

Visualizing Data

Ben Fry

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Visualizing Data
by Ben Fry

Copyright © 2008 Ben Fry. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Loranah Dimant
Copyeditor: Genevieve d’Entremont
Proofreader: Loranah Dimant

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

December 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Visualizing Data, the image of an owl, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51455-7

ISBN-13: 978-0-596-51455-6

[C]

http://safari.oreilly.com
mailto:corporate@oreilly.com

iii

Table of Contents

Preface . vii

1. The Seven Stages of Visualizing Data . 1
Why Data Display Requires Planning 2
An Example 6
Iteration and Combination 14
Principles 15
Onward 18

2. Getting Started with Processing . 19
Sketching with Processing 20
Exporting and Distributing Your Work 23
Examples and Reference 24
Functions 27
Sketching and Scripting 28
Ready? 30

3. Mapping . 31
Drawing a Map 31
Locations on a Map 32
Data on a Map 34
Using Your Own Data 51
Next Steps 53

iv | Table of Contents

4. Time Series . 54
Milk, Tea, and Coffee (Acquire and Parse) 55
Cleaning the Table (Filter and Mine) 55
A Simple Plot (Represent and Refine) 57
Labeling the Current Data Set (Refine and Interact) 59
Drawing Axis Labels (Refine) 62
Choosing a Proper Representation (Represent and Refine) 73
Using Rollovers to Highlight Points (Interact) 76
Ways to Connect Points (Refine) 77
Text Labels As Tabbed Panes (Interact) 83
Interpolation Between Data Sets (Interact) 87
End of the Series 92

5. Connections and Correlations . 94
Changing Data Sources 94
Problem Statement 95
Preprocessing 96
Using the Preprocessed Data (Acquire, Parse, Filter, Mine) 111
Displaying the Results (Represent) 118
Returning to the Question (Refine) 121
Sophisticated Sorting: Using Salary As a Tiebreaker (Mine) 126
Moving to Multiple Days (Interact) 127
Smoothing Out the Interaction (Refine) 132
Deployment Considerations (Acquire, Parse, Filter) 133

6. Scatterplot Maps . 145
Preprocessing 145
Loading the Data (Acquire and Parse) 155
Drawing a Scatterplot of Zip Codes (Mine and Represent) 157
Highlighting Points While Typing (Refine and Interact) 158
Show the Currently Selected Point (Refine) 162
Progressively Dimming and Brightening Points (Refine) 165
Zooming In (Interact) 167
Changing How Points Are Drawn When Zooming (Refine) 177
Deployment Issues (Acquire and Refine) 178
Next Steps 180

Table of Contents | v

7. Trees, Hierarchies, and Recursion . 182
Using Recursion to Build a Directory Tree 182
Using a Queue to Load Asynchronously (Interact) 186
An Introduction to Treemaps 189
Which Files Are Using the Most Space? 194
Viewing Folder Contents (Interact) 199
Improving the Treemap Display (Refine) 201
Flying Through Files (Interact) 208
Next Steps 219

8. Networks and Graphs . 220
Simple Graph Demo 220
A More Complicated Graph 229
Approaching Network Problems 240
Advanced Graph Example 242
Mining Additional Information 262

9. Acquiring Data . 264
Where to Find Data 265
Tools for Acquiring Data from the Internet 266
Locating Files for Use with Processing 268
Loading Text Data 270
Dealing with Files and Folders 276
Listing Files in a Folder 277
Asynchronous Image Downloads 281
Using openStream() As a Bridge to Java 284
Dealing with Byte Arrays 284
Advanced Web Techniques 284
Using a Database 288
Dealing with a Large Number of Files 295

10. Parsing Data . 296
Levels of Effort 296
Tools for Gathering Clues 298
Text Is Best 299
Text Markup Languages 303

vi | Table of Contents

Regular Expressions (regexps) 316
Grammars and BNF Notation 316
Compressed Data 317
Vectors and Geometry 320
Binary Data Formats 325
Advanced Detective Work 328

11. Integrating Processing with Java . 331
Programming Modes 331
Additional Source Files (Tabs) 334
The Preprocessor 335
API Structure 336
Embedding PApplet into Java Applications 338
Using Java Code in a Processing Sketch 342
Using Libraries 343
Building with the Source for processing.core 343

Bibliography . 345

Index . 349

vii

Preface1

When I show visualization projects to an audience, one of the most common ques-
tions is, “How do you do this?” Other books about data visualization do exist, but
the most prominent ones are often collections of academic papers; in any case, few
explain how to actually build representations. Books from the field of design that
offer advice for creating visualizations see the field only in terms of static displays,
ignoring the possibility of dynamic, software-based visualizations. A number spend
most of their time dissecting what’s wrong with given representations—sometimes
providing solutions, but more often not.

In this book, I wanted to offer something for people who want to get started build-
ing their own visualizations, something to use as a jumping-off point for more com-
plicated work. I don’t cover everything, but I’ve tried to provide enough background
so that you’ll know where to go next.

I wrote this book because I wanted to have a way to make the ideas from
Computational Information Design, my Ph.D. dissertation, more accessible to a wider
audience. More specifically, I wanted to see these ideas actually applied, rather than
limited to an academic document on a shelf. My dissertation covered the process of
getting from data to understanding; in other words, from considering a pile of infor-
mation to presenting it usefully, in a way that can be easily understood and inter-
acted with. This process is covered in Chapter 1, and used throughout the book as a
framework for working through visualizations.

Most of the examples in this book are written from scratch. Rather than relying on
toolkits or libraries that produce charts or graphs, instead you learn how to create
them using a little math, some lines and rectangles, and bits of text. Many readers
may have tried some toolkits and found them lacking, particularly because they want
to customize the display of their information. A tool that has generic uses will pro-
duce only generic displays, which can be disappointing if the displays do not suit
your data set. Data can take many interesting forms that require unique types of dis-
play and interaction; this book aims to open up your imagination in ways that collec-
tions of bar and pie charts cannot.

viii | Preface

This book uses Processing (http://processing.org), a simple programming environ-
ment and API that I co-developed with Casey Reas of UCLA. Processing’s program-
ming environment makes it easy to sit down and “sketch” code to produce visual
images quickly. Once you outgrow the environment, it’s possible to use a regular
Java IDE to write Processing code because the API is based on Java. Processing is free
to download and open source. It has been in development since 2001, and we’ve had
about 100,000 people try it out in the last 12 months. Today Processing is used by
tens of thousands of people for all manners of work. When I began writing this
book, I debated which language and API to use. It could have been based on Java,
but I realized I would have found myself re-implementing the Processing API to
make things simple. It could have been based on Actionscript and Flash, but Flash is
expensive to buy and tends to break down when dealing with larger data sets. Other
scripting languages such as Python and Ruby are useful, but their execution speeds
don’t keep up with Java. In the end, Processing was the right combination of cost,
ease of use, and execution speed.

The Audience for This Book
In the spring of 2007, I co-taught an Information Visualization course at Carnegie
Mellon. Our 30 students ranged from a freshman in the art school to a Ph.D. candi-
date in computer science. In between were graduate students from the School of
Design and various other undergrads. Their skill levels were enormously varied, but
that was less important than their level of curiosity, and students who were curious
and willing to put in some work managed to overcome the technical difficulties (for
the art and design students) or the visual demands (for those with an engineering
background).

This book is targeted at a similar range of backgrounds, if less academic. I’m trying
to address people who want to ask questions, play with data, and gain an under-
standing of how to communicate information to others. For instance, the book is for
web designers who want to build more complex visualizations than their tools will
allow. It’s also for software engineers who want to become adept at writing software
that represents data—that calls on them to try out new skills, even if they have some
background in building UIs. None of this is rocket science, but it isn’t always obvi-
ous how to get started.

Fundamentally, this book is for people who have a data set, a curiosity to explore it,
and an idea of what they want to communicate about it. The set of people who visu-
alize data is growing extremely quickly as we deal with more and more information.
Even more important, the audience has moved far beyond those who are experts in
visualization. By making these ideas accessible to a wide range of people, we should
see some truly amazing things in the next decade.

http://processing.org

Preface | ix

Background Information
Because the audience for this book includes both programmers and non-
programmers, the material varies in complexity. Beginners should be able to pick it
up and get through the first few chapters, but they may find themselves lost as we get
into more complicated programming topics. If you’re looking for a gentler introduc-
tion to programming with Processing, other books are available (including one writ-
ten by Casey Reas and me) that are more suited to learning the concepts from
scratch, though they don’t cover the specifics of visualizing data. Chapters 1–4 can
be understood by someone without any programming background, but the later
chapters quickly become more difficult.

You’ll be most successful with this book if you have some familiarity with writing
code—whether it’s Java, C++, or Actionscript. This is not an advanced text by any
means, but a little background in writing code will go a long way toward understand-
ing the concepts.

Overview of the Book
Chapter 1, The Seven Stages of Visualizing Data, covers the process for developing a
useful visualization, from acquiring data to interacting with it. This is the framework
we’ll use as we attack problems in later chapters.

Chapter 2, Getting Started with Processing, is a basic introduction to the Processing
environment and syntax. It provides a bit of background on the structure of the API
and the philosophy behind the project’s development.

Chapters 3 through 8 cover example projects that get progressively more
complicated.

Chapter 3, Mapping, plots data points on a map, our first introduction to reading
data from the disk and representing it on the screen.

Chapter 4, Time Series, covers several methods of plotting charts that represent how
data changes over time.

Chapter 5, Connections and Correlations, is the first chapter that really delves into
how we acquire and parse a data set. The example in this chapter reads data from the
MLB.com web site and produces an image correlating player salaries and team per-
formance over the course of a baseball season. It’s an in-depth example illustrating
how to scrape data from a web site that lacks an official API. These techniques can
be applied to many other projects, even if you’re not interested in baseball.

Chapter 6, Scatterplot Maps, answers the question, “How do zip codes relate to geog-
raphy?” by developing a project that allows users to progressively refine a U.S. map
as they type a zip code.

x | Preface

Chapter 7, Trees, Hierarchies, and Recursion, discusses trees and hierarchies. It cov-
ers recursion, an important topic when dealing with tree structures, and treemaps, a
useful representation for certain kinds of tree data.

Chapter 8, Networks and Graphs, is about networks of information, also called
graphs. The first half discusses ways to produce a representation of connections
between many nodes in a network, and the second half shows an example of doing
the same with web site traffic data to see how a site is used over time. The latter
project also covers how to integrate Processing with Eclipse, a Java IDE.

The last three chapters contain reference material, including more background and
techniques for acquiring and parsing data.

Chapter 9, Acquiring Data, is a kind of cookbook that covers all sorts of practical
techniques, from reading data from files, to spoofing a web browser, to storing data
in databases.

Chapter 10, Parsing Data, is also written in cookbook-style, with examples that illus-
trate the detective work involved in parsing data. Examples include parsing HTML
tables, XML, compressed data, and SVG shapes. It even includes a basic example of
watching a network connection to understand how an undocumented data protocol
works.

Chapter 11, Integrating Processing with Java, covers the specifics of how the Process-
ing API integrates with Java. It’s more of an appendix aimed at advanced Java pro-
grammers who want to use the API with their own projects.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
I’d first like to thank O’Reilly Media for taking on this book. I was initially put in
touch with Steve Weiss, who met with me to discuss the book in the spring of 2006.
Steve later put me in touch with the Cambridge office, where Mike Hendrickson
became a champion for the book and worked to make sure that the contract hap-
pened. Tim O’Reilly’s enthusiasm along the way helped seal it.

Preface | xi

I owe a great deal to my editor, Andy Oram, and assistant editor, Isabel Kunkle. With-
out Andy’s hard work and helpful suggestions, or Isabel’s focus on our schedule, I
might still be working on the outline for Chapter 4. Thanks also to those who reviewed
the draft manuscript: Brian DeLacey, Aidan Delaney, and Harry Hochheiser.

This book is based on ideas first developed as part of my doctoral work at the MIT
Media Laboratory. For that I owe my advisor of six years, John Maeda, and my
committee members, David Altshuler and Chris Pullman. Chris also pushed to have
the ideas published properly, which was a great encouragement.

I’d also like to thank Casey Reas, my friend, inspiration, and collaborator on Process-
ing, who has ensured that the project continues several years after its inception.

The content of the examples has been influenced by many courses I’ve taught as
workshops or in classrooms over the last few years—in particular, my visualization
courses at Harvard University and Carnegie Mellon (co-taught with Golan Levin),
and workshops at Anderson Ranch in Colorado and at Hangar in Barcelona. I owe a
lot to these student guinea pigs who taught me how to best explain this work.

Finally, thanks to my family, and immeasurable thanks to Shannon Hunt for edit-
ing, input, and moral support. Hers will be a tough act to follow while I return in
kind as she writes her book in the coming months.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, variables, functions, types, classes, methods,
HTML and XML tags, the contents of files, and the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

xii | Preface

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Visualizing Data by Ben Fry. Copy-
right 2008 Ben Fry, 978-0-596-51455-6.”

If you think your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596514556

http://www.oreilly.com/catalog/9780596514556

Preface | xiii

The author also has a site for the book at:

http://benfry.com/writing

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/9780596514556
bookquestions@oreilly.com
http://www.oreilly.com

1

Chapter 1 CHAPTER 1

The Seven Stages of Visualizing Data1

The greatest value of a picture is when it forces us to
notice what we never expected to see.

—John Tukey

What do the paths that millions of visitors take through a web site look like? How do
the 3.1 billion A, C, G, and T letters of the human genome compare to those of the
chimp or the mouse? Out of a few hundred thousand files on your computer’s hard
disk, which ones are taking up the most space, and how often do you use them? By
applying methods from the fields of computer science, statistics, data mining,
graphic design, and visualization, we can begin to answer these questions in a mean-
ingful way that also makes the answers accessible to others.

All of the previous questions involve a large quantity of data, which makes it
extremely difficult to gain a “big picture” understanding of its meaning. The prob-
lem is further compounded by the data’s continually changing nature, which can
result from new information being added or older information continuously being
refined. This deluge of data necessitates new software-based tools, and its complex-
ity requires extra consideration. Whenever we analyze data, our goal is to highlight
its features in order of their importance, reveal patterns, and simultaneously show
features that exist across multiple dimensions.

This book shows you how to make use of data as a resource that you might other-
wise never tap. You’ll learn basic visualization principles, how to choose the right
kind of display for your purposes, and how to provide interactive features that will
bring users to your site over and over again. You’ll also learn to program in Process-
ing, a simple but powerful environment that lets you quickly carry out the tech-
niques in this book. You’ll find Processing a good basis for designing interfaces
around large data sets, but even if you move to other visualization tools, the ways of
thinking presented here will serve you as long as human beings continue to process
information the same way they’ve always done.

2 | Chapter 1: The Seven Stages of Visualizing Data

Why Data Display Requires Planning
Each set of data has particular display needs, and the purpose for which you’re using
the data set has just as much of an effect on those needs as the data itself. There are
dozens of quick tools for developing graphics in a cookie-cutter fashion in office pro-
grams, on the Web, and elsewhere, but complex data sets used for specialized appli-
cations require unique treatment. Throughout this book, we’ll discuss how the
characteristics of a data set help determine what kind of visualization you’ll use.

Too Much Information
When you hear the term “information overload,” you probably know exactly what it
means because it’s something you deal with daily. In Richard Saul Wurman’s book
Information Anxiety (Doubleday), he describes how the New York Times on an aver-
age Sunday contains more information than a Renaissance-era person had access to
in his entire lifetime.

But this is an exciting time. For $300, you can purchase a commodity PC that has
thousands of times more computing power than the first computers used to tabulate
the U.S. Census. The capability of modern machines is astounding. Performing
sophisticated data analysis no longer requires a research laboratory, just a cheap
machine and some code. Complex data sets can be accessed, explored, and analyzed
by the public in a way that simply was not possible in the past.

The past 10 years have also brought about significant changes in the graphic capabil-
ities of average machines. Driven by the gaming industry, high-end 2D and 3D
graphics hardware no longer requires dedicated machines from specific vendors, but
can instead be purchased as a $100 add-on card and is standard equipment for any
machine costing $700 or more. When not used for gaming, these cards can render
extremely sophisticated models with thousands of shapes, and can do so quickly
enough to provide smooth, interactive animation. And these prices will only
decrease—within a few years’ time, accelerated graphics will be standard equipment
on the aforementioned commodity PC.

Data Collection
We’re getting better and better at collecting data, but we lag in what we can do with
it. Most of the examples in this book come from freely available data sources on the
Internet. Lots of data is out there, but it’s not being used to its greatest potential
because it’s not being visualized as well as it could be. (More about this can be found
in Chapter 9, which covers places to find data and how to retrieve it.)

With all the data we’ve collected, we still don’t have many satisfactory answers to the
sort of questions that we started with. This is the greatest challenge of our information-
rich era: how can these questions be answered quickly, if not instantaneously? We’re

Why Data Display Requires Planning | 3

getting so good at measuring and recording things, why haven’t we kept up with the
methods to understand and communicate this information?

Thinking About Data
We also do very little sophisticated thinking about information itself. When AOL
released a data set containing the search queries of millions of users that had been
“randomized” to protect the innocent, articles soon appeared about how people
could be identified by—and embarrassed by—information regarding their search
habits. Even though we can collect this kind of information, we often don’t know
quite what it means. Was this a major issue or did it simply embarrass a few AOL
users? Similarly, when millions of records of personal data are lost or accessed ille-
gally, what does that mean? With so few people addressing data, our understanding
remains quite narrow, boiling down to things like, “My credit card number might be
stolen” or “Do I care if anyone sees what I search?”

Data Never Stays the Same
We might be accustomed to thinking about data as fixed values to be analyzed, but
data is a moving target. How do we build representations of data that adjust to new
values every second, hour, or week? This is a necessity because most data comes from
the real world, where there are no absolutes. The temperature changes, the train runs
late, or a product launch causes the traffic pattern on a web site to change drastically.

What happens when things start moving? How do we interact with “live” data? How
do we unravel data as it changes over time? We might use animation to play back the
evolution of a data set, or interaction to control what time span we’re looking at.
How can we write code for these situations?

What Is the Question?
As machines have enormously increased the capacity with which we can create
(through measurements and sampling) and store data, it becomes easier to dis-
associate the data from the original reason for collecting it. This leads to an all-too
frequent situation: approaching visualization problems with the question, “How can
we possibly understand so much data?”

As a contrast, think about subway maps, which are abstracted from the complex shape
of the city and are focused on the rider’s goal: to get from one place to the next. Limit-
ing the detail of each shape, turn, and geographical formation reduces this complex
data set to answering the rider’s question: “How do I get from point A to point B?”

Harry Beck invented the format now commonly used for subway maps in the 1930s,
when he redesigned the map of the London Underground. Inspired by the layout of

4 | Chapter 1: The Seven Stages of Visualizing Data

circuit boards, the map simplified the complicated Tube system to a series of verti-
cal, horizontal, and 45˚diagonal lines. While attempting to preserve as much of the
relative physical layout as possible, the map shows only the connections between sta-
tions, as that is the only information that riders use to decide their paths.

When beginning a visualization project, it’s common to focus on all the data that has
been collected so far. The amounts of information might be enormous—people like
to brag about how many gigabytes of data they’ve collected and how difficult their
visualization problem is. But great information visualization never starts from the
standpoint of the data set; it starts with questions. Why was the data collected,
what’s interesting about it, and what stories can it tell?

The most important part of understanding data is identifying the question that you
want to answer. Rather than thinking about the data that was collected, think about
how it will be used and work backward to what was collected. You collect data
because you want to know something about it. If you don’t really know why you’re
collecting it, you’re just hoarding it. It’s easy to say things like, “I want to know
what’s in it,” or “I want to know what it means.” Sure, but what’s meaningful?

The more specific you can make your question, the more specific and clear the visual
result will be. When questions have a broad scope, as in “exploratory data analysis”
tasks, the answers themselves will be broad and often geared toward those who are
themselves versed in the data. John Tukey, who coined the term Exploratory Data
Analysis, said “...pictures based on exploration of data should force their messages
upon us.”* Too many data problems are labeled “exploratory” because the data col-
lected is overwhelming, even though the original purpose was to answer a specific
question or achieve specific results.

One of the most important (and least technical) skills in understanding data is ask-
ing good questions. An appropriate question shares an interest you have in the data,
tries to convey it to others, and is curiosity-oriented rather than math-oriented.
Visualizing data is just like any other type of communication: success is defined by
your audience’s ability to pick up on, and be excited about, your insight.

Admittedly, you may have a rich set of data to which you want to provide flexible
access by not defining your question too narrowly. Even then, your goal should be to
highlight key findings. There is a tendency in the visualization field to borrow from
the statistics field and separate problems into exploratory and expository, but for the
purposes of this book, this distinction is not useful. The same methods and process
are used for both.

In short, a proper visualization is a kind of narrative, providing a clear answer to a
question without extraneous details. By focusing on the original intent of the ques-
tion, you can eliminate such details because the question provides a benchmark for
what is and is not necessary.

* Tukey, John Wilder. Exploratory Data Analysis. Reading, MA: Addison-Wesley, 1977.

Why Data Display Requires Planning | 5

A Combination of Many Disciplines
Given the complexity of data, using it to provide a meaningful solution requires
insights from diverse fields: statistics, data mining, graphic design, and information
visualization. However, each field has evolved in isolation from the others.

Thus, visual design—-the field of mapping data to a visual form—typically does not
address how to handle thousands or tens of thousands of items of data. Data mining
techniques have such capabilities, but they are disconnected from the means to inter-
act with the data. Software-based information visualization adds building blocks for
interacting with and representing various kinds of abstract data, but typically these
methods undervalue the aesthetic principles of visual design rather than embrace their
strength as a necessary aid to effective communication. Someone approaching a data
representation problem (such as a scientist trying to visualize the results of a study
involving a few thousand pieces of genetic data) often finds it difficult to choose a rep-
resentation and wouldn’t even know what tools to use or books to read to begin.

Process
We must reconcile these fields as parts of a single process. Graphic designers can learn
the computer science necessary for visualization, and statisticians can communicate
their data more effectively by understanding the visual design principles behind data
representation. The methods themselves are not new, but their isolation within indi-
vidual fields has prevented them from being used together. In this book, we use a pro-
cess that bridges the individual disciplines, placing the focus and consideration on how
data is understood rather than on the viewpoint and tools of each individual field.

The process of understanding data begins with a set of numbers and a question. The
following steps form a path to the answer:

Acquire
Obtain the data, whether from a file on a disk or a source over a network.

Parse
Provide some structure for the data’s meaning, and order it into categories.

Filter
Remove all but the data of interest.

Mine
Apply methods from statistics or data mining as a way to discern patterns or
place the data in mathematical context.

Represent
Choose a basic visual model, such as a bar graph, list, or tree.

Refine
Improve the basic representation to make it clearer and more visually engaging.

Interact
Add methods for manipulating the data or controlling what features are visible.

6 | Chapter 1: The Seven Stages of Visualizing Data

Of course, these steps can’t be followed slavishly. You can expect that they’ll be
involved at one time or another in projects you develop, but sometimes it will be four
of the seven, and at other times all of them.

Part of the problem with the individual approaches to dealing with data is that the
separation of fields leads to different people each solving an isolated part of the prob-
lem. When this occurs, something is lost at each transition—like a “telephone game”
in which each step of the process diminishes aspects of the initial question under
consideration. The initial format of the data (determined by how it is acquired and
parsed) will often drive how it is considered for filtering or mining. The statistical
method used to glean useful information from the data might drive the initial presen-
tation. In other words, the final representation reflects the results of the statistical
method rather than a response to the initial question.

Similarly, a graphic designer brought in at the next stage will most often respond to
specific problems with the representation provided by the previous steps, rather than
focus on the initial question. The visualization step might add a compelling and
interactive means to look at the data filtered from the earlier steps, but the display is
inflexible because the earlier stages of the process are hidden. Furthermore,
practitioners of each of the fields that commonly deal with data problems are often
unclear about how to traverse the wider set of methods and arrive at an answer.

This book covers the whole path from data to understanding: the transformation of a
jumble of raw numbers into something coherent and useful. The data under consid-
eration might be numbers, lists, or relationships between multiple entities.

It should be kept in mind that the term visualization is often used to describe the art
of conveying a physical relationship, such as the subway map mentioned near the
start of this chapter. That’s a different kind of analysis and skill from information
visualization, where the data is primarily numeric or symbolic (e.g., A, C, G, and T—
the letters of genetic code—and additional annotations about them). The primary
focus of this book is information visualization: for instance, a series of numbers that
describes temperatures in a weather forecast rather than the shape of the cloud cover
contributing to them.

An Example
To illustrate the seven steps listed in the previous section, and how they contribute
to effective information visualization, let’s look at how the process can be applied to
understanding a simple data set. In this case, we’ll take the zip code numbering sys-
tem that the U.S. Postal Service uses. The application is not particularly advanced,
but it provides a skeleton for how the process works. (Chapter 6 contains a full
implementation of the project.)

An Example | 7

What Is the Question?
All data problems begin with a question and end with a narrative construct that pro-
vides a clear answer. The Zipdecode project (described further in Chapter 6) was
developed out of a personal interest in the relationship of the zip code numbering
system to geographic areas. Living in Boston, I knew that numbers starting with a
zero denoted places on the East Coast. Having spent time in San Francisco, I knew
the initial numbers for the West Coast were all nines. I grew up in Michigan, where
all our codes were four-prefixed. But what sort of area does the second digit specify?
Or the third?

The finished application was initially constructed in a few hours as a quick way to
take what might be considered a boring data set (a long list of zip codes, towns, and
their latitudes and longitudes) and create something engaging for a web audience
that explained how the codes related to their geography.

Acquire

The acquisition step involves obtaining the data. Like many of the other steps, this
can be either extremely complicated (i.e., trying to glean useful data from a large sys-
tem) or very simple (reading a readily available text file).

A copy of the zip code listing can be found on the U.S. Census Bureau web site, as it
is frequently used for geographic coding of statistical data. The listing is a freely
available file with approximately 42,000 lines, one for each of the codes, a tiny por-
tion of which is shown in Figure 1-1.

Figure 1-1. Zip codes in the format provided by the U.S. Census Bureau

8 | Chapter 1: The Seven Stages of Visualizing Data

Acquisition concerns how the user downloads your data as well as how you obtained
the data in the first place. If the final project will be distributed over the Internet, as
you design the application, you have to take into account the time required to down-
load data into the browser. And because data downloaded to the browser is proba-
bly part of an even larger data set stored on the server, you may have to structure the
data on the server to facilitate retrieval of common subsets.

Parse

After you acquire the data, it needs to be parsed—changed into a format that tags
each part of the data with its intended use. Each line of the file must be broken along
its individual parts; in this case, it must be delimited at each tab character. Then,
each piece of data needs to be converted to a useful format. Figure 1-2 shows the lay-
out of each line in the census listing, which we have to understand to parse it and get
out of it what we want.

Each field is formatted as a data type that we’ll handle in a conversion program:

String
A set of characters that forms a word or a sentence. Here, the city or town name
is designated as a string. Because the zip codes themselves are not so much num-
bers as a series of digits (if they were numbers, the code 02139 would be stored
as 2139, which is not the same thing), they also might be considered strings.

Float
A number with decimal points (used for the latitudes and longitudes of each
location). The name is short for floating point, from programming nomenclature
that describes how the numbers are stored in the computer’s memory.

Figure 1-2. Structure of acquired data

string TAB float TAB float TAB character TAB string TAB index TAB index

An Example | 9

Character
A single letter or other symbol. In this data set, a character sometimes desig-
nates special post offices.

Integer
A number without a fractional portion, and hence no decimal points (e.g., –14,
0, or 237).

Index
Data (commonly an integer or string) that maps to a location in another table of
data. In this case, the index maps numbered codes to the names and two-digit
abbreviations of states. This is common in databases, where such an index is
used as a pointer into another table, sometimes as a way to compact the data
further (e.g., a two-digit code requires less storage than the full name of the state
or territory).

With the completion of this step, the data is successfully tagged and consequently
more useful to a program that will manipulate or represent it in some way.

Filter

The next step involves filtering the data to remove portions not relevant to our use.
In this example, for the sake of keeping it simple, we’ll be focusing on the contigu-
ous 48 states, so the records for cities and towns that are not part of those states—
Alaska, Hawaii, and territories such as Puerto Rico—are removed. Another project
could require significant mathematical work to place the data into a mathematical
model or normalize it (convert it to an acceptable range of numbers).

Mine

This step involves math, statistics, and data mining. The data in this case receives
only a simple treatment: the program must figure out the minimum and maximum
values for latitude and longitude by running through the data (as shown in
Figure 1-3) so that it can be presented on a screen at a proper scale. Most of the time,
this step will be far more complicated than a pair of simple math operations.

Represent

This step determines the basic form that a set of data will take. Some data sets are
shown as lists, others are structured like trees, and so forth. In this case, each zip
code has a latitude and longitude, so the codes can be mapped as a two-dimensional
plot, with the minimum and maximum values for the latitude and longitude used for
the start and end of the scale in each dimension. This is illustrated in Figure 1-4.

The Represent stage is a linchpin that informs the single most important decision in
a visualization project and can make you rethink earlier stages. How you choose to
represent the data can influence the very first step (what data you acquire) and the
third step (what particular pieces you extract).

10 | Chapter 1: The Seven Stages of Visualizing Data

Figure 1-3. Mining the data: just compare values to find the minimum and maximum

Figure 1-4. Basic visual representation of zip code data

min
24.655691

max
48.987385

max
-67.040764

min
-124.62608

An Example | 11

Refine

In this step, graphic design methods are used to further clarify the representation by
calling more attention to particular data (establishing hierarchy) or by changing
attributes (such as color) that contribute to readability.

Hierarchy is established in Figure 1-5, for instance, by coloring the background deep
gray and displaying the selected points (all codes beginning with four) in white and
the deselected points in medium yellow.

Interact

The next stage of the process adds interaction, letting the user control or explore the
data. Interaction might cover things like selecting a subset of the data or changing
the viewpoint. As another example of a stage affecting an earlier part of the process,
this stage can also affect the refinement step, as a change in viewpoint might require
the data to be designed differently.

In the Zipdecode project, typing a number selects all zip codes that begin with that
number. Figures 1-6 and 1-7 show all the zip codes beginning with zero and nine,
respectively.

Another enhancement to user interaction (not shown here) enables the users to
traverse the display laterally and run through several of the prefixes. After typing part
or all of a zip code, holding down the Shift key allows users to replace the last num-
ber typed without having to hit the Delete key to back up.

Figure 1-5. Using color to refine the representation

12 | Chapter 1: The Seven Stages of Visualizing Data

Typing is a very simple form of interaction, but it allows the user to rapidly gain an
understanding of the zip code system’s layout. Just contrast this sample application
with the difficulty of deducing the same information from a table of zip codes and
city names.

The viewer can continue to type digits to see the area covered by each subsequent set
of prefixes. Figure 1-8 shows the region highlighted by the two digits 02, Figure 1-9
shows the three digits 021, and Figure 1-10 shows the four digits 0213. Finally,
Figure 1-11 shows what you get by entering a full zip code, 02139—a city name pops
up on the display.

Figure 1-6. The user can alter the display through choices (zip codes starting with 0)

Figure 1-7. The user can alter the display through choices (zip codes starting with 9)

An Example | 13

In addition, users can enable a “zoom” feature that draws them closer to each sub-
sequent digit, revealing more detail around the area and showing a constant rate of
detail at each level. Because we’ve chosen a map as a representation, we could add
more details of state and county boundaries or other geographic features to help
viewers associate the “data” space of zip code points with what they know about the
local environment.

Figure 1-8. Honing in with two digits (02)

Figure 1-9. Honing in with three digits (021)

14 | Chapter 1: The Seven Stages of Visualizing Data

Iteration and Combination
Figure 1-12 shows the stages in order and demonstrates how later decisions com-
monly reflect on earlier stages. Each step of the process is inextricably linked because
of how the steps affect one another. In the Zipdecode application, for instance:

• The need for a compact representation on the screen led me to refilter the data
to include only the contiguous 48 states.

• The representation step affected acquisition because after I developed the appli-
cation I modified it so it could show data that was downloaded over a slow

Figure 1-10. Honing in further with four digits (0213)

Figure 1-11. Honing in even further with the full zip code (02139)

Principles | 15

Internet connection to the browser. My change to the structure of the data
allows the points to appear slowly, as they are first read from the data file,
employing the data itself as a “progress bar.”

• Interaction by typing successive numbers meant that the colors had to be modi-
fied in the visual refinement step to show a slow transition as points in the dis-
play are added or removed. This helps the user maintain context by preventing
the updates on-screen from being too jarring.

The connections between the steps in the process illustrate the importance of the
individual or team in addressing the project as a whole. This runs counter to the com-
mon fondness for assembly-line style projects, where programmers handle the techni-
cal portions, such as acquiring and parsing data, and visual designers are left to
choose colors and typefaces. At the intersection of these fields is a more interesting
set of properties that demonstrates their strength in combination.

When acquiring data, consider how it can change, whether sporadically (such as
once a month) or continuously. This expands the notion of graphic design that’s tra-
ditionally focused on solving a specific problem for a specific data set, and instead
considers the meta-problem of how to handle a certain kind of data that might be
updated in the future.

In the filtering step, data can be filtered in real time, as in the Zipdecode application.
During visual refinement, changes to the design can be applied across the entire sys-
tem. For instance, a color change can be automatically applied to the thousands of
elements that require it, rather having to make such a tedious modification by hand.
This is the strength of a computational approach, where tedious processes are mini-
mized through automation.

Principles
I’ll finish this general introduction to visualization by laying out some ways of think-
ing about data and its representation that have served me well over many years and
many diverse projects. They may seem abstract at first, or of minor importance to the
job you’re facing, but I urge you to return and reread them as you practice visualiza-
tion; they just may help you in later tasks.

Figure 1-12. Interactions between the seven stages

acquire parse filter mine represent refine interact

16 | Chapter 1: The Seven Stages of Visualizing Data

Each Project Has Unique Requirements
A visualization should convey the unique properties of the data set it represents. This
book is not concerned with providing a handful of ready-made “visualizations” that
can be plugged into any data set. Ready-made visualizations can help produce a
quick view of your data set, but they’re inflexible commodity items that can be
implemented in packaged software. Any bar chart or scatter plot made with Excel
will look like a bar chart or scatter plot made with Excel. Packaged solutions can
provide only packaged answers, like a pull-string toy that is limited to a handful of
canned phrases, such as “Sales show a slight increase in each of the last five years!”
Every problem is unique, so capitalize on that uniqueness to solve the problem.

Chapters in this book are divided by types of data, rather than types of display. In
other words, we’re not saying, “Here’s how to make a bar graph,” but “Here are sev-
eral ways to show a correlation.” This gives you a more powerful way to think about
maximizing what can be said about the data set in question.

I’m often asked for a library of tools that will automatically make attractive represen-
tations of any given data set. But if each data set is different, the point of visualiza-
tion is to expose that fascinating aspect of the data and make it self-evident.
Although readily available representation toolkits are useful starting points, they
must be customized during an in-depth study of the task.

Data is often stored in a generic format. For instance, databases used for annotation
of genomic data might consist of enormous lists of start and stop positions, but those
lists vary in importance depending on the situation in which they’re being used. We
don’t view books as long abstract sequences of words, yet when it comes to informa-
tion, we’re often so taken with the enormity of the information and the low-level
abstractions used to store it that the narrative is lost. Unless you stop thinking about
databases, everything looks like a table—millions of rows and columns to be stored,
queried, and viewed.

In this book, we use a small collection of simple helper classes as starting points.
Often, we’ll be targeting the Web as a delivery platform, so the classes are designed
to take up minimal time for download and display. But I will also discuss more
robust versions of similar tools that can be used for more in-depth work.

This book aims to help you learn to understand data as a tool for human decision-
making—how it varies, how it can be used, and how to find what’s unique about
your data set. We’ll cover many standard methods of visualization and give you the
background necessary for making a decision about what sort of representation is
suitable for your data. For each representation, we consider its positive and negative
points and focus on customizing it so that it’s best suited to what you’re trying to
convey about your data set.

Principles | 17

Avoid the All-You-Can-Eat Buffet
Often, less detail will actually convey more information because the inclusion of
overly specific details causes the viewer to miss what’s most important or disregard
the image entirely because it’s too complex. Use as little data as possible, no matter
how precious it seems.

Consider a weather map, with curved bands of temperatures across the country. The
designers avoid giving each band a detailed edge (particularly because the data is
often fuzzy). Instead, they convey a broader pattern in the data.

Subway maps leave out the details of surface roads because the additional detail adds
more complexity to the map than necessary. Before maps were created in Beck’s
style, it seemed that knowing street locations was essential to navigating the subway.
Instead, individual stations are used as waypoints for direction finding. The impor-
tant detail is that your target destination is near a particular station. Directions can
be given in terms of the last few turns to be taken after you exit the station, or you
can consult a map posted at the station that describes the immediate area
aboveground.

It’s easy to collect data, and some people become preoccupied with simply accumu-
lating more complex data or data in mass quantities. But more data is not implicitly
better, and often serves to confuse the situation. Just because it can be measured
doesn’t mean it should. Perhaps making things simple is worth bragging about, but
making complex messes is not. Find the smallest amount of data that can still con-
vey something meaningful about the contents of the data set. As with Beck’s under-
ground map, focusing on the question helps define those minimum requirements.

The same holds for the many “dimensions” that are found in data sets. Web site traf-
fic statistics have many dimensions: IP address, date, time of day, page visited, previ-
ous page visited, result code, browser, machine type, and so on. While each of these
might be examined in turn, they relate to distinct questions. Only a few of the vari-
ables are required to answer a typical question, such as “How many people visited
page x over the last three months, and how has that figure changed each month?”
Avoid trying to show a burdensome multidimensional space that maps too many
points of information.

Know Your Audience
Finally, who is your audience? What are their goals when approaching a visualiza-
tion? What do they stand to learn? Unless it’s accessible to your audience, why are
you doing it? Making things simple and clear doesn’t mean assuming that your users
are idiots and “dumbing down” the interface for them.

18 | Chapter 1: The Seven Stages of Visualizing Data

In what way will your audience use the piece? A mapping application used on a
mobile device has to be designed with a completely different set of criteria than one
used on a desktop computer. Although both applications use maps, they have little
to do with each other. The focus of the desktop application may be finding locations
and print maps, whereas the focus of the mobile version is actively following the
directions to a particular location.

Onward
In this chapter, we covered the process for attacking the common modern problems
of having too much data and having data that changes. In the next chapter, we’ll dis-
cuss Processing, the software tool used to handle data sets in this book.

19

Chapter 2 CHAPTER 2

Getting Started with Processing2

The Processing project began in the spring of 2001 and was first used at a workshop
in Japan that August. Originally built as a domain-specific extension to Java targeted
at artists and designers, Processing has evolved into a full-blown design and proto-
typing tool used for large-scale installation work, motion graphics, and complex data
visualization. Processing is a simple programming environment that was created to
make it easier to develop visually oriented applications with an emphasis on anima-
tion and provide users with instant feedback through interaction. As its capabilities
have expanded over the past six years, Processing has come to be used for more
advanced production-level work in addition to its sketching role.

Processing is based on Java, but because program elements in Processing are fairly
simple, you can learn to use it from this book even if you don’t know any Java. If
you’re familiar with Java, it’s best to forget that Processing has anything to do with it
for a while, at least until you get the hang of how the API works. We’ll cover how to
integrate Java and Processing toward the end of the book.

The latest version of Processing can be downloaded at:

http://processing.org/download

An important goal for the project was to make this type of programming accessible
to a wider audience. For this reason, Processing is free to download, free to use, and
open source. But projects developed using the Processing environment and core
libraries can be used for any purpose. This model is identical to GCC, the GNU
Compiler Collection. GCC and its associated libraries (e.g., libc) are open source
under the GNU Public License (GPL), which stipulates that changes to the code
must be made available. However, programs created with GCC (examples too
numerous to mention) are not themselves required to be open source.

http://processing.org/download/

20 | Chapter 2: Getting Started with Processing

Processing consists of:

• The Processing Development Environment (PDE). This is the software that runs
when you double-click the Processing icon. The PDE is an Integrated
Development Environment with a minimalist set of features designed as a sim-
ple introduction to programming or for testing one-off ideas.

• A collection of commands (also referred to as functions or methods) that make
up the “core” programming interface, or API, as well as several libraries that sup-
port more advanced features, such as drawing with OpenGL, reading XML files,
and saving complex imagery in PDF format.

• A language syntax, identical to Java but with a few modifications. The changes
are laid out in detail toward the end of the book.

• An active online community, hosted at http://processing.org.

For this reason, references to “Processing” can be somewhat ambiguous. Are we talk-
ing about the API, the development environment, or the web site? I’ll be careful to
differentiate them when referring to each.

Sketching with Processing
A Processing program is called a sketch. The idea is to make Java-style programming
feel more like scripting, and adopt the process of scripting to quickly write code.
Sketches are stored in the sketchbook, a folder that’s used as the default location for
saving all of your projects. When you run Processing, the sketch last used will auto-
matically open. If this is the first time Processing is used (or if the sketch is no longer
available), a new sketch will open.

Sketches that are stored in the sketchbook can be accessed from File ➝ Sketchbook.
Alternatively, File ➝ Open... can be used to open a sketch from elsewhere on the
system.

Advanced programmers need not use the PDE and may instead use its libraries with
the Java environment of choice. (This is covered toward the end of the book.) How-
ever, if you’re just getting started, it’s recommended that you use the PDE for your
first few projects to gain familiarity with the way things are done. Although Process-
ing is based on Java, it was never meant to be a Java IDE with training wheels. To
better address our target audience, its conceptual model (how programs work, how
interfaces are built, and how files are handled) is somewhat different from Java’s.

Hello World
Programming languages are often introduced with a simple program that prints
“Hello World” to the console. The Processing equivalent is simply to draw a line:

line(15, 25, 70, 90);

http://processing.org

Sketching with Processing | 21

Enter this example and press the Run button, which is an icon that looks like the Play
button on any audio or video device. The result will appear in a new window, with a
gray background and a black line from coordinate (15, 25) to (70, 90). The (0, 0) coor-
dinate is the upper-lefthand corner of the display window. Building on this program to
change the size of the display window and set the background color, type in the code
from Example 2-1.

This version sets the window size to 400 × 400 pixels, sets the background to an
orange-red, and draws the line in white, by setting the stroke color to 255. By
default, colors are specified in the range 0 to 255. Other variations of the parameters
to the stroke() function provide alternate results:

stroke(255); // sets the stroke color to white
stroke(255, 255, 255); // identical to stroke(255)
stroke(255, 128, 0); // bright orange (red 255, green 128, blue 0)
stroke(#FF8000); // bright orange as a web color
stroke(255, 128, 0, 128); // bright orange with 50% transparency

The same alternatives work for the fill() command, which sets the fill color, and
the background() command, which clears the display window. Like all Processing
methods that affect drawing properties, the fill and stroke colors affect all geometry
drawn to the screen until the next fill and stroke commands are executed.

It’s also possible to use the editor of your choice instead of the built-in
editor. Simply select “Use External Editor” in the Preferences window
(Processing ➝ Preferences on Mac OS X, or File ➝ Preferences on
Windows and Linux). When using an external editor, editing will be
disabled in the PDE, but the text will reload whenever you press Run.

Hello Mouse
A program written as a list of statements (like the previous examples) is called a basic
mode sketch. In basic mode, a series of commands are used to perform tasks or cre-
ate a single image without any animation or interaction. Interactive programs are
drawn as a series of frames, which you can create by adding functions titled setup()
and draw(), as shown in the continuous mode sketch in Example 2-2. They are built-
in functions that are called automatically.

Example 2-1. Simple sketch

size(400, 400);
background(192, 64, 0);
stroke(255);
line(150, 25, 270, 350);

22 | Chapter 2: Getting Started with Processing

Example 2-2 is identical in function to Example 2-1, except that now the line follows
the mouse. The setup() block runs once, and the draw() block runs repeatedly. As
such, setup() can be used for any initialization; in this case, it’s used for setting the
screen size, making the background orange, and setting the stroke color to white.
The draw() block is used to handle animation. The size() command must always be
the first line inside setup().

Because the background() command is used only once, the screen will fill with lines
as the mouse is moved. To draw just a single line that follows the mouse, move the
background() command to the draw() function, which will clear the display window
(filling it with orange) each time draw() runs:

void setup() {
 size(400, 400);
 stroke(255);
}

void draw() {
 background(192, 64, 0);
 line(150, 25, mouseX, mouseY);
}

Basic mode programs are most commonly used for extremely simple examples, or for
scripts that run in a linear fashion and then exit. For instance, a basic mode program
might start, draw a page to a PDF file, and then exit.

Most programs employ continuous mode, which uses the setup() and draw()
blocks. More advanced mouse handling can also be introduced; for instance, the
mousePressed() method will be called whenever the mouse is pressed. So, in the
following example, when the mouse is pressed, the screen is cleared via the
background() command:

void setup() {
 size(400, 400);
 stroke(255);
}

void draw() {
 line(150, 25, mouseX, mouseY);
}

Example 2-2. Simple continuous mode sketch

void setup() {
 size(400, 400);
 stroke(255);
 background(192, 64, 0);
}

void draw() {
 line(150, 25, mouseX, mouseY);
}

Exporting and Distributing Your Work | 23

void mousePressed() {
 background(192, 64, 0);
}

More about basic versus continuous mode programs can be found in the Program-
ming Modes section of the Processing reference, which can be viewed from Help ➝

Getting Started or online at http://processing.org/reference/environment.

Exporting and Distributing Your Work
One of the most significant features of the Processing environment is its ability to
bundle your sketch into an applet or application with just one click. Select File ➝

Export to package your current sketch as an applet. This will create a folder named
applet inside your sketch folder. Opening the index.html file inside that folder will
open your sketch in a browser. The applet folder can be copied to a web site intact
and will be viewable by users who have Java installed on their systems. Similarly, you
can use File ➝ Export Application to bundle your sketch as an application for Win-
dows, Mac OS X, and Linux.

The applet and application folders are overwritten whenever you export—make a
copy or remove them from the sketch folder before making changes to the index.html
file or the contents of the folder.

More about the export features can be found in the reference; see http://processing.
org/reference/environment/export.html.

Saving Your Work
If you don’t want to distribute the actual project, you might want to create images of
its output instead. Images are saved with the saveFrame() function. Adding
saveFrame() at the end of draw() will produce a numbered sequence of TIFF-format
images of the program’s output, named screen-0001.tif, screen-0002.tif, and so on. A
new file will be saved each time draw() runs. Watch out because this can quickly fill
your sketch folder with hundreds of files. You can also specify your own name and
file type for the file to be saved with a command like:

saveFrame("output.png")

To do the same for a numbered sequence, use #s (hash marks) where the numbers
should be placed:

saveFrame("output-####.png");

For high-quality output, you can write geometry to PDF files instead of the screen, as
described in the section “More About the size() Method,” later in this chapter.

http://processing.org/reference/environment/
http://processing.org/reference/environment/export.html
http://processing.org/reference/environment/export.html

24 | Chapter 2: Getting Started with Processing

Examples and Reference
While many programmers learn to code in school, others teach themselves. Learning
on your own involves looking at lots of other code: running, altering, breaking, and
enhancing it until you can reshape it into something new. With this learning model
in mind, the Processing software download includes dozens of examples that demon-
strate different features of the environment and API.

The examples can be accessed from the File ➝ Examples menu. They’re grouped into
categories based on their functions (such as Motion, Typography, and Image) or the
libraries they use (such as PDF, Network, and Video).

Find an interesting topic in the list and try an example. You’ll see commands that are
familiar, such as stroke(), line(), and background(), as well as others that have not
yet been covered. To see how a function works, select its name, and then right-click
and choose Find in Reference from the pop-up menu (Find in Reference can also be
found beneath the Help menu). That will open the reference for that function in your
default web browser.

In addition to a description of the function’s syntax, each reference page includes an
example that uses the function. The reference examples are much shorter (usually
four or five lines apiece) and easier to follow than the longer code examples.

More About the size() Method
The size() command also sets the global variables width and height. For objects
whose size is dependent on the screen, always use the width and height variables
instead of a number (this prevents problems when the size() line is altered):

size(400, 400);

// The wrong way to specify the middle of the screen
ellipse(200, 200, 50, 50);

// Always the middle, no matter how the size() line changes
ellipse(width/2, height/2, 50, 50);

In the earlier examples, the size() command specified only a width and height for
the new window. An optional parameter to the size() method specifies how graph-
ics are rendered. A renderer handles how the Processing API is implemented for a
particular output method (whether the screen, or a screen driven by a high-end
graphics card, or a PDF file). Several renderers are included with Processing, and
each has a unique function. At the risk of getting too far into the specifics, here are
examples of how to specify them with the size() command along with descriptions
of their capabilities.

Examples and Reference | 25

size(400, 400, JAVA2D);
The Java2D renderer is used by default, so this statement is identical to
size(400, 400). The Java2D renderer does an excellent job with high-quality 2D
vector graphics, but at the expense of speed. In particular, working with pixels is
slower compared to the P2D and P3D renderers.

size(400, 400, P2D);
The Processing 2D renderer is intended for simpler graphics and fast pixel opera-
tions. It lacks niceties such as stroke caps and joins on thick lines, but makes up
for it when you need to draw thousands of simple shapes or directly manipulate
the pixels of an image or video.

size(400, 400, P3D);
Similar to P2D, the Processing 3D renderer is intended for speed and pixel oper-
ations. It also produces 3D graphics inside a web browser, even without the use
of a library like Java3D. Image quality is poorer (the smooth() command is dis-
abled, and image accuracy is low), but you can draw thousands of triangles very
quickly.

size(400, 400, OPENGL);
The OpenGL renderer uses Sun’s Java for OpenGL (JOGL) library for faster ren-
dering, while retaining Processing’s simpler graphics APIs and the PDE’s easy
applet and application export. To use OpenGL graphics, you must select Sketch
➝ Import Library ➝ OpenGL in addition to altering your size() command.
OpenGL applets also run within a web browser without additional modifica-
tion, but a dialog box will appear asking users whether they trust “Sun Micro-
systems, Inc.” to run Java for OpenGL on their computers. If this poses a
problem, the P3D renderer is a simpler, if less full-featured, solution.

size(400, 400, PDF, "output.pdf");
The PDF renderer draws all geometry to a file instead of the screen. Like the
OpenGL library, you must import the PDF library before using this renderer.
This is a cousin of the Java2D renderer, but instead writes directly to PDF files.

Each renderer has a specific role. P2D and P3D are great for pixel-based work, while
the JAVA2D and PDF settings will give you the highest quality 2D graphics. When
the Processing project first began, the P2D and P3D renderers were a single choice
(and, in fact, the only available renderer). This was an attempt to offer a unified
mode of thinking about drawing, whether in two or three dimensions. However, this
became too burdensome because of the number of tradeoffs that must be made
between 2D and 3D. A very different expectation of quality exists for 2D and 3D, for
instance, and trying to cover both sides in one renderer meant doing both poorly.

26 | Chapter 2: Getting Started with Processing

Loading and Displaying Data
One of the unique aspects of the Processing API is the way files are handled. The
loadImage() and loadStrings() functions each expect to find a file inside a folder
named data, which is a subdirectory of the sketch folder.

File handling functions include loadStrings(), which reads a text file into an array of
String objects, and loadImage(), which reads an image into a PImage object, the con-
tainer for image data in Processing.

// Examples of loading a text file and a JPEG image
// from the data folder of a sketch.
String[] lines = loadStrings("something.txt");
PImage image = loadImage("picture.jpg");

These examples may be a bit easier to read if you know the programming concepts of
data types and classes. Each variable has to have a data type, such as String or
PImage.

The String[] syntax means “an array of data of the class String.” This array is cre-
ated by the loadStrings command and is given the name lines; it will presumably be
used later in the program under that name. The reason loadStrings creates an array
is that it splits the something.txt file into its individual lines. The second command
creates a single variable of class PImage, with the name image.

The data Folder
The data folder addresses a common frustration when dealing with code that is tested
locally but deployed over the Web. Like Java, software written with Processing is sub-
ject to security restrictions that determine how a program can access resources such as
the local hard disk or other servers via the Internet. This prevents malicious developers
from writing code that could harm your computer or compromise your data.

The security restrictions can be tricky to work with during development. When run-
ning a program locally, data can be read directly from the disk, though it must be
placed relative to the user’s “working directory,” generally the location of the applica-
tion. When running online, data must come from a location on the same server. It
might be bundled with the code itself (in a JAR archive, discussed later, or from
another URL on the same server). For a local file, Java’s FileInputStream class can be
used. If the file is bundled in a JAR archive, the getResource() function is used. For a
file on the server, URL.openStream() might be employed. During the journey from
development to deployment, it may be necessary to use all three of these methods.

With Processing, these scenarios (and some others) are handled transparently by the
file API methods. By placing resources in the data folder, Processing packages the files
as necessary for online and offline use.

Functions | 27

To add a file to a Processing sketch, use the Sketch ➝ Add File command, or drag the
file into the editor window of the PDE. The data folder will be created if it does not
exist already.

To view the contents of the sketch folder, use the Sketch ➝ Show Sketch Folder com-
mand. This opens the sketch window in your operating system’s file browser.

In the file commands, it’s also possible to use full path names to local files, or URLs
to other locations if the data folder is not suitable:

// Load a text file and an image from the specified URLs
String[] lines = loadStrings("http://benfry.com/writing/map/locations.tsv");
PImage image = loadImage("http://benfry.com/writing/map/map.png");

Functions
The steps of the process outlined in the first chapter are commonly associated with
specific functions in the Processing API. For instance:

Acquire
loadStrings(), loadBytes()

Parse
split()

Filter
for(), if (item[i].startsWith())

Mine
min(), max(), abs()

Represent
map(), beginShape(), endShape()

Refine
fill(), strokeWeight(), smooth()

Interact
mouseMoved(), mouseDragged(), keyPressed()

This is not an exhaustive list, but simply another way to frame the stages of visualiza-
tion for those more familiar with code.

Libraries Add New Features
A library is a collection of code in a specified format that makes it easy to use within
Processing. Libraries have been important to the growth of the project because they
let developers make new features accessible to users without making them part of the
core Processing API.

28 | Chapter 2: Getting Started with Processing

Several core libraries come with Processing. These can be seen in the Libraries sec-
tion of the online reference (also available from the Help menu from within the
PDE); see http://processing.org/reference/libraries.

One example is the XML import library. This is an extremely minimal XML parser
(based on the open source project NanoXML) with a small download footprint
(approximately 30KB) that makes it ideal for online use.

To use the XML library in a project, choose Sketch ➝ Import Library ➝ xml. This
will add the following line to the top of the sketch:

import processing.xml.*;

Java programmers will recognize the import command. In Processing, this line also
determines what code is packaged with a sketch when it is exported as an applet or
application.

Now that the XML library is imported, you can issue commands from it. For instance,
the following line loads an XML file named sites.xml into a variable named xml:

XMLElement xml = new XMLElement(this, "sites.xml");

The xml variable can now be manipulated as necessary to read the contents. The full
example can be seen in the reference for its class, XMLElement, at http://processing.org/
reference/libraries/xml/XMLElement.html.

The this variable is used frequently with library objects because it lets the library
make use of the core API functions to draw to the screen or load files. The latter case
applies to the XML library, allowing XML files to be read from the data folder or
other locations supported by the file API methods.

Other libraries provide features such as writing QuickTime movie files, sending and
receiving MIDI commands, sophisticated 3D camera control, and access to MySQL
databases.

Sketching and Scripting
Processing sketches are made up of one or more tabs, with each tab representing a
piece of code. The environment is designed around projects that are a few pages of
code, and often three to five tabs in total. This covers a significant number of
projects developed to test and prototype ideas, often before embedding them into a
larger project or building a more robust application for broader deployment.

This small-scale development style is useful for data visualization in two primary sce-
narios. The most common scenario is when you have a data set in mind, or a ques-
tion that you’re trying to answer, and you need a quick way to load the data,
represent it, and see what’s there. This is important because it lets you take an inven-
tory of the data in question. How many elements are there? What are the largest and
smallest values? How many dimensions are we looking at? We’ll return to this notion
of exploring data in future chapters.

http://processing.org/reference/libraries/
http://processing.org/reference/libraries/xml/XMLElement.html
http://processing.org/reference/libraries/xml/XMLElement.html

Sketching and Scripting | 29

In the second scenario, the desired outcome is known, but the correct means of rep-
resenting the data and interacting with it have not yet been determined.

The idea of sketching is identical to that of scripting, except that you’re not working
in an interpreted scripting language, but rather gaining the performance benefit of
compiling to Java class files. Of course, strictly speaking, Java itself is an interpreted
language, but its bytecode compilation brings it much closer to the “metal” than lan-
guages such as JavaScript, ActionScript, Python, or Ruby.

Processing was never intended as the ultimate language for visual programming;
instead, we set out to make something that was:

• A sketchbook for our own work, simplifying the majority of tasks that we
undertake

• A programming environment suitable for teaching programming to a non-
traditional audience

• A stepping stone from scripting languages to more complicated or difficult lan-
guages such as full-blown Java or C++

At the intersection of these points is a tradeoff between speed and simplicity of use.
If we didn’t care about speed, it might make sense to use Python, Ruby, or many
other scripting languages. That is especially true for the education side. If we didn’t
care about making a transition to more advanced languages, we’d probably avoid a
C++ or Java-style syntax. But Java is a nice starting point for a sketching language
because it’s far more forgiving than C/C++ and also allows users to export sketches
for distribution via the Web.

Processing assembles our experience in building software of this kind (sketches of
interactive works or data-driven visualization) and simplifies the parts that we felt
should be easier, such as getting started quickly, and insulates new users from issues
like those associated with setting up Java.

Don’t Start by Trying to Build a Cathedral
If you’re already familiar with programming, it’s important to understand how Pro-
cessing differs from other development environments and languages. The Processing
project encourages a style of work that builds code quickly, understanding that
either the code will be used as a quick sketch or that ideas are being tested before
developing a final project. This could be misconstrued as software engineering her-
esy. Perhaps we’re not far from “hacking,” but this is more appropriate for the roles
in which Processing is used. Why force students or casual programmers to learn
about graphics contexts, threading, and event handling methods before they can
show something on the screen that interacts with the mouse? The same goes for
advanced developers; why should they always need to start with the same two pages
of code whenever they begin a project?

30 | Chapter 2: Getting Started with Processing

In another scenario, if you’re doing scientific visualization, the ability to try things
out quickly is a far higher priority than sophisticated code structure. Usually you
don’t know what the outcome will be, so you might build something one week to try
an initial hypothesis and build something new the next based on what was learned in
the first week. To this end, remember the following considerations as you begin
visualizing data with Processing:

• Be careful about creating unnecessary structures in your code. As you learn
about encapsulating your code into classes, it’s tempting to make ever-smaller
classes because data can always be distilled further. Do you need classes at the
level of molecules, atoms, or quarks? Just because atoms go smaller doesn’t
mean that we need to work at a lower level of abstraction. If a class is half a page
long, does it make sense to have six additional subclasses that are each half a
page long? Could the same thing be accomplished with a single class that is a
page and a half in total?

• Consider the scale of the project. It’s not always necessary to build enterprise-
level software on the first day. We’re asking questions about data, so figure out
the minimum code necessary to help answer that question.

• Do you really need to use a database? If you’re manipulating half a gigabyte of
data and have a gigabyte of RAM, can you shove the data into memory and play
with it directly? If so, use that option; it lets you avoid developing a schema for
the database before you actually know what you’re doing (or want to do) with
the data.

• Do you need to start with all the data? Having collected precious terabytes of
potentially useful information, do you need all of it to answer your first round of
questions? A small percentage, which will require less infrastructure, is usually
enough to indicate whether a larger project is even worth pursuing.

The point is to delay engineering work until it’s appropriate. The threshold for where
to begin engineering a piece of visualization software is much later than for tradi-
tional programming projects because there is a kind of “art” to the early process of
quick iteration.

Of course, once things are working, avoid the urge to rewrite for its own sake. A
rewrite should be used when addressing a completely different problem. If you’ve
managed to hit the nail on the head, you should refactor to clean up method names
and class interactions. But a full rewrite of already finished code is almost always a
bad idea, no matter how “ugly” it seems.

Ready?
In this chapter, we covered the basics of the Processing environment, as well as a bit
of the philosophy behind the environment itself and the type of software built with
the language. In the next chapter, we’ll get started representing our first data set.

31

Chapter 3 CHAPTER 3

Mapping3

This chapter covers the basics of reading, displaying, and interacting with a data set.
As an example, we’ll use a map of the United States, and a set of data values for all
50 states. Drawing such a map is a simple enough task that could be done without
programming—either with mapping software or by hand—but it gives us an exam-
ple upon which to build. The process of designing with data involves a great deal of
iteration: small changes that help your project evolve in usefulness and clarity. And
as this project evolves through the course of the chapter, it will become clear how
software can be used to create representations that automatically update themselves,
or how interaction can be used to provide additional layers of information.

Drawing a Map
Some development environments separate work into projects; the equivalent term
for Processing is a sketch. Start a new Processing sketch by selecting File ➝ New.

For this example, we’ll use a map of the United States to use as a background image.
The map can be downloaded from http://benfry.com/writing/map/map.png.

Drag and drop the map.png file into the Processing editor window. A message at the
bottom will appear confirming that the file has been added to the sketch. You can also
add files by selecting Sketch ➝ Add File. A sketch is organized as a folder, and all data
files are placed in a subfolder named data. (The data folder is covered in Chapter 2.)

Then, enter the following code:

PImage mapImage;

void setup() {
 size(640, 400);
 mapImage = loadImage("map.png");
}

http://benfry.com/writing/map/map.png

32 | Chapter 3: Mapping

void draw() {
 background(255);
 image(mapImage, 0, 0);
}

Finally, click the Run button. Assuming everything was entered correctly, a map of
the United States will appear in a new window.

Explanation of the Processing Code
Processing API functions are named to make their uses as obvious as possible.
Method names, such as loadImage(), convey the purpose of the calls in simple lan-
guage. What you may need to get used to is dividing your code into functions such
as setup() and draw(), which determine how the code is handled. After clicking the
Run button, the setup() method executes once. After setup() has completed, the
draw() method runs repeatedly. Use the setup() method to load images, fonts, and
set initial values for variables. The draw() method runs at 60 frames per second (or
slower if it takes longer than 1/60th of a second to run the code inside the draw()
method); it can be used to update the screen to show animation or respond to mouse
movement and other types of input.

Our first function calls are very basic. The loadImage() function reads an image from
the data folder (URLs or absolute paths also work). The PImage class is a container
for image data, and the image() command draws it to the screen at a specific
location.

Locations on a Map
The next step is to specify some points on the map. To simplify this, a file contain-
ing the coordinates for the center of each state can be found at http://benfry.com/
writing/map/locations.tsv.

In future chapters, we’ll explore how this data is read. In the meantime, some code
to read the location data file can be found at http://benfry.com/writing/map/Table.pde.

Add both of these files to your sketch the same way that you added the map.png file
earlier.

The Table class is just two pages of code, and we’ll get into its function later. In the
meantime, suffice it to say that it reads a file as a grid of rows and columns. The class
has methods to get an int, float, or String for a specific row and column. To get
float values, for instance, use the following format:

table.getFloat(row, column)

Rows and columns are numbered starting at zero, so the column titles (if any) will be
row 0, and the row titles will be column 0.

http://benfry.com/writing/map/locations.tsv
http://benfry.com/writing/map/locations.tsv
http://benfry.com/writing/map/Table.pde

Locations on a Map | 33

In the previous section, we saw how displaying a map in Processing is a two-step
process:

1. Load the data.

2. Display the data in the desired format.

Displaying the centers of states follows the same pattern, although a little more code
is involved:

1. Create locationTable and use the locationTable.getFloat() function to read
each location’s coordinates (x and y values).

2. Draw a circle using those values. Because a circle, geometrically speaking, is just
an ellipse whose width and height are the same, graphics libraries provide an
ellipse-drawing function that covers circle drawing as well.

A new version of the code follows, with modifications highlighted:

PImage mapImage;
Table locationTable;
int rowCount;

void setup() {
 size(640, 400);
 mapImage = loadImage("map.png");
// Make a data table from a file that contains

 // the coordinates of each state.
 locationTable = new Table("locations.tsv");
 // The row count will be used a lot, so store it globally.
 rowCount = locationTable.getRowCount();
}

void draw() {
 background(255);
 image(mapImage, 0, 0);

 // Drawing attributes for the ellipses.
 smooth();
 fill(192, 0, 0);
 noStroke();

// Loop through the rows of the locations file and draw the points.
 for (int row = 0; row < rowCount; row++) {
 float x = locationTable.getFloat(row, 1); // column 1
 float y = locationTable.getFloat(row, 2); // column 2
 ellipse(x, y, 9, 9);
 }
}

The smooth(), fill(), and noStroke() functions apply to any drawing we subse-
quently do in the draw() function. Later, we’ll look at the aspects of drawing you can
control; here I’ll just mention that the fill() function assigns red, green, and blue
elements to the color. I’ve chosen to show all of the circles in red.

34 | Chapter 3: Mapping

Figure 3-1 shows the map and points for each location.

Data on a Map
Next we want to load a set of values that will appear on the map itself. For this, we
add another Table object and load the data from a file called random.tsv, available at
http://benfry.com/writing/map/random.tsv.

It’s always important to find the minimum and maximum values for the data,
because that range will need to be mapped to other features (such as size or color) for
display. To do this, use a for loop to walk through each line of the data table and
check to see whether each value is bigger than the maximum found so far, or smaller
than the minimum. To begin, the dataMin variable is set to MAX_FLOAT, a built-in value
for the maximum possible float value. This ensures that dataMin will be replaced
with the first value found in the table. The same is done for dataMax, by setting it to
MIN_FLOAT. Using 0 instead of MIN_FLOAT and MAX_FLOAT will not work in cases where
the minimum value in the data set is a positive number (e.g., 2.4) or the maximum is
a negative number (e.g., –3.75).

The data table is loaded in the same fashion as the location data, and the code to find
the minimum and maximum immediately follows:

PImage mapImage;
Table locationTable;
int rowCount;

Figure 3-1. U.S. map and centers of states

http://benfry.com/writing/map/random.tsv

Data on a Map | 35

Table dataTable;
float dataMin = MAX_FLOAT;
float dataMax = MIN_FLOAT;

void setup() {
 size(640, 400);
 mapImage = loadImage("map.png");
 locationTable = new Table("locations.tsv");
 rowCount = locationTable.getRowCount();

// Read the data table.
 dataTable = new Table("random.tsv");

 // Find the minimum and maximum values.
 for (int row = 0; row < rowCount; row++) {
 float value = dataTable.getFloat(row, 1);
 if (value > dataMax) {
 dataMax = value;
 }
 if (value < dataMin) {
 dataMin = value;
 }
 }
}

The other half of the program (shown later) draws a data point for each location. A
drawData() function is introduced, which takes x and y coordinates as parameters,
along with an abbreviation for a state. The drawData() function grabs the float value
from column 1 based on a state abbreviation (which can be found in column 0).

The getRowName() function gets the name of a particular row. This is just a conve-
nience function because the row name is usually in column 0, so it’s identical to
getString(row, 0). The row titles for this data set are the two-letter state abbrevia-
tions. In the modified example, getRowName() is used to get the state abbreviation for
each row of the data file.

The getFloat() function can also use a row name instead of a row number, which
simply matches the String supplied against the abbreviation found in column 0 of
the random.tsv data file. The results are shown in Figure 3-2.

The rest of the program follows:

void draw() {
 background(255);
 image(mapImage, 0, 0);

 smooth();
 fill(192, 0, 0);
 noStroke();

36 | Chapter 3: Mapping

 for (int row = 0; row < rowCount; row++) {
 String abbrev = dataTable.getRowName(row);
 float x = locationTable.getFloat(abbrev, 1);
 float y = locationTable.getFloat(abbrev, 2);
 drawData(x, y, abbrev);
 }
}

// Map the size of the ellipse to the data value
void drawData(float x, float y, String abbrev) {
 // Get data value for state
 float value = dataTable.getFloat(abbrev, 1);
 // Re-map the value to a number between 2 and 40
 float mapped = map(value, dataMin, dataMax, 2, 40);
 // Draw an ellipse for this item
 ellipse(x, y, mapped, mapped);
}

The map() function converts numbers from one range to another. In this case, value
is expected to be somewhere between dataMin and dataMax. Using map() repropor-
tions value to be a number between 2 and 40. The map() function is useful for hid-
ing the math involved in the conversion, which makes code quicker to write and
easier to read. A lot of visualization problems revolve around mapping data from one
range to another (e.g., from the min and max of the input data to the width or height
of a plot), so the map() method is used frequently in this book.

Figure 3-2. Varying data by size

Data on a Map | 37

Another refinement option is to keep the ellipse the same size but interpolate
between two different colors for high and low values. The norm() function maps val-
ues from a user-specified range to a normalized range between 0.0 and 1.0. The
percent value is a percentage of where value lies in the range from dataMin to
dataMax. For instance, a percent value of 0.5 represents 50%, or halfway between
dataMin and dataMax:

float percent = norm(value, dataMin, dataMax);

The lerp() function converts a normalized value to another range (norm() and lerp()
together make up the map() function), and the lerpColor() function does the same,
except it interpolates between two colors. The syntax:

color between = lerpColor(color1, color2, percent)

returns a between value based on the percentage (a number between 0.0 and 0.1)
specified. To make the colors interpolate between red and blue for low and high val-
ues, replace the drawData() function with the following:

void drawData(float x, float y, String abbrev) {
 float value = dataTable.getFloat(abbrev, 1);
 float percent = norm(value, dataMin, dataMax);
 color between = lerpColor(#FF4422, #4422CC, percent); // red to blue
 fill(between);
 ellipse(x, y, 15, 15);
}

Results are shown in Figure 3-3.

Figure 3-3. Varying data by color

38 | Chapter 3: Mapping

This illustrates the problem with interpolating between two unrelated colors. Two
separate colors make sense for positive and negative values (see the next section
“Two-Sided Data Ranges” and Figure 3-6), but the idea of purple as an in-between
value is confusing to read because it’s difficult to say just how red or blue the values
are—everything becomes a muddy purple. If using two different colors, a better
option is to provide a neutral value in between the two colors, such as white or
black.

On the other hand, to make color interpolation work, it’s better to employ a pair of
similar colors. For instance, blue and green provide an alternative gradation of val-
ues that is easier to read than the red-to-purple-to-blue range. Replace the lerpColor
line with the following:

 color between = lerpColor(#296F34, #61E2F0, percent);

and take a look at the result in Figure 3-4.

The interpolated values tend to be “muddy” because the interpolation is calculated
in RGB color space. To preserve the saturation and brightness of colors, a better
option is the HSB color space, particularly when dealing with colors that are similar
in hue. A fourth parameter to lerpColor() allows you to change the color space used
for interpolation:

 color between = lerpColor(#296F34, #61E2F0, percent, HSB);

Changing to the HSB color model improves brightness and contrast; see Figure 3-5.

Figure 3-4. Varying data by color: better color choices

Data on a Map | 39

But the color mix is still lacking, so next let’s look at other options.

RGB and HSB Color Spaces
The HSB color space defines colors based on hue, saturation, and brightness instead of
the red, green, and blue values used in RGB. The RGB color space has more to do with
how color is represented by computer screens than how we actually perceive color.
Intermediate steps in each of the hue, saturation, and brightness components of a color
provide better interpolation because each of the perceptual aspects of the color are bro-
ken apart—the shift in the hue component is separated from the shift in saturation and
the shift in brightness.

In the RGB color space, a gray value occurs whenever the R, G, and B components are
identical (or at least similar). In RGB space, the color halfway between orange (255,
128, 0) and light blue (0, 128, 255) is gray (128, 128, 128). So using lerpColor() in
RGB mode would cause the orange to become more gray at each step, until it reaches
gray; then, it would slowly move from gray to blue. Not too pleasing to look at.

On the other hand, RGB mode is preferred when there are significant changes in hue.
For instance, if you begin at red and interpolate to green in HSB space, you’ll iterate
through all the spectrum colors in between: from red, to orange, then to yellow, and
finally to green.

Figure 3-5. Varying data by color: better color space

40 | Chapter 3: Mapping

Two-Sided Data Ranges
Because the values in the data set are positive and negative, a better option would be
to use separate colors for positive or negative while changing the size of each ellipse
to reflect the range. The following replacement for drawData() separates positive and
negative values as well as indicating the magnitude (absolute value) of each value.

In this case, positive values are remapped from 0 through the maximum data value
into a value between 3 and 30 for the diameter of the ellipse. Negative values are
mapped in a similar fashion, where the most negative (dataMin) will be mapped to
size 30, and the least negative (0) will be mapped to size 3. Positive values are drawn
with blue ellipses and negative values with red; see Figure 3-6.

void drawData(float x, float y, String abbrev) {
 float value = dataTable.getFloat(abbrev, 1);
 float diameter = 0;
 if (value >= 0) {
 diameter = map(value, 0, dataMax, 3, 30);
 fill(#333366); // blue
 } else {
 diameter = map(value, 0, dataMin, 3, 30);
 fill(#EC5166); // red
 }
 ellipse(x, y, diameter, diameter);
}

Figure 3-6. Magnitude and positive/negative

Data on a Map | 41

Figure 3-6 is much easier to read and interpret than the previous representations;
however, we’ve used up two visual features (size and color) on a single dimension of
the data. For a simple data set such as this one, it’s not a problem, but if we look at a
pair of data values, we would want to use color for one dimension of the data and
size for the other. In some cases, showing one variable two ways can be helpful for
reinforcing the meaning of the values, but it’s often done without consideration. The
approach used in Figure 3-6 would be an appropriate solution if the difference
between positive and negative values was our primary or secondary interest.

To preserve size for another aspect of the data, another option would be to map the
transparency of the ellipses to their relative values. Transparency is also referred to as
alpha transparency or usually just alpha. It’s controlled by an optional second param-
eter to the fill() function; 0 means that the entire background shows though the
object, whereas 255 means the object is totally opaque.

Yet another revision of the drawData() function shows how transparency is con-
trolled; see Figure 3-7.

void drawData(float x, float y, String abbrev) {
 float value = dataTable.getFloat(abbrev, 1);
 if (value >= 0) {
 float a = map(value, 0, dataMax, 0, 255);
 fill(#333366, a);
 } else {
 float a = map(value, 0, dataMin, 0, 255);

Figure 3-7. Magnitude and positive/negative using transparency

42 | Chapter 3: Mapping

 fill(#EC5166, a);
 }
 ellipse(x, y, 15, 15);
}

Transparency can be useful for features at a glance, but it doesn’t provide a lot of dif-
ferentiation between the values (as can be seen here). For this particular data set, Fig-
ures 3-2 and 3-6 provide the best solutions in terms of visual design. The others are
included to show alternatives and demonstrate the thinking process behind visual
refinements.

Provide More Information with a Mouse Rollover (Interact)
Adding a small amount of interaction can help make a display more useful, and this
feature shows how Processing makes mouse information readily available. As the
mouse hovers above a particular state, additional information about that location
can be revealed.

To show the extra information as text, a font is required. Use the Create Font option
under the Tools menu. For this example, a typeface named Univers Bold was chosen
from the list, and the size was set to 12. (Univers may not be available on your
machine, so choose any font you’d like.)

Clicking OK adds a file named Univers-Bold-12.vlw to the data folder. Now when
the sketch is exported as an applet or application, the font can be used on other
machines, even if Univers is not installed on them.

Adding these lines to setup() sets the font:

 PFont font = loadFont("Univers-Bold-12.vlw");
 textFont(font);

Because fonts are loaded from files, loadFont() should be used only inside setup()
(and not from the draw() method); otherwise, the font will be loaded repeatedly and
slow down the program.

The location of the loadFont() call reiterates a valuable principle that
may guide you when placing other function calls. The setup() method
runs only once, when a browser or other program loads a sketch. The
draw() method runs repeatedly (several times a second) so that
sketches can be updated over time and animated.

The textFont() command sets the current font.

