

raise [or] raise(string) [or]
raise(exception [, string [, array]]) [or] fail [or]
fail(string) [or] fail(exception [, string [, array]])

With no arguments, raises the exception in $! or raises a
RuntimeError if $! is nil. With a single String argument,
raises a RuntimeError with the string as a message. Other-
wise, the first parameter should be the name of an
Exception class (or an object that returns an Exception
object when sent an exception message). The optional
second parameter sets the message associated with the
exception, and the third parameter is an array of call-
back information. Exceptions are caught by the rescue
clause of begin/end blocks.

rand(max=0)
Converts max to an integer using max1 = max.to_i.abs. If
the result is zero, returns a pseudorandom floating-point
number greater than or equal to 0.0 and less than 1.0.
Otherwise, returns a pseudorandom integer greater than
or equal to zero and less than max1. Kernel::srand may be
used to ensure repeatable sequences of random numbers
between different runs of the program.

readline(separator=$/)
Equivalent to Kernel::gets, except readline raises
EOFError at end of file.

readlines(separator=$/)
Returns an array containing the lines returned by calling
Kernel.gets(separator) until the end of file.

require(string)
Ruby tries to load the library named string, returning
true if successful.

scan(pattern) [or] scan(pattern) { |///| block }
Equivalent to calling $_.scan. See String#scan.

Kernel Module | 67

IO.select(read_array [, write_array [, error_array
[, timeout]]])

See Kernel#select.

set_trace_func(proc) [or] set_trace_func(nil)
Establishes proc as the handler for tracing, or disables
tracing if the parameter is nil. proc takes up to six
parameters: an event name, a filename, a line number, an
object id, a binding, and the name of a class. proc is
invoked whenever an event occurs.

sleep([duration])
Suspends the current thread for duration seconds (which
may be any number, including a Float with fractional
seconds). Returns the actual number of seconds slept
(rounded). Zero arguments causes sleep to sleep forever.

split([pattern [, limit]])
Equivalent to $_.split(pattern, limit). See String#split.

sprintf(format_string [, arguments . . .]) [or]
format(format_string [, arguments . . .])

Returns the string resulting from applying format_string
to any additional arguments. Within the format string,
any characters other than format sequences are copied to
the result. A format sequence consists of a percent sign,
followed by optional flags, width, and precision indica-
tors, then terminated with a field type character. The
field type controls how the corresponding sprintf argu-
ment is to be interpreted, while the flags modify that
interpretation. The field type characters and the flag
characters are listed in the following tables. Examples:

print a number in binary form
sprintf("%b", 237) # => "11101101"

refer to two arguments
sprintf("The integer %d is %08b in binary format.",
72, 72)

refer to single argument with 1$
sprintf("The integer %1$d is %1$08b in binary format.",
72)

68 | Ruby Pocket Reference

Sprintf flags and field types

Tables 11 and 12 list flags and field types for %,
Kernel#sprintf (or its synonym Kernel#format).

Table 11. Flag characters for sprintf

Flag For field types Description

[space] bdeEfgGiouxX Places a space at the start of a positive number.

[1–9]$ All field types Absolute number of an argument for this field.

beEfgGoxX For the field b, result is prefixed with 0b; for o,
with 0; for x, with 0x; for X, with 0X. For e, E, f,
g, and G, adds decimal point. For g and G, does
not remove trailing spaces.

+ bdeEfgGiouxX Adds a leading plus sign (+) to positive numbers.

- All field types Left-justifies the result.

0 bdeEfgGiouxX Pads result with zeros (0) instead of spaces.

* All field types Uses the next argument as the field width. If
negative, left-justifies result. If asterisk (*) is
followed by a number and a dollar sign ($), uses
argument as width.

Table 12. Field types for sprintf

Field Description

b Converts a numeric argument to binary.

c Converts a numeric argument (character code) to a character.

d Converts a numeric argument to a decimal number. Same as i.

e Converts a floating point argument into exponential notation, using one
digit before the decimal point. Defaults to six fractional digits. Compare g.

E Same as e, but uses E in result.

f Converts a numeric argument to a floating-point number. Defaults to six
fractional digits. Precision determines the number of fractional digits.

g Converts a numeric argument to a floating point number using the
exponential form if the exponent is less than -4 or greater than or equal
to precision, otherwise in the form d.dddd. Compare e.

G Same as g, but uses E in result.

Kernel Module | 69

srand(number=0)
Seeds the pseudorandom number generator to the value
of number.to_i.abs. If number is omitted or zero, seeds
the generator using a combination of the time, the pro-
cess id, and a sequence number. (This is also the behav-
ior if Kernel::rand is called without previously calling
srand, but without the sequence.) By setting the seed to a
known value, scripts can be made deterministic during
testing. The previous seed value is returned. Also see
Kernel::rand.

sub(pattern, replacement) [or] sub(pattern) { block }
Equivalent to $_.sub(args), except that $_ will be
updated if substitution occurs.

sub!(pattern, replacement) [or] sub!(pattern) { | . . .| block }
Equivalent to $_.sub!(args).

i Converts a numeric argument to a decimal number. Same as d.

o Converts a numeric argument to octal.

p Same as argument.inspect where inspect gives you a printable
version of the argument, with special characters escaped.

s Substitutes an argument as a string. If the format string contains
precision, at most that many characters are copied in the
substitution.

u Treats argument as an unsigned decimal. Negative integers are displayed
as a 32-bit two’s complement plus one for the underlying architecture
(for example, 2**32+n). Because Ruby has no inherent limit on the
number of bits used to represent an integer, negative values are
preceded by two leading periods, indicating an infinite number of
leading sign bits.

x Converts a numeric argument to hexadecimal with lowercase letters a
through f. Negative numbers are displayed with two leading periods,
indicating an infinite string of leading ffs.

X Same as x, but uses uppercase letters A through F in the result. Negative
numbers are displayed with two leading periods, indicating an infinite
string of leading FFs.

Table 12. Field types for sprintf (continued)

Field Description

70 | Ruby Pocket Reference

syscall(fixnum [, args . . .])
Calls the operating system function identified by fixnum,
passing in the arguments, which must be either String
objects, or Integer objects that ultimately fit within a
native long.

system(cmd [, arg, . . .])
Executes cmd in a subshell, returning true if the com-
mand was found and ran successfully, false otherwise.

test(int_cmd, file1 [, file2])
Uses the integer aCmd to perform various tests on file1
(Table 13) or on file1 and file2 (Table 14).

Table 13. File tests on single file

Test Returns Meaning

?A Time Last access time for file1.

?b Boolean True if file1 is a block device.

?c Boolean True if file1 is a character device.

?C Time Last change time for file1.

?d Boolean True if file1 exists and is a directory.

?e Boolean True if file1 exists.

?f Boolean True if file1 exists and is a regular file.

?g Boolean True if file1 has the \CF{setgid} bit set (false under
Windows NT).

?G Boolean True if file1 exists and has a group ownership equal to the
caller’s group.

?k Boolean True if file1 exists and has the sticky bit set.

?l Boolean True if file1 exists and is a symbolic link.

?M Time Last modification time for file1.

?o Boolean True if file1 exists and is owned by the caller’s effective uid.

?O Boolean True if file1 exists and is owned by the caller’s real uid.

?p Boolean True if file1 exists and is a FIFO.

?r Boolean True if file1 is readable by the effective uid/gid of the caller.

?R Boolean True if file1 is readable by the real uid/gid of the caller.

Kernel Module | 71

throw(symbol [, obj])
Transfers control to the end of the active catch block
waiting for symbol. Raises NameError if there is no catch
block for the symbol. The optional second parameter
supplies a return value for the catch block, which other-
wise defaults to nil. For examples, see Kernel::catch.

trace_var(symbol, cmd) [or] trace_var(symbol) { |val| block }
Controls tracing of assignments to global variables. The
parameter symbol identifies the variable (as either a string
name or a symbol identifier). cmd (which may be a string
or a Proc object) or block is executed whenever the vari-
able is assigned. The block or Proc object receives the
variable’s new value as a parameter. Also see Kernel::
untrace_var.

?s int/nil If file1 has nonzero size, return the size, otherwise return
nil.

?S Boolean True if file1 exists and is a socket.

?u Boolean True if file1 has the setuid bit set.

?w Boolean True if file1 exists and is writable by the effective uid/gid.

?W Boolean True if file1 exists and is writable by the real uid/gid.

?x Boolean True if file1 exists and is executable by the effective uid/gid.

?X Boolean True if file1 exists and is executable by the real uid/gid.

?z Boolean True if file1 exists and has a zero length.

Table 14. File tests for two files

Test Returns Description

?- Boolean True if file1 and file2 are identical.

?= Boolean True if the modification times of file1 and file2 are equal.

?< Boolean True if the modification time of file1 is prior to that of file2.

?> Boolean True if the modification time of file1 is after that of file2.

Table 13. File tests on single file (continued)

Test Returns Meaning

72 | Ruby Pocket Reference

Signal.trap(signal, proc) [or]
Signal.trap(signal) { | | block }

Specifies the handling of signals. The first parameter is a
signal name (a string such as SIGALRM, SIGUSR1, and so on)
or a signal number. The characters SIG may be omitted
from the signal name. The command or block specifies
code to be run when the signal is raised. If the command
is the string IGNORE or SIG_IGN, the signal will be ignored.
If the command is DEFAULT or SIG_DFL, the operating sys-
tem’s default handler will be invoked. If the command is
EXIT, the script will be terminated by the signal. Other-
wise, the given command or block will be run. The spe-
cial signal name EXIT or signal number zero will be
invoked just prior to program termination. trap returns
the previous handler for the given signal.

untrace_var(symbol [, cmd])
Removes tracing for the specified command on the given
global variable and returns nil. If no command is speci-
fied, removes all tracing for that variable and returns an
array containing the commands actually removed.

warn(msg)
Displays the given message (followed by a newline) on
STDERR unless warnings are disabled (for example, with
the -W0 flag).

String Class
A String object in Ruby holds and manipulates an arbitrary
sequence of one or more bytes, typically representing charac-
ters that represent human language. Ruby has a built-in class
called String that defines a number of methods that are used
frequently when programming Ruby. Those methods are
listed at the end of this section. Following are string-related
features Ruby.

String Class | 73

Expression Substitution
Expression substitution is a means of embedding the value of
any Ruby expression into a string using #{ and }:

x, y, z = 12, 36, 72

puts "The value of x is #{ x }.

puts "The sum of x and y is #{ x + y }.

puts "The average was #{ (x + y + z)/3 }."

General Delimited Strings
With general delimited strings, you can create strings inside a
pair of matching though arbitrary delimiter characters, e.g.,
!, (, {, <, etc., preceded by a percent character (%). Q, q, and x
have special meanings. General delimited strings can be
nested:

%{Ruby is fun.} # => "Ruby is fun."

%Q{ Ruby is fun. } # => " Ruby is fun. "

%q[Ruby is fun.] # equivalent to a single-quoted string

%x!ls! # => equivalent to back tick command output `ls`

Here Documents
Here documents allow you to quickly build multiline strings
inside a nested pair of characters or words, preceded by <<.
", ', `, and - have special meanings. Here’s an example:

double-quoted string
puts <<x
To every thing there is a season,
and a time to every purpose
under the heaven.
x

74 | Ruby Pocket Reference

double-quoted string, assigned to variable
hamlet = <<"yorick"
Alas, poor Yorick! I knew him, Horatio: a fellow
of infinite jest, of most excellent fancy: he hath
borne me on his back a thousand times; and now, how
abhorred in my imagination it is! my gorge rims at
it. Here hung those lips that I have kissed I know
not how oft.
yorick

single-quoted string
puts <<'Benedick'
Shall quips and sentences and these paper bullets of
the brain awe a man from the career of his humour?
No, the world must be peopled. When I said I would
die a bachelor, I did not think I should live till I
were married. Here comes Beatrice. By this day!
she's a fair lady: I do spy some marks of love in
her.
Benedick

back-quoted string
dir = <<`ls`
ls -l
ls

indented string
puts <<-cummings
 it's
 spring
 and
 the

 goat-footed

 balloonMan whistles
 far
 and
 wee
cummings

String Class | 75

Escape Characters
Table 15 is a list of escape or non-printable characters that
can be represented with backslash notation. In a double-
quoted string, an escape character is interpreted; in a single-
quoted string, an escape character is preserved.

Character Encoding
It is often assumed that a character is represented by a single
byte, which is not always the case. The default character set
for Ruby is ASCII, whose characters may be represented by
single bytes. If you use UTF-8, or another modern charac-
ter set, characters may be represented in one to four bytes.

Table 15. Escape (non-printable) characters

Backslash
notation

Hexadecimal
character

Description

\a 0x07 Bell or alert

\b 0x08 Backspace

\cx Control-x

\C-x Control-x

\e 0x1b Escape

\f 0x0c Formfeed

\M-\C-x Meta-Control-x

\n 0x0a Newline

\nnn Octal notation, where n is in the range 0–7

\r 0x0d Carriage return

\s 0x20 Space

\t 0x09 Tab

\v 0x0b Vertical tab

\x Character x

\xnn Hexadecimal notation, where n is in the
range 0–9, a–f, or A–F

76 | Ruby Pocket Reference

You can change your character set using $KCODE at the begin-
ning of your program, like this:

$KCODE = 'u'

Table 16 shows possible values for $KCODE.

Regular Expressions
A regular expression is a special sequence of characters that
helps you match or find other strings or sets of strings, using
a specialized syntax held in a pattern.

Given the opening lines of Shakespeare’s 29th sonnet (a string
that contains two lines, separated by a newline character, \n):

opening = "When in disgrace with fortune and men's eyes\nI
all alone beweep my outcast state,\n"

you can match the first line just by using a word in the pattern:

opening.grep(/men/) # => ["When in disgrace with fortune
and men's eyes\n"]

By the way, grep is not a String method; it comes from the
Enumerable module, which the String class includes, so it is
available for processing strings. grep takes a pattern as an argu-
ment, and can also take a block. See http://www.ruby-doc.org/
core/classes/Enumerable.html.

When you use a pair of square brackets ([]), you can match
any character in the brackets. Let’s try to match the word
man or men using []:

opening.grep(/m[ae]n/) # => ["When in disgrace with
fortune and men's eyes\n"]

Table 16. $KCODE values

Code Meaning

a ASCII (same as none). This is the default.

e EUC.

n None (same as ASCII).

u UTF-8.

http://www.ruby-doc.org/core/classes/Enumerable.html
http://www.ruby-doc.org/core/classes/Enumerable.html

String Class | 77

It would also match a line with the word man in it.

Alternation lets you match alternate forms of a pattern using
the bar (|):

opening.grep(/men|man/) # => ["When in disgrace with
fortune and men's eyes\n"]

Grouping uses parentheses to group a subexpression, like
this one that contains an alternation:

opening.grep(/m(e|a)n/) # => ["When in disgrace with
fortune and men's eyes\n"]

Anchors anchor a pattern to the beginning (^) or end ($) of a
line, like so:

opening.grep(/^When in/) # => ["When in disgrace with
fortune and men's eyes\n"]
opening.grep(/outcast state,$/) # => ["I all alone beweep
my outcast state,\n"]

The ^ means that a match is found when the text When in is
at the beginning of a line, and $ will only match outcast state
if it is found at the end of a line.

A way to specify the beginning and ending of strings in a pat-
tern is with shortcuts. Shortcut syntax is brief, a single char-
acter preceded by a backslash. For example, the \d shortcut
represents a digit; it is the same as using [0–9] but shorter.
Similarly to ^, the shortcut \A matches the beginning of a
string, not a line:

opening.grep(/\AWhen in/) # => ["When in disgrace with
fortune and men's eyes\n"]

The shortcut \z matches the end of a string, not a line, simi-
larly to $:

opening.grep(/outcast state,\Z/) # => ["I all alone beweep
my outcast state,"]

The shortcut \Z matches the end of a string before the new-
line character, assuming that a newline character (\n) is at
the end of the string (it won’t work otherwise).

78 | Ruby Pocket Reference

To match a phone number in the form (555)123-4567, sup-
pose that the string phone contains a phone number like this:

phone.grep(/[\(\d\d\d\)]?\d\d\d-\d\d\d\d/) # =>
["(555)123-4567"]

The backslash precedes the parentheses (\(. . .\)) to let the
regexp engine know that these are literal characters. Other-
wise, the engine will see the parentheses as enclosing a sub-
expression. The three \ds in the parentheses represent three
digits. The hyphen (-) is just an unambiguous character, so
you can use it in the pattern as is.

The question mark (?) is a repetition operator. It means zero
or one occurrence of the previous pattern. So the phone num-
ber you are looking for can have an area code in parentheses
or not. The area code pattern is surrounded by [], so that the
? operator applies to the entire area code. Either form of the
phone number, with or without the area code, will work.
Here is a way to use ? with just a single character, u:

color.grep(/colou?r/) # => ["I think that colour is just
right for your office."]

The plus sign (+) operator indicates one or more of the previ-
ous patterns—in this case, digits:

phone.grep(/[\(\d+\)]?\d+-\d+/) # => ["(555)123-4567"]

An asterisk (*) operator indicates zero or more occurrences.