The rollover itself is handled by checking the distance between the mouse and the
data point. If the mouse is within a certain range of the point, the text appears. The
distance is calculated with the dist() function, and because this will calculate the
radius between the location and the mouse, we issue ellipseMode(RADIUS) to draw
the data points before dist(). Using the radius also helps because it can be used to

Data on a Map | 43

place the text above the data point: the distance to the bottom of the text will be the
radius plus a few pixels of space. As the default ellipseMode is DIAMETER (and a radius
is half a diameter), we’ll adjust the preceding map() function to use the values 1.5
and 15 instead of 3 and 30:

void drawData(float x, float y, String abbrev) {
 float value = dataTable.getFloat(abbrev, 1);
 float radius = 0;
 if (value >= 0) {
 radius = map(value, 0, dataMax, 1.5, 15);
 fill(#4422CC); // blue
 } else {
 radius = map(value, 0, dataMin, 1.5, 15);
 fill(#FF4422); // red
 }
 ellipseMode(RADIUS);
 ellipse(x, y, radius, radius);

 if (dist(x, y, mouseX, mouseY) < radius+2) {
 fill(0);
 textAlign(CENTER);
 // Show the data value and the state abbreviation in parentheses.
 text(value + " (" + abbrev + ")", x, y-radius-4);
 }
}

The parameters to text() are a bit complex. The first argument—which is the text to
display—combines the data itself (value) with the state abbreviation (abbrev), enclos-
ing the abbreviation in parentheses. The second and third parameters specify the x
and y position of the text. The vertical location is y-radius-4, which is the y-
coordinate at the center of the circle, minus the radius to get to the edge of the cir-
cle, minus four more pixels.

Because the mouse cursor extends to the right and downward, we’ve placed the text
above the circle to prevent the arrow from covering up the data itself. This is a gen-
eral problem with rollovers that we’ll return to later: rollover text or the means for
selecting it can obscure the data underneath.

With the rollover, you might want to bring in additional types of data as well. An
additional data file that maps abbreviations to the full state name can be found at
http://benfry.com/writing/map/names.tsv.

The table in this data file will be used in conjunction with the others to look up
names for the individual states. More commonly, this particular data would be found
in the same data file as the others, but it’s useful to introduce the idea of joining mul-
tiple sets of data. Joining data frequently is necessary, and the opportunity to com-
bine data sets from different sources is a powerful aspect of data visualization.

First, add a nameTable declaration after the locationTable declaration at the begin-
ning of the code:

Table nameTable;

http://benfry.com/writing/map/names.tsv

44 | Chapter 3: Mapping

Next, load the nameTable along with the others inside the setup() function:

nameTable = new Table("names.tsv");

Finally, when drawing the text for the rollover, grab the full name from the table and
display it:

String name = nameTable.getString(abbrev, 1);
text(name + " " + value, x, y-radius-4);

With the longer text showing, sometimes the parts of the text will appear behind
other points because the states are all drawn in order. Because Massachusetts is
drawn after Connecticut, the dot for Massachusetts will cover the rollover text for
Connecticut. To change this behavior, first draw the data points for all the states,
and then draw the rollover text for the current selection. When drawing each state,
we’ll check to see whether the mouse is in the vicinity, and if so, that state is a candi-
date for having its name drawn.

You might also notice that when using the mouse in the area of smaller states (such
as those in the Northeast), several names will show up. To handle this, we’ll keep
track of the state that is closest to the mouse and show only the information for that
state. As each state is drawn, we’ll check whether the distance from the state’s loca-
tion to the mouse is the smallest found so far, and if so, store its X and Y position
along with the text to show at that position. These three variables will be updated as
each data point within range of the mouse is drawn. After the data points have fin-
ished drawing, the text can be drawn at that particular X and Y point.

The mouseX and mouseY variables are updated on each trip through draw(). Because
the draw() method runs repeatedly (at around 60 frames per second), updates for the
rollover happen almost instantaneously.

The top of the program remains unchanged, but the draw() and drawData() func-
tions are replaced with the following:

Handling Mouse Interaction
In more sophisticated programs, it’s common to package how elements are drawn into
an individual class—a set of code that groups together related functions and variables.
For instance, each state could be an instance of a class that contains the name, data
value, and location on screen for each state. Mouse interaction would be handled by a
function inside the class that checks whether the mouse location is near the location
value for the state. We’ll see this method used in later chapters.

The Processing API provides few high-level elements—there is currently no Shape class
that handles such things automatically. Instead, the API is designed so that such classes
are either unnecessary or simple for others to build into their own projects.

Data on a Map | 45

// Global variables set in drawData() and read in draw()
float closestDist;
String closestText;
float closestTextX;
float closestTextY;

void draw() {
 background(255);
 image(mapImage, 0, 0);

 closestDist = MAX_FLOAT;

 for (int row = 0; row < rowCount; row++) {
 String abbrev = dataTable.getRowName(row);
 float x = locationTable.getFloat(abbrev, 1);
 float y = locationTable.getFloat(abbrev, 2);
 drawData(x, y, abbrev);
 }

 // Use global variables set in drawData()
 // to draw text related to closest circle.
 if (closestDist != MAX_FLOAT) {
 fill(0);
 textAlign(CENTER);
 text(closestText, closestTextX, closestTextY);
 }
}

void drawData(float x, float y, String abbrev) {
 float value = dataTable.getFloat(abbrev, 1);
 float radius = 0;
 if (value >= 0) {
 radius = map(value, 0, dataMax, 1.5, 15);
 fill(#4422CC); // blue
 } else {
 radius = map(value, 0, dataMin, 1.5, 15);
 fill(#FF4422); // red
 }
 ellipseMode(RADIUS);
 ellipse(x, y, radius, radius);

 float d = dist(x, y, mouseX, mouseY);
 // Because the following check is done each time a new
 // circle is drawn, we end up with the values of the
 // circle closest to the mouse.
 if ((d < radius + 2) && (d < closestDist)) {
 closestDist = d;
 String name = nameTable.getString(abbrev, 1);
 closestText = name + " " + value;
 closestTextX = x;
 closestTextY = y-radius-4;
 }
}

46 | Chapter 3: Mapping

Updating Values over Time (Acquire, Mine)
A static map isn’t particularly interesting, especially when there’s the possibility of an
interactive environment. In addition, data values are often dynamic. They might
change every second, every hour, or every year, but in each case, we’ll want to depict
the change over time. For example, we can replace the data with random values each
time a key is pressed. Again, because draw() is called repeatedly, the values shown
on screen will update immediately.

The code in this section provides an initial illustration of how to handle user inter-
action, a theme I’ll expand in the book.

One problem with changing data is that the minimum and maximum values need to
stay fixed. You’ll need to figure out the absolute values for each because recalculat-
ing dataMin and dataMax each time new data is found will make the data points
appear out of proportion to the previous set of values. For this example, we’ll set the
minimum and maximum values to –10 and 10, when the variables are first declared
at the beginning of the program:

Table dataTable;
float dataMin = -10;
float dataMax = 10;

This change means that the code to find the minimum and maximum values can be
removed from the setup() method.

The following code builds on the previous step and adds a function to randomize the
data values each time the Space bar is pressed:

void keyPressed() {
 if (key == ' ') {
 updateTable();
 }
}

void updateTable() {
 for (int row = 0; row < rowCount; row++) {
 float newValue = random(dataMin, dataMax);
 dataTable.setFloat(row, 1, newValue);
 }
}

The random() function takes a minimum and maximum value, and returns a value
starting with the minimum, up to but not including the maximum. The setFloat()
function overwrites the old value from the data table with the new random value.

When running this code, press the Space bar once to see a new set of data appear.
You might also notice that the rollovers now look a bit silly because the randomized
values might have six or seven digits of precision. This can be changed with the nf()
function, which is used to format numbers for printing.

Data on a Map | 47

The basic form of nf() specifies the number of digits to the left and right of the deci-
mal point. Specifying 0 for either position means “any” number of digits. So, to allow
any number of digits to the left of the decimal point and two digits to the right, the
line that sets closestText changes from:

 closestText = name + " " + value;

to the following:

 closestText = name + " " + nf(value, 0, 2);

The name for nf() is intentionally terse (if a bit cryptic) because it’s almost always
used in situations when it’s being concatenated to another part of a String. Two
related functions are:

nfp()
Requires each number to be shown with a + or – sign.

nfs()
Pads values with spaces to fill out the number of digits specified. This is useful in
some situations for lining up values in vertical columns.

Because we care about positive and negative, nfp() is probably best suited for our
purpose. This turns “North Dakota 6.15234534” into “North Dakota +6.15”, which
is far more readable.

Instead of randomizing the data, updateTable() could be used to load a new set of
values from another data source, whether another file or a location online. For
instance, the following URL can be used to read a new set of data from the Web:

http://benfry.com/writing/map/random.cgi

At this location is a simple Perl script that generates a new set of values and sends
them over a CGI connection. The code follows, with comments for those not famil-
iar with Perl syntax:

#!/usr/bin/perl

An array of the 50 state abbreviations
@states = ('AL', 'AK', 'AZ', 'AR', 'CA', 'CO', 'CT', 'DE', 'FL', 'GA',
 'HI', 'ID', 'IL', 'IN', 'IA', 'KS', 'KY', 'LA', 'ME', 'MD',
 'MA', 'MI', 'MN', 'MS', 'MO', 'MT', 'NE', 'NV', 'NH', 'NJ',
 'NM', 'NY', 'NC', 'ND', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC',
 'SD', 'TN', 'TX', 'UT', 'VT', 'VA', 'WA', 'WV', 'WI', 'WY');

A CGI script must identify the type of data it's sending;
this line specifies that plain text data will follow.
print "Content-type: text/plain\n\n";

Loop through each of the state abbreviations in the array.
foreach $state (@states) {

http://benfry.com/writing/map/random.cgi

48 | Chapter 3: Mapping

 # Pick a random number between -10 and 10. (rand() returns a
 # number between 0 and 1; multiply that by 20 and subtract 10.)
 $r = (rand() * 20) - 10;

 # Print the state name, followed by a tab,
 # then the random value, followed by a new line.
 print "$state\t$r\n";
}

To use this URL, the code for the updateTable() function changes to the following:

void updateTable() {
 dataTable = new Table("http://benfry.com/writing/map/random.cgi");
}

Even though this script just produces randomized data, the same model could be
used in actual practice, where a data set is generated online—perhaps from a data-
base or something else that is accessible only through a network connection.

Smooth Interpolation of Values over Time (Refine)
When updating data, it’s important to show users the transition over time. Interpo-
lating between values helps users track where the changes occur and provides con-
text for the change as it happens. The way to think about interpolation is that your
data values are never “equal” to some number; rather, they’re always “becoming” or
“transitioning to” another value.

For this, we use another class called an Integrator. The contents of the code will be
explained shortly, but for the time being, it can be downloaded from http://benfry.
com/writing/map/Integrator.pde.

This code implements a simple physics-based interpolator. A force is exerted by
which a value can “target” another, in the manner of a spring (more about this later).
The important thing to understand is that an Integrator object represents a single
data value. When the Integrator is constructed, an initial value is set:

Integrator changingNumber = new Integrator(4);

To make the value transition from 4 (its initial value) to –2, use the target() method:

changingNumber.target(-2);

This has no effect yet on the display. For the value to update, you must call the
update() method of the Integrator:

changingNumber.update();

Usually this is done at the beginning of draw(). The target() method is called when-
ever a state changes, and the constructor is used inside setup(). The Integrator has
a value field that always holds its current value. To set the diameter of an ellipse
based on the changing value, a line like this would be used inside draw():

ellipse(x, y, changingNumber.value, changingNumber.value);

http://benfry.com/writing/map/Integrator.pde
http://benfry.com/writing/map/Integrator.pde

Data on a Map | 49

Because our state example uses 50 values, we need to create an array of Integrator
objects inside setup(), update each of them at the beginning of setup(), and
target() them to new values each time the display changes, effectively producing
an animation. Instead of using getFloat() to read values from the dataTable object,
the dataTable object will be used to target() the Integrator list.

The modified code looks like this:

PImage mapImage;
Table locationTable;
Table nameTable;
int rowCount;

Table dataTable;
float dataMin = -10;
float dataMax = 10;

Integrator[] interpolators;

void setup() {
 size(640, 400);
 mapImage = loadImage("map.png");
 locationTable = new Table("locations.tsv");
 nameTable = new Table("names.tsv");
 rowCount = locationTable.getRowCount();

 dataTable = new Table("random.tsv");

 // Setup: load initial values into the Integrator.
 interpolators = new Integrator[rowCount];
 for (int row = 0; row < rowCount; row++) {
 float initialValue = dataTable.getFloat(row, 1);
 interpolators[row] = new Integrator(initialValue);
 }

 PFont font = loadFont("Univers-Bold-12.vlw");
 textFont(font);

 smooth();
 noStroke();
}

float closestDist;
String closestText;
float closestTextX;
float closestTextY;

void draw() {
 background(255);
 image(mapImage, 0, 0);

50 | Chapter 3: Mapping

 // Draw: update the Integrator with the current values,
 // which are either those from the setup() function
 // or those loaded by the target() function issued in
 // updateTable().
 for (int row = 0; row < rowCount; row++) {
 interpolators[row].update();
 }

 closestDist = MAX_FLOAT;

 for (int row = 0; row < rowCount; row++) {
 String abbrev = dataTable.getRowName(row);
 float x = locationTable.getFloat(abbrev, 1);
 float y = locationTable.getFloat(abbrev, 2);
 drawData(x, y, abbrev);
 }

 if (closestDist != MAX_FLOAT) {
 fill(0);
 textAlign(CENTER);
 text(closestText, closestTextX, closestTextY);
 }
}

void drawData(float x, float y, String abbrev) {
 // Figure out what row this is.
 int row = dataTable.getRowIndex(abbrev);
 // Get the current value.
 float value = interpolators[row].value;

 float radius = 0;
 if (value >= 0) {
 radius = map(value, 0, dataMax, 1.5, 15);
 fill(#4422CC); // blue
 } else {
 radius = map(value, 0, dataMin, 1.5, 15);
 fill(#FF4422); // red
 }
 ellipseMode(RADIUS);
 ellipse(x, y, radius, radius);

 float d = dist(x, y, mouseX, mouseY);
 if ((d < radius + 2) && (d < closestDist)) {
 closestDist = d;
 String name = nameTable.getString(abbrev, 1);
 // Use target (not current) value for showing the data point.
 String val = nfp(interpolators[row].target, 0, 2);
 closestText = name + " " + val;
 closestTextX = x;
 closestTextY = y-radius-4;
 }
}

Using Your Own Data | 51

void keyPressed() {
 if (key == ' ') {
 updateTable();
 }
}

void updateTable() {
 for (int row = 0; row < rowCount; row++) {
 float newValue = random(-10, 10);
 interpolators[row].target(newValue);
 }
}

The changes will transition very quickly, and there are two ways to handle this. The
first is to adjust the frame rate of your application, which may be very high. By
default, the frame rate is capped to 60 frames per second (fps). When building ani-
mated graphics, it’s important to keep an eye on the frame rate to avoid situations in
which a faster computer runs your code too quickly. Simply setting the maximum
frame rate lower results in a more visually pleasing presentation. This line, added to
the end of setup(), sets the maximum to 30 fps:

frameRate(30);

Another option is to use the Integrator class’s own parameters. We mentioned that
the Integrator class uses math for simple physics that simulate a spring. The target
value is the resting length of the spring. The other parameters are defined in terms of
physical properties, which include the damping (how much friction exists to prevent
the changes from being too wobbly) and the degree of attraction (how quickly the
value will become another). You can set the damping and attraction in the construc-
tor. The default damping is 0.5 and the attraction is 0.2. Even without modifying the
frameRate() setting, changing the constructor can make things move much more
slowly:

 interpolators[row] = new Integrator(initialValue, 0.5, 0.01);

Cutting down the damping makes things bouncy:

 interpolators[row] = new Integrator(initialValue, 0.9, 0.1);

Using Your Own Data
The file format presented in this chapter is straightforward, so try replacing the
random.tsv file with your own data based on the 50 states. It’s remarkably easy to
plot your own values to individual locations. You’ll probably still use the map() func-
tion, but you don’t have to use ellipses or colors to plot your data points. You could
draw an image at each location, varying its size based on the data. Or some points
could be hidden or reorganize themselves in various ways. The points might refer to
anything from chain coffee shops per capita to poverty levels in each state.

52 | Chapter 3: Mapping

Taking Data from the User
Not everyone wants to employ data relating to the United States, but the same tech-
nique is sound for any type of data mapped to particular points. In later chapters,
we’ll get into mapping latitude and longitude coordinates, as well as using shape
data for locations, but even the simple example presented in this chapter can be used
in many other ways.

The following code reads from the names.tsv file and asks the user to indicate a loca-
tion for each in turn, by clicking the mouse where the user wants the data to be
placed. Start this example as a separate sketch. It requires a map.png file, a names.tsv
file, and the Table.pde file used throughout this chapter. The map image and names
file can be replaced with data of your choice, and this code produces a locations.tsv
file that can be added to the data folder of the new sketch:

PImage mapImage;
Table nameTable;

int currentRow = -1;
PrintWriter writer;

void setup() {
 size(640, 400);
 mapImage = loadImage("map.png");
 nameTable = new Table("names.tsv");
 writer = createWriter("locations.tsv");
 cursor(CROSS); // make easier to pinpoint a location
 println("Click the mouse to begin.");
}

void draw() {
 image(mapImage, 0, 0);
}

void mousePressed() {
 if (currentRow != -1) {
 String abbrev = nameTable.getRowName(currentRow);
 writer.println(abbrev + "\t" + mouseX + "\t" + mouseY);
 }

 currentRow++;
 if (currentRow == nameTable.getRowCount()) {
 // Close the file and finish.
 writer.flush();
 writer.close();
 exit();
 } else {
 // Ask for the next coordinate.
 String name = nameTable.getString(currentRow, 1);
 println("Choose location for " + name + ".");
 }
}

Next Steps | 53

Next Steps
In this chapter, we learned the basics of reading, displaying, and interacting with a
data set. The chapters that follow delve into far more sophisticated aspects of each,
but all of them build on the basic skills you’ve picked up here.

54

Chapter 4CHAPTER 4

Time Series 4

The time series is a ubiquitous type of data set. It describes how some measurable
feature (for instance, population, snowfall, or items sold) has changed over a period
of time. Edward Tufte credits Johann Heinrich Lambert with the formal introduc-
tion of the time series to scientific literature in the 1700s.*

Because of its ubiquity, the time series is a good place to start when learning about
visualization. With it we can cover:

• Acquiring a table of data from a text file

• Parsing the contents of the file into a usable data structure

• Calculating the boundaries of the data to facilitate representation

• Finding a suitable representation and considering alternatives

• Refining the representation with consideration for placement, type, line weight,
and color

• Providing a means of interacting with the data so that we can compare variables
against one another or against the average of the whole data set

For a straightforward data set, let’s turn to the U.S. Department of Agriculture
(USDA) for statistics on beverage consumption. Government sites are a terrific
resource for data; see Chapter 9 for more information about them and other sources
of data.

Most methods will be implemented “by hand” in this section. Further down the line,
we’ll make generalized code to handle different scenarios, such as reading a table
from a file or placing labels and grid lines on a plot.

* Tufte, Edward R. The Visual Display of Quantitative Information. Cheshire, Conn.: Graphics Press, 1983.

Cleaning the Table (Filter and Mine) | 55

Milk, Tea, and Coffee (Acquire and Parse)
The data set we use was originally downloaded from http://www.ers.usda.gov/Data/
FoodConsumption/FoodAvailQueriable.aspx.

The page lets you define a query to download a data set of interest. The site claims
that the data is in Excel format, but a glance at the contents of the resulting file
shows that it’s only an HTML file with an .xls extension that fools Excel into open-
ing it. Rather than getting into the specifics of how to download and clean the data, I
offer an already processed version here:

http://benfry.com/writing/series/milk-tea-coffee.tsv

This data set contains three columns: the first for milk, the second for coffee, and the
third for tea consumption in the United States from 1910 to 2004.

To read this file, use this modified version of the Table class from the previous
chapter:

http://benfry.com/writing/series/FloatTable.pde

The modified version handles data stored as float values, making it more efficient
than the previous version, which simply converted the data whenever getString(),
getFloat(), or getInt() were used.

Open Processing and start a new sketch. Add both files to the sketch by either drag-
ging each into the editor window or using Sketch ➝ Add File.

Cleaning the Table (Filter and Mine)
It’s necessary to determine the minimum and maximum of each of the columns in
the pre-filtered data set. These values are used to properly scale plotted points to
locations on the screen.

The FloatTable class has methods for calculating the min and max for the rows and
columns. These methods are worth discussing because they are important in later
code. The following example calculates the minimum value for a column (comments
denote important portions of the code):

 float getColumnMax(int col) {
 // Set the value of m arbitrarily high, so the first value
 // found will be set as the maximum.
 float m = MIN_FLOAT;

 // Loop through each row.
 for (int row = 0; row < rowCount; row++) {

 // Only consider valid data elements (see later text).
 if (isValid(row, col)) {

http://www.ers.usda.gov/Data/FoodConsumption/FoodAvailQueriable.aspx
http://www.ers.usda.gov/Data/FoodConsumption/FoodAvailQueriable.aspx
http://benfry.com/writing/series/milk-tea-coffee.tsv
http://benfry.com/writing/series/FloatTable.pde

56 | Chapter 4: Time Series

 // Finally, check to see if the value
 // is greater than the maximum found so far.
 if (data[row][col] > m) {
 m = data[row][col];
 }
 }
 }
 return m;
 }

The isValid() method is important because most data sets have incomplete data. In
the milk-tea-coffee.tsv file, all of the data is valid, but in most data sets (including
others used in this chapter), missing values require extra consideration.

Because the values for milk, coffee, and tea will be compared against one another, it’s
necessary to calculate the maximum value across all of the columns. The following
bit of code does this after loading the milk-tea-coffee.tsv file:

FloatTable data;
float dataMin, dataMax;

void setup() {
 data = new FloatTable("milk-tea-coffee.tsv");

 dataMin = 0;
 dataMax = data.getTableMax();
}

Sometimes, it’s also useful to calculate the minimum value, but setting the minimum
to zero provides a more accurate comparison between the three data sets. The mini-
mum for this data set is 5.1, and the values for the tea column hover around 6, so
using 5.1 as the dataMin value would produce a chart that looked as though the bev-
erage history included periods of no (or nearly no) tea consumption in the U.S. In
addition, if the value is 6, it’s important that the relative difference seen by the viewer
is not just 0.9, but that it shows the full range from 0 up to 5.1 and how it compares
to a value of 6.

Each row name specifies a year, which will be used later to draw labels on the plot.
To make them useful in code, it’s also necessary to get the minimum and maximum
year after converting the entire group to an int array. The getRowNames() method
inside FloatTable returns a String array that can be converted with the int() casting
function:

FloatTable data;
float dataMin, dataMax;

int yearMin, yearMax;
int[] years;

void setup() {
 data = new FloatTable("milk-tea-coffee.tsv");

A Simple Plot (Represent and Refine) | 57

 years = int(data.getRowNames());
 yearMin = years[0];
 yearMax = years[years.length - 1];

 dataMin = 0;
 dataMax = data.getTableMax();
}

A Simple Plot (Represent and Refine)
To begin the representation, it’s first necessary to set the boundaries for the plot
location. The plotX1, plotY1, plotX2, and plotY2 variables define the corners of the
plot. To provide a nice margin on the left, set plotX1 to 50, and then set the plotX2
coordinate by subtracting this value from width. This keeps the two sides even, and
requires only a single change to adjust the position of both. The same technique is
used for the vertical location of the plot:

FloatTable data;
float dataMin, dataMax;

float plotX1, plotY1;
float plotX2, plotY2;

int yearMin, yearMax;
int[] years;

void setup() {
 size(720, 405);

 data = new FloatTable("milk-tea-coffee.tsv");

 years = int(data.getRowNames());
 yearMin = years[0];
 yearMax = years[years.length - 1];

 dataMin = 0;
 dataMax = data.getTableMax();

 // Corners of the plotted time series
 plotX1 = 50;
 plotX2 = width - plotX1;
 plotY1 = 60;
 plotY2 = height - plotY1;

 smooth();
}

Next, add a draw() method that sets the background to a light gray and draws a
filled white rectangle for the plotting area. That will make the plot stand out against
the background, rather than a color behind the plot itself—which can muddy its
appearance.

58 | Chapter 4: Time Series

The rect() function normally takes the form rect(x, y, width, height), but
rectMode(CORNERS) changes the parameters to rect(left, top, right, bottom), which
is useful because our plot’s shape is defined by the corners. Like other methods that
affect drawing properties, such as fill() and stroke(), rectMode() affects all geom-
etry that is drawn after it until the next time rectMode() is called:

void draw() {
 background(224);

 // Show the plot area as a white box.
 fill(255);
 rectMode(CORNERS);
 noStroke();
 rect(plotX1, plotY1, plotX2, plotY2);

 strokeWeight(5);
 // Draw the data for the first column.
 stroke(#5679C1);
 drawDataPoints(0);
}

// Draw the data as a series of points.
void drawDataPoints(int col) {
 int rowCount = data.getRowCount();
 for (int row = 0; row < rowCount; row++) {
 if (data.isValid(row, col)) {
 float value = data.getFloat(row, col);
 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 float y = map(value, dataMin, dataMax, plotY2, plotY1);
 point(x, y);
 }
 }
}

Because the data is drawn as points using the drawDataPoints() method, a stroke
color and weight are set. This method also takes a column index to draw as a param-
eter. The results are in Figure 4-1. For the first step, I’ve shown only the first column
of data (the values for milk consumption).

The map() function does most of the work. The x coordinate is calculated by map-
ping the year for each row from yearMin and yearMax to plotX1 and plotX2. Another
option would be to use the row variable, instead of the year:

float x = map(row, 0, rowCount-1, plotX1, plotX2);

But a value for row would be less accurate because a year or two might be missing
from the data set, which would skew the representation. Again, this data set is com-
plete, but often that is not the case.

Labeling the Current Data Set (Refine and Interact) | 59

Labeling the Current Data Set (Refine and Interact)
Missing from the previous code is an indicator of the currently visible column of data
(whether milk, tea, or coffee) and a means to swap between each of the three. For
this, we add a variable to keep track of the current column, and another for the font
used for the title. And few lines of code are added to the draw() method to write the
name of the column with the text() method:

FloatTable data;
float dataMin, dataMax;

float plotX1, plotY1;
float plotX2, plotY2;

int currentColumn = 0;
int columnCount;

int yearMin, yearMax;
int[] years;

PFont plotFont;

void setup() {
 size(720, 405);

Figure 4-1. One set of points over time

60 | Chapter 4: Time Series

 data = new FloatTable("milk-tea-coffee.tsv");
 columnCount = data.getColumnCount();

 years = int(data.getRowNames());
 yearMin = years[0];
 yearMax = years[years.length - 1];

 dataMin = 0;
 dataMax = data.getTableMax();

 // Corners of the plotted time series
 plotX1 = 50;
 plotX2 = width - plotX1;
 plotY1 = 60;
 plotY2 = height - plotY1;

 plotFont = createFont("SansSerif", 20);
 textFont(plotFont);

 smooth();
}

void draw() {
 background(224);

 // Show the plot area as a white box.
 fill(255);
 rectMode(CORNERS);
 noStroke();
 rect(plotX1, plotY1, plotX2, plotY2);

 // Draw the title of the current plot.
 fill(0);
 textSize(20);
 String title = data.getColumnName(currentColumn);
 text(title, plotX1, plotY1 - 10);

 stroke(#5679C1);
 strokeWeight(5);
 drawDataPoints(currentColumn);
}

The text() line draws the text 10 pixels above plotY1, which represents the top of
the plot, and the drawDataPoints() line uses currentColumn instead of just 0. Results
are shown in Figure 4-2.

The createFont() function is used to create a font from one of the built-in typefaces.
The built-in typefaces are Serif, SansSerif, Monospaced, Dialog, and DialogInput;
they map to the default fonts on each operating system. On Mac OS X, for instance,
SansSerif maps to Lucida Sans, whereas on Windows it maps to Arial. The default
fonts are useful when you don’t want to deal with the Create Font tool, but the font

Labeling the Current Data Set (Refine and Interact) | 61

choices are not particularly inspiring, and they don’t guarantee consistent output
across different operating systems. For instance, making pixel-level decisions with a
built-in font is a bad idea because the shaping and spacing of the characters can be
significantly different on other operating systems.

One advantage of using createFont() is that the text will look smooth at any size,
unlike a font used with loadFont(), which may be distorted as it is resized.

It is possible to use createFont() to specify something besides a built-in font, but
there’s no guarantee that the font will be installed on another user’s system. This can
be useful for testing, after which you can use the Create Font tool before deploy-
ment. The name of a font used by createFont() should be identical to how it is listed
in the Create Font tool. You can also get a list of the available fonts with the PFont.
list() method, which returns a String array. The following will print the list of all
available fonts to the console:

println(PFont.list());

If you have a lot of fonts installed on your system, there might be a
long delay before they are listed.

The createFont() method can also be used with a TrueType (.ttf) or OpenType (.otf)
file added to the data folder. Most TrueType fonts will work, but OpenType support
varies by platform. Be mindful of copyrighted fonts when using this method in a
sketch for public distribution.

Figure 4-2. Time series with data set labeled

62 | Chapter 4: Time Series

A simple means of swapping between columns of data is to add a keyPressed()
method, which will automatically run any time a key is pressed:

void keyPressed() {
 if (key == '[') {
 currentColumn--;
 if (currentColumn < 0) {
 currentColumn = columnCount - 1;
 }
 } else if (key == ']') {
 currentColumn++;
 if (currentColumn == columnCount) {
 currentColumn = 0;
 }
 }
}

This method will rotate through the columns as the user presses the [and] (bracket)
keys. When the number gets too big or too small, it wraps around to the beginning
or end of the list. Because columnCount is 3, the possible currentColumn values are 0,
1, and 2. So, when currentColumn reaches a value less than zero, it wraps around to 2
(columnCount - 1).

Drawing Axis Labels (Refine)
An unlabeled plot has minimal utility. It clearly displays relative up or down swings,
but without a sense of the time period or amounts to indicate the degree of swing,
it’s impossible to know whether values have changed by, say, 5% or 50%. And some
indication is required to explain that the horizontal axis represents the year and the
vertical axis represents actual volumes: the amount consumed of a particular bever-
age, measured in gallons per capita per year.

There are clever (and complicated) means of selecting intervals, but for this project,
we will pick the interval by hand. Choosing a proper interval and deciding whether
to include major and minor tick marks depends on the data, but a general rule of
thumb is that five intervals is at the low end, and more than ten is likely a problem.
Too many labels make the diagram look like graph paper, and too few suggests that
only the minimum and maximum values need to be shown.

The most important consideration is the way the data is used. Are minute, year-by-
year comparisons needed? Always use the fewest intervals you can get away with, as
long as the plot shows the level of detail the reader needs. Sometimes no labels are
necessary—if values are only meant to be compared against one another. For
instance, you might dispense with labels if you want to show only upward and
downward trends. Other factors, such as the width of the plot, also play a role, so
determining the correct level of detail usually requires a little trial and error.

Drawing Axis Labels (Refine) | 63

Year Labels
Creating the year axis is straightforward. The data ranges from 1910 to 2004, so an
interval of 10 years means marking 10 individual years: 1910, 1920, 1930, and so
on, up to 2000. Add the yearInterval variable to the beginning of the code before
setup():

int yearInterval = 10;

Next, add the following function to draw the year labels:

void drawYearLabels() {
 fill(0);
 textSize(10);
 textAlign(CENTER, TOP);
 for (int row = 0; row < rowCount; row++) {
 if (years[row] % yearInterval == 0) {
 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 text(years[row], x, plotY2 + 10);
 }
 }
}

The fill color is set to black, the text size to 10, and the alignment to the middle so
that the year number centers on the position of the data point for that year.

Two lines in this code deserve further consideration. The first is the line that makes use
of the %, or modulo, operator. A modulo operation returns the remainder from a divi-
sion. So, for example, 7 % 2 is equal to 1, and 8 % 5 equals 3. It’s useful for drawing
labels because it provides a way to easily identify a year ending in 0. Dividing 1910 by
10 returns 0, so a label is drawn, whereas dividing 1911 by 10 produces 1, and so it
continues until the loop reaches 1920, which also returns 0 when divided by 10.

A second parameter to textAlign() sets the vertical alignment of the text. The
options are TOP, BOTTOM, CENTER, and BASELINE (the default). The TOP and CENTER
parameters are straightforward. The BOTTOM parameter is the same as BASELINE when
only one line of text is used, but for multiple lines, the final line will be aligned to the
baseline, with the previous lines appearing above it. When only one parameter is
used, the vertical alignment resets to BASELINE.

The resulting image is shown in Figure 4-3.

To draw text that does not bump into the elements above it, you need
to know the height of the tallest character in the font. Typographers
refer to this as the ascent. Traditionally, the ascent of a font is the
height to the top of a capital H character. Characters such as the capi-
tal O or a capital B are in fact slightly taller than the letter H and dip
slightly below the baseline—the bottom line from which text is drawn.
The ascent value essentially refers to the optical height of the font,
which is the height perceived by our eyes.

64 | Chapter 4: Time Series

Simple grid lines can also help the presentation by identifying each interval. The fol-
lowing modifications add a grid to the drawYearLabels() function:

void drawYearLabels() {
 fill(0);
 textSize(10);
 textAlign(CENTER, TOP);

 // Use thin, gray lines to draw the grid.
 stroke(224);
 strokeWeight(1);

 for (int row = 0; row < rowCount; row++) {
 if (years[row] % yearInterval == 0) {
 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 text(years[row], x, plotY2 + 10);
 line(x, plotY1, x, plotY2);
 }
 }
}

Figure 4-4 shows the result.

Notice that because the fill color does not affect lines, and a stroke color does not
affect text, it is not necessary to use noFill() or noStroke() in this method.

With a separate method to draw the year labels, it makes sense to put the code that
draws the title into its own method. The drawTitle() method takes this code from
the draw() function. Just replace the title drawing code inside draw() with:

drawTitle();

Figure 4-3. Time series with labeled x-axis

Drawing Axis Labels (Refine) | 65

and then add the following method to the code:

void drawTitle() {
 fill(0);
 textSize(20);
 textAlign(LEFT);
 String title = data.getColumnName(currentColumn);
 text(title, plotX1, plotY1 - 10);
}

Because the drawYearLabels() function changes the text alignment, a line is added to
reset to textAlign(LEFT) before drawing the title. Otherwise, the title would appear
centered at plotX1 on the next trip through the draw() method, inheriting the text
alignment settings from the previous draw().

Labeling Volume on the Vertical Axis
The vertical axis can be handled the same way as the horizontal, but it is a bit trick-
ier. A quick println(dataMax) added to setup() tells us that the maximum value is
46.4. Intervals of 10 will again suffice, this time producing only 5 divisions (as
opposed to 10 in the horizontal):

int volumeInterval = 10;

With a dataMax value of 46.4 and intervals of 10, rounding up dataMax to the nearest
interval will make the maximum value on the plot 50, making it a little easier to read
changes in vertical values. To do so automatically, divide dataMax by volumeInterval.

Figure 4-4. Time series with vertical grid

66 | Chapter 4: Time Series

The result is 4.64. Next, use ceil(), which rounds a float up to the next int value
(in this case, 5), called the ceiling of a float. Then, set dataMax to the rounded value
multiplied by volumeInterval. That calculation took a few sentences to explain, but
the code consists of a one-line change to setup():

dataMax = ceil(data.getTableMax() / volumeInterval) * volumeInterval;

To draw the labels, create a loop that iterates from the minimum to maximum data
values. Use an increment of volumeInterval to draw a label at each interval:

void drawVolumeLabels() {
 fill(0);
 textSize(10);
 textAlign(RIGHT, CENTER);

 for (float v = dataMin; v < dataMax; v += volumeInterval) {
 float y = map(v, dataMin, dataMax, plotY2, plotY1);
 text(floor(v), plotX1 - 10, y);
 }
}

When you’re drawing the text label, the floor() function removes decimals from the
number value because there’s no need to write 10.0, 20.0, 30.0, etc. when 10, 20,
and 30 will suffice. If dataInterval included decimal points, the nf() method could
be used instead to format the value to a specific number of decimal places.

The text() method can draw int or float values instead of just String
objects. For float values, it is best to use the nf() method to first con-
vert the float to a specific number of decimal places. By default, text()
will format a float to three decimal places. That is different from Java,
which can have many digits in the decimal place for a float, because
using just a few digits is usually more useful for a graphical display. To
get the full 4-, 8-, or 15-digit version of the float value, use the str()
function to convert the float to a String. For Java programmers, using
str() is equivalent to String.valueOf().

The x-coordinate of the label text is the lefthand edge of the plot minus a few pixels.
Also note the use of textAlign() to vertically center the text.

With the vertical centering, the label drawn at 0 is visually a little too close to the year
markers below. In its current state, this example is not detailed enough to be used for
real analysis and is better at showing upward and downward trends. In that context,
it’s clear from a glance that the bottom of the plot is 0, so the bottom label could be left
out completely. The same goes for the top value, which gets close to the title. To leave
these out, alter the first value drawn by adding a volumeInterval to dataMin, and end
the loop at v < dataMax instead of v <= dataMax so that the 50 won’t be drawn:

void drawVolumeLabels() {
 fill(0);
 textSize(10);
 textAlign(RIGHT, CENTER);

Drawing Axis Labels (Refine) | 67

 float dataFirst = dataMin + volumeInterval;
 for (float v = dataFirst; v < dataMax; v += volumeInterval) {
 float y = map(v, dataMin, dataMax, plotY2, plotY1);
 text(floor(v), plotX1 - 10, y);
 }
}

In other cases, it might not be appropriate to remove upper and lower values. If
dataMin were something other than 0, or the intervals more awkward than simple
intervals of 10, viewers might be confused without the minimum and maximum val-
ues. In such cases, the maximum value (50) can be vertically aligned to the top of the
plot, and the minimum value (0) to the bottom, rather than centered vertically like
the rest of the labels:

void drawVolumeLabels() {
 fill(0);
 textSize(10);

 for (float v = dataMin; v <= dataMax; v += volumeInterval) {
 float y = map(v, dataMin, dataMax, plotY2, plotY1);
 if (v == dataMin) {
 textAlign(RIGHT); // Align by the bottom
 } else if (v == dataMax) {
 textAlign(RIGHT, TOP); // Align by the top
 } else {
 textAlign(RIGHT, CENTER); // Center vertically
 }
 text(floor(v), plotX1 - 10, y);
 }
}

Horizontal lines can be fashioned in the same manner as those for the year. Choos-
ing whether to use a horizontal or vertical grid depends on the axis with data that is
most important to be measured. If this plot is being used to analyze exact changes in
milk consumption, the horizontal gridlines will better help with identifying changes.
But if the purpose is to compare upward and downward trends across different years
(for instance, to understand how milk consumption changed during and after World
War II), the vertical gridlines are more valuable. For this data set, it’s most interest-
ing to compare changes over the years, so we’ll stick with vertical lines.

Instead of gridlines, small tick marks near the labels on the vertical axis can be pro-
duced with the same technique, by drawing a short line just outside the edge of the
plot. Minor gridlines or tick marks can be drawn by including a variable for a second
interval that’s a multiple of the first and incrementing by that interval in the loop.
The following modification to drawVolumeLabels() adds major and minor tick marks
to the volume axis:

int volumeIntervalMinor = 5; // Add this above setup()

void drawVolumeLabels() {
 fill(0);
 textSize(10);

68 | Chapter 4: Time Series

 stroke(128);
 strokeWeight(1);

 for (float v = dataMin; v <= dataMax; v += volumeIntervalMinor) {
 if (v % volumeIntervalMinor == 0) { // If a tick mark
 float y = map(v, dataMin, dataMax, plotY2, plotY1);
 if (v % volumeInterval == 0) { // If a major tick mark
 if (v == dataMin) {
 textAlign(RIGHT); // Align by the bottom
 } else if (v == dataMax) {
 textAlign(RIGHT, TOP); // Align by the top
 } else {
 textAlign(RIGHT, CENTER); // Center vertically
 }
 text(floor(v), plotX1 - 10, y);
 line(plotX1 - 4, y, plotX1, y); // Draw major tick
 } else {
 line(plotX1 - 2, y, plotX1, y); // Draw minor tick
 }
 }
 }
}

The result with the tick marks and vertical labels is shown in Figure 4-5.

Strictly speaking, the minor tickmarks in this example are not very informative. They
can be removed to avoid visual clutter; simply comment out the line that draws the
minor ticks.

Figure 4-5. Tick marks on the vertical axis

Drawing Axis Labels (Refine) | 69

Bringing It All Together and Titling Both Axes
So far, anyone looking at this diagram should be able to guess that it has something
to do with milk from 1910 to sometime after 2000. To further explain the plot, the
next step is to provide titles for the year and volume axes. Informative axis titles are
important for the people viewing your data.

The year axis title is simple: just a piece of text centered between plotX1 and plotX2.
After centering the text in both directions with textAlign(CENTER, CENTER), the text is
drawn centered between plotY1 and plotY2. To fit both, the values for plotX1 and
friends must be changed to make room for the labels. In this case, eyeballing the
placement is sufficient, though textWidth() could be used to accurately size the left-
hand margin, and textAscent() could do the same for the label below.

For the vertical axis, it might be tempting to rotate the title on its side, but more
often than not it is more effective at giving your viewer eyestrain than it is at commu-
nicating. I’ve kept the text horizontal and broken the label into three lines by insert-
ing newline characters (\n) into the string.

Figure 4-6 shows our progress.

Here’s the code listing for the program thus far, with the lines highlighted that were
altered to display the titles:

FloatTable data;
float dataMin, dataMax;

Figure 4-6. Axis labels

70 | Chapter 4: Time Series

float plotX1, plotY1;
float plotX2, plotY2;
float labelX, labelY;

int rowCount;
int columnCount;
int currentColumn = 0;

int yearMin, yearMax;
int[] years;

int yearInterval = 10;
int volumeInterval = 10;
int volumeIntervalMinor = 5;

PFont plotFont;

void setup() {
 size(720, 405);

 data = new FloatTable("milk-tea-coffee.tsv");
 rowCount = data.getRowCount();
 columnCount = data.getColumnCount();

 years = int(data.getRowNames());
 yearMin = years[0];
 yearMax = years[years.length - 1];

 dataMin = 0;
 dataMax = ceil(data.getTableMax() / volumeInterval) * volumeInterval;

 // Corners of the plotted time series
 plotX1 = 120;
 plotX2 = width - 80;
 labelX = 50;
 plotY1 = 60;
 plotY2 = height - 70;
 labelY = height - 25;

 plotFont = createFont("SansSerif", 20);
 textFont(plotFont);

 smooth();
}

void draw() {
 background(224);

 // Show the plot area as a white box
 fill(255);
 rectMode(CORNERS);
 noStroke();
 rect(plotX1, plotY1, plotX2, plotY2);

Drawing Axis Labels (Refine) | 71

 drawTitle();
 drawAxisLabels();

 drawYearLabels();
 drawVolumeLabels();

 stroke(#5679C1);
 strokeWeight(5);
 drawDataPoints(currentColumn);
}

void drawTitle() {
 fill(0);
 textSize(20);
 textAlign(LEFT);
 String title = data.getColumnName(currentColumn);
 text(title, plotX1, plotY1 - 10);
}

void drawAxisLabels() {
 fill(0);
 textSize(13);
 textLeading(15);

 textAlign(CENTER, CENTER);
 // Use \n (aka enter or linefeed) to break the text into separate lines.
 text("Gallons\nconsumed\nper capita", labelX, (plotY1+plotY2)/2);
 textAlign(CENTER);
 text("Year", (plotX1+plotX2)/2, labelY);
}

void drawYearLabels() {
 fill(0);
 textSize(10);
 textAlign(CENTER, TOP);

 // Use thin, gray lines to draw the grid.
 stroke(224);
 strokeWeight(1);

 for (int row = 0; row < rowCount; row++) {
 if (years[row] % yearInterval == 0) {
 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 text(years[row], x, plotY2 + 10);
 line(x, plotY1, x, plotY2);
 }
 }
}

void drawVolumeLabels() {
 fill(0);
 textSize(10);

72 | Chapter 4: Time Series

 stroke(128);
 strokeWeight(1);

 for (float v = dataMin; v <= dataMax; v += volumeIntervalMinor) {
 if (v % volumeIntervalMinor == 0) { // If a tick mark
 float y = map(v, dataMin, dataMax, plotY2, plotY1);
 if (v % volumeInterval == 0) { // If a major tick mark
 if (v == dataMin) {
 textAlign(RIGHT); // Align by the bottom
 } else if (v == dataMax) {
 textAlign(RIGHT, TOP); // Align by the top
 } else {
 textAlign(RIGHT, CENTER); // Center vertically
 }
 text(floor(v), plotX1 - 10, y);
 line(plotX1 - 4, y, plotX1, y); // Draw major tick
 } else {
 // Commented out; too distracting visually
 //line(plotX1 - 2, y, plotX1, y); // Draw minor tick
 }
 }
 }
}

void drawDataPoints(int col) {
 for (int row = 0; row < rowCount; row++) {
 if (data.isValid(row, col)) {
 float value = data.getFloat(row, col);
 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 float y = map(value, dataMin, dataMax, plotY2, plotY1);
 point(x, y);
 }
 }
}

void keyPressed() {
 if (key == '[') {
 currentColumn--;
 if (currentColumn < 0) {
 currentColumn = columnCount - 1;
 }
 } else if (key == ']') {
 currentColumn++;
 if (currentColumn == columnCount) {
 currentColumn = 0;
 }
 }
}

Choosing a Proper Representation (Represent and Refine) | 73

Choosing a Proper Representation (Represent and
Refine)
A series of points can be difficult to follow if they’re not connected. It’s not as easy to
compare milk and coffee in these images, for instance, because the predominant dif-
ference between the two plots is that the coffee values are far more erratic than those
for milk. Instead of a specific shape, the points make an indeterminate cloud that is
difficult to make sense of at a quick glance.

When values are truly a series and there is no missing data, it’s possible to use a line
graph and simply connect the points. The beginShape() and endShape() methods
provide a means for drawing irregular shapes. The vertex() method adds a single
point to the shape. To connect the dots in a line, replace the point() method with
vertex().

Three examples follow that show the basic drawing modes of beginShape() and
endShape(). See Figure 4-7. Using noFill() will produce the image at left, and the
default fill and stroke settings will produce the image in the center. The CLOSE param-
eter in the endShape() method handles the connection of the final point to the first,
so that the stroke completely outlines the shape. Always use endShape(CLOSE) when
closing a shape because the alternative—repeating the first point—may cause unex-
pected visual defects.

// Leftmost image: fill disabled and the default stroke
noFill();
beginShape();
vertex(10, 10);
vertex(90, 30);
vertex(40, 90);
vertex(50, 40);
endShape();

// Center image: default fill (white) and stroke (black)
beginShape();
vertex(10, 10);
vertex(90, 30);
vertex(40, 90);
vertex(50, 40);
endShape();

Figure 4-7. Examples using beginShape() and endShape()

74 | Chapter 4: Time Series

// Rightmost image: default fill and stroke, closed shape
beginShape();
vertex(10, 10);
vertex(90, 30);
vertex(40, 90);
vertex(50, 40);
endShape(CLOSE);

To represent a time series, we want a simple line with no fill, so we’ll use the nofill()
form of the shape. The following method is a variation of drawPoints() that draws the
data with beginShape() and endShape(), with the alterations highlighted:

void drawDataLine(int col) {
 beginShape();
 int rowCount = data.getRowCount();
 for (int row = 0; row < rowCount; row++) {
 if (data.isValid(row, col)) {
 float value = data.getFloat(row, col);
 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 float y = map(value, dataMin, dataMax, plotY2, plotY1);
 vertex(x, y);
 }
 }
 endShape();
}

Inside draw(), comment out the line that reads:

 drawDataPoints(currentColumn);

by placing a pair of slashes (//) in front of it. On the line that follows, add:

 noFill();
 drawDataLine(currentColumn);

The noFill() command is important; without it, the shape would have a strange black
background because the fill was last set to black in the prior lines that draw the text
label for the plot. This version of the code produces the image shown in Figure 4-8.

It could also be used to draw all three series (milk, tea, and coffee) on a single plot.
To do this, call drawDataLine() once for each of the three columns, and set a differ-
ent stroke color for each.

It’s also easy to mix lines and points in the representation to create a background line
that highlights the individual data points. To do so, set the stroke weight to
something smaller while drawing the lines and keep the thicker weight for the points.
Modify the end of draw() to read as follows:

 stroke(#5679C1);
 strokeWeight(5);
 drawDataPoints(currentColumn);
 noFill();
 strokeWeight(0.5);
 drawDataLine(currentColumn);

Choosing a Proper Representation (Represent and Refine) | 75

The result appears in Figure 4-9.

Note that the functions themselves should not be merged, as other shape commands
(such as point()) are not permitted inside a beginShape() and endShape() block.

Figure 4-8. Continuously drawn time series using vertices

Figure 4-9. Combined dots and continuous line

76 | Chapter 4: Time Series

Depending on how you use this code, it may be important to draw the points after
the lines. For example, if you set the stroke of the line to a light gray, it would be best
to draw the blue points on top of the line so that the points are not bisected by an
odd gray line (which has poor contrast with blue).

Using Rollovers to Highlight Points (Interact)
The lines and points combination is overkill for this data set: there are so many data
points horizontally that the individual dots (at a size of five pixels) are nearly the size
of the space allotted for each data point (around seven pixels), leaving only two pix-
els between them. Another option is to highlight individual points when the mouse is
nearby. This is technique is nearly identical to the one used at the end of the previ-
ous chapter, and the function looks like the following:

void drawDataHighlight(int col) {
 for (int row = 0; row < rowCount; row++) {
 if (data.isValid(row, col)) {
 float value = data.getFloat(row, col);
 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 float y = map(value, dataMin, dataMax, plotY2, plotY1);
 if (dist(mouseX, mouseY, x, y) < 3) {
 strokeWeight(10);
 point(x, y);
 fill(0);
 textSize(10);
 textAlign(CENTER);
 text(nf(value, 0, 2) + " (" + years[row] + ")", x, y-8);
 }
 }
 }
}

The stroke weight for the point is set to 10 because the weight used in the
drawDataPoints() method (5) would not contrast enough with the rest of the image.
Similarly, the stroke weight for the lines is set to 2, rather than the 0.5 stroke used
when combining drawDataLines() and drawDataPoints(), because it should stand
out more. But strokeWeight(2) is still thinner than the strokeWeight(5) used when
the drawDataLines() method is run by itself because if the line itself is too thick, the
rollover won’t be prominent enough.

The modified draw() method to draw the highlight follows:

void draw() {
 background(224);

 // Show the plot area as a white box.
 fill(255);
 rectMode(CORNERS);
 noStroke();
 rect(plotX1, plotY1, plotX2, plotY2);

Ways to Connect Points (Refine) | 77

 drawTitle();
 drawAxisLabels();

 drawYearLabels();
 drawVolumeLabels();

 stroke(#5679C1);
 noFill();
 strokeWeight(2);
 drawDataLine(currentColumn);
 drawDataHighlight(currentColumn);
}

An image of the result is shown in Figure 4-10.

Ways to Connect Points (Refine)
Connecting the points with a curve is often a better option because it prevents the
spikiness of the plot from overwhelming the data itself. The curveVertex() function
is similar to the vertex() function, except that it connects successive points by fit-
ting them to a curve.

The drawDataCurve() method, a modification of drawDataLine(), follows:

void drawDataCurve(int col) {
 beginShape();
 for (int row = 0; row < rowCount; row++) {
 if (data.isValid(row, col)) {
 float value = data.getFloat(row, col);

Figure 4-10. Time series with user-selected highlight

78 | Chapter 4: Time Series

 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 float y = map(value, dataMin, dataMax, plotY2, plotY1);

 curveVertex(x, y);
 // Double the curve points for the start and stop
 if ((row == 0) || (row == rowCount-1)) {
 curveVertex(x, y);
 }
 }
 }
 endShape();
}

To draw a curve with curveVertex(), at least four points are necessary because the
first and last coordinates in curveVertex() are used to guide the angle at which the
curve begins and ends. In this particular example, doubling start and stop points will
work fine. In other cases, additional points can be used to maintain continuity
between two connected curves.

The results of using a smooth curve can be seen most clearly when comparing the
coffee data drawn with vertex() and curveVertex() in Figure 4-11.

Showing Data As an Area
Another variation of drawDataLine() draws the values as a filled area. Before calling
endShape(), add the lower-right corner and then the lower-left corner to complete
the outline of the shape to be filled. And instead of endShape() with no parameters,
use endShape(CLOSE) to close it, reconnecting it to the first vertex.

The new drawDataArea() function is:

void drawDataArea(int col) {
 beginShape();
 for (int row = 0; row < rowCount; row++) {
 if (data.isValid(row, col)) {
 float value = data.getFloat(row, col);
 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 float y = map(value, dataMin, dataMax, plotY2, plotY1);
 vertex(x, y);
 }
 }
 // Draw the lower-right and lower-left corners.
 vertex(plotX2, plotY2);
 vertex(plotX1, plotY2);
 endShape(CLOSE);
}

Ways to Connect Points (Refine) | 79

Figure 4-11. Comparison of the use of vertices (top) and curve vertices (bottom)

80 | Chapter 4: Time Series

Next, modify the end of the draw() method to replace the stroke(#5679C1) line with
fill(#5679C1), and change noFill() to noStroke(); drawing an outline around an
already filled shape is unnecessary:

 noStroke();
 fill(#5679C1);
 drawDataArea(currentColumn);

The new plot is shown in Figure 4-12.

This makes a more attractive plot, and because the data set considers the actual vol-
ume of consumption—that is, the vertical axis starts at 0—it makes sense to fill the
area beneath the data points. Whenever filling a plot, consider whether the data
being shown refers to some kind of actual area or volume. For instance, it would not
be appropriate to fill the area beneath a plot of temperature because the lower bound
is arbitrary (unless you’re measuring temperatures above absolute zero). A graph of
rainfall, however, refers to the actual volume or amount that can be measured
upward from “none,” making it a candidate for a filled plot.

Further Refinements and Erasing Elements
The highest priority of any information graphic is to place the data it represents first
and foremost. A filled area can seem too much like the background, so sometimes
it’s best to remove the background. Without the gray background, the grid lines
become awkward without some kind of box around them to contain the plot. A box

Figure 4-12. Filled time series

Ways to Connect Points (Refine) | 81

adds no additional usefulness, just clutters the composition, so a better option is to
remove the background and make the gridlines part of the graphic itself by setting
their color to white. To draw the gridlines on top of the data, move the
drawYearLabels() method after drawDataArea() inside draw() so that the grid lines
will be drawn after the filled shape. The new draw() method is very sparse:

void draw() {
 background(255);

 drawTitle();
 drawAxisLabels();
 drawVolumeLabels();

 noStroke();
 fill(#5679C1);
 drawDataArea(currentColumn);

 drawYearLabels();
}

Inside drawYearLabels(), use stroke(255) instead of stroke(224) to make the grid-
lines white. The results are shown in Figure 4-13.

Such minimization of graphic elements has long been the province of those who
champion a “less is more” approach to design. Edward Tufte later popularized this
approach in his series of books on information graphics.

Figure 4-13. Unboxed plot with reverse-color gridlines

82 | Chapter 4: Time Series

Discrete Values with a Bar Chart (Represent)
When values are discrete and cannot be shown in a series, a bar chart might be more
suitable. A common example is when data is missing and therefore does not repre-
sent a complete series. Drawing a bar chart is a matter of using rectangles instead of
individual points, and then drawing the data centered at each horizontal location.

The following replacement for drawDataArea() creates a bar chart:

float barWidth = 4; // Add to the end of setup()

void drawDataBars(int col) {
 noStroke();
 rectMode(CORNERS);

 for (int row = 0; row < rowCount; row++) {
 if (data.isValid(row, col)) {
 float value = data.getFloat(row, col);
 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 float y = map(value, dataMin, dataMax, plotY2, plotY1);
 rect(x-barWidth/2, y, x+barWidth/2, plotY2);
 }
 }
}

Here, the barWidth variable makes the bars four pixels wide. Calculating widths for a
bar chart can be done with algebra (by dividing the distance between plotX2 and
plotX1 by the number of rows of data) or by trial and error.

It’s also necessary to disable the lines drawn in drawYearLabels() because vertical
grid lines will conflict with the bars.

Unfortunately, this is too much data to show at this width, resulting in the vibrating
texture shown in Figure 4-14, which looks more like a swatch of patterned fabric.

This example highlights an important consideration: when deciding on a representa-
tion, use a bar chart only when there’s enough room to leave clear gaps between bars.

Once a bar chart is laid out properly, the method of using white grid lines in
Figure 4-13 could be better utilized to highlight the divisions on the left axis by eras-
ing thin horizontal lines across the plot. Like the version that sliced the area plot into
individual decades, this would provide another cue to help the viewer quickly read
data values.

Text Labels As Tabbed Panes (Interact) | 83

Text Labels As Tabbed Panes (Interact)
Using keys to navigate an interface should be used only during testing. A more
sophisticated method is to use on-screen buttons, as users expect from a modern
interface. This section describes how to replace the drawTitle() function with
drawTitleTabs() to introduce a series of tabbed panel—one for each data series.

Adding the Necessary Variables
The tabTop and tabBottom variables specify the upper and lower edge of the tabs. The
tabLeft and tabRight variables store the coordinates for the left and right edges of
each tab so that we can detect mouse clicks inside the tabs. The tabPad variable spec-
ifies the amount of padding on the left and right of the tab text:

float[] tabLeft, tabRight; // Add above setup()
float tabTop, tabBottom;
float tabPad = 10;

Figure 4-14. Overly busy bar chart

84 | Chapter 4: Time Series

Drawing Tabs Instead of a Single Title
The important part of this method keeps track of a value named runningX to calcu-
late the positions of each tab. The width of each tab is calculated using textWidth(),
and the tabPad value is added to provide padding on the sides:

void drawTitleTabs() {
 rectMode(CORNERS);
 noStroke();
 textSize(20);
 textAlign(LEFT);

 // On first use of this method, allocate space for an array
 // to store the values for the left and right edges of the tabs.
 if (tabLeft == null) {
 tabLeft = new float[columnCount];
 tabRight = new float[columnCount];
 }

 float runningX = plotX1;
 tabTop = plotY1 - textAscent() - 15;
 tabBottom = plotY1;

 for (int col = 0; col < columnCount; col++) {
 String title = data.getColumnName(col);
 tabLeft[col] = runningX;
 float titleWidth = textWidth(title);
 tabRight[col] = tabLeft[col] + tabPad + titleWidth + tabPad;

 // If the current tab, set its background white; otherwise use pale gray.
 fill(col == currentColumn ? 255 : 224);
 rect(tabLeft[col], tabTop, tabRight[col], tabBottom);

 // If the current tab, use black for the text; otherwise use dark gray.
 fill(col == currentColumn ? 0 : 64);
 text(title, runningX + tabPad, plotY1 - 10);

 runningX = tabRight[col];
 }
}

This piece of code also introduces the conditional operator, identified by the ?. The
conditional statement:

fill(col == currentColumn ? 0 : 64);

is equivalent to writing:

if (col == currentColumn) {
 fill(0);
} else {
 fill(64);
}

Text Labels As Tabbed Panes (Interact) | 85

The benefit of the former is compact code: a single line instead of five. The condi-
tional operator is most useful in situations such as this one, where a simple if test is
used to control something straightforward like the fill color. In this case, it can be
argued that the shorter code is more readable than all five lines. However, use the con-
ditional operator sparingly because overuse can result in code that is difficult to read.

Handling Mouse Input
Next, we’ll add the mousePressed() method, which tests whether the mouse is inside
one tab or another. This method is a simple matter of iterating through each tab and
checking the mouseX and mouseY coordinates against the variables that contain the
boundaries of each tab rectangle. If the mouseY value is in the correct range, mouseX is
tested against each tabLeft and tabRight value. If inside, the value of currentColumn
is updated with the setColumn() method:

void mousePressed() {
 if (mouseY > tabTop && mouseY < tabBottom) {
 for (int col = 0; col < columnCount; col++) {
 if (mouseX > tabLeft[col] && mouseX < tabRight[col]) {
 setColumn(col);
 }
 }
 }
}

void setColumn(int col) {
 if (col != currentColumn) {
 currentColumn = col;
 }
}

The setColumn() method is expressed in a separate piece of code because it will be
modified in the next section, and the keyPressed() method should simply be
removed.

Finally, the result is shown in Figure 4-15.

Better Tab Images (Refine)
The tabs in Figure 4-15 look pretty boring, but some tweaking of the text, the col-
ors, and a line here and there could improve them. Another option is to load the tabs
from a series of image files. Three separate image files would be used for the non-
selected state of the tabs, and three others would be used for the selected state. Then,
instead of setting the fill differently for the rectangle and the text title, one of the six
images would be used in its place. A modified version of the code looks like this:

float[] tabLeft, tabRight; // Add above setup()
float tabTop, tabBottom;
float tabPad = 10;
PImage[] tabImageNormal;

86 | Chapter 4: Time Series

PImage[] tabImageHighlight;

void drawTitleTabs() {
 rectMode(CORNERS);
 noStroke();
 textSize(20);
 textAlign(LEFT);

 // Allocate the tab position array, and load the tab images.
 if (tabLeft == null) {
 tabLeft = new float[columnCount];
 tabRight = new float[columnCount];

 tabImageNormal = new PImage[columnCount];
 tabImageHighlight = new PImage[columnCount];
 for (int col = 0; col < columnCount; col++) {
 String title = data.getColumnName(col);
 tabImageNormal[col] = loadImage(title + "-unselected.png");
 tabImageHighlight[col] = loadImage(title + "-selected.png");
 }
 }

 float runningX = plotX1;
 tabBottom = plotY1;
 // Size based on the height of the tabs by checking the
 // height of the first (all images are the same height)
 tabTop = plotY1 - tabImageNormal[0].height;

 for (int col = 0; col < columnCount; col++) {
 String title = data.getColumnName(col);
 tabLeft[col] = runningX;
 float titleWidth = tabImageNormal[col].width;

Figure 4-15. Clickable tabs

Interpolation Between Data Sets (Interact) | 87

 tabRight[col] = tabLeft[col] + tabPad + titleWidth + tabPad;

 PImage tabImage = (col == currentColumn) ?
 tabImageHighlight[col] : tabImageNormal[col];
 image(tabImage, tabLeft[col], tabTop);

 runningX = tabRight[col];
 }
}

When preparing the images, be sure to keep their heights the same. As with the text
version, the widths of the titles can vary, but the width of the selected versus non-
selected version should always be the same. The images should be named based on
the title of each column, so, in this case, the following six files are used:

• Milk-selected.png

• Tea-selected.png

• Coffee-selected.png

• Milk-unselected.png

• Tea-unselected.png

• Coffee-unselected.png

For those who want to use standard interface components instead of making their
own, later chapters cover integrating Processing with Java code. Custom compo-
nents are useful when a unique interface is preferred, but they are less helpful if a
standard interface is more appropriate for your audience.

Interpolation Between Data Sets (Interact)
Chapter 3 showed how to interpolate between values in a data set with the use of the
Integrator class. Download itfrom http://benfry.com/writing/series/Integrator.pde.

The changes are identical to those in the previous chapter. First, declare the array of
Integrator objects before setup():

Integrator[] interpolators;

Inside setup(), create each Integrator and set its initial value:

 interpolators = new Integrator[rowCount];
 for (int row = 0; row < rowCount; row++) {
 float initialValue = data.getFloat(row, 0);
 interpolators[row] = new Integrator(initialValue);
 interpolators[row].attraction = 0.1; // Set lower than the default
 }

The attraction value is set to 0.1 (instead of the default, 0.2) so that the interpola-
tion occurs at a less frantic pace.

http://benfry.com/writing/series/Integrator.pde

88 | Chapter 4: Time Series

In draw(), each Integrator is updated:

 for (int row = 0; row < rowCount; row++) {
 interpolators[row].update();
 }

Next, for whatever variation of the drawData() function you would like to use,
replace its data.getFloat() line. The original looks like this:

float value = data.getFloat(row, col);

Change the line to the following to use the interpolated values:

float value = interpolators[row].value;

Finally, modify setCurrent() to set each Integrator to target the value for the cur-
rent column:

void setCurrent(int col) {
 currentColumn = col;

 for (int row = 0; row < rowCount; row++) {
 interpolators[row].target(data.getFloat(row, col));
 }
}

The final code, with modifications highlighted, follows:

FloatTable data;
float dataMin, dataMax;

float plotX1, plotY1;
float plotX2, plotY2;
float labelX, labelY;

int rowCount;
int columnCount;
int currentColumn = 0;

int yearMin, yearMax;
int[] years;

int yearInterval = 10;
int volumeInterval = 10;
int volumeIntervalMinor = 5;

float[] tabLeft, tabRight;
float tabTop, tabBottom;
float tabPad = 10;

Integrator[] interpolators;

PFont plotFont;

void setup() {
 size(720, 405);

Interpolation Between Data Sets (Interact) | 89

 data = new FloatTable("milk-tea-coffee.tsv");
 rowCount = data.getRowCount();
 columnCount = data.getColumnCount();

 years = int(data.getRowNames());
 yearMin = years[0];
 yearMax = years[years.length - 1];

 dataMin = 0;
 dataMax = ceil(data.getTableMax() / volumeInterval) * volumeInterval;

 interpolators = new Integrator[rowCount];
 for (int row = 0; row < rowCount; row++) {
 float initialValue = data.getFloat(row, 0);
 interpolators[row] = new Integrator(initialValue);
 interpolators[row].attraction = 0.1; // Set lower than the default
 }

 plotX1 = 120;
 plotX2 = width - 80;
 labelX = 50;
 plotY1 = 60;
 plotY2 = height - 70;
 labelY = height - 25;

 plotFont = createFont("SansSerif", 20);
 textFont(plotFont);

 smooth();
}

void draw() {
 background(224);

 // Show the plot area as a white box
 fill(255);
 rectMode(CORNERS);
 noStroke();
 rect(plotX1, plotY1, plotX2, plotY2);

 drawTitleTabs();
 drawAxisLabels();

 for (int row = 0; row < rowCount; row++) {
 interpolators[row].update();
 }

 drawYearLabels();
 drawVolumeLabels();

 noStroke();
 fill(#5679C1);
 drawDataArea(currentColumn);
}

90 | Chapter 4: Time Series

void drawTitleTabs() {
 rectMode(CORNERS);
 noStroke();
 textSize(20);
 textAlign(LEFT);

 // On first use of this method, allocate space for an array
 // to store the values for the left and right edges of the tabs.
 if (tabLeft == null) {
 tabLeft = new float[columnCount];
 tabRight = new float[columnCount];
 }

 float runningX = plotX1;
 tabTop = plotY1 - textAscent() - 15;
 tabBottom = plotY1;

 for (int col = 0; col < columnCount; col++) {
 String title = data.getColumnName(col);
 tabLeft[col] = runningX;
 float titleWidth = textWidth(title);
 tabRight[col] = tabLeft[col] + tabPad + titleWidth + tabPad;

 // If the current tab, set its background white; otherwise use pale gray.
 fill(col == currentColumn ? 255 : 224);
 rect(tabLeft[col], tabTop, tabRight[col], tabBottom);

 // If the current tab, use black for the text; otherwise use dark gray.
 fill(col == currentColumn ? 0 : 64);
 text(title, runningX + tabPad, plotY1 - 10);

 runningX = tabRight[col];
 }
}

void mousePressed() {
 if (mouseY > tabTop && mouseY < tabBottom) {
 for (int col = 0; col < columnCount; col++) {
 if (mouseX > tabLeft[col] && mouseX < tabRight[col]) {
 setCurrent(col);
 }
 }
 }
}

void setCurrent(int col) {
 currentColumn = col;

 for (int row = 0; row < rowCount; row++) {
 interpolators[row].target(data.getFloat(row, col));
 }
}

Interpolation Between Data Sets (Interact) | 91

void drawAxisLabels() {
 fill(0);
 textSize(13);
 textLeading(15);

 textAlign(CENTER, CENTER);
 text("Gallons\nconsumed\nper capita", labelX, (plotY1+plotY2)/2);
 textAlign(CENTER);
 text("Year", (plotX1+plotX2)/2, labelY);
}

void drawYearLabels() {
 fill(0);
 textSize(10);
 textAlign(CENTER);

 // Use thin, gray lines to draw the grid
 stroke(224);
 strokeWeight(1);

 for (int row = 0; row < rowCount; row++) {
 if (years[row] % yearInterval == 0) {
 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 text(years[row], x, plotY2 + textAscent() + 10);
 line(x, plotY1, x, plotY2);
 }
 }
}

void drawVolumeLabels() {
 fill(0);
 textSize(10);
 textAlign(RIGHT);

 stroke(128);
 strokeWeight(1);

 for (float v = dataMin; v <= dataMax; v += volumeIntervalMinor) {
 if (v % volumeIntervalMinor == 0) { // If a tick mark
 float y = map(v, dataMin, dataMax, plotY2, plotY1);
 if (v % volumeInterval == 0) { // If a major tick mark
 float textOffset = textAscent()/2; // Center vertically
 if (v == dataMin) {
 textOffset = 0; // Align by the bottom
 } else if (v == dataMax) {
 textOffset = textAscent(); // Align by the top
 }
 text(floor(v), plotX1 - 10, y + textOffset);
 line(plotX1 - 4, y, plotX1, y); // Draw major tick
 } else {
 //line(plotX1 - 2, y, plotX1, y); // Draw minor tick

92 | Chapter 4: Time Series

 }
 }
 }
}

void drawDataArea(int col) {
 beginShape();
 for (int row = 0; row < rowCount; row++) {
 if (data.isValid(row, col)) {
 float value = interpolators[row].value;
 float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
 float y = map(value, dataMin, dataMax, plotY2, plotY1);
 vertex(x, y);
 }
 }
 vertex(plotX2, plotY2);
 vertex(plotX1, plotY2);
 endShape(CLOSE);
}

End of the Series
In this chapter, we looked at the most common form of data plot: the time series. The
point was to get comfortable with functions such as map(), pick up some principles on
how to choose a representation, and see how a few lines of code can help produce an
alternate representation or a more refined appearance. The techniques implemented
here are useful for nearly any type of plot, as the algebra for placement and consider-
ations for use will be identical across all other data sets that we examine.

Developers familiar with Processing or Java might want to make this code into a
class. Classes are a useful means for encapsulating data sets. For instance, this code
could be made into a class named TimeSeries to handle arbitrary data stored in a
table. This might be a useful abstraction, but keep in mind how you customize the
code once it’s in a class. The final version of the program listing in this chapter is just
over 200 lines (a little more than three printed pages). Once you’ve moved this code
into a 200-line class, how do you keep it flexible? Do you modify it directly or sub-
class it? Is it necessary to create a new subclass for each new type of representation,
when each new representation is between 5 and 20 lines apiece? Always weigh such
decisions in terms of how the code will be used. If only one representation is
required for your particular project, why bother maintaining multiple subclasses?
Just do the representation right the first time. And when reusing the code in your
next project, you’ll probably change at least 10% of the base code anyway, so there’s
no need to maintain several subclasses. As our projects become more complicated,
we’ll do more to encapsulate code into modular units, while doing our best to avoid
needless levels of abstraction.

End of the Series | 93

Of course, there are libraries that allow you to plot data in a number of ways, partic-
ularly for simple things such as time series or bar charts. For Java coders, JFreeChart
is a widely used example (see http://www.jfree.org/jfreechart). JFreeChart is a nice
tool for basic charting and graphing, but it doesn’t allow the kind of flexible customi-
zation taught here—which you are hopefully coming to appreciate. This book
intends to teach you the starting point for drawing basic representations, such as a
plot or chart, and then goes on to show how they can be manipulated in a more
sophisticated manner than can be done with standard tools.

http://www.jfree.org/jfreechart/

94

Chapter 5CHAPTER 5

Connections and Correlations 5

Data that varies across multiple dimensions is common, and it can be difficult to rep-
resent in traditional charts that exploit only the two dimensions of the screen or
printed page. In particular, you often have an independent variable and a dependent
variable that change over time. Many techniques for representing change exist, but
one of the most engaging ways is animation.

In this chapter, we’ll create a display of baseball results to explore how relationships
can be instantly and powerfully conveyed through the spatial arrangement of data,
visual elements such as icons and lines, and most significantly, the use of animation.
You don’t have to understand baseball to understand this chapter; it’s less about the
game than it is about the numbers and depicting those numbers.

The display used in this chapter is uniquely suited to the baseball data provided and
the relationships within that data. You might choose to use a different sort of dis-
play for your data, but you can learn a lot by following the use of font, color, stroke
weight, and other parameters shown here. The example demonstrates how to keep
the basic goal of a display in mind and how to choose each element to meet that
goal. Along the way, we’ll see how to parse text data and convert it from simple
plain-text files to internal formats that are easy for our program to mine. We’ll also
study how to mix text data (including numeric data) with lines and other visual ele-
ments and how to correlate parameters, such as dates, with physical screen positions
that allow the user to control the display using the mouse.

Changing Data Sources
Data collection is significantly more involved here than in the other chapters, and
we’ll spend a lot more time learning about parsing HTML pages to acquire data, as
well as exploring tools for parsing text data.

At times, the methods we’re using will seem very specific to the data set we’re look-
ing at, which leaves us open to the danger of URLs changing or pages going out of

Problem Statement | 95

date. But therein lies the point of the chapter: when the data source does change,
you’ll use similar methods to parse the updated information, and you need to under-
stand how this process works so that you can effectively handle the new data. Chap-
ters 9 and 10 also cover data acquisition and parsing in greater detail and provide a
helpful guide for common practices. The same methods can be applied to all man-
ner of information sources—even those that have nothing to do with baseball.

Problem Statement
In 2004, the Boston Red Sox won the World Series after an 86-year championship
drought. As a Red Sox fan, this was a bittersweet victory in the sense that the Sox
were the second-highest-paid team in baseball and had just now managed to win a
championship. With a total salary budget of around $133 million dollars, they
weren’t exactly young upstarts. That made me curious about the relationships
between raw salaries and the general performance of the individual teams across the
league.

For instance, George Steinbrenner, the owner of the New York Yankees, had in
recent years been accused of trying to “buy” the World Series trophy by assembling a
collection of highly paid all-stars. On the other hand, the performance of the Oak-
land Athletics (the A’s) had in prior years far exceeded their overall salary. In the
book Moneyball (W.W. Norton & Company), Michael Lewis tells the story of how
Billy Beane, the general manager (GM) of the A’s, made use of statistics to pursue
players who had promising numbers but were below the radar because they weren’t
always standouts in the traditional sense.

Bill James was one of pioneers of statistics-oriented thinking in regards to baseball,
first with his analytical sports columns and later with The Bill James Baseball
Abstract, first published in 1977. Similar ideas led to the founding of the Society for
American Baseball Research (SABR), from which came the term for this numbers-
driven approach to the game, sabermetrics. The extent to which statistics can be
applied to sports remains a controversial topic, pitting the appreciation of the intan-
gible, underlying traits of highly talented people against a perceived reduction of
noble games to mere mathematics.

As with any narrative, Moneyball presents an over-simplification of the system, as
does the simple relationship of total salaries in a given year to performance-to-date.
More complex factors come into play, including how contracts work over multiple
years, the health of a team’s farm system (their minor-league teams), and scoring
methods for individual players. The original version of this project was thrown
together while watching a game on television and should not be ranked alongside the
many professional analyses of sports statistics.

However, a win is a win, and as a gross measure, showing the simple correlation
between team salaries and standings can be quite revealing, particularly to observe

96 | Chapter 5: Connections and Correlations

shifts over the course of a season. Non-baseball fans also seem to enjoy this demon-
stration because wins and losses can be understood without intimate knowledge of
the game, and because it fuels a popular discussion topic: that of the seemingly limit-
less salaries paid to professional athletes.

Preprocessing
In the examples so far, the data has been reasonably clean. That is rare; most data
sets you find will need some amount of preprocessing before they’re even usable.
Returning to the seven-step process outlined in Chapter 1, it’s not uncommon to first
take a data set through the acquire, parse, filter, and mine steps, only to return to the
beginning of the process and go through each step again with the resulting clean set
of data (acquiring the clean data, parsing it, filtering and mining, etc.). For this chap-
ter, we’ll be preprocessing the data, and then starting all over again to represent the
results.

Retrieving Win/Loss Data (Acquire)
Increasingly, many organizations make data available through web services, APIs,
and acquisition methods (known by acronyms such as REST and SOAP) that distrib-
ute data in a neatly packaged format (usually XML-formatted text). When available,
such services can be extremely useful, and they are a good starting point when deal-
ing with a provider’s data.

But most data still appears in the form of HTML-formatted tables, which may be
attractive to human readers but is difficult for programs to understand. Although the
sites may look relatively structured from our perspective, they are quite unstruc-
tured from the point of view of a program trying to organize and perform calcula-
tions on the data. Extracting the data from the HTML with a program is often called
screen-scraping.

To get such data, you have to look at the HTML and write code to parse it. Luckily,
most HTML is machine-generated and therefore is in a pretty regular format. You
just have to locate the table you want among the JavaScript and other HTML tags
used to display the web page.

The main hurdle you face is that the web site designers can change the format on a
whim and with a click of a button in some web page layout tools. Upon complaints
from users of your program that it no longer works, you’ll have to rush back to the
site where you got your data to see what change they introduced. REST and SOAP
eliminate this problem; they represent an implicit commitment by the data’s provid-
ers that they won’t change their means of publishing data, even if they decide to
change how the data is displayed.

Preprocessing | 97

Data source for baseball statistics

To find win/loss records for each team, we turn to MLB.com, the web site of Major
League Baseball. The standings page, found at http://mlb.mlb.com/mlb/standings/
index.jsp and illustrated in Figure 5-1, is a suitable place to get the information.

We’ll use this page to explore the general problem of extracting data from web sites
that are not deliberately designed to facilitate such extraction.

Figure 5-1. The MLB.com standings page for 2007

http://mlb.mlb.com/mlb/standings/index.jsp and
http://mlb.mlb.com/mlb/standings/index.jsp and

98 | Chapter 5: Connections and Correlations

Screen-scraping requires the following general process:

1. Navigate to the page that contains the data. Because there will be lots of header
and footer material, make a note of unique text or HTML tags that will reliably
identify, even as the page is updated, the starting point of the data you want. In
this case, our program can assume the table starts after the text American League,
specifically beneath the table heading East.

It’s important to choose unique and stable identifiers. For instance, although it
might be tempting to use the first data element in the table, Boston, as a starting
point, it won’t work because the “Select favorite team” pop-up menu already
contains a “Boston” entry that will throw off your search.

2. Choose View Source from the browser’s menu and take a look at the code. Use
the Find command to look for your identifiers (e.g., “American League” or
“East”) to see where the data begins. In most cases, the data will begin near the
identifier you’ve chosen. In our data (and in most other web pages with interest-
ing data, because they’re arranged in tabular form), the identifying portions will
be part of an HTML <TABLE> tag, with the data stored inside a <TD> and </TD>
pair.

To make things trickier, in this example, the relevant HTML is actually built
using JavaScript. The location near American League, where we might normally
find the data, instead contains lines that use a pair of functions named
buildTitleRows() and buildRows():

 <div style="padding-top:15px;">
 <h1>American League</h1>
 <img src="/mlb/images/al_symbol.gif" width="38" height="31"
alt="American League" border="0" align="absmiddle" />
 </div>
 </td>
</tr>

<script>dataExists();</script>

<script>buildTitleRows("ale"); </script>
<tbody id="ale"><script>buildRows (standings_rs_ale); <script><tbody>

<script>buildTitleRows("alc"); </script>
<tbody id="alc"><script>buildRows (standings_rs_alc); <script><tbody>

<script>buildTitleRows("alw"); </script>
<tbody id="alw"><script>buildRows (standings_rs_alw); <script><tbody>

<tr>
 <td colspan="16" style="padding-top:15px;">
 <h1>National Leaguew<h1>
 <img src="/mlb/images/nl_symbol.gif" width="38" height="31"
t="National League" border="0" align="absmiddle" />
 </td>
</tr>

Preprocessing | 99

<script>buildTitleRows("nle");</script>
<tbody id="nle"><script>buildRows(standings_rs_nle);</script><t/body>

<script>buildTitleRows("nlc");</script>
<tbody id="nlc"><script>buildRows(standings_rs_nlc);</script><t/body>

<script>buildTitleRows("nlw");</script>
<tbody id="nlw"><script>buildRows(standings_rs_nlw);</script><t/body>

An educated guess will tell you that ale is an abbreviation for the American
League East division, alc stands for American League Central, and so on. (A
less-educated guess could ascertain the same by noting that this is the American
League [AL] table, with subheadings East, Central, and West, abbreviated E, C,
and W.)

3. If the web page we were interested in contained our data directly in its HTML,
we could write a program that read lines from the page and parsed them to
remove the data. But in this case, we need to derive our data from JavaScript
output, so we have to look at the JavaScript code to find how that program
stores the data.

Another use of the Find command reveals lines that load each array from indi-
vidual .js (JavaScript) files:

<script
src="/components/game/year_2007/month_04/day_15/standings_rs_ale.js"
type="text/javascript">/* " */</script>
<script
src="/components/game/year_2007/month_04/day_15/standings_rs_alc.js"
type="text/javascript">/* " */</script>
<script
src="/components/game/year_2007/month_04/day_15/standings_rs_alw.js"
type="text/javascript">/* " */</script>
<script
src="/components/game/year_2007/month_04/day_15/standings_rs_nle.js"
type="text/javascript">/* " */</script>
<script
src="/components/game/year_2007/month_04/day_15/standings_rs_nlc.js"
type="text/javascript">/* " */</script>
<script
src="/components/game/year_2007/month_04/day_15/standings_rs_nlw.js"
type="text/javascript">/* " */</script>

<script src="/components/game/year_2007/month_04/day_15/
<script src="/components/game/year_2007/month_04/day_15/
<script src="/components/game/year_2007/month_04/day_15/
<script src="/components/game/year_2007/month_04/day_15/
<script src="/components/game/year_2007/month_04/day_15/

The URL for the first item reads:
/components/game/year_2007/month_04/day_15/standings_rs_ale.js

100 | Chapter 5: Connections and Correlations

Because a forward slash is found at the beginning, the reference points to the
root of the site, http://mlb.mlb.com, meaning that the full URL is http://mlb.mlb.
com/components/game/year_2007/month_04/day_15/standings_rs_ale.js.

If the text did not begin with a slash, the URL would instead be relative to the
original page number, meaning that you would have to append it to the direc-
tory of the page that referred to it (http://mlb.mlb.com/mlb/standings/index.jsp),
which would make the new URL http://mlb.mlb.com/mlb/standings/components/
game/year_2007/month_04/day_15/standings_rs_ale.js.

So, our data will come from three JavaScript files representing results for the three
American League divisions:

http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_
ale.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_
alc.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_
alw.js

and three more files for the National League (NL) teams:

http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_
nle.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_
nlc.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_
nlw.js

Unpacking the Win/Loss files (Mine and Filter)
Entering the first URL for standings_rs_ale.js into a browser will display the Java-
Script source file. To parse the data, we are particularly interested in the structure
that the JavaScript program gives to that data. This structure is defined by a
standings_rs_ale array:

var standings_rs_ale = [{
 w: '6',
 elim: '-',
 rs: '51',
 div: 'ale',
 gameid: '2007_04_16_anamlb_bosmlb_1',
 status: 'F',
 pre: null,
 last10: '6-4',
 onerun: '1-0',
 xtr: '0-0',
 nextg: '4/16 v LAA, W 7-2',
 vsW: '4-3',
 ra: '28',
 gb: '-',

http://mlb.mlb.com
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_ale.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_ale.js
http://mlb.mlb.com/mlb/standings/components/game/year_2007/month_04/day_15/standings_rs_ale.js
http://mlb.mlb.com/mlb/standings/components/game/year_2007/month_04/day_15/standings_rs_ale.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_ale.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_alc.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_alw.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_nle.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_nlc.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_nlw.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_nlw.js

Preprocessing | 101

 wrap:
'/NASApp/mlb/news/wrap.jsp?ymd=20070414&content_id=1898390&vkey=wrapup2005&fext=.
jsp&c_id=mlb',
 home: '3-1',
 code: 'bos',
 pct: '.600',
 league_sensitive_team_name: 'Boston',
 vsC: '2-1',
 vsE: '0-0',
 vsR: '5-4',
 vsL: '1-0',
 xwl: '7-3',
 strk: 'W2',
 l: '4',
 lastg: '4/14 v LAA, W 8-0',
 interleague: '0-0',
 team: 'Boston',
 road: '3-3'
}, {

Web developers might recognize this as JavaScript Object Notation (JSON) syntax.
We won’t get into the specifics of JSON here; see Chapter 10 for more information.

The previously shown code encompasses the content for the first team, and four
additional blocks in the same format follow. We need only a few fields from the
information. The field we’ll use the most is the two- or three-digit code that identi-
fies the team, which we’ll use to index other kinds of data:

code: 'bos',

Next, we need the line for wins:

w: '6',

and the line for losses:

l: '4',

We also want a team name to show in the interface, and luckily there is a variable
named team that looks like it might do the trick. However, it lists New York as the value
for the New York Yankees, which won’t be useful when trying to differentiate the Yan-
kees from the Mets, who also hail from New York. Instead, the league_sensitive_
team_name value will be more useful. For instance, the entry for the Mets reads:

league_sensitive_team_name: 'NY Mets',

As in the previous section, where we looked for some salient string or character that
we could use to find the start of our data, we now want to find something that differ-
entiates one team from another. In the JSON format of the standings_rs_ale array, a
{ character begins each block of data for a new team. Each time that character is
found, our program can retrieve information for a new team. Similarly, when the
program finds the corresponding closing } character, it can add the new team’s infor-
mation to its own list. Grabbing the data for all of the teams is simply a matter of

102 | Chapter 5: Connections and Correlations

parsing the information properly. The code in the next section reads one of the files
and parses the data into attribute and value pairs.

There are several publicly available JSON parsers we could use to read the data. But
because the data shown here is so simple, using a formal parser would be overkill,
making the program run more slowly and increasing its download size.

Introducing regular expressions

The following function will read from one of the .js files discussed in the previous
sections and print each team code that it finds, followed by the win-loss record for
that team. The code introduces regular expressions, which are extremely useful when
parsing data:

void parseWinLoss(String[] lines) {
 Pattern p = Pattern.compile("\\s+([\\w\\d]+):\\s'(.*)',?");

 String teamCode = "";
 int wins = 0;
 int losses = 0;

 for (int i = 0; i < lines.length; i++) {
 Matcher m = p.matcher(lines[i]);

 if (m.matches()) {
 String attr = m.group(1);
 String value = m.group(2);

 if (attr.equals("code")) {
 teamCode = value;
 } else if (attr.equals("w")) {
 wins = int(value);
 } else if (attr.equals("l")) {
 losses = int(value);
 }

 } else {
 if (lines[i].startsWith("}")) {
 // This is the end of a group; print the values.
 println(teamCode + " " + wins + "-" + losses);
 }
 }
 }
}

If you’re not already familiar with them, regular expressions can take a long time to
get used to, but their usefulness makes it worth the initial difficulty. To understand
what the code is doing, let’s start by looking at the format of the original data.
Because the code takes advantage of the presence of blank spaces, I’m including
them in the format’s representation here:

[space] [attribute name] : [space] ' [value] ' ,

Preprocessing | 103

This sort of template is common when parsing data, and it can be handled with a
regular expression (or regexp). A regexp is defined by a pattern, such as the one just
shown, and a matcher, which checks the pattern against some input data.

A pattern is made up of a series of symbols that identify whitespace, characters,
numbers, and how many of each are expected. Although the way I represented the
pattern with words and square brackets makes it easier for humans to read, the
regexp APIs of programming languages use a more precise format. The symbols used
in regexps initially appear as a confusing mess, but after some time, you’ll become
familiar with them (in other words, they’ll be less confusing, even if they still look
like a mess). The pattern \\s+([\\w\\d]+):\\s'(.*)',? in the code that started this
section has the following meaning:

\\s+
This part matches the space at the beginning of the line. It’s made up of two dif-
ferent tokens that are meaningful in regexps:

\s
This means “any whitespace character.” But why is the backslash doubled?
In Java and other C-like languages, a backslash is used to identify special
characters in a String (e.g., \t for Tab or \n for newline). Similarly, an actual
slash is specified by a double slash: \\.

+
This means to look for one or more characters. This makes our regexp more
robust because the programmer who wrote the JSON we’re parsing might
put an arbitrary number of space characters at the start of the line.

([\\w\\d]+)
This portion matches the attribute name (such as w or team). The most powerful
part of this string is the enclosing parentheses, which mark that set of characters
as a group. This means the program can later point to and extract the matching
characters.

Inside the grouping parentheses are a set of square brackets, which denote a
character class. This is a way to match a variety of different characters that can
appear at this point in the input text. Our particular character class matches two
types of characters:

\w
Any word character (i.e., a letter)

\d
Any digit (0–9)

So [\\w\\d] means “any word or digit character.” The + at the end specifies “one
or more,” just as it did previously in our string \\s+.

:
This is literally just the colon character, which is found after the variable name.

104 | Chapter 5: Connections and Correlations

\\s
Matches a single whitespace character (the space after the colon).

'
Matches the single quote at the beginning of the variable’s value.

(.*)
This part matches the value found inside the single quotes. We’ve already seen
what the grouping parentheses mean. Inside these parentheses are:

. (period)
Matches anything. Any character is possible in the input.

*
Specifies zero or more of the character that precedes it (similar to how the +
operator matches one or more of that character).

'
Matches the closing single quote after the variable’s value.

,?
Matches the optional comma at the end of the line. Similar to + and *, the ?
modifier specifies “zero or one” matches.

To use a regexp in Java, we first create a Pattern object, as seen in the first line of the
method. Next, we iterate through each line of the input data and attempt to match it
to the Pattern. Inside the loop, the Matcher object holds the result of our attempt to
match input. The matches() method returns true if the specified lines[i] value fits
the pattern. Next, we use the group() method to retrieve each group that was cap-
tured by the parentheses in our regexp. The first group is the attribute (or variable
name), and the second group is the value (the variable contents).

If the line does not match, the final part of the method checks whether the line
begins with a }, which specifies a break between data from two teams, at which point
the values collected so far are printed to the console with println.

A complete program to acquire and parse the data for all six divisions from MLB.
com follows. It creates two text files—one for the standings and one for the team
codes and team names:

import java.util.regex.*;

PrintWriter standings;
PrintWriter teams;

void setup() {
 String base = "http://mlb.mlb.com/components/game" +
 "/year_2007/month_04/day_15/";

 standings = createWriter("standings.tsv");
 teams = createWriter("teams.tsv");

Preprocessing | 105

 parseWinLoss(loadStrings(base + "standings_rs_ale.js"));
 parseWinLoss(loadStrings(base + "standings_rs_alw.js"));
 parseWinLoss(loadStrings(base + "standings_rs_alc.js"));

 parseWinLoss(loadStrings(base + "standings_rs_nle.js"));
 parseWinLoss(loadStrings(base + "standings_rs_nlw.js"));
 parseWinLoss(loadStrings(base + "standings_rs_nlc.js"));

 // Finish writing and close each file.
 standings.flush();
 standings.close();
 teams.flush();
 teams.close();

 println("Done.");
}

void parseWinLoss(String[] lines) {
 Pattern p = Pattern.compile("\\s+([\\w\\d]+):\\s'(.*)',?");

 String teamCode = "";
 int wins = 0;
 int losses = 0;
 String teamName = "";

 for (int i = 0; i < lines.length; i++) {
 Matcher m = p.matcher(lines[i]);

 if (m.matches()) {
 String attr = m.group(1);
 String value = m.group(2);

 if (attr.equals("code")) {
 teamCode = value;
 } else if (attr.equals("w")) {
 wins = int(value);
 } else if (attr.equals("l")) {
 losses = int(value);
 } else if (attr.equals("league_sensitive_team_name")) {
 teamName = value;
 }

 } else {
 if (lines[i].startsWith("}")) {
 // This is the end of a group; print the values.
 standings.println(teamCode + TAB + wins + TAB + losses);
 teams.println(teamCode + TAB + teamName);
 }
 }
 }
}

106 | Chapter 5: Connections and Correlations

The resulting standings.tsv file reads:

bos 6 4
tor 7 5
bal 6 6
nyy 5 6
tb 5 7
sea 5 3
ana 6 6
oak 6 7
tex 5 7
cle 6 3
det 7 5
min 7 5
cws 5 6
kc 3 9
atl 8 3
nym 7 4
fla 6 5
phi 3 8
was 3 9
ari 9 4
la 8 4
sd 7 5
col 5 7
sf 3 7
cin 7 5
mil 6 5
stl 6 5
hou 4 6
pit 4 6
chc 4 7

And the teams.tsv file contains:

bos Boston
tor Toronto
bal Baltimore
nyy NY Yankees
tb Tampa Bay
sea Seattle
ana LA Angels
oak Oakland
tex Texas
cle Cleveland
det Detroit
min Minnesota
cws Chi White Sox
kc Kansas City
atl Atlanta
nym NY Mets
fla Florida
phi Philadelphia
was Washington
ari Arizona

Preprocessing | 107

la LA Dodgers
sd San Diego
col Colorado
sf San Francisco
cin Cincinnati
mil Milwaukee
stl St. Louis
hou Houston
pit Pittsburgh
chc Chi Cubs

The team names file can be downloaded here:

http://benfry.com/writing/salaryper/teams.tsv

along with the example standings file:

http://benfry.com/writing/salaryper/standings.tsv

The code downloads each file for April 15, 2007, but it is easy to change the date.
Instead of the following code block:

String base = "http://mlb.mlb.com/components/game" +
 "/year_2007/month_04/day_15/";

use a combination of the Processing methods year(), month(), and day(), along with
nf() to pad the numbers to the proper number of digits:

String base = "http://mlb.mlb.com/components/game" +
 "/year_" + nf(year(), 4) +
 "/month_" + nf(month(), 2) +
 "/day_" + nf(day(), 2) + "/";

Retrieving Team Logos (Acquire, Refine)
Team names make for a boring display. Our output will be much more appealing if
we show team logos. Finding team logos on the MLB.com site (or any other site, for
that matter) illustrates another bit of useful detective work: determining the pattern
for a series of image files.

The first task is to find a possible logo image. For instance, the scoreboard page at
http://mlb.mlb.com/mlb/scoreboard has logos for several teams. To determine a loca-
tion, right-click one of the images, select Copy Image Location (or its equivalent in
whatever web browser you are using), and use that location to open a new page.
Right-clicking on the Chicago Cubs image, for instance, produces this URL:

http://mlb.mlb.com/mlb/images/team_logos/logo_chc_small.gif

The chc is the three-letter team code found earlier when downloading team data,
which suggests that logos for the remaining 29 teams can be found by replacing those
three letters with different codes. The list of codes is one column of the teams.tsv file
created in the previous step. Therefore, to give our program access to team logos,
we’ll automate the retrieval of the images here.

http://benfry.com/writing/salaryper/teams.tsv
http://benfry.com/writing/salaryper/standings.tsv
http://mlb.mlb.com/mlb/scoreboard
http://mlb.mlb.com/mlb/images/team_logos/logo_chc_small.gif

108 | Chapter 5: Connections and Correlations

In a new sketch, add the teams.tsv file and begin with the following code to read the
file and load the teams into a String array named teams:

String[] teams;

void setup() {
 String[] lines = loadStrings("teams.tsv");
 teams = new String[lines.length];
 for (int i = 0; i < lines.length; i++) {
 String[] pieces = split(lines[i], TAB);
 // The three digit code for the team is the first column
 teams[i] = pieces[0];
 }
}

The presence of the word _small in the title of the http://mlb.mlb.com/mlb/images/
team_logos/logo_chc_small.gif file suggests that there are images of other sizes. I took
a stab at finding them on the http://mlb.mlb.com web site by substituting the suffixes
_large and _medium, but neither worked. It may even be possible to look at the
directory that contains the logos (http://mlb.mlb.com/mlb/images/team_logos) and get
a file listing, but that generally works only for smaller or less professional web sites.

Of course, the locations for the images are subject to change at any time (and often
will because there’s no reason for MLB.com to keep them the same for others using
their data), which is why we are taking the time to go through the process of figuring
out the image locations. In an ideal situation, of course, the MLB would make this
data available through a web service.

If we can’t easily find the images we want by using our intuition and digging around
the site, the next alternative is to use a search engine. Do a search for the first part of
the URL and see what sort of results turn up. Thus, doing a search for “mlb/images/
team_logos/” reveals several additional possibilities:

http://mlb.mlb.com/mlb/images/team_logos/logo_atl_small.gif
http://mlb.mlb.com/mlb/images/team_logos/50x50/atl.gif
http://mlb.mlb.com/mlb/images/team_logos/logo_bal_79x76.jpg
http://mlb.mlb.com/mlb/images/team_logos/51x21/bos_standings_logo.gif

A different web site shows yet another format:

http://losangeles.angels.mlb.com/mlb/images/team_logos/100x100/ana.gif

The similarities in the directory structure suggest that the site is merely an alias, and
a quick test confirms that the following URL works in an identical manner:

http://mlb.mlb.com/mlb/images/team_logos/100x100/ana.gif

For each of the URLs in question, the two- or three-digit team code appears between
a prefix and suffix specific to the image size and location. In the case of the small
logos, the URLs look like:

http://mlb.mlb.com/mlb/images/team_logos/logo_team_small.gif

http://mlb.mlb.com/mlb/images/team_logos/logo_chc_small.gif
http://mlb.mlb.com/mlb/images/team_logos/logo_chc_small.gif
http://mlb.mlb.com
http://mlb.mlb.com/mlb/images/team_logos/
http://mlb.mlb.com/mlb/images/team_logos/logo_atl_small.gif
http://mlb.mlb.com/mlb/images/team_logos/50x50/atl.gif
http://mlb.mlb.com/mlb/images/team_logos/logo_bal_79x76.jpg
http://mlb.mlb.com/mlb/images/team_logos/51x21/bos_standings_logo.gif
http://losangeles.angels.mlb.com/mlb/images/team_logos/100x100/ana.gif
http://mlb.mlb.com/mlb/images/team_logos/100x100/ana.gif

Preprocessing | 109

With all this in mind, a short program can download each set of images:

String[] teams;

void setup() {
 String[] lines = loadStrings("teams.tsv");
 teams = new String[lines.length];
 for (int i = 0; i < lines.length; i++) {
 String[] pieces = split(lines[i], TAB);
 // The three-digit code for the team is the first column.
 teams[i] = pieces[0];
 }

grabLogos("small", "http://mlb.mlb.com/mlb/images/team_logos/logo_", "_small.gif");
 grabLogos("50x50", "http://mlb.mlb.com/mlb/images/team_logos/50x50/", ".gif");
grabLogos("79x76", "http://mlb.mlb.com/mlb/images/team_logos/logo_", "_79x76.jpg");

 grabLogos("standings", "http://mlb.mlb.com/mlb/images/team_logos/51x21/",
 "_standings_logo.gif");
 grabLogos("100x100", "http://mlb.mlb.com/mlb/images/team_logos/100x100/", ".gif");
}

void grabLogos(String folder, String prefix, String suffix) {
 String extension = suffix.substring(suffix.length() - 4);
 for (int i = 0; i < teams.length; i++) {
 String filename = folder + "/" + teams[i] + extension;
 String url = prefix + teams[i] + suffix;
 println("Downloading " + url);
 saveStream(filename, url);
 }
}

The teams array contains the list of the 30 team codes. The grabLogos() method iter-
ates through each team, downloading images based on the specified prefix and suffix.
The saveStream() method loads the data from a particular web address and writes it
back to the disk (it’s equivalent to using the built-in function loadBytes(), followed
by saveBytes()). Because the image may be a .jpg or .gif file, the grabLogos() method
uses substring() on the source filename to determine which extension to use when
naming the downloaded file.

In the end, the small directory contains the images whose size and proportion are
most appropriate for our display. Start a new sketch, and use Sketch ➝ Show Sketch
Folder to add these to the data folder.

Retrieving Salary Data (Acquire, Parse, Filter)
The next step is to find a list of the salaries for each of the teams. There appears to be
no such feature on MLB.com, but the USA Today web site makes available a list of
team payrolls here:

http://usatoday.com/sports/baseball/salaries/totalpayroll.aspx?year=2007

http://usatoday.com/sports/baseball/salaries/totalpayroll.aspx?year=2007

110 | Chapter 5: Connections and Correlations

The simplest method of getting this information is to copy it from your web browser
and paste it into an open document in your spreadsheet application of choice. If
you’re lucky, the table will be interpreted as tab-delimited and the columns will be
preserved when pasted into the spreadsheet.

Another option is to use the import or link feature of your spreadsheet application.
This also can be done with Excel, but we’ll use OpenOffice.org because anyone can
download it for free. Create a new Calc document and choose Insert ➝ Link To
External Data…. Paste the USA Today URL listing the payrolls into the first text field
that reads “URL of external data source.” Pressing the Enter key will populate the list
of “Available tables/ranges.” Scroll down and select HTML__BBSalTable from the
list, as shown in Figure 5-2.

Click OK to import the data. That will pick up more of the web page than necessary,
but scrolling down to the 17th row and expanding columns A and B reveals the list
of teams, shown in Figure 5-3.

Delete all rows and columns except for the team name and the salary, and replace
each team name with its two- or three-letter code. The commas and dollar signs also
need to be removed (a quick Find and Replace will take care of that). Finally, save
the file as plain text in TSV format as salaries.tsv. A completed version of the salaries
file can be found at http://benfry.com/writing/salaryper/salaries.tsv.

Of course, parsing the page and downloading the table could be handled in code, but
the amount of information (30 team salaries) and the frequency at which it’s updated
(once a year) does not warrant an algorithmic solution.

Figure 5-2. Entering web data into an OpenOffice.org spreadsheet

http://usatoday.com/sports/baseball/salaries/totalpayroll.aspx?year=2007
http://benfry.com/writing/salaryper/salaries.tsv

Using the Preprocessed Data (Acquire, Parse, Filter, Mine) | 111

Using the Preprocessed Data (Acquire, Parse, Filter,
Mine)
In the previous steps, we managed to download files that represent the team names
and logos, their salaries, and their standings on a given day. Now that we have deter-
mined how to handle each type of information and have preprocessed parts of it,
we’ll pull it together into a single application. The goal of this section is to gather the
data that previous sections put in plain text files, and then bring them into data
structures that are convenient for our program to use.

Figure 5-3. Team salary data in an OpenOffice.org spreadsheet

Convert Data by Hand or Write a Program?
As a rule of thumb, I write code only when the time to write the code is less than or
equal to double the amount of time it takes to do a process by hand. That is, if it takes
three hours to do it by hand and I can implement it in code in six hours or less, I prefer
to use code so that the results can be easily updated. As a corollary, however, in situa-
tions like the one presented in this chapter, the page structure will likely change more
than the data itself. In such cases, writing a parser is usually a waste of time.

112 | Chapter 5: Connections and Correlations

Team Names and Codes
First, we’ll load the team names using the setupTeams() method. This is similar to
examples we’ve seen in earlier chapters, in which we acquire the data from a pre-
processed file through loadStrings(), followed by split(), to break a line into indi-
vidual columns:

int teamCount = 30;
String[] teamNames;
String[] teamCodes;
HashMap teamIndices;

void setupTeams() {
 String[] lines = loadStrings("teams.tsv");

 teamCount = lines.length;
 teamCodes = new String[teamCount];
 teamNames = new String[teamCount];
 teamIndices = new HashMap();

 for (int i = 0; i < teamCount; i++) {
 String[] pieces = split(lines[i], TAB);
 teamCodes[i] = pieces[0];
 teamNames[i] = pieces[1];
 teamIndices.put(teamCodes[i], new Integer(i));
 }
}

int teamIndex(String teamCode) {
 Integer index = (Integer) teamIndices.get(teamCode);
 return index.intValue();
}

When creating the teamCodes and teamNames arrays, we have to provide an ordering
that can be used to anchor the data. When we’re loading the salary information from
an input file, we don’t know the exact order in which the teams will be found. The
same is true for the win-loss standings, which will change from day to day. We
anchor both lists to the same order by mapping the teamCode to a particular team
index (numbered 0 to 29), which ensures that data from each source is connected
properly.

To map a teamCode to an integer index, we use a HashMap. The HashMap class is a dic-
tionary that connects two pieces of data, each an Object. The put() method adds a
new entry to the map, whereas the get() method retrieves it. Because only objects
can be used in HashMap structures, it’s necessary to wrap the int for the team’s index
in an Integer object, which we created for this purpose. The intValue() method
extracts the original int from the Integer object. This is encapsulated by the
teamIndex function so that we don’t have to think about the HashMap or Integer
classes when writing the rest of the code.

Using the Preprocessed Data (Acquire, Parse, Filter, Mine) | 113

Team Salaries
We will organize the salary data as a list of ranked values, just like the team stand-
ings. The parameters for ranked data are:

• A list of the values to be ranked (the amount of each team’s payroll).

• A list of how those values will be shown to the user (the number formatted as a
dollar amount with commas, e.g., $34,140,182).

• A list of the rank for each item, and a sorting order to be used when ranking. For
instance, a higher payroll amount has a negative connotation, whereas a higher
win-loss average has a positive connotation. In some cases, having the data in
ascending order might be more useful; in others, a descending order is better.

• A means of keeping track of the highest and lowest values.

The ranked list is useful for salary data as well as the win-loss standings. It will also
be useful when adapting this project to other types of data. Because a ranked list can
be a useful general-purpose data structure, and because it requires a bit of code to
sort the information and calculate its minimum and maximum values, I’ve created a
RankedList class that encapsulates the general means of handling ranked data.

What’s the Difference Between int and Integer?
In Java, an int is a primitive type (such as float and char) that contains a simple value,
one that can be stored by most computers in a single element of memory in a native
format. In contrast, Integer is an object, which is a composite set of data elements.

The distinction can be confusing and often leads people to ask why the language
designers didn’t make everything an object. The answer is that objects create signifi-
cant (and unnecessary) overhead whenever primitive types such as int can be used. For
example, in a for loop with thousands of iterations, it would be silly to dereference an
Integer object used for the counter on each iteration. Because the int refers to a spe-
cific value, only one step is required to read or change it.

An object refers to a location in memory, so the first step in using it should be to check
whether the specified location is valid. The number might be stored in a variable called
value, so once the location in memory is determined to be correct, a check can be made
to find the location of the value variable (and whether or not it exists). Then, the vari-
able itself can be manipulated in some manner. Although it may not sound like much,
this sort of thing really makes a difference when dealing with thousands of values.

Scripting languages often use objects for all values, which can contribute to their lack
of speed. Especially in cases of languages that are not “typed,” each piece of data must
first be converted to the proper native data format of the system as it is used. To give a
simplistic example, a language might store each item of data as a string, and then con-
vert it to an integer in any context where the value is used as an integer (such as count-
ing in our for loop). This process can be even more time consuming.

114 | Chapter 5: Connections and Correlations

We’ve used classes in other examples (such as the Table class in Chapter 3), and like
the others, it’s not really necessary to understand the specifics of how this class
works, only how it connects to the rest of the code. Download this class from the
book’s site and add it to your sketch:

http://benfry.com/writing/salaryper/RankedList.java

The parameters I’ve described are stored in the value, title, and rank arrays. To use
the class for salary data, one need only extend the class. To do this, create a
SalaryList class in a new tab. Its only contents are:

class SalaryList extends RankedList {

 SalaryList(String[] lines) {
 super(teamCount, false);

 for (int i = 0; i < teamCount; i++) {
 String pieces[] = split(lines[i], TAB);

 // First column is the team's 2- or 3-digit team code.
 int index = teamIndex(pieces[0]);

 // Second column is the salary as a number.
 value[index] = parseInt(pieces[1]);

 // Make the title in the format $NN,NNN,NNN.
 int salary = (int) value[index];
 title[index] = "$" + nfc(salary);
 }
 update();
 }
}

The main task in this code is to convert data from the particular format in which we
put it during preprocessing—a text file with simple tab-separated lines—into the
arrays defined by the RankedList class. This is a common task in data processing: to
obtain data from an external source and transport it easily, you store it in a simple
text format. But to process it programmatically, use a general-purpose library (often
written by someone else) that expects the data to be in a more rigorous, possibly
binary format.

The SalaryList method is the constructor for the class, controlling how an object is
initialized. The super method calls the constructor of the parent class (known as the
superclass). In this case, it runs RankedList(teamCount, false) to create a list with 30
entries in descending order (if the second argument to the super method were true,
the data would be sorted in ascending order).

The rest of the code resembles our other parsing functions, except that it fills the
value, title, and rank array for the values read from an array of Strings loaded from
a file. The title variable for each is set to a dollar sign followed by the payroll num-
ber with commas inserted by the nfc() method.

http://benfry.com/writing/salaryper/RankedList.java

Using the Preprocessed Data (Acquire, Parse, Filter, Mine) | 115

After parsing the information, the update() method calls a function inside
RankedList that takes care of sorting the data and calculating the minimum and max-
imum values.

Back in the main tab, the setupSalaries() method creates the SalaryList:

SalaryList salaries;

void setupSalaries() {
 String[] lines = loadStrings("salaries.tsv");
 salaries = new SalaryList(lines);
}

Win-Loss Standings
The win-loss record is handled in a similar fashion. First, a modified version of our
preprocessing code acquires and parses the standings data for a given day:

String[] acquireStandings(int year, int month, int day) {
 String filename = year + nf(month, 2) + nf(day, 2) + ".tsv";
 String path = dataPath(filename);
 File file = new File(path);
 if (!file.exists() || (file.length() == 0)) {
 println("Downloading standings file " + filename);
 PrintWriter writer = createWriter(path);

 String base = "http://mlb.mlb.com/components/game" +
 "/year_" + year + "/month_" + nf(month, 2) + "/day_" + nf(day, 2) + "/";

 // American League (AL)
 parseStandings(base + "standings_rs_ale.js", writer);
 parseStandings(base + "standings_rs_alc.js", writer);
 parseStandings(base + "standings_rs_alw.js", writer);

 // National League (NL)
 parseStandings(base + "standings_rs_nle.js", writer);
 parseStandings(base + "standings_rs_nlc.js", writer);
 parseStandings(base + "standings_rs_nlw.js", writer);

 writer.flush();
 writer.close();
 }
 return loadStrings(filename);
}

void parseStandings(String filename, PrintWriter writer) {
 String[] lines = loadStrings(filename);
 Pattern p = Pattern.compile("\\s+([\\w\\d]+):\\s'(.*)',?");

 String teamCode = "";
 int wins = 0;
 int losses = 0;

116 | Chapter 5: Connections and Correlations

 for (int i = 0; i < lines.length; i++) {
 Matcher m = p.matcher(lines[i]);

 if (m.matches()) {
 String attr = m.group(1);
 String value = m.group(2);

 if (attr.equals("code")) {
 teamCode = value;
 } else if (attr.equals("w")) {
 wins = parseInt(value);
 } else if (attr.equals("l")) {
 losses = parseInt(value);
 }

 } else {
 if (lines[i].startsWith("}")) {
 // This is the end of a group, write these values
 writer.println(teamCode + TAB + wins + TAB + losses);
 }
 }
 }
}

For data from May 2, 2007, the acquireStandings() method looks for a file named
20070502.tsv. If the file is not present, it downloads the data from MLB.com and
parses it to create a filtered version that contains only the team code followed by the
number of wins and then the number of losses.

This code is nearly identical to the standalone version discussed earlier in the pre-
processing steps. One difference is in the use of a File object and the dataPath()
method. The dataPath() method gives a full pathname to a file found in the data
directory. This is useful when interfacing between Processing and Java file methods
because the concept of a data folder is specific to Processing. The File class is used in
Java to store a reference to a particular file (or directory) and includes several useful
methods, such as exists(), which we use here to determine whether the file is avail-
able. Here we also check to see whether the file’s length (size) is zero, which can hap-
pen if the acquireStandings method is interrupted and the file is not completely
written.

In a new tab called StandingsList, write a similar piece of code as the constructor for
SalaryList:

class StandingsList extends RankedList {

 StandingsList(String[] lines) {
 super(teamCount, false);

 for (int i = 0; i < teamCount; i++) {
 String[] pieces = split(lines[i], TAB);
 int index = teamIndex(pieces[0]);
 int wins = parseInt(pieces[1]);
 int losses = parseInt(pieces[2]);

Using the Preprocessed Data (Acquire, Parse, Filter, Mine) | 117

 value[index] = (float) wins / (float) (wins+losses);
 title[index] = wins + "-" + losses;
 }
 update();
 }
}

And back in the main tab, initialize the standings data by loading it from the correct
web page based on the current day and putting it into the internal format by initializ-
ing a StandingsList:

StandingsList standings;

void setupStandings() {
 String[] lines = acquireStandings(year(), month(), day());
 standings = new StandingsList(lines);
}

Team Logos
All that remains now is to load the logo images for each team. They were down-
loaded earlier in the preprocessing step into a folder named small. Add this folder to
the data folder of your sketch, and add the following code to your program:

PImage[] logos;
float logoWidth;
float logoHeight;

void setupLogos() {
 logos = new PImage[teamCount];
 for (int i = 0; i < teamCount; i++) {
 logos[i] = loadImage("small/" + teamCodes[i] + ".gif");
 }
 logoWidth = logos[0].width / 2.0;
 logoHeight = logos[0].height / 2.0;
}

The setupLogos() function also fiddles with how the logos are represented. Each
logo obtained from the MLB.com site is 38 pixels wide and 45 pixels high. Some
quick math tells us that 45 pixels times 30 teams (1,350 pixels) will not fit on the
screen, or at least is unnecessarily large. However, half that height is just perfect for a
1024 × 768 display. Because the size of the logo images might change over the years
(or with a different data set), we don’t assume a particular size, but instead set the
logoWidth and logoHeight variables to half the size of the first logo loaded.

Finishing the Setup
The setup() method brings this all together and defines a font for showing the data.
We’ll begin with just the generic SansSerif font, but will change it later:

118 | Chapter 5: Connections and Correlations

PFont font;

void setup() {
 size(480, 750);

 setupTeams();
 setupSalaries();
 setupStandings();
 setupLogos();

 font = createFont("SansSerif", 11);
 textFont(font);
}

Make sure to run setupSalaries() before setupStandings() because we use the sal-
ary in setupStandings() as a tiebreaker when sorting the standings.

Displaying the Results (Represent)
Looking at what we’ve done so far, we can begin to fashion a simple representation to
show each row of data with the team name and logo, win-loss record, and salary.
Given two major variables (win-loss record and salary), it might seem reasonable to
use the x- and y-axes. However, the question we have in mind is not simply “Do salary
and performance correlate?,” so an X and Y scatterplot is a less useful representation.

Our question implies a ranking because we’re comparing teams. Ranking usually
means a list, so we’ll start by sorting the two lists in descending order, and then we’ll
connect each team’s win-loss record to its salary with a line. The connecting lines—
not the individual win-loss record or salary—becomes the outstanding element of
the display. This is appropriate for our original question, because the lines show the
relationships we’re interested in. And after creating the basic display in this section,
the rest of the chapter uses various techniques to emphasize the impact of the lines.

We begin with a few constants, which are variables prefixed with static final
because they will not change while the sketch is in use. We haven’t bothered using
constants in previous projects because the code has been short, but for more compli-
cated projects, it’s important to start thinking about variables that can be abstracted
out from the code. Placing a constant at the beginning of the sketch makes it easy to
find and alter them. For instance, to change the row height we’d know where to
look, and would need to change only a single line, rather than the multiple locations
in the code that depend on the value for the row height. It also makes the code eas-
ier to read for others because when a value is a constant, that implies that its value
will only be read and not set anywhere in the code.

Because the logo height is 22.5 pixels, we’ll make each row 23 pixels tall. We’ll want
to center everything at the middle of the row, so the HALF_ROW_HEIGHT variable will
also come in handy:

Displaying the Results (Represent) | 119

static final int ROW_HEIGHT = 23;
static final float HALF_ROW_HEIGHT = ROW_HEIGHT / 2.0;
static final int SIDE_PADDING = 30;

The text size set earlier is about half the height of each row. This creates easy-to-
read, double-spaced text. The text itself needn’t be particularly large or prominent
because it is not as important as the correlation line itself.

The SIDE_PADDING variable is used to set a border around the display, adding some
whitespace to the edges. The amount should be more than the row height so that it
looks intentional, but not so large as to waste space.

The draw() method reads as follows:

void draw() {
 background(255);
 smooth();

 translate(SIDE_PADDING, SIDE_PADDING);

 float leftX = 160;
 float rightX = 335;

 textAlign(LEFT, CENTER);

 for (int i = 0; i < teamCount; i++) {
 fill(0);
 float standingsY = standings.getRank(i)*ROW_HEIGHT + HALF_ROW_HEIGHT;
 image(logos[i], 0, standingsY - logoHeight/2, logoWidth, logoHeight);
 text(teamNames[i], 28, standingsY);
 text(standings.getTitle(i), 115, standingsY);

 float salaryY = salaries.getRank(i)*ROW_HEIGHT + HALF_ROW_HEIGHT;

 stroke(0);
 line(leftX, standingsY, rightX, salaryY);

 text(salaries.getTitle(i), rightX+10, salaryY);
 }
}

The translate() method moves the coordinate system over slightly, giving us a
white border: (0, 0) will now be (30, 30), so nothing will be drawn in the left or top
30 pixels of the image.

The leftX and rightX values could also be constants (e.g., static final int LEFT_X =
160;), but we’ll leave them as variables in case we later want to dynamically figure
out the position of each column. The implementation used here determines the X-
coordinates by trial and error; a better idea would be to base the positions on the
maximum width of each column of text plus a little extra padding.

The textAlign() method left-aligns and vertically centers each row of text.

120 | Chapter 5: Connections and Correlations

A loop iterates through each team index (represented by i). The text() method
draws the team name, aligned to the left, and then the standings value (e.g., 40–29),
centered next to it.

The standingsY and salaryY variables are calculated by multiplying the rank of the
given team by the row height, then adding HALF_ROW_HEIGHT so that the line shows up
in the center.

The resulting image looks like Figure 5-4.

From Figure 5-4, we can pick out several interesting facts. For instance, both the
Boston Red Sox and the LA Angels pay handsomely and get results that seem to vali-
date the costs. But the highest salaries are paid by the New York Yankees, who are
woefully unrewarded for this generosity. Individual results like this can be found in
the figure, but it doesn’t yield much in the way of overall patterns.

Figure 5-4. Sample team ranking

Returning to the Question (Refine) | 121

Returning to the Question (Refine)
When you reach the refinement stage of your visualization project, always return to
the original question. In this chapter, we’re most concerned with how salaries relate
to performance for each team. The visualization in Figure 5-4 does not quite reach.
The team logos are the most prominent visual elements (because they’re in color),
but they offer only a starting point for conveying the relationships. Meanwhile, the
lines (the most important feature) are about as informative as a pile of sticks.

Highlighting the Lines
The first metric for the original question is whether teams are spending their money
well. At its most basic, this is a yes or no question, so it will be important to high-
light it as such with the representation. Teams spending their money well have a line
that gets lower as it moves from left to right (connecting a high ranking in the stand-
ings to a low salary), whereas teams wasting money have lines that move upward
from left to right. By using a color for each scenario, we can highlight the answer to
the Boolean question of how well the team is performing. Color is a good choice in
this case because we need only a pair of colors, and the detail being shown with the
color is more important than any other feature in the diagram. To apply the colors,
replace the stroke(0) line with the following:

 if (salaryY >= standingsY) {
 stroke(33, 85, 156); // Blue for positive (or equal) difference.
 } else {
 stroke(206, 0, 82); // Red for wasting money.
 }

The result is shown in Figure 5-5.

But even with colors, the lines still don’t have enough variation to instantly convey
the key point to the viewer. We need to find a more salient form of variation to help
viewers differentiate between elements and determine which shapes are related to
one another.

To introduce more variation into the lines, we can vary the stroke weight based on
the team’s salary. We could do the same thing with the record, but payroll is more
intuitive, as it refers to “bigger” or “smaller” teams. We don’t think of standings as
big or small, but we do think about monetary amounts in these terms.

The variation is handled with the map() method, mapping the minimum salary to a
very thin stroke (0.25) and the largest salary to a nice, thick line. Add this code
before the line() statement to scale the line weights in proportion to each team’s
salary.

122 | Chapter 5: Connections and Correlations

 float weight = map(salaries.getValue(i),
 salaries.getMinValue(), salaries.getMaxValue(),
 0.25, 6);
 strokeWeight(weight);

Figure 5-6 shows the results.

The image is getting more readable than the original in Figure 5-4, but still more can
be done.

Figure 5-5. Sample ranking with color to show results

Returning to the Question (Refine) | 123

A Better Typeface for Numeric Data
Instead of the generic SansSerif font, a better option is Matthew Carter’s Georgia.
We’ll also increase the size a notch to match the amount of vertical space used by the
original font because 11 point SansSerif has the same height as 12 point Georgia:

font = createFont("Georgia", 12);

Carter designed this typeface for Microsoft in 1993 as part of their web core fonts ini-
tiative because Microsoft’s typography group sought better screen fonts that could
differentiate Windows and other Microsoft products from their competitors. The
web core fonts package was available as a free download. Georgia is a default font on
Windows systems, and it is installed along with Microsoft software (such as Office)
on Mac OS X. Because it’s reasonably safe to expect that the font is installed on other
machines, we don’t have to use Processing’s Create Font tool. On Linux, the fonts

Figure 5-6. Sample ranking with line widths to show results

124 | Chapter 5: Connections and Correlations

are available from a SourceForge project that repackages the fonts for easy installa-
tion. This package is also available as part of some Linux distributions.

http://sourceforge.net/projects/corefonts
http://sourceforge.net/project/showfiles.php?group_id=34153

The font is a good option because it has elegant non-lining numerals, also called old
style figures, which have variable widths and extend below the font’s baseline. Their
use makes the number-rich display a little more attractive. The disadvantage in this
case is that the numbers won’t be identical widths, making them more difficult to
compare.

Usually, fixed-width digits are helpful because right-aligning a series of numbers
makes it easy for readers to scan a column and compare their magnitude at a quick
glance. In this display, however, the exact numbers (for example, whether the Yan-
kees are being paid $189,639,045 or $189,638,042) are less important because the
numbers are already shown in rank order along the vertical axis, so we can sacrifice a
little bit of readability.

The text still carries too much visual weight, so it needs to be faded a bit. Replacing
the fill(0) statement with fill(128) makes the text gray and helps balance it with
the colored lines, appropriately returning the greatest visual importance to the lines
themselves.

Taken together, the new version of the draw() method follows, with altered portions
highlighted:

void draw() {
 background(255);
 smooth();

 translate(SIDE_PADDING, SIDE_PADDING);

 float leftX = 160;
 float rightX = 335;

 for (int i = 0; i < teamCount; i++) {
 fill(128);
 float standingsY = standings.getRank(i)*ROW_HEIGHT + HALF_ROW_HEIGHT;
 image(logos[i], 0, standingsY - logoHeight/2, logoWidth, logoHeight);
 textAlign(LEFT, CENTER);
 text(teamNames[i], 28, standingsY);
 textAlign(RIGHT, CENTER);
 text(standings.getTitle(i), leftX-10, standingsY);

 float salaryY = salaries.getRank(i)*ROW_HEIGHT + HALF_ROW_HEIGHT;
 if (salaryY >= standingsY) {
 stroke(33, 85, 156); // Blue for positive (or equal) difference.
 } else {
 stroke(206, 0, 82); // Red for wasting money.
 }

http://sourceforge.net/projects/corefonts/
http://sourceforge.net/project/showfiles.php?group_id=34153

Returning to the Question (Refine) | 125

 float weight = map(salaries.getValue(i),
 salaries.getMinValue(), salaries.getMaxValue(),
 0.25, 6);
 strokeWeight(weight);

 line(leftX, standingsY, rightX, salaryY);

 fill(128);
 textAlign(LEFT, CENTER);
 text(salaries.getTitle(i), rightX+10, salaryY);
 }
}

Figure 5-7 shows the display.

Figure 5-7. Sample ranking that highlights lines

126 | Chapter 5: Connections and Correlations

A Word About Typography
The dash used between the win-loss record looks a little wimpy because dashes are
so small. A better solution is to use the en dash character by changing this line from
the StandingsList constructor:

 title[index] = wins + "-" + losses;

to read as follows:

 title[index] = wins + "\u2013" + losses;

Robert Bringhurst’s The Elements of Typographical Style (Hartley and Marks Publish-
ers) defines the en dash as suitable for use when separating values that can be bro-
ken with the word “to.” In this case, the 40–21 next to the Red Sox can be stated as
“the Red Sox have a record of 40 to 21,” making the en dash suitable for this situa-
tion. Using the en dash also has the benefit of ensuring that the vertical position of
the dash aligns nicely with the horizontal lines of the number characters that it sepa-
rates (for instance, the middle of a “3” and the horizontal stroke of a “4”).

The en dash is specified by "\u2013", a Unicode escape sequence. A Unicode escape
is a \u followed by four hex digits representing the character’s number in the Uni-
code character set. Other types of dashes can be used, such as the em dash, "\u2012",
or the minus sign, "\u2212".

Sophisticated Sorting: Using Salary As a Tiebreaker
(Mine)
Another alteration to the StandingsList is to improve how ties are handled. When
two teams have an identical record (not an uncommon occurrence, especially early in
the season), the tie should go to the team with the lower salary.

Inside RankedList, sorting is performed by a function that compares two elements in
the list. This is common for most sorting algorithms, which invoke a comparison
function that returns zero if the items are identical, a positive value if the first is
greater, and a negative value if the second is greater.

Writing a new compare() method lets us specify a more sophisticated sort. In the
modified method, the compare() method of the superclass (RankedList) is called first.
If the comparison is nonzero, the items are not identical and we don’t need to per-
form further comparison. But if the values are identical, the comparison function
from the salaries object is used. Because values for a and b refer to the same team in
both the standings and salaries (they were ordered using the teamIndex() function as
they were loaded), the comparison works:

class StandingsList extends RankedList {

 StandingsList(String[] lines) {
 super(teamCount, false);

Moving to Multiple Days (Interact) | 127

 for (int i = 0; i < teamCount; i++) {
 String[] pieces = split(lines[i], TAB);
 int index = teamIndex(pieces[0]);
 int wins = parseInt(pieces[1]);
 int losses = parseInt(pieces[2]);

 value[index] = (float) wins / (float) (wins+losses);
 title[index] = wins + "\u2013" + losses;
 }
 update();
 }

 float compare(int a, int b) {
 // First compare based on the record of both teams.
 float amt = super.compare(a, b);
 // If the record is not identical, return the difference
 if (amt != 0) return amt;

 // If records are equal, use salary as tiebreaker.
 // In this case, a and b are switched, because a higher
 // salary is a liability, unlike the higher record.
 return salaries.compare(a, b);
 }
}

Moving to Multiple Days (Interact)
So far we’ve covered a lot of data parsing and some visual refinement. But we’ve
severely hampered our potential by sticking to a static image. That misses a key
aspect of our data because the baseball season changes from day to day as teams
improve, tank, and go on winning streaks. The code used to parse the information
for a particular day can easily be adapted to other days, as long as we have a means
for iterating through days of the season and knowing which days to use.

In this section, we’ll generalize our code so we can store and display data for a range
of dates. That requires extending:

• Storage (adding some arrays to store data from multiple dates)

• Status variables (adding various ways to represent dates)

• The display (adding a date selector)

Such changes are common whenever you extend your program. In later sections,
we’ll also animate the data.

Dates and time are trickier than you might think. An initial temptation is to simply
make an array of numbers for the days in each month. But what happens in a leap
year? Do you use a different version of your code? The solution is to represent dates
in unchanging units, such as seconds or milliseconds, and convert them to dates for
the purpose of display at the last moment.

128 | Chapter 5: Connections and Correlations

The Java API contains a Date object that can convert between a long value (which is a
type of int that can store much larger numbers) and a formatted date. A companion
class, SimpleDateFormat, can parse a date from a String object given a template, or
convert from a Date object to a date formatted using the same template.

The long value of a date is the number of milliseconds that elapsed since January 1,
1970 (known as the “Unix epoch” or “POSIX time”). Given a starting value, moving
to the next day is a matter of increasing the variable by the number of milliseconds in
a day. Doing this in a loop will generate all the days of an entire season.

The code that follows takes as input a date stamp for the first day of the season
(firstDateStamp) in the format YYYYMMDD, and the same for the final day of the sea-
son. Because no data is available past the current day, the maximum date for which
information can be downloaded is today. However, results for the current day will
always be incomplete, so it’s best to get results only up to the previous day. This
logic will be encapsulated in maxDateIndex:

 String firstDateStamp = "20070401";
 String lastDateStamp = "20070930";
 String todayDateStamp;

 static final long MILLIS_PER_DAY = 24 * 60 * 60 * 1000;

 // The number of days in the entire season.
 int dateCount;
 // The current date being shown.
 int dateIndex;
 // Don't show the first 10 days; they're too erratic.
 int minDateIndex = 10;
 // The last day of the season, or yesterday, if the season is ongoing.
 // This is the maximum date that can be viewed.
 int maxDateIndex;

 // This format makes "20070704" from the date July 4, 2007.
 DateFormat stampFormat = new SimpleDateFormat("yyyyMMdd");
 // This format makes "4 July 2007" from the same.
 DateFormat prettyFormat = new SimpleDateFormat("d MMMM yyyy");

 // All dates for the season formatted with stampFormat.
 String[] dateStamp;
 // All dates in the season formatted with prettyFormat.
 String[] datePretty;

 void setupDates() {
 try {
 Date firstDate = stampFormat.parse(firstDateStamp);
 long firstDateMillis = firstDate.getTime();
 Date lastDate = stampFormat.parse(lastDateStamp);
 long lastDateMillis = lastDate.getTime();

Moving to Multiple Days (Interact) | 129

 // Calculate number of days by dividing the total milliseconds
 // between the first and last dates by the number of milliseconds per day.
 dateCount = (int)
 ((lastDateMillis - firstDateMillis) / MILLIS_PER_DAY) + 1;
 maxDateIndex = dateCount;
 dateStamp = new String[dateCount];
 datePretty = new String[dateCount];

 todayDateStamp = year() + nf(month(), 2) + nf(day(), 2);
 // Another option method of doing the same thing using Java's APIs
 //Date today = new Date();
 //String todayDateStamp = stampFormat.format(today);

 for (int i = 0; i < dateCount; i++) {
 Date date = new Date(firstDateMillis + MILLIS_PER_DAY*i);
 datePretty[i] = prettyFormat.format(date);
 dateStamp[i] = stampFormat.format(date);
 // If this value for 'date' is today, set the previous
 // day as the maximum viewable date, because it means the season is
 // still ongoing. The previous day is used because unless it is late
 // in the evening, the updated numbers for the day will be unavailable
 // or incomplete.
 if (dateStamp[i].equals(todayDateStamp)) {
 maxDateIndex = i-1;
 }
 }
 } catch (ParseException e) {
 die("Problem while setting up dates", e);
 }
 }

The primary result of this function is to set up minDateIndex and maxDateIndex, as
well as to calculate all dates in the entire season in two formats (the dateStamp and
datePretty arrays) so that they can be used elsewhere.

The previous code is designed to be more general than the previously mentioned
array that holds the number of days in each month. The original version of the
project used the simpler method, as hand-tweaking provided a quick fix (February
isn’t part of the baseball season, so leap year considerations can be ignored). But if
you were to adapt this project to another situation—such as the football season,
which runs from fall through winter (meaning that the months count up 10, 11, 12,
and then go to 1)—it’s more prudent here to show a generic alternative that can be
more easily adapted.

If you’re running this code online, the firstDateStamp and lastDateStamp could even
be pulled from an HTML parameter using the built-in param() method, which can
read HTML tags for such parameters. That way, different years could be shown
without needing to recompile the applet.

130 | Chapter 5: Connections and Correlations

Drawing the Dates
At the top of the screen, we’ll add a simple date selector. The selector will consist of
a series of vertical lines, with the current date shown as a longer line and the title of
the date (taken from datePretty) shown beneath it:

 int dateSelectorX;
 int dateSelectorY = 30;

 // Draw a series of lines for selecting the date.
 void drawDateSelector() {
 dateSelectorX = (width - dateCount*2) / 2;

 strokeWeight(1);
 for (int i = 0; i < dateCount; i++) {
 int x = dateSelectorX + i*2;

 // If this is the currently selected date, draw it differently.
 if (i == dateIndex) {
 stroke(0);
 line(x, 0, x, 13);
 textAlign(CENTER, TOP);
 text(datePretty[dateIndex], x, 15);

 } else {
 // If this is a viewable date, make the line darker.
 if ((i >= minDateIndex) && (i <= maxDateIndex)) {
 stroke(128); // Viewable date
 } else {
 stroke(204); // Not a viewable date
 }
 line(x, 0, x, 7);
 }
 }
 }

The dateSelectorY variable never changes, and it represents the bottom of the dis-
play of dates across the top of the screen. The dateSelectorX variable marks a hori-
zontal position within this display of dates, which allows the program to determine
the date itself. We’ll use both of these variables later to figure out where the user’s
mouse is among the dates.

Load Standings for the Entire Season
An update to the setupStandings() function downloads data for each day of the sea-
son (if it has not yet been downloaded) and uses a season array to store each day of
standings for the season thus far:

StandingsList[] season;

Moving to Multiple Days (Interact) | 131

void setupStandings() {
 season = new StandingsList[maxDateIndex + 1];
 for (int i = minDateIndex; i <= maxDateIndex; i++) {
 String[] lines = acquireStandings(dateStamp[i]);
 season[i] = new StandingsList(lines);
 }
}

Another version of the acquireStandings() method breaks up a date stamp into its
component parts so that it can be handled by the original acquireStandings method:

String[] acquireStandings(String stamp) {
 int year = int(stamp.substring(0, 4));
 int month = int(stamp.substring(4, 6));
 int day = int(stamp.substring(6, 8));
 return acquireStandings(year, month, day);
}

Switching Between Dates
With all the data in place, selecting dates is a matter of determining where the mouse
was clicked inside the date selector area. The mousePressed() and mouseDragged()
will be combined into a single handleMouse() method that calculates whether a new
date was chosen:

void setDate(int index) {
 dateIndex = index;
 standings = season[dateIndex];
}

void mousePressed() {
 handleMouse();
}

void mouseDragged() {
 handleMouse();
}

void handleMouse() {
 if (mouseY < dateSelectorY) {
 int date = (mouseX - dateSelectorX) / 2;
 setDate(constrain(date, minDateIndex, maxDateIndex));
 }
}

And just for kicks, let’s add a keyPressed() method so that we can use the arrow
keys to move back and forth in time:

void keyPressed() {
 if (key == CODED) {
 if (keyCode == LEFT) {
 int newDate = max(dateIndex - 1, minDateIndex);
 setDate(newDate);
 } else if (keyCode == RIGHT) {

132 | Chapter 5: Connections and Correlations

 int newDate = min(dateIndex + 1, maxDateIndex);
 setDate(newDate);
 }
 }
}

Checking Our Progress
Because the printed page isn’t interactive, the only evidence of animation can be seen
in the date selector at the top of the screen in Figure 5-8.

As the user clicks and drags the mouse across the date selector, the display switches
rapidly between the standings for each day. It makes for an exciting reproduction of
the baseball teams’ fortunes, but the update is too jerky. As you might guess, we’ll
bring back our Integrator friend next to help smooth out things.

Smoothing Out the Interaction (Refine)
The Integrator class was introduced in Chapter 3 to replace abrupt distinctions in
time or color with gradients. In what is perhaps becoming a common refrain, we’ll
add it to our sketch to help us animate the transition between days. The class is
available from the book’s site:

http://benfry.com/writing/salaryper/Integrator.java

The only values that move are the 30 values for the standings, so we’ll add a
setupRanking() function to initialize them and set a default position. We add the call
to setupRanking() inside setup(), just after the other setupXxxxx() functions:

Integrator[] standingsPosition;

void setupRanking() {
 standingsPosition = new Integrator[teamCount];
 for (int i = 0; i < teamCodes.length; i++) {
 standingsPosition[i] = new Integrator(i);
 }
}

Figure 5-8. Date selector bar that drives animation

http://benfry.com/writing/salaryper/Integrator.java

Deployment Considerations (Acquire, Parse, Filter) | 133

Inside draw(), we’ll no longer use getRank() to determine the location for standingsY
as we did before:

float standingsY = standings.getRank(i)*ROW_HEIGHT + HALF_ROW_HEIGHT;

Instead, the position of each standing will be based on the current position of each
Integrator, which glides gradually from the old to the new value:

float standingsY = standingsPosition[i].value * ROW_HEIGHT + HALF_ROW_HEIGHT;

At the beginning of draw(), it’s also necessary to update each standingsPosition. As
a twist, we’ll also keep track of whether any of the Integrators actually change by
checking the return value of their update() method (which returns true if the value
actually changed by some amount). If no changes occur, we’ll use noLoop() to shut
off the animation loop and save CPU cycles:

 boolean updated = false;
 for (int i = 0; i < teamCount; i++) {
 if (standingsPosition[i].update()) {
 updated = true;
 }
 }
 if (!updated) {
 noLoop();
 }

Of course, we eventually need to turn the animation back on, when the user selects a
new date. An updated setDate() method targets each of the new ranking values and
submits it to the gradual animation provided by Integrator, then starts up the ani-
mation loop by calling loop():

void setDate(int index) {
 dateIndex = index;
 standings = season[dateIndex];

 for (int i = 0; i < teamCount; i++) {
 standingsPosition[i].target(standings.getRank(i));
 }
 // Re-enable the animation loop.
 loop();
}

Also regarding animation, it’s important to set a frame rate at which to run the
sketch so that it behaves consistently on other machines. Adding frameRate(15) to
setup() ensures that transitions behave smoothly and the animation is consistent,
even on very fast computers.

Deployment Considerations (Acquire, Parse, Filter)
As discussed in Chapter 2, sketches that run online inside a web browser are not
allowed access to the user’s local filesystem for security reasons. That eliminates our
current scheme of downloading files for each day and using the File object to check
whether they’ve already been downloaded.

134 | Chapter 5: Connections and Correlations

As it turns out, the current implementation is also quite inefficient: at the end of the
season, you’ll have hundreds of individual files on your disk for each day, each of
them occupying about 300 bytes.

So instead, we return back to the early preprocessing steps. The solution for both sit-
uations is to run the preprocessing steps from a CGI script. The script can download
the data once for each day and then join all of the statistics for the season up to a
particular day into a single file that can be downloaded by a web visitor. If the CGI
script runs from the same server as the sketch, the sketch will be able to connect to it
and download the data because connecting back to its parent server is considered
safe under Java’s security model.

A Perl version of the script, essentially an adaptation of the acquireStandings() and
parseWinLoss() methods, follows. Creating a version for PHP or other web frame-
works shouldn’t be too much of a stretch.

#!/usr/bin/perl -w

use Time::Local;

Send header to the web server to indicate we are awake,
and that plain text data will be returned.
print "Content-type: text/plain\n\n";

These values could be read from parameters to the CGI if so desired, i.e.,
http://benfry.com/salaryper/data.cgi?first=20070401&last=20070930&min=10.
This would make the software more flexible to use it for multiple years.
$firstDateStamp = '20070401';
$lastDateStamp = '20070930';
$minDateIndex = 10;

$dataFolder = 'individual';
$comboFolder = 'combined';
`mkdir -p $dataFolder`;
`mkdir -p $comboFolder`;

$firstDateStamp =~ /(\d\d\d\d)(\d\d)(\d\d)/;
$year = $1;
$month = $2 - 1; # Months are 0-indexed in Perl
$day = $3;
$firstDate = timelocal(0, 0, 0, $day, $month, $year);

$lastDateStamp =~ /(\d\d\d\d)(\d\d)(\d\d)/;
$year = $1;
$month = $2 - 1; # Months are 0-indexed in Perl
$day = $3;
$lastDate = timelocal(0, 0, 0, $day, $month, $year);

$SECONDS_PER_DAY = 24 * 60 * 60;

Yesterday is the maximum possible date,
because the scores from today will not yet be updated.
$yesterdayDate = time - $SECONDS_PER_DAY;

Deployment Considerations (Acquire, Parse, Filter) | 135

Don't bother grabbing data for the earlier part of the season
because it will not be used (and the program is not expecting it).
$date = $firstDate + $minDateIndex*$SECONDS_PER_DAY;

my @dateStamps = ();

If season is ongoing, read data only through yesterday.
$endDate = ($yesterdayDate < $lastDate) ? $yesterdayDate : $lastDate;
while ($date <= $endDate) {
 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
 localtime($date);
 $stamp = sprintf("%04d%02d%02d", $year + 1900, $mon+1, $mday);
 push @dateStamps, $stamp;
 #print "$date - " . localtime($date) . "\n";
 $date += $SECONDS_PER_DAY;
}
$endDateStamp = $dateStamps[$#dateStamps];

$combinedFile = "$comboFolder/$endDateStamp.tsv";
if (-f $combinedFile) {
 # Open the file and spew the contents back to the applet.
 open(INPUT, $combinedFile) || die $!;
 @contents = <INPUT>;
 print @contents;
 close(INPUT);

} else {
 # Download any days not yet downloaded.
 foreach $stamp (@dateStamps) {
 $filename = "$dataFolder/$stamp.tsv";
 if (!(-f $filename)) {
 downloadWinLoss($stamp);
 }
 }
 # Concatenate everything into a single file.
 open(OUTPUT, ">$combinedFile") || die $!;
 foreach $stamp (@dateStamps) {
 open(INPUT, "$dataFolder/$stamp.tsv") || die $!;
 @contents = <INPUT>;
 print OUTPUT @contents;
 close(INPUT);

 # Also write the contents of this file to the applet.
 print @contents;
 }
 close(OUTPUT);
}

sub downloadWinLoss() {
 my $stamp = shift;

136 | Chapter 5: Connections and Correlations

 open(OUTPUT, ">$dataFolder/$stamp.tsv") || die $!;

 $stamp =~ /(\d\d\d\d)(\d\d)(\d\d)/;
 $day = sprintf("year_%04d/month_%02d/day_%02d/", $1, $2, $3);

 $base = 'http://mlb.mlb.com/components/game/' . $day;

 parseWinLoss($base . 'standings_rs_ale.js');
 parseWinLoss($base . 'standings_rs_alw.js');
 parseWinLoss($base . 'standings_rs_alc.js');

 parseWinLoss($base . 'standings_rs_nle.js');
 parseWinLoss($base . 'standings_rs_nlw.js');
 parseWinLoss($base . 'standings_rs_nlc.js');

 close(OUTPUT);
}

sub parseWinLoss() {
 $url = shift;
 # Download the contents of the .js file using "curl".
 @lines = `curl --silent $url`;

 $teamCode = '';
 $wins = 0;
 $losses = 0;

 foreach $line (@lines) {
 if ($line =~ /\s+([\w\d]+):\s'(.*)',?/) {
 $attr = $1;
 $value = $2;
 if ($attr eq 'code') {
 $teamCode = $value;
 } elsif ($attr eq 'w') {
 $wins = $value;
 } elsif ($attr eq 'l') {
 $losses = $value;
 }

 } elsif ($line =~ /^}/) {
 # This is the end of a group, print the values
 print OUTPUT "$teamCode\t$wins\t$losses\n";
 }
 }
}

The script can be seen in action at:

http://benfry.com/writing/salaryper/mlb.cgi

or downloaded directly from:

http://benfry.com/writing/salaryper/mlb.txt

http://benfry.com/writing/salaryper/mlb.cgi
http://benfry.com/writing/salaryper/mlb.txt

Deployment Considerations (Acquire, Parse, Filter) | 137

If data has not been downloaded for the current day, it downloads the new informa-
tion and then produces a file that concatenates all the days found so far. If that has
already occurred once, the file itself is simply echoed back to the web server.

Because our CGI solution moves all the preprocessing code out of the sketch, the
acquireStandings() and parseWinLoss() methods can be removed from the code,
simplifying things greatly. The new version of setupStandings() that reads the data
instead uses a URL to download the data and then creates a new StandingsList for
each set of 30 lines. The maxDateIndex is determined by the amount of data received
from the CGI script, and it’s important to keep the minDateIndex variable in your
code in sync with the minDateIndex value used in the CGI so that both pieces of soft-
ware expect the same day to be the first day of standings. The complete code follows:

import java.util.regex.*;

int teamCount = 30;
String[] teamNames;
String[] teamCodes;
HashMap teamIndices;

static final int ROW_HEIGHT = 23;
static final float HALF_ROW_HEIGHT = ROW_HEIGHT / 2.0f;

static final int SIDE_PADDING = 30;
static final int TOP_PADDING = 40;

SalaryList salaries;
StandingsList standings;

StandingsList[] season;
Integrator[] standingsPosition;

PImage[] logos;
float logoWidth;
float logoHeight;

PFont font;

// .

String firstDateStamp = "20070401";
String lastDateStamp = "20070930";
String todayDateStamp;

static final long MILLIS_PER_DAY = 24 * 60 * 60 * 1000;

// The number of days in the entire season.
int dateCount;
// The current date being shown.

138 | Chapter 5: Connections and Correlations

int dateIndex;
// Don't show the first 10 days; they're too erratic.
int minDateIndex = 10;
// The last day of the season, or yesterday, if the season is ongoing.
// This is the maximum date that can be viewed.
int maxDateIndex;

// This format makes "20070704" from the date July 4, 2007.
DateFormat stampFormat = new SimpleDateFormat("yyyyMMdd");
// This format makes "4 July 2007" from the same.
DateFormat prettyFormat = new SimpleDateFormat("d MMMM yyyy");

// All dates for the season formatted with stampFormat.
String[] dateStamp;
// All dates in the season formatted with prettyFormat.
String[] datePretty;

void setupDates() {
 try {
 Date firstDate = stampFormat.parse(firstDateStamp);
 long firstDateMillis = firstDate.getTime();
 Date lastDate = stampFormat.parse(lastDateStamp);
 long lastDateMillis = lastDate.getTime();

 // Calculate number of days by dividing the total milliseconds
 // between the first and last dates by the number of milliseconds per day.
 dateCount = (int)
 ((lastDateMillis - firstDateMillis) / MILLIS_PER_DAY) + 1;
 maxDateIndex = dateCount;
 dateStamp = new String[dateCount];
 datePretty = new String[dateCount];

 todayDateStamp = year() + nf(month(), 2) + nf(day(), 2);
 // Another option to do this, but more code
 //Date today = new Date();
 //String todayDateStamp = stampFormat.format(today);

 for (int i = 0; i < dateCount; i++) {
 Date date = new Date(firstDateMillis + MILLIS_PER_DAY*i);
 datePretty[i] = prettyFormat.format(date);
 dateStamp[i] = stampFormat.format(date);
 // If this value for 'date' is equal to today, then set the previous
 // day as the maximum viewable date, because it means the season is
 // still ongoing. The previous day is used because unless it is late
 // in the evening, the updated numbers for the day will be unavailable
 // or incomplete.
 if (dateStamp[i].equals(todayDateStamp)) {
 maxDateIndex = i-1;
 }
 }
 } catch (ParseException e) {
 die("Problem while setting up dates", e);
 }
}

Deployment Considerations (Acquire, Parse, Filter) | 139

// .

public void setup() {
 size(480, 750);

 setupTeams();
 setupDates();
 setupSalaries();
 // Load the standings after the salaries, because salary
 // will be used as the tie-breaker when sorting.
 setupStandings();
 setupRanking();
 setupLogos();

 font = createFont("Georgia", 12);
 textFont(font);

 frameRate(15);
 // Use today as the current day.
 setDate(maxDateIndex);
}

void setupTeams() {
 String[] lines = loadStrings("teams.tsv");

 teamCount = lines.length;
 teamCodes = new String[teamCount];
 teamNames = new String[teamCount];
 teamIndices = new HashMap();

 for (int i = 0; i < teamCount; i++) {
 String[] pieces = split(lines[i], TAB);
 teamCodes[i] = pieces[0];
 teamNames[i] = pieces[1];
 teamIndices.put(teamCodes[i], new Integer(i));
 }
}

int teamIndex(String teamCode) {
 Integer index = (Integer) teamIndices.get(teamCode);
 return index.intValue();
}

void setupSalaries() {
 String[] lines = loadStrings("salaries.tsv");
 salaries = new SalaryList(lines);
}

void setupStandings() {

140 | Chapter 5: Connections and Correlations

 String[] lines = loadStrings("http://benfry.com/writing/salaryper/mlb.cgi");
 int dataCount = lines.length / teamCount;
 int expectedCount = (maxDateIndex - minDateIndex) + 1;
 if (dataCount < expectedCount) {
 println("Found " + dataCount + " entries in the data file, " +
 "but was expecting " + expectedCount + " entries.");
 maxDateIndex = minDateIndex + dataCount - 1;
 }
 season = new StandingsList[maxDateIndex + 1];
 for (int i = 0; i < dataCount; i++) {
 String[] portion = subset(lines, i*teamCount, teamCount);
 season[i+minDateIndex] = new StandingsList(portion);
 }
}

void setupRanking() {
 standingsPosition = new Integrator[teamCount];
 for (int i = 0; i < teamCodes.length; i++) {
 standingsPosition[i] = new Integrator(i);
 }
}

void setupLogos() {
 logos = new PImage[teamCount];
 for (int i = 0; i < teamCount; i++) {
 logos[i] = loadImage("small/" + teamCodes[i] + ".gif");
 }
 logoWidth = logos[0].width / 2.0f;
 logoHeight = logos[0].height / 2.0f;
}

public void draw() {
 background(255);
 smooth();

 drawDateSelector();

 translate(SIDE_PADDING, TOP_PADDING);

 boolean updated = false;
 for (int i = 0; i < teamCount; i++) {
 if (standingsPosition[i].update()) {
 updated = true;
 }
 }
 if (!updated) {
 noLoop();
 }

 for (int i = 0; i < teamCount; i++) {

Deployment Considerations (Acquire, Parse, Filter) | 141

 float standingsY = standingsPosition[i].value * ROW_HEIGHT + HALF_ROW_HEIGHT;

 image(logos[i], 0, standingsY - logoHeight/2, logoWidth, logoHeight);

 textAlign(LEFT, CENTER);
 text(teamNames[i], 28, standingsY);

 textAlign(RIGHT, CENTER);
 fill(128);
 text(standings.getTitle(i), 150, standingsY);

 float weight = map(salaries.getValue(i),
 salaries.getMinValue(), salaries.getMaxValue(),
 0.25f, 6);
 strokeWeight(weight);

 float salaryY = salaries.getRank(i)*ROW_HEIGHT + HALF_ROW_HEIGHT;
 if (salaryY >= standingsY) {
 stroke(33, 85, 156); // Blue for positive (or equal) difference.
 } else {
 stroke(206, 0, 82); // Red for wasting money.
 }

 line(160, standingsY, 325, salaryY);

 fill(128);
 textAlign(LEFT, CENTER);
 text(salaries.getTitle(i), 335, salaryY);
 }
}

// .

int dateSelectorX;
int dateSelectorY = 30;

// Draw a series of lines for selecting the date.
void drawDateSelector() {
 dateSelectorX = (width - dateCount*2) / 2;

 strokeWeight(1);
 for (int i = 0; i < dateCount; i++) {
 int x = dateSelectorX + i*2;

 // If this is the currently selected date, draw it differently.
 if (i == dateIndex) {
 stroke(0);
 line(x, 0, x, 13);
 textAlign(CENTER, TOP);
 text(datePretty[dateIndex], x, 15);

 } else {

142 | Chapter 5: Connections and Correlations

 // If this is a viewable date, make the line darker.
 if ((i >= minDateIndex) && (i <= maxDateIndex)) {
 stroke(128); // Viewable date
 } else {
 stroke(204); // Not a viewable date
 }
 line(x, 0, x, 7);
 }
 }
}

void setDate(int index) {
 dateIndex = index;
 standings = season[dateIndex];

 for (int i = 0; i < teamCount; i++) {
 standingsPosition[i].target(standings.getRank(i));
 }
 // Re-enable the animation loop.
 loop();
}

void mousePressed() {
 handleMouse();
}

void mouseDragged() {
 handleMouse();
}

void handleMouse() {
 if (mouseY < dateSelectorY) {
 int date = (mouseX - dateSelectorX) / 2;
 setDate(constrain(date, minDateIndex, maxDateIndex));
 }
}

void keyPressed() {
 if (key == CODED) {
 if (keyCode == LEFT) {
 int newDate = max(dateIndex - 1, minDateIndex);
 setDate(newDate);

 } else if (keyCode == RIGHT) {
 int newDate = min(dateIndex + 1, maxDateIndex);
 setDate(newDate);
 }
 }
}

Deployment Considerations (Acquire, Parse, Filter) | 143

// .

class SalaryList extends RankedList {

 SalaryList(String[] lines) {
 super(teamCount, false);

 for (int i = 0; i < teamCount; i++) {
 String pieces[] = split(lines[i], TAB);

 // First column is the team's 2- or 3-digit team code.
 int index = teamIndex(pieces[0]);

 // Second column is the salary as a number.
 value[index] = parseInt(pieces[1]);

 // Make the title in the format $NN,NNN,NNN.
 int salary = (int) value[index];
 title[index] = "$" + nfc(salary);
 }
 update();
 }
}

// .

class StandingsList extends RankedList {

 StandingsList(String[] lines) {
 super(teamCount, false);

 for (int i = 0; i < teamCount; i++) {
 String[] pieces = split(lines[i], TAB);
 int index = teamIndex(pieces[0]);
 int wins = parseInt(pieces[1]);
 int losses = parseInt(pieces[2]);

 value[index] = (float) wins / (float) (wins+losses);
 title[index] = wins + "\u2013" + losses;
 }
 update();
 }

144 | Chapter 5: Connections and Correlations

 float compare(int a, int b) {
 // First compare based on the record of both teams.
 float amt = super.compare(a, b);
 // If the record is not identical, return the difference.
 if (amt != 0) return amt;

 // If records are equal, use salary as tiebreaker.
 // In this case, a and b are switched, because a higher
 // salary is a negative thing, unlike the values above.
 return salaries.compare(a, b);
 }
}

145

Chapter 6 CHAPTER 6

Scatterplot Maps6

In this chapter, we cover the seven steps as laid out in Chapter 1 and apply them to
the question, “How do zip codes relate to geography?” (The background for this
project was introduced in Chapter 1.)