Braces ({}) let you specify the exact number of digits, like
\d{3} or \d{4}:

phone.grep(/[\(\d{3}\)]?\d{3}-\d{4}/)
=> ["(555)123-4567"]

It is also possible to indicate an at least amount with {m,},
and a minimum/maximum number with {m,n}.

The String class also has the =~ method and the !~ operator.
If =~ finds a match, it returns the offset position where the
match starts in the string:

color =~ /colou?r/ # => 13

String Class | 79

The !~ operator returns true if it does not match the string,
false otherwise.

color !~ /colou?r/ # => false

Also of interest are the Regexp and MatchData classes. The
Regexp class (http://www.ruby-doc.org/core/classes/Regexp.html)
lets you create a regular expression object. The MatchData class
(http://www.ruby-doc.org/core/classes/MatchData.html) pro-
vides the special $- variable, which encapsulates all search
results from a pattern match.

Table 17 lists the regular expression syntax that is available
in Ruby.

Table 17. Regular expressions in Ruby

Pattern Description

/pattern/options Patternpattern in slashes, followed by optional options,
one or more of: i = case-insensitive; o = substitute once;
x = ignore whitespace, allow comments; m = match
multiple lines, newlines as normal characters.

%r!pattern! General delimited string for a regular expression, where
! can be an arbitrary character.

^ Matches beginning of line.

$ Matches end of line.

. Matches any character.

\1 . . .\9 Matches nth grouped subexpression.

\10 Matches nth grouped subexpression, if already matched;
otherwise refers to octal representation of a character
code.

\n, \r, \t, etc. Matches character in backslash notation.

\w Matches word character, same as [0-9A-Za-z_].

\W Matches nonword character, same as [^0-9A-Za-z_].

\s Matches whitespace character, same as [\t\n\r\f].

\S Matches non-whitespace character, same as
[^\t\n\r\f] .

\d Matches digit, same as [0-9].

http://www.ruby-doc.org/core/classes/Regexp.html
http://www.ruby-doc.org/core/classes/MatchData.html

80 | Ruby Pocket Reference

\D Matches non-digit, same as [^0-9].

\A Matches beginning of string.

\Z Matches end of a string, or before newline at the end.

\z Matches end of a string.

\b Matches word boundary outside [], or backspace (0x08)
inside [].

\B Matches nonword boundary.

\G Matches point where last match finished.

[..] Matches any single character in brackets, such as [ch].

[^..] Matches any single character not in brackets.

* Matches 0 or more of previous regular expression.

*? Matches 0 or more of previous regular expression
(non-greedy).

+ Matches 1 or more of previous regular expression.

+? Matches 1 or more of previous regular expression
(non-greedy).

{m} Matches exactly m number of previous regular
expression.

{m,} Matches at least m number of previous regular
expression.

{m,n} Matches at least m but at most n number of previous
regular expression.

{m,n}? Matches at least m but at most n number of previous
regular expression (non-greedy).

? Matches 0 or 1 of previous regular expression.

| Alternation, such as color|colour.

() Grouping regular expressions or subexpression, such as
col(o|ou)r.

(?#..) Comment.

(?:..) Grouping without back references (without
remembering matched text).

Table 17. Regular expressions in Ruby (continued)

Pattern Description

String Class | 81

String Methods
Following are the public String methods, adapted and abbre-
viated from http://www.ruby-doc.org/core/classes/String.html,
and formatted and printed here for your convenience.

(?=..) Specify position with pattern.

(?!..) Specify position with pattern negation.

(?>..) Matches independent pattern without backtracking.

(?imx) Toggles i, m, or x options on.

(?-imx) Toggles i, m, or x options off.

(?imx:..) Toggles i, m, or x options on within parentheses.

(?-imx:..) Toggles i, m, or x options off within parentheses.

(?ix-ix:) Turns on (or off) i and x options within this non-
capturing group.

[:alnum:] POSIX character class for alphanumeric.

[:alpha:] POSIX character class for uppercase and lowercase
letters.

[:blank:] POSIX character class for blank and tab.

[:cntrl:] POSIX character class for Control characters.

[:digit:] POSIX character class for digits.

[:graph:] POSIX character class for printable characters (but not
space).

[:lower:] POSIX character class for lowercase letter.

[:print:] POSIX character class for printable characters (space
included).

[:punct:] POSIX character class for printable characters (but not
space and alphanumeric).

[:space:] POSIX character class for whitespace.

[:upper:] POSIX character class for uppercase letter.

[:xdigit:] POSIX character class for hex digit, A–F, a–f, 0–9.

Table 17. Regular expressions in Ruby (continued)

Pattern Description

http://www.ruby-doc.org/core/classes/String.html

82 | Ruby Pocket Reference

String class methods

new [String.new(str="")]
Returns a new string object containing a copy of str.

String instance methods

str % arg
Formats a string using a format specification. arg must
be an array if it contains more than one substitution. For
information on the format specification, see sprintf
under “Kernel Module.”

str * integer
Returns a new string containing integer times str. In
other words, str is repeated integer times.

str + other_str
Concatenates other_str to str.

str << fixnum [or] str << obj
Concatenates an object to str. If the object is a Fixnum in
the range 0–255, it is converted to a character. Compare
concat.

str <=> other_str
Compares str with other_str, returning -1 (less than),
0 (equal), or 1 (greater than). The comparison is case-
sensitive.

str == obj
Tests str and obj for equality. If obj is not a String,
returns false; returns true if str <=> obj returns 0.

str =~ obj
Matches str against a regular expression pattern obj.
Returns the position where the match starts; otherwise,
false.

str[fixnum] [or] str[fixnum,fixnum] [or] str[range] [or]
str[regexp] [or] str[regexp, fixnum] [or] str[other_str]

References str, using the following arguments: one
Fixnum, returns a character code at fixnum; two Fixnums,

String Class | 83

returns a substring starting at an offset (first fixnum) to
length (second fixnum); range, returns a substring in the
range; regexp returns portion of matched string; regexp
with fixnum, returns matched data at fixnum; other_str
returns substring matching other_str. A negative Fixnum
starts at end of string with -1. Compare slice.

str[fixnum] = fixnum [or] str[fixnum] = new_str [or]
str[fixnum, fixnum] = new_str [or] str[range] = aString [or]
str[regexp] = new_str [or] str[regexp, fixnum] = new_str [or]
str[other_str] = new_str]

Replace (assign) all or part of a string. Synonym of
slice!.

str.capitalize
Capitalizes a string.

str.capitalize!
Same as capitalize, but changes are made in place.

str.casecmp
Makes a case-insensitive comparison of strings.

str.center
Centers a string.

str.chomp
Removes the record separator ($/), usually \n, from the
end of a string. If no record separator exists, does noth-
ing. Compare chop.

str.chomp!
Same as chomp, but changes are made in place.

str.chop
Removes the last character in str. Compare chomp.

str.chop!
Same as chop, but changes are made in place. Compare
chomp.

str.concat(other_str)
Concatenates other_str to str. Compare <<, +.

84 | Ruby Pocket Reference

str.count(str, . . .)
Counts one or more sets of characters. If there is more
than one set of characters, counts the intersection of
those sets.

str.crypt(other_str)
Applies a one-way cryptographic hash to str. The argu-
ment is the salt string, which should be two characters
long, each character in the range a–z, A–Z, 0–9, . or /.

str.delete(other_str, . . .)
Returns a copy of str with all characters in the intersec-
tion of its arguments deleted.

str.delete!(other_str, . . .)
Same as delete, but changes are made in place.

str.downcase
Returns a copy of str with all uppercase letters replaced
with lowercase.

str.downcase!
Same as downcase, but changes are made in place. Com-
pare upcase!.

str.dump
Returns a version of str with all nonprinting characters
replaced by \nnn notation and all special characters
escaped.

str.each(separator=$/) { |substr| block }
Splits str using argument as the record separator ($/ by
default), passing each substring to the supplied block.
Compare each_byte, each_line.

str.each_byte { |fixnum| block }
Passes each byte from str to the block, returning each
byte as a decimal representation of the byte.

str.each_line(separator=$/) { |substr| block }
Splits str using argument as the record separator ($/ by
default), passing each substring to the supplied block.
Compare each.

String Class | 85

str.empty?
Returns true if str is empty (has a zero length).

str.eql?(other)
Two strings are equal if the have the same length and
content.

str.gsub(pattern, replacement) [or]
str.gsub(pattern) { |match| block }

Returns a copy of str with all occurrences of pattern
replaced with either replacement or the value of the
block. The pattern will typically be a Regexp; if it is a
String then no regular expression metacharacters will be
interpreted (that is, /\d/ will match a digit, but '\d' will
match a backslash followed by a 'd').

str.gsub!(pattern, replacement) [or] str.gsub!(pattern)
{ |match| block }

Performs the substitutions of String#gsub in place,
returning str, or nil if no substitutions were performed.

str.hash
Returns a hash based on the string’s length and content.

str.hex
Treats leading characters from str as a string of hexadec-
imal digits (with an optional sign and an optional 0x) and
returns the corresponding number. Zero is returned on
error.

str.include? other_str [or] str.include? fixnum
Returns true if str contains the given string or character.

str.index(substring [, offset]) [or]
str.index(fixnum [, offset]) [or]
str.index(regexp [, offset])

Returns the index of the first occurrence of the given sub-
string, character (fixnum), or pattern (regexp) in str.
Returns nil if not found. If the second parameter is
present, it specifies the position in the string to begin the
search.

86 | Ruby Pocket Reference

str.insert(index, other_str)
Inserts other_str before the character at the given index,
modifying str. Negative indices count from the end of
the string, and insert after the given character. The intent
is to insert a string so that it starts at the given index.

str.inspect
Returns a printable version of str, with special charac-
ters escaped.

str.intern [or] str.to_sym
Returns the Symbol corresponding to str, creating the
symbol if it did not previously exist.

str.length
Returns the length of str. Compare size.

str.ljust(integer, padstr=' ')
If integer is greater than the length of str, returns a new
String of length integer with str left-justified and pad-
ded with padstr; otherwise, returns str.

str.lstrip
Returns a copy of str with leading whitespace removed.
See also String#rstrip and String#strip.

str.lstrip!
Removes leading whitespace from str, returning nil if no
change was made. See also String#rstrip! and
String#strip!.

str.match(pattern)
Converts pattern to a Regexp (if it isn’t already one), then
invokes its match method on str.

str.oct
Treats leading characters of str as a string of octal digits
(with an optional sign) and returns the corresponding
number. Returns 0 if the conversion fails.

str.replace(other_str)
Replaces the contents and taintedness of str with the
corresponding values in other_str.

String Class | 87

str.reverse
Returns a new string with the characters from str in
reverse order.

str.reverse!
Reverses str in place.

str.rindex(substring [, fixnum]) [or]
str.rindex(fixnum [, fixnum]) [or]
str.rindex(regexp [, fixnum])

Returns the index of the last occurrence of the given sub-
string, character (fixnum), or pattern (regexp) in str.
Returns nil if not found. If the second parameter is
present, it specifies the position in the string to end the
search—characters beyond this point won’t be considered.

str.rjust(integer, padstr=' ')
If integer is greater than the length of str, returns a new
String of length integer with str right-justified and pad-
ded with padstr; otherwise, returns str.

str.rstrip
Returns a copy of str with trailing whitespace removed.
See also String#lstrip and String#strip.

str.rstrip!
Removes trailing whitespace from str, returning nil if no
change was made. See also String#lstrip! and
String#strip!.

str.scan(pattern) [or]
str.scan(pattern) { |match, . . .| block }

Both forms iterate through str, matching the pattern
(which may be a Regexp or a String). For each match, a
result is generated and either added to the result array or
passed to the block. If the pattern contains no groups,
each individual result consists of the matched string, $&.
If the pattern contains groups, each individual result is
itself an array containing one entry per group.

88 | Ruby Pocket Reference

str.slice(fixnum) [or] str.slice(fixnum, fixnum) [or]
str.slice(range) [or] str.slice(regexp) [or]
str.slice(regexp, fixnum) [or] str.slice(other_str)

See str[fixnum], etc.

str.slice!(fixnum) [or] str.slice!(fixnum, fixnum) [or]
str.slice!(range) [or] str.slice!(regexp) [or]
str.slice!(other_str)

Deletes the specified portion from str, and returns the
portion deleted. The forms that take a Fixnum will raise
an IndexError if the value is out of range; the Range form
will raise a RangeError, and the Regexp and String forms
will silently ignore the assignment.

str.split(pattern=$;, [limit])
Divides str into substrings based on a delimiter, return-
ing an array of these substrings.

If pattern is a String, then its contents are used as the
delimiter when splitting str. If pattern is a single space,
str is split on whitespace, with leading whitespace and
runs of contiguous whitespace characters ignored.

If pattern is a Regexp, str is divided where the pattern
matches. Whenever the pattern matches a zero-length
string, str is split into individual characters.

If pattern is omitted, the value of $; is used. If $; is nil
(which is the default), str is split on whitespace as if ` `
were specified.

If the limit parameter is omitted, trailing null fields are
suppressed. If limit is a positive number, at most that
number of fields will be returned (if limit is 1, the entire
string is returned as the only entry in an array). If nega-
tive, there is no limit to the number of fields returned,
and trailing null fields are not suppressed.

str.squeeze([other_str]*)
Builds a set of characters from the other_str parame-
ter(s) using the procedure described for String#count.
Returns a new string where runs of the same character

String Class | 89

that occur in this set are replaced by a single character. If
no arguments are given, all runs of identical characters
are replaced by a single character.

str.squeeze!([other_str]*)
Squeezes str in place, returning either str, or nil if no
changes were made.

str.strip
Returns a copy of str with leading and trailing
whitespace removed.

str.strip!
Removes leading and trailing whitespace from str.
Returns nil if str was not altered.

str.sub(pattern, replacement) [or]
str.sub(pattern) { |match| block }

Returns a copy of str with the first occurrence of pattern
replaced with either replacement or the value of the
block. The pattern will typically be a Regexp; if it is a
String then no regular expression metacharacters will be
interpreted.

str.sub!(pattern, replacement) [or]
str.sub!(pattern) { |match| block }

Performs the substitutions of String#sub in place, return-
ing str, or nil if no substitutions were performed.

str.succ [or] str.next
Returns the successor to str.

str.succ! [or] str.next!
Equivalent to String#succ, but modifies the receiver in
place.

str.sum(n=16)
Returns a basic n-bit checksum of the characters in str,
where n is the optional Fixnum parameter, defaulting to
16. The result is simply the sum of the binary value of
each character in str modulo 2n - 1. This is not a partic-
ularly good checksum.

90 | Ruby Pocket Reference

str.swapcase
Returns a copy of str with uppercase alphabetic charac-
ters converted to lowercase and lowercase characters
converted to uppercase.

str.swapcase!
Equivalent to String#swapcase, but modifies the receiver
in place, returning str, or nil if no changes were made.

str.to_f
Returns the result of interpreting leading characters in
str as a floating-point number. Extraneous characters
past the end of a valid number are ignored. If there is not
a valid number at the start of str, 0.0 is returned. This
method never raises an exception.

str.to_i(base=10)
Returns the result of interpreting leading characters in
str as an integer base (base 2, 8, 10, or 16). Extraneous
characters past the end of a valid number are ignored. If
there is not a valid number at the start of str, 0 is
returned. This method never raises an exception.

str.to_s [or] str.to_str
Returns the receiver.

str.tr(from_str, to_str)
Returns a copy of str with the characters in from_str
replaced by the corresponding characters in to_str. If
to_str is shorter than from_str, it is padded with its last
character. Both strings may use the c1–c2 notation to
denote ranges of characters, and from_str may start with
a ^, which denotes all characters except those listed.

str.tr!(from_str, to_str)
Translates str in place, using the same rules as
String#tr. Returns str, or nil if no changes were made.

String Class | 91

str.tr_s(from_str, to_str)
Processes a copy of str as described under String#tr,
then removes duplicate characters in regions that were
affected by the translation.

str.tr_s!(from_str, to_str)
Performs String#tr_s processing on str in place, return-
ing str, or nil if no changes were made.

str.unpack(format)
Decodes str (which may contain binary data) according
to the format string, returning an array of each value
extracted. The format string consists of a sequence of
single-character directives, summarized in Table 18.
Each directive may be followed by a number, indicating
the number of times to repeat with this directive. An
asterisk (*) will use up all remaining elements. The direc-
tives sSiIlL may each be followed by an underscore (_)
to use the underlying platform’s native size for the speci-
fied type; otherwise, it uses a platform-independent con-
sistent size. Spaces are ignored in the format string. See
also Array#pack.

str.upcase
Returns a copy of str with all lowercase letters replaced
with their uppercase counterparts. The operation is
locale insensitive—only characters a to z are affected.

str.upcase!
Changes the contents of str to uppercase, returning nil
if no changes are made.

str.upto(other_str) { |s| block }
Iterates through successive values, starting at str and
ending at other_str inclusive, passing each value in turn
to the block. The String#succ method is used to gener-
ate each value.

92 | Ruby Pocket Reference

String unpack directives

Table 18 lists unpack directives for method String#unpack.

Table 18. String unpack directives

Directive Returns Description

A String With trailing nulls and spaces removed.

a String String.

B String Extract bits from each character (most significant bit first).

b String Extract bits from each character (least significant bit first).

C Fixnum Extract a character as an unsigned integer.

c Fixnum Extract a character as an integer.

D, d Float Treat sizeof(double) characters as a native double.

E Float Treat sizeof(double) characters as a double in little-
endian byte order.

e Float Treat sizeof(float) characters as a float in little-
endian byte order.

F, f Float Treat sizeof(float) characters as a native float.

G Float Treat sizeof(double) characters as a double in
network byte order.

g Float Treat sizeof(float) characters as a float in network
byte order.

H String Extract hex nibbles from each character (most significant
bit first).

h String Extract hex nibbles from each character (least significant bit
first).

I Integer Treat sizeof(int) (modified by _) successive
characters as an unsigned native integer.

i Integer Treat sizeof(int) (modified by _) successive
characters as a signed native integer.

L Integer Treat four (modified by _) successive characters as an
unsigned native long integer.

String Class | 93

l Integer Treat four (modified by _) successive characters as a signed
native long integer.

M String Quoted-printable.

m String Base64-encoded.

N Integer Treat four characters as an unsigned long in network byte
order.

n Fixnum Treat two characters as an unsigned short in network byte
order.

P String Treatsizeof(char *) characters as a pointer, and return
\emph{len} characters from the referenced location.

p String Treat sizeof(char *) characters as a pointer to a null-
terminated string.

Q Integer Treat eight characters as an unsigned quad word (64 bits).

q Integer Treat eight characters as a signed quad word (64 bits).

S Fixnum Treat two (different if _ used) successive characters as an
unsigned short in native byte order.

s Fixnum Treat two (different if _ used) successive characters as a
signed short in native byte order.

U Integer UTF-8 characters as unsigned integers.

u String UU-encoded.

V Fixnum Treat four characters as an unsigned long in little-endian
byte order.

v Fixnum Treat two characters as an unsigned short in little-endian
byte order.

w Integer BER-compressed integer (see Array.pack).

X Skip backward one character.

x Skip forward one character.

Z String With trailing nulls removed up to first null with *.

@ Skip to the offset given by the length argument.

Table 18. String unpack directives (continued)

Directive Returns Description

94 | Ruby Pocket Reference

Array Class
The Array class is one of Ruby’s built-in classes. Arrays are
compact, ordered collections of objects. Ruby arrays can
hold objects such as String, Integer, Fixnum, Hash, Symbol,
even other Array objects. Any object that Ruby can create, it
can hold in an array. Each element in an array is associated
with and referred to by an index (also known as a subscript in
other languages). Array elements are automatically indexed
(numbered) with an integer (Fixnum), starting with 0, then
numbered consecutively, adding 1 for each additional ele-
ment. In certain instances, you can refer to the last element
of an array with -1, the second to last with -2, and so forth.
That’s handy. Ruby arrays are not as rigid as arrays in other
languages. With static, compiled programming languages,
you have to guess the ultimate size of the array at the time it
is created. Not so with Ruby—arrays grow automatically.

Creating Arrays
There are many ways to create or initialize an array. One way
is with the new class method:

months = Array.new

You can set the size of an array (the number of elements in
an array) like this:

months = Array.new(12) [or] months = Array.new 12

The array months now has a size (or length) of 12 elements.
You can return the size of an array with either the size or
length methods:

months.size # => 12 [or] months.length # => 12

Another form of new lets you assign an object (such as a
string) to each element in the array:

month = Array.new(12, "month")

Array Class | 95

You can also use a block with new, populating each element
with what the block evaluates to:

num = Array.new(10) { |e| e = e * 2 }

giving you an array like this:

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

There is another method of Array, []. It works like this:

month_abbrv = Array.[]("jan", "feb", "mar", "apr", "may",
"jun", "jul", "aug", "sep", "oct", "nov", "dec")

or like this, dropping the dot (.) and parentheses (()), which
is possible because of Ruby’s flexible method syntax:

month_abbrv = Array["jan", "feb", "mar", "apr", "may",
"jun", "jul", "aug", "sep", "oct", "nov", "dec"]

An even simpler method for creating an array is this one, just
using the square brackets:

months = [nil, "January", "February", "March", "April",
"May", "June", "July", "August", "September", "October",
"November", "December"]

The Kernel module, included in Object, has an Array
method, which only accepts a single argument. Here the
method takes a range as an argument to create an array of
digits:

digits = Array(0..9) # => [1, 2, 3, 4, 5, 6, 7, 8, 9]

With the %w notation, you can define an array of strings. It
assumes that all elements are strings (even nil), but it sure
saves keystrokes (no typing quotes or commas):

months = %w[nil January February March April May June
July August September October November December]

To fill an array with numbers as strings using %w:

year = %w[2000 2001 2002 2003 2004 2005 2006 2007 2008
2009]

As numbers (not strings):

year = [2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008, 2009]

96 | Ruby Pocket Reference

You can even have an array that contains objects from differ-
ent classes, not all just one type. For example, here’s an array
that contains four elements, each a different kind of object:

hodge_podge = ["January", 1, :year, [2006,01,01]]

Following are the public methods of the Array class, adapted
and abbreviated from http://www.ruby-doc.org/core/classes/
Array.html, where you will find examples and more detailed
explanations of these methods.

Array Class Methods
Array.[](. . .) [or] Array[. . .] [or] [. . .]

Returns a new array populated with the given objects.

Array.new(size=0, obj=nil) [or] Array.new(array) [or]
Array.new(size) { |index| block }

Returns a new array. In the first form, the new array is
empty. In the second it is created with size copies of obj
(that is, size references to the same obj). The third form
creates a copy of the array passed as a parameter. In the
last form, an array of the given size is created. Each ele-
ment in this array is calculated by passing the element’s
index to the given block and storing the return value.

Array Instance Methods
array & other_array

Returns a new array containing elements common to the
two arrays, with no duplicates.

array * int [or] array * str
Returns a new array built by concatenating the int
copies of self. With a String argument, equivalent to
self.join(str).

array + other_array
Returns a new array built by concatenating the two
arrays together to produce a third array.

http://www.ruby-doc.org/core/classes/Array.html
http://www.ruby-doc.org/core/classes/Array.html

Array Class | 97

array – other_array
Returns a new array that is a copy of the original array,
removing any items that also appear in other_array.

array | other_array
Returns a new array by joining array with other_array,
removing duplicates.

array << obj
Pushes the given object onto the end of array. This
expression returns the array itself, so several appends
may be chained together.

array <=> other_array
Returns an integer (-1, 0, or +1) if this array is less than,
equal to, or greater than other_array. Each object in each
array is compared (using <=>). If any value isn’t equal,
then that inequality is the return value. If all the values
found are equal, then the return value is based on a com-
parison of the array lengths. Thus, two arrays are equal
according to Array#<=> if and only if they have the same
length and the value of each element is equal to the value
of the corresponding element in the other array.

array == other_array
Two arrays are equal if they contain the same number of
elements and if each element is equal to (according to
Object.==) the corresponding element in the other array.

array[index] [or] array[start, length] [or]
array[range] [or] array.slice(index) [or]
array.slice(start, length) [or] array.slice(range)

Returns the element at index, or returns a subarray start-
ing at start and continuing for length elements, or
returns a subarray specified by range. Negative indices
count backward from the end of the array (-1 is the last
element). Returns nil if the index (or starting index) is
out of range.

98 | Ruby Pocket Reference

array[index] = obj [or]
array[start, length] = obj or an_array or nil [or]
array[range] = obj or an_array or nil

Sets the element at index, or replaces a subarray starting
at start and continuing for length elements, or replaces a
subarray specified by range. If indices are greater than the
current capacity of the array, the array grows automati-
cally. Negative indices will count backward from the end
of the array. Inserts elements if length is zero. If nil is
used in the second and third form, deletes elements from
self. See also Array#push and Array#unshift.

array.abbrev(pattern = nil)
Calculates the set of unambiguous abbreviations for the
strings in self. If passed a pattern or a string, only the
strings matching the pattern or starting with the string
are considered.

array.assoc(obj)
Searches through an array whose elements are also arrays
comparing obj with the first element of each contained
array using obj.==. Returns the first contained array that
matches (that is, the first associated array), or nil if no
match is found. See also Array#rassoc.

array.at(index)
Returns the element at index. A negative index counts
from the end of self. Returns nil if the index is out of
range. See also Array#[]. (Array#at is slightly faster than
Array#[], as it does not accept ranges and so on.)

array.clear
Removes all elements from array.

array.collect { |item| block } [or]
array.map { |item| block }

Invokes block once for each element of self. Creates a
new array containing the values returned by the block.

Array Class | 99

array.collect! { |item| block } [or]
array.map! { |item| block }

Invokes block once for each element of self, replacing
the element with the value returned by block.

array.compact
Returns a copy of self with all nil elements removed.

array.compact!
Removes nil elements from array. Returns nil if no
changes were made.

array.concat(other_array)
Appends the elements in other_array to self.

array.delete(obj) [or] array.delete(obj) { block }
Deletes items from self that are equal to obj. If the item
is not found, returns nil. If the optional code block is
given, returns the result of block if the item is not found.

array.delete_at(index)
Deletes the element at the specified index, returning that
element, or nil if the index is out of range. See also
Array#slice!.

array.delete_if { |item| block }
Deletes every element of self for which block evaluates
to true.

array.each { |item| block }
Calls block once for each element in self, passing that
element as a parameter.

array.each_index { |index| block }
Same as Array#each, but passes the index of the element
instead of the element itself.

array.empty?
Returns true if the self array contains no elements.

array.eql?(other)
Returns true if array and other are the same object, or
are both arrays with the same content.

100 | Ruby Pocket Reference

array.fetch(index) [or] array.fetch(index, default) [or]
array.fetch(index) { |index| block }

Tries to return the element at position index. If index lies
outside the array, the first form throws an IndexError
exception, the second form returns default, and the third
form returns the value of invoking block, passing in index.
Negative values of index count from the end of the array.

array.fill(obj) [or]
array.fill(obj, start [, length]) [or]
array.fill(obj, range) [or]
array.fill { |index| block } [or]
array.fill(start [, length]) { |index| block } [or]
array.fill(range) { |index| block }

The first three forms set the selected elements of self
(which may be the entire array) to obj. A start of nil is
equivalent to zero. A length of nil is equivalent to
self.length. The last three forms fill the array with the
value of the block. The block is passed the absolute
index of each element to be filled.

array.first [or] array.first(n)
Returns the first element, or the first n elements, of the
array. If the array is empty, the first form returns nil, and
the second form returns an empty array.

array.flatten
Returns a new array that is a one-dimensional flattening
of this array (recursively). That is, for every element that
is an array, extract its elements into the new array.

array.flatten!
Flattens array in place. Returns nil if no modifications
were made. (array contains no subarrays.)

array.frozen?
Returns true if array is frozen (or temporarily frozen
while being sorted).

Array Class | 101

array.hash
Compute a hash-code for array. Two arrays with the
same content will have the same hash code (and will
compare using eql?).

array.include?(obj)
Returns true if obj is present in self, false otherwise.

array.index(obj)
Returns the index of the first object in self that is == to
obj. Returns nil if no match is found.

array.indexes(i1, i2, ... iN) [or]
array.indices(i1, i2, ... iN)

Deprecated; use Array#values_at.

array.indices(i1, i2, ... iN) [or]
array.indexes(i1, i2, ... iN)

Deprecated; use Array#values_at.

array.insert(index, obj...)
Inserts the given values before the element with the given
index (which may be negative).

array.inspect
Creates a printable version of array.

array.join(sep=$,)
Returns a string created by converting each element of
the array to a string, separated by sep.

array.last [or] array.last(n)
Returns the last element(s) of self. If array is empty, the
first form returns nil.

array.length
Returns the number of elements in self. May be zero.

array.map { |item| block } [or]
array.collect { |item| block }

Invokes block once for each element of self. Creates a
new array containing the values returned by the block.

102 | Ruby Pocket Reference

array.map! { |item| block } [or]
array.collect! { |item| block }

Invokes block once for each element of array, replacing
the element with the value returned by block.

array.nitems
Returns the number of non-nil elements in self. May be
zero.

array.pack(aTemplateString)
Packs the contents of array into a binary sequence
according to the directives in aTemplateString (see
Table 19). Directives A, a, and Z may be followed by a
count, which gives the width of the resulting field. The
remaining directives also may take a count, indicating the
number of array elements to convert. If the count is an
asterisk (*), all remaining array elements will be con-
verted. Any of the directives sSiIlL may be followed by
an underscore (_) to use the underlying platform’s native
size for the specified type; otherwise, they use a platform-
independent size. Spaces are ignored in the template
string. See also String#unpack.

Array pack directives

Table 19 lists pack directives for use with Array#pack.

Table 19. Array pack directives

Directive Description

@ Moves to absolute position.

A ASCII string (space padded, count is width).

a ASCII string (null padded, count is width).

B Bit string (descending bit order).

b Bit string (ascending bit order).

C Unsigned char.

c Char.

D, d Double-precision float, native format.

Array Class | 103

E Double-precision float, little-endian byte order.

e Single-precision float, little-endian byte order.

F, f Single-precision float, native format.

G Double-precision float, network (big-endian) byte order.

g Single-precision float, network (big-endian) byte order.

H Hex string (high nibble first).

h Hex string (low nibble first).

I Unsigned integer.

i Integer.

L Unsigned long.

l Long.

M Quoted printable, MIME encoding (see RFC 2045).

m Base64-encoded string.

N Long, network (big-endian) byte order.

n Short, network (big-endian) byte order.

P Pointer to a structure (fixed-length string).

p Pointer to a null-terminated string.

Q, q 64-bit number.

S Unsigned short.

s Short.

U UTF-8.

u UU-encoded string.

V Long, little-endian byte order.

v Short, little-endian byte order.

w BER-compressed integer \fnm.

X Back up a byte.

x Null byte.

Z Same as a, except that null is added with *.

Table 19. Array pack directives (continued)

Directive Description

104 | Ruby Pocket Reference

array.pop
Removes the last element from array and returns it, or
nil if array is empty.

array.push(obj, . . .)
Pushes (appends) the given obj onto the end of this
array. This expression returns the array itself, so several
appends may be chained together.

array.rassoc(key)
Searches through the array whose elements are also
arrays. Compares key with the second element of each
contained array using ==. Returns the first contained
array that matches. See also Array#assoc.

array.reject { |item| block }
Returns a new array containing the items array for which
the block is not true.

array.reject! { |item| block }
Deletes elements from array for which the block evalu-
ates to true, but returns nil if no changes were made.
Equivalent to Array#delete_if.

array.replace(other_array)
Replaces the contents of array with the contents of
other_array, truncating or expanding if necessary.

array.reverse
Returns a new array containing array’s elements in
reverse order.

array.reverse!
Reverses array in place.

array.reverse_each {|item| block }
Same as Array#each, but traverses array in reverse order.

array.rindex(obj)
Returns the index of the last object in array == to obj.
Returns nil if no match is found.

Array Class | 105

array.select {|item| block }
Invokes the block passing in successive elements from
array, returning an array containing those elements for
which the block returns a true value.

array.shift
Returns the first element of self and removes it (shifting
all other elements down by one). Returns nil if the array
is empty.

array.size
Returns the length of array (number of elements). Alias
for length.

array.slice(index) [or] array.slice(start, length) [or]
array.slice(range) [or] array[index] [or]
array[start, length] [or] array[range]

Returns the element at index, or returns a subarray start-
ing at start and continuing for length elements, or
returns a subarray specified by range. Negative indices
count backward from the end of the array (-1 is the last
element). Returns nil if the index (or starting index) are
out of range.

array.slice!(index) [or] array.slice!(start, length) [or]
array.slice!(range)

Deletes the element(s) given by an index (optionally with
a length) or by a range. Returns the deleted object, sub-
array, or nil if index is out of range.

array.sort [or] array.sort { | a,b | block }
Returns a new array created by sorting self.

array.sort! [or] array.sort! { | a,b | block }
Sorts self.

array.to_a
Returns self. If called on a subclass of Array, converts
the receiver to an Array object.

array.to_ary
Returns self.

106 | Ruby Pocket Reference

array.to_s
Returns self.join.

array.transpose
Assumes that self is an array of arrays and transposes the
rows and columns.

array.uniq
Returns a new array by removing duplicate values in
array.

array.uniq!
Removes duplicate elements from self. Returns nil if no
changes are made (that is, no duplicates are found).

array.unshift(obj, . . .)
Prepends objects to the front of array, other elements up
one.

array.values_at(selector, . . .)
Returns an array containing the elements in self corre-
sponding to the given selector (one or more). The
selectors may be either integer indices or ranges. See
also Array#select.

array.zip(arg, . . .) [or] array.zip(arg, . . .){ | arr | block }
Converts any arguments to arrays, then merges elements of
array with corresponding elements from each argument.

Hash Class
A hash is an unordered collection of key-value pairs that look
like this: "storm" => "tornado". A hash is similar to an Array,
but instead of a default integer index starting at zero, the
indexing is done with keys that can be made up from any
Ruby object. In other words, you can use integer keys just
like an Array, but you also have the option of using any Ruby
object as a key, even an Array! (Hashes are actually imple-
mented as arrays in Ruby.)