Preprocessing
Data is always dirty, and once you’ve found your data set, you’ll need to clean it up.
As in the previous chapter, we’ll go through the steps of acquiring and parsing in
detail. None of this is rocket science, but again, it’s meant to familiarize you with the
various formats in which you’ll find data, and alert you to some of the common
issues you’ll encounter along the way. If you just want to start playing with locations
and maps, you can download the finished zips.tsv file from the book web site (http://
benfry.com/writing/zipdecode/zips.tsv) and jump ahead to the next section.

Data from the U.S. Census Bureau (Acquire)
The acronym ZIP stands for Zoning Improvement Plan, a 1963 initiative to simplify
the delivery of mail in the United States. Personal correspondence, once the majority
of all mail, was rapidly being overtaken by business mail, which by the 1960s
accounted for 80% of the post. Faced with an ever-increasing amount of mail to pro-
cess, the U.S. Postal Service initiated the zip system to specify more accurately the
geographic area of the mail’s destination. The U.S. Postal Service’s web site features
a lengthier history of the system at http://www.usps.com/history.

Versions of the zip code database are available from a variety of sources. The data is
public and therefore freely available on government web sites. Government sites
often contain a wealth of information for those willing to take the time to dig for it.
The terminology can sometimes be archaic and the documentation poor, so it often
takes a while to figure out exactly how things work. In the spirit of capitalism,
resellers have jumped in to provide you with “value added” versions of the data.

http://benfry.com/writing/zipdecode/zips.tsv)
http://benfry.com/writing/zipdecode/zips.tsv)
http://www.usps.com/history

146 | Chapter 6: Scatterplot Maps

Clearly, the term “value” varies widely—some companies are happy to charge your
credit card for the honor of their knowing the right search terms to use with Goo-
gle, or of having clicked through the census bureau web site for you. Others sub-
scribe to the official data from the U.S. Postal Service and curate a useful, working
copy of the data.

Free services have also emerged, such as http://geocoder.us (described online and in
O’Reilly’s Mapping Hacks by Schuyler Erle, Rich Gibson, and Jo Walsh), which
maintains a working data set as well as open source software that you can use to for-
mulate zip code and address information.

For our purposes, we’ll use a listing from the U.S. Census Bureau, found at http://
www.census.gov/geo/www/tiger/zip1999.html. The data is outdated by a few years,
but it will be sufficient for our short-term purpose.

That page provides a link to a compressed archive (with the seemingly redundant
title zip1999.zip) that contains a DBF file with the data set and a Microsoft Word
document that describes each of the fields (columns) in the data set. (For informa-
tion about DBF files, see Chapter 10.)

Both OpenOffice and Microsoft Excel can open a DBF file. OpenOffice might even
register the .dbf extension explicitly, but in Excel you’ll have to use the “All files”
option in the File ➝ Open dialog box before the DBF file shows up.

The file contains approximately 42,000 lines, one for each zip code. The following is
a small sample:

ZIP_CODE LATITUDE LONGITUDE ZIP_CLASS PONAME STATE COUNTY
95466 +39.056598 -123.525375 PHILO 06 045
95468 +38.919145 -123.540572 POINT ARENA 06 045
95469 +39.360935 -123.106751 POTTER VALLEY 06 045
95470 +39.302446 -123.462532 REDWOOD VALLEY 06 045
95471 +38.523472 -122.982142 P RIO NIDO 06 097
95472 +38.407222 -122.869654 SEBASTOPOL 06 097
95473 +38.325851 -122.505846 P SEBASTOPOL 06 097
95476 +38.255943 -122.476819 SONOMA 06 097
95480 +38.676694 -123.372059 STEWARTS POINT 06 097
95481 +39.127247 -123.164533 P TALMAGE 06 045
95482 +39.403699 -123.321202 UKIAH 06 045
95485 +39.252489 -122.856430 UPPER LAKE 06 033
95486 +38.464487 -123.037996 P VILLA GRANDE 06 097
95487 +38.463088 -122.989975 P VINEBURG 06 097
95488 +39.660425 -123.786385 WESTPORT 06 045
95490 +39.525958 -123.365730 WILLITS 06 045
95492 +38.532827 -122.804100 WINDSOR 06 097
95493 +39.185033 -122.965163 WITTER SPRINGS 06 033
95494 +38.934552 -123.268378 YORKVILLE 06 045
95497 +38.717318 -123.463976 P THE SEA RANCH 06 097
95501 +40.646324 -124.025773 EUREKA 06 023

http://geocoder.us
http://www.census.gov/geo/www/tiger/zip1999.html
http://www.census.gov/geo/www/tiger/zip1999.html

Preprocessing | 147

Dealing with the Zip Code Database File (Parse and Filter)
After opening the file with OpenOffice or Excel, save the file as tab-delimited (TSV)
or comma-separated (CSV) values for easier parsing. For our purposes, we’ll save it
as CSV (title it zipnov99.csv), resulting in a file whose first 10 lines look like:

"ZIP_CODE,C,5","LATITUDE,C,11","LONGITUDE,C,11","ZIP_
CLASS,C,1","PONAME,C,28","STATE,C,2","COUNTY,C,3"
"00210"," +43.005895","-071.013202","U","PORTSMOUTH","33","015"
"00211"," +43.005895","-071.013202","U","PORTSMOUTH","33","015"
"00212"," +43.005895","-071.013202","U","PORTSMOUTH","33","015"
"00213"," +43.005895","-071.013202","U","PORTSMOUTH","33","015"
"00214"," +43.005895","-071.013202","U","PORTSMOUTH","33","015"
"00215"," +43.005895","-071.013202","U","PORTSMOUTH","33","015"
"00501"," +40.922326","-072.637078","U","HOLTSVILLE","36","103"
"00544"," +40.922326","-072.637078","U","HOLTSVILLE","36","103"

The data in its current format is not quite ready to go. It is almost always the case that
you’ll need to do additional work to clean the data before it is ready to be included
with an application. Often, you’ll run the acquire stage and the parse and filter stages
twice, as we do in this chapter. With our zip code data, one can observe that:

• The useful columns for our purposes are ZIP_CODE, LATITUDE, LONGITUDE, PONAME,
and STATE. The ZIP_CLASS and COUNTY columns can be removed to save some disk
space (if we intend to run this locally) or download time (if we distribute this
application over the Web).

• The STATE column is encoded as a FIPS (Federal Information Processing Stan-
dards) number, which we’ll want to convert to a two-digit state abbreviation.

• Not all of the data rows are necessary for our example. For the time being, we’ll
cheat and use only the contiguous 48 states, omitting Alaska, Hawaii, and Amer-
ican territories.

• While we’re at it, the city names are listed in ALL CAPS, which looks garish and
aggressive. It’s important to realize that this is a limitation of the particular data
set, not all data of this kind. If we were to get a better zip code list, the names
might not be capitalized. As such, it’s better to clean the data first, rather than
include a workaround for the problem in the final project. That is not to say that
we should be obsessed with generalization (see the discussion of “sketching” in
Chapter 2), but this is a case where the generalization doesn’t cost us anything in
terms of time or efficiency.

• Excel and OpenOffice tend to introduce a lot of extra rubbish, such as unneces-
sary quotes, into TSV files. (To be fair, OpenOffice allows you to tweak these
parameters, though the nomenclature for the export interface can be confusing.)

• Because latitude and longitude values reflect points on a globe, a projection will
be used to convert the coordinates to positions that more closely resemble how
the United States are typically portrayed (slightly curved at the top, rather than
following a latitude line straight across).

148 | Chapter 6: Scatterplot Maps

• We’ll need to know the range of latitudes and longitudes in order to plot them in
a proper range to the screen. For this, we’ll keep track of the minimum and max-
imum values after they’ve been projected.

• Because downloading the zip codes from the network may take some time, the
file will also specify the number of total lines, so that we can calculate progress
during the download.

Each of these issues is easy to handle. We’ll simply write a short bit of code to turn our
data into a more usable and compact format. Addressing each issue is straightforward:

1. We’ll make a second version of the data file that leaves out the unnecessary col-
umns. By placing constants at the beginning of the code for each of the columns,
we’ll make the code easier to follow because arrayName[LONGITUDE] is more self-
explanatory than arrayName[2].

// Indices for each of the columns
int ZIP_CODE = 0;
int LATITUDE = 1;
int LONGITUDE = 2;
int ZIP_CLASS = 3;
int PONAME = 4;
int STATE_FIPS = 5;
int COUNTY = 6;

2. In the second file, the FIPS code will be replaced with a two-letter state
abbreviation. The codes can be found at the Federal Information Processing Stan-
dards site, specifically Publication 5-2: http://www.itl.nist.gov/fipspubs/fip5-2.htm.

A clean version of this data is available from the book web site at http://benfry.
com/writing/zipdecode/fips.tsv. For the curious, the clean version was created by
saving the HTML file, opening it with OpenOffice, copying the data from the
state tables, and pasting it into a blank spreadsheet file. The file was then saved
as TSV by selecting the “Text CSV (.csv)” option, and in the “Export of text
files” dialog box, setting the “Field delimiter” to “{Tab}” (which can be chosen
from the drop-down list) and the “Text delimiter” to nothing.

The following code loads the fips.tsv file and places it into a Hashtable so that we
can look up individual values. With this in place, fipsTable.get() will provide
the state abbreviation for any FIPS code value.

 // Load the state FIPS codes into a table.
 Hashtable fipsTable = new Hashtable();
 String[] fipsLines = loadStrings("fips.tsv");
 for (int i = 0; i < fipsLines.length; i++) {
 // Split each line on the tab characters.
 String[] pieces = split(fipsLines[i], TAB);
 // The FIPS code is in column 1,
 // and the state abbreviation in column 2
 // (keep in mind that columns are numbered from zero).
 fipsTable.put(pieces[1], pieces[2]);
 }

http://www.itl.nist.gov/fipspubs/fip5-2.htm
http://benfry.com/writing/zipdecode/fips.tsv
http://benfry.com/writing/zipdecode/fips.tsv

Preprocessing | 149

The clean version also omits the first 0 in each code to match the two-digit codes
used in the zipsnov99.csv file. If each FIPS code were converted to an integer,
this wouldn’t be necessary, but storing this field as integer data is not worth-
while. It is tedious to convert (and later restore) the integer values, and not really
necessary when String objects will work fine and save a few steps.

3. Gleaning the contiguous 48 states from the full list is a straightforward task.
Other territories have been left out of fips.tsv, meaning that if no state abbrevia-
tion is found for a code, it can be skipped. Cutting out Alaska and Hawaii is also
a matter of skipping lines whose FIPS code maps to AK or HI. Inside the for()
loop, the code will look like this:

 String stateAbbrev = (String) fipsTable.get(data[STATE_FIPS]);
 // If the abbreviation was not found, skip this line,
 // because that means it's an outlying territory.
 if (stateAbbrev == null) continue;
 // For now, skip Alaska and Hawaii.
 if (stateAbbrev.equals("AK") || stateAbbrev.equals("HI")) continue;

4. For the city names (the PONAME column), we can capitalize just the first letter of
each word, which isn’t perfect, but it’s better than shouting all the time. Further,
because the city and state abbreviation are always used together (e.g., “Sebasto-
pol, CA”), that information can go into a single column. That also gives us more
flexibility if we want to use a different data set, such as the postal codes for Ger-
many or Australia—which don’t specify locations the same way as the U.S. but
have similar numbering systems.

The following code is a general-purpose method that takes a String as input,
breaks it into individual characters, and then capitalizes the characters that fol-
low spaces (while making all other characters lowercase).

// Capitalize the first letter of each word in a string.
String fixCapitals(String title) {
 char[] text = title.toCharArray();
 // If set to true, the next letter will be capitalized.
 boolean capitalizeNext = true;

 for (int i = 0; i < text.length; i++) {
 if (Character.isSpace(text[i])) {
 capitalizeNext = true;
 } else if (capitalizeNext) {
 text[i] = Character.toUpperCase(text[i]);
 capitalizeNext = false;
 } else {
 text[i] = Character.toLowerCase(text[i]);
 }
 }
 return new String(text);
}

150 | Chapter 6: Scatterplot Maps

If you are dealing with an enormous amount of data and know for a fact that your
data is simply ASCII, other tricks can be used to capitalize more quickly than the
Character.toUpperCase() and Character.toLowerCase() functions (which take
into account Unicode capitalization).

5. Extraneous quotes and commas can be thrown out, converting the information
to a more minimal TSV file. More background regarding CSV and TSV files
(including an explanation for the quotes and commas) can be found in
Chapter 10. This conversion is handled with a scrubQuotes() function:

// Parse quotes from CSV data. Quotes around a column are common,
// and actual double quotes (") are specified by two double quotes ("").
void scrubQuotes(String[] array) {
 for (int i = 0; i < array.length; i++) {
 if (array[i].length() > 2) {
 // Remove quotes at start and end, if present.
 if (array[i].startsWith("\"") && array[i].endsWith("\"")) {
 array[i] = array[i].substring(1, array[i].length() - 1);
 }
 }
 // Make double quotes into single quotes.
 array[i] = array[i].replaceAll("\"\"", "\"");
 }
}

6. The Albers Equal-Area Conic is a useful projection when dealing with the United
States. Several different map projections applied to the U.S. can be seen on the
U.S. Geological Survey’s web site at http://erg.usgs.gov/isb/pubs/booklets/
mapsofus/mapsofus.html. In our case, the specifics of the chosen projection can
be found on the helpful MathWorld web site run by Wolfram Research. The fol-
lowing code is an adaptation of the algorithm found at http://mathworld.
wolfram.com/AlbersEqual-AreaConicProjection.html:

 // USGS uses standard parallels at 45.5˚N and 29.5˚N
 // with a central meridian value of 96˚W.
 // Latitude value is phi, longitude is lambda.
 float phi0 = 0;
 float lambda0 = radians(-96);
 float phi1 = radians(29.5f);
 float phi2 = radians(45.5f);

 float phi = radians(lat);
 float lambda = radians(lon);

 float n = 0.5f * (sin(phi1) + sin(phi2));
 float theta = n * (lambda - lambda0);
 float c = sq(cos(phi1)) + 2*n*sin(phi1);
 float rho = sqrt(c - 2*n*sin(phi)) / n;
 float rho0 = sqrt(c - 2*n*sin(phi0)) / n;

 float x = rho * sin(theta);
 float y = rho0 - rho*cos(theta);

http://erg.usgs.gov/isb/pubs/booklets/mapsofus/mapsofus.html
http://erg.usgs.gov/isb/pubs/booklets/mapsofus/mapsofus.html
http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html
http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html

Preprocessing | 151

7. As the preprocessor runs, we can keep a running account of the minimum and
maximum ranges for the coordinates in question. That is done by setting the
maximum arbitrarily small and the minimum arbitrarily high:

float minX = MAX_FLOAT;
float maxX = MIN_FLOAT;
float minY = MAX_FLOAT;
float maxY = MIN_FLOAT;

and checking the values on each iteration through the loop:
if (x > maxX) maxX = x;
if (x < minX) minX = x;
if (y > maxY) maxY = y;
if (y < minY) minY = y;

The values will be written to the preprocessor output file so that the boundaries
of the shape are known before the file has finished loading in the interactive
applet. That allows us to show points as they load from the network, which also
serves as a indicator of the progress of the file download.

8. To keep track of the number of locations, the placeCount variable is incre-
mented as each new location is parsed.

Building the Preprocessor
Open Processing and start a new sketch. Add the fips.tsv file to your sketch by drag-
ging it into the editor window or selecting Sketch.

Pulling all these steps together, the preprocessor code appears as the following:

// Indices for each of the columns
int ZIP_CODE = 0;
int LATITUDE = 1;
int LONGITUDE = 2;
int ZIP_CLASS = 3;
int PONAME = 4;
int STATE_FIPS = 5;
int COUNTY = 6;

void setup() {
 // Load the state FIPS codes into a table.
 Hashtable fipsTable = new Hashtable();
 String[] fipsLines = loadStrings("fips.tsv");
 for (int i = 0; i < fipsLines.length; i++) {
 // Split each line on the tab characters.
 String[] pieces = split(fipsLines[i], TAB);
 // The FIPS code is in column 1,
 // and the state abbreviation in column 2
 // (keep in mind that columns are numbered from zero).
 fipsTable.put(pieces[1], pieces[2]);
 }

 String[] lines = loadStrings("zipnov99.csv");

152 | Chapter 6: Scatterplot Maps

 // Set the minimum and maximum values arbitrarily large.
 float minX = 1;
 float maxX = -1;
 float minY = 1;
 float maxY = -1;

 // Set up an array for the cleaned data.
 String[] cleaned = new String[lines.length];
 // Number of cleaned entries found
 int placeCount = 0;

 // Start at row 1, because the first row is the column titles.
 for (int row = 1; row < lines.length; row++) {
 // Split the row into pieces on each comma.
 String[] data = split(lines[row], ',');
 scrubQuotes(data);
 // Remove extra whitespace on either side of each column.
 data = trim(data);

 String stateAbbrev = (String) fipsTable.get(data[STATE_FIPS]);
 // If the abbreviation was not found, skip this line,
 // because that means it's an outlying territory.
 if (stateAbbrev == null) continue;
 // For now, also skip Alaska and Hawaii.
 if (stateAbbrev.equals("AK") || stateAbbrev.equals("HI")) continue;

 // Attempt to fix the capitalization of the city/town name.
 String placeName = fixCapitals(data[PONAME]) + ", " + stateAbbrev;

 float lat = float(data[LATITUDE]);
 float lon = float(data[LONGITUDE]);
\
 // Albers equal-area conic projection.
 // USGS uses standard parallels at 45.5˚N and 29.5˚N
 // with a central meridian value of 96˚W.
 // Latitude value is phi, longitude is lambda.
 float phi0 = 0;
 float lambda0 = radians(-96);
 float phi1 = radians(29.5f);
 float phi2 = radians(45.5f);

 float phi = radians(lat);
 float lambda = radians(lon);

 float n = 0.5f * (sin(phi1) + sin(phi2));
 float theta = n * (lambda - lambda0); //radians(lon - lambda0);
 float c = sq(cos(phi1)) + 2*n*sin(phi1);
 float rho = sqrt(c - 2*n*sin(phi)) / n;
 float rho0 = sqrt(c - 2*n*sin(phi0)) / n;

 float x = rho * sin(theta);
 float y = rho0 - rho*cos(theta);

Preprocessing | 153

 if (x > maxX) maxX = x;
 if (x < minX) minX = x;
 if (y > maxY) maxY = y;
 if (y < minY) minY = y;

 // Add a cleaned version of the line, separated by tabs, to the list.
 cleaned[placeCount++] = data[ZIP_CODE] + "\t" +
 x + "\t"
 y + "\t"
 placeName;
 }

 // Write to a file called "zips.tsv" in the sketch folder.
 PrintWriter tsv = createWriter("zips.tsv");

 // Use the first line to specify the number of data points in the file,
 // along with the minimum and maximum latitude and longitude coordinates.
 // Use a # to mark the line as different from the other data.
 tsv.println("# " + placeCount +
 "," + minX + "," + maxX + "," + minY + "," + maxY);

 // Write each line of the cleaned data.
 for (int i = 0; i < placeCount; i++) {
 tsv.println(cleaned[i]);
 }

 // Flush and close the file buffer.
 tsv.flush();
 tsv.close();

 // Finished; quit the program.
 println("Finished.");
 exit();
}

// Parse quotes from CSV or TSV data. Quotes around a column are common,
// and actual double quotes (") are specified by two double quotes ("").
void scrubQuotes(String[] array) {
 for (int i = 0; i < array.length; i++) {
 if (array[i].length() > 2) {
 // Remove quotes at start and end, if present.
 if (array[i].startsWith("\"") && array[i].endsWith("\"")) {
 array[i] = array[i].substring(1, array[i].length() - 1);
 }
 }
 // Make double quotes into single quotes.
 array[i] = array[i].replaceAll("\"\"", "\"");
 }
}

// Capitalize the first letter of each word in a string.
String fixCapitals(String title) {
 char[] text = title.toCharArray();
 // If set to true, the next letter will be capitalized.
 boolean capitalizeNext = true;

154 | Chapter 6: Scatterplot Maps

 for (int i = 0; i < text.length; i++) {
 if (Character.isSpace(text[i])) {
 capitalizeNext = true;
 } else if (capitalizeNext) {
 text[i] = Character.toUpperCase(text[i]);
 capitalizeNext = false;
 } else {
 text[i] = Character.toLowerCase(text[i]);
 }
 }
 return new String(text);
}

The resulting file is much easier on the eyes and far simpler to parse in our next step:

41556,-0.3667764,0.35192886,0.4181981,0.87044954
00210 0.3135056 0.7633538 Portsmouth, NH
00211 0.3135056 0.7633538 Portsmouth, NH
00212 0.3135056 0.7633538 Portsmouth, NH
00213 0.3135056 0.7633538 Portsmouth, NH
00214 0.3135056 0.7633538 Portsmouth, NH
00215 0.3135056 0.7633538 Portsmouth, NH
00501 0.30247012 0.7226447 Holtsville, NY
00544 0.30247012 0.7226447 Holtsville, NY
01001 0.29536617 0.742954 Agawam, MA
01002 0.29843047 0.7478273 Amherst, MA
01003 0.29629046 0.74733305 Amherst, MA
01004 0.29775193 0.7479712 Amherst, MA
01005 0.302632 0.7482096 Barre, MA
01007 0.29958177 0.7465452 Belchertown, MA
01008 0.29309207 0.7430645 Blandford, MA
01009 0.30066824 0.74547637 Bondsville, MA
01010 0.302785 0.74424756 Brimfield, MA
01011 0.29267046 0.74506783 Chester, MA
01012 0.29383755 0.74713147 Chesterfield, MA
01013 0.29678938 0.74368894 Chicopee, MA
01014 0.29752877 0.7440418 Chicopee, MA
01020 0.29802647 0.74428964 Chicopee, MA

What about a binary data file or a database?

Of course, one could pack the data into a more sophisticated binary format so that it
would be an even smaller file. I’ll leave that as an exercise for the reader. Unless the
need for space and speed is acute, I prefer to avoid dealing with binary formats. Deal-
ing with such data is tricky because you can’t just open a binary file in a text editor
to see what’s going on. A text file can be run compressed with GZIP and read as a
stream, and often is in the neighborhood of the size of a binarized version of the
data, while retaining the convenience of text.

Java’s serialization capabilities are another possibility for storing the data. Serializa-
tion allows you to write the contents of the current state of a Java object to the disk;
it’s a “just add water” approach to storing information from a Java application to be

Loading the Data (Acquire and Parse) | 155

retrieved next time the application is run. Unfortunately, serialization tends to be
slower than actually parsing simple information. Furthermore, you have to avoid
changing the structure of your Java class because it would mean rewriting the serial-
ized version of the data. No thanks.

Whenever considering a “lot” of data, people tend to start thinking “database” right
away. But even though there are almost 42,000 zip code records, entering them into
a database is excessive—the data is only 2–3 megabytes—and a database would also
prevent the sort of immediate interaction we want as the user types a postal code.
This will happen in many scenarios, where shoving the data into RAM is so much
more expedient (and helps improve the interaction to such an extent) that databases
should be avoided until absolutely necessary. Even in cases where the data might be
a few gigabytes, clever use of subsets of the data can help the additional work to set
up a database.

Loading the Data (Acquire and Parse)
Fire up Processing, start a new sketch, and add the cleaned version of zips.tsv to the
sketch.

We start with constants that define the indices for each column:

// column numbers in the data file
static final int CODE = 0;
static final int X = 1;
static final int Y = 2;
static final int NAME = 3;

The main tab of each sketch is represented by Processing as a class. A single location
will be defined using a second class named Place. To create this class, use the arrow
located at the righthand side of the tab bar and select New Tab from the pop-up
menu. Name the tab Place. For now, the class has a simple constructor and only
keeps track of the name, zip code, and coordinates for each location:

class Place {
 int code;
 String name;
 float x;
 float y;

 public Place(int code, String name, float x, float y) {
 this.code = code;
 this.name = name;
 this.x = x;
 this.y = y;
 }
}

Back in the main tab, a few variables are necessary to keep track of the number of
total places, the number loaded, and the objects themselves:

156 | Chapter 6: Scatterplot Maps

int totalCount; // total number of places
Place[] places;
int placeCount; // number of places loaded

The placeCount and totalCount variables are separate because one will be used to
allocate room for the total number of locations, and the other will keep track of how
many have been loaded so far from the data source. This becomes more important
later, when we will load the data asynchronously.

The filtering process has already covered the preprocessing step, and the only thing
resembling mining for this project was handled when we calculated the values for the
minimum and maximum coordinates in the preprocessing step:

// min/max boundary of all points
float minX, maxX;
float minY, maxY;

Now the zips.tsv file can be parsed in a straightforward fashion. Because we’ve
already cleaned the data, there’s no additional code to validate individual rows or to
rid gremlins from the columns. The readData() method orchestrates the data acqui-
sition and parsing. The parseInfo() method reads the header line from the file, and
parsePlace() converts a single line of the data file into a Place object:

public void setup() {
 readData();
}

void readData() {
 String[] lines = loadStrings("zips.tsv");
 parseInfo(lines[0]); // read the header line

 places = new Place[totalCount];
 for (int i = 1; i < lines.length; i++) {
 places[placeCount] = parsePlace(lines[i]);
 placeCount++;
 }
}

void parseInfo(String line) {
 String infoString = line.substring(2); // remove the #
 String[] infoPieces = split(infoString, ',');
 totalCount = int(infoPieces[0]);
 minX = float(infoPieces[1]);
 maxX = float(infoPieces[2]);
 minY = float(infoPieces[3]);
 maxY = float(infoPieces[4]);
}

Place parsePlace(String line) {
 String pieces[] = split(line, TAB);

 int zip = int(pieces[CODE]);
 float x = float(pieces[X]);

Drawing a Scatterplot of Zip Codes (Mine and Represent) | 157

 float y = float(pieces[Y]);
 String name = pieces[NAME];

 return new Place(zip, name, x, y);
}

Running this program is not particularly satisfying; if everything is working prop-
erly, nothing will happen when the sketch runs.

Drawing a Scatterplot of Zip Codes (Mine and
Represent)
After parsing your data, you must give some consideration to how the data is
mapped to the screen. The x and y coordinates from the data file do not correspond
to locations on the screen, so the map() function is used to remap them to a useful
coordinate space. As with previous examples, we’ll set up coordinates for the bound-
ing box where the map should be drawn. A modified setup() method sets the values
in slightly from the width and height of the plot:

// Border of where the map should be drawn on screen
float mapX1, mapY1;
float mapX2, mapY2;

public void setup() {
 size(720, 453, P3D);

 mapX1 = 30;
 mapX2 = width - mapX1;
 mapY1 = 20;
 mapY2 = height - mapY1;

 readData();
}

Next, add a method named draw() to the Place class to draw a single location:

 void draw() {
 int xx = (int) TX(x);
 int yy = (int) TY(y);
 set(xx, yy, #000000);
 }

And back in the host application, add an umbrella draw() method that will handle
calling the draw() method for each place. In addition, functions named TX() and TY()
(for transform x and y) handle calling map() to map the points to the screen:

public void draw() {
 background(255);
 for (int i = 0; i < placeCount; i++) {
 places[i].draw();
 }
}

158 | Chapter 6: Scatterplot Maps

float TX(float x) {
 return map(x, minX, maxX, mapX1, mapX2);
}

float TY(float y) {
 return map(y, minY, maxY, mapY2, mapY1);
}

Running this version of the code plots thousands of locations. It essentially yields a
population density map of the United States because higher populated areas have
more postal codes; see Figure 6-1.

Highlighting Points While Typing (Refine and Interact)
Returning to the questions that started this chapter, the focus is now to add interac-
tion so that users can explore how the postal codes relate to geography. The user will
be asked to type a series of digits, and as she types each digit, locations will light or
dim based on whether they are part of a zip code typed so far. For instance, typing 0
and then 2 will dim any locations not part of 02XXX.

The refinement stage begins with choosing a set of colors. First, we choose a better
background than white, followed by an initial color that the map will have when no
numbers have been typed. After that, we choose colors that highlight locations
whose codes include the numbers already typed, and an additional color to indicate
when there are no available zip codes that use the digits typed so far:

Figure 6-1. Geographic locations of postal zip codes

Highlighting Points While Typing (Refine and Interact) | 159

color backgroundColor = #333333; // dark background color
color dormantColor = #999966; // initial color of the map
color highlightedColor = #CBCBCB; // color for selected points
color unhighlightedColor = #66664C; // color for points that are not selected
color badColor = #FFFF66; // text color when nothing found

A font is needed for the text we use to provide the user with feedback on what she
has typed so far. The typedChars array will contain letters typed, and typedCount
keeps track of the number of digits entered. The messageX and messageY values will be
the location where the text should be drawn, and foundCount will be the number of
locations currently selected. The typedPartials variable is used to make selection fast
(more about this later):

PFont font;
String typedString = "";
char typedChars[] = new char[5];
int typedCount;
int typedPartials[] = new int[6];
float messageX, messageY;
int foundCount;

Inside setup(), add the following lines to load the font and set the message text loca-
tion. Use Tools ➝ Create Font to replace ScalaSans-Regular-14.vlw with the name of
the font that you create. The textMode(SCREEN) line specifies that the text be drawn at
its original size, in screen space (no transformations):

 font = loadFont("ScalaSans-Regular-14.vlw");
 textFont(font);
 textMode(SCREEN);

 messageX = 40;
 messageY = height - 40;

The letters typed by the user are handled by a keyPressed() method, along with an
additional method that is called whenever changes are made to the current selection:

void keyPressed() {
 if ((key == BACKSPACE) || (key == DELETE)) {
 if (typedCount > 0) {
 typedCount--;
 }
 updateTyped();

 } else if ((key >= '0') && (key <= '9')) {
 if (typedCount != 5) { // Stop at 5 digits.
 if (foundCount > 0) { // If nothing found, ignore further typing.
 typedChars[typedCount++] = key;
 }
 }
 }
 updateTyped();
}

160 | Chapter 6: Scatterplot Maps

void updateTyped() {
 typedString = new String(typedChars, 0, typedCount);
 typedPartials[typedCount] = int(typedString);
 for (int j = typedCount-1; j > 0; --j) {
 typedPartials[j] = typedPartials[j + 1] / 10;
 }

 foundCount = 0;
 for (int i = 0; i < placeCount; i++) {
 // Update boundaries of selection
 // and identify whether a particular place is chosen.
 places[i].check();
 }

Inside updateTyped, the typedString value is updated by creating a new String object
from the typedChars array, one that’s based on the number of characters that have
been typed so far. The typedPartials array divides each zip code by 10. For instance,
when the user types 15232, println(typedPartials) produces:

[0] 0
[1] 1
[2] 15
[3] 152
[4] 1523
[5] 15232

This creates a quick way to see how well each location matches. The Place class
includes a lot of work to handle the new changes:

class Place {
 int code;
 String name;
 float x;
 float y;

 int partial[];
 int matchDepth;

 public Place(int code, String name, float x, float y) {
 this.code = code;
 this.name = name;
 this.x = x;
 this.y = y;

 partial = new int[6];
 partial[5] = code;
 partial[4] = partial[5] / 10;
 partial[3] = partial[4] / 10;
 partial[2] = partial[3] / 10;
 partial[1] = partial[2] / 10;
 }

Highlighting Points While Typing (Refine and Interact) | 161

 void check() {
 // Default to zero levels of depth that match
 matchDepth = 0;

 if (typedCount != 0) {
 // Start from the greatest depth, and work backwards to see how many
 // items match. Want to figure out the maximum match, so better to
 // begin from the end.
 for (int j = typedCount; j > 0; --j) {
 if (typedPartials[j] == partial[j]) {
 matchDepth = j;
 break; // Since starting at end, can stop now.
 }
 }
 }

 if (matchDepth == typedCount) {
 foundCount++;
 }
 }

 void draw() {
 int xx = (int) TX(x);
 int yy = (int) TY(y);

 color c = dormantColor;
 if (typedCount != 0) {
 if (matchDepth == typedCount) {
 c = highlightedColor;
 } else {
 c = unhighlightedColor;
 }
 }
 set(xx, yy, c);
 }
}

The check() method calculates whether a point is selected and increments the
foundCount variable to keep track of how many locations are still valid. Inside draw(),
a point can be one of three colors: the dormantColor when nothing has been typed,
the highlightedColor when the point matches, and the unhighlightedColor when the
point does not match.

The new version of the code answers our initial question and makes it easy to com-
pare regions against one another by typing different numbers. Typing 4 as the first
digit produces the image shown in Figure 6-2.

162 | Chapter 6: Scatterplot Maps

Show the Currently Selected Point (Refine)
When five digits have been typed, the point should appear different and include the
text for the location’s name. In this section, we’ll show the location of a fully typed-
out, five-digit zip code as a rectangle and add text to its upper-right corner that
names the location. That is done with the drawChosen() method:

 void drawChosen() {
 noStroke();
 fill(highlightColor);
 int size = 4;
 rect(TX(x), TY(y), size, size);

 // Calculate position to draw the text, offset slightly from the main point.
 float textX = TX(x);
 float textY = TY(y) - size - 4;

 // Don't go off the top (e.g., 59544).
 if (textY < 20) {
 textY = TY(y) + 20;
 }

Figure 6-2. Selecting a region of zip codes

Show the Currently Selected Point (Refine) | 163

 // Don't run off the bottom (e.g., 33242).
 if (textY > height - 5) {
 textY = TY(y) - 20;
 }

 String location = name + " " + nf(code, 5);
 float wide = textWidth(location);

 if (textX > width/3) {
 textX -= wide + 8;
 } else {
 textX += 8;
 }

 textAlign(LEFT);
 fill(highlightColor);
 text(location, textX, textY);
 }
}

Because the text will be shown adjacent to the point, it’s necessary to also make sure
that the text does not leave the edge of the screen. The middle lines of the method
cover this logic.

In the main tab, a variable named chosen keeps track of the current Place object (if
any):

Place chosen;

The chosen point is drawn with a rectangle. To center it, add the following line to
setup():

 rectMode(CENTER);

The following modifications to draw() carry out the extra step to draw the chosen
point:

public void draw() {
 background(backgroundColor);

 for (int i = 0; i < placeCount; i++) {
 places[i].draw();
 }

 if (typedCount != 0) {
 if (foundCount > 0) {
 if (typedCount == 4) {
 // Redraw the chosen ones, because they're often occluded
 // by the non-selected points.
 for (int i = 0; i < placeCount; i++) {
 if (places[i].matchDepth == typedCount) {
 places[i].draw();
 }
 }
 }

164 | Chapter 6: Scatterplot Maps

 if (chosen != null) {
 chosen.drawChosen();
 }

 fill(highlightColor);
 textAlign(LEFT);
 text(typedString, messageX, messageY);

 } else {
 fill(badColor);
 text(typedString, messageX, messageY);
 }
 }
}

And in updateTyped(), chosen should be set to null after foundCount is set to 0, which
resets the current selection whenever typing occurs.

The result is shown in Figure 6-3.

Figure 6-3. Special handling of a full five-digit user entry

Progressively Dimming and Brightening Points (Refine) | 165

Progressively Dimming and Brightening Points (Refine)
In the previous examples, typing makes the screen update instantaneously, which
can be disorienting for users trying to compare different areas. In Chapter 3, the
Integrator class was used to create a more gradual interpolation between two data
values. For this chapter, a class called ColorIntegrator does the same, but interpo-
lates between two colors. Instead of a float, the ColorIntegrator.target() method
takes a color (in web color format, or created with the color() function). Both
classes can be downloaded from the book’s site at:

http://benfry.com/writing/zipdecode/Integrator.java
http://benfry.com/writing/zipdecode/ColorIntegrator.java

To handle a smooth interpolation, a set of six ColorIntegrator objects are used, one
for each possible number typed plus an initial value for cases in which no digits are
typed. When no digits have been typed, faders[0] is used to determine the color.
When the user begins typing, all points that match one digit are drawn with the color
from faders[1]. All points that match two digits are drawn with faders[2], and so
on. For instance, as the user types 021, the following occurs:

• With no digits typed, all points are drawn with the color value in faders[0].
Inside setup(), faders[0] is set to unhighlightedColor, but its target() method
is set to dormantColor, a pale yellow. This has the effect of fading all the points
from the duller unhighlightedColor into the brighter dormantColor. This effect
has no functional purpose, but letting the points fade in is more pleasing than
making 42,000 points appear instantaneously.

• When the user presses 0, faders[1] is told through its target() method to tar-
get highlightedColor, which causes the points that match to transition gradually
from their previous color to highlightedColor. In the same code sequence,
faders[0] is set to target unhighlightedColor, causing all points that don’t match
the user’s 0 to begin fading out. All points that match the first digit are drawn
using faders[1], and all points that match zero digits are drawn with faders[0].

• When the user presses 2 (so that the screen now reads 02), faders[2] is set to tar-
get highlightedColor, whereas faders[0] and faders[1] are set to target
unhighlightedColor. faders[0] has probably already reached its target value of
unhighlightedColor, and faders[1] will arrive shortly.

Each fader is handled individually because the transition from one set of points to
another may overlap. That is, if the user presses a first digit, a set of points begins to
dim. Those points may not have dimmed completely when the next digit is typed.
Separate ColorIntegrator objects support the overlap by independently handling
each transition.

The array of ColorIntegrator objects is created as a global variable:

ColorIntegrator faders[];

http://benfry.com/writing/zipdecode/Integrator.java
http://benfry.com/writing/zipdecode/ColorIntegrator.java

166 | Chapter 6: Scatterplot Maps

The objects are created inside setup():

 faders = new ColorIntegrator[6];

 // When nothing is typed, all points are shown with a color called
 // "dormant," which is brighter than when not highlighted, but
 // not as bright as the highlight color for a selection.
 faders[0] = new ColorIntegrator(unhighlightedColor);
 faders[0].setAttraction(0.5);
 faders[0].target(dormantColor);

 for (int i = 1; i < 6; i++) {
 faders[i] = new ColorIntegrator(unhighlightedColor);
 faders[i].setAttraction(0.5);
 faders[i].target(highlightedColor);
 }

As with any time animation, it is a good idea to use frameRate() to ensure that the
transitions behave identically on faster or slower machines:

frameRate(15);

Next, add an updateAnimation() method that updates the value for each fader:

void updateAnimation() {
 for (int i = 0; i < 6; i++) {
 faders[i].update();
 }
}

Call this method at the beginning of draw().

The fading values are handled in updateTyped() by targeting the highlightedColor or
unhighlightedColor based on how many digits have been typed so far:

void updateTyped() {
 typedString = new String(typedChars, 0, typedCount);

 if (typedCount == 0) {
 faders[0].target(dormantColor);

 } else {
 // Un-highlight areas already typed past.
 for (int i = 0; i < typedCount; i++) {
 faders[i].target(unhighlightedColor);
 }
 // Highlight remaining points that match what's typed.
 for (int i = typedCount; i < 6; i++) {
 faders[i].target(highlightedColor);
 }
 }

 typedPartials[typedCount] = int(typedString);
 for (int j = typedCount-1; j > 0; --j) {
 typedPartials[j] = typedPartials[j + 1] / 10;
 }

Zooming In (Interact) | 167

 foundCount = 0;
 chosen = null;

 for (int i = 0; i < placeCount; i++) {
 // Update boundaries of selection
 // and identify whether a particular place is chosen.
 places[i].check();
 }
}

Inside the draw() method for Place, the color value is now set based on how far
things have faded for the depth at which the location matches:

 set(xx, yy, faders[matchDepth].value);

For instance, if four digits have been typed but this location possesses only the first
two, the color of this point will be based on how bright or dim the faders[2] ele-
ment is.

You will have to try the code directly to see for yourself; the result is difficult to show
in a figure because it involves a subtle fading effect.

Zooming In (Interact)
Because interaction in our zip code example involves honing in on an ever-smaller
area of locations, the application begs for a capability to zoom closer as the area
becomes more specific. The effect of zooming is striking, but its implementation is
actually quite straightforward and can be based on methods already in use.

So far, the crux of the representation is the map() function, which remaps a series of
coordinates (with a predefined range) to a specific location on the screen (with a new
range). To allow for zooming, instead set the ranges themselves as Integrator
objects:

color backgroundColor = #333333; // dark background color
color dormantColor = #999966; // initial color of the map
color highlightedColor = #CBCBCB; // color for selected points
color unhighlightedColor = #66664C; // color for points that are not selected
color badColor = #FFFF66; // text color when nothing found

ColorIntegrator faders[];

// Border of where the map should be drawn on screen
float mapX1, mapY1;
float mapX2, mapY2;

// Column numbers in the data file
static final int CODE = 0;
static final int X = 1;
static final int Y = 2;
static final int NAME = 3;

int totalCount; // total number of places

168 | Chapter 6: Scatterplot Maps

Place[] places;
int placeCount; // number of places loaded

// Min/max boundary of all points
float minX, maxX;
float minY, maxY;

// Typing and selection
PFont font;
String typedString = "";
char typedChars[] = new char[5];
int typedCount;
int typedPartials[] = new int[6];

float messageX, messageY;

int foundCount;
Place chosen;

// Zoom
boolean zoomEnabled = false;
Integrator zoomDepth = new Integrator();

Integrator zoomX1;
Integrator zoomY1;
Integrator zoomX2;
Integrator zoomY2;

float targetX1[] = new float[6];
float targetY1[] = new float[6];
float targetX2[] = new float[6];
float targetY2[] = new float[6];

// Boundary of currently valid points at this typedCount
float boundsX1, boundsY1;
float boundsX2, boundsY2;

public void setup() {
 size(720, 453, P3D);

 mapX1 = 30;
 mapX2 = width - mapX1;
 mapY1 = 20;
 mapY2 = height - mapY1;

 font = loadFont("ScalaSans-Regular-14.vlw");
 textFont(font);
 textMode(SCREEN);

 messageX = 40;
 messageY = height - 40;

 faders = new ColorIntegrator[6];

Zooming In (Interact) | 169

 // When nothing is typed, all points are shown with a color called
 // "dormant," which is brighter than when not highlighted, but
 // not as bright as the highlight color for a selection.
 faders[0] = new ColorIntegrator(unhighlightedColor);
 faders[0].setAttraction(0.5);
 faders[0].target(dormantColor);

 for (int i = 1; i < 6; i++) {
 faders[i] = new ColorIntegrator(unhighlightedColor);
 faders[i].setAttraction(0.5);
 faders[i].target(highlightedColor);
 }

 readData();

 zoomX1 = new Integrator(minX);
 zoomY1 = new Integrator(minY);
 zoomX2 = new Integrator(maxX);
 zoomY2 = new Integrator(maxY);

 targetX1[0] = minX;
 targetX2[0] = maxX;
 targetY1[0] = minY;
 targetY2[0] = maxY;

 rectMode(CENTER);
 ellipseMode(CENTER);
 frameRate(15);
}

void readData() {
 String[] lines = loadStrings("zips.tsv");
 parseInfo(lines[0]); // Read the header line

 places = new Place[totalCount];
 for (int i = 1; i < lines.length; i++) {
 places[placeCount] = parsePlace(lines[i]);
 placeCount++;
 }
}

void parseInfo(String line) {
 String infoString = line.substring(2); // Remove the #
 String[] infoPieces = split(infoString, ',');
 totalCount = int(infoPieces[0]);
 minX = float(infoPieces[1]);
 maxX = float(infoPieces[2]);
 minY = float(infoPieces[3]);
 maxY = float(infoPieces[4]);
}

170 | Chapter 6: Scatterplot Maps

Place parsePlace(String line) {
 String pieces[] = split(line, TAB);

 int zip = int(pieces[CODE]);
 float x = float(pieces[X]);
 float y = float(pieces[Y]);
 String name = pieces[NAME];

 return new Place(zip, name, x, y);
}

public void draw() {
 background(backgroundColor);

 updateAnimation();

 for (int i = 0; i < placeCount; i++) {
 places[i].draw();
 }

 if (typedCount != 0) {
 if (foundCount > 0) {
 if (!zoomEnabled && (typedCount == 4)) {
 // Redraw the chosen ones, because they're often occluded
 // by the non-selected points.
 for (int i = 0; i < placeCount; i++) {
 if (places[i].matchDepth == typedCount) {
 places[i].draw();
 }
 }
 }

 if (chosen != null) {
 chosen.drawChosen();
 }

 fill(highlightColor);
 textAlign(LEFT);
 text(typedString, messageX, messageY);

 } else {
 fill(badColor);
 text(typedString, messageX, messageY);
 }
 }

 // Draw "zoom" text toggle.
 textAlign(RIGHT);
 fill(zoomEnabled ? highlightColor : unhighlightColor);
 text("zoom", width - 40, height - 40);
 textAlign(LEFT);
}

Zooming In (Interact) | 171

void updateAnimation() {
 for (int i = 0; i < 6; i++) {
 faders[i].update();
 }

 if (foundCount > 0) {
 zoomDepth.target(typedCount);
 } else {
 // If no points were found, use the previous zoom depth
 // (which will be the last depth where foundCount was > 0).
 zoomDepth.target(typedCount-1);
 }
 zoomDepth.update();

 zoomX1.update();
 zoomY1.update();
 zoomX2.update();
 zoomY2.update();
}

float TX(float x) {
 if (zoomEnabled) {
 return map(x, zoomX1.value, zoomX2.value, mapX1, mapX2);

 } else {
 return map(x, minX, maxX, mapX1, mapX2);
 }
}

float TY(float y) {
 if (zoomEnabled) {
 return map(y, zoomY1.value, zoomY2.value, mapY2, mapY1);

 } else {
 return map(y, minY, maxY, mapY2, mapY1);
 }
}

void mousePressed() {
 // If the user clicks the "zoom" text, toggle zoomEnabled.
 if ((mouseX > width-100) && (mouseY > height - 50)) {
 zoomEnabled = !zoomEnabled;
 }
}

void keyPressed() {
 if ((key == BACKSPACE) || (key == DELETE)) {
 if (typedCount > 0) {
 typedCount--;
 }

172 | Chapter 6: Scatterplot Maps

 } else if ((key >= '0') && (key <= '9')) {
 if (typedCount != 5) { // only 5 digits
 if (foundCount > 0) { // don't allow to keep typing bad
 typedChars[typedCount++] = key;
 }
 }
 }
 updateTyped();
}

void updateTyped() {
 typedString = new String(typedChars, 0, typedCount);

 if (typedCount == 0) {
 faders[0].target(dormantColor);

 } else {
 // Un-highlight areas already typed past.
 for (int i = 0; i < typedCount; i++) {
 faders[i].target(unhighlightedColor);
 }
 // Highlight remaining points that match what's typed.
 for (int i = typedCount; i < 6; i++) {
 faders[i].target(highlightedColor);
 }
 }

 typedPartials[typedCount] = int(typedString);
 for (int j = typedCount-1; j > 0; --j) {
 typedPartials[j] = typedPartials[j + 1] / 10;
 }

 foundCount = 0;
 chosen = null;

 boundsX1 = maxX;
 boundsY1 = maxY;
 boundsX2 = minX;
 boundsY2 = minY;

 for (int i = 0; i < placeCount; i++) {
 // Update boundaries of selection
 // and identify whether a particular place is chosen.
 places[i].check();
 }
 calcZoom();
}

void calcZoom() {
 if (foundCount != 0) {
 // Given a set of min/max coords, expand in one direction so that the
 // selected area includes the range with the proper aspect ratio.

Zooming In (Interact) | 173

 float spanX = (boundsX2 - boundsX1);
 float spanY = (boundsY2 - boundsY1);

 float midX = (boundsX1 + boundsX2) / 2;
 float midY = (boundsY1 + boundsY2) / 2;

 if ((spanX != 0) && (spanY != 0)) {
 float screenAspect = width / float(height);
 float spanAspect = spanX / spanY;

 if (spanAspect > screenAspect) {
 spanY = (spanX / width) * height; // wide

 } else {
 spanX = (spanY / height) * width; // tall
 }
 } else { // if span is zero
 // use the span from one level previous
 spanX = targetX2[typedCount-1] - targetX1[typedCount-1];
 spanY = targetY2[typedCount-1] - targetY1[typedCount-1];
 }
 targetX1[typedCount] = midX - spanX/2;
 targetX2[typedCount] = midX + spanX/2;
 targetY1[typedCount] = midY - spanY/2;
 targetY2[typedCount] = midY + spanY/2;

 } else if (typedCount != 0) {
 // Nothing found at this level, so set the zoom identical to the previous.
 targetX1[typedCount] = targetX1[typedCount-1];
 targetY1[typedCount] = targetY1[typedCount-1];
 targetX2[typedCount] = targetX2[typedCount-1];
 targetY2[typedCount] = targetY2[typedCount-1];
 }

 zoomX1.target(targetX1[typedCount]);
 zoomY1.target(targetY1[typedCount]);
 zoomX2.target(targetX2[typedCount]);
 zoomY2.target(targetY2[typedCount]);

 if (!zoomEnabled) {
 zoomX1.set(zoomX1.target);
 zoomY1.set(zoomY1.target);
 zoomX2.set(zoomX2.target);
 zoomY2.set(zoomY2.target);
 }
}

The zoomX1, zoomY1, zoomX2, and zoomY2 variables are the new ranges to be used with
the map() function. When zoom is not enabled, the horizontal coordinate of a loca-
tion on screen is calculated by using map() to convert the value from the range minX
to maxX into the range mapX1 to mapX2. When zooming, we replace minX and maxX with
the minimum and maximum values that we want to be visible onscreen. That way,
coordinates inside that range will be mapped between mapX1 and mapX2, while map()

174 | Chapter 6: Scatterplot Maps

will place the others somewhere to the left of mapX1 (probably offscreen to the left),
or an x value greater than mapX2 (offscreen to the right).

The targetX1, targetY1, targetX2, and targetY2 arrays contain the boundaries for
each zoom level (that is, the number of digits typed so far, which the code maintains
in the typedCount variable). Inside calcZoom(), the span of the currently valid points
is calculated for the current zoom level.

The spanAspect and screenAspect variables are used to expand the target range verti-
cally or horizontally so that it fits the aspect ratio of the screen. For instance, after
typing 0, the application will zoom to the northeastern United States. This set of
points is taller than it is wide, so the height of the points will be used to determine
the vertical span, and the horizontal span (spanX) will be expanded to stay in
proportion.

If the span is zero, as is the case when a single zip code is selected, the boundary is
instead set to the previous zoom level, but with the final coordinate centered inside
that range. The target levels are based on the previous boundary of all points. For
instance, after typing 940, the boundary for the zoom is based on the minimum and
maximum locations when only 9 and 4 had been typed.

A text label onscreen handles toggling the zoom mode. The mousePressed() method
checks to see whether the mouse has been pressed inside the range of this label’s
location. After typing 4, the image looks like Figure 6-4.

Figure 6-4. Appearance after typing 4 with zoom enabled

Zooming In (Interact) | 175

Additional minor changes inside the Place class handle calculating the boundary
inside the check() method and drawing the selected point slightly differently.
Because the changes are small and spread throughout, the entire code is shown here,
with the modifications highlighted:

class Place {
 int code;
 String name;
 float x;
 float y;

 int partial[];
 int matchDepth;

 public Place(int code, String name, float lon, float lat) {
 this.code = code;
 this.name = name;
 this.x = lon;
 this.y = lat;

 partial = new int[6];
 partial[5] = code;
 partial[4] = partial[5] / 10;
 partial[3] = partial[4] / 10;
 partial[2] = partial[3] / 10;
 partial[1] = partial[2] / 10;
 }

 void check() {
 // Default to zero levels of depth that match
 matchDepth = 0;

 if (typedCount != 0) {
 // Start from the greatest depth, and work backwards to see how many
 // items match. Want to figure out the maximum match, so better to
 // begin from the end.
 // The multiple levels of matching are important because more than one
 // depth level might be fading at a time.
 for (int j = typedCount; j > 0; --j) {
 if (typedPartials[j] == partial[j]) {
 matchDepth = j;
 break; // since starting at end, can stop now
 }
 }
 }

 //if (partial[typedCount] == partialCode) {
 if (matchDepth == typedCount) {
 foundCount++;
 if (typedCount == 5) {
 chosen = this;
 }

176 | Chapter 6: Scatterplot Maps

 if (x < boundsX1) boundsX1 = x;
 if (y < boundsY1) boundsY1 = y;
 if (x > boundsX2) boundsX2 = x;
 if (y > boundsY2) boundsY2 = y;
 }
 }

 void draw() {
 int xx = (int) TX(x);
 int yy = (int) TY(y);

 if ((xx < 0) || (yy < 0) || (xx >= width) || (yy >= height)) return;

 set(xx, yy, faders[matchDepth].colorValue);
 }

 void drawChosen() {
 noStroke();
 fill(faders[matchDepth].colorValue);
 // The chosen point has to be a little larger when zooming.
 int size = zoomEnabled ? 6 : 4;
 rect(TX(x), TY(y), size, size);

 // Calculate position to draw the text, slightly offset from the main point.
 float textX = TX(x);
 float textY = TY(y) - size - 4;

 // Don't go off the top (e.g., 59544).
 if (textY < 20) {
 textY = TY(y) + 20;
 }

 // Don't run off the bottom (e.g., 33242).
 if (textY > height - 5) {
 textY = TY(y) - 20;
 }

 String location = name + " " + nf(code, 5);

 if (zoomEnabled) {
 // Center the single point onscreen when zooming.
 textAlign(CENTER);
 text(location, textX, textY);

 } else {
 float wide = textWidth(location);

 if (textX > width/3) {
 textX -= wide + 8;
 } else {
 textX += 8;
 }

 textAlign(LEFT);

Changing How Points Are Drawn When Zooming (Refine) | 177

 fill(highlightColor);
 text(location, textX, textY);
 }
 }
}

Changing How Points Are Drawn When Zooming
(Refine)
A bit of time spent playing with the zoom mode makes it clear that points are quickly
lost because the single pixels spread out and become difficult to see. This problem
springs from how we perceive images, and it requires that points be handled differ-
ently as the zoom shifts.

To resolve the issue, points should become larger as more digits are typed. Even
better would be to add more information along the way, keeping the density of infor-
mation on the screen constant as the zoom occurs. For instance, after typing three
digits, map data depicting state outlines and major interstates could be included.
Although the data retrieval and formatting for that enhancement are too compli-
cated to show in this chapter, we can at least implement one simple way to add a lit-
tle more information: showing the remaining possibilities for the last digit after the
user has typed the first four.

An updated version of the draw() method found inside the Place class handles two
refinements: changing points to rectangles and showing possible final digits:

 void draw() {
 float xx = TX(x);
 float yy = TY(y);

 if ((xx < 0) || (yy < 0) || (xx >= width) || (yy >= height)) return;

 if ((zoomDepth.value < 2.8f) || !zoomEnabled) { // show simple dots
 set((int)xx, (int)yy, faders[matchDepth].colorValue);

 } else { // show slightly more complicated dots
 noStroke();

 fill(faders[matchDepth].colorValue);

 if (matchDepth == typedCount) {
 if (typedCount == 4) { // on the fourth digit, show possibilities
 text(code % 10, TX(x), TY(y));
 } else { // show a larger box for selections
 rect(xx, yy, zoomDepth.value, zoomDepth.value);
 }
 } else { // show a slightly smaller box for unselected
 rect(xx, yy, zoomDepth.value-1, zoomDepth.value-1);
 }
 }
 }

178 | Chapter 6: Scatterplot Maps

Figure 6-5 shows a selection, with the adjacent locations being drawn using rectangles
instead of single pixels as a result of the new draw() method.

Deployment Issues (Acquire and Refine)
For an online project, downloading two megabytes of data is likely to be a problem.
In its current iteration, the program will stop until all data has been downloaded. A
better alternative is to use the built-in Thread class to load the data asynchronously.
The thread acts independently of the rest of the program, gradually adding locations
by incrementing placeCount. When placeCount and totalCount are identical, the data
has finished loading.

A thread provides a way to bundle a function in your program so that it can run at
the same time as another part of the program. In this case, rather than waiting for the
data to download, a thread can be used for the download while the main draw()
method of the program continues to run. Because the program is still running, it
remains responsive to user input, which makes it feel faster than if the program
halted until the download was finished.

The change also means that the data file should be moved out of the data folder, and
will instead be placed adjacent to the sketch when on your server. In the sketch folder,
move the zips.tsv file one level up from its previous location. This way, the much
smaller download will happen quickly, and the applet will start almost immediately
(drawing the background and making it clear to the user that things are working).

Figure 6-5. After typing five digits, a city name appears for that location

Deployment Issues (Acquire and Refine) | 179

The data should also be gzip compressed to save some space (and therefore time
downloading). That can be done using a utility that will gzip-encode your file, but for
the purposes of this chapter, you can download a version that’s already been
compressed:

http://benfry.com/writing/zipdecode/zips.gz

The code to handle asynchronous loading should be placed in a new file (a new tab
in the Processing interface) called Slurper. The contents should be as follows:

class Slurper implements Runnable {

 Slurper() {
 Thread thread = new Thread(this);
 thread.start();
 }

 public void run() {
 try {
 BufferedReader reader = createReader("zips.gz");

 // First get the info line.
 String line = reader.readLine();
 parseInfo(line);

 places = new Place[totalCount];

 // Parse each of the rest of the lines.
 while ((line = reader.readLine()) != null) {
 places[placeCount] = parsePlace(line);
 placeCount++;
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

A Runnable is a class that has a run() method. The Thread class takes a Runnable and
begins executing it independently of the code from which it was called. The
createReader() method will automatically uncompress the gzip-compressed data as
it is read. The BufferedReader syntax is described in Chapter 9, but the rest is largely
similar to the original readData() method. Back in the main tab, the readData()
method now need only start the thread:

void readData() {
 new Slurper();
}

This code will create the new Slurper object, which will take care of loading the
points as they become available from the network.

http://benfry.com/writing/zipdecode/zips.gz

180 | Chapter 6: Scatterplot Maps

A nice feature of this method is that the points themselves serve as a kind of progress
bar to alert the user to the progress of the download. Over a slow connection, the
points will gradually appear, moving from right to left as the data begin to load.

Next Steps
From this point, there are several directions in which to take this project. For
instance:

• Using the technique described in Chapter 5, we can check to see whether the
Integrator objects have actually changed during update(). If no change has
occurred, we can disable animation with noLoop() to make the program less
demanding on the CPU (and therefore make other running programs more
responsive).

• Depending on browser configuration and how the HTML for the exported
applet is written, the program may not have keyboard focus when it first loads.
This can cause confusion for the user if they begin typing but nothing happens.
To handle such a situation, show the user a message that says, “Click inside the
applet to begin” whenever the built-in Boolean variable focused is set to false.

• By redoing the preprocessing steps (Acquire, Parse, Filter), this same method can
be used with the codes of other countries. Germany and the UK both use similar
postal numbering systems, and data files for each are available online. The open-
geodb project is one good place to start; see http://sourceforge.net/projects/
opengeodb.

• For another variation of this project, I used town names instead of zip code dig-
its. Typing “F” highlights all locations whose names begin with F, and typing
“Fargo” shows the distribution of Fargos throughout the U.S. Also interesting
about this modification is that it begins to show migration patterns for settlers
from different countries as they moved across the U.S.

• And as long as we’re looking at names, you can use street names as another
option. It’s a bit too much information to do the entire U.S., but it’s possible to
use the same principles to show a map of all the street names in a single state,
and progressively select them based on names typed by the user. The street data
can be found at the U.S. Census Bureau’s TIGER/LINE site at http://www.census.
gov/geo/www/tiger.

• What about area codes? I have often received requests for the same application
applied to area codes or other sets of information that are geographically ori-
ented. Such a system would not be consistent with the original question about
how postal codes relate to geography, but it would still be a helpful and interest-
ing tool.

http://sourceforge.net/projects/opengeodb/
http://sourceforge.net/projects/opengeodb/
http://www.census.gov/geo/www/tiger/
http://www.census.gov/geo/www/tiger/

Next Steps | 181

• Also, from the tool front, it too would be possible to address other questions
such as, “What locations are within 25 miles of 94133?” This can be done by
converting latitude/longitude distance to miles and changing the interface to
support selecting a zip code and a distance.

• One of the more interesting modifications would be to bring in additional data
sets—whether satellite photography, geographic boundaries, interstate high-
ways, or map images. By removing the projection conversion from the first step,
any latitude/longitude-based data could be used as an additional layer. The
nicest application would be to show different layers of information at each zoom
level (e.g., showing state outlines once the user has typed a single digit, and after
two digits, start to show city names or interstates). A good goal in any visualiza-
tion project is to maintain the density of visual information at each level.

Having mastered the basic version of this project, there are lots of options for taking
the project further. Have fun!

182

Chapter 7CHAPTER 7

Trees, Hierarchies, and Recursion 7

To complement our coverage of lists and tables in earlier chapters, we’ll now move
on to hierarchical information. Tree structures store data for which each element
might have several subelements. Elements in a tree are typically referred to as nodes,
usually with multiple child nodes. Files and directories are straightforward examples
of a tree structure. Each directory can contain several items, which can be files or
additional directories. Additional directories may have more files inside, and so on.
This recursive structure can make trees a little tricky to deal with, but it’s important
because recursive structures are found in all kinds of knowledge domains, so you’ll
want to become adept at displaying and interacting with them. Most of the exam-
ples in this chapter use files and directories because they’re familiar kinds of data.
The same basic techniques can be applied to all manner of hierarchical information.

Recursion offers special opportunities and challenges for both display and interaction:

• It’s common to show one or two levels of the tree and let the user delve in or
move out.

• This in turn requires ways to signal to the application that parts of the data are
omitted or hidden.

• When animation is available, it’s convenient to load recursive data incremen-
tally so that you don’t have to make the viewer wait for the whole data set to
load.

This chapter gives you the tools for all those techniques, along with a progress bar
that can prove useful in many animated displays.

Using Recursion to Build a Directory Tree
Start a fresh sketch, and add a second tab named Node. A Node object will be a single
element in the tree. You’ll find this general data structure useful for all tree-like data,
but for this example, each element will either be a file or a directory. This is typical
for node structures; each is either a leaf or a container.

Using Recursion to Build a Directory Tree | 183

The node will have a (built-in) File object associated with it, which can be queried
for information such as its size, last time modified, or absolute path. The following is
the basic structure necessary to recursively create a tree of Node objects. As each
object is created, a check is made to see whether the associated File is in fact a direc-
tory. If so, a series of child nodes are added to the children array. As those are cre-
ated, the process continues: each time one of the child nodes is a directory, a series of
grandchildren are added to that child node, and so on:

class Node {
 File file;

 Node[] children;
 int childCount;

 Node(File file) {
 this.file = file;

 if (file.isDirectory()) {
 String[] contents = file.list();
 children = new Node[contents.length];
 for (int i = 0 ; i < contents.length; i++) {
 File childFile = new File(file, contents[i]);
 Node child = new Node(childFile);
 children[childCount++] = child;
 }
 }
 }
}

Caveats When Dealing with Files (Filter)
As with any code, this requires a few tweaks to make it work in the real world. First,
some files should be skipped. On Unix systems, File.list() may include the . (sin-
gle dot) and .. (double dot) directory entries, which will make the code run in a loop.
(If you’re not familiar with Unix, the . directory is a kind of alias to the current direc-
tory, and .. is a reference to the parent directory.) They can be skipped easily enough.
That is also why we use children[childCount++] instead of children[i] at the end of
the loop.

Next, the files returned can be in any order, so it’s best to sort them based on their
name. To meet most users’ expectations, sorting also needs to happen in case-
insensitive order because just a straight sort of String objects will place capitalized
names before lowercase names because uppercase letters have lower ASCII values.

If a file is inaccessible (whether due to restricted permissions or another error), the
File.list() method will return null. In the current version of the code, the node
will be listed as an empty directory because childCount will never be incremented
higher than its default of 0. In the next modification of this code, inaccessible entries
will be avoided by checking whether contents is null.

184 | Chapter 7: Trees, Hierarchies, and Recursion

Finally, on Unix-based systems (which include Linux and Mac OS X), some files may
be symbolic links. If they link elsewhere in the tree, that can also cause the tree to
run forever. The getCanonicalPath() method of File converts a path to its real loca-
tion, adjusting any symbolic links and determining the absolute location of each file.
The getAbsolutePath() method returns the path to a filename, but does not resolve
symbolic links. Any time getCanonicalPath() and getAbsolutePath() return differ-
ent results, the file can be ignored.

Recursively Printing Tree Contents (Represent)
Our initial implementation of a file tree will also offer a function to print the con-
tents. This method is invoked by calling printList(0) on the root node. Based on the
depth value, a series of spaces will be printed before the node’s name. Then, it loops
through the children array, calling printList() with the depth variable incremented
by one so that each child is indented by a few more spaces.

Example 7-1 shows the final code for the Node tab. The changes from the previous
example are highlighted.

Example 7-1. Recursive data structure for File objects

class Node {
 File file;

 Node[] children;
 int childCount;

 Node(File file) {
 this.file = file;

 if (file.isDirectory()) {
 String[] contents = file.list();
 if (contents != null) {
 // Sort the file names in case-insensitive order.
 contents = sort(contents);

 children = new Node[contents.length];
 for (int i = 0 ; i < contents.length; i++) {
 // Skip the . and .. directory entries on Unix systems.
 if (contents[i].equals(".") || contents[i].equals("..")) {
 continue;
 }
 File childFile = new File(file, contents[i]);
 // Skip any file that appears to be a symbolic link.
 try {
 String absPath = childFile.getAbsolutePath();
 String canPath = childFile.getCanonicalPath();
 if (!absPath.equals(canPath)) {
 continue;
 }

Using Recursion to Build a Directory Tree | 185

Back in the main tab, just a few lines of code are necessary to set up a root directory,
create the tree, and then show its contents using printList(). Be sure to put the
code inside a setup() block; otherwise, you’ll get compile errors. When using addi-
tional tabs, it’s always necessary to put functions inside blocks, rather than using the
static mode style of coding first discussed in Chapter 2:

void setup() {
 File rootFile = new File("/Applications/Processing 0125");
 Node rootNode = new Node(rootFile);
 rootNode.printList();
}

Replace /Applications/Processing 0125 with the location of a directory on your own
disk (no slashes at the end) that you’d like to list. I wouldn’t recommend anything
too big—things might get boring if you try to run it on the root of your hard disk, for
example. After the program has finished creating successive nodes, a hierarchic file
listing will print to the console. For the Processing directory used in the previous
example, the first few lines look like:

Processing 0125
 examples
 3D and OpenGL
 Camera
 MoveEye
 MoveEye.pde

 } catch (IOException e) { }

 Node child = new Node(childFile);
 children[childCount++] = child;
 }
 }
 }
 }

 void printList() {
 printList(0);
 }

 void printList(int depth) {
 // Print spaces for each level of depth.
 for (int i = 0; i < depth; i++) {
 print(" ");
 }
 println(file.getName());

 // Now handle the children, if any.
 for (int i = 0; i < childCount; i++) {
 children[i].printList(depth + 1);
 }
 }
}

Example 7-1. Recursive data structure for File objects (continued)

186 | Chapter 7: Trees, Hierarchies, and Recursion

 Ortho
 data
 Ortho.pde
 OrthoVSPerspective
 data
 OrthoVSPerspective.pde
 Perspective
 data
 Perspective.pde

If you’re running Windows, you need to specify the file path differently. The equiva-
lent for Windows would be something along the lines of:

 File rootFile = new File("c:\\Program Files\\processing-0125");

Note the use of double backslashes. Because a \ signifies an escape character (e.g., \n),
it’s necessary to use \\ to specify a single backslash character. A Unix system will need
something along the lines of:

 File rootFile = new File("/home/fry/processing-0125");

Special characters such as ~ (which refers to a Unix home directory) don’t work
because they’re specific to the shell and don’t have that meaning in other applica-
tions. A .. (double dot) properly points to a parent directory; however, it’s a better
idea to use an absolute path for consistent results.

Using a Queue to Load Asynchronously (Interact)
One downside of the straight recursive method used previously is that calling new
Node(rootFile) won’t return until it has completed. In particular, this means that for
a very large directory, the program will halt completely until the entire tree structure
is built. When looking at many files, this can quickly become a problem, especially in
an interactive project with a draw() method.

Rather than create the entire tree instantaneously, a better approach is to use a
queue. Each time a folder is found, it will be added to a list, and as the draw()
method runs, a few more items from the queue can be read. This way, the program
can continue without halting, and users can be updated on the progress of the files as
they are read.

To implement a queue, we’ll start with the code from the previous example and
build it out further. The queue is handled by keeping track of a list of Node objects
that have not yet been scanned for their contents in the main tab:

Node[] folders = new Node[10];
int folderCount;
int folderIndex;

The folderCount indicates the total number of folders in the list. The folderIndex
variable is used to track the current folder to be read. Also in the main tab, new fold-
ers are added with the addFolder() method, whereas the nextFolder() method is
used to get the next item from the queue:

Using a Queue to Load Asynchronously (Interact) | 187

void addFolder(Node folder) {
 if (folderCount == folders.length) {
 folders = (Node[]) expand(folders);
 }
 folders[folderCount++] = folder;
}

void nextFolder() {
 if (folderIndex != folderCount) {
 Node n = folders[folderIndex++];
 n.check();
 }
}

The expand() method doubles the size of an array so that more elements can be
added. The elements in the array are unaffected, and it provides an efficient means of
resizing an array. It’s also possible to specify a second parameter to expand() that
indicates the new size of the array.

With this code, the nextFolder() method is called from draw() when the visualiza-
tion is ready for more data. The method then calls the check() method (discussed
shortly), which fills out the Node structure with information about child folders. Calls
to the nextFolder() method require a negligible amount of time compared to read-
ing several thousand files recursively and at once.

Strictly speaking, this isn’t technically a queue, as we’re not removing nodes once
they’ve been checked. However, keeping the items around can be helpful: once we’ve
traversed the entire list, we can set folderIndex back to 0 and rescan the directories for
changes (e.g., to update the display for changes to the size and modification time of
files).

The new Node constructor uses addFolder() on directories, and the rest of the code
from the constructor in Example 7-1 is moved to the check() method, called by
nextFolder() back in the main tab:

 Node(File file) {
 this.file = file;
 if (file.isDirectory()) {
 addFolder(this);
 }
 }

 void check() {
 String[] contents = file.list();
 if (contents != null) {
 // Sort the file names in case-insensitive order.
 contents = sort(contents);
 children = new Node[contents.length];
 for (int i = 0 ; i < contents.length; i++) {
 // Skip the . and .. directory entries on Unix systems.
 if (contents[i].equals(".") || contents[i].equals("..")) {
 continue;
 }

188 | Chapter 7: Trees, Hierarchies, and Recursion

 File childFile = new File(file, contents[i]);
 // Skip any file that appears to be a symbolic link.
 try {
 String absPath = childFile.getAbsolutePath();
 String canPath = childFile.getCanonicalPath();
 if (!absPath.equals(canPath)) {
 continue;
 }
 } catch (IOException e) { }

 Node child = new Node(childFile);
 children[childCount++] = child;
 }
 }
 }

Showing Progress (Represent)
To show status information, it’s necessary to set up a font for use at the end of
setup():

void setup() {
 size(400, 130);
 File rootFile = new File("/Applications/Processing 0125");
 rootNode = new Node(rootFile);
 PFont font = createFont("SansSerif", 11);
 textFont(font);
}

The draw() method handles clearing the background, calling nextFolder() and
drawStatus(), which we’ll discuss next. To read folders more quickly, place a loop
around the call to nextFolder() to make it check more folders on each iteration
through draw(). Given 12,000 folders and draw() running 60 times per second, it
would take a minimum of 200 seconds to load the entire set. A for loop calling
nextFolder() 10 times per draw() will cut that to just 20 seconds, plus some addi-
tional time for the check() method to actually complete. Some trial and error based
on the speed of your machine will give you a value for the loop that balances the
speed at which the folders are read with their impact on the animation speed. Of
course, you don’t want to overdo it; otherwise, why use the queue?

The drawStatus() method draws a progress bar and keeps us up-to-date on how
many files have been loaded so far:

void drawStatus() {
 float statusX = 30;
 float statusW = width - statusX*2;
 float statusY = 60;
 float statusH = 20;

 fill(0);
 if (folderIndex != folderCount) {
 text("Reading " + nfc(folderIndex+1) +

An Introduction to Treemaps | 189

 " out of " + nfc(folderCount) + " folders...",
 statusX, statusY - 10);
 } else {
 text("Done reading.", statusX, statusY - 10);
 }
 fill(128);
 rect(statusX, statusY, statusW, statusH);

 float completedW = map(folderIndex + 1, 0, folderCount, 0, statusW);
 fill(255);
 rect(statusX, statusY, completedW, statusH);
}

The statusX, statusY, statusW, and statusH variables handle the location and dimen-
sions of the status bar. So long as folderIndex has not yet caught up to folderCount,
folders are still in the queue. A gray rectangle (fill(128)) is drawn for the status bar,
and then a white rectangle (fill(255)) is drawn above it, its width (completedW) set in
proportion to the number of folders read versus the total number. The status image
is shown in Figure 7-1.

As folders are read, more subfolders will be found, and the progress bar will dance
back and forth slightly each time subfolders are found—e.g., jumping from “4 of 5”
to “5 of 19” in a kind of one step forward, two steps back manner. Eventually the
numbers will stabilize and the progress bar will be more consistent.

For later examples in this chapter, we’ll use both straight recursive and the queue
method for reading files—the former for simplicity, or the latter when we want to
improve interaction.

An Introduction to Treemaps
It’s not uncommon to want to know how space is being used on a hard disk. On file
managers, such as the Windows Explorer or Mac OS Finder, pinpointing disk usage
can be difficult and tedious. Frustrated with a server hard disk that was perpetually
full, Ben Shneiderman, of the Human-Computer Interaction Laboratory (HCIL) at
the University of Maryland, worked out a set of algorithms to subdivide 2D space to
show the relative size of files and directories (see http://www.cs.umd.edu/hcil/treemap-
history). He called the representation a treemap, referencing the two-dimensional

Figure 7-1. Showing progress while cataloging the disk

http://www.cs.umd.edu/hcil/treemap-history/
http://www.cs.umd.edu/hcil/treemap-history/

190 | Chapter 7: Trees, Hierarchies, and Recursion

mapping of tree structures. Projects such as Martin Wattenberg’s Map of the Market
(http://smartmoney.com/marketmap) and Marcos Weskamp’s Newsmap (http://
marumushi.com/apps/newsmap) serve as more recent canonical examples of the
technique.

One key trait of a treemap—and the reason it’s in this chapter as a hierarchical struc-
ture—is that the viewer can click on any part of the display to burrow down and see
that part’s structure. This interaction is sometimes underutilized, but it can be very
effective, as we’ll see later. The whole data structure is hierarchical, but different
parts can be displayed by themselves.

A Simple Treemap Library
Through a collaboration between Wattenberg and the HCIL, an open source library
for creating treemap structures was released online (http://www.cs.umd.edu/hcil/
treemap-history/Treemaps-Java-Algorithms.zip) under the Mozilla Public License. For
this project, we’ll use a modified version of this code that has been packaged as a
Processing library to make it easier to embed in projects. Although the package nam-
ing has been changed, the majority of the code is from the original sources. The
library can be downloaded from the book’s web site at http://benfry.com/writing/
treemap/library.zip.

Unzip the library.zip file, and place the treemap folder into your sketchbook folder.
Restart Processing if it’s already running so that it picks up the new library. (Librar-
ies are covered in the “Libraries Add New Features” section in Chapter 2.)