Hash Class | 107

Hashes can be accessed by keys or by values, but usually by
keys, which must be unique. If you attempt to access a hash
with a key that does not exist, the method will return nil
(unless the hash has a default value). The key-value pairs in a
hash are not stored in the same order that they are inserted
(the order you placed them in the hash), so don’t be sur-
prised if the contents of a hash look different than what you
put in—the contents are not ordered like they are in an
array.

Creating Hashes
As with arrays, there is a variety of ways to create hashes.
You can create an empty hash with the new class method:

months = Hash.new

You can also use new to create a hash with a default value,
which is otherwise just nil:

months = Hash.new("month") [or] months = Hash.new "month"

When you access any key in a hash that has a default value, if
the key or value doesn’t exist, accessing the hash will return
the default value:

months[0] [or] months[72] [or] months[234] # => "month"

Hash also has a class method [], which is called in one of two
ways—with a comma separating the pairs, like this:

christmas_carol = Hash[:name, "Ebenezer Scrooge", :
partner, "Jacob Marley", :employee, "Bob Cratchit", :
location, "London", :year, 1843] # => {:name=>"Ebenezer
Scrooge", :employee=>"Bob Cratchit", :year=>1843, :
partner=>"Jacob Marley", :location=>"London"}

or with =>:

christmas_carol = Hash[:name => "Ebenezer Scrooge", :
partner => "Jacob Marley", :employee => "Bob Cratchit" =>:
location, "London", :year => 1843] # => {:name=>"Ebenezer
Scrooge", :employee=>"Bob Cratchit", :year=>1843, :
partner=>"Jacob Marley", :location=>"London"}

108 | Ruby Pocket Reference

The easiest way to create a hash is just with curly braces:

months = { 1 => "January", 2 => "February", 3 => "March",
4 => "April", 5 => "May", 6 => "June", 7 => "July",
8 => "August", 9 => "September", 10 => "October",
11 => "November", 12 => "December" }

But that looks just like an array we created in the last chap-
ter. What else could you do? Instead of integers, you could
use strings for the keys:

month_a = { "jan" => "January", "feb" => "February",
"mar" => "March", "apr" => "April", "may" => "May",
"jun" => "June", "jul" => "July", "aug" => "August",
"sep" => "September", "oct" => "October", "nov" =>
"November", "dec" => "December" }

You can use any Ruby object as a key or value, even an array,
so this will work: [1,"jan"] => "January".

Following are the public methods of the Hash class, adapted
and abbreviated from http://www.ruby-doc.org/core/classes/
Hash.html, where you will find examples and more detailed
explanations of the methods.

Hash Class Methods
Hash[[key =>|, value]*]

Creates a new hash with zero or more key-values pairs,
separated by => or ,.

Hash.new [or] Hash.new(obj) [or]
Hash.new { |hash, key| block }

Creates a new empty hash, a hash with a default value, or
a hash via a block.

Hash Instance Methods
hash == other_hash

Tests whether two hashes are equal, based on whether
they have the same number of key-value pairs, and
whether the key-value pairs match the corresponding
pair in each hash.

http://www.ruby-doc.org/core/classes/Hash.html
http://www.ruby-doc.org/core/classes/Hash.html

Hash Class | 109

hash.[key]
Using a key, references a value from hash. If the key is not
found, returns a default value (see default, default=).
Compare []=.

hash.[]=
Compare store.

hash.clear
Removes all key-value pairs from hash.

hash.default(key = nil)
Returns the default value for hash, nil if not set by
default=. ([] returns a default value if the key does not
exist in hash.)

hash.default = obj
Sets a default value for hash. Compare [], default.

hash.default_proc
Returns a block if hash was created by a block.

hash.delete(key) [or] array.delete(key) { |key| block }
Deletes a key-value pair from hash by key. If block is
used, returns the result of a block if pair is not found.
Compare delete_if.

hash.delete_if { |key,value| block }
Deletes a key-value pair from hash for every pair the
block evaluates to true. Compare delete, reject,
reject!.

hash.each { |key,value| block }
Iterates over hash, calling the block once for each key,
passing the key-value as a two-element array.

hash.each_key { |key| block }
Iterates over hash, calling the block once for each key,
passing key as a parameter.

hash.each_key { |key_value_array| block }
Iterates over hash, calling the block once for each key,
passing the key and value as parameters.

110 | Ruby Pocket Reference

hash.each_key { |value| block }
Iterates over hash, calling the block once for each key,
passing value as a parameter.

hash.empty?
Tests whether hash is empty (contains no key-value
pairs), returning true or false.

hash.fetch(key [, default]) [or]
hash.fetch(key) { | key | block }

Returns a value from hash for the given key. If the key
can’t be found, and there are no other arguments, it
raises an IndexError exception; if default is given, it is
returned; if the optional block is specified, its result is
returned.

hash.has_key?(key) [or] hash.include?(key) [or]
hash.key?(key) [or] hash.member?(key)

Tests whether a given key is present in hash, returning
true or false. Compare include?, key?, member?.

hash.has_value?
Tests whether hash contains the given value. Compare
value?

hash.index(value)
Returns the key for the given value in hash, nil if no
matching value is found.

hash.indexes
Deprecated. See select.

hash.indices
Deprecated. See select.

hash.inspect
Returns a pretty print string version of hash.

hash.invert
Creates a new hash, inverting keys and values from hash;
that is, in the new hash, the keys from hash become val-
ues, and values become keys.

Hash Class | 111

hash.keys
Creates a new array with keys from hash.

hash.length
Returns the size or length of hash as an integer. Compare
size.

hash.merge(other_hash) [or]
hash.merge(other_hash) { |key, oldval, newval| block }

Returns a new hash containing the contents of hash and
other_hash, overwriting pairs in hash with duplicate keys
with those from other_hash. Compare merge!, update.

hash.merge!(other_hash) [or]
hash.merge!(other_hash) { |key, oldval, newval| block }

Same as merge, but changes are done in place.

hash.rehash
Rebuilds hash based on the current values for each key. If
values have changed since they were inserted, this
method reindexes hash.

hash.reject { |key, value| block }
Creates a new hash for every pair the block evaluates to
true. Compare delete_if, select.

hash.reject! { |key, value| block }
Same as reject, but changes are made in place.

hash.replace(other_hash)
Replaces the contents of hash with the contents of other_
hash.

hash.select { |key, value| block }
Returns a new array consisting of key-value pairs from
hash for which the block returns true. Compare values_at.

hash.shift
Removes a key-value pair from hash, returning it as a
two-element array.

112 | Ruby Pocket Reference

hash.size
Returns the size or length of hash as an integer. Compare
length.

hash.sort
Converts hash to a two-dimensional array containing
arrays of key-value pairs, then sorts it as an array.

hash.store(key, value)
Stores a key-value pair in hash. Compare []=.

hash.to_a
Creates a two-dimensional array from hash. Each key-
value pair is converted to an array, and all these arrays
are stored in a containing array.

hash.to_hash
Returns hash (self).

hash.to_s
Converts hash to an array, then converts that array to a
string.

hash.update(other_hash) [or]
hash.update(other_hash) {|key, oldval, newval| block}

Returns a new hash containing the contents of hash and
other_hash, overwriting pairs in hash with duplicate keys
with those from other_hash. Compare merge, merge!.

hash.value?
Tests whether hash contains the given value. Compare
has_value?.

hash.values
Returns a new array containing all the values of hash.
Compare values_at.

hash.values_at(obj, . . .)
Returns a new array containing the values from hash that
are associated with the given key or keys. Compare
values.

Time Formatting Directives | 113

Time Formatting Directives
These directives in Table 20 are used with the method
Time#strftime.

Table 20. Directives for formatting time

Directive Description

%a The abbreviated weekday name (Sun).

%A The full weekday name (Sunday).

%b The abbreviated month name (Jan).

%B The full month name (January).

%c The preferred local date and time representation.

%d Day of the month (01 to 31).

%H Hour of the day, 24-hour clock (00 to 23).

%I Hour of the day, 12-hour clock (01 to 12).

%j Day of the year (001 to 366).

%m Month of the year (01 to 12).

%M Minute of the hour (00 to 59).

%p Meridian indicator (AM or PM).

%S Second of the minute (00 to 60).

%U Week number of the current year, starting with the first Sunday as
the first day of the first week (00 to 53).

%W Week number of the current year, starting with the first Monday as
the first day of the first week (00 to 53).

%w Day of the week (Sunday is 0, 0 to 6).

%x Preferred representation for the date alone, no time.

%X Preferred representation for the time alone, no date.

%y Year without a century (00 to 99).

%Y Year with century.

%Z Time zone name.

%% Literal % character.

114 | Ruby Pocket Reference

Interactive Ruby (irb)
Interactive Ruby or irb is an interactive programming envi-
ronment that comes with Ruby. It was written by Keiju Ishit-
suka. To invoke it, type irb at a shell or command prompt,
and begin entering Ruby statements and expressions. Use
exit or quit to exit irb. Here is a sample of irb evaluating a
variety of expressions:

$ irb
irb(main):001:0> 23 + 27
=> 50
irb(main):002:0> 50 - 23
=> 27
irb(main):003:0> 10 * 5
=> 50
irb(main):004:0> 10**5
=> 100000
irb(main):005:0> 50 / 5
=> 10
irb(main):006:0> x = 1
=> 1
irb(main):007:0> x + 59
=> 60
irb(main):008:0> hi = "Hello, Matz!"
=> "Hello, Matz!"
irb(main):009:0> hi.each { |s| print s }
Hello, Matz!=> "Hello, Matz!"
irb(main):010:0> 1.upto(10) { |n| print n, " " }
1 2 3 4 5 6 7 8 9 10 => 1
irb(main):011:0> 100 < 1_000
=> true
irb(main):012:0> class Hello
irb(main):013:1> attr :hi, true
irb(main):014:1> end
=> nil
irb(main):015:0> h = Hello.new
=> #<Hello:0x3602cc>
irb(main):016:0> h.hi="Hello, Matz!"
=> "Hello, Matz!"
irb(main):017:0> h.hi
=> "Hello, Matz!"

Interactive Ruby (irb) | 115

irb(main):018:0> self
=> main
irb(main):019:0> self.class
=> Object
irb(main):020:0> exit

You can also invoke a single program with irb. After running
the program, irb exits:

$ cat hello.rb
#!/usr/bin/env ruby

class Hello
 def initialize(hello)
 @hello = hello
 end
 def hello
 @hello
 end
end

salute = Hello.new("Hello, Matz!")
puts salute.hello
$ irb hello.rb
hello.rb(main):001:0> #!/usr/bin/env ruby
hello.rb(main):002:0*
hello.rb(main):003:0* class Hello
hello.rb(main):004:1> def initialize(hello)
hello.rb(main):005:2> @hello = hello
hello.rb(main):006:2> end
hello.rb(main):007:1> def hello
hello.rb(main):008:2> @hello
hello.rb(main):009:2> end
hello.rb(main):010:1> end
=> nil
hello.rb(main):011:0>
hello.rb(main):012:0* salute = Hello.new("Hello, Matz!")
=> #<Hello:0x319f20 @hello="Hello, Matz!">
hello.rb(main):013:0> puts salute.hello
Hello, Matz!
=> nil
hello.rb(main):014:0> $

Usage:

irb[.rb] [options] [programfile] [arguments]

116 | Ruby Pocket Reference

Options:

-f
Suppress reading of the file ~/.irbrc.

-m
bc mode (load mathn library so fractions or matrix are
available).

-d
Set $DEBUG to true (same as ruby -d).

-r load-module
Same as ruby -r.

-I path
Specify $LOAD_PATH directory.

--inspect
Use inspect for output (default except for bc mode).

--noinspect
Don’t use inspect for output.

--readline
Use Readline extension module.

--noreadline
Don’t use Readline extension module.

--prompt prompt-mode (--prompt-mode prompt-mode)
Switch prompt mode. Predefined prompt modes are
default, simple, xmp, and inf-ruby.

--inf-ruby-mode
Use prompt appropriate for inf-ruby-mode on Emacs.
Suppresses --readline.

--simple-prompt
Simple prompt mode.

--noprompt
No prompt mode.

Ruby Debugger | 117

--tracer
Display trace for each execution of commands.

--back-trace-limit n
Display backtrace top n and tail n. The default value is 16.

--irb_debug n
Set internal debug level to n (not for popular use).

-v (--version).
Print the version of irb.

Ruby Debugger
Usage:

ruby -rdebug filename[, ...]

Commands:

b[reak] [file:|class:](line|method)
b[reak] [class.](line|method)

Sets breakpoint to some position.

wat[ch] expression
Sets watchpoint to some expression.

cat[ch] (exception|off)
Sets catchpoint to an exception.

b[reak]
Lists breakpoints.

cat[ch]
Shows catchpoint.

del[ete][nnn]
Deletes some or all breakpoints.

disp[lay] expression
Adds expression into display expression list.

undisp[lay][nnn]
Deletes one particular or all display expressions.

118 | Ruby Pocket Reference

c[ont]
Runs until program ends or hits breakpoint.

s[tep]nnn
Steps (into methods) one line or until line nnn.

n[ext] nnn
Goes over one line or until line nnn.

w[here]
Displays frames.

f[rame]
Alias for where.

l[ist][(-|nn-mm)
Lists program, - lists backward.

nn-mm
Lists given lines.

up[nn]
Move to higher frame.

down[nn]
Moves to lower frame.

fin[ish]
Returns to outer frame.

tr[ace] (on|off)
Sets trace mode of current thread.

tr[ace] (on|off) all
Sets trace mode of all threads.

q[uit]
Exits from debugger.

v[ar] g[lobal]
Shows global variables.

v[ar] l[ocal]
Shows local variables.

Ruby Documentation | 119

v[ar] i[nstance] object
Shows instance variables of object.

v[ar] c[onst] object
Shows constants of object.

m[ethod] i[nstance] object
Shows methods of object.

m[ethod] (class|module)
Shows instance methods of class or module.

th[read] l[ist]
Lists all threads.

th[read] c[ur[rent]]
Shows current thread.

th[read] [sw[itch]] nnn
Switches thread context to nnn.

th[read] stop nnn
Stops thread nnn.

th[read] resume nnn
Resumes thread nnn.

p expression
Evaluates expression and print its value.

h[elp]
Prints this help.

everything else
Evaluates.

Ruby Documentation
Ruby documentation refers to the documentation generated
by RDoc (http://rdoc.sourceforge.net), a program that extracts
documentation from Ruby source files, both from C and
Ruby files.

http://rdoc.sourceforge.net

120 | Ruby Pocket Reference

The documentation is stored in comments in the source files
and encoded so that RDoc can easily find it. RDoc can gener-
ate output as HTML, XML, ri (Ruby information), or Win-
dows help (chm) files.

To see the RDoc-generated HTML documentation for Ruby,
go to http://www.ruby-doc.org/core. If you have Ruby docu-
mentation installed on your system, which you likely do if
you followed the installation instructions earlier in the book,
you can type something like the following at a shell prompt
to get formatted documentation in return. Type:

ri Kernel.print

 and you will get this output:

--
- Kernel#print
 print(obj, ...) => nil
--

 Prints each object in turn to +$stdout+. If the
output field
 separator (+$,+) is not +nil+, its contents will
appear between
 each field. If the output record separator (+$\+) is
not +nil+, it
 will be appended to the output. If no arguments are
given, prints
 +$_+. Objects that aren't strings will be converted
by calling
 their +to_s+ method.

 print "cat", [1,2,3], 99, "\n"
 $, = ", "
 $\ = "\n"
 print "cat", [1,2,3], 99

 produces:

 cat12399
 cat, 1, 2, 3, 99

http://www.ruby-doc.org/core

RDoc Options | 121

Here are the RDOC formatting basics:

• Paragraphs in comments become paragraphs in the
documentation.

• Words preceded by equals signs (such as === Example)
will be headings in the result, varying in font size
depending on the number of equals signs—the more you
use, the smaller the font of the heading. One = for a level-
one heading, two == for a level two, and so forth.

• Indented text is formatted as code (typewriter font).

• Numbered lists (1., 2., 3., etc.) become numbered lists.

• Labels followed by double colons (::) line up the text
that follows in tabular form.

• The :title: directive lets RDoc know what you want the
title of the XHTML document(s) to be (what goes inside
<head><title></title></head>).

• Text enclosed by plus signs (+new+) will be shown in a
typewriter (monospace) font in XHTML.

• Text enclosed in underscores (_debt_) will be shown in
italics.

• Lines preceded by asterisks (*) will be set off as bullets in
the XHTML.

• Marking up text in tt tags (<tt>exec</tt>) is the same as
marking it up with plus signs (+exec+).

• Marking up text in i tags (<i>wow!</i>) is the same as
marking it up with underscores (_wow!_).

RDoc Options
Usage:

rdoc [options] [names . . .]

names is a list of one or more filenames that you want to pro-
cess with RDoc. Files are parsed, and the information they
contain collected, before any output is produced. This allows
cross-references between all files that are to be resolved.

122 | Ruby Pocket Reference

If a filename on the command line is a directory, it is tra-
versed. If no names are specified on the command line, all
Ruby files in the current directory (and subdirectories) are
processed.

Options:

--accessor, -A accessorname[,..]
Comma separated list of additional class methods that
should be treated like attr_reader and friends. Option
may be repeated. Each accessorname may have =text
appended, in which case that text appears where the r/w/
rw appears for normal accessors.

--all, -a
Includes all methods (not just public) in the output.

--charset, -c charset
Specifies HTML character set.

--debug, -D
Displays internal information.

--diagram, -d
Generates diagrams showing modules and classes. You
need dot V1.8.6 or later to use the --diagram option cor-
rectly. Dot is available from http://www.research.att.com/
sw/tools/graphviz.

--exclude, -x pattern
Does not process files or directories matching pattern.
Files given explicitly on the command line will never be
excluded.

--extension, -E new=old
Treats files ending with .new as if they ended with .old.
Using '-E cgi=rb' will cause xxx.cgi to be parsed as a
Ruby file.

--fileboxes, -F
Classes are put in boxes that represent files, where these
classes reside. Classes shared between more than one file

http://www.research.att.com/sw/tools/graphviz
http://www.research.att.com/sw/tools/graphviz

RDoc Options | 123

are shown with the list of files that share them. Silently
discarded if --diagram option is not present as well.
Experimental.

--fmt, -f chm/html/ri/xml
Sets the output formatter. Available output formatters
are chm, html, ri, and xml.

--help, -h
Displays this usage information.

--help-output, -O
Explains the various output options.

--image-format, -I gif/png/jpg/jpeg
Sets output image format for diagrams. Can be png, gif,
jpeg, jpg. If this option is omitted, png is used. Requires
--diagram.

--include, -i dir[,dir . . .]
Sets (or adds to) the list of directories to be searched
when satisfying :include: requests. Can be used more
than once.

--inline-source, -S
Shows method source code inline, rather than via a pop-
up link.

--line-numbers, -N
Includes line numbers in the source code.

--main, -m name
name will be the initial page displayed.

--merge, -M
When creating ri output, merges processed classes into
previously documented classes of the name name.

--one-file, -1
Puts all the output into a single file.

--op, -o dir
Sets the output directory.

124 | Ruby Pocket Reference

--opname, -n name
Sets the name of the output. Has no effect for HTML.

--promiscuous, -p
When documenting a file that contains a module or class
also defined in other files, shows all stuff for that mod-
ule/class in each file’s page. By default, only shows stuff
defined in that particular file.

--quiet, -q
Doesn’t show progress as we parse.

--ri, -r
Generates output for use by ri. The files are stored in
the .rdoc directory under your home directory unless
overridden by a subsequent --op parameter, so no spe-
cial privileges are needed.

--ri-site, -R
Generates output for use by ri. The files are stored in a
site-wide directory, making them accessible to others, so
special privileges are needed.

--ri-system, -Y
Generates output for use by ri. The files are stored in a
system-level directory, making them accessible to others,
so special privileges are needed. This option is intended
to be used during Ruby installations.

--show-hash, -H
A name of the form #name in a comment is a possible
hyperlink to an instance method name. When displayed,
the # is removed unless this option is specified.

--style, -s stylesheet URL
Specifies the URL of a separate stylesheet.

--tab-width, -w n
Sets the width of tab characters (default 8).

--template, -T template name
Sets the template used when generating output.

RubyGems | 125

--title, -t text
Sets txt as the title for the output.

--version, -v
Displays RDoc’s version.

--webcvs, -W url
Specifies a URL for linking to a web front-end to CVS. If
the URL contains a '%s', the name of the current file will
be substituted; if the URL doesn’t contain a '%s', the file-
name will be appended to it.

For information on where the output goes, use:

rdoc --help-output

How RDoc generates output depends on the output format-
ter being used, and on the options you give:

• HTML output is normally produced into a number of
separate files (one per class, module, and file, along with
various indices). These files will appear in the directory
given by the --op option (doc/ by default).

• XML output by default is written to standard output. If
an --opname option is given, the output will instead be
written to a file with that name in the output directory.

• .chm files (Windows help files) are written in the --op
directory. If an --opname parameter is present, that name
is used; otherwise, the file will be called rdoc.chm.

RubyGems
RubyGems is a package utility for Ruby (http://rubyforge.org/
projects/rubygems). It was written by Jim Weirich. It installs
Ruby software packages, and keeps them up to date. It is
quite easy to learn and use, even easier than tools like the
Unix/Linux tar utility (http://www.gnu.org/software/tar) or
Java’s jar utility (http://java.sun.com/j2se/1.5.0/docs/tooldocs/
windows/jar.html).

http://rubyforge.org/projects/rubygems/
http://rubyforge.org/projects/rubygems/
http://www.gnu.org/software/tar/
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html

126 | Ruby Pocket Reference

For more information, read the RubyGems documentation at
http://docs.rubygems.org. The RubyGems User Guide (http://
docs.rubygems.org/read/book/1) gives you most everything
you need to know about using RubyGems. There is also a
command reference (http://docs.rubygems.org/read/book/2).

If you don’t have RubyGems installed, go to Chapter 3 of the
RubyGems User Guide at http://rubygems.org/read/chapter/3
for complete installation instructions.

Check to see whether RubyGems is installed:

$ gem --version
0.9.0

Get help on RubyGems:

$ gem --help

RubyGems is a sophisticated package manager for Ruby.
This is a basic help message containing pointers to more
information.

 Usage:
 gem -h/--help
 gem -v/--version
 gem command [arguments...] [options...]

 Examples:
 gem install rake
 gem list --local
 gem build package.gemspec
 gem help install

 Further help:
 gem help commands list all 'gem' commands
 gem help examples show some examples of
 usage
 gem help <COMMAND> show help on COMMAND
 (e.g. 'gem help
 install')
 Further information:
 http://rubygems.rubyforge.org

http://docs.rubygems.org/
http://docs.rubygems.org/read/book/1
http://docs.rubygems.org/read/book/1
http://docs.rubygems.org/read/book/2
http://rubygems.org/read/chapter/3

RubyGems | 127

Get a list of RubyGems commands:

$ gem help commands

GEM commands are:
 build Build a gem from a gemspec
 cert Adjust RubyGems certificate settings
 check Check installed gems
 cleanup Cleanup old versions of installed gems in
 the local repository
 contents Display the contents of the installed gems
 dependency Show the dependencies of an installed gem
 environment Display RubyGems environmental information
 help Provide help on the 'gem' command
 install Install a gem into the local repository
 list Display all gems whose name starts with
 STRING
 query Query gem information in local or remote
 repositories
 rdoc Generates RDoc for pre-installed gems
 search Display all gems whose name contains STRING
 specification Display gem specification (in yaml)
 uninstall Uninstall a gem from the local repository
 unpack Unpack an installed gem to the current
 directory
 update Update the named gem (or all installed
 gems) in the local repository

For help on a particular command, use 'gem help COMMAND'.

Commands may be abbreviated, so long as they are
unambiguous.
e.g. 'gem i rake' is short for 'gem install rake'.

Get help on a specific RubyGems command:

$ gem help check
Usage: gem check [options]

 Options:
 -v, --verify FILE Verify gem file against
 its internal checksum
 -a, --alien Report 'unmanaged' or
 rogue files in the gem
 repository
 -t, --test Run unit tests for gem
 -V, --version Specify version for
 which to run unit tests

128 | Ruby Pocket Reference

 Common Options:
 --source URL Use URL as the remote
 source for gems
 -p, --[no-]http-proxy [URL] Use HTTP proxy for
 remote operations

-h, --help Get help on this command
 --config-file FILE Use this config file
 instead of default
 --backtrace Show stack backtrace on
 errors
 --debug Turn on Ruby debugging

 Summary:
 Check installed gems

Show RubyGems examples:

$ gem help examples

Some examples of 'gem' usage.

* Install 'rake', either from local directory or remote
 server:

 gem install rake

* Install 'rake', only from remote server:

 gem install rake --remote

* Install 'rake' from remote server, and run unit tests,
 and generate RDocs:

 gem install --remote rake --test --rdoc --ri

* Install 'rake', but only version 0.3.1, even if
 dependencies are not met, and into a specific directory:

 gem install rake --version 0.3.1 --force --install-dir
 $HOME/.gems

* List local gems whose name begins with 'D':

 gem list D

RubyGems | 129

* List local and remote gems whose name contains 'log':

 gem search log --both

* List only remote gems whose name contains 'log':

 gem search log --remote

* Uninstall 'rake':

 gem uninstall rake

* Create a gem:

 See http://rubygems.rubyforge.org/wiki/wiki.
 pl?CreateAGemInTenMinutes

* See information about RubyGems:

 gem environment

List available remote RubyGems packages with the follow-
ing (drop the --remote flag to see what you have locally):

$ gem list --remote

*** REMOTE GEMS ***
Need to update 17 gems from http://gems.rubyforge.org
.................
complete

abstract (1.0.0)
 a library which enables you to define abstract method
 in Ruby

ackbar (0.1.1, 0.1.0)
 ActiveRecord KirbyBase Adapter

action_profiler (1.0.0)
 A profiler for Rails controllers

actionmailer (1.3.3, 1.3.2, 1.3.1, 1.3.0, 1.2.5, 1.2.4,
1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.5, 1.1.4, 1.1.3, 1.1.2,
1.1.1, 1.0.1, 1.0.0, 0.9.1, 0.9.0, 0.8.1, 0.8.0, 0.7.1,
0.7.0, 0.6.1, 0.6.0, 0.5.0, 0.4.0, 0.3.0)
 Service layer for easy email delivery and testing.

130 | Ruby Pocket Reference

actionpack (1.13.3, 1.13.2, 1.13.1, 1.13.0, 1.12.5,
1.12.4, 1.12.3, 1.12.2, 1.12.1, 1.12.0, 1.11.2, 1.11.1,
1.11.0, 1.10.2, 1.10.1, 1.9.1, 1.9.0, 1.8.1, 1.8.0, 1.7.0,
1.6.0, 1.5.1, 1.5.0, 1.4.0, 1.3.1, 1.3.0, 1.2.0, 1.1.0,
1.0.1, 1.0.0, 0.9.5, 0.9.0, 0.8.5, 0.8.0, 0.7.9, 0.7.8,
0.7.7, 0.7.6, 0.7.5)
 Web-flow and rendering framework putting the VC in MVC.

actionservice (0.3.0, 0.2.102, 0.2.100, 0.2.99)
 Web service support for Action Pack.

actionwebservice (1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.6,
1.1.5, 1.1.4, 1.1.3, 1.1.2, 1.1.1, 1.1.0, 1.0.0, 0.9.4,
0.9.3, 0.9.2, 0.9.1, 0.8.1, 0.8.0, 0.7.1, 0.7.0, 0.6.2,
0.6.1, 0.6.0, 0.5.0)
 Web service support for Action Pack.

[truncated]

Install or update Rake (make à la Ruby, discussed in the next
section). You may need root privileges to do this (essentially,
you’ll need a root password). I use sudo (http://www.gratisoft.
us/sudo) to do this:

$ sudo gem install rake

WARNING: Improper use of the sudo command could lead to
data loss or the deletion of important system files.
Please double-check your typing when using sudo. Type "man
sudo" for more information.

To proceed, enter your password, or type Ctrl-C to abort.

Password:
Bulk updating Gem source index for: http://gems.rubyforge.
org
Successfully installed rake-0.7.2
Installing ri documentation for rake-0.7.2...
Installing RDoc documentation for rake-0.7.2...

http://www.gratisoft.us/sudo/
http://www.gratisoft.us/sudo/

Rake | 131

Rake
A build tool helps you build, compile, or otherwise process
files, sometimes large numbers of them. Rake is a build tool
like make (http://www.gnu.org/software/make) and Apache
ant (http://ant.apache.org), but it is written in Ruby. It is used
by Ruby many applications, not just Rails. Rails operations
use Rake frequently, so it is worth mentioning here.

Rake uses a Rakefile to figure out what to do. A Rakefile con-
tains named tasks. When you create a Rails project, a Rake-
file is automatically created to help you deal with a variety of
jobs, such as running tests and looking at project statistics.
(After creating a Rails project with one of the tutorials below,
while in the main Rails project directory, run rake --tasks or
rails stats to get a flavor of what Rake does.)

Rake was written by Jim Weirich (http://onestepback.org).
You’ll find documentation on Rake at http://rake.rubyforge.org.
Additionally, you’ll find a good introduction to Rake, by Mar-
tin Fowler, at http://www.martinfowler.com/articles/rake.html.

Check to see whether Rake is present:

$ rake --version
rake, version 0.7.2

If this command fails, use RubyGems to install Rake, as
shown in the previous section.

To run Rake help, type:

$ rake --help

Usage:

rake [-f rakefile] {options} targets...

http://www.gnu.org/software/make/
http://ant.apache.org/
http://onestepback.org/
http://rake.rubyforge.org/
http://www.martinfowler.com/articles/rake.html

132 | Ruby Pocket Reference

Options:

--classic-namespace (-C)
Put Task and FileTask in the top-level namespace.

--dry-run (-n)
Do a dry run without executing actions.

--help (-H)
Display this help message.

--libdir=LIBDIR (-I)
Include LIBDIR in the search path for required modules.

--nosearch (-N)
Do not search parent directories for the Rakefile.

--prereqs (-P)
Display the tasks and dependencies, then exit.

--quiet (-q)
Do not log messages to standard output.

--rakefile (-f)
Use FILE as the Rakefile.

--rakelibdir=RAKELIBDIR (-R)
Auto-import any .rake files in RAKELIBDIR (default is
rakelib).

--require=MODULE (-r)
Require MODULE before executing Rakefile.

--silent (-s)
Like --quiet, but also suppresses the in directory
announcement.

--tasks (-T)
Display the tasks (matching optional PATTERN) with
descriptions, then exit.

Ruby Resources | 133

--trace (-t)
Turn on invoke/execute tracing; enable full backtrace.

--usage (-h)
Display usage.

--verbose (-v)
Log message to standard output (default).

--version (-V)
Display the program version.

Ruby Resources
http://www.ruby-lang.org

Ruby language main site

http://www.rubyist.net/~matz
Matz’s blog (in Japanese)

http://www.ruby-doc.org
Ruby documentation site

http://www.rubyonrails.org
Ruby on Rails

http://railsconf.com
Rails Conf

http://rubyforge.org
http://raa.ruby-lang.org

Ruby source code repositories

http://www.rubycentral.com
Ruby Central, sponsor of Ruby Conf

http://www.oreilly.com/catalog/0974514055/index.html
http://www.amazon.com/Programming-Ruby-Pragmatic-
Programmers-Second/dp/0974514055

Programming Ruby, Second Edition, by Dave Thomas et al.
(Pragmatic)

http://www.ruby-lang.org
http://www.rubyist.net/~matz/
http://www.ruby-doc.org
http://www.rubyonrails.org
http://railsconf.com
http://rubyforge.org
http://raa.ruby-lang.org/
http://www.rubycentral.com/
http://www.oreilly.com/catalog/0974514055/index.html
http://www.amazon.com/Programming-Ruby-Pragmatic-Programmers-Second/dp/0974514055/

134 | Ruby Pocket Reference

http://www.awprofessional.com/bookstore/product.
asp?isbn=0672328844&rl=1
http://www.amazon.com/Ruby-Way-Second-Addison-Wesley-
Professional/dp/0672328844

The Ruby Way, Second Edition, by Hal Fulton (Addison-
Wesley)

http://poignantguide.net/ruby
Why’s (Poignant) Guide to Ruby by why the lucky stiff

http://www.amazon.com/Cookbook-Cookbooks-OReilly-
Lucas-Carlson/dp/0596523696
http://www.oreilly.com/catalog/rubyckbk

Ruby Cookbook by Lucas Carlson and Leonard Richardson
(O’Reilly)

Glossary
accessor

A method for accessing data in a class that is usually inac-
cessible otherwise. Also called getter and setter methods.

Ajax
Originally an abbreviation for Asynchronous JavaScript
and XML. A web design technique that uses
XMLHttpRequest to load data (often small bits of data)
onto a web page without requiring the entire page to be
refreshed from the server.

aliasing
Using the Ruby keyword alias, you can alias a method,
operator, or global constant by specifying an old and a
new name.

ARGF
An I/O-like stream that allows access to a virtual concat-
enation of all files provided on the command line, or
standard input if no files are provided.

http://www.awprofessional.com/bookstore/product.asp?isbn=0672328844&rl=1
http://www.amazon.com/Ruby-Way-Second-Addison-Wesley-Professional/dp/0672328844/
http://poignantguide.net/ruby/
http://www.amazon.com/Cookbook-Cookbooks-OReilly-Lucas-Carlson/dp/0596523696/
http://www.oreilly.com/catalog/rubyckbk/

Glossary | 135

ARGV
An array that contains all of the command-line argu-
ments passed to a program.

argument
Variables passed to a method. In the method call hello
(name), the variable name is an argument. See method.

array
A data structure containing an ordered list of elements—
any Ruby object—starting with an index of 0. Compare
with hash.

ASCII
Abbreviation for American Standard Code for Informa-
tion Interchange. ASCII is a character set representing
128 letters, numbers, symbols, and special codes, in the
range 0–127. Each character can be represented by an 8-
bit byte (octet). Ruby default. Set with $KCODE = 'a'.
Compare with UTF-8.

block
A nameless function, always associated with a method
call, contained in a pair of braces ({}) or do/end.

block comment
See comment.