A Simple Treemap Example
Before returning to files, we’ll develop a short program to familiarize ourselves with
how treemaps work. Start a new sketch, and select Sketch ➝ Import Library ➝

treemap. For this example, we’ll load a list of words from a file and then plot the rel-
ative usage for each word. For the data set, we’ll use nearly 200,000 words from
Mark Twain’s Following the Equator and write an application that shows the relative
frequency of each word in the book. The data file can be found at http://benfry.com/
writing/treemap/equator.txt.

Add equator.txt to your sketch and make sure that it is copied to the data folder.

To use the treemap library at a high level, it’s necessary to become acquainted with
three classes. A SimpleMapItem class encapsulates a single element of a treemap dis-
play (in this case a word). The SimpleMapModel class is a list of SimpleMapItem objects.
A third class, named Treemap, converts a SimpleMapModel object into a nicely laid out
2D mapping.

Create a tab named WordItem with the following code:

http://smartmoney.com/marketmap/
http://marumushi.com/apps/newsmap/
http://marumushi.com/apps/newsmap/
http://www.cs.umd.edu/hcil/treemap-history/Treemaps-Java-Algorithms.zip
http://www.cs.umd.edu/hcil/treemap-history/Treemaps-Java-Algorithms.zip
http://benfry.com/writing/treemap/library.zip
http://benfry.com/writing/treemap/library.zip
http://benfry.com/writing/treemap/equator.txt
http://benfry.com/writing/treemap/equator.txt

An Introduction to Treemaps | 191

class WordItem extends SimpleMapItem {
 String word;

 WordItem(String word) {
 this.word = word;
 }

 void draw() {
 fill(255);
 rect(x, y, w, h);

 fill(0);
 if (w > textWidth(word) + 6) {
 if (h > textAscent() + 6) {
 textAlign(CENTER, CENTER);
 text(word, x + w/2, y + h/2);
 }
 }
 }
}

Each SimpleMapItem object has x, y, w, and h variables that cover the boundary of the
object, and a draw() method that handles drawing the object to the screen. This
implementation of WordItem will draw each square as a white rectangle with black
text. However, the text is drawn only if the width and height of the text are smaller
than the width and height of the rectangle.

Create an additional tab named WordMap, and enter the following:

class WordMap extends SimpleMapModel {
 HashMap words;

 WordMap() {
 words = new HashMap();
 }

 void addWord(String word) {
 WordItem item = (WordItem) words.get(word);
 if (item == null) {
 item = new WordItem(word);
 words.put(word, item);
 }
 item.incrementSize();
 }

 void finishAdd() {
 items = new WordItem[words.size()];
 words.values().toArray(items);
 }
}

This class handles the list of WordItem objects. The items array is inherited from
SimpleMapModel, and it simply needs to be filled by methods in WordMap. The WordMap

192 | Chapter 7: Trees, Hierarchies, and Recursion

class has a HashMap object that maps between a word (as a String) and its associated
WordItem object. This is used by the addWord() method, which either adds new
entries to the HashMap for new words or calls the incrementSize() method for words
already found. After loading has finished, the finishAdd() method converts the val-
ues of the HashMap (a series of WordItem objects) into an array.

Finally, the main tab should read as follows:

import treemap.*;

Treemap map;

void setup() {
 size(1024, 768);

 smooth();
 strokeWeight(0.25f);
 PFont font = createFont("Serif", 13);
 textFont(font);

 WordMap mapData = new WordMap();

 String[] lines = loadStrings("equator.txt");
 for (int i = 0; i < lines.length; i++) {
 mapData.addWord(lines[i]);
 }
 mapData.finishAdd();

 map = new Treemap(mapData, 0, 0, width, height);

 // Run draw() only once.
 noLoop();
}

void draw() {
 background(255);
 map.draw();
}

The first half of setup() should be familiar by now. The second half handles loading
the words from a file (one word per line) and adds each using the addWord() method.
Once finished reading the file, finishAdd() completes the loading process.

The Treemap class takes a MapModel (in this case, our WordMap class), along with dimen-
sions for the treemap. Calling noLoop() is helpful; there’s no need to run draw()
more than once because there’s no animation in this example.

The main draw() method calls the draw() method for Treemap, which calls WordMap.
draw(), which then calls WordItem.draw() for each of the items. The result is shown
in Figure 7-2.

An Introduction to Treemaps | 193

Note in this image how setting the strokeWeight() lower than one point makes thin
gray lines. That is done so that the black text (the more important information) has
better contrast compared to the lines that depict the edges of the boxes. Without the
change in weight, the lines would call too much attention to themselves because of
the detail and sheer number of the tiny boxes.

In just a few dozen lines of code, we’ve created a treemap representation of 200,000
words. Other (no doubt more interesting) data sets can be used as well. Simply make
classes that extend SimpleMapItem and SimpleMapModel, or read the library documen-
tation included with the download for greater flexibility. At a minimum, refining the
appearance of this image can be done easily by changing the draw() method inside
WordItem. We could also add some filtering to remove stop words. Or, using the
mining step, we could tag words based on parts of speech (adjective, verb, etc.) and
use those tags to group the words differently or change their coloring. In the next
example, we’ll look at more sophisticated extensions of the treemap library.

Figure 7-2. Treemap depicting word usage in Mark Twain’s Following the Equator

194 | Chapter 7: Trees, Hierarchies, and Recursion

Which Files Are Using the Most Space?
Returning to the question that originally motivated Shneiderman’s experiments
resulting in the treemap algorithms, we’ll now combine the last two examples
(reading files and folders recursively, and the treemap) to create a treemap that
depicts the relative size of files and folders to get a better understanding of how disk
space is being used. Begin a new sketch, and import the treemap library.

Reading the Directory Structure (Acquire, Parse, Filter, Mine,
Represent)
We’ll begin with a FileItem object that extends SimpleMapItem, as in the example
using words. In this case, we’ll keep track of a File object instead of a String. Put
this code into a tab named FileItem. This code is very similar to the code for
WordItem. The basic function is identical: encapsulate an object (the File), and han-
dle drawing its name whenever the box is sufficiently large. The x, y, w, and h coordi-
nates of the box are converted to corners in calcBox() (which gives us some
flexibility later if we want to manipulate the coordinates to zoom in and out using
the techniques covered in Chapter 6):

class FileItem extends SimpleMapItem {
 FolderItem parent;
 File file;
 String name;
 int level;

 float textPadding = 8;

 float boxLeft, boxTop;
 float boxRight, boxBottom;

 FileItem(FolderItem parent, File file, int level, int order) {
 this.parent = parent;
 this.file = file;
 this.order = order;
 this.level = level;

 name = file.getName();
 size = file.length();
 }

 void calcBox() {
 boxLeft = x;
 boxTop = y;
 boxRight = x + w;
 boxBottom = y + h;
 }

Which Files Are Using the Most Space? | 195

 void draw() {
 calcBox();
 fill(255);
 rect(boxLeft, boxTop, boxRight, boxBottom);

 if (textFits()) {
 drawTitle();
 }
 }

 void drawTitle() {
 fill(0);
 textAlign(LEFT);
 text(name, boxLeft + textPadding, boxBottom - textPadding);
 }

 boolean textFits() {
 float wide = textWidth(name) + textPadding*2;
 float high = textAscent() + textDescent() + textPadding*2;
 return (boxRight - boxLeft > wide) && (boxBottom - boxTop > high);
 }
}

In another tab called FolderItem, we’ll add code to handle loading and listing the
contents of a folder. The contents will be stored as a list of FileItem and FolderItem
objects. For now, the draw() method in FileItem will be used by FolderItem. It’s not
uncommon for drawing methods of trees to be in the leaves, as the branches are
often structural and not something to be represented.

The FolderItem code is very similar to the recursive directory-reading code. One
exception is that an order variable is used to keep track of the order of the files inside
the directory, and a depth variable stores the depth of that folder level. The order
variable is important to the treemap layout algorithm (which attempts to retain as
much of the original order as possible). The depth variable will be helpful later when
altering the representation based on the depth of the elements being viewed. The
contentsVisible field will be used to control whether the contents of a FolderItem
are drawn as individual boxes or whether the item is shown as a single rectangle:

class FolderItem extends FileItem implements MapModel {
 MapLayout algorithm = new PivotBySplitSize();
 Mappable[] items;
 boolean contentsVisible;
 boolean layoutValid;

 public FolderItem(FolderItem parent, File folder, int level, int order) {
 super(parent, folder, level, order);

 String[] contents = folder.list();
 if (contents != null) {
 contents = sort(contents);
 items = new Mappable[contents.length];

196 | Chapter 7: Trees, Hierarchies, and Recursion

 int count = 0;
 for (int i = 0; i < contents.length; i++) {
 if (contents[i].equals(".") || contents[i].equals("..")) {
 continue;
 }
 File fileItem = new File(folder, contents[i]);
 try {
 String absolutePath = fileItem.getAbsolutePath();
 String canonicalPath = fileItem.getCanonicalPath();
 if (!absolutePath.equals(canonicalPath)) {
 continue;
 }
 } catch (IOException e) { }

 FileItem newItem = null;
 if (fileItem.isDirectory()) {
 newItem = new FolderItem(this, fileItem, level+1, count);
 } else {
 newItem = new FileItem(this, fileItem, level+1, count);
 }
 items[count++] = newItem;
 size += newItem.getSize();
 }
 if (count != items.length) {
 items = (Mappable[]) subset(items, 0, count);
 }
 } else {
 // If no items found in this folder, create a dummy array so that
 // items will not be null, which will ensure that items.length will
 // return 0 rather than causing a NullPointerException.
 items = new Mappable[0];
 }
 }

 void checkLayout() {
 if (!layoutValid) {
 if (getItemCount() != 0) {
 algorithm.layout(this, bounds);
 }
 layoutValid = true;
 }
 }

 void draw() {
 checkLayout();
 calcBox();
 if (contentsVisible) {
 for (int i = 0; i < items.length; i++) {
 items[i].draw();
 }
 } else {
 super.draw();
 }
 }

Which Files Are Using the Most Space? | 197

 Mappable[] getItems() {
 return items;
 }

 int getItemCount() {
 return items.length;
 }
}

The checkLayout() method uses the layoutValid Boolean variable to check whether
this FolderItem has already had the treemap algorithm applied to it. If not, the
treemap library’s layout() method is called. The algorithm is specified at the begin-
ning of the class in this line:

 MapLayout algorithm = new PivotBySplitSize();

This class uses the Pivot by Split Size model of arranging a treemap. This makes for a
pleasing visual order and aspect ratios. You can also try other algorithms; for
instance, replacing the previous line with:

 MapLayout algorithm = new SquarifiedLayout();

will provide a very different layout representation that keeps each element in shapes
that are more square than rectangular. Other algorithms are covered in the library
documentation. It might be possible to share a single MapLayout amongst all
FolderItem objects, but this method prevents any conflicts between the algorithm
and the folder data, and it provides some flexibility for changing the algorithm (for
instance, switching to a different algorithm when a folder contains a high number of
identically sized files or when there are extreme disparities in file size).

The code in the main tab creates the root FolderItem object, sets a font for the text,
and calls the recursive draw() method of FolderItem to show the map, producing the
image shown in Figure 7-3. You’ll need to change the setRoot() line to point at
something else on your own machine, but start with something on the small side—
this version of the code doesn’t use the queuing mechanism described earlier in this
chapter, so the program will halt for a bit while all the files are loaded:

import treemap.*;

FolderItem rootItem;
PFont font;

public void setup() {
 size(1024, 768);
 rectMode(CORNERS);

 font = createFont("SansSerif", 13);
 setRoot(new File("/Applications/Processing 0125"));
}

void setRoot(File folder) {
 FolderItem tm = new FolderItem(null, folder, 0, 0);

198 | Chapter 7: Trees, Hierarchies, and Recursion

 tm.setBounds(0, 0, width-1, height-1);
 tm.contentsVisible = true;
 rootItem = tm;
}

void draw() {
 background(255);
 textFont(font);

 if (rootItem != null) {
 rootItem.draw();
 }
}

The boundary of the treemap is set to width-1 and height-1 so that the lower and
right edges of the stroke around the boxes are visible. The application is 1024 × 768
pixels—the last pixel is 1,023 to the right and 767 to the bottom—and we want the
treemap to map perfectly to that boundary; see Figure 7-3.

Figure 7-3. Treemap depicting relative sizes for subfolders of the Processing 0125 directory

Viewing Folder Contents (Interact) | 199

Viewing Folder Contents (Interact)
So far, we have only depicted the first layer of files because contentsVisible is set to
true only for the root folder. We’ll use the mouse to navigate inside folders, mapping
left-clicks to show the contents of a folder and right-clicks to hide contents. This will
produce successively smaller boxes, making it even more impossible for the text to fit
in each area. Because the text will be all but nonexistent for the majority of these tiny
boxes, we’ll instead show the title for those boxes on mouse rollover.

In the main tab, the rollover is handled by a FileItem object for the current item
underneath the mouse cursor:

FileItem rolloverItem;

For better precision, we can also specify the crosshairs cursor inside setup():

 cursor(CROSS);

Minor modifications reset the rolloverItem on each trip through draw(), and draw
the title of the item once all other items have been drawn. The rollover title must be
drawn after everything else; otherwise, it may be covered by items that draw after it
(this was first discussed in Chapter 2):

void draw() {
 background(0);
 textFont(font);

 rolloverItem = null;

 if (rootItem != null) {
 rootItem.draw();
 }
 if (rolloverItem != null) {
 rolloverItem.drawTitle();
 }
}

Finally, the mousePressed() method in the main tab should call the same method
inside FolderItem so that the mouse clicks can be processed:

void mousePressed() {
 if (rootItem != null) {
 rootItem.mousePressed();
 }
}

In the FileItem tab, add a check for the mouse in the draw() method that will set this
item as the rollover when the mouse is inside its drawing area:

 void draw() {
 calcBox();

 fill(255);
 rect(boxLeft, boxTop, boxRight, boxBottom);
 if (textFits()) {

200 | Chapter 7: Trees, Hierarchies, and Recursion

 drawTitle();
 } else if (mouseInside()) {
 rolloverItem = this;
 }
 }

Note that this happens only if textFits() returns false—if it’s already visible,
there’s no need to draw it a second time.

The mouseInside() method checks the mouse position against the coordinates of the
box:

 boolean mouseInside() {
 return (mouseX > boxLeft && mouseX < boxRight &&
 mouseY > boxTop && mouseY < boxBottom);
 }

And the mousePressed() method detects whether the right button was clicked, and if
so, hides this item and its siblings by calling hideContents() on its parent FolderItem:

 boolean mousePressed() {
 if (mouseInside()) {
 if (mouseButton == RIGHT) {
 parent.hideContents();
 return true;
 }
 }
 return false;
 }

The new methods for FolderItem are slightly more complicated. The mousePressed()
method first checks to see whether the folder’s contents are visible. If so, the mouse
press is passed on to each of its child items. If any of those handle the mouse press,
they’ll return true, and the method will return. On the other hand, if the contents are
not visible, then a left mouse click will show them. A right mouse click behaves like a
right-click in a FileItem, which will tell the parent to hide this item and its siblings.

For efficiency, the mousePressed() methods in FileItem and FolderItem return true if
they’ve handled the event. As the tree goes deeper, this will prevent unnecessary
mousePressed() checks.

The methods for showing and hiding the contents simply set a variable, with an
additional check in hideContents() to prevent the user from collapsing the root level:

 void showContents() {
 contentsVisible = true;
 }

 void hideContents() {
 // Prevent the user from closing the root level.
 if (parent != null) {
 contentsVisible = false;
 }
 }

Improving the Treemap Display (Refine) | 201

When contents are visible, it’s also necessary to hide the title of the parent item. To
do so, we override the drawTitle() method inherited from FileItem (remember that
FolderItem extends FileItem, which means that it inherits all of FileItem’s fields and
methods). If the contents are not visible, we call super.drawTitle(), which will run
the version of drawTitle() found in FileItem, which is the superclass.

Figure 7-4 shows the same root folder as Figure 7-3 after clicking a few times to
expand individual folders. The ability to peek inside folders is helpful, but has also
created a problem of how to distinguish boundaries for rectangles. Are we looking at
a folder at the root level or at the contents of a folder? In the next section, we’ll use
color to convey more information about each level and its contents.

Improving the Treemap Display (Refine)
Black and white graphical displays have lost their appeal since 1984, and some color
will give the diagram a bit more interest. More importantly, it will serve as a way to
further differentiate the boxes from one another. Because our visual cognition is
quick to differentiate color, making the boxes into color fields will increase the speed
with which the diagram can be read.

Figure 7-4. Treemap with additional subfolders expanded

202 | Chapter 7: Trees, Hierarchies, and Recursion

With files and folders, we have a difficult dilemma with regard to color. Generally,
it’s not a good idea to use more than five or six colors to differentiate items. To get
more colors, the obvious choice would be to use the hue/saturation/brightness (HSB)
color space, and divide the 360 degrees of the hue color scale into equal increments
for the number of colors that you want. Such a mathematical approach to color is
rarely a good idea, but we’ll make an exception in this case, as we’re only relying on
the colors to offset each field from the other, rather than using them as actual identi-
fiers (e.g., where “dark red” is a signifier for some feature, and a user task might be
looking for other “dark red” items). We’ll also set the saturation and brightness lev-
els in a way that prevents the colors from becoming garish. Set saturation to 80%,
and set brightness, at least initially, to a random number between 20 and 80.

In the FileItem class, two additional fields for color and hue are added:

 color c;
 float hue;
 float brightness;

The updateColors() method sets the color for this item based on its parent item’s
coloring. For the first level, only hue is used. For additional levels, shades of that hue
are used, which will depict two layers of hierarchy quite clearly:

 void updateColors() {
 if (parent != null) {
 hue = map(order, 0, parent.getItemCount(), 0, 360);
 }
 brightness = random(20, 80);

 colorMode(HSB, 360, 100, 100);
 if (parent == rootItem) {
 c = color(hue, 80, 80);
 } else if (parent != null) {
 c = color(parent.hue, 80, brightness);
 }
 colorMode(RGB, 255);
 }

The hue is set by mapping the index of this item (its order) to a value between 0 and
360. The brightness is set to a random value. The c variable stores the color value
for this rectangle so that the colors need not be recalculated on each trip through
draw(). If this is the root item, colors are given a hue and a fixed saturation and
brightness. Subitems will use the random brightness value.

Inside the draw() method of FileItem, fill(255) must be changed to fill(c). And in
drawTitle(), rather than black text (fill(0)), we’ll use fill(255, 200)—which gives
us white plus a little bit of transparency—to prevent too much contrast between the
white text and the colored rectangle beneath it.

The FolderItem class also needs an updateColors() method.

In the main tab, updateColors() needs to be called at the end of the setRoot() method:

Improving the Treemap Display (Refine) | 203

void setRoot(File folder) {
 FolderItem tm = new FolderItem(null, folder, 0, 0);
 tm.setBounds(0, 0, width, height);
 tm.contentsVisible = true;

 rootItem = tm;
 rootItem.updateColors();
}

The setBounds() method has also been modified to use width and height rather than
width-1 and height-1. With the colors, we’ll no longer use a stroke around the items,
so the coordinates needn’t be offset to include the line in the outer edge. At the same
time, use smooth() so that the rectangles line up with one another more accurately:

void setup() {
 size(1024, 768);
 cursor(CROSS);
 rectMode(CORNERS);
 smooth();
 noStroke();

 font = createFont("SansSerif", 13);
 setRoot(new File("/Applications/Processing 0125"));
}

In Figure 7-5, in the upper-lefthand corner, various brightnesses of yellow are found
together. A teal color appears in the upper right, and purple in the lower right. The
colored map does a much better job of grouping subfolders with their parent folders.

Figure 7-5. Relative folder sizes with colors applied (using random brightness values)

204 | Chapter 7: Trees, Hierarchies, and Recursion

Maintaining Context (Refine)
In spite of the previous improvements, much remains to be clarified. Once we’re
inside a folder, there is no indication of the parent folder, which can be disorienting
for viewers. We can’t print the name of the parent folder in the same location
because it would obscure the name of the entry inside. Instead, we can show the
folder name as a band at the top of an item whose contents are visible.

Showing the title bar on all items would begin to make the diagram look messy; a
better option is to show the tag for any folder that 1) the mouse is currently inside
and 2) has contents that are visible. At the same time, we can dim the other folders,
giving a kind of spotlight effect to the folder we’re rolling over. That helps the
display because it further clarifies how elements are grouped together, while also
dimming the colors further to prevent them from being too strong.

The structure closely resembles how rollovers are implemented. In the main tab, first
add a taggedItem variable:

FolderItem taggedItem;

Then, modify draw() to draw the tag after the rest of the drawing has completed:

void draw() {
 background(0);
 textFont(font);

 rolloverItem = null;
 taggedItem = null;

 if (rootItem != null) {
 rootItem.draw();
 }
 if (rolloverItem != null) {
 rolloverItem.drawTitle();
 }
 if (taggedItem != null) {
 taggedItem.drawTag();
 }
}

In the FolderItem class, add a field named darkness to keep track of the fade; the
higher this value, the more the original color is obscured:

 float darkness;

The draw() method handles setting the taggedItem on rollover. When the mouse is
inside the area, the darkness variable is decreased (multiplied by 0.05, a dramatic
decrease in value that means the highlighting effect happens quickly); otherwise, the
darkness is increased by five percent of the distance remaining until 150. To make
the other rectangles dim even more, use a value higher than 150. The darkness value
is used to draw semitransparent black rectangles over any of the rectangles not cur-
rently beneath the mouse, dimming the colors:

Improving the Treemap Display (Refine) | 205

 void draw() {
 checkLayout();
 calcBox();

 if (contentsVisible) {
 for (int i = 0; i < items.length; i++) {
 items[i].draw();
 }
 } else {
 super.draw();
 }

 if (contentsVisible) {
 if (mouseInside()) {
 taggedItem = this;
 }
 }
 if (mouseInside()) {
 darkness *= 0.05;
 } else {
 darkness += (150 - darkness) * 0.05;
 }
 if (parent == rootItem) {
 colorMode(RGB, 255);
 fill(0, darkness);
 rect(boxLeft, boxTop, boxRight, boxBottom);
 }
 }

The drawTag() method handles placement of the tag itself. If the height of the box is
at least twice the height of the tag, the tag is drawn inside the box. Otherwise, if
there’s sufficient room above the box, then the tag is drawn there. Failing those two
cases, the tag is drawn below:

 void drawTag() {
 float boxHeight = textAscent() + textPadding*2;

 if (boxBottom - boxTop > boxHeight*2) {
 // Try to draw the tag inside the box.
 fill(0, 128);
 rect(boxLeft, boxTop, boxRight, boxTop+boxHeight);
 fill(255);
 textAlign(LEFT, TOP);
 text(name, boxLeft+textPadding, boxTop+textPadding);

 } else if (boxTop > boxHeight) {
 // If there's enough room to draw above, draw it there.
 fill(0, 128);
 rect(boxLeft, boxTop-boxHeight, boxRight, boxTop);
 fill(255);
 text(name, boxLeft+textPadding, boxTop-textPadding);

206 | Chapter 7: Trees, Hierarchies, and Recursion

 } else if (boxBottom + boxHeight < height) {
 // Otherwise, draw the tag below.
 fill(0, 128);
 rect(boxLeft, boxBottom, boxRight, boxBottom+boxHeight);
 fill(255);
 textAlign(LEFT, TOP);
 text(name, boxLeft+textPadding, boxBottom+textPadding);
 }
 }

The tag is simply a translucent black (fill(0, 128)) rectangle with the text drawn
above it in white. A tagged version of the reference folder from Figure 7-5 is shown in
Figure 7-6.

Notice how in the previous code, the exception cases (where the box is too small or
placed at an edge) account for the majority of the code, and the majority case takes
just six lines of code. This is the devil in the details—the extra 15% that requires
85% of the work. You’ll run into this any time you try to get things just right; the key
is to be aware of it and prevent it from taking over your code. And it’s not specific to
the visual design aspect of such projects: it’s the same issue that results in the
changes between the original version of the Node class that begins this chapter and
the full version of the code in Example 7-1.

Making Colors More Useful (Mine, Refine)
The random fluctuations of the color brightness for expanded items suggest another
feature for our treemap. The shifting brightness prevents the diagram from looking
too much like a full spectrum scale scientific diagram, the way that many visualiza-
tions using the HSB palette tend to look, but it’s still not enough. Because color is so
prevalent for our visual system, it’s especially important to make sure that color cues
are used in a meaningful manner. In this case, rather than randomly choosing bright-
ness, a better option is to assign brightness based on the date the file was last
modified.

Figure 7-6. Showing the parent folder’s name as a tag

Improving the Treemap Display (Refine) | 207

Modification times of files will follow strange patterns, so it’s important to figure out
a proper means of scaling the brightness levels. Although most of your files may have
been modified within the last few months, some updates may be a few years old,
with some dating to when you first purchased the machine. You might even have a
file that’s 10 years old, something from the archives or a random download from the
Internet.

A linear scale isn’t very useful when considering file times. A logarithmic scale could
be used, but the file distribution is probably not completely logarithmic because
there will be significant spikes for things such as files associated with the operating
system. Windows XP, for instance, has thousands of files marked 5 p.m., August 22,
2001, coinciding with the freeze date for the code (or arbitrarily chosen to mark the
final version of the code).

One option is to put all the file dates and times into an array, sort them, and use
their rank order as a means of showing the relative age of files. You can choose
whether to consider multiple instances of the same time stamp as a single entry, but
for a true percentile, all values should be used. RankedLongArray.pde contains a class
that keeps track of a large array of longs (used to store time values), providing meth-
ods for adding new values, or for getting the percentile of a particular value.

Download this file from http://benfry.com/writing/treemap/RankedLongArray.pde and
drag it into the sketch window to add it. The specifics of this code are not particu-
larly important; suffice it to say that there is an add() method that adds a single long
to the array, and a percentile() method that returns a number between 0 and 1 to
describe the relative location of the number in the list. The number will be used to
determine the brightness value for the item in question.

The search algorithm for the percentile() method grabs the first
value found, which may or may not be the first or last instance of that
particular value in the list. The algorithm is a simple binary search,
which takes a list, splits it in half, and asks the question, “Is the value
in the upper or lower half?” Having determined the answer, it then
repeats the same process on that half. This search method (recursive,
like so many of the concepts in this chapter) is useful for its efficiency.

A single RankedLongArray object will be shared by all items, so the variable is declared
globally at the beginning of the first tab:

RankedLongArray modTimes = new RankedLongArray();

In the FileItem tab, the date is added to the list at the end of the constructor:

 modTimes.add(file.lastModified());

Because the FolderItem subclass inherits this from FileItem, this line will be called
for all FolderItem objects as well.

http://benfry.com/writing/treemap/RankedLongArray.pde

208 | Chapter 7: Trees, Hierarchies, and Recursion

The final change is to alter the line that sets the brightness value inside
updateColors() to use the modTimes object instead of random(). Instead of:

 brightness = random(20, 80);

the percentile() method calculates the location of this file’s modification time
amongst all the modification times in question. The value is multiplied by 100 to
cover the brightness range from 0 to 100:

 brightness = modTimes.percentile(file.lastModified()) * 100;

I’ll skip a figure for this one, as the change in colors (from random to directed by
modification time) isn’t particularly meaningful unless you’re interacting with the
software and are familiar with the files and folders in question.

Flying Through Files (Interact)
Of course, with thousands of files in question, and half a dozen or more layers of
depth, we really want to be able to zoom in to each level to see what’s inside. After
clicking through one or two levels of depth, not only does the display get confusing,
but the individual rectangles become much too small to use.

A treemap representation tends to work best when showing two layers of hierarchy.
Additional layers can become difficult to follow due to space constraints (how to
subdivide while also labeling subdivisions) and visual difficulties (how to differenti-
ate multiple levels of hierarchy shown in the same instance). Rather than trying to
figure out ever more complicated ways to shoehorn multiple layers into the display,
we’re better off simply showing just two layers, and when a user wants to travel past
those two, we can zoom to the next pair of layers that make sense. For instance, the
contents of the reference folder are visible in both Figures 7-5 and 7-6. Once the user
reaches that level, an additional click will zoom just the reference area to fill the
entire screen. Further clicks will open the subfolders of that folder and even zoom to
their contents.

The basic idea behind the zoom is similar to the technique used in Chapter 6. We’ll
use a class called BoundsIntegrator, which essentially combines four Integrator
objects, one each for the x, y, w, and h values to be used for the zoom. The first two
values are the starting point, and the last two are the span to be mapped into. The
class can be downloaded from http://benfry.com/writing/treemap/BoundsIntegrator.
java.

Download this file and use Sketch ➝ Add File, or drag it to the editor window.
Example 7-2 shows the main tab with modifications to support zooming.

http://benfry.com/writing/treemap/BoundsIntegrator.java
http://benfry.com/writing/treemap/BoundsIntegrator.java

Flying Through Files (Interact) | 209

Example 7-2. Main tab of the treemap sketch, modified to include zooming

import treemap.*;

FolderItem rootItem;
FileItem rolloverItem;
FolderItem taggedItem;

BoundsIntegrator zoomBounds;
FolderItem zoomItem;

RankedLongArray modTimes = new RankedLongArray();

PFont font;

void setup() {
 size(1024, 768);
 zoomBounds = new BoundsIntegrator(0, 0, width, height);

 cursor(CROSS);
 rectMode(CORNERS);
 smooth();
 noStroke();

 font = createFont("SansSerif", 13);

 setRoot(new File("/Applications/Processing 0125"));
}

void setRoot(File folder) {
 FolderItem tm = new FolderItem(null, folder, 0, 0);
 tm.setBounds(0, 0, width, height);
 tm.contentsVisible = true;

 rootItem = tm;
 rootItem.zoomIn();
 rootItem.updateColors();
}

void draw() {
 background(0);
 textFont(font);
 frameRate(30);
 zoomBounds.update();

 rolloverItem = null;
 taggedItem = null;

 if (rootItem != null) {
 rootItem.draw();
 }

210 | Chapter 7: Trees, Hierarchies, and Recursion

Calling zoomIn() on rootItem inside setRoot() sets the initial zoomItem as rootItem.
The zooming also expands the use of the rootItem variable. Because some rectangles
will be off screen, mousePressed() need only be called on zoomItem and its
descendants.

Because this is now an animation, it’s necessary to set the frame rate inside draw(),
and call the update() method of zoomBounds, the same way we call the update()
method on Integrator objects in previous projects.

Updating FileItem for zoom
The most important change to the FileItem class is the calcBox() method, which
now calculates the values for boxLeft and the rest using the zoomBounds object. The
mapX() and mapY() methods stretch and squeeze x- and y-coordinates based on the
current values of zoomBounds. The second and third parameters of spanX and spanY
control the range for the outgoing values. Example 7-3 shows the complete function.

 if (rolloverItem != null) {
 rolloverItem.drawTitle();
 }
 if (taggedItem != null) {
 taggedItem.drawTag();
 }
}

void mousePressed() {
 if (zoomItem != null) {
 zoomItem.mousePressed();
 }
}

Example 7-3. Final version of FileItem that supports zooming

class FileItem extends SimpleMapItem {
 FolderItem parent;
 File file;
 String name;
 int level;

 color c;
 float hue;
 float brightness;

 float textPadding = 8;

 float boxLeft, boxTop;
 float boxRight, boxBottom;

Example 7-2. Main tab of the treemap sketch, modified to include zooming (continued)

Flying Through Files (Interact) | 211

 FileItem(FolderItem parent, File file, int level, int order) {
 this.parent = parent;
 this.file = file;
 this.order = order;
 this.level = level;

 name = file.getName();
 size = file.length();

 modTimes.add(file.lastModified());
 }

 void updateColors() {
 if (parent != null) {
 hue = map(order, 0, parent.getItemCount(), 0, 360);
 }
 brightness = modTimes.percentile(file.lastModified()) * 100;

 colorMode(HSB, 360, 100, 100);
 if (parent == zoomItem) {
 c = color(hue, 80, 80);
 } else if (parent != null) {
 c = color(parent.hue, 80, brightness);
 }
 colorMode(RGB, 255);
 }

 void calcBox() {
 boxLeft = zoomBounds.spanX(x, 0, width);
 boxRight = zoomBounds.spanX(x+w, 0, width);
 boxTop = zoomBounds.spanY(y, 0, height);
 boxBottom = zoomBounds.spanY(y+h, 0, height);
 }

 void draw() {
 calcBox();

 fill(c);
 rect(boxLeft, boxTop, boxRight, boxBottom);

 if (textFits()) {
 drawTitle();
 } else if (mouseInside()) {
 rolloverItem = this;
 }
 }

 void drawTitle() {
 fill(255, 200);

Example 7-3. Final version of FileItem that supports zooming (continued)

212 | Chapter 7: Trees, Hierarchies, and Recursion

The drawTitle() method also becomes a little trickier. As items approach the edge,
we’ll want to right-align the text (in fact, this could have been done in previous
steps). However, we don’t want to draw those items if they’re actually off screen,
given the current zoom settings. So, first we check whether the midpoint of the box
is on screen before drawing any title.

 float middleX = (boxLeft + boxRight) / 2;
 float middleY = (boxTop + boxBottom) / 2;
 if (middleX > 0 && middleX < width && middleY > 0 && middleY < height) {
 if (boxLeft + textWidth(name) + textPadding*2 > width) {
 textAlign(RIGHT);
 text(name, width - textPadding, boxBottom - textPadding);
 } else {
 textAlign(LEFT);
 text(name, boxLeft + textPadding, boxBottom - textPadding);
 }
 }
 }

 boolean textFits() {
 float wide = textWidth(name) + textPadding*2;
 float high = textAscent() + textDescent() + textPadding*2;
 return (boxRight - boxLeft > wide) && (boxBottom - boxTop > high);
 }

 boolean mouseInside() {
 return (mouseX > boxLeft && mouseX < boxRight &&
 mouseY > boxTop && mouseY < boxBottom);
 }

 boolean mousePressed() {
 if (mouseInside()) {
 if (mouseButton == LEFT) {
 parent.zoomIn();
 return true;

 } else if (mouseButton == RIGHT) {
 if (parent == zoomItem) {
 parent.zoomOut();
 } else {
 parent.hideContents();
 }
 return true;
 }
 }
 return false;
 }
}

Example 7-3. Final version of FileItem that supports zooming (continued)

Flying Through Files (Interact) | 213

Finally, the mousePressed() method contains enhancements to trigger the zoom.
Clicking a FileItem will zoom the view to dimensions of its parent FolderItem. In the
same manner, a right-click will first hide the contents of the parent item, or call the
zoomOut() method on the parent if the contents are already hidden. Calling zoomOut()
on an item sets its parent, FolderItem, to fill the screen.

Updating FolderItem
The changes to FolderItem are similar to those of FileItem. Most of the changes are
inside mousePressed(), and they handle triggering a zoom when the contents of a
folder are already visible:

class FolderItem extends FileItem implements MapModel {
 MapLayout algorithm = new PivotBySplitSize();
 Mappable[] items;
 boolean contentsVisible;
 boolean layoutValid;
 float darkness;

 public FolderItem(FolderItem parent, File folder, int level, int order) {
 super(parent, folder, level, order);

 String[] contents = folder.list();
 if (contents != null) {
 contents =sort(contents);
 items = new Mappable[contents.length];
 int count = 0;
 for (int i = 0; i < contents.length; i++) {
 if (contents[i].equals(".") || contents[i].equals("..")) {
 continue;
 }
 File fileItem = new File(folder, contents[i]);
 try {
 String absolutePath = fileItem.getAbsolutePath();
 String canonicalPath = fileItem.getCanonicalPath();
 if (!absolutePath.equals(canonicalPath)) {
 continue;
 }
 } catch (IOException e) { }

 FileItem newItem = null;
 if (fileItem.isDirectory()) {
 newItem = new FolderItem(this, fileItem, level+1, count);
 } else {
 newItem = new FileItem(this, fileItem, level+1, count);
 }
 items[count++] = newItem;
 size += newItem.getSize();
 }
 if (count != items.length) {
 items = (Mappable[]) subset(items, 0, count);
 }

214 | Chapter 7: Trees, Hierarchies, and Recursion

 } else {
 // If no items found in this folder, create a dummy array so that
 // items will not be null, which will ensure that items.length will
 // return 0 rather than causing a NullPointerException.
 items = new Mappable[0];
 }
 }

 void updateColors() {
 super.updateColors();

 for (int i = 0; i < items.length; i++) {
 FileItem fi = (FileItem) items[i];
 fi.updateColors();
 }
 }

 void checkLayout() {
 if (!layoutValid) {
 if (getItemCount() != 0) {
 algorithm.layout(this, bounds);
 }
 layoutValid = true;
 }
 }

 boolean mousePressed() {
 if (mouseInside()) {
 if (contentsVisible) {
 // Pass the mouse press to the child items.
 for (int i = 0; i < items.length; i++) {
 FileItem fi = (FileItem) items[i];
 if (fi.mousePressed()) {
 return true;
 }
 }
 } else { // not opened
 if (mouseButton == LEFT) {
 if (parent == zoomItem) {
 showContents();
 } else {
 parent.zoomIn();
 }
 } else if (mouseButton == RIGHT) {
 if (parent == zoomItem) {
 parent.zoomOut();
 } else {
 parent.hideContents();
 }
 }

Flying Through Files (Interact) | 215

 return true;
 }
 }
 return false;
 }

 // Zoom to the parent's boundary, zooming out from this item.
 void zoomOut() {
 if (parent != null) {
 // Close contents of any opened children.
 for (int i = 0; i < items.length; i++) {
 if (items[i] instanceof FolderItem) {
 ((FolderItem)items[i]).hideContents();
 }
 }
 parent.zoomIn();
 }
 }

 void zoomIn() {
 zoomItem = this;
 zoomBounds.target(x, y, w, h);
 }

 void showContents() {
 contentsVisible = true;
 }

 void hideContents() {
 // Prevent the user from closing the root level.
 if (parent != null) {
 contentsVisible = false;
 }
 }

 void draw() {
 checkLayout();
 calcBox();

 if (contentsVisible) {
 for (int i = 0; i < items.length; i++) {
 items[i].draw();
 }
 } else {
 super.draw();
 }

 if (contentsVisible) {
 if (mouseInside()) {

216 | Chapter 7: Trees, Hierarchies, and Recursion

 if (parent == zoomItem) {
 taggedItem = this;
 }
 }
 }
 if (mouseInside()) {
 darkness *= 0.05;
 } else {
 darkness += (150 - darkness) * 0.05;
 }
 if (parent == zoomItem) {
 colorMode(RGB, 255);
 fill(0, darkness);
 rect(boxLeft, boxTop, boxRight, boxBottom);
 }
 }

 void drawTitle() {
 if (!contentsVisible) {
 super.drawTitle();
 }
 }

 void drawTag() {
 float boxHeight = textAscent() + textPadding*2;

 if (boxBottom - boxTop > boxHeight*2) {
 // If the height of the box is at least twice the height of the tag,
 // draw the tag inside the box itself.
 fill(0, 128);
 rect(boxLeft, boxTop, boxRight, boxTop+boxHeight);
 fill(255);
 textAlign(LEFT, TOP);
 text(name, boxLeft+textPadding, boxTop+textPadding);

 } else if (boxTop > boxHeight) {
 // If there's enough room to draw above, draw it there.
 fill(0, 128);
 rect(boxLeft, boxTop-boxHeight, boxRight, boxTop);
 fill(255);
 text(name, boxLeft+textPadding, boxTop-textPadding);

 } else if (boxBottom + boxHeight < height) {
 // Otherwise, draw the tag below.
 fill(0, 128);
 rect(boxLeft, boxBottom, boxRight, boxBottom+boxHeight);
 fill(255);
 textAlign(LEFT, TOP);
 text(name, boxLeft+textPadding, boxBottom+textPadding);
 }
 }

Flying Through Files (Interact) | 217

 Mappable[] getItems() {
 return items;
 }

 int getItemCount() {
 return items.length;
 }
}

Figure 7-7 shows the reference section zoomed as well as the contents of another sub-
item (libraries).

Adding a Folder Selection Dialog (Interact)
Now that we’ve implemented selecting, showing, and hiding, as well as support for
zooming, the display phase of this project is complete. At this stage, a dialog box to
select a folder would be a big help for anyone using the application. For this, we turn
to Java’s Swing UI Toolkit. The following method will open a folder chooser dialog
and, if the user clicks OK, pass the selected folder to setRoot():

Figure 7-7. Result of zooming the reference folder to full screen

218 | Chapter 7: Trees, Hierarchies, and Recursion

void selectRoot() {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 JFileChooser fc = new JFileChooser();
 fc.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);
 fc.setDialogTitle("Choose a folder to browse...");

 int returned = fc.showOpenDialog(frame);
 if (returned == JFileChooser.APPROVE_OPTION) {
 File file = fc.getSelectedFile();
 setRoot(file);
 }
 }
 });
}

By replacing the setRoot() line in setup() with selectRoot(), the program will begin
by opening the prompt to allow the user to select a file.

The core of the selectRoot() method is the following:

JFileChooser fc = new JFileChooser();
fc.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);
fc.setDialogTitle("Choose a folder to browse...");

int returned = fc.showOpenDialog(frame);
if (returned == JFileChooser.APPROVE_OPTION) {
 File file = fc.getSelectedFile();
 setRoot(file);
 }

However, to prevent threading issues with Swing, the invokeLater() method is used,
which runs the code on a separate thread. The thread is created inline by wrapping
the core code in a Runnable (the way you would with any other thread; see the
Slurper object in Chapter 6). Essentially the syntax is shorthand for the following:

void selectRoot() {
 Runnable ct = new ChooserThread();
 SwingUtilities.invokeLater(ct);
}

class ChooserThread implements Runnable {
 public void run() {
 JFileChooser fc = new JFileChooser();
 fc.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);
 fc.setDialogTitle("Choose a folder to browse...");
 int returned = fc.showOpenDialog(frame);
 if (returned == JFileChooser.APPROVE_OPTION) {
 File file = fc.getSelectedFile();
 setRoot(file);
 }
 }
}

Next Steps | 219

Next Steps
If you tried this example with a large folder, you probably noticed how the UI locks
up until files have finished reading. Implementing the queuing mechanism (with
progress bar), described in the earlier part of the chapter, will provide a much better
user experience, but I’ll leave that as an exercise for the reader.

Showing relative folder sizes is a useful example, but perhaps less engaging than a
more sophisticated project. Using the methods in this chapter, you can adapt the
treemap code to any data set you wish, whether a single-level data set like the Mark
Twain example or one with several levels of hierarchy with zooming control.

220

Chapter 8CHAPTER 8

Networks and Graphs 8

A graph is a collection of elements, usually called nodes, linked together by edges
(sometimes called branches). It is a common structure for mapping connections of
many related elements. This is partly because the visual representation of a network
shows the sort of connectedness that makes sense to someone familiar with the data,
whether as a free-form map of associations written out on paper (sometimes called a
mind map) or, in computer science, as a visual analogue to a common data model for
connections between many elements.

Graphs are very popular nowadays, but they’re often not as informative as other
more specific ways to represent the connections between items of data. This chapter
shows a graph that works for the data in question and another that doesn’t. This will
help us explore the strengths and weaknesses of graphs and learn how to make them
useful.

Along the way, we’ll examine the general problem of dealing with quantities of data
too large to show meaningfully. We’ll use a lot of mining, filtering, and interaction to
bring out the meaning in a large data set.

This chapter also takes you out of the comfortable but limited Processing IDE used
in previous chapters, and shows you how to integrate the Processing libraries with
Eclipse or another Java environment of your choice.

Before getting too deep into the theory of graphs, let’s start with a simple example
that will help illustrate some of the successes and difficulties of representing inter-
connected data.

Simple Graph Demo
Distributions of Java since 1.0 have included a demonstration applet named
GraphLayout. The applet is a good starting point for learning about graph drawing
methods. The example and its source code can be found online at http://java.sun.
com/applets/jdk/1.4/demo/applets/GraphLayout/example1.html.

http://java.sun.com/applets/jdk/1.4/demo/applets/GraphLayout/example1.html
http://java.sun.com/applets/jdk/1.4/demo/applets/GraphLayout/example1.html

Simple Graph Demo | 221

The demo is shown in Figure 8-1.

We’ll start by making a version of this code that uses Processing syntax, and later
expand on the code to make the finished result more interesting.

Porting from Java to Processing
One advantage of the move to Processing syntax is that we can hide most of the
details of event handling, threading, and double buffering; all of these are handled
automatically by Processing. As a result, much of the original code can be removed,
simplifying the example considerably. The original code is a single .java file that con-
tains four classes:

Node
Contains information for a single node of data

Edge
Describes a connection between two nodes, and its length

GraphPanel
The drawing surface that does most of the work

Graph
The base Applet object that handles loading a data set and starting a thread

Figure 8-1. The original Java GraphLayout demo

222 | Chapter 8: Networks and Graphs

In the Processing version, GraphPanel and Graph are merged into a single class that
will be the main tab of a new sketch. Make additional tabs for the Node and Edge
classes. The code in the main panel begins with a pair of arrays, one that stores Node
objects and another that stores Edges:

int nodeCount;
Node[] nodes = new Node[100];
HashMap nodeTable = new HashMap();

int edgeCount;
Edge[] edges = new Edge[500];

Next are some constants for the colors:

static final color nodeColor = #F0C070;
static final color selectColor = #FF3030;
static final color fixedColor = #FF8080;
static final color edgeColor = #000000;

The nodeColor is the yellow background for the box around each node. Clicking a
node will fix it in place and change its color to fixedColor. If a node is being dragged,
selectColor will be used. The edgeColor will be used to draw edges as a line between
two nodes.

The setup() method creates the structure that will be used later for drawing, but
does nothing related to the node layout on the screen; that will be handled later by
the draw() method. setup() creates various parts of the structure with the assistance
of a few other functions: addEdge(), findNode(), and addNode().

The setup() code sets the size, calls the loadData() method, and creates a font for
later use:

PFont font;

void setup() {
 size(600, 600);
 loadData();
 font = createFont("SansSerif", 10);
 textFont(font);
 smooth();
}

void loadData() {
 addEdge("joe", "food");
 addEdge("joe", "dog");
 addEdge("joe", "tea");
 addEdge("joe", "cat");
 addEdge("joe", "table");
 addEdge("table", "plate");
 addEdge("plate", "food");
 addEdge("food", "mouse");
 addEdge("food", "dog");
 addEdge("mouse", "cat");

Simple Graph Demo | 223

 addEdge("table", "cup");
 addEdge("cup", "tea");
 addEdge("dog", "cat");
 addEdge("cup", "spoon");
 addEdges("plate", "fork");
 addEdge("dog", "flea1");
 addEdge("dog", "flea2");
 addEdge("flea1", "flea2");
 addEdge("plate", "knife");
}

Adding an edge is a matter of finding each node by its name, and creating a node if it
doesn’t exist. Once both are found, a new Edge object is created and added to the
edges array. If the array is full, it is first expanded:

void addEdge(String fromLabel, String toLabel) {
 Node from = findNode(fromLabel);
 Node to = findNode(toLabel);
 Edge e = new Edge(from, to);
 if (edgeCount == edges.length) {
 edges = (Edge[]) expand(edges);
 }
 edges[edgeCount++] = e;
}

We use expand() instead of Java’s ArrayList or Vector classes because arrays are
more runtime speed-efficient. This becomes especially important when dealing with
thousands of nodes. The findNode() function uses a HashMap to efficiently look up a
node based on its label. If none is found, addNode() is called:

Node findNode(String label) {
 label = label.toLowerCase();
 Node n = (Node) nodeTable.get(label);
 if (n == null) {
 return addNode(label);
 }
 return n;
}

The addNode() method is much like addEdge(), but also puts the node into the
nodeTable so that it can be retrieved by name:

Node addNode(String label) {
 Node n = new Node(label);
 if (nodeCount == nodes.length) {
 nodes = (Node[]) expand(nodes);
 }
 nodeTable.put(label, n);
 nodes[nodeCount++] = n;
 return n;
}

We are now ready to deal with screen layout. The draw() method for this sketch iter-
ates through each of the edges and nodes, calling relax(), update(), and draw()
methods of Edge and Node along the way.

224 | Chapter 8: Networks and Graphs

The relax() methods calculate the placement of each node and lengths for each
edge. This is handled by a kind of toy physics simulation, known as force-directed
layout, which reaches an optimal layout through a series of calculations. In a force-
directed layout, edges act like springs that have a target length (also called their rest
length). At each step, each Edge tries to get its length a little closer to its target length.
Because several edges are interconnected, the elements push and pull on one
another. Over time, the lengths reconcile to a best-possible fit (though there may still
be a bit of wiggle, particularly with the algorithm used here). The process of apply-
ing the forces is called relaxation.

In the original code, a single relax() function calculates the edge lengths and the
node movement, and then updates the node locations. In the Processing version, that
large relax function is broken into separate methods in both Edge and Node, which are
called in turn from draw(). The edges are drawn before the nodes so that the lines for
the edges draw behind the node labels rather than through them:

void draw() {
 background(255);

 for (int i = 0 ; i < edgeCount ; i++) {
 edges[i].relax();
 }
 for (int i = 0; i < nodeCount; i++) {
 nodes[i].relax();
 }
 for (int i = 0; i < nodeCount; i++) {
 nodes[i].update();
 }
 for (int i = 0 ; i < edgeCount ; i++) {
 edges[i].draw();
 }
 for (int i = 0 ; i < nodeCount ; i++) {
 nodes[i].draw();
 }
}

Interacting with Nodes
Of course, we want to be able to interact with the data and drag nodes around, so a
few more methods cover using the mouse to manipulate the nodes. The selection
variable is used to store a current selection. The mousePressed() method behaves
similarly to mouse methods used elsewhere in the book (see the section “Provide
More Information with a Mouse Rollover (Interact)” in Chapter 3). The left mouse
button fixes a node in place, while the right mouse button sets it free again. Drag-
ging the mouse offsets the location of the currently selected node, and releasing the
mouse nullifies the selection:

Node selection;

void mousePressed() {

Simple Graph Demo | 225

 // Ignore anything greater than this distance.
 float closest = 20;
 for (int i = 0; i < nodeCount; i++) {
 Node n = nodes[i];
 float d = dist(mouseX, mouseY, n.x, n.y);
 if (d < closest) {
 selection = n;
 closest = d;
 }
 }
 if (selection != null) {
 if (mouseButton == LEFT) {
 selection.fixed = true;
 } else if (mouseButton == RIGHT) {
 selection.fixed = false;
 }
 }
}

void mouseDragged() {
 if (selection != null) {
 selection.x = mouseX;
 selection.y = mouseY;
 }
}

void mouseReleased() {
 selection = null;
}

The Edge object has fields for the two nodes it connects and a target length. The
relax() method is the portion of the method from the original source that covers
relaxation of a single edge. It calculates a portion of offset that will move the edge
closer to its target length (len). The draw() method sets the stroke color and draws a
line between the two node locations:

class Edge {
 Node from;
 Node to;
 float len;

 Edge(Node from, Node to) {
 this.from = from;
 this.to = to;
 this.len = 50;
 }

 void relax() {
 float vx = to.x - from.x;
 float vy = to.y - from.y;
 float d = mag(vx, vy);
 if (d > 0) {
 float f = (len - d) / (d * 3);
 float dx = f * vx;

226 | Chapter 8: Networks and Graphs

 float dy = f * vy;
 to.dx += dx;
 to.dy += dy;
 from.dx -= dx;
 from.dy -= dy;
 }
 }

 void draw() {
 stroke(edgeColor);
 strokeWeight(0.35);
 line(from.x, from.y, to.x, to.y);
 }
}

We won’t get into the specifics of the relaxation algorithm because
they get complicated quickly and don’t offer much insight in the con-
text of a book on visualization. If you find this sort of thing interest-
ing, do a search for force-directed graph layout algorithms. General
background about using physical simulations to calculate forces that
handle movement and placement can be found in O’Reilly’s Physics
for Game Developers by David Bourg. His article on the O’Reilly Net-
work is also a helpful start; see http://www.linuxdevcenter.com/pub/a/
linux/2001/11/01/physics.html.

Moving this code into the class prevents extra dereferencing. For instance, the portion
of the relax() method from the original example that deals with edges is shown here:

// Part of the relax() method in the original Graph.java example source
for (int i = 0 ; i < nedges ; i++) {
 Edge e = edges[i];
 double vx = nodes[e.to].x - nodes[e.from].x;
 double vy = nodes[e.to].y - nodes[e.from].y;
 double len = Math.sqrt(vx * vx + vy * vy);
 double f = (edges[i].len - len) / (len * 3) ;
 double dx = f * vx;
 double dy = f * vy;

 nodes[e.to].dx += dx;
 nodes[e.to].dy += dy;
 nodes[e.from].dx += -dx;
 nodes[e.from].dy += -dy;
}

Rather than use syntax like nodes[e.to].x that has several levels of indirection, in the
Processing sketch, we’ll simply use to.x to express the same thing. That is because of
two factors. First, the relax() code is now a method of the class Node, so e is not
needed as a prefix. Second, by changing from and to into Node objects rather than
integer arrays that point to an index in the global nodes list, the array index (and
reference to the nodes array) is no longer necessary. Clear and concise code is easier
to read and debug, so hopefully fewer errors are introduced.

http://www.linuxdevcenter.com/pub/a/linux/2001/11/01/physics.html
http://www.linuxdevcenter.com/pub/a/linux/2001/11/01/physics.html

Simple Graph Demo | 227

The changes also make use of another math function named mag(). This function is
used to calculate the magnitude of a vector. In linear algebra and computer graphics,
a vector refers to a direction in xy or xyz space. The magnitude of a vector is the dis-
tance between the coordinate (0, 0) and the vector’s (x, y) coordinates. That is,
mag(x, y) is equivalent to dist(0, 0, x, y), though mag() is more efficient.

The code for the Node class is similar, with a constructor that sets the value for label
(the text shown when the node is drawn) and chooses random values for x and y.
The relax() method is the re-coded version of the second third of the original
relax() method. This method compares this node against all the others to make sure
none are too close to one another. If they are, a slight offset (dx and dy) is added.

The update() method is the final portion of the Node class, where the position of the
node is actually updated by constraining dx and dy so that they don’t exceed five pix-
els in either direction and then adding that value to x and y. The x and y coordinates
are also constrained to make sure they stay within the drawing area:

class Node {
 float x, y;
 float dx, dy;
 boolean fixed;
 String label;

 Node(String label) {
 this.label = label;
 x = random(width);
 y = random(height);
 }

 void relax() {
 float ddx = 0;
 float ddy = 0;

 for (int j = 0; j < nodeCount; j++) {
 Node n = nodes[j];
 if (n != this) {
 float vx = x - n.x;
 float vy = y - n.y;
 float lensq = vx * vx + vy * vy;
 if (lensq == 0) {
 ddx += random(1);
 ddy += random(1);
 } else if (lensq < 100*100) {
 ddx += vx / lensq;
 ddy += vy / lensq;
 }
 }
 }
 float dlen = mag(ddx, ddy) / 2;
 if (dlen > 0) {

228 | Chapter 8: Networks and Graphs

 dx += ddx / dlen;
 dy += ddy / dlen;
 }
 }

 void update() {
 if (!fixed) {
 x += constrain(dx, -5, 5);
 y += constrain(dy, -5, 5);

 x = constrain(x, 0, width);
 y = constrain(y, 0, height);
 }
 dx /= 2;
 dy /= 2;
 }

 void draw() {
 if (selection == this) {
 fill(selectColor);
 } else if (fixed) {
 fill(fixedColor);
 } else {
 fill(nodeColor);
 }

 stroke(0);
 strokeWeight(0.5);

 rectMode(CORNER);
 float w = textWidth(label) + 10;
 float h = textAscent() + textDescent() + 4;
 rect(x - w/2, y - h/2, w, h);

 fill(0);
 textAlign(CENTER, CENTER);
 text(label, x, y);
 }
}

The draw() method here is a little more complicated than the draw() method found
inside Edge. The fill color is set based on whether the node is selected, fixed, or nei-
ther. In keeping with the original design, a black frame is also drawn around the box
with stroke(0), though strokeWeight(0.5) keeps the lines from being too thick. The
w and h values calculate the width and height of the box based on the width of the
text (plus a 10-pixel margin, 5 pixels for each side) and the height of the text (plus a
4-pixel margin). A rectangle centered at the node’s location is drawn to these
specifications. Finally, the node’s label is drawn (in black), centered both horizon-
tally and vertically at the node’s x and y location.

A More Complicated Graph | 229

The result is shown in Figure 8-2.

A More Complicated Graph
Two dozen nodes in a simple graph is far smaller than most data sets, so we’ll try
something more complicated. The loadData() method can be replaced to load any-
thing you like. In this case, we’ll load the first chapter of Mark Twain’s Huckleberry
Finn, using the words as nodes, and draw edges between words found adjacent to
one another.

Using Text As Input (Acquire)
The full text of the book can be downloaded online from Project Gutenberg. The
first five chapters can be found at http://www.gutenberg.org/etext/7100. This code
uses the text of the first chapter, which can be downloaded from the book’s site at:

http://benfry.com/writing/graphlayout/huckfinn.txt.

Download this file and add it to the sketch by dragging it into the window, or by
using Sketch ➝ Add File.

Reading a Book (Parse)
The new loadData() method reads the lines of text, breaks them into phrases, and
then breaks the phrases into pairs of adjacent words. Phrases can be marked by a
period, a comma, or several other kinds of punctuation. The splitTokens() method
is useful for splitting a String along one of many delimiters. The second parameter is
the set of possible delimiters, each a single character. Multiple delimiters in the
source String will be treated as a single break. Because each delimiter can be only a
single character, double dashes (--) are first converted to an actual em dash (—)
using the replaceAll() method of the String class:

void loadData() {
 String[] lines = loadStrings("huckfinn.txt");

Figure 8-2. Processing version of the Java demo shown in Figure 8-1

http://www.gutenberg.org/etext/7100
http://benfry.com/writing/graphlayout/huckfinn.txt

230 | Chapter 8: Networks and Graphs

 // Make the text into a single String object.
 String line = join(lines, " ");
 // Replace -- with an actual em dash.
 line = line.replaceAll("--", "\u2014");

 // Split into phrases using any of the provided tokens.
 String[] phrases = splitTokens(line, ".,;:?!\u2014\"");
 for (int i = 0; i < phrases.length; i++) {
 // Make this phrase lowercase.
 String phrase = phrases[i].toLowerCase();
 // Split each phrase into individual words at one or more spaces.
 String[] words = splitTokens(phrase, " ");
 for (int w = 0; w < words.length-1; w++) {
 addEdge(words[w], words[w+1]);
 }
 }
}

To see the phrases, add println(phrases) after the first splitTokens() line. A por-
tion of the output follows:

[13] " Aunt Polly"
[14] "Tom's Aunt Polly"
[15] " she is"
[16] "and Mary"
[17] " and the Widow Douglas is all told about in that book"
[18] " which is mostly a true book"
[19] " with some stretchers"
[20] " as I said before"

The source text for these phrases reads:

Aunt Polly--Tom's Aunt Polly, she is--and Mary, and the Widow Douglas is all told
about in that book, which is mostly a true book, with some stretchers, as I said
before.

After the text has been broken into phrases, converting the phrases to words is a
matter of splitting each phrase whenever one or more spaces occurs. This is handled
by the second splitTokens(), which uses only the space character as a delimiter.

Printing the split version of phrase 18 with println(splitTokens(phrases[18], " "))
produces the following:

[0] "which"
[1] "is"
[2] "mostly"
[3] "a"
[4] "true"
[5] "book"

Note how the extra spaces have been removed from the beginning of the line. All
extra spaces are removed automatically because they’re treated as part of the set of
delimiters. This is different from the split() function used in other chapters. The
split() method makes a break whenever a delimiter is seen, so a pair of spaces next

A More Complicated Graph | 231

to one another would instead produce an empty element in the array. This can be
seen by adding println(split(phrases[18], ' ')), which produces:

[0] ""
[1] "which"
[2] "is"
[3] "mostly"
[4] "a"
[5] "true"
[6] "book"

The split() method is useful when breaking up fixed-width data (such as a TSV
file), whereas splitTokens() is helpful when dealing with a messier range of delimit-
ers, such as the text in this example.

Removing Stop Words (Filter)
In text analysis, a number of English words are commonly ignored because they con-
vey little information. The words (called stop words) include, among others, “and,”
“of,” and “to.” A slight modification to the addEdge() function checks whether a
word belonging to a modest set of eight stop words should be ignored before adding
an edge. The ignoreWord() method uses an array of Strings, but it could also be
modified to use a HashMap for greater efficiency, particularly if more stop words are
used. Keep in mind that this is not an exhaustive list of stop words. You may be able
to find more suitable lists and better filtering methods online.

void addEdge(String fromLabel, String toLabel) {
 // Filter out unnecessary words.
 if (ignoreWord(fromLabel) || ignoreWord(toLabel)) return;

 Node from = findNode(fromLabel);
 Node to = findNode(toLabel);
 Edge e = new Edge(from, to);
 if (edgeCount == edges.length) {
 edges = (Edge[]) expand(edges);
 }
 edges[edgeCount++] = e;
}

String[] ignore = { "a", "of", "the", "i", "it", "you", "and", "to" };

boolean ignoreWord(String what) {
 for (int i = 0; i < ignore.length; i++) {
 if (what.equals(ignore[i])) {
 return true;
 }
 }
 return false;
}

232 | Chapter 8: Networks and Graphs

Smarter Addition of Nodes and Edges (Mine)
In the current version of this example, the same branch can be added more than once.
A better model is to represent each relationship between two words only once, but to
put words closer together in the graph if they appear in sequence more often in the
text. Our next step in the implementation searches out duplicate edges and increments
a score each time they’re found. This can then be used to shorten the length of the edge
so that the nodes it connects—which are presumably more related—will be drawn
closer together. Similarly, nodes have an internal counter for the number of times they
appear. That is done by adding a count field to both the Edge and Node classes, as well
as an increment() method that increments the count by one:

// Add this code to both the Edge and Node classes.

int count;

void increment() {
 count++;
}

A new version of the addEdge() method seeks out existing edges and increments their
count variables. Each Node will also be incremented when it is found in the original
text.

void addEdge(String fromLabel, String toLabel) {
 // Filter out unnecessary words.
 if (ignoreWord(fromLabel) || ignoreWord(toLabel)) return;

 Node from = findNode(fromLabel);
 Node to = findNode(toLabel);
 from.increment();
 to.increment();

 // Check to see whether this Edge already exists.
 for (int i = 0; i < edgeCount; i++) {
 if (edges[i].from == from && edges[i].to == to) {
 edges[i].increment();
 return;
 }
 }

 Edge e = new Edge(from, to);
 e.increment();
 if (edgeCount == edges.length) {
 edges = (Edge[]) expand(edges);
 }
 edges[edgeCount++] = e;
}

A More Complicated Graph | 233

Viewing the Book (Represent and Refine)
Running the program in its current state produces, perhaps predictably, a mess; see
Figure 8-3.

Clearly, this representation in its current form is overburdened, with just under 400
nodes and 600 edges. Because the text of the individual nodes is unreadable, it would
be better to hide it anyway. This version of the draw() method inside the Node draws
ellipses at each point:

 void draw() {
 fill(nodeColor);
 stroke(0);
 strokeWeight(0.5);
 ellipse(x, y, 6, 6);
 }

This produces Figure 8-4.

Figure 8-3. This representation of 377 nodes and 589 edges needs refinement

234 | Chapter 8: Networks and Graphs

The image created at least begins to be comprehensible, though still messy. Of
course, with the labels missing, we no longer know what data we’re looking at. To
rectify the situation, we can switch back to the previous representation for nodes that
are in a fixed position (those that have been clicked or dragged):

 void draw() {
 if (fixed) {
 fill(nodeColor);
 stroke(0);
 strokeWeight(0.5);

 rectMode(CORNER);
 float w = textWidth(label) + 10;
 float h = textAscent() + textDescent() + 4;
 rect(x - w/2, y - h/2, w, h);

 fill(0);

Figure 8-4. Nodes as ellipses

A More Complicated Graph | 235

 textAlign(CENTER, CENTER);
 text(label, x, y);

 } else {
 fill(nodeColor);
 stroke(0);
 strokeWeight(0.5);
 ellipse(x, y, 6, 6);
 }
 }

As Figure 8-5 shows, this improves things a bit.

This representation is still unsatisfactory because it lacks hierarchy. It’s a twisty mess
of 400 ellipses and lines between them, with no indication of the relative importance
of nodes. Instead of drawing each ellipse with a radius of 6, the count field can be
used to size the ellipses to show the relative importance of each node. Also, rather
than only showing text on rollover, titles of nodes will be visible whenever the text is

Figure 8-5. Showing node labels when manipulated by the mouse

236 | Chapter 8: Networks and Graphs

large enough to fit (whenever count, the diameter of the ellipse, is larger than
textWidth(label)). Figure 8-6 shows this version of the code after a few nodes have
been dragged to fixed positions for better visibility.

Saving an Image in a Vector Format
With complicated diagrams such as this one, it’s often preferable to create a version of
the image in a vector format such as PDF. Vector images can be resized without loss of
resolution, making them more suitable for printing or other high-resolution work.
With the help of the PDF library included with Processing, the beginRecord() and
endRecord() methods can be used to echo all drawing to a PDF file. A modified ver-
sion of the main draw() method (and a keyPressed() method to trigger it) follows:

void draw() {
 if (record) {
 beginRecord(PDF, "output.pdf");
 }

Figure 8-6. Nodes sized based on their frequency

A More Complicated Graph | 237

 background(255);
 textFont(font);
 smooth();

 for (int i = 0 ; i < edgeCount ; i++) {
 edges[i].relax();
 }
 for (int i = 0; i < nodeCount; i++) {
 nodes[i].relax();
 }
 for (int i = 0; i < nodeCount; i++) {
 nodes[i].update();
 }
 for (int i = 0 ; i < edgeCount ; i++) {
 edges[i].draw();
 }
 for (int i = 0 ; i < nodeCount ; i++) {
 nodes[i].draw();
 }

 if (record) {
 endRecord();
 record = false;
 }
}

boolean record;

void keyPressed() {
 if (key == 'r') {
 record = true;
 }
}

In this example, pressing r triggers the keyPressed() method, which sets the record
flag so that in the next trip through draw(), all drawing commands are echoed to a
PDF file. Note that the beginRecord() method is placed at the very beginning of
draw(), and endRecord() is at the end. The final step must be to set the record flag to
false so that the draw() method doesn’t waste resources recording to the file over
and over each time it runs.

The textFont() and smooth() methods were moved to draw() instead of setup().
When using beginRecord(), none of the settings (such as font, stroke weight, fill, or
smoothing) will be inherited—only commands after beginRecord() are echoed to the
file.

The beginRecord() method is quite versatile. It’s also possible to use
beginRecord("filename-####.pdf"), which will automatically replace #### with the
current frame number so that multiple files can be recorded. You can also use
beginRecord() to write to other formats using other libraries; see http://processing.
org/reference/libraries for examples that handle writing SVG format and others.

http://processing.org/reference/libraries
http://processing.org/reference/libraries

238 | Chapter 8: Networks and Graphs

Checking Our Work
When run, this sketch first shows a jumble of nodes and edges placed randomly,
most of which group toward the center over time. Except for any notes the user may
drag to corners of the display, the representation is impossible to read. This is partly
because this particular graph layout algorithm is not perfect, but it also has to do
with the data itself. There are simply too many connections in the information.

To check our work, we turn to the widely used tool Graphviz: http://www.graphviz.
org. Graphviz is free to download and open source. It combines several graph
drawing methods into a single software package. If you’re using Mac OS X, a very
nice version with a terrific UI is available from http://www.pixelglow.com/graphviz.
Graphviz can take information for an enormous network and create an image of all
the interconnections using one of a handful of layout methods.

One advantage of Graphviz is “dot,” its simple text-based file format. The following
is the directed graph from the original Java demo in dot syntax:

digraph {
 joe -> food;
 joe -> dog;
 joe -> tea;
 joe -> cat;
 joe -> table;
 table -> plate;
 plate -> food;
 food -> mouse;
 food -> dog;
 mouse -> cat;
 table -> cup;
 cup -> tea;
 dog -> cat;
 cup -> spoon;
 plate -> fork;
 dog -> flea1;
 dog -> flea2;
 flea1 -> flea2;
 plate -> knife;
}

The digraph specifier means that it’s a directed graph, meaning that nodes are not
simply connected but have a direction. For an undirected graph, graph is used
instead of digraph, and -- is used to connect nodes instead of the -> syntax.

The first chapter of Huck Finn can be written to a .dot file, after our original pro-
gram has put it into our node and edge structure in the setup() method, with the fol-
lowing method:

http://www.graphviz.org
http://www.graphviz.org
http://www.pixelglow.com/graphviz

A More Complicated Graph | 239

void writeData() {
 PrintWriter writer = createWriter("huckfinn.dot");
 writer.println("digraph output {");
 for (int i = 0; i < edgeCount; i++) {
 String from = edges[i].from.label;
 String to = edges[i].to.label;
 writer.println(TAB + from + " -> " + to + ";");
 }
 writer.println("}");
 writer.flush();
 writer.close();
}

Add a call to writeData() to the end of setup(), run the code, and then use Show
Sketch Folder to find huckfinn.dot. Running Graphviz on this file using the default
settings (Hierarchical layout) produces Figure 8-7.

The Energy Minimized option is a layout method closer to the algorithm used in our
sketch, which produces Figure 8-8.

It looks a little better than our sketch, but not by much. At this point, it’s useful to
take a step back and reconsider our approach.

Figure 8-7. Output of Huck Finn using Graphviz in Hierarchical layout mode

240 | Chapter 8: Networks and Graphs

Approaching Network Problems
Usually a graph layout isn’t the best option for data sets larger than a few dozen nodes.
You’re most likely to wind up with enormous spider webs or balls of string, and the
mess seen so far is more often the case than not. Graphs can be a powerful way to rep-
resent relationships between data, but they are also a very abstract concept, which
means that they run the danger of meaning something only to the creator of the graph.
Often, simply showing the structure of the data says very little about what it actually
means, even though it’s a perfectly accurate means of representing the data. Every-
thing looks like a graph, but almost nothing should ever be drawn as one.

Figure 8-8. Graphviz using an Energy Minimized layout on Huck Finn

Approaching Network Problems | 241

When dealing with data where items are arbitrarily linked to other items, don’t auto-
matically choose to graph it. There is a tendency when using graphs to become smit-
ten with one’s own data. Even though a graph of a few hundred nodes quickly
becomes unreadable, it is often satisfying for the creator because the resulting figure
is elegant and complex and may be subjectively beautiful, and the notion that the
creator’s data is “complex” fits just fine with the creator’s own interpretation of it.
Graphs have a tendency of making a data set look sophisticated and important, with-
out having solved the problem of enlightening the viewer.

Here are some techniques for coping with graph data:

• As with all of the projects in the book, always return to your original question.
We didn’t have much of a plan for looking at the Huck Finn words, and as a
result, didn’t get much out of it. But if we had something more specific in mind,
such as, “How often does the word she appear, and in what context?,” we could
have answered that question more clearly.

• Consider the representation. Just as important, by narrowing down the ques-
tion, it may turn out that a graph representation is not the best route. What is
the minimum amount of information that can be used to convey your purpose?
Could the same information be shown with a table? Given the problems with
graphs, finding an alternate view is often helpful.

• What’s interesting about this data? A graph that depicts biological data might
look just like a graph of a social network. This isn’t a positive thing because all
that’s been depicted is the structural quality (the fact that the data set is a net-
work), not what’s interesting and unique in the information.

• Try multiple diagrams. Rather than trying to pack everything into a single dia-
gram, would it have been better to work with single paragraphs as individual
diagrams to get the node count down around 100?

• Figure out how to group the information. Can groups of words be categorized?
Can small subsets of the words be chosen? Once placed into clusters, can the
clusters themselves be collapsed (perhaps using interaction) into single nodes?

• Introduce hierarchy to avoid a sea of anonymous data. That is why we tried
changing the size of each node based on its frequency of occurrence. It helped
pull out the more important nodes and gave the less important nodes less visual
prominence. This helps the user learn about the data because it provides clues
about where to look.

• Is the information time-based? If so, then it might make sense to have the graph
itself change over time, based on what’s relevant at that particular time. If a
graph consists of 10,000 nodes but only a few hundred are relevant at any one
moment, use animation (or interaction to control time) to make the nodes
expand or contract based on their importance at the given time.

242 | Chapter 8: Networks and Graphs

• Even without clustering, interaction can be used to allow the user to explore the
data. If the graph can be used as a navigation device, it might be possible to hide
large portions of the graph until they are relevant. If one node is the current
node, the graph can arrange itself to show only nodes that connect to that one. It
may even show a second level of depth, though less prominently than the first.

To illustrate some of these techniques, consider the Six Degrees of Kevin Bacon
game, the notion that all actors can be traced back to Kevin Bacon in six steps or
less. The Oracle of Bacon (http://oracleofbacon.org) is a site that allows users to view
the Six Degrees of Kevin Bacon. A visualization of the network of actors would be
enormous, and if I’m trying to figure out how Kevin Bacon is connected to Steve
Buscemi, the graph of thousands of actors is far less important than a simple list that
states the steps I would take along the graph to get from Steve Buscemi to Kevin
Bacon. Therefore, the result can be flattened to a simple list. On the other hand, if I
wanted to convey the feeling of a graph to the user (perhaps to reinforce the
“connectedness” aspect), the representation could instead begin with one individual
and show all connected nodes. It’s not necessary to show additional levels of depth
because a selection must first be made that takes us through the first layer of the net-
work. Through navigation, we’ve sufficiently narrowed the representation from tens
of thousands of elements to a few hundred or just dozens.

Advanced Graph Example
With this example, we move to a more advanced look at graphs. We’ll look at logfile
data from a web site and use it to build a visualization of how visitors access the site,
as well as how the site’s hierarchy changes over time. The code is built from a base
similar to the previous example, so while it’s more complicated, the basic structure
will be similar to building the graph of Huck Finn text.

This example is a bit larger than the others in this book (about 1,000 lines of code
total), and it’s a useful example for showing how to use the Processing Core library
in a full-fledged IDE such as Eclipse (http://eclipse.org). You can start by download-
ing the code for the project from the book’s site:

http://benfry.com/writing/anemone/project.zip

Once running, the code will produce an image like Figure 8-9, but first some intro-
duction is required before you can get things up and running.

http://oracleofbacon.org
http://eclipse.org
http://benfry.com/writing/anemone/project.zip

Advanced Graph Example | 243

Getting Started with Java IDEs
The Processing syntax is essentially a dialect of Java. A preprocessor converts Pro-
cessing syntax into Java syntax, and then a Java compiler creates Java .class files from
the code. The syntax changes made by the preprocessor are covered here.

The first step in using the Processing Core is to find core.jar in the lib subfolder of
the Processing installation. This .jar file contains the guts of the library, which
includes classes such as PApplet, PImage, and PGraphics that implement the Process-
ing API as conventional Java objects.

If you have a favorite IDE and are familiar with using .jar files in projects, you can
simply add core.jar to a new project, along with the .java files from the project.zip
file. Netbeans (http://www.netbeans.org), for instance, is a popular (and also free)
alternative that some prefer over Eclipse. A similar process can be used to integrate
with Netbeans, and if you’re familiar with that environment, adapting these instruc-
tions should be straightforward. If you’re using Eclipse and are familiar with it, the
project files are already in the project download, and you need only create a new
project from the unzipped project.zip.

Step-by-step instructions if you’re new to Eclipse

1. Download Eclipse from http://eclipse.org, and then unpack the archive to a suit-
able location on your machine. Launch Eclipse.

2. Use File ➝ New ➝ Java Project to begin a New Project Wizard.

Figure 8-9. The Anemone project running on data from www.processing.org

http://www.netbeans.org/
http://eclipse.org

244 | Chapter 8: Networks and Graphs

3. In the dialog box, enter anemone as the name of the project, and choose Create
Project From Existing Source. Click the Browse… button and navigate to the
unpacked anemone folder. Once set up properly, your window should look
something like Figure 8-10.

4. Click Finish, and the project should load into the IDE without any errors, as
shown in Figure 8-11. If you haven’t already, you may need to close the Wel-
come screen.

5. To run the project, right-click Anemone.java and select Run As ➝ Java Applica-
tion from the popup menu. In its current state, the application won’t do much
because it needs data. A window with a blue background will pop up, and you’ll
probably get an error in the Console (lower-right panel) stating that combined_
log does not exist. You’ll need to get access to an example logfile or create your
own so the project runs properly.