C extensions
Ruby is written in the C programming language. You can
extend Ruby with C code, perhaps for performance gains
or to do some heavy lifting. For quick instructions on
how to do this, see Peter Cooper’s article “How to create
a Ruby Extension in C in under 5 minutes” at http://
www.rubyinside.com/how-to-create-a-ruby-extension-in-c-
in-under-5-minutes-100.html.

carriage return
See newline.

http://www.rubyinside.com/how-to-create-a-ruby-extension-in-c-in-under-5-minutes-100.html
http://www.rubyinside.com/how-to-create-a-ruby-extension-in-c-in-under-5-minutes-100.html
http://www.rubyinside.com/how-to-create-a-ruby-extension-in-c-in-under-5-minutes-100.html

136 | Ruby Pocket Reference

child class
A class that is derived from a parent or superclass. Com-
pare with superclass.

class
A collection of code, including methods and variables
called members. The code in a class sets the rules for
objects of the given class. See instance, module, object.

class variable
A variable that can be shared between objects of a given
class. In Ruby, prefixed with two at signs, as in @@count.
See global variable, instance variable, local variable.

closure
A nameless function or method. It is like a method
within another method that refers to or shares variables
with the enclosing or outer method. In Ruby, the closure
or block is wrapped by braces ({}) or do/end, and
depends on the associated method to work.

comment
Program text that is ignored by the Ruby interpreter. If it
is preceded by a #, and not buried in double quotes, the
text or line is ignored by the Ruby interpreter. Block
comments, enclosed by =begin/=code, can contain com-
ments that cover more than one line. These are also
called embedded documents.

composability
The degree to which you can express logic by combining
and recombining parts of a language (see “The Design of
RELAX NG,” by James Clark, at http://www.
thaiopensource.com/relaxng/design.html#section:5).

concatenation
Joining or chaining together two strings performed in
Ruby with the +, <<, and concat methods.

conditional expression
See ternary operator.

http://www.thaiopensource.com/relaxng/design.html#section:5
http://www.thaiopensource.com/relaxng/design.html#section:5
http://www.thaiopensource.com/relaxng/design.html#section:5

Glossary | 137

conditional statement
Tests whether a given statement is true or false, execut-
ing code (or not) based on the outcome. Conditional
statements are formed with keywords such as if, while,
and unless.

constant
In Ruby, a constant name is capitalized or all uppercase.
It is not fixed as in other languages, though when you
change the value of a constant, the Ruby interpreter
warns you that the constant is already initialized. Com-
pare with variable.

data structure
Data stored in a computer in a way that (usually) allows
efficient retrieval of the data. Arrays and hashes are
examples of data structures.

database
A systematic collection of information, stored on a com-
puter. Ruby on Rails is a database-enabled web applica-
tion framework.

default
A value that is assigned automatically when interacting
with code or a program.

each
In Ruby, a method named each (or similarly, like each_
line) iterates over a given block, processing the data
piece by piece—by bytes, characters, lines, elements, and
so forth, depending on the structure of the data. See
block.

embedded document
See comment.

embedded Ruby
See ERB.

138 | Ruby Pocket Reference

enumerable
In Ruby, collection classes that have traversal and search-
ing methods and sort capability. Methods include all?,
any, find, grep, include?, max, member?, min, and sort.

error
A problem or defect in code that usually causes a pro-
gram to halt. Common errors in Ruby programs are iden-
tified with classes such as ArgumentError, EOFError, and
ZeroDivisionError. Compare with exception.

ERB
An abbreviation for Embedded Ruby. A technique, simi-
lar to JavaServer Pages, for embedding Ruby code in
tags—such as <%= and %>—in text files, including HTML
and XHTML, that is executed when the files are pro-
cessed. Ruby on Rails makes extensive use of embedded
Ruby. ERB is actually a built-in implementation of
embedded Ruby, but other, faster implementations also
exist, such as Erubis (http://rubyforge.org/projects/erubis).

eRuby
See ERB.

exception
Allows you to catch and manage runtime and other
errors while programming. Managed with rescue, ensure,
and raise. Compare with error.

expression
A programming statement that includes keywords, oper-
ators, variables, and so forth, and returns a value.

expression substitution
In Ruby, a syntax that allows you to embed expressions
in strings and other contexts. The substitution is
enclosed in #{ and }, and the result of the expression
replaces the substitution in place when the code runs
through the interpreter.

http://rubyforge.org/projects/erubis

Glossary | 139

extension, file
The part of the filename (if present) that follows the
period. The conventional file extension for Ruby is .rb.

extension, C
See C extensions.

file mode
Depending on how it is set, determines the ability to
read, write, and execute a file. One way you can set a
file’s mode is with File.new at the time the file is created.

float
In Ruby, objects that represent real numbers, such as 1.0.
A floating-point number in Ruby is an instance of the
Float class.

gem
See RubyGems.

general delimited strings
A technique for creating strings using %! and !, where !
can be an arbitrary non-alphanumeric character. Alterna-
tive syntax: %Q!string! for double-quoted strings,
%q!string! for single-quoted strings, and %x!string! for
back-quoted strings.

getter method
See accessor.

global variable
A variable whose scope includes the entire program. Can
be done with a singleton. Compare with class variable,
instance variable, local variable, singleton.

graphical user interface
See GUI.

GUI
An abbreviation for graphical user interface. A user inter-
face that focuses on graphics rather than text. Mac OS X
is an example. Tcl/Tk is Ruby’s built-in GUI library.

140 | Ruby Pocket Reference

hash
An unordered collection of data where keys and values
are mapped. Compare with array.

hash code
An integer calculated from an object. Identical objects
have the same hash code. Generated by a hash method.

here document
A technique that allows you to build strings from multi-
ple lines, using <<name/name where name is an arbitrary
name. Alternative syntax: <<"string"/string for double-
quoted strings, <<'string'/string for single-quoted
strings, <<`string`/string for back-quoted strings, and
<<-string/string for indented strings.

hexadecimal
A base-16 number, represented by the digits 0–9 and the
letters A–F or a–f. Often prefixed with 0x. For example, the
base-10 number 26 is represented as 0x1A in hexadecimal.

index
An integer that numbers or identifies the elements in an
array. Array indexes always start with 0. See array.

inheritance
The ability of a class to inherit features from another
class via the < operator. See multiple inheritance, single
inheritance.

instance
An object that is created when a class is instantiated, often
with the new class method; for example, str = String.new
creates an instance of the String class.

instance variable
A variable associated with an instance of a class. In Ruby,
instance variables are prefixed with a single at sign—for
example, @name. See class variable, local variable, global
variable.

Glossary | 141

I/O
An abbreviation for input/output. Refers to the flow of
data to and from the computer, such as reading data to
and from a file. The IO class is the basis for all of Ruby’s
I/O, and the File class is a subclass of IO.

key
A key is associated with a value in a hash. You can use
keys to access hash values. See hash.

keyword
See reserved word.

lambda
In Ruby, a method that creates a Proc object that is
bound to the current context and does parameter check-
ing (checks the number) when called. See proc.

library
See standard library.

line-end character
See newline.

linefeed
See newline.

local variable
A variable with local scope, such as inside a method. You
cannot access a local variable from outside of its scope.
In Ruby, local variables begin with a lowercase letter or
an underscore (_). num and _outer are examples of local
variables. See class variable, global variable, instance
variable.

loop
A repeatable iteration of one or more statements. Ruby
uses for loops, and even has a loop method for such a
task. A loop may be stopped (with break). Control then
passes to the next statement in the program or a special
location, or it may even exit the program. Kernel has a
loop method.

142 | Ruby Pocket Reference

main
The initial, top-level execution context for Ruby pro-
grams. Test it by entering self in irb:

irb(main):001:0> self
=> main

match
When a method finds its specified regular expression, it
is said to match. See regular expression.

member
Variables and methods are considered members of a class
or object. See class, method, object, variable.

metaprogramming
Programming that creates and/or manipulates other pro-
grams. Ruby’s define_method method is an important
tool that can be used in metaprogramming. Reflection is
another capability that plays a role in metaprogram-
ming. See reflection.

method
A named collection of statements, with or without argu-
ments, and a return value. A member of a class. See class.

mixin
When a module is included in a class, it is mixed into the
class, hence the name mixin. Using mixins helps over-
come the problems that stem from multiple inheritance.
See module.

mode, file
See file mode.

module
A module is like a class, but it cannot be instantiated like
a class. A class can include a module so that when the
class is instantiated, it gets the included module’s meth-
ods and so forth. The methods from an included module
become instance methods in the class that includes the
module. This is called mixing in, and a module is
referred to as a mixin. See class, mixin.

Glossary | 143

modulo
A division operation that returns the remainder of the
operation. The percent sign (%) is used as the modulo
operator.

multiple inheritance
When a class can inherit more than one class. C++, for
example, supports multiple inheritance, which has dis-
advantages (such as name collision) that, in many opin-
ions, outweigh the advantages. See single inheritance.

name collision
Names (identifiers) collide when they cannot be resolved
unambiguously. A risk of multiple inheritance.

namespace
In Ruby, a module acts as a namespace. A namespace is a
set of names—such as method names—that have a scope
or context. A Ruby module associates a single name with
a set of method and constant names. The module name
can be used in classes in other modules. Generally, the
scope or context of such a namespace is the class or
module where the namespace (module name) is
included. A Ruby class can also be considered a
namespace.

newline
A character that ends a line, such as a linefeed (Mac OS
X and Unix/Linux) or a combination of characters such
as character return and linefeed (Windows).

nil
Empty, uninitialized, or invalid. nil is always false, but
is not the same as zero. It is a pseudovariable, and an
object of NilClass. See pseudovariable.

object
An instance of a class, a thing, an entity, or a concept
that is represented in contiguous memory in a computer.
See instance, class.

144 | Ruby Pocket Reference

object-oriented programming
Refers to a programming practice that is based on orga-
nizing data with methods that can manipulate that data.
The methods and data (members) are organized into
classes that can be instantiated as objects. See class.

octal
A base-8 number, represented by the digits 0–7. Often
prefixed with 0 (zero). For example, the decimal number
26 is represented as 32 in octal.

OOP
See object-oriented programming.

operators
Perform operations such as addition and subtraction.
Ruby operators include, like other languages, + for addi-
tion, - for subtraction, * for multiplication, / for divi-
sion, % for modulo, and so forth. Many Ruby operators
are methods.

overloading
Method or function overloading is a practice in object-
oriented programming that allows methods with the
same name to operate on different kinds of data (meth-
ods or functions with the same name but different signa-
tures). You can’t really overload methods in Ruby without
branching the logic inside the method. See overriding.

overriding
Redefining a method. The latest definition is the one recog-
nized by the Ruby interpreter. Compare with overloading.

package
See RubyGems.

parent class
See superclass.

Glossary | 145

path
The location of a file on a filesystem. Used to help locate
files for opening, executing, and so forth. Contained in
the PATH environment variable.

pattern
A sequence of ordinary and special characters that
enables a regular expression engine to locate a string. See
regular expression.

pop
A term related to a stack—a last-in, first-out (LIFO) data
structure. When you pop an element off a stack, you are
removing the last element first. You can pop elements off
(out of) an array in Ruby. Compare with push.

push
A term related to a stack—a last-in, first-out (LIFO) data
structure. When you push an element onto a stack, you
are adding an element onto the end of the array. You can
push elements onto an array in Ruby. Compare with
pop.

precision
Refers to the preciseness with which a numerical quan-
tity is expressed. The Precision module in Ruby enables
you to convert numbers (float to integer, integer to float).

private
A method that is marked private can only be accessed, or
is only visible, within its own class. Compare with pro-
tected, public.

proc
In Ruby, a procedure that is stored as an object, com-
plete with context; an object of the Proc class. See
lambda.

146 | Ruby Pocket Reference

protected
A method that is marked protected can only be accessed
or visible within its own class, or child classes. Compare
with private, public.

pseudovariable
An object that looks like a variable and acts like a con-
stant but can’t be assigned a value. nil and self are
examples of pseudovariables.

public
A method that is marked public (which is the default) is
accessible or visible in its own class and from other
classes. Compare with private, protected.

RAA
See Ruby Application Archive.

RDoc
A tool for generating documentation embedded in com-
ments in Ruby source code. For more information, see
http://rdoc.sourceforge.net.

Rails
See Ruby on Rails.

Rake
A build tool written in Ruby with capabilities like make,
a predecessor. See http://rake.rubyforge.org.

random number
With the Kernel#rand or Kernel#srand methods, Ruby
can generate an arbitrary, pseudorandom number.

range
In Ruby, a way of representing inclusive (..) and exclu-
sive (...) ranges of objects, usually numbers. For exam-
ple, 1..10 is a range of numbers from 1 to 10, inclusive;
using ... instead of .. excludes the last value from the
range.

Glossary | 147

rational number
A fraction. In Ruby, rational numbers are handled via the
Rational class.

RoR
Abbreviation for Ruby on Rails. See Ruby on Rails.

receiver
An object that receives or is the context for the action
that a method performs. In the method call str.length,
str is the receiver of the length method.

reflection
The ability of a language such as Ruby to examine and
manipulate itself. For example, the reflection method
class from Object returns an object’s class ("hello".
class # => String).

regular expression
A concise sequence or pattern of special characters used
to search for strings. See match.

reserved word
Another name for keyword. Reserved words such as
begin, end, if, else, and so forth are set aside and have
special meaning to the Ruby interpreter.

Ruby Application Archive
A web-based archive for Ruby applications. Not the same
as RubyForge.

RubyForge
A web-based archive for Ruby applications. Not the same
as Ruby Application Archive.

RubyGems
The premier packing system for Ruby applications. A
RubyGems package is called a gem. It comes with Ruby
(though you must choose to install it explicitly with cer-
tain installation procedures).

148 | Ruby Pocket Reference

Ruby on Rails
A productive, popular web application framework writ-
ten in Ruby. Matz, the inventor of Ruby, has called it
Ruby’s killer app.

self
A pseudovariable representing the current object or
receiver invoked by a method. See pseudovariable,
receiver.

setter method
See accessor.

single inheritance
When a class can inherit only one class, as opposed to
multiple inheritance, which allows a class to inherit from
multiple classes. See multiple inheritance.

singleton
A singleton class is tied to a particular object, can be
instantiated only once, and is not distinguished by a pre-
fixed name. A singleton method is tied to the singleton
class. May be used like or in place of a class variable.

standard library
A library or collection of Ruby code containing packages
that perform specialized tasks. Some example packages
are REXML for XML processing, and Iconv for character
set conversion. Online documentation is available at
http://ruby-doc.org/stdlib.

statement
An instruction for a program to carry out.

string
A sequence of objects, usually symbols of human-
readable characters.

substitution
See expression substitution.

http://ruby-doc.org/stdlib

Glossary | 149

superclass
The parent class. A child class is derived from the parent
or superclass. Compare with child class.

Tcl/Tk
The Tcl scripting language with the Tk user interface
toolkit, Ruby’s built-in GUI library or system.

ternary operator
An operator that takes three arguments separated by ?
and :, a concise form of if/then/else. For example,
label = length == 1 ? " argument" : " arguments".

thread
Ruby supports threading. Threading allows programs to
execute multiple tasks simultaneously (or almost simulta-
neously) by slicing the time on the clock that runs the
computer processor. The threads in Ruby are operating-
system independent, so threading is available on all plat-
forms that run Ruby, even if the OS doesn’t support them.

Unicode
An international character coding system that allows
approximately 65,000 characters. See http://www.
unicode.org.

UTF-8
A character set, based on one to four bytes, that can
describe most characters in human writing systems. Set
with $KCODE = 'n'. Compare with ASCII.

variable
An identifier or name that may be assigned to an object
which in turn may hold a quantity or a value. See class
variable, global variable, instance variable, local variable.