Figure 8-10. Creating a new Java project in Eclipse

Advanced Graph Example | 245

Obtaining a Web Server Logfile (Acquire)
If you run a web server, you probably know where to find its logfiles. For the Apache
server on a typical Mac OS X or Linux setup, this might be in /var/log/httpd/. The
files are named access_log and error_log. The access_log file is probably in common
logfile format, though it’s better to use combined logfile format, which will provide
more information about your users—including the previous pages they visited, the
browsers they used, and the operating systems they’re running. We’ll cover only
Apache in this example, but the same principles can be applied to IIS or AOL Server,
with some minor tweaks to the way it’s parsed based on the format of the logfile.

Reading Apache Logfiles (Parse)
A logfile can contain a few thousand or even a few million lines of text, one for each
object requested from the server. A typical line contains the IP address of the visitor,
a timestamp, the requested page (or object, such as an image), the referring object
(last thing visited), and a user agent (which denotes the browser type and platform).

A typical line from processing.org looks like this:

Figure 8-11. Anemone project loaded into the Eclipse IDE

246 | Chapter 8: Networks and Graphs

192.168.1.144 - - [22/Jul/2007:01:34:11 -0700] "GET /exhibition/index.html HTTP/1.1"
200 19168 "http://www.processing.org/" "Mozilla/5.0 (Macintosh; U; Intel Mac OS X;
en-US; rv:1.8.1.5) Gecko/20070713 Firefox/2.0.0.5"

This means that at 1:34 a.m. on July 22, 2007, someone with the IP address 192.168.
1.144 visited http://www.processing.org/exhibition/index.html, after first visiting the
home page at http://www.processing.org. The page successfully downloaded (status
code 200) and was 19,168 bytes. The visitor used the U.S. English version of Firefox
2.0.0.5 on an Intel Mac, which is compatible with Mozilla/5.0 (Netscape 5, which
most browsers claim to be).

The code in Record.java parses lines of logfile data. First, a regular expression (dis-
cussed in Chapter 5) is used to break the line into its component parts:

 static final String combinedLogFormat =
 "^(\\S+) (\\S+) (\\S+) \\[([^\\]]+)\\] " +
 "\"(\\S+) (.*?) (\\S+)\" (\\S+) (\\S+) \"(\\S+)\" \"(.*)\"$";
 static final String commonLogFormat =
 "^(\\S+) (\\S+) (\\S+) \\[([^\\]]+)\\] " +
 "\"(\\S+) (.*?) (\\S+)\" (\\S+) (\\S+)$";
 static Pattern pattern = Pattern.compile(combinedLogFormat);

Depending on the type of logfile you’re using (combined or common), you can call
Pattern.compile() on either String.

For the timestamp, we can use the DateFormat object, which was also introduced in
Chapter 5. It will convert a date in the format 22/Jul/2007:01:34:11 -0700 into a Date
object, which can be manipulated more efficiently:

 static DateFormat timestampFormat =
 new SimpleDateFormat("dd/MMMM/yyyy:HH:mm:ss ZZZZ");

Configuring Apache for Combined Logfiles
To set up Apache to write combined logfiles, you’ll need to edit its httpd.conf file. On
Mac OS X and Linux, this will commonly be found in /etc/httpd/httpd.conf. Search this
file for CustomLog, and you’ll probably see a line like this:

CustomLog "/private/var/log/httpd/access_log" common

Add a similar line after it that reads:

CustomLog "/private/var/log/httpd/combined_log" combined

The line may already be in the configuration file, but commented out with a # at the
beginning of the line. If so, instead you can simply remove the # and you’ll be all set.
However, this will replace the access_log file, so you should either rename the file on
that line to combined_log or just add a new CustomLog line as described previously.

Restart the web server, and it will begin writing a new file named combined_log along
with the access_log and error_log files.

http://www.processing.org/exhibition/index.html
http://www.processing.org/.

Advanced Graph Example | 247

The date portion is pulled out by the part of the regular expression that reads \\[([^\\
]]+)\\], which matches one or more characters inside the pair of square brackets. The
excessive number of backslashes is necessary because bracket characters are used for
grouping in a regexp. Therefore, to match an actual bracket, one must use \[, and to
escape the backslash itself in a Java string, it must be doubled to make \\[. The rest of
the regexp is similar to what we saw in the earlier example.

The Record class represents a single line of the logfile. The constructor takes one
line of the logfile as a parameter, and then parses each piece into fields with names
such as ip, url, and bytes. If the common (instead of combined) log format is in
use, m.groupCount() will be 9 instead of 11, and the referer and userAgent fields
will be set blank (because leaving them null would cause errors):

 public Record(String line) {
 Matcher m = pattern.matcher(line);

 if (m.matches()) {
 ip = m.group(1);

 userIdent = m.group(2);
 userAuth = m.group(3);

 try {
 String timestampStr = m.group(4);
 Date timestampDate = timestampFormat.parse(timestampStr);
 timestamp = timestampDate.getTime();
 } catch (ParseException e) {
 e.printStackTrace();
 }

 method = m.group(5);
 url = m.group(6);
 protocol = m.group(7);

 status = PApplet.parseInt(m.group(8));
 bytes = PApplet.parseInt(m.group(9));

 if (m.groupCount() > 9) {
 referer = m.group(10);
 userAgent = m.group(11);
 } else {
 // If no referer or useragent info available, leave it blank
 referer = "-";
 userAgent = "";
 }
 }
 }

Other logfile formats include IIS and W3C Extended. Information about each can be
found at the following locations. Most often, the format will be a variant of common
or combined log formats, perhaps with a few tweaks.

248 | Chapter 8: Networks and Graphs

• IIS: http://msdn2.microsoft.com/en-us/library/ms525807.aspx

• W3C Extended: http://www.w3.org/TR/WD-logfile.html

A Look at the Other Source Files
So far we’ve looked only at Record.java in this project. The other classes consist of:

Anemone.java
The class contains the main sketch. In Java syntax, a sketch is a class that
extends the class processing.core.PApplet (which itself extends java.applet.
Applet). Because this class is a PApplet, it will have access to all Processing func-
tions, such as loadStrings(), line(), and fill(). For the other classes (Node,
Branch, and others) to have access to these functions, they’ll have to go through
the Anemone class.

Branch.java and Node.java
These files are equivalent to the Edge and Node classes in our earlier example.
Branch is simply the preferred name in this context because we’ll be dealing with
the tree-shaped hierarchy of a web site.

Streamer.java
This class handles the loading of the data on a separate thread, like we saw in
Chapter 6. In previous versions in this chapter, reading from a file is a synchro-
nous operation, and all activity in the program halts until the read has com-
pleted. This is especially problematic when data is still being written to the file
(like reading the file as it’s being written so that you can watch live activity on
the web site). By placing the read operations on a separate thread, the animation
can continue regardless of whether new data is available. For instance, if the log-
file is being streamed (for instance, on Unix via tail -f /var/log/httpd/access_
log), this class will read a handful of lines and make sure they’re available when
the main Anemone class is ready for them.

Integrator.java
This is our old friend the Integrator class. It will be used to set target lengths for
branches between nodes. By using an Integrator, new branches can slowly grow
rather than suddenly appear.

Visitor.java
This is used to create objects for each unique IP address visiting the site. This
way, individual paths can be traced as users move around to different pages.
We’ll draw the paths of the individual visitors in the background, which will
show general patterns of activity from web crawlers and humans alike.

http://msdn2.microsoft.com/en-us/library/ms525807.aspx
http://www.w3.org/TR/WD-logfile.html

Advanced Graph Example | 249

Moving from Processing to Java
Because we’ve removed the preprocessor that converts Processing syntax into
straight Java, some changes will be necessary in code that’s written directly for Java.
Consider the following Processing program:

color bg = #EECC00;

void setup() {
 size(400, 400);
}

void draw() {
 backgound(bg);
 line(mouseX, mouseY, width/2.0, height/2.0);
}

In Java syntax, this would read:

import processing.core.*;

public class Test extends PApplet {

 int bg = 0xFFEECC00;

 public void setup() {
 size(400, 400);
 }

 public void draw() {
 background(bg);
 line(mouseX, mouseY, width/2.0f, height/2.0f);
 }
}

The first difference to note is the import statements, which identify to the Java com-
piler that processing.core is used (the classes found in core.jar).

Next, everything in Java is an object. The same is true for Processing, but that fact is
hidden so that it’s not necessary to learn syntax such as public class Test extends
PApplet just to get something visible on the screen. That line ends with a curly brace,
which starts a block, and the block ends with a closing brace found at the end of the
code.

The color data type in Processing is simply an alias to the int data type, which
means int bg and color bg have an identical function whether in Processing or Java.
Mapping to the int type is important because of the way it stores color values.

Each int is 32 bits of data, with the first 8 bits specifying the alpha value, the second
8 the red value, the third 8 the green, and the final 8 the blue. The 32-bit number is
expressed as eight hexadecimal digits, two digits each for the alpha, red, green, and
blue components of a color respectively. This representation is already familiar to
many web designers and programmers through web colors such as #EECC00. The web

250 | Chapter 8: Networks and Graphs

format leaves out the alpha portion, which is assumed to be opaque, so in this exam-
ple, the red component is EE, the green is CC, and the blue is 00. In Java, hexadecimal
digits are prefixed with 0x, so the code would read 0xFFEECC00. An additional FF is
added to the beginning because the web color is opaque.

In Java, a number written as 2.0 uses the double data type, which uses twice as much
memory as a float. Using double is overkill for nearly all Processing projects, and it
requires more memory and more CPU time to compute operations on doubles, so
floats are used throughout the Processing API. To specify a float in Java, one must
add f to the end of any number that includes a decimal place so that it’s not
interpreted as a double, as is done in the earlier example where width/2.0 is con-
verted to Java as width/2.0f. This is a weird idea to get across to beginners, and the
end result is a lot of code peppered with the letter f. So in Processing syntax, 2.0
means a float, and doubles are trickier to use (except when running in a separate
IDE without the preprocessor).

Another aspect of Java is how methods are treated as public, private, or protected.
Although these protection levels are available in Processing, there is an assumption
that unmarked methods are in fact simply public. Because most methods will be pub-
lic for beginning programmers (setup(), draw(), and mousePressed(), for instance, are
all public), it’s safe for the preprocessor to simply insert public unless otherwise speci-
fied. As a result, when moving code from Processing to Java, you’ll need to add the
public designation to most built-in methods (such as the aforementioned ones).

Helpful additions in Java 1.5 (J2SE 5.0) and later

Having covered some of the ways that Processing simplifies Java, we can now say
some nice things about the Java language. As of this writing, the Processing
Development Environment supports only Java 1.4 (though this is likely to change—
be sure to check the Processing site for the latest). Later versions of Java introduced
some helpful syntax that, while awkward at the beginning, can really help clean up
your code. When using the Processing API with other Java development environ-
ments, it’s possible to use features from Java 1.5 and beyond.

One helpful feature in Java 1.5 (also called Java 5.0) is generics. Generics allow us to
create things like a HashMap of a particular type so that no additional casting is neces-
sary to use objects from it. For instance, to create a HashMap that maps from String
objects to Integer objects, use the following syntax:

HashMap<String,Integer> stringToIntTable;

Previously, to get an Integer object from this class, it was necessary to use this
syntax:

Integer numObject = (Integer) stringToIntTable.get("something");

Advanced Graph Example | 251

With generics, the (Integer) cast is no longer necessary because the code HashMap is
parameterized. When creating a new parameterized object, treat the <String,Integer>
portion as part of the name:

HashMap<String,Integer> stringToIntTable = new HashMap<String,Integer>();

This syntax is a little uglier than:

HashMap stringToIntTable = new HashMap();

but not needing to recast the result of any operation on a HashMap is a real bonus. In
fact, another feature called auto-unboxing also converts that Integer object to an int
depending on the context in which it’s used. So in Java 1.5, the following syntax is
valid:

int num = stringToIntTable.get("something");

The previous version of this syntax looked like:

Integer numObject = (Integer) stringToIntTable.get("something");
int num = numObject.intValue();

A significant improvement, though the looser association between variables and their
types can also lead to programming errors, so be careful.

The ArrayList class is an all-purpose list that can grow dynamically. The nice thing
about ArrayList is that expand() and checking the array length is no longer neces-
sary. There’s a slight performance loss when using ArrayList instead of an array of
objects, but this depends on the scenario in which it’s used. ArrayList is available in
earlier versions of Java, but it becomes far more useful with parameterization. For
instance, a list of Node objects can be specified by:

 ArrayList<Node> allNodes = new ArrayList<Node>();

This all-purpose list is helpful, and you’ll find that the Anemone example makes use
of them everywhere.

The final, and perhaps best, feature of later Java versions is the enhanced for loop. In
previous code, looping through a list of nodes might look something like this:

Node[] nodes;
int nodeCount;

// ... code here to set up the nodes[] array ...

void draw() {
 for (int i = 0; i < nodeCount; i++) {
 nodes[i].draw();
 }
}

But with the enhancements in Java 1.5, this code looks like:

ArrayList<Node> nodes = new ArrayList<Node>();

// ... code here to set up the nodes[] array ...

252 | Chapter 8: Networks and Graphs

void draw() {
 for (Node n : nodes) {
 n.draw();
 }
}

How simple and clean! Although the initial declaration and assignment are a bit
complex, the actual code inside draw() is far easier to read. It works for any class
that has an iterator() method and states that it implements Iterable, the same way
a class to make a thread implements Runnable. In this example, we’ll use this for
loop with ArrayList and HashMap objects.

Reading and Cleaning the Data (Acquire, Parse, Filter)
The setup() method inside the main class gets things started. The window size and a
font are set, and createReader() is invoked to open the file. You may recall that a
Reader is helpful when files are too large to be read with loadStrings(). One logfile
from processing.org has 1,026,783 lines, accounting for 231 MB of data. The
loadStrings() method is not intended for such a large quantity of data!

 public void setup() {
 size(960, 600);

 PFont font = createFont("Verdana", 11);
 textFont(font);

 // Add the root node.
 addNode("/", width/2, height/2);

 Record.setSiteAddress("http://www.processing.org");
 Record.addSiteAlias("http://processing.org");
 Record.addSiteAlias("http://proce55ing.net");
 Record.addSiteAlias("http://www.proce55ing.net");

 // Start streaming new data.
 BufferedReader reader = createReader("../combined_log");
 streamer = new Streamer(reader);

 colorMode(RGB, 1);
 ellipseMode(RADIUS);
 smooth();
 frameRate(20);
 }

The addNode() method works the same way as addNode() in the earlier GraphLayout
example. Most of the other lines should be familiar by now, except for the Record.
setSiteAddress() and Record.addSiteAlias() lines. The site address and any aliases
for that address must be stored in the Record class so it will know how to filter its
data.

Advanced Graph Example | 253

Filtering site addresses and aliases

The referer portion of a logfile line contains the full URL of the page or object visited
before the current one. (Historically the word is spelled “referer,” not “referrer.”) For
the processing.org site, this may include URLs prefixed in different ways, even though
they refer to the same site. For instance, www.processing.org is the real name of the
site, though it’s also possible to visit via just processing.org. Before we saved enough
nickels to buy the processing.org domain, we used proce55ing.net, and some traffic
still points there, so we keep it as an alias. We keep track of these site aliases so that
URLs can be cleaned and proce55ing.net replaced with www.processing.org so that
it’s clear the referer is from the same site.

The mechanics of this are covered by the Record class:

 public String cleanReferer() {
 // Figure out whether this referer is from the same site,
 // which might be using an alias for the name,
 // e.g., processing.org instead of www.processing.org.
 if (!referer.startsWith(siteAddress)) {
 for (String alias : siteAliases) {
 if (referer.startsWith(alias)) {
 // Replace the alias with the real address of the site.
 referer = siteAddress + referer.substring(alias.length());
 break;
 }
 }
 }
 // Remove the site address from the beginning of the URL,
 // so that it's the same format as the other links.
 if (referer.startsWith(siteAddress)) {
 referer = referer.substring(siteAddress.length());
 }
 return referer;
 }

 static String siteAddress;

 static public void setSiteAddress(String address) {
 siteAddress = address;
 }

 static ArrayList<String> siteAliases;

 static public void addSiteAlias(String alias) {
 if (siteAliases == null) {
 siteAliases = new ArrayList<String>();
 }
 siteAliases.add(alias);
 }

Also note how siteAliases is an ArrayList<String>, so we can loop through its
entries via for (String alias : siteAliases).

254 | Chapter 8: Networks and Graphs

Filtering for useful page information

The readNextRecord() method is called from draw() to get the next record (if avail-
able) from the Streamer class. Each record is filtered on a few criteria. First, unsuc-
cessful transactions (any time the status is a value other than 200) are skipped. This
step eliminates the “page not found” 404 errors that most web users are familiar
with. In addition, the method skips most file extensions because .gif and .jpg images
are always associated with a parent page and thus provide little extra useful
information on how visitors traffic the site. That is, it’s not useful to know that http://
processing.org/images/title.jpg was downloaded because http://processing.org/index.
html is the only page that uses it.

 public void readNextRecord() {
 Record visit = streamer.nextRecord();
 if (visit == null) return;

 // Take no action if the status is not OK.
 if (visit.status == 200) return;

 // Don't bother with extensions we're skipping (.gif, .jpg, etc.).
 if (visit.skipExtension()) return;

 // Clean up the URL and check the info.
 visit.removeQueryString();
 visit.removeIndexPage();

 Node targetNode = checkNode(visit.url, false);
 targetNode.addVisit(visit.timestamp);

 Visitor visitor = checkVisitor(visit.ip);
 visitor.addVisit(targetNode, visit.timestamp);

 String referer = visit.cleanReferer();
 if (referer.startsWith("/")) {
 // If it's a local referer, make a note of that.
 checkNode(referer, true);

 } else {
 // For now, skip incoming links that come from elsewhere, but this block could
 // be used to show incoming searches or links from other sites.
 }
 }

For CGI queries, the parameters of the request (everything after the ?) are removed
so that it doesn’t appear as hundreds of unique pages. The index pages are also nor-
malized so that http://processing.org/ and http://processing.org/index.html are
treated as the same item. This also applies to index.php and index.cgi, which too are
common index page titles.

http://processing.org/images/title.jpg
http://processing.org/images/title.jpg
http://processing.org/index.html
http://processing.org/index.html

Advanced Graph Example | 255

The checkNode() method makes sure that all the nodes and branches that lead to
that node exist. For instance, the page http://processing.org/reference/libraries/
requires three nodes: /, /reference/, and /reference/libraries/. If any of the three
nodes do not exist, they are created, along with Branch objects to connect them.

The time of the visit for the node is marked with the addVisit() method. This will be
used to color the nodes when displaying them, or to remove nodes that are not in use
(when pruning unused branches).

The referer is cleaned up with the previously discussed cleanReferer() method.
Nothing is done with referers in this implementation, but they offer several interest-
ing possibilities that will be discussed later.

Bringing It All Together (Mine and Represent)
The draw() method inside the main class orchestrates how the other classes draw
their information to the screen. Just like the GraphLayout example, the relax() and
update() methods are used to calculate positions of all the nodes in the graph (recall
that Edge has been renamed Branch for this example). The Visitor, Branch, and Node
classes each have draw() methods that draw themselves to the screen:

 public void draw() {
 background(backgroundColor);
 cursor(CROSS);

 // Read up to 10 lines of the log file (if available).
 for (int i = 0; i < 10; i++) {
 readNextRecord();
 }

 for (Branch b : branches) b.relax();
 for (Branch b : branches) b.update();
 for (Node n : activeNodes) n.relax();
 for (Node n : activeNodes) n.update();

 for (Visitor v : visitors.values()) v.draw();
 for (Branch b : branches) b.draw();
 for (Node n : activeNodes) n.draw();

 // Show status information at the bottom.
 drawStatus();

 // Keep a constant number of nodes on screen.
 pruneNodes();
 }

The cursor(CROSS) method is used to make selection easier (we’ll cover interaction in
just a bit). A loop is used to read as many as 10 records of the logfile, which can be
set lower or higher depending on how quickly you would like the logfile to be read
and animated on the screen.

256 | Chapter 8: Networks and Graphs

Mining unused nodes: Maintaining performance and readability

At the end of the method is the pruneNode() function, which prevents the applica-
tion from overloading either the processor or the display with too many on-screen
nodes. A maxNodeCount variable at the beginning of the sketch is set to 500 by default,
meaning that whenever more than 500 nodes are found, they will be removed from
the display. This number can be set higher or lower based on what’s relevant to your
site, or in proportion to the number of nodes your CPU can handle, which is helpful
in the case of web sites, where it is nearly impossible to define a static “map” of the
entire site at any one time—most sites change their structure and content far too
often. Instead, the visualization is built organically, responding to data fed into it.

Depicting Branches and Nodes (Represent and Refine)
Each Node has a set of fields that determines how large it should be drawn on screen:

 float thickness;
 static float thicknessAdd = 1;
 static float thicknessDecay = 0.999f;
 static float thicknessMax = 10;

The thicknessAdd determines the amount of size that’s added to a node each time it
is visited (this is handled by checkNode()). Although we want oft-visited nodes to
grow, we also want the display to move on, so we let nodes shrink slowly when
they’re no longer visited. The thicknessDecay value determines how much the node
should shrink each time its update() method is called. The thicknessMax variable
controls how large a node is allowed to get. This is important because it keeps pages
with heavy traffic (e.g., the home page) from completely overwhelming the visualiza-
tion. The variables are all static because they’re shared by all instances of Node.
They’re not set as final constants because later you may want to add interface ele-
ments to modify the variables so that you can adjust their uses.

Controlling the Speed of the Visualization
A better method for reading from the logfile would be to pick a speed at which you’d like
to “play back” the data (for instance, 10 × faster than the times recorded in the source
file), and then read as many lines as necessary to keep within that range. You can use
millis() to determine the number of milliseconds that have elapsed since the start of the
sketch, and then compare the variables Node.newestTime and Node.oldestTime to see how
things are progressing. The drawStatus() method (not covered here, but in the code)
shows how to compute the rate in this manner, but it’s used only to report the rate, not
to change how quickly data is read.

Advanced Graph Example | 257

The opacity of a branch is determined by the most recent visit to the node at the end
of the branch (the to field). When nodes are pruned they are set as inactive, and
when a branch connects an inactive node, it sets its own active field to false inside
the relax() method. The draw() method for the branch covers this logic:

 protected void draw() {
 if (active) {
 float span = (float) (Node.newestTime - Node.oldestTime);
 float elapsed = (float) (to.lastVisitTime - Node.oldestTime);
 float weight = elapsed / span;
 parent.fill(1, weight);
 parent.noStroke();
 parent.drawConnection(from.x, from.y, from.thickness,
 to.x, to.y, to.thickness);
 }
 }

Branches are displayed by drawing a line of varying thickness between two nodes.
The thickness at each end of the line is determined by the thickness variable for the
Node at that end. A rounded cap is added to the line so that the connections are not
sharp at the corners, which would produce a lot of visual noise because of the inter-
section of many jagged lines crossing one another on nodes with more than one con-
necting branch. Because it makes such heavy use of the Processing API, the code for
drawConnection() is placed inside the main Anemone class:

 public void drawConnection(float x1, float y1, float r1,
 float x2, float y2, float r2) {
 float angle = atan2(y2 - y1, x2 - x1);

 beginShape();
 int stepCount = (int) r1+1;
 for (int i = 0; i <= stepCount; i++) {
 float theta = map(i, 0, stepCount, angle + HALF_PI, angle + PI*1.5f);
 float x = x1 + r1 * cos(theta);
 float y = y1 + r1 * sin(theta);
 vertex(x, y);
 }
 stepCount = (int) r2+1;
 for (int i = 0; i <= stepCount; i++) {
 float theta = map(i, stepCount, 0, angle + HALF_PI, angle - HALF_PI);
 float x = x2 + r2 * cos(theta);
 float y = y2 + r2 * sin(theta);
 vertex(x, y);
 }
 endShape(CLOSE);
 }

This code calculates the angle from the first point to another using atan2(). A half
arc is drawn using cos() and sin(), and then it is connected to a second half arc
drawn in the opposite direction for the opposite end of the branch. Figure 8-12
depicts how the shape is drawn. Because both half arcs are contained within the

258 | Chapter 8: Networks and Graphs

same beginShape() block, the end of the first arc automatically connects with the
beginning of the second arc.

Playing with Data (Interact)
We haven’t yet covered a means for moving nodes around the way we did in the
GraphLayout example. This is handled by similar functions inside the Anemone class.
The first function finds the closest node to the mouse, the next handles mouse press
events, and the third, mouseDragged(), moves the actual node based on the distance
between the current (mouseX and mouseY) and previous (pmouseX and pmouseY)) mouse
positions. Like GraphLayout, the right mouse button (or Ctrl-click on a Mac) will
release the node from its fixed position.

 protected Node findClosestNode() {
 // Set to the minimum distance from mouse to node to care about.
 float closestDist = 8;
 Node closestNode = null;

 for (Node n : allNodes) {
 float d = dist(mouseX, mouseY, n.x, n.y);
 if (d < closestDist) {
 closestDist = d;
 closestNode = n;
 }
 }
 // If nothing closer than 8, this returns null.
 return closestNode;
 }

Figure 8-12. How drawConnection() works

i = stepCount
theta = angle + Pl*1.5

i = 0
theta = angle + Pl*0.5

(x1, y1)

angle

i = 2

i = 1

i = 0
theta = angle + Pl*0.5

(x2, y2)

Advanced Graph Example | 259

 public void mousePressed() {
 Node closestNode = findClosestNode();

 if (mouseButton == LEFT) {
 if (closestNode != null) {
 closestNode.nameVisible = true;
 closestNode.fixed = true;
 }
 movingNode = closestNode;

 } else if (mouseButton == RIGHT) {
 if (closestNode != null) {
 closestNode.nameVisible = false;
 closestNode.fixed = false;
 }
 }
 }

 public void mouseDragged() {
 if (movingNode != null) {
 movingNode.x += mouseX - pmouseX;
 movingNode.y += mouseY - pmouseY;
 }
 }

Drawing Node Names (Represent and Refine)
Nodes that are fixed show their names. In fact, Node.draw() draws its node only if its
name is visible:

 public void draw() {
 if (nameVisible) {
 parent.textAlign(PConstants.CENTER);

 parent.fill(0.8f, 0.9f, 0.5f);
 parent.text(name, x + thickness + 2, y);
 }
 }

Because the text can sometimes get lost with the white background, other drawing
refinements might be necessary. One option is to draw a barely opaque black box
behind the text so that the yellow text color shows above the white nodes:

 public void draw() {
 if (nameVisible) {
 parent.textAlign(PConstants.CENTER);

 // Draw translucent box behind the text.
 parent.fill(0, 0.2f);
 float w = parent.textWidth(name);
 float y1 = y - parent.textAscent() - 1;
 float y2 = y + parent.textDescent() + 1;

260 | Chapter 8: Networks and Graphs

 parent.rectMode(PConstants.CORNERS);
 parent.rect(x - w/2f - 3, y1, x + w/2f + 3, y2);

 parent.fill(0.8f, 0.9f, 0.5f);
 parent.text(name, x + thickness + 2, y);
 }
 }

Another option is to implement a black outline around the text by drawing it with
offsets of one pixel above, below, and to the sides of the actual text. This is a sort of
hack recalling the thick black border around text shown on broadcast television:

 public void draw() {
 if (nameVisible) {
 parent.textAlign(PConstants.CENTER);

 // TV-style black outline
 parent.fill(0, 0.3f);
 parent.text(name, x-1 + thickness + 2, y);
 parent.text(name, x + thickness + 2, y-1);
 parent.text(name, x+1 + thickness + 2, y);
 parent.text(name, x + thickness + 2, y+1);

 parent.fill(0.8f, 0.9f, 0.5f);
 parent.text(name, x + thickness + 2, y);
 }
 }

Neither of these two possibilities is perfect, but both techniques are useful in other
projects. You should try changing the colors of the branches, text, and background
until you find a combination that you prefer.

Drawing Visitor Paths (Represent and Refine)
We haven’t yet covered how the paths of individual visitors are drawn. For a highly
structured site, most visitor traffic may move along the actual hierarchy of the site.
For instance, a user visiting http://processing.org/reference/libraries probably traveled
first from the home page to the reference page and then clicked a link for the librar-
ies page. Search engine robots will take far more erratic paths. Sites that aren’t laid
out in such a structured manner also have patterns that are far different.

To represent these paths, we can draw a line that connects each node visited by an
individual user. The Visitor class stores an array of Node objects that have been vis-
ited, along with the timestamp for when the visit occurred. The Node is checked for
its x, y location, and the timestamp is used to calculate how brightly the line is
drawn so that older traffic begins to fade.

Each time an addVisit() function inside Visitor is called, a node representing the
visit is added to the jumpNodes array and the jumpCount variable is incremented. Thus,
jumpNodes is a list of visits in the order they were made. The referer of jumpNodes[n]
can always be found by checking jumpNodes[n-1].

http://processing.org/reference/libraries

Advanced Graph Example | 261

To connect several points with a curve, we can use the method first discussed in
Chapter 4. Because we’ll want to color each segment differently, we can’t use
beginShape() and curveVertex(), so instead we use the curve() method, which draws
only a single curve segment:

 // Time out after 30 minutes (1,800,000 milliseconds).
 static final long TIMEOUT = 30 * 60 * 1000;

 public void draw() {
 if (jumpCount > 2) {
 parent.noFill();
 parent.strokeWeight(0.5f);
 for (int i = 0; i < jumpCount-1; i++) {
 long timeoutTime = Node.newestTime - TIMEOUT;
 int elapsed = (int) (jumpTimes[i+1] - timeoutTime);
 float weight = PApplet.map(elapsed, 0, (int) TIMEOUT, 0, 1);
 if (weight < 0) weight = 0;
 parent.stroke(0.9f, 0.7f, 0.3f, weight);

 Node n1;
 // If this is the first point, use the first node twice.
 if (i == 0) {
 n1 = jumpNodes[0];
 } else {
 n1 = jumpNodes[i-1];
 }

 Node n2 = jumpNodes[i];
 Node n3 = jumpNodes[i+1];

 // If this is the end of the list of jumps, double the last point.
 Node n4;
 if (i == jumpCount-2) {
 n4 = jumpNodes[jumpCount-1];
 } else {
 n4 = jumpNodes[i+2];
 }

 parent.curve(n1.x, n1.y, n2.x, n2.y, n3.x, n3.y, n4.x, n4.y);
 }
 }
 }

If at least two jumps have occurred (the Visitor has visited two different nodes), we
can draw a line connecting them. The loop draws each consecutive piece of curve
and sets the transparency of the stroke based on the amount of time that has elapsed
since the visit occurred. You can alter the TIMEOUT variable to something suitable for
the length of the average stay for visitors to your site.

Recall from Chapter 4 that it’s necessary to have start and end points on a curve that
are not drawn, which are used to guide the curve into its first and second point.

262 | Chapter 8: Networks and Graphs

When jumpCount is 2, the first and last points are used twice. When jumpCount is 3,
only the first point is used twice. Otherwise, each curve segment is drawn with the
curve() command, employing the previous point, two points connected by the curve
segment, and the next point in the chain. The i variable is used to slide a window
across the four points. Figure 8-13 shows the paths of a few visitors with a faint
orange line behind the white branches.

Mining Additional Information
In its current state, this example shows information about the changing structure of
the site and how visitors travel throughout its structure over time. It provides a use-
ful qualitative map of site use, but far more can be done with this example. A hand-
ful of suggestions follow.

• The referer variable can be a hint to which other sites are linking in to the site in
question. This can be a helpful indicator of the source of traffic to your site, such
as when you’re seeing a traffic spike to a particular area.

• If a user visits a search engine and visits your site, the referer information will
contain the full URL from the search engine. For instance, http://www.google.
com/search?hl=en&q=processing&btnG=Search is produced when a user
searches for “processing.” Decoding this URL can be done with a regexp that
matches for text after the q= portion and before the next & character. A similar
method works for other search engines. You can even obtain information such
as what page of search results they were looking at when they found your site.
All this is useful for buying search terms and other marketing.

Figure 8-13. Paths of visitors drawn in orange using the curve() function

Mining Additional Information | 263

• Although the current application is useful for a qualitative understanding of traf-
fic patterns on the site, it’s lacking in quantitative specifics. Mixing in more spe-
cific numbers and tabulation would help the user combine the two aspects of the
data for a more informative display.

• This application is actually a tree, and doesn’t have any typical graph qualities
like nodes that form loops. It could also be represented with another tree repre-
sentation (such as a hierarchic list or a treemap), which could be an interesting
approach. You could also use link structure to determine a graph of the site,
rather than using the directory hierarchy. This can produce a tangled mess, but it
could also be helpful for understanding what the hierarchy of the site “really”
looks like.

• The data could be filtered in countless ways. In the current version, CGI scripts
are completely neutered and their parameters removed. But this is problematic
for sites run completely from scripts, such as an events calendar with parame-
ters for the month, day, and year. Instead, some parameters could be made into
separate parts of the hierarchy so that heavily visited events will show differently
from the others. The same would be true for a site’s internal search mechanism
to make it clear what people were searching for (and what they later found)
when they visited your site.

• Sites of different sizes need to be handled differently. The parameters for the
maximum number of nodes (in the Anemone class) and for the expansion and
contraction of node thickness (in the Node class) would benefit from UI elements
that control the settings (so that they can be adjusted in real time for different
sites).

• Another filtering/mining mechanism would be a means of setting the window of
time in which data is relevant. This is related to the previous point, but the attri-
tion of node thickness could be set so that visits fade out after a week, a month,
or whatever is most relevant for the amount of traffic on the site in question.
Interactively controlling these windows would provide a powerful snapshot
mechanism for understanding how the site is used.

The Anemone project touches on many important aspects of data visualization. Give
the program a try with your own data, and apply what you’ve learned in previous
chapters to how you modify and refine the code.

264

Chapter 9CHAPTER 9

Acquiring Data 9

The first step in visualizing data is to load it into your application. Typical data
sources might be a file on a disk, a stream from a network, or a digitized signal (e.g.,
audio or sensor readings). Unless you own the data and it’s recorded in a definable,
digitizable format, things can get messy quickly. How do you process weeks of sur-
veillance video? How does one quantitatively acquire data from an hour-long meet-
ing that involved a verbal discussion, drawings on a whiteboard, and note taking
done by individual participants?

Thus, the acquisition stage covers several tasks that sometimes get complicated:

• Unless you are generating your own data, you have to find a good source for the
data you want.

• If you don’t own the data, you have to make sure you have the right to use it.

• You may have to go through contortions to extract the data from a web page or
other source that wasn’t set up to make it easy for your application.

• You have to download the data, which may present difficulties if the volume is
large, especially if it’s fast-changing.

I’ll show some common solutions to these problems in this chapter. Even if they
don’t fit your situation, they’ll still be a starting point for finding a solution.

In some cases, you may not use a Processing program to acquire and parse your ini-
tial data set. It’s not uncommon to preprocess the data in another language, such as
Perl, Python, or Ruby, and later use the (cleaned) results with Processing. Simple
integration can be done with a shared text file or database. Tighter integration can be
achieved through Unix pipes or embedded versions of languages, such as Jython
(http://www.jython.org) and JRuby (http://jruby.codehaus.org). We won’t be able to
cover all the possibilities here, but we will cover a few utilities and methods that
make data acquisition simpler.

http://www.jython.org/
http://jruby.codehaus.org/

Where to Find Data | 265

Where to Find Data
The first tool in seeking data should be a good search engine. Effective searching is a
matter of using the proper keywords. Think about terms that will help specify the
information you’re looking for, and the format that it might be in. A search for
“weather data” may produce high-level results, but “xml weather feed” turns up the
National Weather Service’s XML data feeds. This query includes the file format, the
item being searched for, and its orientation (a feed versus a downloadable file). On
the other hand, keywords like “download” along with a file format are often useful.
If a search for “world hunger statistics” turns up only discussions of the numbers,
something like “world hunger statistics download” or “world hunger statistics xls”
might yield better results.

You may find yourself hampered by entities that charge for their data (or simply an
organization that makes available public, but hard to find, information, like the “value
added” zip code providers in Chapter 6). Some of the best information on interna-
tional statistics from the World Bank, for instance, can cost hundreds of dollars.

Government web sites are often useful sources of data because the information col-
lection is paid for by the public (by way of federal taxes), and is therefore owned by
the public and freely available, often without copyright. In recent years, many gov-
ernment agencies have worked hard to make their data more widely available, mak-
ing the information accessible to any interested web user, rather than the small
number of people, such as librarians and researchers, who knew of the existence of
such information. They make it available through user-friendly databases, compara-
tive systems that produce PDFs and Excel documents for you, and different agencies
pooling resources.

A number of these web sites describe the history of their databases and explain the
process involved: how they started (funding), what program/technique they used,
how they chose the information featured, where they got more funding, how the
project grew, what the project’s ultimate goals are, etc. Some academic centers have
taken raw government data/archives and created a researcher resource. These types
of resources are themselves dynamic because many are works in progress.

On the other hand, some organizations make their data available through publicly
documented and supported APIs. The big search engines have SDKs for running que-
ries from all manners of programming languages. Related sites such as Flickr (at http://
www.flickr.com/services/api) and del.icio.us (at http://del.icio.us/help/api) do the same.
E-commerce site Amazon.com was one of the first to truly open up its entire store to
software developers (http://aws.amazon.com), allowing others to build tools on top of
its existing infrastructure. Many of these services use either REST-style APIs, where
queries are formatted as URLs to a web site, or Simple Object Access Protocol
(SOAP). Data results are often returned as XML documents, which are discussed
later in this section.

http://www.flickr.com/services/api/
http://www.flickr.com/services/api/
http://del.icio.us/help/api/
http://aws.amazon.com/

266 | Chapter 9: Acquiring Data

Data Acquisition Ethics
When APIs are not available, you’ll often wind up screen-scraping to pull the data
from HTML documents on web sites. An important consideration when download-
ing data is whether you’re likely to get yourself in trouble or simply banned (perma-
nently or temporarily) from the site. Downloading too many satellite photo images
from Google Maps, for instance, will get your IP address banned for a few days. It’s
not uncommon to have someone run an overly aggressive utility or script to down-
load all 1,300 pages of http://processing.org/reference, slowing the site for others.
These bandwidth gluttons fail to notice that the pages are included with the soft-
ware they just downloaded.

It’s important to consider your source. Is it an academic research project with a 300
MHz server sitting in a closet and you’re going to throttle the machine for a few
hours? Is it a commercial venture (as in the case of MLB.com in Chapter 5)? What is
the copyright status of the data, and do you have the right to redistribute it?

The bottom line is: don’t be abusive, and take care to be a good citizen of the Net.
Few sites implement strict policies guarding their data (such as Google does with
their satellite imagery), but through some self-policing, we can help keep it that way.

Tools for Acquiring Data from the Internet
Processing provides the loadStrings(), loadBytes(), and loadImage() methods, all
of which can handle either local files or data from http:// addresses (as well as some
other protocols, such as https or ftp, depending on the version of Java you’re using).
I’ll discuss these functions in the sections that follow, but first let’s take a look at
other means of acquiring data from the Internet by hand or using command-line
tools.

The most basic method for pulling data is visiting sites and downloading links
directly. Download files to your machine by right-clicking the link and selecting
“Save Target As…” (in Internet Explorer), “Save Link As…” (in Firefox), or “Save
Page As…” (in Safari).

We’ll use a handful of command-line utilities in this chapter and those that follow.
For Unix and Mac OS X users, this isn’t a problem because most of these tools will
be available and installed by default. On Windows, you should download and install
Cygwin (http://cygwin.com), which provides a Unix-like shell environment and access
to many command-line applications (such as grep, head, tail, wget, etc.). These
chapters make the assumption that you have Cygwin installed.

http://processing.org/reference/
http://cygwin.com/

Tools for Acquiring Data from the Internet | 267

Wget and cURL
Two common utilities associated with grabbing data from the Web are GNU Wget
(http://www.gnu.org/software/wget) and cURL (http://curl.haxx.se). At the most basic
level, each can be used to download the contents of a web page (or other online
objects, such as jpg or swf data) and save it to a file. The following syntax downloads
the cover image for this book using each application:

wget http://www.oreilly.com/catalog/covers/9780596515935_cat.gif
curl http://www.oreilly.com/catalog/covers/9780596515935_cat.gif > image.gif

Wget defaults to writing a file using its original name, whereas cURL sends output to
the console, so in this case, we write that to image.gif by redirecting it. There are
many command-line options for each that handle setting the name of output files,
where to send error messages, or the amount of time to wait before giving up (try
curl --help and wget --help for a complete rundown). cURL is a bit more light-
weight than Wget and more likely to be installed on most systems (whether a host-
ing provider or a Mac or Linux machine).

Wget can also be used to pull web pages along with other associated files recursively
(essentially creating a local mirror of the site) using a command such as:

wget -r -np http://www.oreilly.com/store/

That downloads all pages from http://www.oreilly.com recursively (the -r switch).
The -np switch specifies “no parent directories” (e.g., when following links, grab
items only from /store/ and below; don’t follow links back to the root directory at
http://www.oreilly.com). Be sure to use such a command sparingly, as it can truly
pound someone’s site for information. It’s an easy way to annoy site administrators if
you don’t know what you’re doing.

Another useful option of Wget when downloading very large files is the -c (or
–continue) option, which resumes a download that was interrupted. This can be
invaluable if you’re downloading a file several hundred megabytes in size over a bad
connection.

Both applications also support ftp:// URLs in addition to http:// and https://.

NcFTP and Links
Other utilities such as NcFTP (http://www.ncftp.com/ncftp) and Links (http://links.
sourceforge.net) can be used to download streams from URLs, or in the case of
NcFTP, efficiently download entire directories from an FTP server. Links is prima-
rily a text web browser but can be used from the command line as a replacement for
Wget or cURL if neither is available.

http://www.gnu.org/software/wget/
http://curl.haxx.se/
http://www.oreilly.com
http://www.oreilly.com/
http://www.ncftp.com/ncftp/
http://links.sourceforge.net/
http://links.sourceforge.net/

268 | Chapter 9: Acquiring Data

Locating Files for Use with Processing
In most cases, you’ll want to acquire data from within a program rather than copy it
beforehand. Command-line tools like Wget are useful when grabbing very large data
sets or when taking a look at a set of information before incorporating a live down-
load into your code. Processing supports methods for loading data found at a range
of locations. It’s important to understand this structure before we get into the specif-
ics of the API functions for acquiring data.

The Data Folder
The most common data source is a file placed in the data folder of a Processing
sketch. For example:

String[] lines = loadStrings("blah.txt");

where blah.txt is a file that has been added to the data folder.

When you export an application or applet, all classes and the contents of the data
folder will be bundled into a single .jar file. If the contents of these files need to
change after the application or applet has been created, remove them from the data
folder before exporting, and place them in another folder named data that is adja-
cent to the application or applet.

If you need to address this folder from other code, the dataPath() method returns an
absolute path to an item found in the data folder. It takes the name or path of the file
in the data folder as its only parameter and prepends it with the necessary location
information.

Uniform Resource Locator (URL)
Files can also be located at specific URLs, for instance:

loadStrings("http://benfry.com/writing/blah.txt");

Loading from URLs is less useful when running as an applet. Attempting to use
loadStrings() for a URL not on the same site as the applet will cause a
SecurityException when run from a browser. For security reasons, an applet cannot
connect to sites other than the one from which it originated, unless it has been
signed—a method for marking code with a certificate that declares it is trusted. More
about signing Java applets can be found online.

Many different protocols can be used in URLs. The most common is HTTP, but oth-
ers—such as HTTPS and FTP—are also common. It’s safe to assume that HTTP will
work properly across systems, but implementation of other protocols will vary from
one Java implementation to another.

Locating Files for Use with Processing | 269

Absolute Path to a Local File
Sometimes it’s useful to be able to point to an exact path on a local machine. The
format of an absolute path will vary for each operating system (and language); here
are examples of grabbing a file from the desktop on three U.S. English systems:

// Mac OS X
String[] lines =
 loadStrings("/Users/fry/Desktop/blah.txt");

// Linux
String[] lines =
 loadStrings("/home/fry/Desktop/blah.txt");

// Windows XP
String[] lines =
 loadStrings("C:\\Documents and Settings\\fry\\Desktop\\blah.txt");

Absolute paths are most useful when the file (or files) in question are very large and
therefore burdensome to include in the data folder. For instance, if a sketch has 250
MB in the data folder, using File ➝ Save As on that sketch will be time consuming
because it will copy that 250 MB to the new sketch folder. That can also quickly fill
up your disk—not the best situation when trying to iterate quickly.

Specifying Output Locations
Even though this is technically the chapter on acquiring data, I should quickly men-
tion how data is written with corresponding functions that save information.

A global String variable named sketchPath specifies the absolute path to the sketch
folder. Like dataPath(), this can be used to interface to other methods that require a
full path. The savePath() method operates like dataPath() and prepends the
sketchPath value to a filename or path supplied as a parameter. It also creates any
intermediate folders if they do not exist. The following example uses all three:

println(sketchPath);
println(dataPath("filename.txt"));
println(savePath("path/to/subfolder/item.txt"));

which outputs:

/Users/fry/sketchbook/path_example
/Users/fry/sketchbook/path_example/data/filename.txt
/Users/fry/sketchbook/path_example/path/to/subfolder/item.txt

and creates the folders path ➝ to ➝ subfolder inside the sketch folder named path_
example.

Other Processing API methods that create output files use the savePath() method:

270 | Chapter 9: Acquiring Data

createWriter()
Creates a PrintWriter object that can be written to with println() commands,
just like writing to the console.

saveStrings()
Saves a String array to a file in the sketch folder.

saveBytes()
Saves a byte array to a file.

save() and PImage.save()
Saves an image of the screen or the contents of a PImage to a file, respectively.
The extension on the filename determines the file format used.

By default, files are not saved to the data folder because once exported, the files from
the folder will be packaged inside the .jar file that combines the applet or applica-
tion and all its resources. Thus, the path to the data folder will reside somewhere
within the .jar file—which cannot be saved to.

Loading Text Data
We use a lot of text files in this book mainly because text is easy to read and simple
to edit without special software or complicated parsers. That’s one reason that XML
is so popular: it can be generated and edited by hand just as easily as by machine.
(Perhaps you thought it was just because the acronym sounds important and trendy.)

To read a file as lines of text, use the following:

String[] lines = loadStrings("beverages.tsv");

Because the loadStrings() method also automatically handles loading files from
URLs, the file could be loaded directly online via:

String[] lines =
 loadStrings("http://benfry.com/writing/series/beverages.tsv");

The URL method is most useful for data that continually changes. For instance, if
this data were updated nightly, the information could be reloaded easily. In such a
case, the saveStream() method could also be used, which handles downloading the
contents of a URL and saving it to disk. It could be used once a day, and the file it
creates could then be loaded through loadStrings().

Files Too Large for loadStrings()
When files are very large, it may be more useful to read one line at a time from the
file so that the data can be processed into a more useful intermediate format.

Loading Text Data | 271

In this case, the BufferedReader class from Java is helpful because it reads lines from
a file one at a time. The Processing createReader() function creates a BufferedReader
object from a file in the data folder, an absolute path to a local file, or from a URL.
This example loads a file named toobig.txt and reads it one line at a time:

try {
 // Get the file from the data folder.
 BufferedReader reader = createReader("toobig.txt");

loadStrings() Versus Java Methods
The loadStrings() command was added to Processing because more often than not
users simply want to read lines from a file and stuff them into an array. In regular Java
code, this would look something like:

try {
 ArrayList list = new ArrayList();
 FileInputStream fis = new FileInputStream("beverages.tsv");
 InputStreamReader isr = new InputStreamReader(fis);
 BufferedReader reader = new BufferedReader(isr);
 String line = null;
 while ((line = reader.readLine()) != null) {
 list.add(line);
 }
 String[] lines = (String[]) list.toArray();
} catch (IOException e) {
 e.printStackTrace();
}

The Java example is a dozen lines long, and it has few benefits over the loadStrings()
function in this context. In addition to brevity, loadStrings() makes use of the data
folder and simplifies error handling by simply returning null when the data is unavail-
able, rather than requiring new users to learn about exception handling.

When writing a short bit of Java code, it’s common to have code peppered with
e.printStackTrace(), perhaps followed by a System.exit() if the error is fatal. This
is the simplistic, go-to means to get pesky try/catch requirements out of the way. The
try/catch mechanism in Java is very powerful and useful and helps reinforce good
coding style. However, in cases where you’d be printing the stack trace and moving on
(or exiting), it gets in the way of rapid development, where all you really care about is
whether the file was loaded.

Borrowing from scripting languages, the loadStrings() command attempts to read the
data, and if it cannot, it returns null rather than throwing an error. For debugging pur-
poses, printStackTrace() is still called and writes to the console, but the exception
does not halt execution. Of course, the Java methods are still available for users who
need more sophisticated error handling in their programs.

272 | Chapter 9: Acquiring Data

 // Loop to read the file one line at a time.
 String line = null;
 while ((line = reader.readLine()) != null) {
 println(line); // Just print each line of the file
 }

} catch (IOException e) {
 e.printStackTrace();
}

Reading Files Progressively
Another possibility when using a BufferedReader is to read a few lines on each itera-
tion through the draw() method. The data in the file might be time-based, so this
technique can be used to visualize the data progressively. The following example
shows how this is done:

BufferedReader reader;

void setup() {
 reader = createReader("progression.log");
}

void draw() {
 try {
 String line = reader.readLine();
 if (line != null) {
 // Do something here with the line just read.
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 // Other drawing happens here.
}

On each trip through draw(), a new line is read, and the readLine() method will
return null if the file is finished. To better handle this situation, use a boolean vari-
able to keep track of whether reading is complete:

BufferedReader reader;
boolean readerFinished;

void setup() {
 reader = createReader("progression.log");
}

void draw() {
 if (!readerFinished) {
 try {
 String line = reader.readLine();
 if (line != null) {
 // Do something here with the line just read.
 } else {

Loading Text Data | 273

 readerFinished = true;
 }
 } catch (IOException e) {
 e.printStackTrace();
 readerFinished = true;
 }
 }
 // Other drawing happens here.
}

Reading Files Asynchronously with a Thread
To completely disconnect a file reading from the drawing loop, use a Thread object.
This method is used in Chapter 6 (the Slurper class) and in the second half of
Chapter 8 (the Streamer class). Two examples that use the same structure follow.

This version reads lines asynchronously and calls the handleLine() function when-
ever a new line of data is available:

public class Streamer implements Runnable {
 BufferedReader reader;
 Thread thread;

 public Streamer(BufferedReader reader) {
 this.reader = reader;
 thread = new Thread(this);
 thread.start();
 }

 public void run() {
 try {
 while (Thread.currentThread() == thread) {
 String line = reader.readLine();
 // Exit the while() loop and terminates the thread.
 if (line == null) break;

 // Call a function in the main class to make use of this data.
 handleLine(line);

 // Wait a short while before getting the next line.
 try {
 Thread.sleep(5);
 } catch (InterruptedException e) { }
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

The code in the main tab might look something like the following:

274 | Chapter 9: Acquiring Data

Streamer input;

void setup() {
 input = new Streamer(createReader("inputfile.txt"));
}

void handleLine(String line) {
 // Do something here with 'line'.
}

A second version reads lines into a list, queuing data so that there’s always plenty
available. It also makes use of synchronization, which prevents two separate threads
from modifying a set of data at the same time. For instance, your main program
might try to read from the queue at the same time that the thread in this class adds
another line of data to it. This can cause problems, so instead we wrap any code that
must be protected inside a synchronized block, which ensures that only one thread
can access the variable under synchronization at a time:

public class StreamerQueue implements Runnable {
 BufferedReader reader;
 Thread thread;
 int MAX_LIST_SIZE = 1024;
 ArrayList list = new ArrayList();

 public StreamerQueue(BufferedReader reader) {
 this.reader = reader;
 thread = new Thread(this);
 thread.start();
 }

 public void run() {
 try {
 while (Thread.currentThread() == thread) {
 // Continue reading until reached the max list size
 // (prevents from reading too much and getting out of control).
 while (list.size() < MAX_LIST_SIZE) {
 String line = reader.readLine();
 // Exit the while() loop and terminates the thread
 if (line == null) break;

 // Add to the list in a thread-safe manner.
 synchronized (list) {
 list.add(line);
 }
 }
 try {
 Thread.sleep(5);
 } catch (InterruptedException e) { }
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

Loading Text Data | 275

 // Get the next line from the list.
 public String nextLine() {
 synchronized (list) {
 if (list.size() == 0) {
 return null;
 }
 }
 String line = (String) list.remove(0);
 return line;
 }
}

The main tab calls the nextLine() function to get the next line of data, which will
return null if none is available. This style of streaming gives the host application
more control over when new data should be read, and is the technique used in
Chapter 8. Code for the main tab follows:

StreamerQueue queue;

void setup() {
 queue = new StreamerQueue(createReader("inputfile.txt"));
}

void draw() {
 // Read up to 10 lines on each trip through draw().
 for (int i = 0; i < 10; i++) {
 String line = queue.nextLine();
 if (line != null) {
 handleLine(line);
 }
 }
}

void handleLine(String line) {
 // Do something here with 'line'.
}

The second example is better for most situations because data is usually transmitted
in bursts. Providing a queue makes the host application more likely to have a steady
stream of information available to it.

To hide threads’ complexity, Processing doesn’t require you to learn about them
from the outset. But threading can be very powerful, and these techniques can be
applied to other types of data input when you’re not using createReader() and want
to avoid halting the application while data is loading slowly (which is almost always
the case with the Internet, and often the case for large local files). There’s also a point
at which a large number of threads begins to degrade performance significantly. It’s a
bad idea to spawn dozens of threads; instead, use just a handful of threads, which
handle individual tasks but share a task list that each can update.

276 | Chapter 9: Acquiring Data

Parsing Large Files As They Are Acquired
Rather than read a large file into memory and then parse it, it’s often better to parse
the data while it’s being read. In such cases, you can collapse the Acquire and Parse
steps of the process together for greater efficiency.

For instance, if a line of data is made up of a few dozen columns of numbers with
decimals, each line can be read (the Acquire step) and converted immediately to a
float array (the Parse step), allowing you to discard the String for the line itself:

try {
 // Get the file from the data folder.
 BufferedReader reader = createReader("manyfloats.txt");

 // Loop to read the file one line at a time.
 String line = null;
 while ((line = reader.readLine()) != null) {
 // Split the line at TAB characters.
 String[] columns = split(line, TAB);
 // Convert the String array to a float array.
 float[] numbers = float(columns);
 // ... do something here with the numbers array.
 }

} catch (IOException e) {
 e.printStackTrace();
}

If a line in this file is made up of 100 columns of 8-digit numbers, each String
requires about 1,600 bytes:

8 digits * 100 columns * 2 bytes per character = 1600 bytes

But the same data, when converted to 100 floats, requires only 400 bytes:

100 columns * 4 bytes per float = 400 bytes

Memory might be cheap, but this savings can be significant when you’re talking
about 250 MB of memory instead of 1 GB.

Perhaps more importantly, converting data from a String to a float is a computa-
tionally expensive operation, so this should be done only once, rather than inside,
say, the draw() loop.

Dealing with Files and Folders
It’s often helpful to start with local data before developing a version of your code
that runs over the network or from a database. This section covers methods for deal-
ing with local data.

Listing Files in a Folder | 277

Using the Java File Object to Locate Files
For some tasks, the Java File object may be helpful. For instance, the following code
loads a file named bar.txt from a folder called foo and retrieves all the text from it.
Relative paths like this are problematic, however, because you can’t be sure from
which directory the application will run, so it’s best to use an absolute path with this
method:

File foo = new File("foo", "bar.txt");
String[] lines = loadStrings(foo);

Many of the I/O methods in Processing allow a File as a parameter. But for those
that lack such a variant, here is a version that takes an absolute path as a String, in
conjunction with the getAbsolutePath() method from File:

File foo = new File("foo", "bar.txt");
String path = foo.getAbsolutePath();
String[] lines = loadStrings(path);

Listing Files in a Folder
A common use of the File object is to list files in a directory, which is handled with
the list() method of the File class:

File folder = new File("/path/to/folder");
String[] names = folder.list();
if (names != null) { // will be null if inaccessible
 println(names);
}

In practice, this is convenient for listing the contents of the data folder in your
Processing sketch. The built-in String variable sketchPath provides an absolute path
to the current folder. To create a File object that points to the data folder, use the
following:

File dataFolder = new File(sketchPath, "data");

Note that this will include all entries in the directory, which on many systems will
include the “.” and “..” folders (referring to the current directory and parent direc-
tory). In practice, it’s best to simply ignore anything starting with a period because it
might be one of these directories or some type of hidden file.

This method can be used to list files of a certain type, for instance, to list all JPEG
files in the data folder. To check the filenames, use the endsWith() method from the
String class. By converting the filename to lowercase, the following example needs
only compare each name against .jpg instead of both .jpg and .JPG:

File dataFolder = new File(sketchPath, "data");
String[] names = dataFolder.list();
int foundCount = 0;
if (names != null) {
 for (int i = 0; i < names.length; i++) {

278 | Chapter 9: Acquiring Data

 // Skip hidden files and folders starting with a period.
 if (names[i].charAt(0) != '.') continue;

 // Print files ending in .jpg or .JPG.
 if (names[i].toLowerCase().endsWith(".jpg")) {
 println("Found JPEG image: " + names[i]);
 foundCount++;
 }
 }
 println("Found " + foundCount + " image(s).");
} else {
 println("Could not access images.");
}

This could, of course, be modified to allow for .jpeg as well as .jpg by expanding the
check within the if statement:

 if (names[i].toLowerCase().endsWith(".jpg") ||
 names[i].toLowerCase().endsWith(".jpeg")) {

In the previous example, the foundCount variable is used to keep track of the number
of files that were actually valid. This count might also be used to compact the list of
names into only the useful values. The following version iterates through the file list,
copying over filenames that are not valid, and then finally resizing the array to only
the useful elements:

The Data Folder in Exported Applications
Note that in an exported application, the sketchPath variable will work differently
because during export, the data folder will be packaged into the exported application
or .jar file. In such cases, this code will look for a folder named data in the same folder
as your exported application. If files need to be listed, remove them from the data
folder before exporting, and place them in a folder named data adjacent the exported
application.

Why Not Skip the Hidden Files Test When Looking at File
Extensions?

Unfortunately, it’s not sufficient to just make sure that a filename ends with .jpg
because you’re not guaranteed that a file ending in .jpg is actually a JPEG image. For
instance, an image named IMG_0020.JPG on Mac OS X might also have metadata
stored in a file named ._IMG_0020.JPG. Ugly, but true. But fear not: testing for a
period at the beginning of the filename is sufficient to catch such a situation.

Listing Files in a Folder | 279

File dataFolder = new File(sketchPath, "data");
String[] names = dataFolder.list();
int foundCount = 0;
if (names != null) {
 for (int i = 0; i < names.length; i++) {
 // Skip hidden files and folders starting with a period.
 if (names[i].charAt(0) != '.') continue;

 // Print files ending in .jpg or .JPG.
 if (names[i].toLowerCase().endsWith(".jpg")) {
 println("Found JPEG image: " + names[i]);
 if (i != foundCount) {
 // Shift the item down in the array if necessary.
 names[foundCount] = names[i];
 }
 foundCount++;
 }
 }
 // Resize the array to only the useful elements.
 names = subset(names, 0, foundCount);
 println("Found " + foundCount + " image(s).");
} else {
 println("Could not access images.");
}

Listing files with a filter class

For more exact results from the file listing, Java also provides the FileNameFilter
class, which can be subclassed to supply a means of checking criteria for files to
include in the list. Subclasses need only implement a single method, making them an
ideal target for an anonymous inner class. The following is an adaptation of the
previous program:

FilenameFilter filter = new FilenameFilter() {
 public boolean accept(File dir, String name) {
 if (name.charAt(0) == '.') return false;
 if (name.toLowerCase().endsWith(".jpg")) return true;
 return false;
 }
};
File dataFolder = new File(sketchPath, "data");
String[] names = dataFolder.list(filter);
if (names != null) {
 for (int i = 0; i < names.length; i++) {
 println("Found JPEG image: " + names[i]);
 }
 println("Found " + names.length + " image(s).");
} else {
 println("Could not access images.");
}

Note that in this case, names.length is the number of valid files (no need to count
them separately). This also means that names.length can replace the foundCount

280 | Chapter 9: Acquiring Data

variable, but the line that prints the number of images found must be moved inside
the if (names != null) section; using names.length when names is null would other-
wise produce a NullPointerException.

It should be noted, however, that although the FilenameFilter method can be useful,
it might be slower than simply checking the files by hand, as done in the previous
examples.

Sorting file lists

On first glance, the files returned by FilenameFilter may appear to be in alpha-
betical order, or nearly so. Unfortunately, that is not guaranteed, so it’s often
important to sort the results of the file listing. The built-in sort() function makes it
easy; adding this line to the previous examples will sort the returned results:

names = sort(names);

Note that the sort() method does not sort the entries in place, but it returns a new
array with the values sorted.

Handling Numbered File Sequences
When loading a sequence of files that have a known pattern, the nf() method is
invaluable for formatting the sequence numbers. This is useful if you know the num-
ber of files that are available without first listing the directory. For instance, an image
sequence from a digital camera might be numbered IMG_0001.JPG, IMG_0002.JPG,
and so on, up to IMG_0104.JPG. The nf() function will handle padding the num-
bers with zeroes so that there are always four digits. The following example loads
this sequence of images:

PImage[] imageList;
int imageCount = 104;

void setup() {
 size(400, 400);
 imageList = new PImage[imageCount];
 for (int i = 0; i < imageCount; i++) {
 String name = "IMG_" + nf(i+1, 4) + ".JPG";
 imageList[i] = loadImage(name);
 }
}

The nf() method takes the number to format, followed by the complete number of
characters you want in the final string; output is padded on the left with zeroes when
necessary to create the specified number of characters. Because the variable i will be
in the range from 0 to 103, we add one to make the range run from 1 to 104.

Asynchronous Image Downloads | 281

Asynchronous Image Downloads
Like the other file loading functions, loadImage() halts execution until it has com-
pleted. That is not a problem for smaller sketches with a few images, but when load-
ing dozens or hundreds of images, it has a significant impact on speed because it
means that multiple images are not downloading at once (the server providing the
data might be just as much of a bottleneck as the network connection itself) and the
interface halts until the images have loaded. Because images are usually loaded inside
setup(), this can have a negative impact on the startup time for a sketch.

When handling many images at once, we can instead rely on Java methods for
retrieving the image data, and then either download all the files as a batch once
they’ve been queued or simply proceed as normal until the images have completed
downloading. The ImageLoader class is designed to handle this situation. The code is
available from the book’s web site at:

http://benfry.com/writing/acquire/ImageLoader.java.

After this code is added as a new tab in a sketch, the previous example can be
rewritten as:

ImageLoader loader;
PImage[] imageList;
int imageCount = 104;

void setup() {
 size(400, 400);
 loader = new ImageLoader();
 imageList = new PImage[imageCount];
 for (int i = 0; i < imageCount; i++) {
 String name = "IMG_" + nf(i+1, 4) + ".JPG";
 String path = dataPath(name);
 imageList[i] = loader.addFile(path);
 }

}

That would queue all 104 images to be loaded and then set them to download. This
makes for a more efficient download through the use of threading, but does not solve
the startup problem. A polite way to deal with the slow startup is to allow the pro-
gram to continue, and simply draw something in the draw() method to indicate that
files are loading, such as the progress bar from Chapter 7. In this example, the image
loader is started inside setup() and runs on its own thread. Inside draw(), we can
add code to report on the progress of the image-loading thread or simply continue
without the images:

ImageLoader loader;
PImage[] imageList;
int imageCount = 104;

http://benfry.com/writing/acquire/ImageLoader.java

282 | Chapter 9: Acquiring Data

void setup() {
 size(400, 400);
 loader = new ImageLoader();
 imageList = new PImage[imageCount];
 for (int i = 0; i < imageCount; i++) {
 String name = "IMG_" + nf(i+1, 4) + ".JPG";
 String path = dataPath(name);
 imageList[i] = loader.addFile(path);
 }
 // Removed loader.finish() line
}

void draw() {
 if (loader.isFinished()) {
 // Images are ready; do something here.
 } else {
 // Indicate that files are still loading.
 }
}

The code itself follows. Note the use of import statements because this is a .java file
and therefore is straight Java code rather than a Processing .pde file:

import java.awt.*;
import java.awt.image.*;
import java.net.URL;
import processing.core.*;

public class ImageLoader {
 PApplet parent;
 MediaTracker tracker;
 PImage[] images;
 Image[] awtImages;
 int count;
 boolean finished;

 public ImageLoader(PApplet parent) {
 this.parent = parent;
 tracker = new MediaTracker(parent);
 // Start with 100 possible elements and expand as necessary later.
 images = new Pimage[100];
 awtImages = new Image[100];
 }

 // This method loads images from the Internet, and can be substituted
 // for addFile when testing is finished and the application is deployed.
 public PImage addURL(String url) {
 try {
 return add(Toolkit.getDefaultToolkit().getImage(new URL(url)));
 } catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }

Asynchronous Image Downloads | 283

 public PImage addFile(String path) {
 return add(Toolkit.getDefaultToolkit().getImage(path));
 }

 protected PImage add(Image img) {
 try {
 if (images.length == count) {
 // Expand the image arrays for more than 100 elements.
 images = (Pimage[]) expand(images);
 awtImages = (Image[]) expand(awtImages);
 }
 awtImages[count] = img;
 tracker.addImage(img, count);
 images[count] = new PImage();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return images[count++];
 }

 public boolean isFinished() {
 if (finished) {
 return true;
 }
 if (tracker.checkAll()) {
 finish();
 return true;
 }
 return false;
 }

 public void finish() {
 try {
 tracker.waitForAll();
 } catch (InterruptedException e) { }

 for (int i = 0; i < count; i++) {
 if (!tracker.isErrorID(i)) {
 Image img = awtImages[i];
 PImage temp = new PImage(img);
 // Replace the image data without changing the PImage object reference.
 images[i].width = temp.width;
 images[i].height = temp.height;
 images[i].format = temp.format;
 images[i].pixels = temp.pixels;
 }
 }
 finished = true;
 }
}

The ImageLoader class provides basic functions for creating images in the PImage struc-
ture required by Processing. While the actual image data downloads, the PImage objects

284 | Chapter 9: Acquiring Data

are filled with empty data. Once the image download is complete, the finish()
method copies the image data (the actual pixels, format, width, and height) from the
Java Image objects to the PImage objects. That is handled inside PImage because
attributes such as width and height won’t be available until the download is complete.
The ImageLoader methods for creating images just wrap standard Java classes within
PImage classes so Processing can use the images.

Using openStream() As a Bridge to Java
The InputStream class is the basis of all data input operations in Java. In Processing,
the openStream() method is a bridge between the Processing API and the Java
InputStream class. If you want a custom means of reading a stream but still want to
support the Processing file locations, use the openStream() method to return an
InputStream (which can be used in the same manner as an InputStream in any Java
application). The openStream() method makes it easy to combine Processing-style
file handling and generic Java code.

It should also be noted that like Java I/O methods (but unlike the Processing meth-
ods), openStream() must be placed inside a try/catch block.

Dealing with Byte Arrays
The loadBytes() method reads an entire file as a byte array:

byte[] stuff = loadBytes("somedata.bin");

The array is useful for more advanced developers who want to parse data at the byte
level. The openStream() method also gives access to the raw byte values of an
InputStream. (Parsing binary data is covered further in Chapter 10.)

Advanced Web Techniques
Two common problems exist with data pulled from the Web: many URLs that point
to data don’t include the necessary information to access the data programmatically,
and many web servers insist that any connecting application look and behave like a
browser. This section explores ways to get around these problems.

Handling Web Forms
Many sites allow data queries using a fill-in form. One such example is the Olympic
Committee web site, where you can search for medal winners over the years based
on their name, gender, sport, year, and other criteria (see http://www.olympic.org/uk/
athletes/results/search_r_uk.asp).

http://www.olympic.org/uk/athletes/results/search_r_uk.asp
http://www.olympic.org/uk/athletes/results/search_r_uk.asp

Advanced Web Techniques | 285

After selecting “men,” all three medal categories, and entering “John” for the name,
clicking the Search button reveals 20 results from a set of 70. However, the URL is
unchanged, meaning that we cannot bookmark the results, nor can we grab this page
from code, as we don’t have a means of filling in web forms.

The issue is the difference between the GET and POST methods a browser uses to
download web pages. This is specified by the <FORM METHOD=""> tag in the HTML
document in question. The normal command from a browser to a web site is called
GET (this can be seen in the method entry of the web server log data, which usually
lists GET). The most basic function for a web browser to connect to port 80 on a
server, and send a command such as:

GET /index.html HTTP/1.1

which returns the contents of /index.html. You can test this by making a telnet con-
nection to port 80 of any web site, typing GET / HTTP/1.0, and pressing Enter twice.
Not a very fun way to browse the Web, but it will return the entire contents of the
home page for that site and close the telnet connection.

The GET method can be used for queries. Searching for “potato” on Yahoo! pro-
duces the following URL (which can be bookmarked):

http://search.yahoo.com/search?p=potato&ei=UTF-8

This is a GET method query, where the URL ends with a ? followed by a series of
attribute/value pairs separated by ampersands.

The POST method, on the other hand, makes the data a separate part of the query
rather than the URL itself. (Returning to the telnet example, we’d use POST instead
of GET, and follow with the data on a new line, before hitting Enter twice to indi-
cate the end of the command.) This is designed for two situations: when the query
data is intentionally hidden from the user (to prevent bookmarking or snooping), or
when the query data is too large to fit in a URL. The upper limit of URL length is
defined but inconsistently supported across browsers, so it is probably a bad idea to
use GET with anything above 255 characters.

However, it’s possible to use a bit of JavaScript to convert forms on a web page to
use GET instead of POST, so the URL information can be retrieved. A helpful utility
can be found here:

https://www.squarefree.com/bookmarklets/forms.html#frmget

Right-click the link for frmget and choose “Bookmark this Link” in your browser. To
use it, visit a site such as the Olympic.org medal search. Make your selections in the
form, and then select the bookmark from the bookmarks menu. That will run the Java-
Script code to convert any forms on the page. Clicking Search now produces the URL:

http://search.yahoo.com/search?p=potato&ei=UTF-8
https://www.squarefree.com/bookmarklets/forms.html#frmget

286 | Chapter 9: Acquiring Data

http://www.olympic.org/uk/athletes/results/search_r_uk.
asp?RESULT=TRUE&KEYWORDS=%22john*%22&SEARCH_
TYPE=1%2C2&GET_C_ID=X&MED_I_ID=1&MED_I_ID=2&MED_I_
ID=3&KEYWORD=john&CON_I_ID=&NOC_S_INITIALS=&SPO_S_
CODE=&EVT_S_CODE=&JO=&x=28&y=10

Though heinous in appearance, this URL can be used to run the same query from
code, where we might parse the table data for some other purpose. Tweaking the
parameters (e.g., looking for where the “john” query actually appears in the URL so
that it can be replaced) will provide a means for downloading related pages from a
function.

Pretending to Be a Web Browser
Many web sites will also try to detect what sort of browser you are using, and either
deny access (“Internet Explorer 6 or later is required to view this site!”) or behave
strangely if browser cookies don’t seem to be enabled (the loadStrings() method is
not built for cookie handling). The HttpClient project from the Apache Software
Foundation (http://jakarta.apache.org/commons/httpclient) is a terrific suite of tools,
some of which can be used to address both of these issues. In this section, we’ll look
at how to assemble this for a Processing sketch.

Three .jar files are needed for the HttpClient to work properly, and they are all avail-
able from the download section of the project page:

The HttpClient code itself
http://commons.apache.org/downloads/download_httpclient.cgi

The sister Codec project
http://commons.apache.org/downloads/download_codec.cgi

The Logging component
http://commons.apache.org/downloads/download_logging.cgi

Get the binary download for each, unpack the .zip (or tar.gz) files, and find the .jar
file inside each. Drag the JARs into a new Processing sketch.

The following code is a wrapper for the HttpClient API that handles loading and sav-
ing web pages. Use this code in a new tab named Browser.java:

import java.io.*;

import org.apache.commons.httpclient.*;
import org.apache.commons.httpclient.methods.*;
import org.apache.log4j.*;

import processing.core.*;

http://www.olympic.org/uk/athletes/results/search_r_uk.asp?RESULT=TRUE&KEYWORDS=%22john*%22&SEARCH_
http://jakarta.apache.org/commons/httpclient/
http://commons.apache.org/downloads/download_httpclient.cgi
http://commons.apache.org/downloads/download_codec.cgi
http://commons.apache.org/downloads/download_logging.cgi

Advanced Web Techniques | 287

public class Browser {
 PApplet parent;
 HttpClient client;

 // Claim to be Internet Explorer 6 running on Windows 2000.
 String USER_AGENT = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)";

 public Browser(PApplet p) {
 parent = p;

 // Set up logging to notify only on fatal errors.
 BasicConfigurator.configure();
 Logger logger = Logger.getRootLogger();
 logger.setLevel(Level.FATAL);

 client = new HttpClient();
 // Establish a connection within 5 seconds or give up.
 client.getHttpConnectionManager().getParams().setConnectionTimeout(5000);
 }

 public String load(String iurl) {
 HttpMethod method = new GetMethod(iurl);
 // Most sites will redirect to other locations one or more times,
 // e.g., http://processing.org/reference is automatically redirected
 // to its proper URL, http://processing.org/reference/.
 method.setFollowRedirects(true);
 // On the Internet, nobody knows you're a dog.
 method.setRequestHeader(new Header("User-Agent", USER_AGENT));

 String responseBody = null;
 try {
 client.executeMethod(method);
 // Another alternative to work like openStream() instead of loadStrings()
 //responseBody = method.getResponseBodyAsStream();
 responseBody = method.getResponseBodyAsString();

 } catch (HttpException he) {
 System.err.println("HTTP error connecting to '" + iurl + "'");
 System.err.println(he.getMessage());
 return null;

 } catch (IOException ioe) {
 System.err.println("Unable to connect to '" + iurl + "'");
 return null;
 }

 // Clean up the connection resources.
 method.releaseConnection();

 return responseBody;
 }

288 | Chapter 9: Acquiring Data

 public void save(String url, String filename) {
 String content = load(url);
 if (content != null) {
 parent.saveStrings(filename, new String[] { content });
 }
 }
}

In the main tab of the sketch, the following code provides an example of getting a
web page and saving its contents to a file:

String url = "http://www.oreilly.com/store/";

// Set up an object that will pretend to be a web browser.
Browser faker = new Browser(this);

String page = faker.load(url);
// Print this page to the console.
println(page);

// Write the HTML to a file, so we don't have to hit the server again.
// Also save to the data folder, so that loadStrings() works later.
faker.save(url, "data/blah.html");

Using this code, you’ll be able to impersonate other web clients (user agents) and
also keep track of cookies automatically so that navigating a site to pull data will
work in more complicated cases.

Using a Database
A typical database contains a large number of tables, which are themselves just rows
of data under a handful of column headings. For instance, a table for addresses
might have columns for first and last name, street, city, state, and zip code. The data-
base is accessed by a driver, or connector, that acquires data from the database and
parses it into a format understandable by the host program. The database is first
given a query, typically using Structured Query Language (SQL):

SELECT * FROM addresses WHERE firstname='Joe';

That query would grab a list of all the rows in the addresses table where Joe was
found in the column named firstname. Despite their important-sounding name, at
their most fundamental level, databases are extraordinarily simple. The role of a
database is to make queries like this one—or others that can easily get far more com-
plicated—run exceptionally fast when run on enormous tables with many, many
rows of data (e.g., a list of 10 million customers). Most databases also have sophisti-
cated tools for manipulating data, such as joining one table to another in a query so
that multiple tables can be accessed at the same time.

Using a Database | 289

Getting Started with MySQL
MySQL (http://mysql.org) and PostgreSQL (http://www.postgresql.org) are the two
largest and most commonly used open source databases. Here I’ll cover MySQL
because of its ubiquity in developing web applications and availability with many
hosting providers.

If you don’t already have a database set up or access to one from a hosting provider,
get an installer for your platform from http://mysql.org/downloads/mysql.