XML
An abbreviation for Extensible Markup Language. A lan-
guage specified by the W3C that enables you to create
vocabularies using tags and other markup. Ruby uses
REXML, Builder, and libxml to process XML.

http://www.unicode.org
http://www.unicode.org

151

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

Symbols
& (ampersand)

&& (logical and) operator, 10
combining multiple tests of

if statement, 27
&&= (logical and assignment)

operator, 10
&= (bitwise and assignment)

operator, 10
Array class method, 96
bitwise and operator, 9
preceding method argument

names, 26
< > (angle brackets)

< (less than) operator, 9
class inheritance, 42

<< (left shift) operator, 9
<< method

Array class, 49, 97
String class, 82
writing strings to stream

buffer, 54
<<= (left-shift assignment)

operator, 10
<= (less than or equal to)

operator, 9
<=> (spaceship) operator, 9
<=> method

Array class, 97
String class, 82

> (greater than) operator, 9
>= (greater than or equal to)

operator, 9
>> (right shift) operator, 9
>>= (right-shift assignment)

operator, 10
* (asterisk)

* method
Array class, 96
String class, 82

** (exponentiation)
operator, 9

**= (exponentiation
assignment) operator, 10

*= (multiplication assignment)
operator, 10

*? repetition operator in
regular expressions, 80

multiplication operator, 9
preceding lines in RDoc

documentation, 121
preceding variable

arguments, 22
repetition operator in regular

expressions, 78, 80
@ (at sign)

@@, prefixing class variable
names, 39

prefixing instance variable
names, 36

152 | Index

\ (backslash)
escape characters, 75
literal characters in regular

expressions, 78
shortcut syntax in regular

expressions, 77, 79
`` (backticks), Kernel

module, 62
^ (caret)

^= (bitwise xor assignment)
operator, 10

beginning-of-line matching in
regular expressions, 77

bitwise exclusive or
operator, 9

negating character classes in
regular expressions, 80

: (colon)
:: (double colons), following

labels in RDoc, 121
:: (scope resolution)

operator, 9
separator, 27
in symbol names, 14
using after elsif statement

tests, 29
{ } (curly braces)

creating a hash, 108
enclosing blocks, 23
quantifiers in regular

expressions, 78, 80
$ (dollar sign)

$- variable, MatchData
class, 79

$! predefined variable, 14
$" predefined variable, 16
$$ predefined variable, 16
$& predefined variable, 14
$' predefined variable, 15
$* predefined variable, 16
$+ predefined variable, 15
$. predefined variable, 15
$/ predefined variable, 15

$: predefined variable, 16
$; predefined variable, 15
$< predefined variable, 16
$= predefined variable, 15
$> predefined variable, 16
$? predefined variable, 16
$@ predefined variable, 14
$\ predefined variable, 15
$_ predefined variable, 16
$` predefined variable, 15
$~ predefined variable, 15
$-0 predefined variable, 17
$0 predefined variable, 16
$1, $2... predefined

variable, 15
$-a predefined variable, 17
$-d predefined variable, 17
$DEBUG predefined

variable, 16
$defout predefined

variable, 16
$-F predefined variable, 17
$F predefined variable, 16
$FILENAME predefined

variable, 16
$-I predefined variable, 17
$-i predefined variable, 17
$KCODE predefined

variable, 76
$-l predefined variable, 17
$LOAD_PATH predefined

variable, 16, 42
$-p predefined variable, 17
$SAFE predefined variable, 16
$stderr predefined

variable, 17, 53
$stdin predefined variable, 17,

53
$stdout predefined

variable, 17, 53
$VERBOSE predefined

variable, 17

Index | 153

end-of-line matching in regular
expressions, 77

output field separator between
arguments, 15

prefixing global variable
names, 13

= (equals sign)
== (equality) operator, 9
== method

Array class, 97
Hash class, 108
Object class, 57
String class, 82

=== (equality) operator, 9
=== method

determining range
members, 19

Object class, 57
=> in a rescue clause,

accessing exception
messages, 14

=>, Hash class method, 107
=~ (match) operator, 9
=~ method

Object class, 57
String class, 78, 82

assignment operator, 10
method names ending in, 21
in RDoc documentation, 121
setter method name ending

with, 37
! (exclamation mark)

!= (not equal to) operator, 9
!~ (not match) operator, 9

String class, 78
logical negation operator, 9

negating if statement, 27
method names ending in, 21

(hash character)
#! shebang line

stripping off text before, 4
using on Unix/Linux, 5
Windows systems and, 5

in Ruby comments, 10

- (minus sign)
-= (subtraction assignment)

operator, 10
Array class method, difference

between arrays, 97
negative unary operator, 9
subtraction operator, 9

() (parentheses)
in method definitions and

calls, 20
grouping in regular

expressions, 77, 80
% (percent sign)

% method, formatting
strings, 82

%= (modulus assignment)
operator, 10

%1 (substitution variable), 6
modulo (remainder)

operator, 9
. (period)

.. inclusive and ... exclusive
range operators, 10, 19

matching any character in
regular expressions, 79

+ (plus sign)
+= (add assignment)

operator, 10
+? repetition operator in

regular expressions, 80
addition operator, 9
Array class method, 96
concatenating strings, 82
positive unary operator, 9
in RDoc documentation, 121
repetition operator in regular

expressions, 78, 80
? (question mark)

?: (ternary) operator, 10, 34
repetition operator in regular

expressions, 78
/ (slash)

/= (division assignment)
operator, 10

division operator, 9

154 | Index

[] (square brackets)
[] []= (reference, set)

operator, 9
[]= method

Array class, 98
Hash class, 109

Array class method, 95, 96
index element reference, 97

Hash class method, 107, 108
regular expression character

classes, 76, 81
String class method, 82

~ (tilde), complement
operator, 9

_ (underscore)
enclosing text in RDoc

documentation, 121
in local variable names, 12

| (vertical bar)
|= (bitwise or assignment)

operator, 10
|| (logical or) operator, 10

combining multiple tests of
if statement, 27

||= (logical or assignment)
operator, 10

alternation in regular
expression pattern
matching, 77, 80

Array class method, 97
bitwise or operator, 9

A
abbrev method (Array), 98
abort method (Kernel), 62
accessor methods

creating for instance
variables, 38

defined, 134
getting value of instance

variables, 36

setter methods, 21
ending with equals sign, 37
setting instance variable

value, 37
simplified creation with

metaprogramming, 38
addition operator (+), 9
Ajax, 134
alias (reserved word), 7

aliasing methods, 23
aliasing, 23

defined, 134
alternation, 77, 80
American Standard Code for

Information Interchange
(ASCII), 135

default character set for
Ruby, 75

ampersand (see &, under
Symbols)

anchors (in regular
expressions), 77

and (logical) operator, 10
combining multiple tests of if

statement, 27
and (reserved word), 7
angle brackets (see < >, under

Symbols)
Apache ant, 131
ARGF, 49

defined, 134
global constant, 18
name of file currently being

read, 16
synonym for $> (predefined

variable), 16
arguments, method

default, 22
defined, 135
repeat method (example), 20
variable arguments, 22

Index | 155

ARGV
defined, 135
global constant, 18
outputting file contents, 48

arithmetic operators, 9
Array class

adding a method, 35
each method, call to block

on, 24
methods, 94–106

creating arrays, 94
pack method,

directives, 102
Array method (Kernel), 62, 95
arrays

ARGV, 49
creating array of digits using

ranges, 19
defined, 135
representing an object, 61
Ruby vs. static, compiled

languages, 94
using as hash key or

value, 108
ASCII

default character set for
Ruby, 75

defined, 135
assignment (parallel), of

variables, 13
assignment operators, 10
assoc and ftype commands on

Windows (DOS), 5
assoc method (Array), 98
asterisk (see *, under Symbols)
Asynchronous JavaScript and

XML (Ajax), 134
at method (Array), 98
at sign (see @, under Symbols)
at_exit method (Kernel), 62
autoexec.bat file (Windows),

editing to preserve file
type associations, 7

autoload method (Kernel), 62
autosplit mode, 3

B
backslash (see \, under Symbols)
backticks, 62
bar character (see |, under

Symbols)
BEGIN (reserved word), 7, 34
begin (reserved word), 7

using in until statement, 31
using in while statement, 30

Bignum class, 11
binding method (Kernel), 62
bindings, TOPLEVEL_

BINDING constant, 18
bitwise operators, 9
block comments, 10
block_given? method

(Kernel), 25, 63
blocks, 23

associated with a method,
executing with yield
statement, 24

defined, 135
passed as method argument,

converting to Proc
object, 26

using with Array.new
method, 95

braces (see { }, under Symbols
brackets (see [], under Symbols)
break (reserved word), 7

breaking out of while loop, 30
build tool (Rake)

C
C programming language, 1

extensions, 135
callcc method (Kernel), 63
caller method (Kernel), 63

156 | Index

capital letters in constant
variable names, 13

capitalize method (String), 83
capitalize! method (String), 83
caret (see ^, under Symbols)
case (reserved word), 7
case statement, 32
casecmp method (String), 83
catch method, 54

Kernel module, 56, 63
center method (String), 83
character classes in regular

expressions, 81
character encoding, 75
character returns, 143
checksums, generating n-bit

checksum for a string, 89
child class, 149

defined, 136
inheritance from parent

class, 42
.chm files (Windows help files),

RDoc and, 125
chmod method, 51

masks for, 51
chomp method

Kernel module, 63
String class, 83

chomp! method
Kernel module, 63
String class, 83

chop method
Kernel module, 63
String class, 83

chop! method
Kernel module, 63
String class, 83

chown method, 52
Clark, James, 136
class (reserved word), 7, 35
class method (Object), 57

class variables, 13, 39
defined, 136
initializing, 39

classes, 34–46
accessor methods, 38
adding method to existing

class, 35
class methods, 40
class variables (see class

variables)
defined, 136
defining, 35
files, 47
generating diagrams of, 122
inheritance, 34, 42, 140

load path, 42
initialize method, 35
instance variables, 36
modules and mixins, 44
singletons, 40
visibility or access of methods

and constants, 42–44
clear method

Array class, 98
Hash class, 109

clone method (Object), 57
closures, 23

defined, 136
cmd command, 62
collect method (Array), 98
collect! method (Array), 99
command-line options, Ruby

interpreter, 3
comments, 10

defined, 136
RDoc, paragraphs in, 121
in regular expressions, 80

compact method (Array), 99
compact! method (Array), 99
comparison operators, 9
compiling files (see Rake)
complement operator (~), 9

Index | 157

composability, 136
concat method

Array class, 99
String class, 83

concatenation
arrays, 96
defined, 136
strings

using + operator, 82
using << operator, 82

conditional expression, 34
conditional statements, 27–34

case, 32
defined, 137
executing code before or after

a program, 34
for loop, 33
if, 27–29
ternary operator, 34
unless, 29
until, 31
while, 30

constants, 13
defined, 137
global, 18
module names, 45

copyright, printing, 4
count method (String), 84
crypt method (String), 84
curly braces (see { }, under

Symbols)
CVS, web frontend to, 125

D
DATA global constant, 18
data structure, 137
database, 137
debugger, 117–119
debugging

$DEBUG predefined
variable, 16

setting flags, 3

def (reserved word), 7
creating a method, 19

default = method (Hash), 109
default method (Hash), 109
default value, defined, 137
default_proc method

(Hash), 109
defined? operator, 7, 10
delete method

Array class, 99
File class, 49
Hash class, 109
String class, 21, 84

delete! method (String), 21, 84
delete_at method (Array), 99
delete_if method

Array class, 99
Hash class, 109

destructive methods, 21
Dir class, 47
directory? test, 50
display method (Object), 58
division operator (/), 9
do (reserved word), 7

using with for loops, 33
do/end, replacing with

braces, 24
documentation (RDoc)

options, 121–125
documentation, Ruby (see RDoc)
dollar sign (see $, under

Symbols)
dot utility, 122
double-precision floating-point

representation, 11
downcase method (String), 84
downcase! method (String), 84
downloads, Ruby, 3
duck typing, 11
dump method (String), 84
dup method (Object), 58
dynamic typing, 11

158 | Index

E
each method

Array class, 99
call to block on, 24

defined, 137
Hash class, 109
IO class, 48
String class, 84

each_byte method (String), 84
each_index method (Array), 99
each_key method (Hash), 109
each_line method (String), 84
each_pair method (Hash), 109
each_value method (Hash), 110
elements in arrays, 94
else (reserved word), 7
else statement, 28
elsif (reserved word), 7
elsif statement, 28
Embedded Ruby (ERB), 138
empty? method

Array class, 99
Hash class, 110
String class, 85

END (reserved word), 7, 34
end (reserved word), 7

class definitions,
concluding, 35

closing if statement, 27
creating a method, 19
using in until statement, 31
using in while statement, 30

ensure (reserved word), 8
ensure clause, 54

handling errors/
exceptions, 55

enum_for method (Object), 61
enumerable, 138
Enumerable module, grep

method, 76
ENV global constant, 18

environment variables
ENV global constant, 18
PATH and RUBYPATH, 42
setting on Windows, 7

eql? method
Array class, 99
Object class, 57, 58
String class, 85

equal? method (Object), 57, 58
equality comparisons, 9

(see also =, under Symbols)
ERB (Embedded Ruby), 138
errors, 138
escape characters, 75
eval method (Kernel), 55, 63
exception handling, 54–56

catch and throw methods, 56
methods compared for C++,

Java, and Ruby, 54
raise method, 55
rescue and ensure clauses, 55

exceptions, 138
$! variables, 14

exclamation mark (see !, under
Symbols)

exclusive or operator (^), 9
exclusive range operator(...), 10,

19
exec method (Kernel), 63
executable for Ruby interpreter,

correct path to, 6
executable? test, 50
exist? test, 50
exit method (Kernel), 55, 64
exit status of last executed

process, 16
exit! method (Kernel), 64
exponentiation (**) operator, 9
expression substitution, 73, 138
expressions

comment on same line, 10
defined, 138
evaluating in irb

(example), 114
(see also regular expressions)

Index | 159

extend method (Object), 58
Extensible Markup Language

(see XML)
extension, file, 139

F
fail method (Kernel), 64
false (pseudovariable), 17, 27
false (reserved word), 8
FALSE global constant, 18
FalseClass, 27
fetch method

Array class, 100
Hash class, 110

_ _FILE_ _ (pseudovariable), 17
_ _FILE_ _ (reserved word), 9
File class, 47

ctime, mtime, and atime
methods, 51

modes, 47
new method, 47
rename and delete

methods, 49
size method, 50
subclass of IO, 52

file extension, 139
file modes

defined, 139
IO class, 53
and ownership, 51
summary listing, 47

file type association, creating on
Windows (DOS), 5

file.closed? test, 48
file? test, 50
files, 47

creating new file, 47
file modes and ownership, 51
inquiring about, 50

finding when file was
created, modified, or last
accessed, 51

opening existing file, 48

outputting contents with
ARGV, 48

tests on single file, 70–71
fill method (Array), 100
first method (Array), 100
Fixnum class, 11
flatten method (Array), 100
flatten! method (Array), 100
Float class, 11, 139
Float method (Kernel), 62
floating-point numbers, 139

double-precision
representation, 11

leading characters in string
interpreted as, 90

flushing stream buffer, 54
for (reserved word), 8
for loop, 33
fork method (Kernel), 64
format method (Kernel), 64

flags and field types, 68–69
Fowler, Martin, 131
fractions, 147
freeze method (Object), 58
frozen? method

Array class, 100
Object class, 58

ftype command on Windows
(DOS), 5

ftype method (File), 50
functions, overloading, 144

G
general delimited strings, 73,

139
gets method (Kernel), 64
getter methods (see accessor

methods)
global constants, 18

aliasing, 134
global variables, 13

defined, 139
tracing of assignments to, 71

160 | Index

global_variables method
(Kernel), 64

glossary, 134–149
graphical user interface

(GUI), 139
greater than operator (>), 9
greater than or equal to operator

(>=), 9
grep method, 76
grouping (in regular

expressions), 77, 80
gsub method (Kernel), 64
gsub method (String), 85
gsub! method (Kernel), 64
gsub! method (String), 85
GUI (graphical user

interface), 139

H
has_key? method (Hash), 110
has_value? method (Hash), 110
hash character (see #, under

Symbols)
Hash class

methods, 106–112
creating hashes, 107

(see also hashes)
hash code, 140
hash method

Array class, 101
Object class, 58
String class, 85

hashes
converting to strings, 112
creating, 107
defined, 140
(see also Hash class)

Hello class (example), 35
here documents, 73, 140
hex method (String), 85
hexadecimals, 140
HTML output, RDoc, 125

URL for, 120

I
i tags (RDoc), 121
I/O (input/output), 141
_ _id_ _ method (Object), 57
id method (Object), 58
if (reserved word), 8
if statement, 27–29

else statement, adding, 28
elsif statement, 28
multiple tests, combining, 27
negated form, 27

unless statement, 29
statement modifier, 28

in (reserved word), 8
include method (Module), 44
include? method

Array class, 101
Hash class, 110
String class, 85

include_private method
(Object), 60

inclusive range operator (..), 10,
19

using with for loop, 33
index method

Array class, 101
Hash class, 110
String class, 85

indexes
array, 94

Array class methods for, 97
defined, 140
hash, 106

indexes method
Array class, 101
Hash class, 110

indices method (deprecated)
Array class, 101
Hash class, 110

inheritance, 34, 42
defined, 140
load path, 42
modules, 45
multiple, 143

Index | 161

initialize method, 35, 37
in-place changes to an object, 21
in-place-edit mode, 17
input record separator, 15
input/output (see I/O; IO class)
insert method

Array class, 101
String class, 86

inspect method
Array class, 101
Hash class, 110
Object class, 58
String class, 86

installation instructions (Ruby),
URL for, 3

instance, 140
instance variables, 12, 35, 36

accessing, 36
defined, 140
getter/setter methods for,

creating, 38
retrieving value with accessor

methods, 36
setting (example), 21
setting value, 37

instance_eval method
(object), 58

instance_of? method
(Object), 59

instance_variable_defined?
method (Object), 59

instance_variable_get method
(Object), 59

instance_variable_set method
(Object), 59

instance_variables method
(Object), 59

Integer class, times method, 34
Integer method (Kernel), 62
integers

classes for, 11
interpreting leading characters

in string as, 90
Interactive Ruby (see irb)

intern method (String), 14, 86,
90

interpreter, Ruby
executable, correct path to, 6
invoking with debug option

(ruby -rdebug), 117
running, 3
verbose output, 17

invert method (Hash), 110
IO class, 52–53

<< method, 54
close method, 54
File subclass, 52
fileno method, 54
flush method, 54
modes, 53
new method, 53
open, each, and close

methods, 48
irb (Interactive Ruby), 114–117

evaluating expressions
(example), 114

invoking a single program
with, 115

options, 116
iterator? method (Kernel), 63, 64

J
join method (Array), 101

default separator, 15

K
Kernel module, 62–72

Array method, 95
block_given? method, 25
catch and throw methods, 56
eval method, 55
exit method, 55
gets method, 49
lambda and proc methods, 26
raise method, 55
sprintf method, flags and field

types, 68–69

162 | Index

key? method (Hash), 110
keys, 141
keys method (Hash), 111
keywords, 147

summary listing, 7
kind_of? method (Object), 59

L
lambda method

defined, 141
Kernel module, 26

last method (Array), 101
left angle bracket (see < >, under

Symbols)
left shift (<<) operator, 9
length method

Array class, 101
Hash class, 111
String class, 86, 88

less than operator (<), 9
less than or equal to operator

(<=), 9
library, requiring before

executing script, 4
_ _LINE_ _ (pseudovariable), 17
_ _LINE_ _ (reserved word), 9
line-ending processing,

enabling, 4
linefeeds, 143
-lis option set to Read-only, 17
ljust method (String), 86
load method (Kernel), 65
load path, 42
local variables, 12

in blocks, 24
defined, 141

local_variables method
(Kernel), 65

logical operators, 9
loop method (Kernel), 65
loops

defined, 141
for loop, 33

variable defined within, 12
while loop, 30
(see also conditional

statements)
lstrip method (String), 86
lstrip! method (String), 86

M
main, 142
make utility (see Rake)
map method (Array), 101
map! method (Array), 102
match method (String), 86
match operator (=~), 9
MatchData class, 79
matching (see regular

expressions)
math classes, hierarchy, 11
members, 142
merge method (Hash), 111
merge! method (Hash), 111
message URL http

//rake.rubyforge.org, 146
//rdoc.sourceforge.net, 146

metaprogramming
defined, 142
simplifying creation of getters

and setters, 38
method method (Object), 59
method_missing method

(Kernel), 65
methods, 19–26

aliasing, 23, 134
blocks, 23

yield statement, 24
class, 40

defining for singletons, 40
default arguments, 22
defined, 142
exception handling, 54
module, 46
naming conventions, 21
operators implemented as, 9

Index | 163

overloading, 144
overriding, 144
parentheses in, 20
procs, 25
public, private, or

protected, 42–44
return values, 20
variable arguments, 22

methods method (Object), 59
minus sign (see -, under

Symbols)
mixing in, 44
mixins, 44

defined, 142
mkdir method (Dir), 47
mode, file (see file modes)
module (reserved word), 8
Module class, 44

getter (accessor) methods,
creating, 38

modules
associating module name with

method name, 40
defined, 142
generating diagrams of, 122
loaded by require method, 16
methods, 46

modulo, 143
modulo operator (%), 9
multiline comments, 10
multiple inheritance, 143
multiplication operator (*), 9
mutable constants, 13

N
name collision, 143
nameless functions, 23
namespaces

defined, 143
modules and classes as, 45

negative (unary) operator (-), 9
new method

Array class, 94
File class, 47

Hash class, 107
IO class, 53
Proc class, 25
String class, 82

newlines, 143
next (reserved word), 8
next method (String), 89
nil (pseudovariable), 17, 143
nil (reserved word), 8
NIL global constant, 18
nitems method (Array), 102
non-printable characters, 75
not (logical negation)

operator, 10
not (reserved word), 8
not equal to operator (!=), 9
not match operator (!~), 9
numbers, 11

arrays of, 95
precision, 145

Numeric class, 11
numeric file descriptors

standard input, 53
standard streams, 53
testing for I/O stream, 54

O
Object class, 35, 56–61

instance methods, 57
(see also objects)

object_id method (Object), 57
object-oriented programming

(OOP), 144
objects

in arrays, 94
from different classes, 96

classes, 35
defined, 143
in-place changes to, 21
procs (procedures) stored

as, 25

164 | Index

objects (continued)
referenced by constants,

changes in object
contents, 13

symbol, 14
using as hash key or

value, 108
(see also Object class)

oct method (String), 86
octals, 144
OOP (object-oriented

programming), 144
Oops string, 55
open method

IO class, 48
Kernel module, 65

operators
aliasing, 134
defined, 144
summary listing, 9

or (logical) operator, 10
combining multiple tests of if

statement, 27
or (reserved word), 8
output field separator between

arguments, 15
output formatters, RDoc, 123
output record separator for print

and IO#write, 15
overloading, 144
overriding, 144
ownership of files, 51

changing, 52

P
p method (Kernel), 65
pack method (Array), 102

directives, 102
package utility (see RubyGems)
parallel assignment,

variables, 13
parent class, 149

parentheses (see (), under
Symbols)

PATH environment variable, 42
PATHEXT environment

variable, 6
paths

defined, 145
system vs. load path, 42

pattern matching (see regular
expressions)

patterns, 145
percent sign (see %, under

Symbols)
period (see . under Symbols)
permissions

changing on files, 51
setting on a new directory, 47

PLATFORM global constant, 18
-pls option set to Read-only, 17
plus sign (see +, under Symbols)
pop method, 145

Array class, 104
positive (unary) operator (+), 9
precision, 145
predefined variables (see $,

under Symbols)
pretty_inspect method

(Kernel), 65
print method (Kernel), 65
printf method (Kernel), 65
private methods, 43, 145
private_methods method

(Object), 60
proc method (Kernel), 26, 65
process number of program

being executed, 16
procs (procedures), 25, 145
properties (class members), 34
protected methods, 43, 146
protected_methods method

(Object), 60
pseudorandom numbers, 146

generator, seeding, 69

Index | 165

pseudovariables, 17
defined, 146
true and false, 27

public methods, 43
defined, 146

public_methods method
(Object), 60

push method, 145
Array class, 104

putc method (Kernel), 65
puts method (Kernel), 66

Q
question mark (see ?, under

Symbols)

R
Rails (see Ruby on Rails)
raise method, 54

Kernel module, 55, 66
Rake, 131–133

defined, 146
documentation, URL for, 131
help, running, 131
installing or updating, 130
options, 132
Rakefile, 131

rand method (Kernel), 66
random numbers, 146
range exclusive operator

(...), 10, 19
range inclusive operator (..), 10,

19
using with for loop, 33

ranges, 19
defined, 146
using with for loop to print list

of numbers, 33
rassoc method (Array), 104
rational numbers, 147

RDoc (Ruby documentation),
119–125, 146

formatted documentation,
obtaining at shell
prompt, 120

formatting basics, 121
HTML documentation for

Ruby, URL for, 120
options, 121–125

formatting output, 125
readable? test, 50
readline method (Kernel), 66
readlines method (Kernel), 66
read-only (file mode), 53
read-write (file mode), 53
receiver, 147
record separators, 3
redo (reserved word), 8
reference, set ([] []=)

operator, 9
reflection, 147
Regexp class, 79
regular expressions, 76–81

defined, 147
syntax available in

Ruby, 79–81
rehash method (Hash), 111
reject method

Array class, 104
Hash class, 111

reject! method
Array class, 104
Hash class, 111

RELAX NG, 136
RELEASE_DATE global

constant, 18
remove_instance_variable

method (Object), 60
rename method (File), 49
repeat method, 20

default arguments
(example), 22

166 | Index

repetition operators in regular
expressions, 78, 80

replace method
Array class, 104
Hash class, 111
String class, 86

require method
Kernel class, 66
module names loaded by, 16

rescue (reserved word), 8
rescue clause, 54

handling errors/
exceptions, 55

reserved words
defined, 147
summary listing, 7

resources for Ruby, URLs, 133
respond_to? method

(Object), 60
retry (reserved word), 8
return (reserved word), 8
return statement, 20
return values (for methods), 20
reverse method

Array class, 104
String class, 87

reverse! method
Array class, 104
String class, 87

reverse_each method
(Array), 104

right angle bracket (see < >,
under Symbols)

right shift (>>) operator, 9
rindex method

Array class, 104
String class, 87

rjust method (String), 87
rmdir method (Dir), 47
ROR (see Ruby on Rails)
rstrip method (String), 87
rstrip! method (String), 87
Ruby Application Archive, 147

Ruby file type, checking for
existence on Windows, 5

Ruby on Rails, 1, 148
Rakefile for project, 131

Ruby, file archives and
installation
instructions, 3

RUBY_PLATFORM global
constant, 18

RUBY_RELEASE_DATE global
constant, 18

RUBY_VERSION global
constant, 18

RubyForge, 147
RubyGems (package

utility), 125–130, 147
commands

help on specific
commands, 127

listing, 127
documentation, URLs

for, 126
examples, showing, 128
help on, 126
installation, 126
installing or updating

Rake, 130
listing packages available

remotely and locally, 129
RUBYPATH environment

variable, 42

S
scan method

Kernel module, 66
String class, 87

scope resolution (::) operator, 9
script, looking for using PATH

environment variable, 4
security level, 16

$SAFE predefined variable, 16

Index | 167

select method
Array class, 105
Hash class, 111

self (pseudovariable), 17, 148
singleton classes, 40

self (reserved word), 8
_ _send_ _ method (Object), 60
send method (Object), 60
set operator, 9
set_trace_func method

(Kernel), 67
setter methods (see accessor

methods)
shebang line (#!)

stripping off text before, 4
using on Unix/Linux, 5
Windows systems and, 5

shift left (<<) operator, 9
shift method

Array class, 105
Hash class, 111

shift right (>>) operator, 9
shortcuts (in regular

expressions), 77
signals, handling of, 72
singleton_method_added

method (Object), 60
singleton_method_removed

method (Object), 60
singleton_method_undefined

method (Object), 61
singleton_methods method

(Object), 61
singletons, 40

Singleton class, 41
size method

Array class, 94, 105
File class, 50
Hash class, 112

size? method (File), 50
sleep method (Kernel), 67
slice method

Array class, 105
String class, 88

slice! method
Array class, 105
String class, 88

sort method
Array class, 105
Hash class, 112

sort! method (Array), 105
special characters (excluded from

local variable names), 12
splat (*), prefixing variable

arguments, 22
split method

-a option, output from, 16
Kernel module, 67
String class, 88

default separator, 15
sprintf method (Kernel), 67

flags and field types, 68–69
square brackets (see [], under

Symbols)
squeeze method (String), 88
squeeze! method (String), 89
srand method (Kernel), 69
standard error

$stderr predefined
variable, 17

STDERR global constant, 18
standard input

$stdin predefined variable, 17
numeric file descriptor, 53
STDIN global constant, 18

standard output
$stdout predefined

variable, 17
STDOUT global constant, 18

standard streams, 53
statement modifier

if, 28
unless, 30
until, 32
while, 31

168 | Index

statements
comment on same line, 10
conditional, 27–34

case statement, 32
executing code before or

after a program, 34
for loop, 33
if statement, 27–29
ternary operator, 34
unless statement, 29
until statement, 31
while statement, 30

yield, 24
static methods, 40
store method (Hash), 112
strftime method, time

formatting, 113
String class, 72

=~ method and the
!~ operator, 78

delete and delete!
methods, 21

methods, 81–91
unpack method,

directives, 92–93
String method (Kernel), 62
strings, 72–93

array of, 95
converting hashes to, 112
escape characters, 75
expression substitution, 73
general delimited strings, 73,

139
here documents, 73, 140
matching with regular

expressions, 76–81
string representing an

object, 61
using for hash keys, 108

strip method (String), 89
strip! method (String), 89
sub method

Kernel module, 69
String class, 89

sub! method
Kernel module, 69
String class, 89

subscript, arrays, 94
substitution (see expression

substitution)
substitution variables, 6
subtraction operator (-), 9
succ method (String), 89
sum method (String), 89
super (reserved word), 8
superclass, 149
swapcase method (String), 90
swapcase! method (String), 90
switch parsing for switches,

enabling, 4
switches, Ruby interpreter, 3
symbols, 14
syntax, checking, 3
syscall method (Kernel), 70
system method (Kernel), 70
system path, 42

T
taint method (Object), 61
tainted? method (Object), 61
tainting checks, 4
Tcl/Tk, 149
ternary operator (?:), 10, 34

defined, 149
test method (Kernel), 70–71
text, stripping off before #!

shebang line, 4
then (reserved word), 8
then separator, 27
threads, 149
throw method, 54

Kernel module, 56, 71
Time class, strftime method, 113
times method (Integer), 34
to_a method

Array class, 105
Hash class, 112
Object class, 61

Index | 169

to_ary method (Array), 105
to_enum method (Object), 61
to_f method (String), 90
to_hash method (Hash), 112
to_i method (String), 90
to_s method

Array class, 106
Hash class, 112
Object, 61
String class, 90

to_sym method (String), 14
TOPLEVEL_BINDING global

constant, 18
tr method (String), 90
tr! method (String), 90
tr_s method (String), 91
tr_s! method (String), 91
trace_var method (Kernel), 71
translations, string, 90
transpose method (Array), 106
trap method, 72
true (pseudovariable), 17, 27
true (reserved word), 8
TRUE global constant, 18
TrueClass, 27
tt tags (RDoc), 121
type method (Object),

deprecated, 61
types

file, 50
variables, 11

U
unary operators, 9
undef (reserved word), 8

undefining a method, 20
underscore (see _, under

Symbols)
Unicode, 149
uniq method (Array), 106
uniq! method (Array), 106
Unix/Linux systems, using a

shebang line, 5

unless (reserved word), 8
unless statement, 29
unpack method (String), 91

directives, 92–93
unshift method (Array), 106
untaint method (Object), 61
until (reserved word), 9
until statement, 31

statement modifier, 32
untrace_var method (Kernel), 72
upcase method (String), 91
upcase! method (String), 91
update method (Hash), 112
upto method (String), 91
URI method (Kernel), 62
URLs

linking to a web frontend to
CVS, 125

for Ruby resources, 133
UTF-8 character set, 149

V
value? method (Hash), 112
values method (Hash), 112
values_at method

Array class, 106
Hash class, 112

variables, 11
in blocks, 24
class, 13, 39

defined, 136
constants, 13
defined, 149
global, 13
instance, 12, 35, 36

defined, 140
local, 12

defined, 141
methods that set, 21
parallel assignment, 13
predefined, summary

listing, 14–17

170 | Index

variables (continued)
pseudovariables, 17

defined, 146
true and false, 27

substitution, 6
verbose flag for Ruby

interpreter, 17
VERSION global constant, 18
version number, 4
vertical bar (see |, under

Symbols)

W
warn method (Kernel), 72
warnings, 4
Weirich, Jim, 125, 131
when (reserved word), 9

using with case statement, 32
while (reserved word), 9
while statement, 30

breaking out of, 30
statement modifier, 31
until as negated form, 31

Windows systems
associating file types, 5
help files (.chm files), 125

writable? test, 50
write (file mode), 53

X
XHTML output, RDoc, 121
XML

Ajax, 134
defined, 149
Rdoc output, 125

Y
yield (reserved word), 9
yield statement, 24

control returning to next
statement immediately
after execution, 25

in method body, 26

Z
zero? test, 50
zip method (Array), 106

	Ruby Pocket Reference
	Contents
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments
	Running Ruby
	Running the Ruby Interpreter
	Using a Shebang Line on Unix/Linux
	Associating File Types on Windows

	Reserved Words
	Operators
	Comments
	Numbers
	Variables
	Local Variables
	Instance Variables
	Class Variables
	Global Variables
	Constants
	Parallel Assignment of Variables

	Symbols
	Predefined Variables
	Pseudovariables
	Global Constants
	Ranges
	Methods
	Parentheses
	Return Values
	Method Name Conventions
	Default Arguments
	Variable Arguments
	Aliasing Methods
	Blocks
	The yield statement

	Procs

	Conditional Statements
	The if Statement
	Negation
	Multiple tests
	Statement modifier for if
	The else statement
	The elsif statement

	The unless Statement
	Statement modifier for unless

	The while Statement
	Statement modifier for while

	The until Statement
	Statement modifier for until

	The case Statement
	The for Loop
	The Ternary Operator
	Executing Code Before or After a Program

	Classes
	Instance Variables
	Accessors
	Class Variables
	Class Methods
	Singletons
	Inheritance
	Load path

	Public, Private, or Protected
	Modules and Mixins

	Files
	Creating a New File
	Opening an Existing File
	ARGV and ARGF
	Renaming and Deleting Files
	File Inquiries
	File Modes and Ownership

	The IO Class
	Exception Handling
	The rescue and ensure Clauses
	The raise Method
	The catch and throw Methods

	Object Class
	Object Instance Methods

	Kernel Module
	Sprintf flags and field types

	String Class
	Expression Substitution
	General Delimited Strings
	Here Documents
	Escape Characters
	Character Encoding
	Regular Expressions
	String Methods
	String class methods
	String instance methods
	String unpack directives

	Array Class
	Creating Arrays
	Array Class Methods
	Array Instance Methods
	Array pack directives

	Hash Class
	Creating Hashes
	Hash Class Methods
	Hash Instance Methods

	Time Formatting Directives
	Interactive Ruby (irb)
	Ruby Debugger
	Ruby Documentation
	RDoc Options
	RubyGems
	Rake
	Ruby Resources
	Glossary
	Index