As test data, we’ll use the zips.tsv file from Chapter 6. Open a shell (start Cygwin on
Windows, or open Utilities ➝ Terminal.app on Mac OS X), and copy this file to your
current working directory:

http://benfry.com/writing/zipdecode/zips.tsv

After installing MySQL, start the server. The specifics of starting the server will be
covered in the installation instructions for your platform. Once the server has
started, run the mysql binary from the command line. On Unix workstations, this
might be something along the lines of:

/usr/local/mysql/bin/mysql -u root

That command connects to MySQL as the root user with no password (as installed,
the server allows anyone to log in as root by default, with no password). The default
password is a bad idea, so you should follow the post-install instructions for infor-
mation on locking down the server properly, but we’re just testing the server here.

The MySQL application will give you a prompt:

mysql>

From this prompt, issue the following two commands to create a new database and
set it as the current database. Note that each SQL command is followed by a semi-
colon; if you forget to include one before pressing the Enter key, the program just
waits silently for you to add it:

mysql> CREATE DATABASE testing;
mysql> USE testing;

Next, use the following command to create a table named zips, with fields for the
four columns of the zips.tsv file. The numbers in parentheses that follow each data
type indicate the number of possible digits. DECIMAL(8, 6) indicates eight total digits,
with six to the right of the decimal point:

mysql> CREATE TABLE zips (
 zipcode CHAR(5),
 x DECIMAL(8,6),
 y DECIMAL(8,6),
 location VARCHAR(50)
);

If that was entered properly, MySQL should respond with:

http://mysql.org
http://www.postgresql.org/
http://mysql.org/downloads/mysql/
http://benfry.com/writing/zipdecode/zips.tsv

290 | Chapter 9: Acquiring Data

Query OK, 0 rows affected (0.01 sec)

Now that there’s a working table, we’ll fill it with data from zips.tsv with the follow-
ing command:

mysql> LOAD DATA LOCAL INFILE 'zips.tsv' INTO TABLE zips
 FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
 IGNORE 1 LINES
 (zipcode, x, y, location);

The IGNORE keyword skips the first line (which has labels instead of data), and the
field and line terminators are the standard tab and newline characters.

MySQL should respond with something like:

Query OK, 41556 rows affected, 65535 warnings (0.24 sec)
Records: 41556 Deleted: 0 Skipped: 0 Warnings: 80168

The warnings indicate that some decimals may be truncated slightly as they are
forced to six digits.

The following query displays the entire table (all 41,556 rows):

mysql> SELECT * FROM zips;

+---------+-----------+----------+--------------------------------+
| zipcode | x | y | location |
+---------+-----------+----------+--------------------------------+
| 00210 | 0.313506 | 0.763354 | Portsmouth, NH |
| 00211 | 0.313506 | 0.763354 | Portsmouth, NH |
| 00212 | 0.313506 | 0.763354 | Portsmouth, NH |
| 00213 | 0.313506 | 0.763354 | Portsmouth, NH |
| 00214 | 0.313506 | 0.763354 | Portsmouth, NH |
| 00215 | 0.313506 | 0.763354 | Portsmouth, NH |
| 00501 | 0.302470 | 0.722645 | Holtsville, NY |
| 00544 | 0.302470 | 0.722645 | Holtsville, NY |
...

A better example shows the zip code and location column for locations starting with
Cambridge:

mysql> SELECT zipcode,location FROM zips WHERE location LIKE "Cambridge%";

which produces:

+---------+-----------------------+
| zipcode | location |
+---------+-----------------------+
| 02138 | Cambridge, MA |
| 02139 | Cambridge, MA |
| 02140 | Cambridge, MA |
| 02141 | Cambridge, MA |
| 02142 | Cambridge, MA |
| 02238 | Cambridge, MA |
| 02239 | Cambridge, MA |
| 04923 | Cambridge, ME |
| 05141 | Cambridgeport, VT |
| 05444 | Cambridge, VT |

Using a Database | 291

| 12816 | Cambridge, NY |
| 16403 | Cambridge Springs, PA |
| 21613 | Cambridge, MD |
| 43725 | Cambridge, OH |
| 47327 | Cambridge City, IN |
| 50046 | Cambridge, IA |
| 53523 | Cambridge, WI |
| 55008 | Cambridge, MN |
| 61238 | Cambridge, IL |
| 67023 | Cambridge, KS |
| 69022 | Cambridge, NE |
| 83610 | Cambridge, ID |
+---------+-----------------------+
22 rows in set (0.05 sec)

The mysql command-line utility is useful if you’re comfortable with the command
line, but you can find other utilities online that provide a GUI interface to the same
sort of tasks. A longer MySQL tutorial can be found in the reference at http://dev.
mysql.com/doc/refman/5.0/en/tutorial.html.

Using MySQL with Processing
For use in visualization, you need to access the database from code. Java has a built-
in database API called JDBC that works with multiple database engines and main-
tains the same interface across them by using an interchangeable set of driver, or
connector, objects. The MySQL connector for Java can be found on MySQL.com:

http://www.mysql.com/downloads/api-jdbc.html

Download the .zip file for the version that matches your database installation.
Unpack the file; inside it should be another file named something similar to mysql-
connector-java-5.0.7-bin.jar. Create a new sketch and add this file. Like all .jar files,
it will be placed in a subfolder named code.

Back in the MySQL utility, create a user that has access to the database so that you’re
not connecting to the database as the root user:

mysql> GRANT SELECT ON testing.* TO processing@localhost
 IDENTIFIED BY 'processingpass';

That will grant SELECT privileges (the ability to run queries) to a user named
processing with the password processingpass.

In Processing, add the following code to a second tab (this is a helper class that will
hide some of the mechanics of loading the database driver and can be reused for
other purposes):

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;

http://dev.mysql.com/doc/refman/5.0/en/tutorial.html
http://dev.mysql.com/doc/refman/5.0/en/tutorial.html
http://www.mysql.com/downloads/api-jdbc.html

292 | Chapter 9: Acquiring Data

class Database {
 Connection conn;
 String host;
 String user;
 String pass;
 String dbname;
 int port = 3306;

 public Database(String host, String dbname, String user, String pass) {
 this.host = host;
 this.user = user;
 this.pass = pass;
 this.dbname = dbname;

 conn = connect();
 }

 public Connection connect() {
 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 } catch (InstantiationException e) {
 e.printStackTrace();
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 }

 try {
 String url = "jdbc:mysql://" + host + ":" + port + "/" + dbname;
 println("Connecting to " + url + " as " + user);
 return DriverManager.getConnection(url, user, pass);

 } catch (SQLException e) {
 e.printStackTrace();
 return null;
 }
 }

 public ResultSet query(String query) {
 try {
 Statement st = conn.createStatement();
 ResultSet rs = st.executeQuery(query);
 return rs;

 } catch (SQLException e) {
 e.printStackTrace();
 return null;
 }
 }
}

Using a Database | 293

Back in the main tab, the following code runs our last query from the previous
section:

import java.sql.ResultSet;

void setup() {
 Database db = new Database("localhost", "testing",
 "processing", "processingpass");
 ResultSet rs = db.query("SELECT zipcode,location FROM zips " +
 "WHERE location LIKE \"Cambridge%\"");

 try {
 while (rs.next()) {
 String zipcode = rs.getString(1);
 String location = rs.getString(2);
 println(zipcode + " -> " + location);
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
}

The ResultSet class from Java’s JDBC library does most of the work here. Use rs.
next() to iterate through the results of a query. The getString() method gets the
result information at a particular index. Note that these are indexed starting at 1
(unlike most index values in this book, which start at 0).

The processing and processingpass values for the username and password can be
replaced with another user that you create. If you’re connecting to a hosted database,
replace localhost with the address of that machine (e.g., database.mycompany.com).

This example leaves out the details of multiple queries and closing database connec-
tions, but it should provide a feel for the steps involved in using a database with Pro-
cessing. There’s a lot to learn about databases—I’m just trying to provide a taste of it
here.

Other Database Options
Depending on the constraints of your project, there are many other database options
to consider. They include the following:

Apache Derby/Java DB (http://db.apache.org/derby)
A full database written entirely in Java. It has a small (2 MB) footprint and uses
the same JDBC commands seen in the previous example. In Java 6, the project
has been integrated into the JDK under the name Java DB.

http://db.apache.org/derby

294 | Chapter 9: Acquiring Data

SQLite (http://www.sqlite.org)
SQLite is a free, lightweight, and compact database that’s designed to integrate
easily into other projects. The source code is even in the public domain. Rather
than employing a client/server model, it connects directly to a single application,
and all database information is stored in a single cross-platform file, making it
suitable for single user purposes. There are multiple SQLite JDBC connectors for
Java; try one and see if it suits your needs.

Berkeley DB (http://www.oracle.com/technology/products/berkeley-db)
Named for its origin at U.C. Berkeley, this database handles data storage and
retrieval, but without a query language like SQL and without a wire protocol—
everything is on your local machine. It’s ideal for cases when you need to access
a large amount of data in a manner that’s a bit like using a flat file, but when a
straight flat file is too slow. The database is used behind many well-known soft-
ware products, and it is currently maintained by and hosted at Oracle.

Performance Aspects of Databases in Interactive Applications
At first, databases may seem the best solution for any data storage task because of
their ubiquity and relative ease of use. In the context of this book, one difficulty in
using a database is how they perform in interactive environments. If the Zipdecode
project in Chapter 6 were implemented with a database, for instance, a slight lag
would occur from the time the user hit a key to when the query results were pro-
cessed and returned to the application. That would be mitigated by using a local
database, though that’s obviously not suitable for a small interactive piece running
on the Web.

Because databases are fundamentally a means to “pull” data (rather than having it
pushed continuously, like a network stream), software that uses a database will have
to hit the database with a new query each time more data or a different set of data is
needed—which can easily cause a lag in an interface or be prohibitively cumbersome
for the system. Think of thousands of people using an interactive application that’s
connected to a database and running a new query each time the mouse is dragged to
change values in a scroll bar.

As a general rule, always consider whether a database is necessary, particularly early
on in the process of developing a visualization. Rather than figuring out how to
structure your tables and queries properly, it’s usually better to build something that
works with plain text files (referred to as flat files) first so that you can determine
whether the solution you’re pursuing is a good direction. The robustness of a data-
base system can be added later, once a working prototype has validated the design
direction.

http://www.sqlite.org/
http://www.oracle.com/technology/products/berkeley-db

Dealing with a Large Number of Files | 295

Dealing with a Large Number of Files
What happens if we extend the Zipdecode example to add geometry data for each
postal code? The geometry is available from the U.S. Census Bureau (http://www.
census.gov/geo/ZCTA/zcta.html) and averages about 20 lines of coordinates for each
code. You might store the information in multiple files for quick access, but given that
you’re looking at more than 45,000 files, that can be daunting. They might eventually
be put into a database, but for testing, it’s often simpler to keep them local.

In such a case, don’t put a huge number of files in the data folder. You don’t want
them packaged and slowing down the download. Instead, remove the data from the
data folder before exporting, and then create a data folder adjacent to the .jar file
that is created. Because that directory is found relative to the .jar file, the files will
still load properly even when deployed online.

You should also consider a scheme to subdivide the files into folders. Operating sys-
tems and GUI-based file browsers become extremely inefficient when asked to access
folders with a large number of files (the effective limit may be as low as 100, and is
usually no greater than 1,000). With the ZIP codes, for instance, use the first two
digits to break up the folders. The 15 folder will contain files for 15232, 15213,
15272, and so on.

When working in this manner, isolate the retrieval function from the rest of the code so
you can change the file structure later without affecting the rest of the application. For
instance, you can provide a method to get information for a ZIP code like this:

String[] getInfo(String zipCode) {
 String prefix = zipCode.subString(0, 2);
 String filename = prefix + "/" + zipCode + ".txt"
 return loadStrings(filename);
}

That also works if the files are stored on another server. Simply add the web address
of the server to the prefix:

String[] getInfo(String zipCode) {
 String prefix = "http://site.com/data/" + zipCode.subString(0, 2);
 String filename = prefix + "/" + zipCode + ".txt"
 return loadStrings(filename);
}

Or if you later move to a PHP script connected to a database (which will not need to
use subfolders or prefixes), you need only swap in a new version of the function:

String[] getInfo(String zipCode) {
 String url = "http://site.com/data/info.php?" + zipCode;
 return loadStrings(url);
}

The info.php script would simply return the lines of data for a particular zip code.

http://www.census.gov/geo/ZCTA/zcta.html
http://www.census.gov/geo/ZCTA/zcta.html

296

Chapter 10CHAPTER 10

Parsing Data 10

Parsing converts a raw stream of data into a structure that can be manipulated in
software. Lots of parsing is detective work, requiring you to spend time looking at
files or data streams to figure out what’s inside. The data might be available in an
easily parsed format (such as an RSS feed in XML format) or in a proprietary binary
format. This chapter covers some of the methods used to store data, methods for
reading common data formats, and some detective procedures for dissecting data.
Even if your particular data format is not covered in this chapter, the methods dis-
cussed are applicable to any data source.

Parsing may also seem to be quite disconnected from the actual process of data visu-
alization. However, it’s part of the process for a reason: chances are, you’ll have to
obtain data from a source that’s not under your control and will spend a lot of time
figuring out how to use the data that you’re given. This chapter aims to give you a
sense of how files are typically structured because more likely than not, the data you
acquire will be poorly documented (if it’s documented at all). Being able to recog-
nize the basic file format, or even whether the data is compressed, are valuable clues
to unpacking unknown information.

Generally, data boils down to lists (one-dimensional sets), matrices (two-
dimensional tables, such as a spreadsheet), or trees and graphs (individual “nodes”
of data and sets of “edges” that describe connections between them). Strictly speak-
ing, a matrix can be used to represent a list, or graphs can represent lists and matri-
ces, but such over-abstraction is not useful.

Levels of Effort
Throughout this book, we’ve discussed the importance of knowing when to write
generalizable code and when to write a quick hack. The parsing step is one occasion
when it’s a common issue. As an example, let’s consider parsing SVG shape data,
described later in this chapter. There are three basic scenarios:

Levels of Effort | 297

A simple hack
This can get you up and running quickly. It works especially well if your data is
not changing, or the data need not be generalized for other situations. In this
case, we’d ignore everything in the file except for certain types of shape com-
mands, e.g., only looking for “path” data and ignoring everything else.

A basic parser
This scenario is often a good solution when you need code that’s not too large,
so it can be deployed over the Web. This exceeds the simple hack, but doesn’t
quite approach a full-blown parser. The SVG parser included with Processing,
with a footprint of about 30 KB, is targeted for this category.

A full parsing API
For local applications where code footprint does not matter, a full parser might
be necessary. An example would be the Batik SVG parser (http://xmlgraphics.
apache.org/batik) from the Apache project. It’s an excellent solution, but with a
1 MB footprint for the library code, it is not suitable for some situations.

Generally speaking, each of these options takes an order of magnitude more time to
implement than the previous one. Their runtime speeds also tend to decrease as we
move down the list, although robustness and maintainability tend to increase in the
same direction. The Processing API and libraries target the first two cases, in keep-
ing with its focus on sketching, with the assumption that the third step is always
available by attaching to larger Java libraries.

Data isn’t always clean, and sometimes you have to write dirty code to parse it.
Writing parsers is easy, but writing ones that fail gracefully is not, which makes pars-
ing issues deceptively complex. You might be able to write an HTML parser in an
afternoon, but you could spend a week figuring out how to deal with all the errors
that exist in the typical HTML file and how to gracefully recover from them.

An anecdote illustrating these problems from the software engineering side is
Netscape’s decision in 1998 to rewrite its browser from scratch. Lou Montulli, a
founding engineer at Netscape, wrote:

There was good reason for a large change, but rewriting everything was a bit over-
board to say the least. I laughed heartily as I got questions from one of my former
employees about FTP code that he was rewriting. It had taken three years of tuning to
get code that could read the 60 different types of FTP servers. Those 5,000 lines of
code may have looked ugly, but at least they worked.*

In short, the perception of “ugliness” can often lead to nonessential tasks that take
you down long, unproductive paths and lead you astray from the priorities of your
project.

* http://www.joelonsoftware.com/news/fog0000000215.html

http://www.joelonsoftware.com/news/fog0000000215.html
http://xmlgraphics.apache.org/batik/
http://xmlgraphics.apache.org/batik/

298 | Chapter 10: Parsing Data

Tools for Gathering Clues
It’s important to have a decent text editor and hex viewer available for detective work
on data files. A text editor should be capable of efficiently loading files that are many
megabytes in size. A hex editor is useful when dealing with binary data because
sometimes it’s necessary to take a look at the first few bytes of a data file to identify
its type. If you’re using Unix or Linux, you’re probably already familiar with such
tools; a text editor is a fundamental utility, and the od octal dump program has been
around for decades. Here are some suggestions for Windows and Mac OS X users:

Windows

UltraEdit (http://www.ultraedit.com)

TextPad (http://www.textpad.com)
Both of these are common favorites for handling text, though they are trial-
ware and will cost a few dollars for the full version.

HexEdit (http://www.physics.ohio-state.edu/~prewett/hexedit)
A free hex editor/viewer.

HexWorkshop (http://www.hexworkshop.com)
A popular paid alternative.

Mac OS X

TextWrangler (http://www.barebones.com/products/textwrangler)
A free text editor from the makers of BBEdit (another popular and useful
text editor for the Mac).

Hex Fiend (http://ridiculousfish.com/hexfiend)
A freeware hex editor.

Command-line utilities are also very important. On Windows, be sure to install Cyg-
win (http://cygwin.com), as discussed in the “Tools for Acquiring Data from the Inter-
net” section in Chapter 9. A quick introduction to some command-line tools follows.

The | (pipe) command is used between command-line items to pass the result of one
command to another. The > operator writes the output of a command to a file, and
the >> operator does the same, but appends to the end of the file rather than over-
write the existing contents. These special characters will make more sense in the
examples given in the following list of commands:

cat
Short for concatenate. cat filename outputs the contents of a file to the console.
This is useful in combination with | so that the contents of a file can be used as
input to another process. For example, cat filename | grep potato sends the con-
tents of the file to the grep utility, which in turn pulls out and displays any lines
that contain potato.

http://www.ultraedit.com/)
http://www.textpad.com/
http://www.physics.ohio-state.edu/~prewett/hexedit/)
http://www.hexworkshop.com/
http://www.barebones.com/products/textwrangler/)
http://ridiculousfish.com/hexfiend/
http://cygwin.com/

Text Is Best | 299

more and less
These are pagers, which output a file (or some sort of input) one screenful at a
time. For instance, if the file in the previous example contained many thousands
of instances of the word potato, you could pipe the results to more so you could
view them bit by bit. Pressing the Space bar displays the next page of results,
while the Enter key shows one more line. The less command works similarly,
but it has more options; for instance, it lets you press b to move back to the
previous screen of output:

cat filename.txt | grep potato | more

head and tail
These commands display the beginning or end of a file. They’re useful for taking
a quick peek at the first (or last) 10 lines of a million-line file, for example:

head -n 10 enormousfile.txt
tail -n 10 hugefile.txt

This is a very limited introduction to these tools, but we’ll make further use of them
and similar commands. The grep command is covered in greater detail later in this
chapter, in the “Is a parser necessary?” section.

Text Is Best
Perhaps the most useful file format is simple delimited text. In this format, lines of
text are separated by delimiters (usually a tab or a comma) that separate individual
columns of a table.

Tab-Separated Values (TSV)
A TSV file contains rows of text data made up of columns separated by tab charac-
ters. The format is useful because it’s easy to parse and can be loaded and edited
with any spreadsheet program. Breaking up rows of text is simply a matter of using
split(line, TAB), which returns an array of String objects representing the columns.
(TSV files were also covered back in Chapter 6.)

Comma-Separated Values (CSV)
CSV works similarly to TSV, except that the delimiter is a , (comma) character.
Because commas might be part of the data, any column that includes a comma must
be placed inside quotes. Of course, quotes might be part of the data as well, so a pair
of double quotes is used to indicate a double quote in the data. An example explains
this much more clearly; here we’ll use a stress test compiled of cases from the article
about CSV data in Wikipedia:*

* http://en.wikipedia.org/wiki/Comma-separated_values

http://en.wikipedia.org/wiki/Comma-separated_values

300 | Chapter 10: Parsing Data

1997,Ford,E350
1997, Ford , E350
1997,Ford,E350,"Super, luxurious truck"
1997,Ford,E350,"Super ""luxurious"" truck"
1997,Ford,E350," Super luxurious truck "
"1997",Ford,E350
Year,Make,Model
1997,Ford,E350
2000,Mercury,Cougar

To parse this file (name it test.csv), use the following:

void setup() {
 String[] lines = loadStrings("test.csv");
 parse(lines);
}

void parse(String[] lines) {
 for (int i = 0; i < lines.length; i++) {
 String[] pieces = splitLine(lines[i]);
 println("line " + (i+1));
 println(pieces);
 println();
 }
}

String[] splitLine(String line) {
 char[] c = line.toCharArray();
 ArrayList pieces = new ArrayList();
 int prev = 0;
 boolean insideQuote = false;
 for (int i = 0; i < c.length; i++) {
 if (c[i] == ',') {
 if (!insideQuote) {
 // Whitespace must be trimmed between commas.
 String s = new String(c, prev, i - prev).trim();
 pieces.add(s);
 prev = i+1;
 }
 } else if (c[i] == '\"') {
 insideQuote = !insideQuote;
 }
 }
 if (prev != c.length) {
 String s = new String(c, prev, c.length - prev).trim();
 pieces.add(s);
 }
 String[] outgoing = new String[pieces.size()];
 pieces.toArray(outgoing);
 scrubQuotes(outgoing);
 return outgoing;
}

Text Is Best | 301

// Parse quotes from CSV data. Quotes around a column are common,
// and actual double quotes (") are specified by two double quotes ("").
void scrubQuotes(String[] array) {
 for (int i = 0; i < array.length; i++) {
 if (array[i].length() > 2) {
 // Remove quotes at start and end, if present.
 if (array[i].startsWith("\"") && array[i].endsWith("\"")) {
 array[i] = array[i].substring(1, array[i].length() - 1);
 }
 }
 // Make double quotes into single quotes.
 array[i] = array[i].replaceAll("\"\"", "\"");
 }
}

The output of the program is as follows:

line 1
[0] "1997"
[1] "Ford"
[2] "E350"

line 2
[0] "1997"
[1] "Ford"
[2] "E350"

line 3
[0] "1997"
[1] "Ford"
[2] "E350"
[3] "Super, luxurious truck"

line 4
[0] "1997"
[1] "Ford"
[2] "E350"
[3] "Super "luxurious" truck"

line 5
[0] "1997"
[1] "Ford"
[2] "E350"
[3] " Super luxurious truck "

line 6
[0] "1997"
[1] "Ford"
[2] "E350"

line 7
[0] "Year"
[1] "Make"
[2] "Model"

302 | Chapter 10: Parsing Data

line 8
[0] "1997"
[1] "Ford"
[2] "E350"

line 9
[0] "2000"
[1] "Mercury"
[2] "Cougar"

Note how extra spaces are removed unless they’re inside double quotes. The wrap-
per function, parse(), uses simple println() statements on a String array to list
each bit of text inside quotes, with the array index in brackets in front of it.

Although there is no CSV file format specification per se, authoritative documenta-
tion of the format can be found in RFC 4180 (http://tools.ietf.org/html/rfc4180).

Text with Fixed Column Widths
Text files are sometimes of fixed width, where each column is separated by padded
spacing so that new columns of data always start at specific positions. Fixed-width
files are becoming less common; they were used heavily in legacy computer systems
because programming languages used during that time (such as Fortran) were better
at splitting data at specific positions, rather than at specific characters:

 1 2 3
012345678901234567890123456790

apple 1456990 349.2
bear 3949 0.22
cat 33923 61.9

In this example, the first column has characters 0 through 9, the second has 10
through 19, and the final has 20 through 26.

To parse a fixed-width file, use substring() and trim() to slice the information:

String name = line.substring(0, 10).trim();
String string1 = line.substring(10, 20).trim();
int value1 = int(string1);
String string2 = line.substring(20, 27).trim();
float value2 = float(string2);

Note that the second parameter of substring() is not inclusive; using substring(10,
20) will start at character 10 and move up to, but not include, 20.

The trim() method removes additional whitespace padding from the sides of the
data so that name for the first line is "apple" instead of "apple ".

One tricky part of dealing with fixed-width text is that some lines may be incomplete,
in which case, calling substring() may return an ArrayIndexOutOfBoundsException.
For instance, if the file reads:

http://tools.ietf.org/html/rfc4180

Text Markup Languages | 303

apple 1456990 349.2
bear 3949
cat 33923 61.9

the following will produce an error when it reads the second line:

String string2 = line.substring(20, 27).trim();

One option is to check whether the line has enough characters before calling
substring():

String string2 = "";
if (line.length() >= 27) {
 string2 = line.substring(20, 27).trim();
}

Note how string2 is declared and assigned with an empty value outside the if state-
ment so that missing data will still be handled properly, rather than string2 being set
to null and causing a later error.

A better option would be to keep an array of indices where columns start, use this
array to split as much of the line as possible into pieces, and then return the array of
String objects to be reassigned to named String objects. Regular expressions are
another option for unpacking fixed-width text.

Text Markup Languages
To allow flexibility in structure—such as including arbitrary numbers of elements of
any size in varying orders—many formats embed structure tags in their content.
Markup languages, such as HTML and XML, are prime examples—where sets of
tags delineate and identify the content found in the document. Such documents are
relatively easy to parse, and they are fortunately becoming more common, particu-
larly XML.

But even though the documents are designed to facilitate parsing, keep in mind
which data you actually need from the file. Is it necessary to have a parser at all?
Does including a robust parser warrant the additional code size when all you really
need is a specific <TABLE> element from an HTML file? In the next section, we’ll dis-
cuss a range of options.

HyperText Markup Language (HTML)
When parsing data, the first thing to do is take a look at the file. Since the very earli-
est web browsers, the View Source command has given away the secrets of web
development methods and page content. But nowadays the HTML code found in
web pages is less likely to be intended for human consumption, either because of
intentional obfuscation or because the page was generated dynamically by a script.

304 | Chapter 10: Parsing Data

At the very minimum, cleaning up tags and indenting the HTML to reveal its struc-
ture can be a big help. Tidy, an application that originated from the W3C (http://
www.w3.org/People/Raggett/tidy), massages HTML documents into a more regular
format, normalizing upper- and lowercase, repairing missing tags, and so on. The
project continues at Sourceforge (http://tidy.sourceforge.net), which also has down-
loads for various platforms. (Some Mac OS X and Linux systems already have it
installed.) The command-line version is helpful for taking a look at documents by
hand. For instance, the following command performs a basic cleanup and indent
operation on the test.html file, creating another called test-tidy.html:

tidy -indent test.html > test-tidy.html

The contents of test.html look like:

<TABLE>
<TR> <TD> first col </TD>

<TD> second col </TD>

<TD> <TABLE> <TR> <TD> table two embedded </TD> </TR> </TABLE>
</TABLE>

But the tidied version in test-tidy.html contains:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>
<head>
 <meta name="generator" content=
 "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org">

 <title></title>
</head>

<body>
 <table>
 <tr>
 <td>first col</td>

 <td>second col</td>

 <td>
 <table>
 <tr>
 <td>table two embedded</td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
</body>
</html>

http://www.w3.org/People/Raggett/tidy/
http://www.w3.org/People/Raggett/tidy/
http://tidy.sourceforge.net/

Text Markup Languages | 305

Note the new DOCTYPE declaration and the addition of tags such as <html> and <body>
to make a more proper HTML file. The -indent option helps clarify the table struc-
ture, so now it’s easier to understand the table structure in the original file.

Tidy has many other useful options that can reformat a document as XHTML or
XML; see its reference pages or use tidy -help to get a list of command-line options.

Embedding Tidy into a sketch

In this book, we’re most interested in data that changes over time, so you may need
to run Tidy on pages dynamically. A Java version that’s suitable for use in Process-
ing is available at http://sourceforge.net/projects/jtidy.

Get the latest download, find its .jar file, and add it to your sketch. Adding the file
will add the import statements for any packages found in the JAR (although they will
not be shown). If you’re not using Processing, add the following to your code:

import org.w3c.tidy.*;

An example of using Tidy follows:

try {
 String[] lines = loadStrings("http://www.oreilly.com");
 String originalPage = join(lines, "");

 byte[] utf;
 utf = originalPage.getBytes("UTF8");
 ByteArrayInputStream utfis = new ByteArrayInputStream(utf);

 Tidy tidy = new Tidy();
 tidy.setUpperCaseTags(true);
 tidy.setUpperCaseAttrs(false);
 tidy.setCharEncoding(Configuration.UTF8);
 tidy.setEncloseText(true);
 tidy.setEncloseBlockText(true);
 tidy.setQuoteAmpersand(false);
 tidy.setQuoteNbsp(false);
 tidy.setQuoteMarks(false);

 // Ignore any errors.
 PrintWriter ignored = new PrintWriter(new ByteArrayOutputStream());
 tidy.setErrout(ignored);

 // Write the contents to a ByteArrayOutputStream.
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 tidy.parseDOM(utfis, baos);

 String tidiedPage = baos.toString("UTF8");
 println(tidiedPage);

} catch (UnsupportedEncodingException e) {
 e.printStackTrace();
}

http://sourceforge.net/projects/jtidy

306 | Chapter 10: Parsing Data

The beginning and end of this code mostly deal with converting the data to and from
a stream of bytes in UTF-8 format. The code in the middle sets various configura-
tion options to handle the specifics of how the file should be formatted. The newly
cleaned page is written to tidiedPage, which is now ready for use.

Is a parser necessary?

Even though your input document might be HTML, it’s possible that your data is
not even complex enough to require a full HTML parser (especially if you use some-
thing like Tidy on it first). For instance, say we wanted to study who is speaking
through the course of Shakespeare’s As You Like It. The play can be found at http://
shakespeare.mit.edu/asyoulikeit/full.html, and a View Source reveals a document with
an extremely regular format:

<H3>ACT I</h3>
<h3>SCENE I. Orchard of Oliver's house.</h3>
<p><blockquote>

<i>Enter ORLANDO and ADAM</i>
</blockquote>

ORLANDO
<blockquote>
As I remember, Adam, it was upon this fashion

bequeathed me by will but poor a thousand crowns,

and, as thou sayest, charged my brother, on his

blessing, to breed me well: and there begins my

sadness. My brother Jaques he keeps at school, and

<!-- some lines omitted -->
</blockquote>

ADAM
<blockquote>
Yonder comes my master, your brother.

</blockquote>

ORLANDO
<blockquote>
Go apart, Adam, and thou shalt hear how he will

shake me up.

<p><i>Enter OLIVER</i></p>
</blockquote>

Tallying individual speakers is simply a matter of looking for lines like:

ADAM

This is a task easily handled by a regular expression (see examples in Chapters 5 and
8). The same is true for other elements of the play, and depending on which
information is of interest, you may be able to avoid a full parser in favor of cherry-
picking information using a combination of regular expressions or String.indexOf()

http://shakespeare.mit.edu/asyoulikeit/full.html
http://shakespeare.mit.edu/asyoulikeit/full.html

Text Markup Languages | 307

to test for lines of interest. Command-line utilities, such as grep, make it easy to
check hypotheses, such as “all lines with a tag contain names of the play’s char-
acters.” Download the full.html page from the previous link, and then use:

grep '' full.html

from the command line to check the file. The command produces:

ORLANDO
ADAM
ORLANDO
OLIVER
ORLANDO
OLIVER
ORLANDO
OLIVER
ORLANDO
OLIVER
ORLANDO
OLIVER
...and 800 additional lines like these

That confirms our hypothesis, so part of the puzzle is solved. Text of speech can be
sussed out with:

 grep '<A NAME' full.html

But it includes the names of speakers found in the preceding output. Piping the out-
put of this command through the inverse of the previous command:

(grep -v)

gives us everything that matches <A NAME but does not match :

grep '<A NAME' full.html | grep -v ''

which will be all the spoken portions:

As I remember, Adam, it was upon this fashion

bequeathed me by will but poor a thousand crowns,

and, as thou sayest, charged my brother, on his

blessing, to breed me well: and there begins my

Having confirmed this on the command line, the same can be done in code:

String[] lines = loadStrings("full.html");
for (int i = 0; i < lines.length; i++) {
 if (lines[i].indexOf("<A NAME") != -1) {
 if (!lines[i].indexOf("")) {
 println(lines[i]);
 }
 }
}

A combination of code and command-line methods contribute to the early part of
the detective work in figuring out how to parse files. It may also lead you to a quick
hack that will cover your parsing needs without unnecessary levels of abstraction.

308 | Chapter 10: Parsing Data

If the site from which you got the data makes a minor change in the structure of
this data, it can of course break your quick-and-dirty extraction method—but
sometimes such changes can break even a full-blown parser, so you may be just as
safe with this extraction method.

Using Swing’s built-in HTML parser

In many cases, you’ll want a full HTML parser. As it happens, the Swing API con-
tains an HTML parser to support its HTMLEditorKit classes. Other Java programs can
make use of the parser by creating a subclass of HTMLEditorKit.ParserCallback. This
parser uses an event-driven model of handling the data, running callback functions
to handle each piece of the HTML document’s hierarchy. An example sketch that
extracts links follows:

import javax.swing.text.*;
import javax.swing.text.html.*;

void setup() {
 Reader r = createReader("HTML file or URL here");
 String[] list = extractLinks(r);
 println(list);
}

String[] extractLinks(Reader reader) {
 LinkHandler handler = new LinkHandler();
 parse(reader, handler);
 return handler.getLinks();
}

void parse(Reader reader, HTMLEditorKit.ParserCallback handler) {
 HTMLEditorKit.Parser parser = new HTMLEditorKit() {
 public HTMLEditorKit.Parser getParser() {
 return super.getParser();
 }
 }.getParser();
 try {
 parser.parse(reader, handler, true);
 } catch (Exception e) {
 e.printStackTrace();
 }
}

In a second tab named LinkHandler, add the following code:

class LinkHandler extends HTMLEditorKit.ParserCallback {
 ArrayList links;

 LinkHandler() {
 links = new ArrayList();
 }

Text Markup Languages | 309

 public String[] getLinks() {
 String[] outgoing = new String[links.size()];
 links.toArray(outgoing);
 return outgoing;
 }

 public void handleStartTag(HTML.Tag tag, MutableAttributeSet a, int pos) {
 if (tag == HTML.Tag.A) {
 String href = (String) a.getAttribute(HTML.Attribute.HREF);
 // Skip tags, where HREF is not present.
 if (href != null) {
 links.add(href);
 }
 }
 }

 // Handle the end of a tag (e.g., the for an <A> start tag).
 public void handleEndTag(HTML.Tag tag, int pos) {
 }

 // Handle actual content inside a tag.
 public void handleText(char[] c,int pos) {
 }

 // Handle a tag that is not a start/end pairing,
 // e.g., , which has no corresponding tag.
 public void handleSimpleTag(HTML.Tag t, MutableAttributeSet a,int pos) {
 }

 // Handle the content of a comment.
 public void handleComment(char[] data, int pos) {
 }

 // Report errors to the user.
 public void handleError(String errorMsg,int pos) {
 }
}

Only the handleStartTag method is implemented in this example, but to handle
other tags, add code to the other methods (handleEndTag, handleText, and the rest).
To adapt this example to extract image links, you’d need only a handleSimpleTag
method. For instance:

public void handleSimpleTag(HTML.Tag t, MutableAttributeSet a, int pos) {
 if (tag == HTML.Tag.IMG) {
 String src = (String) a.getAttribute(HTML.Attribute.SRC);
 if (src != null) {
 PImage img = loadImage(src);
 // ...do something here with the image
 }
 }
 }

310 | Chapter 10: Parsing Data

This code doesn’t account for relative URLs, so <IMG SRC="http://processing.org/
images/feed.gif"> will work, but will not. For these cases, check
whether the URL starts with http:// and if not, prepend the location of the page.

Many tags and attributes are supported; a full listing can be found in the Java docu-
mentation for HTML.Tag:

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/text/html/HTML.Tag.html

and HTML.Attribute:

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/text/html/HTML.Attribute.
html

Parsing and manipulating tables from HTML files

Another version of this code, available on the book’s web site, can load and parse
tables from HTML documents and convert them to Table objects (which were first
used in Chapter 3). This covers the most common situation for screen-scraping:
pulling tables from HTML content. The code is at http://benfry.com/book/parse/
HtmlTableParser.pde.

It also relies on the Table class from the mapping example, found at http://benfry.
com/book/map/Table.pde.

The parser gets a list of tables, each of which can be retrieved with the getTable()
command. Then, you can use methods such as getFloat() and getString() from the
Table class to retrieve specific values:

// Specify a file or URL from which to grab the data.
Reader r = createReader("testing.html");
// Parse tables from this file.
HtmlTableParser htp = new HtmlTableParser(r);
// Get the second table from the file (items are zero indexed).
Table t = htp.getTable(1);
// Get a float from the second column from the third row.
float v = t.getFloat(2, 1);

Another option is to get all the tables as an array. Then, you can put the data into
some other convenient, low-overhead format for further processing, such as resaving
each table in the document as an individual .tsv file:

 Reader r = createReader("testing.html");
 HtmlTableParser htp = new HtmlTableParser(r);
 Table[] tables = htp.getTables();
 for (int i = 0; i < htp.getTableCount(); i++) {
 String filename = nf(i+1, 2) + ".tsv";
 println("Writing table " + filename);
 PrintWriter w = createWriter(filename);
 tables[i].write(w);
 }

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/text/html/HTML.Tag.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/text/html/HTML.Attribute.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/text/html/HTML.Attribute.html
http://benfry.com/book/parse/HtmlTableParser.pde
http://benfry.com/book/parse/HtmlTableParser.pde
http://benfry.com/book/map/Table.pde
http://benfry.com/book/map/Table.pde

Text Markup Languages | 311

But remember that if you’re looking for static HTML table data, you can always use
the method shown in Chapter 5 to extract the table using OpenOffice or Microsoft
Excel. This method will work for saving an HTML table to a file, but it requires man-
ual labor, so it’s not suitable for data that changes over time.

Other HTML parser libraries

The Processing libraries page (http://processing.org/reference/libraries) includes other
contributed libraries that handle HTML parsing. You may find one of these suitable
for your tasks.

Another option is the HTML Parser project on Sourceforge (http://htmlparser.
sourceforge.net), which provides a differently styled API for reading HTML
documents.

Writing a custom HTML parser

Writing an HTML parser might not seem terribly difficult—just look for left and
right brackets, read tags, look for spaces, get the attributes, etc.—but it quickly gets
complicated in exception cases. Tags and attributes might be mixed between upper-
and lowercase, parameters can be found in any order, extra spacing is erratic, and
end tags often go missing, as the following example shows:

// Oww, my afternoon
something
something
something
something

A few hours dealing with such issues will leave most people looking for more readily
available alternatives. But if the alternatives discussed earlier don’t suffice, one
option is to use JTidy to first clean the input HTML before parsing it in your code.
This will help you avoid the quirkiness of the source HTML and clean it up so that
you don’t have to rely on the parser to handle awkward inconsistencies.

Extensible Markup Language (XML)
Many tools exist for viewing and editing XML files. Perhaps the simplest, most
readily available viewers are in fact web browsers. Both Firefox and Internet Explorer
have the ability to display XML documents as a tree, which can be useful for basic
XML viewing when other tools are unavailable.

Cleaning up XML

Tidy (described in the previous section) can also be applied to XML documents. Add
-xml to the command-line options to treat the file as an XML document:

tidy -xml -indent file.xml > file-tidy.xml

http://processing.org/reference/libraries
http://htmlparser.sourceforge.net/
http://htmlparser.sourceforge.net/

312 | Chapter 10: Parsing Data

The -asxml and -asxhtml switches convert HTML documents to well-formed
XHTML, making the document readable by the Processing XML library, which
requires clean files. And the same process can be used with JTidy so that the conver-
sion can happen within a sketch.

Example: Using the Processing XML library to read geocoding data

The Processing XML library, first mentioned in Chapter 2, is a minimal XML parser
based on the open source project NanoXML. Its small download footprint (about
30K) makes it ideal for online use and simple parsing tasks. We’ll cover more full-
featured libraries later in this section, but first we’ll use the built-in library to do
some basic parsing. To use the XML library in a project, choose Sketch ➝ Import
Library ➝ XML. The library parses XML files into a tree of XMLElement objects.

For this example, we’ll use Google’s geocoding service. Geocoding is the process of
converting a place name in some irregular format into a more specific format, such as
a set of latitude and longitude coordinates and a normalized address structure. The
geocoding service is described in detail at http://www.google.com/apis/maps/
documentation/#Geocoding_HTTP_Request.

A geocode request takes the form of a URL prefixed with http://maps.google.com/
maps/geo?q=, followed by URL-encoded text for the location you’re looking for and
an API key. To use the example, first sign up for a Google Maps API key at http://
www.google.com/apis/maps/signup.html, and then replace the text for API_KEY with
your own (it will be 60 or 70 letters and numbers):

import processing.xml.*;

String API_KEY = "YOUR KEY HERE";
String location = "1600 Amphitheatre Parkway, Mountain View, CA";

String locationEncoded = URLEncoder.encode(location);
String url = "http://maps.google.com/maps/geo?q=" +
 locationEncoded + "&output=xml&key=" + API_KEY;

XMLElement xml = new XMLElement(this, url);

The following is a response from the geocoding server, formatted for readability:

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://earth.google.com/kml/2.0">
 <Response>
 <name>1600 Amphitheatre Parkway, Mountain View, CA</name>
 <Status>
 <code>200</code>
 <request>geocode</request>
 </Status>
 <Placemark>
 <address>1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA</address>
 <AddressDetails Accuracy="8" xmlns="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0">
 <Country>

http://www.google.com/apis/maps/documentation/#Geocoding_HTTP_Request
http://www.google.com/apis/maps/documentation/#Geocoding_HTTP_Request
http://www.google.com/apis/maps/signup.html
http://www.google.com/apis/maps/signup.html

Text Markup Languages | 313

 <CountryNameCode>US</CountryNameCode>
 <AdministrativeArea>
 <AdministrativeAreaName>CA</AdministrativeAreaName>
 <SubAdministrativeArea>
 <SubAdministrativeAreaName>Santa Clara</SubAdministrativeAreaName>
 <Locality>
 <LocalityName>Mountain View</LocalityName>
 <Thoroughfare>
 <ThoroughfareName>1600 Amphitheatre Pkwy</ThoroughfareName>
 </Thoroughfare>
 <PostalCode>
 <PostalCodeNumber>94043</PostalCodeNumber>
 </PostalCode>
 </Locality>
 </SubAdministrativeArea>
 </AdministrativeArea>
 </Country>
 </AddressDetails>
 <Point>
 <coordinates>-122.083739,37.423021,0</coordinates>
 </Point>
 </Placemark>
 </Response>
</kml>

To get the name of the root element, add the following, which will write kml to the
console:

println("Name of root element is " + xml.getName());

To get the status code item, specify a path to a child element with the getChild()
method and then use getContent() to read the contents of the code element (every-
thing between <code> and </code>):

XMLElement statusCodeElement = xml.getChild("Response/Status/code");
String statusCodeStr = statusCodeElement.getContent();
println("Status code: " + statusCodeStr);

Note that the getChild() method does not need the kml item at the beginning
because it is the item being queried.

The int() cast converts the String to an int for easier use:

int statusCode = int(statusCodeStr);

To get the address, use:

XMLElement addressElement = xml.getChild("Response/Placemark/address");
String addressStr = addressElement.getContent();
println("Address: " + addressStr);

Or to parse the location’s longitude and latitude coordinates:

XMLElement coordsElement =
 xml.getChild("Response/Placemark/Point/coordinates");
String coordsStr = coordsElement.getContent();
String[] coords = split(coordsStr, ',');

314 | Chapter 10: Parsing Data

float lon = parseFloat(coords[0]);
float lat = parseFloat(coords[1]);
println("Longitude: " + lon);
println("Latitude: " + lat);

The following are the main XMLElement methods:

getChild(String item)
Searches the (direct) children for a particular name or for a series of items (sepa-
rated by slashes, as shown in the earlier example) in the hierarchy.

getChildCount()
Returns the number of child elements this node has.

getChild(int index)
Returns a child by index (its order in the original file).

getChildren()
Returns all children as an XMLElement[] array.

getChildren(String path)
Like the getChild() method, except that it returns all matches for that name. For
instance, if there were multiple <address> items, xml.getChildren("Response/
Placemark/address") would return an array of XMLElement objects for each match.

More about the XML library can be found in the reference for XMLElement at http://
processing.org/reference/libraries/xml/XMLElement.html.

Other methods for parsing XML

As already mentioned, the Processing XML library is a fairly basic means of parsing
XML data. Other common options include the following:

Simple API for XML (SAX)
An event-based model for parsing. SAX is built into later versions of Java in the
org.xml.sax package. To use it, implement a ContentHandler object that imple-
ments methods such as startElement() and endElement(), which are called as
XML data is parsed. This is a similar method to the Swing HTML parser shown
earlier and more lightweight than the alternatives discussed next. More about
SAX can be found online at http://www.saxproject.org.

XML Path Language (XPath)
Essentially a far more sophisticated method of the getChild() and getChildren()
methods that use paths to locate XML data in a tree. XPath specifies a query lan-
guage that can be used to search for and filter a set of items in a flexible manner.
XPath support is included in Java 1.5 and later. See http://www.w3.org/TR/xpath.

Document Object Model (DOM)
A method for manipulating XML, also familiar to HTML and JavaScript
developers, the DOM specifies an interface for manipulating the content of a
structured document. See http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-
20001113.

http://processing.org/reference/libraries/xml/XMLElement.html
http://processing.org/reference/libraries/xml/XMLElement.html
http://www.saxproject.org/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

Text Markup Languages | 315

In addition to the Processing libraries page, other Java-based XML parsers can be
found on the Web. One popular option is the Xerces project from the Apache
Software Foundation (http://xerces.apache.org/xerces-j and http://xerces.apache.org/
xerces2-j). The Xerces project provides a full and robust XML parser, though at the
expense of size. Such a parser might be suitable for quick mockups or applications that
will run locally, rather than those distributed over the Web.

JavaScript Object Notation (JSON)
We first saw JSON data in Chapter 5. It’s a simple format used for encoding data,
primarily for use with JavaScript because JSON is valid JavaScript syntax. A docu-
mentation (and advocacy) site can be found at http://www.json.org. Pages that make
heavy use of JavaScript and data (such as AJAX sites) are often peppered with JSON
code. This is an example (from json.org):

{"widget": {
 "debug": "on",
 "window": {
 "title": "Sample Konfabulator Widget",
 "name": "main_window",
 "width": 500,
 "height": 500
 },
 "image": {
 "src": "Images/Sun.png",
 "name": "sun1",
 "hOffset": 250,
 "vOffset": 250,
 "alignment": "center"
 },
 "text": {
 "data": "Click Here",
 "size": 36,
 "style": "bold",
 "name": "text1",
 "hOffset": 250,
 "vOffset": 100,
 "alignment": "center",
 "onMouseUp": "sun1.opacity = (sun1.opacity / 100) * 90;"
 }
}}

The json.org site has code for reading and writing JSON in dozens of languages,
including Java (http://www.json.org/java). Using the code with Processing is a matter
of compiling the .java files provided. Download the .zip file containing the source.
Unpacking it will produce a folder named org. To compile the code, navigate to that
directory from a terminal window, and enter:

javac -source 1.3 -target 1.1 org/json/*.java

Then, to turn it into a .jar file:

http://xerces.apache.org/xerces-j/
http://xerces.apache.org/xerces2-j/
http://xerces.apache.org/xerces2-j/
http://www.json.org/
http://www.json.org/java/

316 | Chapter 10: Parsing Data

zip -r json.jar org

Drag json.jar to any sketch for which you’d like to use the library, and use the exam-
ples on the JSON site as a guide for getting started.

Regular Expressions (regexps)
Regular expressions (regexps) are a powerful means for text matching that exceeds
the abilities of split() without getting into a full parser. We first used regular
expressions in Chapter 5, where we employed them on a simple data set. The source
to Record.java in Chapter 8 covers a much more complicated example. It’s beyond
the scope of this book to cover them in detail, but those two examples should pro-
vide sufficient background to get you started.

The syntax for regexps is arcane at first, but you’ll find that in practice you need to
understand only a dozen different operations to get most tasks done. To that end,
you may find something like O’Reilly’s Regular Expression Pocket Reference by Tony
Stubblebine useful. Or, if you’re really into it, Mastering Regular Expressions by
Jeffrey E. F. Friedl is available for advanced users.

Grammars and BNF Notation
A step past regexps and markup languages are full grammars in Backus Naur Form
(BNF), most commonly used for parsing programming languages. They’re also use-
ful in protocol documents (e.g., the documentation for the HTTP standard that
describes communication between web browsers and web servers; see http://www.
w3.org/Protocols/rfc1945/rfc1945) as a flexible means of enumerating the structure of
a protocol. An example of a grammar for U.S. postal addresses (http://en.wikipedia.
org/wiki/Backus%E2%80%93Naur_form) follows:

<postal-address> ::= <name-part> <street-address> <zip-part>

 <name-part> ::= <personal-part> <last-name> <opt-jr-part> <EOL>
 | <personal-part> <name-part> <EOL>

 <personal-part> ::= <first-name> | <initial> "."

<street-address> ::= <opt-apt-num> <house-num> <street-name> <EOL>

 <zip-part> ::= <town-name> "," <state-code> <ZIP-code> <EOL>

As can be seen in this example, the grammar is built all the way up from small,
character-level components (such as the period and comma characters) into more
complicated structures, such as a quoted string. A BNF grammar, which is readable
by humans, is usually compiled to program code by a parser generator, which
converts the logic to code that actually parses data. The resulting code is far less
intelligible than the original grammar, but it is very efficient.

http://www.w3.org/Protocols/rfc1945/rfc1945
http://www.w3.org/Protocols/rfc1945/rfc1945
http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

Compressed Data | 317

A grammar can solve nearly any parsing task, but it is several degrees more complex
than simple hacks, such as searching for particular letter sequences, as described at
the beginning of the chapter. But don’t let yourself get bogged down in the possibili-
ties—be sure to choose the simplest tool that can accomplish your goal.

Compressed Data
It could be argued that compression is really more to do with how data is stored and
acquired than how it is parsed, but we discuss it here because of its influence on the
“detective work” of figuring out how to parse data.

GZIP Streams (GZ)
GZIP is a helpful stream compression system, meaning that data can be serially
encoded into gzip format. It’s efficient for compressing text data, and on today’s
machines, it requires negligible processor time to compress or uncompress a stream
as GZIP data.

The Processing API methods that read files (loadStrings(), createReader(), and
others) automatically decompress any file ending in .gz. The same goes for file writ-
ing methods (saveStrings(), createWriter()), which automatically apply GZIP
compression to any information written to a file with .gz at the end of its name.

Because of the benefits I mentioned, many data files or streams are GZIP com-
pressed. If you’re trying to figure out the format of a file, a GZIP file can be identi-
fied in a hex editor. The first two bytes will be 0 × 1F8B, then usually 0 × 08 (to
specify “deflate”). The byte after that will be 0 × 08 if the filename is present (and a
few characters later, the original name of the file can be seen), or 0 × 00 if no file-
name is present. Two bytes (four hex chars) follow, then 0 × 22 46 00 03. Being able
to identify a GZIP file is especially useful when trying to figure out wire protocols
using a program such as Wireshark (discussed later). It’s also common to find XML
files that are GZIP compressed, and while the contents may look like garbage, a
quick look at the first few bytes in a hex viewer is a giveaway.

The GZIP specification can be found in RFC 1952 (http://tools.ietf.org/html/rfc1952).
Because of bugs in various versions of Java, it’s generally good to avoid using GZIP
compression on files larger than 2 GB.

PKZip files (ZIP)

ZIP files are also quite ubiquitous. Many programs use ZIP as a container format for
their file formats. JAR archive files are in fact ZIP files, as are OpenOffice ODT files.
A file with PK as the first two characters is often in ZIP format. Opening it with a ZIP
archive tool or using unzip -l filename.odt on a command line will either reveal the
contents of the file or produce an error if it’s not actually in ZIP format.

http://tools.ietf.org/html/rfc1952

318 | Chapter 10: Parsing Data

ZIP uses a similar algorithm to GZIP, though it can be used to store multiple files
and their directory structure, plus some additional metadata (e.g., creation and mod-
ification times).

ZIP files are useful in visualizations that deal with large amounts of text data. The
following example reads a ZIP file and prints the name of each entry:

void setup() {
 readZipFile("test.zip");
}

void readZipFile(String filename) {
 try {
 String path = dataPath(filename);
 ZipFile file = new ZipFile(path);
 Enumeration entries = file.entries();
 while (entries.hasMoreElements()) {
 ZipEntry entry = (ZipEntry) entries.nextElement();
 String name = entry.getName();
 println(name);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
}

The following modification extracts all files from this ZIP file. The important part of
this code is checking whether the entry is a directory, and if it is not, getting the
InputStream object for the uncompressed data. In this example, it’s read using
loadBytes(), but loadStrings() or createReader() could be used for text, or any
other Java method for handling InputStream data. Unlike other examples that han-
dle files, subfolders in ZIP files need not be handled recursively. The name of each
file is stored as its full path, so there’s no need to dig through successive directories:

void setup() {
 readZipFile("test.zip");
}

void readZipFile(String filename) {
 try {
 String path = dataPath(filename);
 ZipFile file = new ZipFile(path);
 Enumeration entries = file.entries();
 while (entries.hasMoreElements()) {
 ZipEntry entry = (ZipEntry) entries.nextElement();
 String name = entry.getName();
 String outputPath = savePath(name);
 if (entry.isDirectory()) {
 File dir = new File(outputPath);
 // Create directory if it does not exist.
 dir.mkdirs();
 } else {

Compressed Data | 319

 InputStream stream = file.getInputStream(entry);
 byte[] b = loadBytes(stream);
 saveBytes(outputPath, b);
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
}

Writing ZIP files is also straightforward. The following code writes a list of files
(specified by their full path in the paths array) to a ZIP file:

void writeZipFile(String filename, String[] paths) {
 String path = savePath(filename);
 try {
 FileOutputStream fos = new FileOutputStream(path);
 ZipOutputStream zos = new ZipOutputStream(fos);

 for (int i = 0; i < paths.length; i++) {
 ZipEntry entry = new ZipEntry(paths[i]);
 zos.putNextEntry(entry);
 byte[] b = loadBytes(paths[i]); // get byte array of data
 zos.write(b);
 zos.closeEntry();
 }

 zos.flush();
 zos.close();

 } catch (IOException e) {
 e.printStackTrace();
 }
}

The zos.write() line could be used to write any kind of data. In a visualization
project, you’re more likely to write data from your results, not the contents of exist-
ing files on the disk—but the data is handled the same way in either case.

Like GZIP, it’s best to avoid using or creating ZIP files that are larger than 2 GB
because of bugs and inconsistent support across operating systems and versions of
Java.

Other compression formats

Other common compression formats include Tape Archive (TAR, common on Unix
systems), StuffIt (SIT and SITX, common on the Mac), and bzip2 (bz2), an extremely
compact block compression algorithm that is not as fast as gzip and therefore more
useful as an archive format (e.g., for compressing large downloads).

320 | Chapter 10: Parsing Data

Vectors and Geometry
The following sections describe file formats used for reading and writing 2D and 3D
graphical data.

Scalable Vector Graphics (SVG)
The SVG format (http://www.w3.org/Graphics/SVG) is 2D shape data written as
XML. The format was developed by the W3C and is most commonly read and writ-
ten by Inkscape (http://inkscape.org) and Adobe Illustrator.

An example SVG file from the SVG 1.1 specification (http://www.w3.org/TR/SVG11)
follows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <desc>Example ellipse01 - examples of ellipses</desc>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="1198" height="398"
 fill="none" stroke="blue" stroke-width="2" />
 <g transform="translate(300 200)">
 <ellipse rx="250" ry="100"
 fill="red" />
 </g>
 <ellipse transform="translate(900 200) rotate(-30)"
 rx="250" ry="100"
 fill="none" stroke="blue" stroke-width="20" />
</svg>

The Processing SVG library can read simple documents, get subelements, and draw
them on-screen. The following program opens an SVG-formatted map of the United
States from Wikipedia (http://commons.wikimedia.org/wiki/Image:Blank_US_Map.
svg) and displays it on the screen:

import processing.candy.*;

SVG svg;

void setup() {
 size(1368, 936);
 svg = new SVG(this, "map3.svg");
}

void draw() {
 background(255);
 svg.draw(0, 0);
}

http://www.w3.org/Graphics/SVG/
http://inkscape.org
http://www.w3.org/TR/SVG11/
http://commons.wikimedia.org/wiki/Image:Blank_US_Map.svg
http://commons.wikimedia.org/wiki/Image:Blank_US_Map.svg

Vectors and Geometry | 321

This example uses the mapping code from Chapter 3, but changes it to grab individ-
ual states from the SVG file and color them based on their data values. In the map
file, each shape object is an individual state, named by its two-digit code. In the
draw() method that follows, the get() method returns a named shape from an SVG
file. The shape will retain its original position, so each state will maintain its location
relative to the other state outlines. The ignoreStyles() method indicates that all
drawing attributes in the SVG file (such as fill, stroke, or stroke weight) should be
ignored so that the fill and stroke can be specified in the code that precedes the
state.draw() line:

import processing.candy.*;

SVG svg;
Table data;
float dataMin = -7;
float dataMax = 11;

void setup() {
 size(1368, 936);

 svg = new SVG(this, "map3.svg");
 data = new Table("random.tsv");
}

void draw() {
 background(255);
 noStroke();
 smooth();
 svg.ignoreStyles();

 int rowCount = data.getRowCount();
 for (int row = 0; row < rowCount; row++) {
 String abbrev = data.getRowName(row);
 SVG state = svg.get(abbrev);
 if (state == null) {
 println("no state found for " + abbrev);
 } else {
 float value = data.getFloat(row, 1);
 if (value >= 0) {
 float amt = norm(value, 0, dataMax);
 color c = lerpColor(#FFFFFF, #221177, amt);
 fill(c);
 } else {
 float amt = norm(value, 0, dataMin);
 color c = lerpColor(#FFFFFF, #992211, amt);
 fill(c);
 }
 state.draw(0, 0);
 }
 }
}

322 | Chapter 10: Parsing Data

Compare the image in Figure 10-1 with those in Chapter 3.

You can also write SVG files from a Processing sketch through user-contributed
libraries linked from the libraries page (http://processing.org/reference/libraries).

As mentioned at the beginning of this chapter, the Batik SVG parser (http://
xmlgraphics.apache.org/batik) from the Apache project is a much more complete
implementation of the SVG specification. Its libraries are much larger (approxi-
mately 1 MB), so they’re less suitable for online use, but they are a good choice when
robustness is required.

OBJ and AutoCAD DXF
OBJ is a simple 3D file format for reading and writing. Because of its simplicity (and
the openness of the specification), the OBJ format has become a common inter-
change format for 3D applications. An open source OBJ loader is available from the
Processing libraries page, and it can be used to import geometry from other 3D appli-
cations, such as 3D Studio Max. The advantage of importing is that you can handle
the complicated 3D geometry in a tool more suited for developing shapes, rather
than building every last vertex from code.

Figure 10-1. Adaptation of the mapping example to use SVG shape data

http://processing.org/reference/libraries/
http://xmlgraphics.apache.org/batik/
http://xmlgraphics.apache.org/batik/

Vectors and Geometry | 323

AutoCAD DXF, on the other hand, is the opposite kind of format. It’s complicated
and closed, leading people to deal with it only when absolutely necessary. Process-
ing can use the built-in DXF library to write files with beginRaw(). The beginRaw()
method echoes raw geometry (lines and triangles) to a second renderer, usually the
DXF or PDF renderer. This method can be used to produce vector images of a 3D
scene drawn using the Processing API, and the reference for the DXF library includes
examples that illustrate how this is done. There is no support for reading DXF files,
however, because the format is far too complicated.

PostScript (PS) and Portable Document Format (PDF)
PostScript was an all-text programming language for drawing shapes first developed
in 1983 (see Inside the Publishing Revolution: The Adobe Story by Pamela Pfiffner
[Adobe Press] for the history). As the engine that drove the laser printer, PostScript
contributed significantly to the origin of desktop publishing. A simple PostScript
document takes the form:

%!PS
20 20 moveto
80 80 lineto
showpage

As such, it’s easy to write very simple PostScript text documents, particularly from
Processing, whose API is heavily influenced by PostScript. Applications such as Illus-
trator and Photoshop can read these files and render them, or resave them to other
formats. However, PostScript does not include support for gradients, transparency,
and other features expected of modern imaging systems.

With PostScript unsuitable as a document exchange format (and showing a bit of
age), Adobe first announced Acrobat in 1991. The Acrobat PDF format was designed
to be a container format, rather than a full-blown programming language like Post-
Script. By eliminating the open-endedness of a programming language, the PDF for-
mat made a far better interchange mechanism for moving documents between
machines and platforms and significantly decreased the level of complexity involved
in rendering. Because PDF documents are designed to be read (not edited or manipu-
lated), display software such as Adobe Reader or xpdf need focus only on rapidly
generating images onscreen as they are specified in the file.

The Processing PDF library allows users to write any geometry they can draw
onscreen out to a PDF file. A simple program to produce a PDF consists of:

import processing.pdf.*;

void setup() {
 size(100, 100, PDF, "output.pdf");
 background(255);
 line(20, 20, 80, 80);
}

324 | Chapter 10: Parsing Data

Instead of drawing the window onscreen, it will create a single-page PDF file, with
dimensions of 100 × 100 pixels, containing a single diagonal line. Because PDF is a
vector format, this line can be resized to any dimension and still draw cleanly. This
can be used to generate intricate images that are resolution-independent.

Viewers for the PDF format are much speedier than loading a PostScript, Adobe
Illustrator, or SVG file in a drawing application, making PDF a good choice for quick
iteration and testing while working on a project.

On the other hand, parsing PDF files is not recommended, as the specification has
grown quite complex since 1991. It is better to open a PDF document with a
program such as Illustrator and resave it as SVG format.

Shapefile and Well-Known Text
The Shapefile (SHP) format is used commonly in Geographic Information Systems
(GIS). The format was developed by Environmental Systems Research Institute
(ESRI), and is tied to their ArcView and ArcGIS products. The text-based format can
be found in most GIS software, including open source alternatives such as Grass GIS
(http://grass.gdf-hannover.de/wiki/Main_Page).

One popular example of the Shapefile format in use is the cartographic boundary
files from the U.S. Census Bureau; see http://www.census.gov/geo/www/cob/bdy_files.
html.

A broader discussion of Shapefiles, along with a specification, can be found on Wiki-
pedia at http://en.wikipedia.org/wiki/Shapefile.

As you begin working with map data, you’ll quickly run into issues dealing with
projections—how land area on our (nearly) spherical Earth is represented in two-
dimensional maps. While most GIS software provides tools for converting from one
projection to another, you can turn to the PROJ library (http://proj.maptools.org),
with a Java implementation at http://www.jhlabs.com/java/maps/proj.

When dealing with data that has already undergone projection, it’s common for files
to be in well-known text (WKT) format (http://geoapi.sourceforge.net/2.0/javadoc/
org/opengis/referencing/doc-files/WKT.html). This text format includes metadata that
describes the math behind the projection used, as well as the boundary coordinates
for the new values that have been mapped from latitude and longitude into their new
coordinate space.

http://grass.gdf-hannover.de/wiki/Main_Page
http://www.census.gov/geo/www/cob/bdy_files.html
http://www.census.gov/geo/www/cob/bdy_files.html
http://en.wikipedia.org/wiki/Shapefile
http://proj.maptools.org/
http://www.jhlabs.com/java/maps/proj/
http://geoapi.sourceforge.net/2.0/javadoc/org/opengis/referencing/doc-files/WKT.html
http://geoapi.sourceforge.net/2.0/javadoc/org/opengis/referencing/doc-files/WKT.html

Binary Data Formats | 325

Binary Data Formats
Until recently, the majority of file formats were binary. But the interoperability of
XML—combined with falling storage prices—is making text more common. We’ll
quickly look at two formats associated with data sets.

Excel Spreadsheets (XLS)
When trying to read XLS files, open the file with a text editor and first check to see
whether it’s in fact a CSV file with an .xls extension. This is common, particularly for
files generated by software on the Web. The idea is that when you download some-
one’s file from an email or web site and click on it, the .xls extension will cause your
system to automatically load it into Excel, and Excel will figure out that the file is
actually CSV data. In contrast, a file named .csv might not be recognized and opened
in an easy-to-view fashion.

For binary XLS files (and other file formats from Microsoft Office), the Apache POI
project (http://poi.apache.org) provides an excellent library for parsing them, along
with some helpful how-to information at http://poi.apache.org/hssf/how-to.html.

These libraries can be added to a Processing project like any other .jar file and used
to read spreadsheets from within code. The process is more involved than reading
simple CSV or TSV files (and should make you think twice about whether XLS is
suitable as input data), but it can be helpful in many situations.

dBASE/xBase (DBF)
DBF is the file format for dBASE, a popular database management system from the
1980s. A DBF file contains a binary header followed by a series of records, each
stored in a fixed size. The fixed length of each line suits the time period so that
records can be accessed directly from the disk. Because of the age of the format,
you’ll run across DBF files when dealing with legacy systems or projects based on
older software. DBF files are frequently found on government sites, for example.

OpenOffice is capable of opening DBF files, as is Microsoft Excel. While Open-
Office may even register the .dbf extension for itself, in Excel you’ll have to use the
“All files” option in the File ➝ Open dialog box before it shows up.

The format itself is easy to parse, and good descriptions exist for the file structure.
Erik Bachmann of Clickety Click Software maintains an excellent set of documenta-
tion on the family of Xbase formats at his site; see http://www.clicketyclick.dk/
databases/xbase/format. Specifically, the dBASE III version of the format can be
found at http://www.clicketyclick.dk/databases/xbase/format/dbf.html.

The dBASE site also has more information on later changes to the format at http://
www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm.

http://poi.apache.org/
http://poi.apache.org/hssf/how-to.html
http://www.clicketyclick.dk/databases/xbase/format/
http://www.clicketyclick.dk/databases/xbase/format/
http://www.clicketyclick.dk/databases/xbase/format/dbf.html
http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm
http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm

326 | Chapter 10: Parsing Data

Arbitrary Binary Formats
There are two methods for dealing with binary data as input. The first is to use
loadBytes(), which produces a byte array. But there are two problems with that
method. First, individual byte values are always signed, so a byte represents a value
between –128 and 127, not between 0 and 255 as might be expected. To convert
from a signed byte to an unsigned int value, use the following:

int unsignedInt = signedByte & 0xFF;

The syntax is a little cryptic at first glance, but the following program helps illustrate
what’s happening:

byte signedByte = -100;
println(binary(signedByte, 8));
int signedInt = signedByte;
println(binary(signedInt, 32));
println(binary(0xff, 32));
int unsignedInt = signedByte & 0xff;
println(binary(unsignedInt, 32));

The binary() method converts a number into a String sequence of 1s and 0s
(unbinary performs the opposite conversion from a binary String to a number). The
second parameter of binary() is the number of binary digits to include. The pro-
gram produces:

10011100
11111111111111111111111110011100
00000000000000000000000011111111
00000000000000000000000010011100

The first line is the binary value of signedByte. In binary, the leftmost digit is the sign
digit. If this digit is 1, the number is negative; if it’s zero, the number is positive or 0.
When an 8-bit number like a byte is converted to a 32-bit integer, a sign extension
occurs, where the sign digit is extended to the other 24 bits that are added. The sec-
ond row shows the value –100 represented as a 32-bit integer value. The third row
shows the binary representation of 0xff, or 255. The value 255 is the bottom 8 bits of
a number set to 1. Finally, the & (and) operator is used to let only the bottom eight
digits through. That is, only bits that are 1 on both sides of the & operator will be 1 in
the result, which removes the string of twenty-four 1s from the final line.

Bit Shifting
Storing values in binary larger than 255 requires bit shifting. In this scenario, the
binary digits from a sequence of byte values are shifted into place, forming a single
number. For instance, to read a 16-bit value from an array returned from loadBytes(),
enter this code:

Binary Data Formats | 327

byte[] b = loadBytes("data.bin");
int hi = b[0] & 0xff;
int lo = b[1] & 0xff;
int value = (hi << 8) | lo;

Here, we first convert the values to unsigned numbers that occupy the lower 8 bits of
a pair of ints. The final value is constructed by shifting 8 bits of hi to the left by eight
digits:

 hi = 000000000000000000000000HHHHHHHH
 lo = 000000000000000000000000LLLLLLLL
 hi << 8 = 0000000000000000HHHHHHHH00000000
(hi << 8) | lo = 0000000000000000HHHHHHHHLLLLLLLL

The | (or) operator combines the bits of two values. The resulting bit at each posi-
tion will be 1 if either of the input values has a 1 at that position.

In the examples so far, the high bits have been on the left, the low bits on the right.
That is known as big-endian or network byte order, and it is the native ordering for
most network protocols, Java, and Motorola architectures. On other systems, nota-
bly Intel machines, the ordering is opposite; it is called little endian. (The two order-
ings are also sometimes called Motorola and Intel ordering, respectively.) A little-
endian value would swap the lo and hi values in the previous example, as follows:

byte[] b = loadBytes("data.bin");
int hi = b[0] & 0xff;
int lo = b[1] & 0xff;
int value = (lo << 8) | hi;

This byte ordering is common for many file formats (such as WAV) that originate
from Windows/Intel platforms.

DataInputStream
Rather than handling all the bit shifting and byte unpacking yourself, you can use
DataInputStream—a Java class that wraps an InputStream object to effectively hide all
the bit-shifting necessary to unpack binary data. The readInt() method grabs a 32-
bit (signed) integer, and the readShort() method grabs a 16-bit value. The standard
class works only with big-endian values, but little-endian versions can be easily
found online (search for “DataInputStreamLE”). An example of using
DataInputStream follows:

try {
 InputStream input = openStream("data.bin");
 DataInputStream data = new DataInputStream(input);
 int value = data.readUnsignedShort();
 println(value);
} catch (IOException e) {
 e.printStackTrace();
}

328 | Chapter 10: Parsing Data

It performs the same function as the hand-coded example in the previous section. In
the long run, it tends to be a simpler method, even though the code appears longer
because of the error handling in the try/catch block.

Advanced Detective Work
The main theme of this chapter is to understand common file formats and parsing
techniques. In many cases, examples are shown so that file formats can begin to be
recognizable, should you run across files in one format or another.

Many formats start with identifying codes. JPEG images have JFIF near the begin-
ning of the file. A TIFF image saved on a Mac begins with the two bytes MM, whereas
one saved on a PC begins with II. Java class files begin with a 32-bit number that
reads CAFEBABE in hexadecimal. All these codes are referred to as magic numbers,
which identify the file as a particular format. Sometimes a magic number begins a
file, but at other times, it might be a sequence of values spread throughout the file
that, set a particular way, is an indicator that the file is one format or another.

Knowing a few of these magic numbers and values can help you familiarize yourself
with data formats. It’s also possible to programmatically identify data files based on
these values. The Apache web server, for instance, has a file named mime.magic
(http://httpd.apache.org/docs/2.0/mod/mod_mime_magic.html), which is used to check
files against a list of magic numbers so that file types can be identified properly
before they’re sent to a client machine.

Making a mental note of what different file types look like can be helpful when later
dealing with more complicated parsing on unknown data.

Watching Network Traffic
As web applications become more prevalent, the data formats used between your
browser and a server continue to get more complex. How do movie sites load their
video data onto pages, even though the data is not part of the HTML? How are live
game feeds updated on sports sites like ESPN.com? These questions can be answered
with the help of packet sniffing tools that can be used to watch all traffic going into
and out of your machine. We’ll briefly cover Wireshark (http://www.wireshark.org),
an open source utility that can be used to find the answers to these questions.

First, download and install Wireshark for your platform. On Unix-based systems,
you’ll need to run it as a root user (i.e., use the command line sudo wireshark) so that
you have credentials to get proper hardware access to your network card.

http://httpd.apache.org/docs/2.0/mod/mod_mime_magic.html
http://www.wireshark.org/

Advanced Detective Work | 329

Use Wireshark only on your own private network, not in a public set-
ting. In public settings, a packet sniffer can be used to spy on the Inter-
net traffic of other machines, and it’s likely to be against the
networking policies of most organizations.

After Wireshark opens, select Capture ➝ Interfaces…. A dialog box will pop up
showing available network interfaces on your machine; it will look something like
Figure 10-2. Click the Start button next to your main interface. On a Mac, the
interface will be labeled en0 for ethernet and en1 for wireless; on many Unix systems,
it will be eth0 or en0. You’ll see the numbers increasing most quickly next to your
primary interface, so it shouldn’t be too difficult to figure out.

The window will begin filling with packets of network traffic as they occur on your
machine in the top panel. The middle panel highlights details of the content, and the
bottom panel shows the actual contents of each packet in hexadecimal and as
characters.

In Figure 10-3, we opened ESPN.com in a web browser and visited the home page.
We can see the query GET / HTTP/1.1 from our browser to the ESPN server.
Subsequent replies from that address will include the home page, and then other
information as we peruse the site.

Watching the GET messages from the browser, along with the replies from a server
machine, can provide helpful clues to what’s actually happening behind the scenes.
At a basic level, if you see a file retrieved via GET that is not something you entered in
the browser’s location bar, you know it’s something being pulled from JavaScript or
another piece of code on the page. For instance, with ESPN’s Flash-based poll
applet, you’ll see queries like the following connecting to sports.espn.go.com:

GET /espn/fp/getPollRegionalFlashData?pollId=43608 HTTP/1.1

Although we can see the result of this query with Wireshark, it’s also possible to
paste it into a web browser as:

http://sports.espn.go.com/espn/fp/getPollRegionalFlashData?pollId=43608

Figure 10-2. The capture dialog in Wireshark

sports.espn.go.com
http://sports.espn.go.com/espn/fp/getPollRegionalFlashData?pollId=43608

330 | Chapter 10: Parsing Data

which will return a set of attribute/value pairs that describe the results of the poll,
used to populate the poll found at:

http://sports.espn.go.com/espn/fp/
flashPollResultsState?sportIndex=frontpage&pollId=43608

I could spend a whole book discussing how to dissect such protocols, but here we’re
interested only in introducing the tool to encourage you to spend some time trying it
out yourself. And next time you try to retrieve data from an undocumented source, it
will be one more item in your tool set.

Figure 10-3. Information in transit captured with Wireshark

http://sports.espn.go.com/espn/fp/getPollRegionalFlashData?pollId=43608
http://sports.espn.go.com/espn/fp/flashPollResultsState?sportIndex=frontpage&pollId=43608

331

Chapter 11 CHAPTER 11

Integrating Processing with Java11

Processing is not Java. If you’re a Java developer, using Processing may be confusing
if you expect it to be too much like Java. If this book is your first introduction to Pro-
cessing, you are strongly urged to first get used to the Processing way of doing things
as presented in the first several chapters. It’ll be easier to adapt to using the Process-
ing API inside a Java project once you’ve developed a mental model for how the API
works and how Processing sketches are structured.

The Processing syntax is essentially a dialect of Java. When a user runs a sketch in
the PDE, the code is converted into Java syntax using a preprocessor, and then com-
piled as standard Java code. The implementation of all Processing Core API func-
tions can be found in the package processing.core, which is stored in the core.jar file
found in the lib folder of your Processing distribution. All Processing sketches sub-
class the PApplet class from the processing.core package.

The Anemone example in Chapter 8 shows how to use processing.core inside the
Eclipse development environment. It also covers some of the basics of embedding
Processing in other Java-based projects. The methods used should be familiar to
most Java programmers, and they can be adapted to other development setups and
IDEs.

This chapter is intended as a reference for Java programmers who want to under-
stand how to integrate Processing with Java code and for Processing developers who
are ready to break out into larger projects and a broader range of development
options.

Programming Modes
Part of the role of the preprocessor is to determine one of three programming modes
used in the code. These modes are covered in Chapter 2, but I’ll reiterate some of the
points here as I describe them in terms of Java code.

332 | Chapter 11: Integrating Processing with Java

Basic
This mode is used to draw static images and learn the fundamentals of program-
ming. Simple lines of code have a direct representation on the screen. The following
example draws a yellow rectangle on the screen:

size(200, 200);
background(255);
noStroke();
fill(255, 204, 0);
rect(30, 20, 50, 50);

The preprocessor converts programs written in this mode to the setup() method of a
full sketch:

import processing.core.*;

public class BasicSketch extends PApplet {
 public void setup() {
 size(200, 200);
 background(255);
 noStroke();
 fill(255, 204, 0);
 rect(30, 20, 50, 50);
 }
}

With no draw() method, the sketch will only run the setup() method and then stop.

Continuous
This mode provides a setup() structure that is run once when the program begins
and a draw() structure that by default continually loops through the code inside.
This additional structure allows writing custom functions and classes and using key-
board and mouse events.

The following example draws rectangles that follow the mouse position (stored in
the PApplet fields mouseX and mouseY). The draw() block runs forever or until the pro-
gram is stopped. The animation thread is started and stopped with the loop() and
noLoop() methods:

void setup() {
 size(200, 200);
 rectMode(CENTER);
 noStroke();
 fill(0, 102, 153, 204);
}

void draw() {
 background(255);
 rect(width-mouseX, height-mouseY, 50, 50);
 rect(mouseX, mouseY, 50, 50);
}

Programming Modes | 333

After running through the preprocessor, the code for this sketch follows:

import processing.core.*;

public class ContinuousSketch extends PApplet {

 public void setup() {
 size(200, 200);
 rectMode(CENTER);
 noStroke();
 fill(0, 102, 153, 204);
 }

 public void draw() {
 background(255);
 rect(width-mouseX, height-mouseY, 50, 50);
 rect(mouseX, mouseY, 50, 50);
 }
}

Java
This mode is the most flexible, allowing complete Java programs to be written from
inside the PDE (as long as they’re still subclasses of PApplet). It is for advanced users
only and is not really recommended; at this level, you’re usually better off using
another IDE. Using this mode also changes the behavior of additional tabs (see the
next section). It is not necessary to use this mode just to get features of the Java
language:

public class MyDemo extends PApplet {

 public void setup() {
 size(200, 200);

 rectMode(CENTER);
 noStroke();
 fill(0, 102, 153, 204);
 }

 public void draw() {
 background(255);
 rect(width-mouseX, height-mouseY, 50, 50);
 rect(mouseX, mouseY, 50, 50);
 }
}

334 | Chapter 11: Integrating Processing with Java

Additional Source Files (Tabs)
The main tab represents a set of code that subclasses the PApplet object. Additional
tabs are treated as inner classes to the main PApplet. That means that the graphics
methods are all inherited without needing to pass objects around to a reference to
the main drawing surface, and the main API methods are available to all code.

One downside of inner classes is that they cannot have static fields or methods. The
following code will produce an error:

class Shape {
 static final int RECTANGLE = 0; // Error
 static final int POLYGON = 1; // Error
 int kind;

 class Shape() {
 kind = POLYGON;
 }
}

To make code that does not operate as an inner class, specify .java at the end of the
filename when creating a new tab. The code in that tab will be treated as pure Java
code, and the preprocessor will ignore it. This solves the static variable problem.
Another solution would be to place the static variables outside the class:

// Not a great option
static final int RECTANGLE = 0;
static final int ELLIPSE = 1;

class Shape {
 int kind;

 class Shape() {
 kind = ELLIPSE;
 }
}

However, the constant will be RECTANGLE, not Shape.RECTANGLE, which might be
confusing depending on your circumstances. Another option is to not make the
variables static:

class Shape {
 final int RECTANGLE = 0;
 final int ELLIPSE = 1;
 int kind;

 class Shape() {
 kind = ELLIPSE;
 }
}

The Preprocessor | 335

You still won’t be able to use Shape.RECTANGLE or Shape.ELLIPSE to refer to the vari-
ables, but the syntax will be clearer for others looking at this code.

If using Java mode (see the previous section), additional tabs will not be inner
classes—they will only be concatenated to the end of the main source file (if they
have .pde extensions). That means that import statements will be inherited, but not
much else. It won’t be possible to use methods such as line() or draw() without
passing the parent PApplet object to the other classes.

Using .java Source Files
To create a pure Java source file, make a tab named Shape.java. To get access to
methods from the host PApplet, you need to pass a reference to it, usually in the
constructor:

import processing.core.*;

public class Shape {

 static final int RECTANGLE = 0;
 static final int ELLIPSE = 1;
 int kind;

 class Shape(PApplet parent, int kind) {
 this.parent = parent;
 this.kind = kind;
 }

 public void draw() {
 if (kind == RECTANGLE) {
 parent.rect(20, 20, 60, 60);
 } else if (kind == ELLIPSE) {
 parent.ellipse(50, 50, 30, 30);
 }
 }
}

Back in the main tab, a Shape object can be instantiated with:

Shape s = new Shape(this, Shape.ELLIPSE);

Adding the .java extension is an indicator to the preprocessor that you know what
you’re doing, so the safety net is off. You’ll need to do all the imports yourself—
processing.core.* at the minimum, but also packages such as java.util.*—which
are normally imported by default.

The Preprocessor
This section summarizes the main activities of the preprocessor.

336 | Chapter 11: Integrating Processing with Java

Data type casting in the style int(value) and float(value) are converted to the meth-
ods parseInt(value) and parseFloat(value). The parseXxxx() methods can be used
with or without the preprocessor. One of the advantages of these methods is that
they can also handle arrays. For instance, an entire String array can be converted to a
float array with the following:

// With the Preprocessor
float[] f = float(stringValues);
// Without the preprocessor
float[] f = parseFloat(stringValues);

The color data type is simply an alias to int, and the two can be used interchange-
ably in Processing syntax. Processing offers the color type because beginning pro-
grammers often find it confusing that pixel data is stored as an integer value.

A web color such as #FFCC00 will be converted to 0xffFFCC00. The additional ff at the
beginning is the alpha value for the color, with ff indicating fully opaque (255). The
web color syntax is used as a convenience for web developers who are often familiar
with web color format, but would find the 0x hex syntax needlessly cryptic.

No double values are used in the Processing API. Instances of 1.0 are converted to 1.0f
by the preprocessor. For nearly all Processing projects, double values are overkill, wast-
ing memory and slowing down calculations. In this context, trailing nearly every
numerical value with an f is silly, if not annoying. The preprocessor automatically
adds the f to all decimal values. If you need double values for functions such as cos(),
you can always use Java’s Math.cos() function instead of the built-in cos() method in
PApplet.

Unless marked as protected or private, functions are automatically marked public.
For this reason, void setup() is actually public void setup(), and using void setup()
in a regular Java development environment will cause an error.

API Structure
Here we’ll cover a few major components of the Processing Core API and show its
structure.

Event Handling
You must have a draw() method to run an event loop. A program without a draw()
method will be interpreted in Basic mode.

Because of their ubiquity in interactive applications, mouse coordinates and key
presses are automatically tracked by the environment. That is a divergence from
Java, which requires that the developer implement methods to handle even the most
basic events. The following is the most basic use of mousePressed():

API Structure | 337

void mousePressed() {
 // The mouse was clicked; print its position to the console.
 println(mouseX + " " + mouseY);
}

The advantage of using the Processing event methods is that they are queued while
the draw() method is running, and then the queue is emptied at the end of draw().
That avoids synchronization problems with code that can arise in mouseXxxxx()
methods that draw to the screen. Because mouse and key events run on a separate
thread from drawing, the two could be happening simultaneously, which can cause
strange problems as they fight with one another for control of the drawing surface.

As a tip for Java programmers who are familiar with MouseEvent objects, the built-in
mouseEvent field will always contain the most recent event:

void mousePressed() {
 int count = mouseEvent.getClickCount();
 // Do something based on the number of mouse clicks.
}

On the other hand, you can also override the event handling for mousePressed():

public void mousePressed(MouseEvent e) {
 // Do something with the event object here.
}

That is not recommended because you lose the queueing mechanism, and variables
such as mouseButton, mouseX, and mouseY will no longer work properly. But it’s avail-
able for those who enjoy the thrill of playing with matches.

The size() Method
With any Processing project, the size() method should always be the first line inside
the setup() method. That is because changing from the default renderer to another
requires all rendering to be restarted, and in the case of a renderer such as OpenGL, a
different component must be added to the main window. To handle this situation
smoothly, calling size() to change the renderer will first make the change, and then
internally throw an exception that will force the setup() method to be run again. This
complicated situation exists because it’s also possible to draw inside setup(). Although
requiring size() to be at the beginning of setup() is not ideal, it’s a minor trade-off for
the ability to easily swap between renderers and draw inside the setup() method.

The main() Method
The main() method in PApplet launches a Processing applet inside a window. When
a sketch is exported as an application, the following lines are inserted into the code:

static public void main(String[] args) {
 PApplet.main(new String[] { "YourSketchName" });
}

338 | Chapter 11: Integrating Processing with Java

The main() method takes a sketch name as a parameter. The method has several
options that can be used to specify the location of the sketch or to enable Present
mode (using full-screen exclusive mode to launch the sketch). See the PApplet
documentation (http://dev.processing.org/reference/core) for more information.

The frame Object
The PApplet class has a variable named frame, of type java.awt.Frame, that specifies
its parent frame. Calling frame.setResizable(true) is one way to make the sketch
window resizable. Dragging the grow box of the sketch window will resize the sketch
along with the window.

The frame field is set up by the main() method, so if you are not using PApplet.main(),
frame will be null.

Embedding PApplet into Java Applications
Another option is to use the Processing API (specifically the processing.core pack-
age, and perhaps additional libraries) while working on a narrow piece of a larger
project. A Processing sketch can be embedded into a Java program like any subclass
of java.awt.Component. The base PApplet class subclasses java.applet.Applet, which
itself subclasses Component. A larger project might consist of several PApplet compo-
nents that interact with one another, or a PApplet component that’s embedded into a
larger project (for example, as part of a Swing-based interface).

The size() method also sets the value returned by the Java getPreferredSize()
method so that it behaves like a regular Java Component. A PApplet will respond
properly to resize events, so it can be placed using a standard layout manager.

Two Models for Updating the Screen
The Processing API supports two methods for updating the screen. The default is to
run the draw() method at up to 60 frames per second for continuous animation. The
second is to update the screen only when necessary using the redraw() method.
Because the default animation thread runs at 60 frames per second, an embedded
PApplet can make the parent application sluggish. You can use frameRate() to make
it update less often, or you can use noLoop() and loop() to disable and then re-
enable looping. If you want to update just the sketch intermittently, use noLoop()
inside setup(), and issue redraw() whenever the screen needs to be updated once (or
loop() to re-enable the animation thread). The following example embeds a sketch
and also uses the noLoop() and redraw() methods. You need not use noLoop() and
redraw() when embedding if you want your application to animate continuously.

http://dev.processing.org/reference/core/

Embedding PApplet into Java Applications | 339

Code for the host application follows:

import java.awt.*;
import processing.core.*;

public class ExampleFrame extends Frame {

 public ExampleFrame() {
 super("Embedded PApplet");

 setLayout(new BorderLayout());
 PApplet embed = new Embedded();
 add(embed, BorderLayout.CENTER);

 // important to call this whenever embedding a PApplet.
 // It ensures that the animation thread is started and
 // that other internal variables are properly set.
 embed.init();

 // Set the frame size based on the sketch size.
 pack();
 // Move the upper-left corner of the frame to 100, 100
 setLocation(100, 100);
 // And make the frame visible.
 setVisible(true);
 }
}

And here is the embedded sketch:

import processing.core.*;

public class Embedded extends PApplet {

 public void setup() {
 // Original setup code here ...
 size(256, 256);

 // Prevent thread from starving everything else.
 noLoop();
 }

 public void draw() {
 // Drawing code goes here.
 background(mouseX);
 }

 public void mousePressed() {
 // Do something based on mouse movement.

 // Update the screen (run draw once).
 redraw();
 }
}

340 | Chapter 11: Integrating Processing with Java

This program will open a 256 × 256 window to run the sketch. The draw() method
will run each time the mouse is pressed, clearing the background to a gray value
based on the horizontal location of the mouse.

Embedding in a Swing Application
It’s also possible to use Processing with Swing, using the same structure as the previ-
ous example, only with a JFrame instead of a Frame. The Processing component need
not be the only item on the screen. Additional interface elements, such as buttons,
can be added and made to call functions inside the Processing component the same
way you would with any custom component.

This example embeds a PApplet and a JSlider into a JFrame, showing how Swing
components can be used to interact with a Processing sketch. The code for the host
class follows:

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;

public class SwingExample extends JFrame {

 public SwingExample() {
 super("Swing Slider Example");

 setLayout(new BorderLayout());
 EmbeddedWithSlider embed = new EmbeddedWithSlider();
 add(embed, BorderLayout.CENTER);
 embed.init();

 Box box = Box.createHorizontalBox();
 JLabel label = new JLabel("Hue:");
 box.add(label);
 JSlider slider = new JSlider(JSlider.HORIZONTAL, 0, 360, 0);
 slider.addChangeListener(embed);
 box.add(slider);
 box.setBorder(new EmptyBorder(5, 10, 5, 10));
 add(box, BorderLayout.SOUTH);

 pack();
 setVisible(true);
 setLocation(100, 100);
 }

 static public void main(String[] args) {
 new SwingExample();
 }
}

Embedding PApplet into Java Applications | 341

The embedded PApplet implements ChangeListener to recognize updates from the
slider. As the slider moves, the hue value is updated and redraw() is called, which
updates the background color based on the hue specified by the slider. The result is
shown in Figure 11-1.

import javax.swing.*;
import javax.swing.event.*;
import processing.core.PApplet;

public class EmbeddedWithSlider extends PApplet implements ChangeListener {

 float hue = 0;

 public void setup() {
 size(400, 400);
 noLoop();
 }

 public void draw() {
 colorMode(HSB, 360, 100, 100);
 background(hue, 80, 80);
 }

Figure 11-1. Using a JSlider to control a PApplet

342 | Chapter 11: Integrating Processing with Java

 public void stateChanged(ChangeEvent e) {
 JSlider source = (JSlider)e.getSource();
 hue = (int)source.getValue();
 redraw();
 }
}

If you use the default animation thread (rather than noLoop() and redraw()) with an
embedded PApplet, take care that the code is implemented in a thread-safe manner.
The Processing animation thread can easily conflict with Swing’s UI threads, leading
to problems. If using Swing to drive the Processing sketch (as in the previous exam-
ple), noLoop() and redraw() are the best bet. That means that Swing components
will initiate updates in the Processing sketch, but this is better because they’ll call
redraw(), which queues the draw() method to run when it’s safe to do so. On the
other hand, if you want to use the regular animation thread, query the Swing UI ele-
ments for updates inside the draw() method. To modify the previous example, for
instance, simply call slider.getValue() inside draw(), rather than use the
ChangeListener interface and the stateChanged() method.

Using Java Code in a Processing Sketch
Some previous examples have included Java code inside a sketch. This section pro-
vides additional background on what’s happening behind the scenes.

Using the Code Folder to Add .jar Files to a Sketch
The simplest way to use Java libraries inside a Processing sketch is to drag .jar files to
the editor window or use Sketch ➝ Add File. That will copy the file to a directory
named code inside the sketch folder. This works for classes inside .zip and .jar files,
and it will automatically add the files to the CLASSPATH of the sketch. The preproces-
sor will automatically import all packages found inside the files.

This method can be used to add native code found in .dll, .jnilib, and .so files. These
files will also be automatically placed in the code folder and added to the Java library
path so that the native code will load properly.

Packaging Code into Libraries
A Processing library can be any sort of Java code that’s been given a package name
and packed into a .jar file. It can also register itself with the parent applet to get noti-
fication of when events occur in the sketch—for instance, whenever draw() is called
or a key is pressed.

To repackage your code as a library, consult the howto.txt file in the libraries folder
of the Processing release.

Building with the Source for processing.core | 343

Using Libraries
A common problem for users leaving the PDE for an IDE such as Eclipse or Net-
beans is that libraries become a more complicated matter. To use a Processing
library, add any .jar files from Processing ➝ libraries ➝ libraryname ➝ library to your
project. If no native code is used, that should be all that’s necessary.

More complicated libraries include native code, which adds another layer of com-
plexity. The OpenGL library, for instance, includes multiple files containing native
code for different operating systems and architectures. To use the OpenGL library,
you’ll need to add libraries ➝ opengl ➝ library ➝ opengl.jar and jogl.jar to your
CLASSPATH (as described earlier), but you’ll also need to set your java.library.path
variable to include any folders that contain native libraries. This is usually done by
adding a -D command-line option when running Java:

java -Djava.library.path=/path/to/Processing/libraries/opengl/library

Do this in addition to other options necessary to set the class path and the main class
of your code.

Building with the Source for processing.core
If you’re the type of person who prefers to work with the your libraries’ sources
whenever possible, you can always check out the code for the processing.core librar-
ies from the source repository on http://dev.processing.org. And, of course, you’re
strongly encouraged to join the development community to help implement new fea-
tures and fix bugs.

Depending on the development status, it might be a good idea to get a tagged ver-
sion of the code that has already been released. The code is tagged whenever a Pro-
cessing release occurs; for instance, processing-0126 is the tag for the Processing
0126 download. The current code is not guaranteed to be stable, so using the tag for
the most recent release is safest.

http://dev.processing.org

345

Bibliography1

This bibliography covers a handful of books on visualization that you may find help-
ful, as well as others that were mentioned in some fashion in the text.

Acquire and Parse
Not many books exist that cover acquiring and parsing data, which is part of the rea-
son that we covered such a broad range of topics in Chapters 10 and 11. These chap-
ters include more specific references for some topics.

Fisher, Maydene, Jon Ellis, and Jonathan Bruce. JDBC API Tutorial and Reference.
3rd ed. Upper Saddle River, NJ: Prentice Hall, 2003. This is the book for those who
want to learn how to use databases with Java (and Processing).

Wilson, Greg. Data Crunching: Solve Everyday Problems Using Java, Python, and
More. Raleigh, NC: The Pragmatic Bookshelf, 2005. This is one of the few books I’ve
found that covers the sort of detective work described in Chapters 10 and 11. A use-
ful (and indeed pragmatic) handbook that covers acquiring and parsing data in
different languages, and the trade-offs for each.

Filter and Mine
Fayyad, Usama, Georges G. Grinstein, and Andreas Wierse, eds. Information Visual-
ization in Data Mining and Knowledge Discovery. San Francisco: Morgan Kaufmann,
2002. From the editor: “This book is the result of two workshops whose goals were
to open up the dialog between researchers in visualization and data mining, two key
areas involved in data exploration.” This book is an esoteric collection of papers with
a few that I found extremely insightful.

Garfinkel, Simson. Database Nation: The Death of Privacy in the 21st Century.
Cambridge, MA: O’Reilly Media, 2000. Garfinkel raises awareness about how data
collection and analysis affect our daily lives.

346 | Bibliography

Hand, David J., Heikki Manila, and Padhraic Smyth. Principles of Data Mining
(Adaptive Computation and Machine Learning). Cambridge, MA: MIT Press, 2001.
This book covers the gap between data mining and statistics.

Gonick, Larry, and Woollcott Smith. The Cartoon Guide to Statistics. New York:
HarperResource, 1994. This book illustrates the basics of statistics and probability. If
you’re disinclined to pick up a statistics text, it will provide a more entertaining
introduction.

Shannon, Claude E., and Warren Weaver. The Mathematical Theory of Communica-
tion. Champaign, IL: University of Illinois Press, 1949. The classic text that intro-
duced information theory.

Tukey, John Wilder. Exploratory Data Analysis. Boston: Addison-Wesley, 1977.
Another classic book on the joy of figuring things out with numbers.

Represent
Bertin, Jacques. Semiology of Graphics: Diagrams, Networks, Maps. Madison, WI:
University of Wisconsin Press, 1983. This is the English translation and later edition
of the seminal text first published in 1967.

Harris, Robert L. Information Graphics: A Comprehensive Illustrated Reference. New
York: Oxford University Press, 1999. An enormous catalog of visual representations.
If you think you’ve invented a new way to represent data, chances are you’ll find it in
this book.

Huff, Darrell, and Irving Geis. How to Lie with Statistics. New York: W.W. Norton
& Company, 1954. This is an older text that covers “lies” in statistical graphics; it is
not a statistics book per se, but points out the pitfalls of misrepresentation.

Playfair, William. Playfair’s Commercial and Political Atlas and Statistical Breviary.
New York: Cambridge University Press, 2005. This is a lovely reprint of Playfair’s
original texts on graphics.

Ware, Colin. Information Visualization: Perception for Design. 2nd ed. San Francisco:
Morgan Kaufmann, 2004. This is a text on visualization that also covers the psychol-
ogy of design; it includes useful discussion on topics such as color and pre-attentive
graphical features.

Refine
Bringhurst, Robert. The Elements of Typographic Style. Vancouver, BC: Hartley &
Marks, 1992. The “bible” for typographers.

Garland, Ken. Mr. Beck’s Underground Map. Middlesex, UK: Capitol Transport Pub-
lishing, 1994. Covers the history of Beck’s map of the London Underground, dis-
cussed in Chapter 1.

Bibliography | 347

Lupton, Ellen. Thinking With Type: A Critical Guide. New York: Princeton Architec-
tural Press, 2004. A truly wonderful book that introduces typography in an engaging
manner. Lupton is an outstanding writer, and the book is beautiful to look at and
enjoyable to read.

Tufte, Edward R. The Visual Display of Quantitative Information. Cheshire, CT:
Graphics Press, 1983. The first of Tufte’s texts on information graphics, and still the
best. His other books are interesting (and nice to look at), but if you purchase only
one, this should be it.

Interact
Card, Stuart K., Jock D. Mackinlay, and Ben Shneiderman, eds. Readings in Informa-
tion Visualization: Using Vision to Think. San Francisco: Morgan Kauffman, 1999. A
woefully out-of-date text that collects several early papers from the field of informa-
tion visualization.

The Office of Charles and Ray Eames. Powers of ten: a film dealing with the relative
size of things in the universe and the effect of adding another zero. Pyramid Films,
1978. The film that definitvely shows us how scale works.

Wardrip-Fruin, Noah, and Nick Montfort, eds. The New Media Reader. Cambridge,
MA: MIT Press, 2003. A truly definitive collection of papers from thinkers such as
Vannevar Bush, Alan Turing, Norbert Wiener, Myron Krueger, and others on up to
Tim Berners-Lee and Richard Stallman. A brilliant group of texts.

General
Kemp, Martin. Visualizations: The Nature Book of Art and Science. Berkeley, CA: The
University of California Press, 2001. A collection of columns by Martin Kemp, who
placed scientific visualization in context using art and science history.

Lewis, Michael. Moneyball: The Art of Winning an Unfair Game. New York: W.W.
Norton & Company, 2003. First mentioned in Chapter 5, this book describes the
statistical thinking sometimes used by baseball teams.

Maeda, John. Design By Numbers. Cambridge, MA: MIT Press, 1999. This book
describes the predecessor to the Processing project.

Reas, Casey, and Ben Fry. Processing: A Programming Handbook for Visual Design-
ers and Artists. Cambridge, MA: MIT Press, 2007. The definitive book on Process-
ing, written by Casey and me. This is targeted toward people who have no
background in programming.

348 | Bibliography

Wurman, Richard Saul. Information Anxiety. New York: Doubleday, 1989. This
book discusses early thinking about information overload by one of the statesmen of
graphic design. Wurman was the person who later coined the term “Information
Architect.” A more recent second edition of this book exists; however, it’s more of a
second volume and covers different topics.

349

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
* (asterisk), zero or more matches in regular

expressions, 104
\ (backslash)

escaping characters in regular
expressions, 103

file paths on Windows, 186
: (colon) in regular expressions, 103
, (comma) in regular expressions, 104
{ (curly braces), data blocks in JSON, 101,

104
. (dot) files, 238
– (en dash), 126
(hash marks), 23
% (modulo) operator, 63
> and >> (output) operators, 298
() (parentheses), grouping in regular

expressions, 103
. (period)

matching anything in regular
expressions, 104

Unix system . (single dot) and .. (double
dot) directory entries, 183

| (pipe) command, 298
+ (plus sign), in regular expression

matching, 103
' (quotes, single), in regular expressions, 104
/ (slash)

// in comments, 74
URLs, 100

[] (square brackets), denoting regular
expression character class, 103

~ (tilde), Unix home directory, 186

A
absolute paths, 184, 269
access_log file (Apache server), 245
acquireStandings() method, 116

breaking date stamps into component
parts, 131

acquiring data, 5, 264–295
advanced web techniques, 284–288

forms, 284
pretending to be a web

browser, 286–288
asynchronous image downloads, 281–284
beverage consumption statistics

(USDA), 55
byte arrays, 284
changing data sources, 94
collecting data outpaces its use, 2
databases, 288–294
efficient retrieval of baseball standings for

the season, 133–144
ethics of, 266
files and folders, 276–280

large numbers of files, 295
listing files in a folder, 277–280
numbered file sequences, 280

files for use with Processing, 268
limiting amount of data, 17
loading data asynchronously using Thread

class, 178–180
loading text data, 270–276

parsing files during acquisition, 276
openStream() method as a bridge to

Java, 284

350 | Index

acquiring data (continued)
program acquiring data from

MLB.com, 104
reading the directory structure, 194–198
resources for further information, 345
salary data (baseball project), 109
team logos (baseball project), 107–109
text as input (Huckleberry Finn), 229
tools for Internet data, 266
updating values over time, 46–48
where to find data, 265
win/loss data (baseball), 96–100, 115
zip code listing, U.S. Census Bureau, 7,

145
addEdge() method, 222

smarter addition of edges, 232
addFolder() method, 186
addNode() method

graphing web site visits (example), 252
GraphLayout (example), 223

addVisit() method, 255
Albers Equal-Area Conic projection, 150
ALL CAPS listings of data, 147
alpha transparency (or alpha), 41
Amazon.com, 265
Anemone class, 248

drawConnection() method, 257
animation

date selector bar, 132
frame rate, 51, 133
refining transition between dates, 132
(see also interacting with data)

Apache project
Batik SVG library, 297
Derby/Java DB, 293
HttpClient, 286

Apache server logfiles, 245–247
configuring Apache for combined

logfiles, 246
API (Processing Core API), 19–30, 336–338
applets

exporting programs as, 23
loading from URLs and, 268

ArrayList class, 251
arrays

converting text file to, 114
data from multiple dates, 127
dateStamp and datePretty, 129
of edges, 223
nodes array, 226
ranked array of longs, 207

resizing, 187
season array, 130
standings_rs_ale array (example), 100
of strings, 26
teamCodes and teamNames arrays

(example), 112
typedChars and typedCount, 159
zoom levels, 174

arrow keys, using to switch between
dates, 131

ascent (fonts), 63
asynchronous data loading using Thread

class, 178–180
audience, targeting, 17
AutoCAD DXF, 323
auto-unboxing, 251

B
background color, 21
background() command, 21
Backus Naur Form (BNF), 316
Bacon, Kevin, 242
bar charts

libraries for plotting, 93
representing discrete values, 82

baseball salary project, 95–144
deployment considerations, 133–144
displaying the results, 118–120
finishing setup and defining font, 117
identifying the problem, 95
interactive data, moving to multiple

days, 127–132
loading team names and codes, 112
more sophisticated sorting, 126
refining data display to convey

relationships, 121–126
refining transition between days, 132
retrieving team logos to improve visual

display, 107–109
retrieving team salary data and pasting

into spreadsheet, 109–111
retrieving win/loss data, 96–100
team logo images, setting up, 117
team salary data organized as list of

ranked values, 113–115
unpacking win/loss files, 100–107
win/loss standings, 115–117

baseline (fonts), 63
Basic programming mode, 332
Batik SVG library, 297, 322
Beck, Harry, 3

Index | 351

beginRecord() and endRecord()
methods, 236

beginShape() and endShape()
methods, 73–76

data shown as filled area, 78
Berkeley DB, 294
between value (color interpolation), 37
beverage consumption statistics (USDA), 54
binary file formats, 154, 325–328

bit shifting, 326
DataInputStream, using, 327
DBF, 325
dealing with binary data input, 326
Excel spreadsheets (XLS), 325

bit shifting, 326
BNF (Backus Naur Form), 316
BoundsIntegrator class, 208
Branch class, 248

draw() method, 255
branches, 220

depicting, 256
brightening and dimming data display

brightness based on file modification
times, 206

folder rollovers in treemap display, 204
brightness of colors, preserving, 38
Bringhurst, Robert, 126, 346
browser type and platform (user agent), 245
browsers

pretending to be a web browser, 286–288
running sketches online in a web

browser, 133
BufferedReader class, 271

reading files progressively, 272
building representations, vii
byte arrays, 284
bzip2 (bz2), 319

C
calcZoom() method, 174
canonical paths, 184
capitalizing first letter of each word, 149
Carter, Matthew, 123
case-insensitive sorting, 183
cat (concatenate), 298
ceil() function, 66
ceiling of a float, 66
CGI scripts

consolidating baseball season
standings, 134–137

randomized data for updateTable(), 47

changing data
interpolating values smoothly over

time, 48–51
updating values over time, 46–48

character class (in regular expressions), 103
Character class, toUpperCase() and

toLowerCase() methods, 149
characters, 9
charting and graphing tools, 93
check() method (Place class), 161
checkNode() method, 255
child nodes, 182
chosen variable, 163
city names, capitalizing first letter of each

word, 149
classes, 26

encapsulating time series plots, 92
extending, 114
mouse interaction information and, 44
Processing, 155

Clemens, Samuel L.
Following the Equator, 190
Huckleberry Finn, 229

clickable tabs, 85
CLOSE parameter (endShape() method), 73
code examples from this book, xii
code folder, 342
collecting data (see acquiring data)
ColorIntegrator class, 165–167
colors

adding to baseball statistics display, 121
adding to treemap display, 201–203
background color, setting, 21
GraphDemo (Processing version), 222
highlighting points for typed digits of zip

codes, 158
increasing usefulness in treemap

display, 206
interpolating between, 37–39

preserving saturation and
brightness, 38

points in interaction with typed zip code
digits, 161

web site visits graph, node names, 259
command-line utilities, 266

grep, 307
parsing tools, 298

commands, 20
comma-separated values (see CSV files)
comments, 74
compare() method, 126

352 | Index

compressed data, 317–319
GZIP streams, 317
other formats, 319
ZIP files, 317–319

connecting lines (baseball statistics
project), 118

constants, 118
using in zip code data columns, 148

contentsVisible field (FolderItem), 195, 199
showing and hiding folder contents, 200

Continuous programming mode, 332
Core API (Processing), 19–30, 336–338
createFont() function, 60
createReader() method, 179, 271
createWriter() method, 270
CSV (comma-separated values) files, 147,

299–302
documentation, 302
removing commas and quotes, 150

cURL utility, 267
curve() method, 261
curveVertex() function, 77
Cygwin, 266

D
\d (digits) in regular expressions, 103
damping (physics-based interpolator), 51
darkness variable, 204
dashes, 126
data collection (see acquiring data)
data folder, 268

creating, 27
interfacing between Processing and Java

file methods, 116
listing contents, 277
security restrictions for online

programs, 26
data mining, 5

baseball statistics project (example), 100
beverage consumption statistics, 55
directory structure, 194–198
finding and counting duplicated edges for

nodes, 232
resources for further information, 345
sorting, using salary as a tiebreaker, 126
unused nodes, 256
updating values over time, 46–48
web site traffic information, 262
zip codes project (example), 9

data on a map, 34
drawing a point for each location, 35

finding minimum and maximum
values, 34

two-sided data ranges, 40
varying data by color, 37

data representation (see refining data
representation; representing data)

data types, 26
casting, 336
Java and Processing, 249
zip code information, 8

databases, 154, 288–294
driver, or connector, 288
MySQL, 289–293

getting started with, 289–291
using with Processing, 291–293

other, 293
performance aspects in interactive

applications, 294
DataInputStream class, 327
dataPath() method, 268, 269

File class, 116
Date object, 128
DateFormat class, 246
datePretty array, 130
dates and times

Apache logfile entries, 246
baseball project, 127–132

date selector bar, 132
datestamp for first and last day of

season, 128
drawing the dates, 130
loading standings for entire

season, 130
switching between dates, 131

dateSelectorX variable, 130
dateSelectorY variable, 130
dateStamp and datePretty arrays, 129
DBF files, 146, 325
degree of attraction (physics-based

interpolator), 51
del.icio.us (web site), 265
depth variable, 184, 195
detail level in data visualization, 17
Dialog DialogInput typefaces, 60
diameter (ellipseMode), 43
dist() function, 42
DOCTYPE declaration, 305
Document Object Model (DOM), 314
dot files, 238
doubles, 250
downloading links directly, 266

Index | 353

draw() function, 21, 32
advanced graph (example), 255
background() command, 22
baseball statistics project, 119

refined version, 124
chosen point in zip code locations, 163
GraphLayout demo (Processing), 223
mouseX and mouseY variables, 44
scatterplot of zip codes, 157

drawChosen() method, 162
drawConnection() method (Anemone

class), 257
drawData() function, 35
drawDataLine() function, 74
drawDataPoints() function, 58

currentColumn parameter, 60
drawStatus() method, 188
drawTag() method, 205
drawTitle() method, 64

FileItem and FolderItem classes, 201
rollover title, 199
white text in treemap display, 202

drawVolumeLabels() method, 67
drawYearLabels() function

grid, adding, 64
resetting text alignment, 65

dynamic data values, 46

E
Eclipse IDE, 242

instructions for obtaining and using, 243
Edge class, 221

count field and increment() method, 232
Processing version of GraphDemo, 222

edges, 220
adding to nodes in graphs, 223
length, calculating, 224

editors, 21
Elements of Typographical Style, The, 126,

346
ellipseMode, 42
en dash character, 126
endShape() method (see beginShape() and

endShape() methods)
Energy Minimized layout (Graphviz), 239
event handling, 336
examples, Processing API and environment

features, 24
exception handling, 271
exists() method (File class), 116
expand() method, 187

edges array, 223

exporting programs, 23
extending a class, 114

F
fading effect, 165–167

folder rollovers in treemap display, 204
Federal Information Processing Standards

(FIPS) codes, 147
web site, 148

File class, 116, 277
getAbsolutePath() method, 184
getCanonicalPath() method, 184
list() method, 277

errors causing null return, 183
Unix-based systems, 183

File menu (Examples), 24
FileInputStream class (Java), 26
FileItem class, 194

draw() method
check for the mouse, 199
fill settings, 202

drawTitle() method, 201
fields for color and hue, 202
modification times, 207
rolloverItem, 199
updating for zooming, 210–213

FilenameFilter class, 279
files and directories, 276–280

building directory tree using a
queue, 186–189

building directory tree using
recursion, 182–186

file handling functions, 26
large numbers of files, handling, 295
listing files in a folder, 277–280
locating files using Java File object, 277
modification times of files, 206
numbered file sequences, 280
tree structure, 182
(see also treemaps)

fill and stroke settings
beginShape() and endShape(), 73
data points highlighted by rollovers, 76
data shown as filled area, 78–80
draw() method, Node class, 228
fill for colors in treemap display, 202
stroke weight for line highlighting

individual data points, 74
fill() function, 21, 33, 58

alpha transparency parameter, 41
balancing text with colored lines in

baseball statistics display, 124

354 | Index

filtering data, 5
beverage consumption statistics, 55
connections with other steps in zip code

project, 14
directory structure, 194–198
efficient filtering of baseball standings for

the season, 133–144
files, problems with, 183
listing files with a filter class, 279
removing stop words from text, 231
resources for further information, 345
salary data (baseball project), 110
zip code database file, 147
zip code information, 9

Find in Reference menu command, 24
findNode() function, 223
firstDateStamp and lastDateStamp, 128, 129
fixed width text, 302
flat files, 294
Flickr, 265
floats, 8

converting strings to, 276
getting values with Table class

methods, 32
minimum and maximum values, 34
rounding, 65

FloatTable class, 55
floor() function, 66
folder selection dialog box, 217–218
folderCount variable, 186
folderIndex variable, 186
FolderItem class, 195–198

darkness field, 204
modification times, 207
mousePressed() method, 199, 200
taggedItem variable, 204
updateColors() method, 202
updating for zoom support, 213–217

Following the Equator, 190
fonts

ascent, 63
creating to label time series data

points, 60
defining for baseball statistics

display, 117
mouse data in rollover interaction, 42
numeric data display, 123–125
user feedback on typed text, 159

for loop (Java 1.5), 251
force-directed layout, 224
forms, 284

foundCount variable, 161, 278
frame object, 338
frame rate, 51

brightening and fading effect, 166
setting to ensure consistent

animation, 133
frmget utility, 285
functions, 20, 27

examples of use, 24
libraries, 27
Processing API function names, 32

G
generics, 250
geocoder.us service, 146
geocoding data, reading with Processing

XML library, 312–314
Geographic Information Systems (GIS), 324
geographic locations of postal zip codes, 157
geometry data for postal codes, 295
Georgia (font), 123
GET and POST methods, 285
getAbsolutePath() method (File class), 184
getCanonicalPath() method (File class), 184
getRowName() function, 35
getRowNames() method (FloatTable

class), 56
GIS (Geographic Information Systems), 324
GNU Wget, 267
Google Maps, 266

geocoding service, 312
grammars in BNF notation, 316
Graph class, 221
graphic design, 5
graphing tools, 93
GraphLayout demo (see graphs, simple

example)
GraphPanel class, 221
graphs, 220–263

advanced example (web site
traffic), 242–263

acquiring web server logfile, 245
data mining and

representation, 255–256
depicting branches and nodes, 256
drawing node names, 259
drawing visitor paths, 260
interacting with the data, 258
looking at source files, 248
mining more information, 262

Index | 355

parsing Apache logfiles, 245–247
reading and cleaning data, 252–255
using Java IDEs, 243–244
writing Java code, 249–252

complicated example (using Huckleberry
Finn), 229–240

acquiring text for input, 229
parsing the text, 229–231
removing stop words, 231
smarter addition of nodes and

edges, 232
viewing the book, 233–236

simple example (GraphLayout), 220–229
interacting with nodes, 224–228
porting from Java to

Processing, 221–224
techniques for handling graph data, 241

Graphviz, 238
grep, 307
gridlines

adding to year interval labels, 64
unboxed plot with reverse-color

gridlines, 81
group() method, 104
grouping parentheses in regular

expressions, 104
groups (in regular expression pattern

matching), 103
GZIP, 317

H
HALF_ROW_HEIGHT variable (baseball

project), 118
handleLine() function, 273
handleMouse() method, 131
HashMap class, 112
head and tail commands, 299
height of tallest character in a font, 63
Hello World program, 20
Help menu

Find in Reference, 24
libraries, 28

hex viewers, 298
hideContents() method, 200
Hierarchical layout (Graphviz), 239
hierarchies, 182

building directory tree using
recursion, 182–186

loading tree structure asynchronously
using a queue, 186–188

mapping tree structures
(treemaps), 189–219

depicting relative size of files and
folders, 194–198

showing progress while cataloging the
disk, 188

highlighting data points
background line that highlights, 74
using mouse rollovers, 76–77

HSB color space, 38
RGB versus, 39

HTML, 303–311
parser (custom), writing, 311
parser libraries, 311
parser, determining necessity of, 306
parsing and manipulating tables, 310
parsing with Swing built-in

parser, 308–310
parsing with Tidy, 304

embedding Tidy into a sketch, 305
HTML parameters, reading from tags, 129
HTML-formatted tables, 96
HTTP, 268
HttpClient, 286–288
Huckleberry Finn, 229
hue, saturation, and brightness, 38

setting in treemap display, 202

I
identifying the question, 3–4

baseball statistics (example), 95, 121–125
IDEs, using Processing Core library

in, 242–244
ignoreWord() method, 231
IIS logfile format, 247
image() command, 32
ImageLoader class, 281–284
images

loadImage() function, 26
loading asynchronously, 281–284
saving, 23
team logos (baseball project), 107–109

loading into project folder, 117
vector format, 236

import command, 28
import statements, 282
increment() method, 232
index pages (web sites), 254
indexes, 9
Information Anxiety, 2, 348

356 | Index

information visualization, 5
connections among the stages, 14
principles, 15–18

conveying more with less detail, 17
knowing your audience, 17
unique requirements of each

project, 16
visualization versus, 6
zip codes (USPS) example, 6–13

acquiring the data, 7
data mining, 9
filtering the data, 9
interacting with data, 11–13
parsing the data, 8
refining the data, 11
representing the data, 9

InputStream class, 284
int data type, 249

Integer objects versus, 113
int() function, 56
Integer class, 112
Integer objects versus int data type, 113
integers, 9
Integrator class, 48–51, 165

interpolation between data sets, 87–92
refining date transitions in baseball

project, 132
setting target lengths for branches

between nodes, 248
interacting with data, 5

active sketches in Processing, 21
connection with other steps in zip code

project, 15
data for range of dates (baseball

project), 127–132
date selector bar, 132
drawing the dates, 130
loading standings for entire

season, 130
refining date transitions, 132
switching between dates, 131

databases, performance and, 294
folder selection dialog box, 217–218
highlighting points while typing zip code

digits, 158
highlighting points with rollovers, 76–77
interpolation between data sets, 87–92
labeling current time series data

set, 59–62
loading asynchronously using a

queue, 186–188
manipulating nodes in web site visits

graph, 258

mapping location data from the user, 52
mouse rollover interaction, 42–45
nodes in graphs, 224–228
resources for further information, 347
smooth interpolation over time, 48–51
text labels as tabbed panes, 83–87
updating values over time, 46–48
viewing folder contents, 199–201
zip codes project (example), 11–13
zoom in treemap display, 208–217

updating FileItem, 210–213
updating FolderItem, 213–217

zooming in (zip code example), 167–177
interpolation of values

between data sets, 87–92
ColorIntegrator class, 165–167
colors, 37–39
smooth interpolation over time, 48–51

interpreted scripting languages, 29
isValid() method (FloatTable class), 56

J
Java, viii

bytecode compilation, 29
database API (JDBC), 291
helpful features in Java 1.5 (J2SE5.0) and

later, 250
InputStream class, 284
integrating Processing, 331–343
JAR archives, 26
JFreeChart library, 93
JOGL (Java for OpenGL), 25
moving code from Processing

to, 249–250
porting GraphLayout to

Processing, 221–229
Processing API, 19
relationship to Processing, 331
serialization, 154
starting point for a sketching

language, 29
Swing UI Toolkit, 217–218
using Processing Core library in Java

IDEs, 243–244
.java source files, 335
Java programming mode, 333
Java2D renderer, 25
JavaScript (.js) files, 99

parsing, 100
JavaScript Object Notation (JSON), 101,

315

Index | 357

JavaScript, converting forms to use GET
instead of POST, 285

joining multiple sets of data, 43
JRuby, 264
JSON (JavaScript Object Notation), 101
Jython, 264

K
keyPressed() method, 62, 131

typing of digits in postal zip codes, 159
keywords (search), 265

L
labels

axis labels on time series plot, 62–72
titling both axes, 69–72
volume labels on vertical axis, 65–68
year labels on horizontal axis, 63–65

text labels as tabbed panes, 83–87
Lambert, Johann Heinrich, 54
language syntax (Processing), 20
layout() method (treemaps), 197
leftX and rightX values (baseball

project), 119
length of a file, 116
length of edges, 224
lerp() function, 37
lerpColor() function, 37

changing color space used, 38
less command, 299
libraries, 27

core.jar file, 243
examples, 24
HTML parsing, 311
packaging code into, 342
processing.core source code, 343
time series or bar chart plotting, 93
treemap, 190
using, 343
writing to different formats, 237
XML, 314

line graph connecting points in time series
plot, 73–76

line() method, scaling weights to baseball
salaries, 121

LinkHandler class, 308
Links utility, 267
Linux systems, fonts, 123
list() method

File class, 277
PFont class, 61

live data, interaction with, 3
loadBytes() method, 266, 284
loadData() method

reading a book, 229
loadFont() method, 42
loadImage() method, 26, 32, 266
loadStrings() method, 26, 112, 252, 266

Java methods versus, 271
loading text data, 270

locations on a map, 32–34
displaying centers of U.S. states, 33
plotting your own values to, 51
taking data from the user, 52

logfile formats, 247
London Underground, map of, 3
longs

converting to formatted dates, 128
ranked array of, 207

loop() method, 133

M
Mac OS X

command-line utilities, 266
Georgia (default font), 123
Graphviz, 238
text editors and hex viewers, 298
typefaces, built-in, 60

mag() function, 227
magnitude and positive/negative values, 40

using transparency, 41
magnitude of a vector, 227
main() method, 337
Major League Baseball web site

(MLB.com), 97
map() function, 36

mapping zip code place coordinates to the
screen, 157

plotting time series data, 58
MapLayout algorithms, 197
mapping, 31–53

baseball salaries to line stroke, 121
data on a map, 34
HashMap class, 112
locations, specifying, 32–34
mouse rollover interaction, 42–45
plotting your own values to locations, 51
Processing function calls, 32
scatterplot maps, 145–181

acquiring zip code data, 145
parsing and filtering zip code

data, 147

358 | Index

mapping (continued)
smooth value interpolation over

time, 48–51
taking location data from users, 52
tree structures (treemaps), 189–219

depicting relative size of files and
folders, 194–198

two-sided data ranges, 40
updating values over time, 46–48
(see also graphs)

markup languages, 303–315
HTML, 303–311
XML, 311–315

Matcher object, 104
matchers (regular expression), 103
MathWorld web site (Wolfram

Research), 150
maxDateIndex variable, 128
methods, 20

protection levels, Java and
Processing, 250

Microsoft Excel
binary XLS files, 325
opening a DBF file, 146
unnecessary additions to TSV files, 147

Microsoft web core fonts initiative, 123
mind maps, 220
minDateIndex and maxDateIndex

variables, 129, 137
minimum and maximum values

boundaries of points in scatterplot
map, 156

boundaries of points on scatterplot
map, 151

calculating with FloatTable class
methods, 55

changing data and, 46
longitudes and latitudes, 148
map data, 34
zooming, 173

mining data (see data mining)
missing data, 56

discrete values represented with a bar
chart, 82

modification times of files, 207
modulo operator (%), 63
Monospaced typeface, 60
more and less commands, 299
mouse interaction

drawing a line that follows the mouse, 22
event handling, 336
handling in tabs, 85

nodes, manipulating in GraphLayout
demo, 224–229

rollover, 42–45
showing and hiding folder

contents, 199–201
switching between dates in baseball

project, 131
using rollovers to highlight points, 76–77
zooming in on zip code locations, 174
(see also interacting with data)

mouseInside() method, 200
mousePressed() method, 22

using in tabs, 85
MySQL, 289–293

getting started with, 289–291
using with Processing, 291–293

N
NanoXML project, 28
NcFTP utility, 267
negative/positive values, magnitude and, 40

using transparency, 41
Netbeans IDE, 243
networks

approaching network problems, 240–242
visual representation of, 220
watching network traffic, 328–330
(see also graphs)

nextFolder() method, 186
nextLine() function, 275
nf() function, 46, 66

numbered file sequences, 280
nfp() function, 47
nfs() function, 47
Node class, 182, 221, 227, 248

count field and increment() method, 232
draw() method, 255, 259
Processing version of GraphDemo, 222
recursive data structure for File

objects, 184
nodes, 182

graph of web site visits
drawing names, 259

GraphDemo (Processing version), 222
in graphs, 220

interacting with, 224–228
using words as nodes, 229

placement of and lengths of edges, 224
representing in web site visits graph, 256
tracking a list of Node objects

(queue), 186
noFill() method, 74

Index | 359

noLoop() method, 133, 192
non-lining numerals, 124
norm() function, 37
normalized range, 37
noStroke() function, 33
numbered sequences, saving program output

as, 23
numeric data display, typeface, 123–125

O
OBJ (3D file format), 322
objects, 113

Java and Processing, 249
old style figures, 124
Olympic Committee web site, 284
online community (Processing), 20
open source, 19

databases, 289
Graphviz tool, 238
library for creating treemap

structures, 190
NanoXML project, 28

OpenGL library, 343
OpenGL renderer, 25
OpenOffice spreadsheet

entering web data, 110
opening a DBF file, 146
unnecessary additions to TSV files, 147

openStream() method, 284
OpenType fonts, 61
operating systems

built-in fonts, 60
files associated with, modification

times, 207
order variable, 195
ordering array elements, 112
output files, 269

P
P2D (Processing 2D) renderer, 25
P3D (Processing 3D) renderer, 25
packaged solutions, shortcomings of, 16
pagers, 299
PApplet class, 248, 334

embedding into Java
applications, 338–342

Swing application, 340–342
frame variable, 338
main() method, 337

param() method, 129
parameterized objects, 251
parseInfo() method, 156
parsePlace() method, 156
parsing data, 5, 296–330

beverage consumption statistics (time
series example), 55

binary data, 325–328
command-line utilities, 298
compressed data, 317–319
directory structure, 194–198
efficient parsing of baseball standing for

the season, 133–144
file formats, 328
grammars in Backus Naur Form

(BNF), 316
JavaScript source file (baseball

statistics), 100–107
regular expressions, using, 102–107

JSON (JavaScript Object Notation), 315
levels of effort, 296
network traffic, 328–330
OBJ and AutoCAD DXF (3D), 322
parsing large files as they are

acquired, 276
PostScript and PDF, 323
reading a book, 229
regular expressions (regexps), 316
resources for further information, 345
salary data (baseball project), 110
Shapefile (SHP), 324
SVG (Scalable Vector Graphics), 320–322
text, 299–303

CSV file, 299–302
TSV file, 299
with fixed column widths, 302

text editors and hex viewers, 298
text markup languages, 303–315

HTML, 303–311
XML, 311–315

Well-known text (WKT), 324
win-loss standings (baseball project), 115
zip code database file, 147
zip codes project (example), 8

pathnames for files, 116
absolute path to local file, 269

Pattern object, 104
patterns (regular expression), 103
PDF files, 24, 323

vector images, 236
PDF renderer, 25

360 | Index

percent value (normalized ranges), 37
percentile() method, 207
Perl scripts

generating random values for
updateTable(), 47

retrieving and consolidating baseball
season standings, 134–136

PFont class
defining font for baseball project

display, 117
list() method, 61

physics-based interpolator, 48–51
PImage class, 26, 283

save() method, 270
Pivot by Split Size model (arranging a

treemap), 197
Place class, 155

draw() method, 157
point drawing when zooming, 177

matching locations to typed digits in zip
codes, 160–161

tracking currently chose Place object, 163
zooming, 175

placeCount variable, 151, 156
placement of nodes and lengths for each

edge, 224
planning data display, 2–6

combining insights from different
disciplines, 5

data collection, 2
identifying the question, 3–4
information overload, 2
process of understanding data, 5–6
thinking about data, 3

points
highlighting using rollovers, 76–77
mixing with lines in time series

representation, 74
ways to connect, refining, 77–82

showing data as an area, 78–80
unboxed plot with reverse-color

gridlines, 80
using bar chart instead, 82

Portable Document Format (PDF), 323
positive/negative values, magnitude and, 40

using transparency, 41
POSIX time, 128
POST method, 285
PostgreSQL, 289
PostScript (PS), 323

preprocessed data, using (baseball
project), 111–118

finishing setup, 117
team logos, 117
team names and codes, 112
team salaries, 113–115
win-loss records, 115–117

preprocessing data, 96–110
preprocessor code for zip code

data, 151–154
retrieving salary data (baseball

project), 109
retrieving team logos (baseball

project), 107–109
retrieving win/loss data (baseball

project), 96–100
unpacking win/loss files (baseball

project), 100–107
zip code data, 145–155

preprocessor, 335
printing tree contents recursively, 184
println function, 104
println() function, 65
PrintWriter object, 270
privacy issues, 3
process of understanding data, 5
Processing, 19–30

components of, 20
Core library, using in Java IDEs, 242–244
examples and reference, 24–27

loading and displaying data, 26
size() method, 24

exporting programs, 23
functions, 27

libraries, 27
integrating with Java, 331–343
PDE (Processing Development

Environment), 20
porting GraphLayout from Java

to, 221–229
resources for further information, 347
saving program output as images, 23
sketching and scripting, 28–30

code structure simplification with
Processing, 29

sketching with, 20–23
active sketch, 21
drawing lines (example), 20

web site, viii
processing data by hand versus writing a

program, 111

Index | 361

programming modes, 331–333
Basic, 332
Continuous, 332
Java, 333

progress bar
image loading, 281
showing while cataloging the disk, 188

Project Gutenberg, 229
projections, map projections for the

U.S., 150
protocols used in URLs, 268
pruneNode() function, 256
public, private, or protected methods, 250
purpose for using the data set, 2

Q
queues

StreamerQueue class, 274
using to load asynchronously, 186–188

quotes and commas, removing from CSV and
TSV files, 150

R
radius (ellipseMode), 42
random() function, 46
ranges, mapping, 34

converting numbers with map()
function, 36

normalized range, 37
two-sided data ranges, 40

ranked data
baseball team salaries, 113
sorting lists in baseball project, 118

RankedList class, 113
compare() method, 126

RankedLongArray.pde file, 207
readData() method, 156, 179
Reader objects, 252
readNextRecord() method, 254
ready-made visualizations

shortcomings of, 16
Reas, Casey, viii
Record class, 247

addSiteAlias() method, 252
setSiteAddress() method, 252

rect() function, 58
rectMode() method, 58
recursion

benefits and challenges for display and
interaction, 182

building a directory tree, 182–186
(see also treemaps)

references, 24
referer information (web server logs), 245,

253
additional data mining with, 262

refining data representation, 5
baseball statistics (example), 121–125

highlighting the lines, 121
numeric data typeface, 123–125
typography, 126

choosing proper representation, 73–77
date transitions in baseball project, 132
drawing axis labels on time series

plot, 62–72
titling both axes, 69–72
volume labels on vertical axis, 65–68
year labels, 63–65

graph representing Huckleberry Finn
text, 233–236

highlighting points while typing zip code
digits, 158

labeling time series data set, 59–62
loading data using threads, 178–180
plotting time series data points, 57–59
point drawing when zooming, 177
progressively brightening or dimming

points, 165
resources for further information, 346
showing currently selected

point, 162–164
smooth interpolation of values over

time, 48–51
tab images, 85
team logos (baseball project), 108
treemap display, 201–208

colors, 201–203
maintaining context, 204–206
making colors more useful, 206

ways to connect points, 77–82
showing data as an area, 78–80
unboxed plot with reverse-color

gridlines, 80
using bar chart instead, 82

web site visits graph, drawing node
names, 259

zip codes project (example), 11
regular expressions (regexps), 102–107, 316

parsing Apache logfile data, 246
program to parse data from

MLB.com, 104

362 | Index

relationships, displaying, 118
relax() method, 255

Edge class, 225
Graph.java example source, 226
Node class, 226

relaxation, 224
renderers, 24
representing data, 5

baseball statistics project, 118–120
team rankings (example), 120

choosing proper representation, 73–77
connections with other steps in zip code

project, 14
directory structure, 194–198
discrete values represented with a bar

chart, 82
graph of web site visits, branches and

nodes, 256
graph representing Huckleberry Finn

text, 233–236
graphs, limitations of, 240
plotting time series data points, 57–59
resources for further information, 346
scatterplot of zip codes, 157
showing progress, 188
web site visits graph, drawing node

names, 259
zip codes project (example), 9

rest length, 224
REST-style APIs, 265
ResultSet class, 293
RGB color space, 38

HSB versus, 39
rolloverItem, 199
root directory, 185
root folder, 200
row height (baseball statistics project), 118
row names in data tables, 35
Runnable class, 179
runningX value, 84

S
\s (whitespace character) in regular

expressions, 103
SalaryList class, 114, 115
SansSerif typeface, 60
saturation and brightness of colors, 38

settings levels, 202
save() method, 270
saveBytes() method, 270
saveFrame() function, 23

savePath() method, 269
saveStrings() method, 270
scatterplot maps, 145–181

acquiring zip code data from U.S. Census
Bureau, 145

parsing and filtering zip code data, 147
scientific visualization, 347
screen-scraping, 96

data acquisition ethics, 266
general process, 98
tables from HTML files, 310

scripting, 20, 29
scripting languages

use of objects for all values, 113
using with Processing, 264

search engines, 265
searching, 265
season array, 130
security of information, 3
security restrictions, Processing software, 26
serialization, 154
Serif typeface, 60
setBounds() method, 203
setup() function, 21, 32

baseball statistics project, 117
font, setting, 42
GraphDemo (Processing version), 222
web site traffic graph (example), 252

setupLogos() function, 117
setupSalaries() function, 115, 118
setupStandings() function, 117

downloading data for each day of baseball
season, 130

Shape class, 334
.java source file, 335

shape commands (beginShape() and
endShape()), 73–76

Shapefile (SHP) format, 324
Shneiderman, Ben, 189
showContents() method, 200
SIDE_PADDING variable (baseball

project), 119
Simple API for XML (SAX), 314
SimpleDateFormat class, 128
SimpleMapItem objects, 190
SimpleMapModel class, 190
site addresses and aliases, 253
Six Degrees of Kevin Bacon game, 242
size() method, 22, 24, 337

specifying renderer, 24
sketchbooks, 20

Index | 363

sketches, 20, 28
running online inside a web browser, 133
sketch folder contents, viewing, 27
starting a new sketch, 31
using Java code, 342

sketching, 29
sketchPath variable, 269, 277
Slurper class, 179
smooth() function, 33
SOAP (Simple Object Access Protocol), 265
sorting

case-insensitive, 183
improving handling of ties, 126
lists of files, 280

source code for processing.core libraries, 343
SourceForge, fonts, 124
spanAspect and screenAspect variables, 174
split() method, 112, 230
splitTokens() method, 229
spreadsheets (see Microsoft Excel;

OpenOffice spreadsheet)
SQL (Structured Query Language), 288
SQLite, 294
stages of visualizing data, 1–18

connections among, 14
listing of, 5–6
principles, 15–18

conveying more with less detail, 17
knowing your audience, 17
unique requirements of each

project, 16
reasons for planning, 2–5

collection of data outpaces its use, 2
constant changes on data, 3
identifying the question, 3
information overload, 2
meaning of collected information, 3
need for insights from diverse fields, 5

zip code project (example), 6–13
acquiring data, 7
filtering the data, 9
interacting with the data, 11–13
iterating through and combining

stages, 14
mining the data, 9
parsing the data, 8
refining the data, 11
representing the data, 9

StandingsList class, 116
compare() method, 126

standingsY and salaryY variables (baseball
project), 120

state abbreviations for FIPS codes, 147, 148
static final modifiers, 118
statistics, 5
status bar variables, 189
stop words, 231
Streamer class, 248, 254, 273
StreamerQueue class, 274
String class

endsWith() method, 277
indexOf() method, 306
replaceAll() method, 229

strings
breaking into characters and capitalizing

first character of each word, 149
converting String array to int array, 56
converting to floats, 276
creating new String object from

typedChars array, 160
loadStrings() function, 26
sorting, case and, 183
String class, 26
zip code numbering project, 8

stroke() method, 58
color and line thickness in baseball

statistics, 121
parameter variations, 21

strokeWeight() method, 193
StuffIt (SIT and SITX), 319
substring() method, 302
subway maps, 3

conveying more information with fewer
details, 17

superclass, 114
SVG (Scalable Vector Graphics), 320–322

shape data, parsing, 296
Swing API

embedding PApplet into an
application, 340–342

HTML parser, 308–310
Swing UI Toolkit, folder selection dialog

box, 217–218
symbolic links, 184
synchronization (threads), 274

T
tabbed panes, 83–87

better tab images, 85
drawing tabs instead of a title, 84
mouse input, handling, 85

tab-delimited values (see TSV files)
Table class, 32, 310

data stored as float values, 55

364 | Index

tables, 288
tabPad variable, 83
tabTop and tabBottom variables, 83
taggedItem variable, 204
tags, adding to folders in treemap

display, 204–206
Tape Archive (TAR), 319
target() method, 48

ColorIntegrator class, 165
targetX1, targetY1, targetX2, and targetY2

arrays, 174
teamIndex() function, 126
text data, loading, 270–276

files too large for loadStrings(), 270
reading files asynchronously with a

thread, 273–275
reading files progressively, 272

text editors, 298
text files, 294

converting to arrays, 114
text() method

baseball statistics project, 120
drawing int or float values, 66
mouse rollover information, 43
writing name of currently visible column

in a data set, 59
textAlign() method, 63, 69

left-aligning and vertically centering
text, 119

vertically centering text, 66
textAscent() method, 69
textFont() method, 42
textWidth() method, 69

calculating tab width, 84
The Oracle of Bacon (web site), 242
this (variable), 28
Thread class, 178
threads, 178

reading files asynchronously, 273–275
tick marks, 67
Tidy, 304

embedding into a sketch, 305
using with XML documents, 311

TIFF-format images of program output, 23
time series, 54–93

beverage consumption statistics, acquiring
and parsing, 55

choosing proper representation, 73–77
cleaning the data table, 55
drawing axis labels, 62–72

titling both axes, 69–72

volume labels on vertical axis, 65–68
year labels, 63–65

interpolation between data sets, 87–92
labeling the data set, 59–62
plotting the data, 57–59
rollovers, using to highlight points, 76–77
text labels as tabbed panes, 83–87
ways to connect points, 77–82

showing data as an area, 78–80
unboxed plot with reverse-color

gridline, 80
using bar chart instead, 82

titles, drawTitle() method, 64
totalCount variable, 156
transitioning to another data value, 48
translate() method, 119
transparency, 41
tree structures, 182

building directory tree using
recursion, 182–186

loading asynchronously using a
queue, 186–188

showing progress while cataloging the
disk, 188

Treemap class, 190
treemaps, 189–219

depicting relative size of files and
folders, 194

depicting size of files and
folders, 194–198

folder selection dialog box, 217–218
improving display, 201–208

adding colors, 201–203
maintaining context, 204–206
making colors more useful, 206

word usage (example), 190–193
zoom capability, 208–217

updating FileItem, 210–213
updating FolderItem, 213–217

trim() method, 302
TrueType fonts, 61
try/catch block, 271

openStream() method, 284
TSV (tab-separated values) files, 147, 299

fips.tsv file, 148
removing extraneous quotes and

commas, 150
Tufte, Edward, 54
Twain, Mark (see Clemens, Samuel L.)
TX() and TY() (transform x and y)

functions, 157

Index | 365

typedChars array, 159
creating new String object from, 160

typedCount array, 159
typedPartials array, 160
typedPartials variable, 159
typedString value, 160
typefaces, built into systems, 60
typography, 126, 346

U
U.S. Census Bureau TIGER/LINE site, 180
U.S. Census Bureau zip code data, 146
U.S. Postal Service ZIP system, 145
U.S. Postal Service zip system

(see also zip code project)
understanding data, process of, 5
Unicode character escapes, 126
Unix epoch, 128
Unix systems

. (single dot) and .. (double dot) directory
entries, 183

command-line utilities, 266
Unix-based systems, symbolic link files, 184
update() method, 255

Integrator class, 48, 133
Node class, 227
SalaryList class, 115

updateAnimation() method, 166
updateColors() method, 202

brightness values based on file
modification times, 208

updateTable() function, 46–48
updateTyped() method, 160

chosen variable, 164
updating the screen, 338
URL class, openStream() method, 26
URLs, 100

files located at, 268
length, 285
loading files from, 270
referer, 253

USA Today web site, 109
user agent (browser type and platform), 245

V
“value added” versions of zip code data, 145
variables

baseball statistics project, 118
places, number of, 155
varying over time, 94

vectors, 227
saving an image in vector format, 236
SVG (Scalable Vector Graphics), 320–322

vertex() method, 73
vertices

curve vertices, 77
use in continually drawn time

series, 73–76
Visitor class, 248, 260

draw() method, 255
visual design, insight from diverse fields, 5
visual representation (see refining visual

representation; representing data)
visualization versus information

visualization, 6

W
\w (word) character in regular

expressions, 103
W3C Extended logfile format, 247
web page for this book, xii
web server logfiles (Apache), 245–247
web services, data availability through, 96
web site (Processing), 20
Well-known text (WKT), 324
Wget utility, 267
whitespace characters, matching in regular

expressions, 103
window size, 21
Windows systems

Cygwin, 266
file paths, 186
Georgia (default font), 123
text editors and hex viewers, 298
typefaces, built-in, 60

Wireshark, 328–330
WKT (Well-known text), 324
WordItem class, 190
WordMap class, 191
writeData() method, 238
writing a program to convert data versus

processing by hand, 111
Wurman, Richard Saul, 2, 348

X
Xerces project, 315
XML, 96, 311–315

cleaning up with Tidy, 311
other parsing methods, 314
using Processing XML library to read

geocoding data, 312–314

366 | Index

XML Import library, 28
XML Path Language (XPath), 314
XMLElement class, 28, 312–314

Z
ZIP (Zoning Improvement Plan), 145
zip code project, 6–15

(see also mapping)
ZIP files, 317–319
zips.tsv file, 145
Zoning Improvement Plan (ZIP), 145
zooming

changing drawing of points when
zooming, 177

treemap data display, 208–217
updating FileItem, 210–213
updating FolderItem, 213–217

zooming in on zip code
locations, 167–177

About the Author
Ben Fry received his doctorate from the Aesthetics + Computation Group at the MIT
Media Laboratory. He was the 2006–2007 Nierenberg Chair of Design for the Carn-
egie Mellon School of Design. He worked with Casey Reas to develop Processing,
which won a Golden Nica from the Prix Ars Electronica in 2005. Ben’s work has
received a New Media Fellowship from the Rockefeller Foundation and has been
shown at the Museum of Modern Art, Ars Electronica, the 2002 Whitney Biennial,
and the 2003 Cooper Hewitt Design Triennial.

Colophon
The animal on the cover of Visualizing Data is a Northern hawk owl (Surnia ulula).
They are called Northern hawk owls because they are largely found in the boreal
forests of North America and Eurasia, and because of their behavioral similarities to
the hawk; they fly, hover, and soar low over open areas searching for prey. Also,
more like hawks than owls, they predominantly use their sight, rather than their
hearing, when hunting.

They are widely dispersed geographically, found from Eurasia to Norway, Sweden,
and Finland; east through Siberia to Kamchatka; and in North China and Central
Asia as far south as Tien Shan. In North America, they can be found from Alaska east
to Labrador, Canada. They breed wherever food is plentiful; when food is scarce,
they (mostly the young owls) may fly south of their normal distribution.

Medium-size owls, they are usually between 36–41cm long with a wingspan between
22–25cm wide. Typically, males weigh between 273–326g and females weigh more,
between 306–392g. The sexes are very similar in appearance and can be most easily
distinguished by their calls. The typical male call is a fast, melodious, purring trill;
although the female call is similar, it has a higher pitch and is less clear.

Their heads are round and their faces whitish, bordered on each side with a thick
black stripe. The upper half of their body is generally dark gray and black, with a
densely spotted forehead and crown. Their tails are long with white stripes. Their
bills are yellow and they have pale yellow eyes. (Young owls have golden yellow eyes
that turn paler as they age.)

Northern hawk owls—unlike most other owls—are typically diurnal, meaning they
hunt during the day. They feed on small mammals, such as lemmings, voles, and
rabbits. Other prey includes birds, frogs, and even fish. Often, they sit on a perch—
typically in a conspicuous spot—scoping out potential targets. Once prey is spotted,
they quickly take flight and swoop down to attack. When food is plentiful, they
catch an excess and hide it for later.

Their nesting period begins in April and lasts through the first half of May. Males
scope out potential nesting sites, and females select the spot. (They are monoga-
mous throughout the mating season.) Potential sites include empty woodpecker
holes; abandoned squirrel, crow, and hawk nests; and rotting trees. They lay
between 3–13 eggs at 1 to 2 day intervals, and incubate the eggs for approximately

25 to 30 days. The males feed the females during the incubation period. Chicks leave
the nest after about 25 days and can fly well by the time they are 6 weeks old.

More research is necessary to better understand Northern hawk owls—one of the
least researched bird species in North America—and their habitat needs and migra-
tion patterns. Habitat destruction is a major threat to them. The removal of dead
trees and stumps deprives these owls of the nesting areas they need to procreate.
Other concerns include poaching (even though they are protected under the Migra-
tory Bird Treaty Act, which makes it illegal to harm or kill certain migratory bird
species) and collisions with power lines and vehicles.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Visualizing Data
	Table of Contents
	Preface
	The Audience for This Book
	Background Information
	Overview of the Book
	Safari® Books Online
	Acknowledgments
	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You

	The Seven Stages of Visualizing Data
	Why Data Display Requires Planning
	Too Much Information
	Data Collection
	Thinking About Data
	Data Never Stays the Same
	What Is the Question?
	A Combination of Many Disciplines
	Process

	An Example
	What Is the Question?
	Acquire
	Parse
	Filter
	Mine
	Represent
	Refine
	Interact

	Iteration and Combination
	Principles
	Each Project Has Unique Requirements
	Avoid the All-You-Can-Eat Buffet
	Know Your Audience

	Onward

	Getting Started with Processing
	Sketching with Processing
	Hello World
	Hello Mouse

	Exporting and Distributing Your Work
	Saving Your Work

	Examples and Reference
	More About the size(��) Method
	Loading and Displaying Data

	Functions
	Libraries Add New Features

	Sketching and Scripting
	Don’t Start by Trying to Build a Cathedral

	Ready?

	Mapping
	Drawing a Map
	Explanation of the Processing Code

	Locations on a Map
	Data on a Map
	Two-Sided Data Ranges
	Provide More Information with a Mouse Rollover (Interact)
	Updating Values over Time (Acquire, Mine)
	Smooth Interpolation of Values over Time (Refine)

	Using Your Own Data
	Taking Data from the User

	Next Steps

	Time Series
	Milk, Tea, and Coffee (Acquire and Parse)
	Cleaning the Table (Filter and Mine)
	A Simple Plot (Represent and Refine)
	Labeling the Current Data Set (Refine and Interact)
	Drawing Axis Labels (Refine)
	Year Labels
	Labeling Volume on the Vertical Axis
	Bringing It All Together and Titling Both Axes

	Choosing a Proper Representation (Represent and Refine)
	Using Rollovers to Highlight Points (Interact)
	Ways to Connect Points (Refine)
	Showing Data As an Area
	Further Refinements and Erasing Elements
	Discrete Values with a Bar Chart (Represent)

	Text Labels As Tabbed Panes (Interact)
	Adding the Necessary Variables
	Drawing Tabs Instead of a Single Title
	Handling Mouse Input
	Better Tab Images (Refine)

	Interpolation Between Data Sets (Interact)
	End of the Series

	Connections and Correlations
	Changing Data Sources
	Problem Statement
	Preprocessing
	Retrieving Win/Loss Data (Acquire)
	Data source for baseball statistics

	Unpacking the Win/Loss files (Mine and Filter)
	Introducing regular expressions

	Retrieving Team Logos (Acquire, Refine)
	Retrieving Salary Data (Acquire, Parse, Filter)

	Using the Preprocessed Data (Acquire, Parse, Filter, Mine)
	Team Names and Codes
	Team Salaries
	Win-Loss Standings
	Team Logos
	Finishing the Setup

	Displaying the Results (Represent)
	Returning to the Question (Refine)
	Highlighting the Lines
	A Better Typeface for Numeric Data
	A Word About Typography

	Sophisticated Sorting: Using Salary As a Tiebreaker (Mine)
	Moving to Multiple Days (Interact)
	Drawing the Dates
	Load Standings for the Entire Season
	Switching Between Dates
	Checking Our Progress

	Smoothing Out the Interaction (Refine)
	Deployment Considerations (Acquire, Parse, Filter)

	Scatterplot Maps
	Preprocessing
	Data from the U.S. Census Bureau (Acquire)
	Dealing with the Zip Code Database File (Parse and Filter)
	Building the Preprocessor
	What about a binary data file or a database?

	Loading the Data (Acquire and Parse)
	Drawing a Scatterplot of Zip Codes (Mine and Represent)
	Highlighting Points While Typing (Refine and Interact)
	Show the Currently Selected Point (Refine)
	Progressively Dimming and Brightening Points (Refine)
	Zooming In (Interact)
	Changing How Points Are Drawn When Zooming (Refine)
	Deployment Issues (Acquire and Refine)
	Next Steps

	Trees, Hierarchies, and Recursion
	Using Recursion to Build a Directory Tree
	Caveats When Dealing with Files (Filter)
	Recursively Printing Tree Contents (Represent)

	Using a Queue to Load Asynchronously (Interact)
	Showing Progress (Represent)

	An Introduction to Treemaps
	A Simple Treemap Library
	A Simple Treemap Example

	Which Files Are Using the Most Space?
	Reading the Directory Structure (Acquire, Parse, Filter, Mine, Represent)

	Viewing Folder Contents (Interact)
	Improving the Treemap Display (Refine)
	Maintaining Context (Refine)
	Making Colors More Useful (Mine, Refine)

	Flying Through Files (Interact)
	Updating FileItem for zoom
	Updating FolderItem
	Adding a Folder Selection Dialog (Interact)

	Next Steps

	Networks and Graphs
	Simple Graph Demo
	Porting from Java to Processing
	Interacting with Nodes

	A More Complicated Graph
	Using Text As Input (Acquire)
	Reading a Book (Parse)
	Removing Stop Words (Filter)
	Smarter Addition of Nodes and Edges (Mine)
	Viewing the Book (Represent and Refine)
	Saving an Image in a Vector Format
	Checking Our Work

	Approaching Network Problems
	Advanced Graph Example
	Getting Started with Java IDEs
	Step-by-step instructions if you’re new to Eclipse

	Obtaining a Web Server Logfile (Acquire)
	Reading Apache Logfiles (Parse)
	A Look at the Other Source Files
	Moving from Processing to Java
	Helpful additions in Java 1.5 (J2SE 5.0) and later

	Reading and Cleaning the Data (Acquire, Parse, Filter)
	Filtering site addresses and aliases
	Filtering for useful page information

	Bringing It All Together (Mine and Represent)
	Mining unused nodes: Maintaining performance and readability

	Depicting Branches and Nodes (Represent and Refine)
	Playing with Data (Interact)
	Drawing Node Names (Represent and Refine)
	Drawing Visitor Paths (Represent and Refine)

	Mining Additional Information

	Acquiring Data
	Where to Find Data
	Data Acquisition Ethics

	Tools for Acquiring Data from the Internet
	Wget and cURL
	NcFTP and Links

	Locating Files for Use with Processing
	The Data Folder
	Uniform Resource Locator (URL)
	Absolute Path to a Local File
	Specifying Output Locations

	Loading Text Data
	Files Too Large for loadStrings(��)
	Reading Files Progressively
	Reading Files Asynchronously with a Thread
	Parsing Large Files As They Are Acquired

	Dealing with Files and Folders
	Using the Java File Object to Locate Files

	Listing Files in a Folder
	Listing files with a filter class
	Sorting file lists
	Handling Numbered File Sequences

	Asynchronous Image Downloads
	Using openStream(��) As a Bridge to Java
	Dealing with Byte Arrays
	Advanced Web Techniques
	Handling Web Forms
	Pretending to Be a Web Browser

	Using a Database
	Getting Started with MySQL
	Using MySQL with Processing
	Other Database Options
	Performance Aspects of Databases in Interactive Applications

	Dealing with a Large Number of Files

	Parsing Data
	Levels of Effort
	Tools for Gathering Clues
	Text Is Best
	Tab-Separated Values (TSV)
	Comma-Separated Values (CSV)
	Text with Fixed Column Widths

	Text Markup Languages
	HyperText Markup Language (HTML)
	Embedding Tidy into a sketch
	Is a parser necessary?
	Using Swing’s built-in HTML parser
	Parsing and manipulating tables from HTML files
	Other HTML parser libraries
	Writing a custom HTML parser

	Extensible Markup Language (XML)
	Cleaning up XML
	Example: Using the Processing XML library to read geocoding data
	Other methods for parsing XML

	JavaScript Object Notation (JSON)

	Regular Expressions (regexps)
	Grammars and BNF Notation
	Compressed Data
	GZIP Streams (GZ)
	PKZip files (ZIP)
	Other compression formats

	Vectors and Geometry
	Scalable Vector Graphics (SVG)
	OBJ and AutoCAD DXF
	PostScript (PS) and Portable Document Format (PDF)
	Shapefile and Well-Known Text

	Binary Data Formats
	Excel Spreadsheets (XLS)
	dBASE/xBase (DBF)
	Arbitrary Binary Formats
	Bit Shifting
	DataInputStream

	Advanced Detective Work
	Watching Network Traffic

	Integrating Processing with Java
	Programming Modes
	Basic
	Continuous
	Java

	Additional Source Files (Tabs)
	Using .java Source Files

	The Preprocessor
	API Structure
	Event Handling
	The size(��) Method
	The main(��) Method
	The frame Object

	Embedding PApplet into Java Applications
	Two Models for Updating the Screen
	Embedding in a Swing Application

	Using Java Code in a Processing Sketch
	Using the Code Folder to Add .jar Files to a Sketch
	Packaging Code into Libraries

	Using Libraries
	Building with the Source for processing.core

	Bibliography
	Acquire and Parse
	Filter and Mine
	Represent
	Refine
	Interact
	General

	Index

